Loading...
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50#include <linux/wait.h>
51#include <linux/kthread.h>
52#include <linux/prefetch.h>
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
55#include <linux/random.h>
56#include <linux/trace_events.h>
57#include <linux/suspend.h>
58
59#include "tree.h"
60#include "rcu.h"
61
62#ifdef MODULE_PARAM_PREFIX
63#undef MODULE_PARAM_PREFIX
64#endif
65#define MODULE_PARAM_PREFIX "rcutree."
66
67/* Data structures. */
68
69/*
70 * In order to export the rcu_state name to the tracing tools, it
71 * needs to be added in the __tracepoint_string section.
72 * This requires defining a separate variable tp_<sname>_varname
73 * that points to the string being used, and this will allow
74 * the tracing userspace tools to be able to decipher the string
75 * address to the matching string.
76 */
77#ifdef CONFIG_TRACING
78# define DEFINE_RCU_TPS(sname) \
79static char sname##_varname[] = #sname; \
80static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81# define RCU_STATE_NAME(sname) sname##_varname
82#else
83# define DEFINE_RCU_TPS(sname)
84# define RCU_STATE_NAME(sname) __stringify(sname)
85#endif
86
87#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88DEFINE_RCU_TPS(sname) \
89static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90struct rcu_state sname##_state = { \
91 .level = { &sname##_state.node[0] }, \
92 .rda = &sname##_data, \
93 .call = cr, \
94 .gp_state = RCU_GP_IDLE, \
95 .gpnum = 0UL - 300UL, \
96 .completed = 0UL - 300UL, \
97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 .orphan_donetail = &sname##_state.orphan_donelist, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
102 .abbr = sabbr, \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105}
106
107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109
110static struct rcu_state *const rcu_state_p;
111LIST_HEAD(rcu_struct_flavors);
112
113/* Dump rcu_node combining tree at boot to verify correct setup. */
114static bool dump_tree;
115module_param(dump_tree, bool, 0444);
116/* Control rcu_node-tree auto-balancing at boot time. */
117static bool rcu_fanout_exact;
118module_param(rcu_fanout_exact, bool, 0444);
119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121module_param(rcu_fanout_leaf, int, 0444);
122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123/* Number of rcu_nodes at specified level. */
124static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126/* panic() on RCU Stall sysctl. */
127int sysctl_panic_on_rcu_stall __read_mostly;
128
129/*
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
140 */
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
165static void sync_sched_exp_online_cleanup(int cpu);
166
167/* rcuc/rcub kthread realtime priority */
168#ifdef CONFIG_RCU_KTHREAD_PRIO
169static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
170#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
171static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
172#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
173module_param(kthread_prio, int, 0644);
174
175/* Delay in jiffies for grace-period initialization delays, debug only. */
176
177#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
178static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
179module_param(gp_preinit_delay, int, 0644);
180#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181static const int gp_preinit_delay;
182#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183
184#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
185static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
186module_param(gp_init_delay, int, 0644);
187#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188static const int gp_init_delay;
189#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190
191#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
192static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
193module_param(gp_cleanup_delay, int, 0644);
194#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195static const int gp_cleanup_delay;
196#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197
198/*
199 * Number of grace periods between delays, normalized by the duration of
200 * the delay. The longer the the delay, the more the grace periods between
201 * each delay. The reason for this normalization is that it means that,
202 * for non-zero delays, the overall slowdown of grace periods is constant
203 * regardless of the duration of the delay. This arrangement balances
204 * the need for long delays to increase some race probabilities with the
205 * need for fast grace periods to increase other race probabilities.
206 */
207#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
208
209/*
210 * Track the rcutorture test sequence number and the update version
211 * number within a given test. The rcutorture_testseq is incremented
212 * on every rcutorture module load and unload, so has an odd value
213 * when a test is running. The rcutorture_vernum is set to zero
214 * when rcutorture starts and is incremented on each rcutorture update.
215 * These variables enable correlating rcutorture output with the
216 * RCU tracing information.
217 */
218unsigned long rcutorture_testseq;
219unsigned long rcutorture_vernum;
220
221/*
222 * Compute the mask of online CPUs for the specified rcu_node structure.
223 * This will not be stable unless the rcu_node structure's ->lock is
224 * held, but the bit corresponding to the current CPU will be stable
225 * in most contexts.
226 */
227unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
228{
229 return READ_ONCE(rnp->qsmaskinitnext);
230}
231
232/*
233 * Return true if an RCU grace period is in progress. The READ_ONCE()s
234 * permit this function to be invoked without holding the root rcu_node
235 * structure's ->lock, but of course results can be subject to change.
236 */
237static int rcu_gp_in_progress(struct rcu_state *rsp)
238{
239 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
240}
241
242/*
243 * Note a quiescent state. Because we do not need to know
244 * how many quiescent states passed, just if there was at least
245 * one since the start of the grace period, this just sets a flag.
246 * The caller must have disabled preemption.
247 */
248void rcu_sched_qs(void)
249{
250 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
251 return;
252 trace_rcu_grace_period(TPS("rcu_sched"),
253 __this_cpu_read(rcu_sched_data.gpnum),
254 TPS("cpuqs"));
255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
256 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
257 return;
258 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
259 rcu_report_exp_rdp(&rcu_sched_state,
260 this_cpu_ptr(&rcu_sched_data), true);
261}
262
263void rcu_bh_qs(void)
264{
265 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
266 trace_rcu_grace_period(TPS("rcu_bh"),
267 __this_cpu_read(rcu_bh_data.gpnum),
268 TPS("cpuqs"));
269 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
270 }
271}
272
273static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
274
275static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
276 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
277 .dynticks = ATOMIC_INIT(1),
278#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
279 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
280 .dynticks_idle = ATOMIC_INIT(1),
281#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
282};
283
284DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
285EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
286
287/*
288 * Let the RCU core know that this CPU has gone through the scheduler,
289 * which is a quiescent state. This is called when the need for a
290 * quiescent state is urgent, so we burn an atomic operation and full
291 * memory barriers to let the RCU core know about it, regardless of what
292 * this CPU might (or might not) do in the near future.
293 *
294 * We inform the RCU core by emulating a zero-duration dyntick-idle
295 * period, which we in turn do by incrementing the ->dynticks counter
296 * by two.
297 *
298 * The caller must have disabled interrupts.
299 */
300static void rcu_momentary_dyntick_idle(void)
301{
302 struct rcu_data *rdp;
303 struct rcu_dynticks *rdtp;
304 int resched_mask;
305 struct rcu_state *rsp;
306
307 /*
308 * Yes, we can lose flag-setting operations. This is OK, because
309 * the flag will be set again after some delay.
310 */
311 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
312 raw_cpu_write(rcu_sched_qs_mask, 0);
313
314 /* Find the flavor that needs a quiescent state. */
315 for_each_rcu_flavor(rsp) {
316 rdp = raw_cpu_ptr(rsp->rda);
317 if (!(resched_mask & rsp->flavor_mask))
318 continue;
319 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
320 if (READ_ONCE(rdp->mynode->completed) !=
321 READ_ONCE(rdp->cond_resched_completed))
322 continue;
323
324 /*
325 * Pretend to be momentarily idle for the quiescent state.
326 * This allows the grace-period kthread to record the
327 * quiescent state, with no need for this CPU to do anything
328 * further.
329 */
330 rdtp = this_cpu_ptr(&rcu_dynticks);
331 smp_mb__before_atomic(); /* Earlier stuff before QS. */
332 atomic_add(2, &rdtp->dynticks); /* QS. */
333 smp_mb__after_atomic(); /* Later stuff after QS. */
334 break;
335 }
336}
337
338/*
339 * Note a context switch. This is a quiescent state for RCU-sched,
340 * and requires special handling for preemptible RCU.
341 * The caller must have disabled interrupts.
342 */
343void rcu_note_context_switch(void)
344{
345 barrier(); /* Avoid RCU read-side critical sections leaking down. */
346 trace_rcu_utilization(TPS("Start context switch"));
347 rcu_sched_qs();
348 rcu_preempt_note_context_switch();
349 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
350 rcu_momentary_dyntick_idle();
351 trace_rcu_utilization(TPS("End context switch"));
352 barrier(); /* Avoid RCU read-side critical sections leaking up. */
353}
354EXPORT_SYMBOL_GPL(rcu_note_context_switch);
355
356/*
357 * Register a quiescent state for all RCU flavors. If there is an
358 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
359 * dyntick-idle quiescent state visible to other CPUs (but only for those
360 * RCU flavors in desperate need of a quiescent state, which will normally
361 * be none of them). Either way, do a lightweight quiescent state for
362 * all RCU flavors.
363 *
364 * The barrier() calls are redundant in the common case when this is
365 * called externally, but just in case this is called from within this
366 * file.
367 *
368 */
369void rcu_all_qs(void)
370{
371 unsigned long flags;
372
373 barrier(); /* Avoid RCU read-side critical sections leaking down. */
374 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
375 local_irq_save(flags);
376 rcu_momentary_dyntick_idle();
377 local_irq_restore(flags);
378 }
379 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
380 /*
381 * Yes, we just checked a per-CPU variable with preemption
382 * enabled, so we might be migrated to some other CPU at
383 * this point. That is OK because in that case, the
384 * migration will supply the needed quiescent state.
385 * We might end up needlessly disabling preemption and
386 * invoking rcu_sched_qs() on the destination CPU, but
387 * the probability and cost are both quite low, so this
388 * should not be a problem in practice.
389 */
390 preempt_disable();
391 rcu_sched_qs();
392 preempt_enable();
393 }
394 this_cpu_inc(rcu_qs_ctr);
395 barrier(); /* Avoid RCU read-side critical sections leaking up. */
396}
397EXPORT_SYMBOL_GPL(rcu_all_qs);
398
399static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
400static long qhimark = 10000; /* If this many pending, ignore blimit. */
401static long qlowmark = 100; /* Once only this many pending, use blimit. */
402
403module_param(blimit, long, 0444);
404module_param(qhimark, long, 0444);
405module_param(qlowmark, long, 0444);
406
407static ulong jiffies_till_first_fqs = ULONG_MAX;
408static ulong jiffies_till_next_fqs = ULONG_MAX;
409static bool rcu_kick_kthreads;
410
411module_param(jiffies_till_first_fqs, ulong, 0644);
412module_param(jiffies_till_next_fqs, ulong, 0644);
413module_param(rcu_kick_kthreads, bool, 0644);
414
415/*
416 * How long the grace period must be before we start recruiting
417 * quiescent-state help from rcu_note_context_switch().
418 */
419static ulong jiffies_till_sched_qs = HZ / 20;
420module_param(jiffies_till_sched_qs, ulong, 0644);
421
422static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
423 struct rcu_data *rdp);
424static void force_qs_rnp(struct rcu_state *rsp,
425 int (*f)(struct rcu_data *rsp, bool *isidle,
426 unsigned long *maxj),
427 bool *isidle, unsigned long *maxj);
428static void force_quiescent_state(struct rcu_state *rsp);
429static int rcu_pending(void);
430
431/*
432 * Return the number of RCU batches started thus far for debug & stats.
433 */
434unsigned long rcu_batches_started(void)
435{
436 return rcu_state_p->gpnum;
437}
438EXPORT_SYMBOL_GPL(rcu_batches_started);
439
440/*
441 * Return the number of RCU-sched batches started thus far for debug & stats.
442 */
443unsigned long rcu_batches_started_sched(void)
444{
445 return rcu_sched_state.gpnum;
446}
447EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
448
449/*
450 * Return the number of RCU BH batches started thus far for debug & stats.
451 */
452unsigned long rcu_batches_started_bh(void)
453{
454 return rcu_bh_state.gpnum;
455}
456EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
457
458/*
459 * Return the number of RCU batches completed thus far for debug & stats.
460 */
461unsigned long rcu_batches_completed(void)
462{
463 return rcu_state_p->completed;
464}
465EXPORT_SYMBOL_GPL(rcu_batches_completed);
466
467/*
468 * Return the number of RCU-sched batches completed thus far for debug & stats.
469 */
470unsigned long rcu_batches_completed_sched(void)
471{
472 return rcu_sched_state.completed;
473}
474EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
475
476/*
477 * Return the number of RCU BH batches completed thus far for debug & stats.
478 */
479unsigned long rcu_batches_completed_bh(void)
480{
481 return rcu_bh_state.completed;
482}
483EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
484
485/*
486 * Return the number of RCU expedited batches completed thus far for
487 * debug & stats. Odd numbers mean that a batch is in progress, even
488 * numbers mean idle. The value returned will thus be roughly double
489 * the cumulative batches since boot.
490 */
491unsigned long rcu_exp_batches_completed(void)
492{
493 return rcu_state_p->expedited_sequence;
494}
495EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
496
497/*
498 * Return the number of RCU-sched expedited batches completed thus far
499 * for debug & stats. Similar to rcu_exp_batches_completed().
500 */
501unsigned long rcu_exp_batches_completed_sched(void)
502{
503 return rcu_sched_state.expedited_sequence;
504}
505EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
506
507/*
508 * Force a quiescent state.
509 */
510void rcu_force_quiescent_state(void)
511{
512 force_quiescent_state(rcu_state_p);
513}
514EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
515
516/*
517 * Force a quiescent state for RCU BH.
518 */
519void rcu_bh_force_quiescent_state(void)
520{
521 force_quiescent_state(&rcu_bh_state);
522}
523EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
524
525/*
526 * Force a quiescent state for RCU-sched.
527 */
528void rcu_sched_force_quiescent_state(void)
529{
530 force_quiescent_state(&rcu_sched_state);
531}
532EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
533
534/*
535 * Show the state of the grace-period kthreads.
536 */
537void show_rcu_gp_kthreads(void)
538{
539 struct rcu_state *rsp;
540
541 for_each_rcu_flavor(rsp) {
542 pr_info("%s: wait state: %d ->state: %#lx\n",
543 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
544 /* sched_show_task(rsp->gp_kthread); */
545 }
546}
547EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
548
549/*
550 * Record the number of times rcutorture tests have been initiated and
551 * terminated. This information allows the debugfs tracing stats to be
552 * correlated to the rcutorture messages, even when the rcutorture module
553 * is being repeatedly loaded and unloaded. In other words, we cannot
554 * store this state in rcutorture itself.
555 */
556void rcutorture_record_test_transition(void)
557{
558 rcutorture_testseq++;
559 rcutorture_vernum = 0;
560}
561EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
562
563/*
564 * Send along grace-period-related data for rcutorture diagnostics.
565 */
566void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
567 unsigned long *gpnum, unsigned long *completed)
568{
569 struct rcu_state *rsp = NULL;
570
571 switch (test_type) {
572 case RCU_FLAVOR:
573 rsp = rcu_state_p;
574 break;
575 case RCU_BH_FLAVOR:
576 rsp = &rcu_bh_state;
577 break;
578 case RCU_SCHED_FLAVOR:
579 rsp = &rcu_sched_state;
580 break;
581 default:
582 break;
583 }
584 if (rsp != NULL) {
585 *flags = READ_ONCE(rsp->gp_flags);
586 *gpnum = READ_ONCE(rsp->gpnum);
587 *completed = READ_ONCE(rsp->completed);
588 return;
589 }
590 *flags = 0;
591 *gpnum = 0;
592 *completed = 0;
593}
594EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
595
596/*
597 * Record the number of writer passes through the current rcutorture test.
598 * This is also used to correlate debugfs tracing stats with the rcutorture
599 * messages.
600 */
601void rcutorture_record_progress(unsigned long vernum)
602{
603 rcutorture_vernum++;
604}
605EXPORT_SYMBOL_GPL(rcutorture_record_progress);
606
607/*
608 * Does the CPU have callbacks ready to be invoked?
609 */
610static int
611cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
612{
613 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
614 rdp->nxttail[RCU_DONE_TAIL] != NULL;
615}
616
617/*
618 * Return the root node of the specified rcu_state structure.
619 */
620static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
621{
622 return &rsp->node[0];
623}
624
625/*
626 * Is there any need for future grace periods?
627 * Interrupts must be disabled. If the caller does not hold the root
628 * rnp_node structure's ->lock, the results are advisory only.
629 */
630static int rcu_future_needs_gp(struct rcu_state *rsp)
631{
632 struct rcu_node *rnp = rcu_get_root(rsp);
633 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
634 int *fp = &rnp->need_future_gp[idx];
635
636 return READ_ONCE(*fp);
637}
638
639/*
640 * Does the current CPU require a not-yet-started grace period?
641 * The caller must have disabled interrupts to prevent races with
642 * normal callback registry.
643 */
644static bool
645cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
646{
647 int i;
648
649 if (rcu_gp_in_progress(rsp))
650 return false; /* No, a grace period is already in progress. */
651 if (rcu_future_needs_gp(rsp))
652 return true; /* Yes, a no-CBs CPU needs one. */
653 if (!rdp->nxttail[RCU_NEXT_TAIL])
654 return false; /* No, this is a no-CBs (or offline) CPU. */
655 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
656 return true; /* Yes, CPU has newly registered callbacks. */
657 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
658 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
659 ULONG_CMP_LT(READ_ONCE(rsp->completed),
660 rdp->nxtcompleted[i]))
661 return true; /* Yes, CBs for future grace period. */
662 return false; /* No grace period needed. */
663}
664
665/*
666 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
667 *
668 * If the new value of the ->dynticks_nesting counter now is zero,
669 * we really have entered idle, and must do the appropriate accounting.
670 * The caller must have disabled interrupts.
671 */
672static void rcu_eqs_enter_common(long long oldval, bool user)
673{
674 struct rcu_state *rsp;
675 struct rcu_data *rdp;
676 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
677
678 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
679 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
680 !user && !is_idle_task(current)) {
681 struct task_struct *idle __maybe_unused =
682 idle_task(smp_processor_id());
683
684 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
685 rcu_ftrace_dump(DUMP_ORIG);
686 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
687 current->pid, current->comm,
688 idle->pid, idle->comm); /* must be idle task! */
689 }
690 for_each_rcu_flavor(rsp) {
691 rdp = this_cpu_ptr(rsp->rda);
692 do_nocb_deferred_wakeup(rdp);
693 }
694 rcu_prepare_for_idle();
695 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
696 smp_mb__before_atomic(); /* See above. */
697 atomic_inc(&rdtp->dynticks);
698 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
699 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
700 atomic_read(&rdtp->dynticks) & 0x1);
701 rcu_dynticks_task_enter();
702
703 /*
704 * It is illegal to enter an extended quiescent state while
705 * in an RCU read-side critical section.
706 */
707 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
708 "Illegal idle entry in RCU read-side critical section.");
709 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
710 "Illegal idle entry in RCU-bh read-side critical section.");
711 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
712 "Illegal idle entry in RCU-sched read-side critical section.");
713}
714
715/*
716 * Enter an RCU extended quiescent state, which can be either the
717 * idle loop or adaptive-tickless usermode execution.
718 */
719static void rcu_eqs_enter(bool user)
720{
721 long long oldval;
722 struct rcu_dynticks *rdtp;
723
724 rdtp = this_cpu_ptr(&rcu_dynticks);
725 oldval = rdtp->dynticks_nesting;
726 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
727 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
728 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
729 rdtp->dynticks_nesting = 0;
730 rcu_eqs_enter_common(oldval, user);
731 } else {
732 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
733 }
734}
735
736/**
737 * rcu_idle_enter - inform RCU that current CPU is entering idle
738 *
739 * Enter idle mode, in other words, -leave- the mode in which RCU
740 * read-side critical sections can occur. (Though RCU read-side
741 * critical sections can occur in irq handlers in idle, a possibility
742 * handled by irq_enter() and irq_exit().)
743 *
744 * We crowbar the ->dynticks_nesting field to zero to allow for
745 * the possibility of usermode upcalls having messed up our count
746 * of interrupt nesting level during the prior busy period.
747 */
748void rcu_idle_enter(void)
749{
750 unsigned long flags;
751
752 local_irq_save(flags);
753 rcu_eqs_enter(false);
754 rcu_sysidle_enter(0);
755 local_irq_restore(flags);
756}
757EXPORT_SYMBOL_GPL(rcu_idle_enter);
758
759#ifdef CONFIG_NO_HZ_FULL
760/**
761 * rcu_user_enter - inform RCU that we are resuming userspace.
762 *
763 * Enter RCU idle mode right before resuming userspace. No use of RCU
764 * is permitted between this call and rcu_user_exit(). This way the
765 * CPU doesn't need to maintain the tick for RCU maintenance purposes
766 * when the CPU runs in userspace.
767 */
768void rcu_user_enter(void)
769{
770 rcu_eqs_enter(1);
771}
772#endif /* CONFIG_NO_HZ_FULL */
773
774/**
775 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
776 *
777 * Exit from an interrupt handler, which might possibly result in entering
778 * idle mode, in other words, leaving the mode in which read-side critical
779 * sections can occur. The caller must have disabled interrupts.
780 *
781 * This code assumes that the idle loop never does anything that might
782 * result in unbalanced calls to irq_enter() and irq_exit(). If your
783 * architecture violates this assumption, RCU will give you what you
784 * deserve, good and hard. But very infrequently and irreproducibly.
785 *
786 * Use things like work queues to work around this limitation.
787 *
788 * You have been warned.
789 */
790void rcu_irq_exit(void)
791{
792 long long oldval;
793 struct rcu_dynticks *rdtp;
794
795 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
796 rdtp = this_cpu_ptr(&rcu_dynticks);
797 oldval = rdtp->dynticks_nesting;
798 rdtp->dynticks_nesting--;
799 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
800 rdtp->dynticks_nesting < 0);
801 if (rdtp->dynticks_nesting)
802 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
803 else
804 rcu_eqs_enter_common(oldval, true);
805 rcu_sysidle_enter(1);
806}
807
808/*
809 * Wrapper for rcu_irq_exit() where interrupts are enabled.
810 */
811void rcu_irq_exit_irqson(void)
812{
813 unsigned long flags;
814
815 local_irq_save(flags);
816 rcu_irq_exit();
817 local_irq_restore(flags);
818}
819
820/*
821 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
822 *
823 * If the new value of the ->dynticks_nesting counter was previously zero,
824 * we really have exited idle, and must do the appropriate accounting.
825 * The caller must have disabled interrupts.
826 */
827static void rcu_eqs_exit_common(long long oldval, int user)
828{
829 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
830
831 rcu_dynticks_task_exit();
832 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
833 atomic_inc(&rdtp->dynticks);
834 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
835 smp_mb__after_atomic(); /* See above. */
836 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
837 !(atomic_read(&rdtp->dynticks) & 0x1));
838 rcu_cleanup_after_idle();
839 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
840 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
841 !user && !is_idle_task(current)) {
842 struct task_struct *idle __maybe_unused =
843 idle_task(smp_processor_id());
844
845 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
846 oldval, rdtp->dynticks_nesting);
847 rcu_ftrace_dump(DUMP_ORIG);
848 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
849 current->pid, current->comm,
850 idle->pid, idle->comm); /* must be idle task! */
851 }
852}
853
854/*
855 * Exit an RCU extended quiescent state, which can be either the
856 * idle loop or adaptive-tickless usermode execution.
857 */
858static void rcu_eqs_exit(bool user)
859{
860 struct rcu_dynticks *rdtp;
861 long long oldval;
862
863 rdtp = this_cpu_ptr(&rcu_dynticks);
864 oldval = rdtp->dynticks_nesting;
865 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
866 if (oldval & DYNTICK_TASK_NEST_MASK) {
867 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
868 } else {
869 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
870 rcu_eqs_exit_common(oldval, user);
871 }
872}
873
874/**
875 * rcu_idle_exit - inform RCU that current CPU is leaving idle
876 *
877 * Exit idle mode, in other words, -enter- the mode in which RCU
878 * read-side critical sections can occur.
879 *
880 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
881 * allow for the possibility of usermode upcalls messing up our count
882 * of interrupt nesting level during the busy period that is just
883 * now starting.
884 */
885void rcu_idle_exit(void)
886{
887 unsigned long flags;
888
889 local_irq_save(flags);
890 rcu_eqs_exit(false);
891 rcu_sysidle_exit(0);
892 local_irq_restore(flags);
893}
894EXPORT_SYMBOL_GPL(rcu_idle_exit);
895
896#ifdef CONFIG_NO_HZ_FULL
897/**
898 * rcu_user_exit - inform RCU that we are exiting userspace.
899 *
900 * Exit RCU idle mode while entering the kernel because it can
901 * run a RCU read side critical section anytime.
902 */
903void rcu_user_exit(void)
904{
905 rcu_eqs_exit(1);
906}
907#endif /* CONFIG_NO_HZ_FULL */
908
909/**
910 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
911 *
912 * Enter an interrupt handler, which might possibly result in exiting
913 * idle mode, in other words, entering the mode in which read-side critical
914 * sections can occur. The caller must have disabled interrupts.
915 *
916 * Note that the Linux kernel is fully capable of entering an interrupt
917 * handler that it never exits, for example when doing upcalls to
918 * user mode! This code assumes that the idle loop never does upcalls to
919 * user mode. If your architecture does do upcalls from the idle loop (or
920 * does anything else that results in unbalanced calls to the irq_enter()
921 * and irq_exit() functions), RCU will give you what you deserve, good
922 * and hard. But very infrequently and irreproducibly.
923 *
924 * Use things like work queues to work around this limitation.
925 *
926 * You have been warned.
927 */
928void rcu_irq_enter(void)
929{
930 struct rcu_dynticks *rdtp;
931 long long oldval;
932
933 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
934 rdtp = this_cpu_ptr(&rcu_dynticks);
935 oldval = rdtp->dynticks_nesting;
936 rdtp->dynticks_nesting++;
937 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
938 rdtp->dynticks_nesting == 0);
939 if (oldval)
940 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
941 else
942 rcu_eqs_exit_common(oldval, true);
943 rcu_sysidle_exit(1);
944}
945
946/*
947 * Wrapper for rcu_irq_enter() where interrupts are enabled.
948 */
949void rcu_irq_enter_irqson(void)
950{
951 unsigned long flags;
952
953 local_irq_save(flags);
954 rcu_irq_enter();
955 local_irq_restore(flags);
956}
957
958/**
959 * rcu_nmi_enter - inform RCU of entry to NMI context
960 *
961 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
962 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
963 * that the CPU is active. This implementation permits nested NMIs, as
964 * long as the nesting level does not overflow an int. (You will probably
965 * run out of stack space first.)
966 */
967void rcu_nmi_enter(void)
968{
969 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
970 int incby = 2;
971
972 /* Complain about underflow. */
973 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
974
975 /*
976 * If idle from RCU viewpoint, atomically increment ->dynticks
977 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
978 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
979 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
980 * to be in the outermost NMI handler that interrupted an RCU-idle
981 * period (observation due to Andy Lutomirski).
982 */
983 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
984 smp_mb__before_atomic(); /* Force delay from prior write. */
985 atomic_inc(&rdtp->dynticks);
986 /* atomic_inc() before later RCU read-side crit sects */
987 smp_mb__after_atomic(); /* See above. */
988 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
989 incby = 1;
990 }
991 rdtp->dynticks_nmi_nesting += incby;
992 barrier();
993}
994
995/**
996 * rcu_nmi_exit - inform RCU of exit from NMI context
997 *
998 * If we are returning from the outermost NMI handler that interrupted an
999 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1000 * to let the RCU grace-period handling know that the CPU is back to
1001 * being RCU-idle.
1002 */
1003void rcu_nmi_exit(void)
1004{
1005 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1006
1007 /*
1008 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1009 * (We are exiting an NMI handler, so RCU better be paying attention
1010 * to us!)
1011 */
1012 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1013 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1014
1015 /*
1016 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1017 * leave it in non-RCU-idle state.
1018 */
1019 if (rdtp->dynticks_nmi_nesting != 1) {
1020 rdtp->dynticks_nmi_nesting -= 2;
1021 return;
1022 }
1023
1024 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1025 rdtp->dynticks_nmi_nesting = 0;
1026 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1027 smp_mb__before_atomic(); /* See above. */
1028 atomic_inc(&rdtp->dynticks);
1029 smp_mb__after_atomic(); /* Force delay to next write. */
1030 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1031}
1032
1033/**
1034 * __rcu_is_watching - are RCU read-side critical sections safe?
1035 *
1036 * Return true if RCU is watching the running CPU, which means that
1037 * this CPU can safely enter RCU read-side critical sections. Unlike
1038 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1039 * least disabled preemption.
1040 */
1041bool notrace __rcu_is_watching(void)
1042{
1043 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1044}
1045
1046/**
1047 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1048 *
1049 * If the current CPU is in its idle loop and is neither in an interrupt
1050 * or NMI handler, return true.
1051 */
1052bool notrace rcu_is_watching(void)
1053{
1054 bool ret;
1055
1056 preempt_disable_notrace();
1057 ret = __rcu_is_watching();
1058 preempt_enable_notrace();
1059 return ret;
1060}
1061EXPORT_SYMBOL_GPL(rcu_is_watching);
1062
1063#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1064
1065/*
1066 * Is the current CPU online? Disable preemption to avoid false positives
1067 * that could otherwise happen due to the current CPU number being sampled,
1068 * this task being preempted, its old CPU being taken offline, resuming
1069 * on some other CPU, then determining that its old CPU is now offline.
1070 * It is OK to use RCU on an offline processor during initial boot, hence
1071 * the check for rcu_scheduler_fully_active. Note also that it is OK
1072 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1073 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1074 * offline to continue to use RCU for one jiffy after marking itself
1075 * offline in the cpu_online_mask. This leniency is necessary given the
1076 * non-atomic nature of the online and offline processing, for example,
1077 * the fact that a CPU enters the scheduler after completing the teardown
1078 * of the CPU.
1079 *
1080 * This is also why RCU internally marks CPUs online during in the
1081 * preparation phase and offline after the CPU has been taken down.
1082 *
1083 * Disable checking if in an NMI handler because we cannot safely report
1084 * errors from NMI handlers anyway.
1085 */
1086bool rcu_lockdep_current_cpu_online(void)
1087{
1088 struct rcu_data *rdp;
1089 struct rcu_node *rnp;
1090 bool ret;
1091
1092 if (in_nmi())
1093 return true;
1094 preempt_disable();
1095 rdp = this_cpu_ptr(&rcu_sched_data);
1096 rnp = rdp->mynode;
1097 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1098 !rcu_scheduler_fully_active;
1099 preempt_enable();
1100 return ret;
1101}
1102EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1103
1104#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1105
1106/**
1107 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1108 *
1109 * If the current CPU is idle or running at a first-level (not nested)
1110 * interrupt from idle, return true. The caller must have at least
1111 * disabled preemption.
1112 */
1113static int rcu_is_cpu_rrupt_from_idle(void)
1114{
1115 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1116}
1117
1118/*
1119 * Snapshot the specified CPU's dynticks counter so that we can later
1120 * credit them with an implicit quiescent state. Return 1 if this CPU
1121 * is in dynticks idle mode, which is an extended quiescent state.
1122 */
1123static int dyntick_save_progress_counter(struct rcu_data *rdp,
1124 bool *isidle, unsigned long *maxj)
1125{
1126 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1127 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1128 if ((rdp->dynticks_snap & 0x1) == 0) {
1129 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1130 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1131 rdp->mynode->gpnum))
1132 WRITE_ONCE(rdp->gpwrap, true);
1133 return 1;
1134 }
1135 return 0;
1136}
1137
1138/*
1139 * Return true if the specified CPU has passed through a quiescent
1140 * state by virtue of being in or having passed through an dynticks
1141 * idle state since the last call to dyntick_save_progress_counter()
1142 * for this same CPU, or by virtue of having been offline.
1143 */
1144static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1145 bool *isidle, unsigned long *maxj)
1146{
1147 unsigned int curr;
1148 int *rcrmp;
1149 unsigned int snap;
1150
1151 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1152 snap = (unsigned int)rdp->dynticks_snap;
1153
1154 /*
1155 * If the CPU passed through or entered a dynticks idle phase with
1156 * no active irq/NMI handlers, then we can safely pretend that the CPU
1157 * already acknowledged the request to pass through a quiescent
1158 * state. Either way, that CPU cannot possibly be in an RCU
1159 * read-side critical section that started before the beginning
1160 * of the current RCU grace period.
1161 */
1162 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1163 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1164 rdp->dynticks_fqs++;
1165 return 1;
1166 }
1167
1168 /*
1169 * Check for the CPU being offline, but only if the grace period
1170 * is old enough. We don't need to worry about the CPU changing
1171 * state: If we see it offline even once, it has been through a
1172 * quiescent state.
1173 *
1174 * The reason for insisting that the grace period be at least
1175 * one jiffy old is that CPUs that are not quite online and that
1176 * have just gone offline can still execute RCU read-side critical
1177 * sections.
1178 */
1179 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1180 return 0; /* Grace period is not old enough. */
1181 barrier();
1182 if (cpu_is_offline(rdp->cpu)) {
1183 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1184 rdp->offline_fqs++;
1185 return 1;
1186 }
1187
1188 /*
1189 * A CPU running for an extended time within the kernel can
1190 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1191 * even context-switching back and forth between a pair of
1192 * in-kernel CPU-bound tasks cannot advance grace periods.
1193 * So if the grace period is old enough, make the CPU pay attention.
1194 * Note that the unsynchronized assignments to the per-CPU
1195 * rcu_sched_qs_mask variable are safe. Yes, setting of
1196 * bits can be lost, but they will be set again on the next
1197 * force-quiescent-state pass. So lost bit sets do not result
1198 * in incorrect behavior, merely in a grace period lasting
1199 * a few jiffies longer than it might otherwise. Because
1200 * there are at most four threads involved, and because the
1201 * updates are only once every few jiffies, the probability of
1202 * lossage (and thus of slight grace-period extension) is
1203 * quite low.
1204 *
1205 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1206 * is set too high, we override with half of the RCU CPU stall
1207 * warning delay.
1208 */
1209 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1210 if (ULONG_CMP_GE(jiffies,
1211 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1212 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1213 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1214 WRITE_ONCE(rdp->cond_resched_completed,
1215 READ_ONCE(rdp->mynode->completed));
1216 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1217 WRITE_ONCE(*rcrmp,
1218 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1219 }
1220 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1221 }
1222
1223 /* And if it has been a really long time, kick the CPU as well. */
1224 if (ULONG_CMP_GE(jiffies,
1225 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1226 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1227 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1228
1229 return 0;
1230}
1231
1232static void record_gp_stall_check_time(struct rcu_state *rsp)
1233{
1234 unsigned long j = jiffies;
1235 unsigned long j1;
1236
1237 rsp->gp_start = j;
1238 smp_wmb(); /* Record start time before stall time. */
1239 j1 = rcu_jiffies_till_stall_check();
1240 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1241 rsp->jiffies_resched = j + j1 / 2;
1242 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1243}
1244
1245/*
1246 * Convert a ->gp_state value to a character string.
1247 */
1248static const char *gp_state_getname(short gs)
1249{
1250 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1251 return "???";
1252 return gp_state_names[gs];
1253}
1254
1255/*
1256 * Complain about starvation of grace-period kthread.
1257 */
1258static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1259{
1260 unsigned long gpa;
1261 unsigned long j;
1262
1263 j = jiffies;
1264 gpa = READ_ONCE(rsp->gp_activity);
1265 if (j - gpa > 2 * HZ) {
1266 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1267 rsp->name, j - gpa,
1268 rsp->gpnum, rsp->completed,
1269 rsp->gp_flags,
1270 gp_state_getname(rsp->gp_state), rsp->gp_state,
1271 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1272 if (rsp->gp_kthread) {
1273 sched_show_task(rsp->gp_kthread);
1274 wake_up_process(rsp->gp_kthread);
1275 }
1276 }
1277}
1278
1279/*
1280 * Dump stacks of all tasks running on stalled CPUs.
1281 */
1282static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1283{
1284 int cpu;
1285 unsigned long flags;
1286 struct rcu_node *rnp;
1287
1288 rcu_for_each_leaf_node(rsp, rnp) {
1289 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1290 if (rnp->qsmask != 0) {
1291 for_each_leaf_node_possible_cpu(rnp, cpu)
1292 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1293 dump_cpu_task(cpu);
1294 }
1295 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1296 }
1297}
1298
1299/*
1300 * If too much time has passed in the current grace period, and if
1301 * so configured, go kick the relevant kthreads.
1302 */
1303static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1304{
1305 unsigned long j;
1306
1307 if (!rcu_kick_kthreads)
1308 return;
1309 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1310 if (time_after(jiffies, j) && rsp->gp_kthread &&
1311 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1312 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1313 rcu_ftrace_dump(DUMP_ALL);
1314 wake_up_process(rsp->gp_kthread);
1315 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1316 }
1317}
1318
1319static inline void panic_on_rcu_stall(void)
1320{
1321 if (sysctl_panic_on_rcu_stall)
1322 panic("RCU Stall\n");
1323}
1324
1325static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1326{
1327 int cpu;
1328 long delta;
1329 unsigned long flags;
1330 unsigned long gpa;
1331 unsigned long j;
1332 int ndetected = 0;
1333 struct rcu_node *rnp = rcu_get_root(rsp);
1334 long totqlen = 0;
1335
1336 /* Kick and suppress, if so configured. */
1337 rcu_stall_kick_kthreads(rsp);
1338 if (rcu_cpu_stall_suppress)
1339 return;
1340
1341 /* Only let one CPU complain about others per time interval. */
1342
1343 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1344 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1345 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1346 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1347 return;
1348 }
1349 WRITE_ONCE(rsp->jiffies_stall,
1350 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1351 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1352
1353 /*
1354 * OK, time to rat on our buddy...
1355 * See Documentation/RCU/stallwarn.txt for info on how to debug
1356 * RCU CPU stall warnings.
1357 */
1358 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1359 rsp->name);
1360 print_cpu_stall_info_begin();
1361 rcu_for_each_leaf_node(rsp, rnp) {
1362 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1363 ndetected += rcu_print_task_stall(rnp);
1364 if (rnp->qsmask != 0) {
1365 for_each_leaf_node_possible_cpu(rnp, cpu)
1366 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1367 print_cpu_stall_info(rsp, cpu);
1368 ndetected++;
1369 }
1370 }
1371 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1372 }
1373
1374 print_cpu_stall_info_end();
1375 for_each_possible_cpu(cpu)
1376 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1377 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1378 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1379 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1380 if (ndetected) {
1381 rcu_dump_cpu_stacks(rsp);
1382 } else {
1383 if (READ_ONCE(rsp->gpnum) != gpnum ||
1384 READ_ONCE(rsp->completed) == gpnum) {
1385 pr_err("INFO: Stall ended before state dump start\n");
1386 } else {
1387 j = jiffies;
1388 gpa = READ_ONCE(rsp->gp_activity);
1389 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1390 rsp->name, j - gpa, j, gpa,
1391 jiffies_till_next_fqs,
1392 rcu_get_root(rsp)->qsmask);
1393 /* In this case, the current CPU might be at fault. */
1394 sched_show_task(current);
1395 }
1396 }
1397
1398 /* Complain about tasks blocking the grace period. */
1399 rcu_print_detail_task_stall(rsp);
1400
1401 rcu_check_gp_kthread_starvation(rsp);
1402
1403 panic_on_rcu_stall();
1404
1405 force_quiescent_state(rsp); /* Kick them all. */
1406}
1407
1408static void print_cpu_stall(struct rcu_state *rsp)
1409{
1410 int cpu;
1411 unsigned long flags;
1412 struct rcu_node *rnp = rcu_get_root(rsp);
1413 long totqlen = 0;
1414
1415 /* Kick and suppress, if so configured. */
1416 rcu_stall_kick_kthreads(rsp);
1417 if (rcu_cpu_stall_suppress)
1418 return;
1419
1420 /*
1421 * OK, time to rat on ourselves...
1422 * See Documentation/RCU/stallwarn.txt for info on how to debug
1423 * RCU CPU stall warnings.
1424 */
1425 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1426 print_cpu_stall_info_begin();
1427 print_cpu_stall_info(rsp, smp_processor_id());
1428 print_cpu_stall_info_end();
1429 for_each_possible_cpu(cpu)
1430 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1431 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1432 jiffies - rsp->gp_start,
1433 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1434
1435 rcu_check_gp_kthread_starvation(rsp);
1436
1437 rcu_dump_cpu_stacks(rsp);
1438
1439 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1440 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1441 WRITE_ONCE(rsp->jiffies_stall,
1442 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1443 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1444
1445 panic_on_rcu_stall();
1446
1447 /*
1448 * Attempt to revive the RCU machinery by forcing a context switch.
1449 *
1450 * A context switch would normally allow the RCU state machine to make
1451 * progress and it could be we're stuck in kernel space without context
1452 * switches for an entirely unreasonable amount of time.
1453 */
1454 resched_cpu(smp_processor_id());
1455}
1456
1457static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1458{
1459 unsigned long completed;
1460 unsigned long gpnum;
1461 unsigned long gps;
1462 unsigned long j;
1463 unsigned long js;
1464 struct rcu_node *rnp;
1465
1466 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1467 !rcu_gp_in_progress(rsp))
1468 return;
1469 rcu_stall_kick_kthreads(rsp);
1470 j = jiffies;
1471
1472 /*
1473 * Lots of memory barriers to reject false positives.
1474 *
1475 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1476 * then rsp->gp_start, and finally rsp->completed. These values
1477 * are updated in the opposite order with memory barriers (or
1478 * equivalent) during grace-period initialization and cleanup.
1479 * Now, a false positive can occur if we get an new value of
1480 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1481 * the memory barriers, the only way that this can happen is if one
1482 * grace period ends and another starts between these two fetches.
1483 * Detect this by comparing rsp->completed with the previous fetch
1484 * from rsp->gpnum.
1485 *
1486 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1487 * and rsp->gp_start suffice to forestall false positives.
1488 */
1489 gpnum = READ_ONCE(rsp->gpnum);
1490 smp_rmb(); /* Pick up ->gpnum first... */
1491 js = READ_ONCE(rsp->jiffies_stall);
1492 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1493 gps = READ_ONCE(rsp->gp_start);
1494 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1495 completed = READ_ONCE(rsp->completed);
1496 if (ULONG_CMP_GE(completed, gpnum) ||
1497 ULONG_CMP_LT(j, js) ||
1498 ULONG_CMP_GE(gps, js))
1499 return; /* No stall or GP completed since entering function. */
1500 rnp = rdp->mynode;
1501 if (rcu_gp_in_progress(rsp) &&
1502 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1503
1504 /* We haven't checked in, so go dump stack. */
1505 print_cpu_stall(rsp);
1506
1507 } else if (rcu_gp_in_progress(rsp) &&
1508 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1509
1510 /* They had a few time units to dump stack, so complain. */
1511 print_other_cpu_stall(rsp, gpnum);
1512 }
1513}
1514
1515/**
1516 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1517 *
1518 * Set the stall-warning timeout way off into the future, thus preventing
1519 * any RCU CPU stall-warning messages from appearing in the current set of
1520 * RCU grace periods.
1521 *
1522 * The caller must disable hard irqs.
1523 */
1524void rcu_cpu_stall_reset(void)
1525{
1526 struct rcu_state *rsp;
1527
1528 for_each_rcu_flavor(rsp)
1529 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1530}
1531
1532/*
1533 * Initialize the specified rcu_data structure's default callback list
1534 * to empty. The default callback list is the one that is not used by
1535 * no-callbacks CPUs.
1536 */
1537static void init_default_callback_list(struct rcu_data *rdp)
1538{
1539 int i;
1540
1541 rdp->nxtlist = NULL;
1542 for (i = 0; i < RCU_NEXT_SIZE; i++)
1543 rdp->nxttail[i] = &rdp->nxtlist;
1544}
1545
1546/*
1547 * Initialize the specified rcu_data structure's callback list to empty.
1548 */
1549static void init_callback_list(struct rcu_data *rdp)
1550{
1551 if (init_nocb_callback_list(rdp))
1552 return;
1553 init_default_callback_list(rdp);
1554}
1555
1556/*
1557 * Determine the value that ->completed will have at the end of the
1558 * next subsequent grace period. This is used to tag callbacks so that
1559 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1560 * been dyntick-idle for an extended period with callbacks under the
1561 * influence of RCU_FAST_NO_HZ.
1562 *
1563 * The caller must hold rnp->lock with interrupts disabled.
1564 */
1565static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1566 struct rcu_node *rnp)
1567{
1568 /*
1569 * If RCU is idle, we just wait for the next grace period.
1570 * But we can only be sure that RCU is idle if we are looking
1571 * at the root rcu_node structure -- otherwise, a new grace
1572 * period might have started, but just not yet gotten around
1573 * to initializing the current non-root rcu_node structure.
1574 */
1575 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1576 return rnp->completed + 1;
1577
1578 /*
1579 * Otherwise, wait for a possible partial grace period and
1580 * then the subsequent full grace period.
1581 */
1582 return rnp->completed + 2;
1583}
1584
1585/*
1586 * Trace-event helper function for rcu_start_future_gp() and
1587 * rcu_nocb_wait_gp().
1588 */
1589static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1590 unsigned long c, const char *s)
1591{
1592 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1593 rnp->completed, c, rnp->level,
1594 rnp->grplo, rnp->grphi, s);
1595}
1596
1597/*
1598 * Start some future grace period, as needed to handle newly arrived
1599 * callbacks. The required future grace periods are recorded in each
1600 * rcu_node structure's ->need_future_gp field. Returns true if there
1601 * is reason to awaken the grace-period kthread.
1602 *
1603 * The caller must hold the specified rcu_node structure's ->lock.
1604 */
1605static bool __maybe_unused
1606rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1607 unsigned long *c_out)
1608{
1609 unsigned long c;
1610 int i;
1611 bool ret = false;
1612 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1613
1614 /*
1615 * Pick up grace-period number for new callbacks. If this
1616 * grace period is already marked as needed, return to the caller.
1617 */
1618 c = rcu_cbs_completed(rdp->rsp, rnp);
1619 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1620 if (rnp->need_future_gp[c & 0x1]) {
1621 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1622 goto out;
1623 }
1624
1625 /*
1626 * If either this rcu_node structure or the root rcu_node structure
1627 * believe that a grace period is in progress, then we must wait
1628 * for the one following, which is in "c". Because our request
1629 * will be noticed at the end of the current grace period, we don't
1630 * need to explicitly start one. We only do the lockless check
1631 * of rnp_root's fields if the current rcu_node structure thinks
1632 * there is no grace period in flight, and because we hold rnp->lock,
1633 * the only possible change is when rnp_root's two fields are
1634 * equal, in which case rnp_root->gpnum might be concurrently
1635 * incremented. But that is OK, as it will just result in our
1636 * doing some extra useless work.
1637 */
1638 if (rnp->gpnum != rnp->completed ||
1639 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1640 rnp->need_future_gp[c & 0x1]++;
1641 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1642 goto out;
1643 }
1644
1645 /*
1646 * There might be no grace period in progress. If we don't already
1647 * hold it, acquire the root rcu_node structure's lock in order to
1648 * start one (if needed).
1649 */
1650 if (rnp != rnp_root)
1651 raw_spin_lock_rcu_node(rnp_root);
1652
1653 /*
1654 * Get a new grace-period number. If there really is no grace
1655 * period in progress, it will be smaller than the one we obtained
1656 * earlier. Adjust callbacks as needed. Note that even no-CBs
1657 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1658 */
1659 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1660 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1661 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1662 rdp->nxtcompleted[i] = c;
1663
1664 /*
1665 * If the needed for the required grace period is already
1666 * recorded, trace and leave.
1667 */
1668 if (rnp_root->need_future_gp[c & 0x1]) {
1669 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1670 goto unlock_out;
1671 }
1672
1673 /* Record the need for the future grace period. */
1674 rnp_root->need_future_gp[c & 0x1]++;
1675
1676 /* If a grace period is not already in progress, start one. */
1677 if (rnp_root->gpnum != rnp_root->completed) {
1678 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1679 } else {
1680 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1681 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1682 }
1683unlock_out:
1684 if (rnp != rnp_root)
1685 raw_spin_unlock_rcu_node(rnp_root);
1686out:
1687 if (c_out != NULL)
1688 *c_out = c;
1689 return ret;
1690}
1691
1692/*
1693 * Clean up any old requests for the just-ended grace period. Also return
1694 * whether any additional grace periods have been requested. Also invoke
1695 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1696 * waiting for this grace period to complete.
1697 */
1698static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1699{
1700 int c = rnp->completed;
1701 int needmore;
1702 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1703
1704 rnp->need_future_gp[c & 0x1] = 0;
1705 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1706 trace_rcu_future_gp(rnp, rdp, c,
1707 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1708 return needmore;
1709}
1710
1711/*
1712 * Awaken the grace-period kthread for the specified flavor of RCU.
1713 * Don't do a self-awaken, and don't bother awakening when there is
1714 * nothing for the grace-period kthread to do (as in several CPUs
1715 * raced to awaken, and we lost), and finally don't try to awaken
1716 * a kthread that has not yet been created.
1717 */
1718static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1719{
1720 if (current == rsp->gp_kthread ||
1721 !READ_ONCE(rsp->gp_flags) ||
1722 !rsp->gp_kthread)
1723 return;
1724 swake_up(&rsp->gp_wq);
1725}
1726
1727/*
1728 * If there is room, assign a ->completed number to any callbacks on
1729 * this CPU that have not already been assigned. Also accelerate any
1730 * callbacks that were previously assigned a ->completed number that has
1731 * since proven to be too conservative, which can happen if callbacks get
1732 * assigned a ->completed number while RCU is idle, but with reference to
1733 * a non-root rcu_node structure. This function is idempotent, so it does
1734 * not hurt to call it repeatedly. Returns an flag saying that we should
1735 * awaken the RCU grace-period kthread.
1736 *
1737 * The caller must hold rnp->lock with interrupts disabled.
1738 */
1739static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1740 struct rcu_data *rdp)
1741{
1742 unsigned long c;
1743 int i;
1744 bool ret;
1745
1746 /* If the CPU has no callbacks, nothing to do. */
1747 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1748 return false;
1749
1750 /*
1751 * Starting from the sublist containing the callbacks most
1752 * recently assigned a ->completed number and working down, find the
1753 * first sublist that is not assignable to an upcoming grace period.
1754 * Such a sublist has something in it (first two tests) and has
1755 * a ->completed number assigned that will complete sooner than
1756 * the ->completed number for newly arrived callbacks (last test).
1757 *
1758 * The key point is that any later sublist can be assigned the
1759 * same ->completed number as the newly arrived callbacks, which
1760 * means that the callbacks in any of these later sublist can be
1761 * grouped into a single sublist, whether or not they have already
1762 * been assigned a ->completed number.
1763 */
1764 c = rcu_cbs_completed(rsp, rnp);
1765 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1766 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1767 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1768 break;
1769
1770 /*
1771 * If there are no sublist for unassigned callbacks, leave.
1772 * At the same time, advance "i" one sublist, so that "i" will
1773 * index into the sublist where all the remaining callbacks should
1774 * be grouped into.
1775 */
1776 if (++i >= RCU_NEXT_TAIL)
1777 return false;
1778
1779 /*
1780 * Assign all subsequent callbacks' ->completed number to the next
1781 * full grace period and group them all in the sublist initially
1782 * indexed by "i".
1783 */
1784 for (; i <= RCU_NEXT_TAIL; i++) {
1785 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1786 rdp->nxtcompleted[i] = c;
1787 }
1788 /* Record any needed additional grace periods. */
1789 ret = rcu_start_future_gp(rnp, rdp, NULL);
1790
1791 /* Trace depending on how much we were able to accelerate. */
1792 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1793 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1794 else
1795 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1796 return ret;
1797}
1798
1799/*
1800 * Move any callbacks whose grace period has completed to the
1801 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1802 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1803 * sublist. This function is idempotent, so it does not hurt to
1804 * invoke it repeatedly. As long as it is not invoked -too- often...
1805 * Returns true if the RCU grace-period kthread needs to be awakened.
1806 *
1807 * The caller must hold rnp->lock with interrupts disabled.
1808 */
1809static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1810 struct rcu_data *rdp)
1811{
1812 int i, j;
1813
1814 /* If the CPU has no callbacks, nothing to do. */
1815 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1816 return false;
1817
1818 /*
1819 * Find all callbacks whose ->completed numbers indicate that they
1820 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1821 */
1822 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1823 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1824 break;
1825 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1826 }
1827 /* Clean up any sublist tail pointers that were misordered above. */
1828 for (j = RCU_WAIT_TAIL; j < i; j++)
1829 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1830
1831 /* Copy down callbacks to fill in empty sublists. */
1832 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1833 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1834 break;
1835 rdp->nxttail[j] = rdp->nxttail[i];
1836 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1837 }
1838
1839 /* Classify any remaining callbacks. */
1840 return rcu_accelerate_cbs(rsp, rnp, rdp);
1841}
1842
1843/*
1844 * Update CPU-local rcu_data state to record the beginnings and ends of
1845 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1846 * structure corresponding to the current CPU, and must have irqs disabled.
1847 * Returns true if the grace-period kthread needs to be awakened.
1848 */
1849static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1850 struct rcu_data *rdp)
1851{
1852 bool ret;
1853 bool need_gp;
1854
1855 /* Handle the ends of any preceding grace periods first. */
1856 if (rdp->completed == rnp->completed &&
1857 !unlikely(READ_ONCE(rdp->gpwrap))) {
1858
1859 /* No grace period end, so just accelerate recent callbacks. */
1860 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1861
1862 } else {
1863
1864 /* Advance callbacks. */
1865 ret = rcu_advance_cbs(rsp, rnp, rdp);
1866
1867 /* Remember that we saw this grace-period completion. */
1868 rdp->completed = rnp->completed;
1869 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1870 }
1871
1872 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1873 /*
1874 * If the current grace period is waiting for this CPU,
1875 * set up to detect a quiescent state, otherwise don't
1876 * go looking for one.
1877 */
1878 rdp->gpnum = rnp->gpnum;
1879 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1880 need_gp = !!(rnp->qsmask & rdp->grpmask);
1881 rdp->cpu_no_qs.b.norm = need_gp;
1882 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1883 rdp->core_needs_qs = need_gp;
1884 zero_cpu_stall_ticks(rdp);
1885 WRITE_ONCE(rdp->gpwrap, false);
1886 }
1887 return ret;
1888}
1889
1890static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1891{
1892 unsigned long flags;
1893 bool needwake;
1894 struct rcu_node *rnp;
1895
1896 local_irq_save(flags);
1897 rnp = rdp->mynode;
1898 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1899 rdp->completed == READ_ONCE(rnp->completed) &&
1900 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1901 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1902 local_irq_restore(flags);
1903 return;
1904 }
1905 needwake = __note_gp_changes(rsp, rnp, rdp);
1906 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1907 if (needwake)
1908 rcu_gp_kthread_wake(rsp);
1909}
1910
1911static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1912{
1913 if (delay > 0 &&
1914 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1915 schedule_timeout_uninterruptible(delay);
1916}
1917
1918/*
1919 * Initialize a new grace period. Return false if no grace period required.
1920 */
1921static bool rcu_gp_init(struct rcu_state *rsp)
1922{
1923 unsigned long oldmask;
1924 struct rcu_data *rdp;
1925 struct rcu_node *rnp = rcu_get_root(rsp);
1926
1927 WRITE_ONCE(rsp->gp_activity, jiffies);
1928 raw_spin_lock_irq_rcu_node(rnp);
1929 if (!READ_ONCE(rsp->gp_flags)) {
1930 /* Spurious wakeup, tell caller to go back to sleep. */
1931 raw_spin_unlock_irq_rcu_node(rnp);
1932 return false;
1933 }
1934 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1935
1936 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1937 /*
1938 * Grace period already in progress, don't start another.
1939 * Not supposed to be able to happen.
1940 */
1941 raw_spin_unlock_irq_rcu_node(rnp);
1942 return false;
1943 }
1944
1945 /* Advance to a new grace period and initialize state. */
1946 record_gp_stall_check_time(rsp);
1947 /* Record GP times before starting GP, hence smp_store_release(). */
1948 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1949 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1950 raw_spin_unlock_irq_rcu_node(rnp);
1951
1952 /*
1953 * Apply per-leaf buffered online and offline operations to the
1954 * rcu_node tree. Note that this new grace period need not wait
1955 * for subsequent online CPUs, and that quiescent-state forcing
1956 * will handle subsequent offline CPUs.
1957 */
1958 rcu_for_each_leaf_node(rsp, rnp) {
1959 rcu_gp_slow(rsp, gp_preinit_delay);
1960 raw_spin_lock_irq_rcu_node(rnp);
1961 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1962 !rnp->wait_blkd_tasks) {
1963 /* Nothing to do on this leaf rcu_node structure. */
1964 raw_spin_unlock_irq_rcu_node(rnp);
1965 continue;
1966 }
1967
1968 /* Record old state, apply changes to ->qsmaskinit field. */
1969 oldmask = rnp->qsmaskinit;
1970 rnp->qsmaskinit = rnp->qsmaskinitnext;
1971
1972 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1973 if (!oldmask != !rnp->qsmaskinit) {
1974 if (!oldmask) /* First online CPU for this rcu_node. */
1975 rcu_init_new_rnp(rnp);
1976 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1977 rnp->wait_blkd_tasks = true;
1978 else /* Last offline CPU and can propagate. */
1979 rcu_cleanup_dead_rnp(rnp);
1980 }
1981
1982 /*
1983 * If all waited-on tasks from prior grace period are
1984 * done, and if all this rcu_node structure's CPUs are
1985 * still offline, propagate up the rcu_node tree and
1986 * clear ->wait_blkd_tasks. Otherwise, if one of this
1987 * rcu_node structure's CPUs has since come back online,
1988 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1989 * checks for this, so just call it unconditionally).
1990 */
1991 if (rnp->wait_blkd_tasks &&
1992 (!rcu_preempt_has_tasks(rnp) ||
1993 rnp->qsmaskinit)) {
1994 rnp->wait_blkd_tasks = false;
1995 rcu_cleanup_dead_rnp(rnp);
1996 }
1997
1998 raw_spin_unlock_irq_rcu_node(rnp);
1999 }
2000
2001 /*
2002 * Set the quiescent-state-needed bits in all the rcu_node
2003 * structures for all currently online CPUs in breadth-first order,
2004 * starting from the root rcu_node structure, relying on the layout
2005 * of the tree within the rsp->node[] array. Note that other CPUs
2006 * will access only the leaves of the hierarchy, thus seeing that no
2007 * grace period is in progress, at least until the corresponding
2008 * leaf node has been initialized.
2009 *
2010 * The grace period cannot complete until the initialization
2011 * process finishes, because this kthread handles both.
2012 */
2013 rcu_for_each_node_breadth_first(rsp, rnp) {
2014 rcu_gp_slow(rsp, gp_init_delay);
2015 raw_spin_lock_irq_rcu_node(rnp);
2016 rdp = this_cpu_ptr(rsp->rda);
2017 rcu_preempt_check_blocked_tasks(rnp);
2018 rnp->qsmask = rnp->qsmaskinit;
2019 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2020 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2021 WRITE_ONCE(rnp->completed, rsp->completed);
2022 if (rnp == rdp->mynode)
2023 (void)__note_gp_changes(rsp, rnp, rdp);
2024 rcu_preempt_boost_start_gp(rnp);
2025 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2026 rnp->level, rnp->grplo,
2027 rnp->grphi, rnp->qsmask);
2028 raw_spin_unlock_irq_rcu_node(rnp);
2029 cond_resched_rcu_qs();
2030 WRITE_ONCE(rsp->gp_activity, jiffies);
2031 }
2032
2033 return true;
2034}
2035
2036/*
2037 * Helper function for wait_event_interruptible_timeout() wakeup
2038 * at force-quiescent-state time.
2039 */
2040static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2041{
2042 struct rcu_node *rnp = rcu_get_root(rsp);
2043
2044 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2045 *gfp = READ_ONCE(rsp->gp_flags);
2046 if (*gfp & RCU_GP_FLAG_FQS)
2047 return true;
2048
2049 /* The current grace period has completed. */
2050 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2051 return true;
2052
2053 return false;
2054}
2055
2056/*
2057 * Do one round of quiescent-state forcing.
2058 */
2059static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2060{
2061 bool isidle = false;
2062 unsigned long maxj;
2063 struct rcu_node *rnp = rcu_get_root(rsp);
2064
2065 WRITE_ONCE(rsp->gp_activity, jiffies);
2066 rsp->n_force_qs++;
2067 if (first_time) {
2068 /* Collect dyntick-idle snapshots. */
2069 if (is_sysidle_rcu_state(rsp)) {
2070 isidle = true;
2071 maxj = jiffies - ULONG_MAX / 4;
2072 }
2073 force_qs_rnp(rsp, dyntick_save_progress_counter,
2074 &isidle, &maxj);
2075 rcu_sysidle_report_gp(rsp, isidle, maxj);
2076 } else {
2077 /* Handle dyntick-idle and offline CPUs. */
2078 isidle = true;
2079 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2080 }
2081 /* Clear flag to prevent immediate re-entry. */
2082 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2083 raw_spin_lock_irq_rcu_node(rnp);
2084 WRITE_ONCE(rsp->gp_flags,
2085 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2086 raw_spin_unlock_irq_rcu_node(rnp);
2087 }
2088}
2089
2090/*
2091 * Clean up after the old grace period.
2092 */
2093static void rcu_gp_cleanup(struct rcu_state *rsp)
2094{
2095 unsigned long gp_duration;
2096 bool needgp = false;
2097 int nocb = 0;
2098 struct rcu_data *rdp;
2099 struct rcu_node *rnp = rcu_get_root(rsp);
2100 struct swait_queue_head *sq;
2101
2102 WRITE_ONCE(rsp->gp_activity, jiffies);
2103 raw_spin_lock_irq_rcu_node(rnp);
2104 gp_duration = jiffies - rsp->gp_start;
2105 if (gp_duration > rsp->gp_max)
2106 rsp->gp_max = gp_duration;
2107
2108 /*
2109 * We know the grace period is complete, but to everyone else
2110 * it appears to still be ongoing. But it is also the case
2111 * that to everyone else it looks like there is nothing that
2112 * they can do to advance the grace period. It is therefore
2113 * safe for us to drop the lock in order to mark the grace
2114 * period as completed in all of the rcu_node structures.
2115 */
2116 raw_spin_unlock_irq_rcu_node(rnp);
2117
2118 /*
2119 * Propagate new ->completed value to rcu_node structures so
2120 * that other CPUs don't have to wait until the start of the next
2121 * grace period to process their callbacks. This also avoids
2122 * some nasty RCU grace-period initialization races by forcing
2123 * the end of the current grace period to be completely recorded in
2124 * all of the rcu_node structures before the beginning of the next
2125 * grace period is recorded in any of the rcu_node structures.
2126 */
2127 rcu_for_each_node_breadth_first(rsp, rnp) {
2128 raw_spin_lock_irq_rcu_node(rnp);
2129 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2130 WARN_ON_ONCE(rnp->qsmask);
2131 WRITE_ONCE(rnp->completed, rsp->gpnum);
2132 rdp = this_cpu_ptr(rsp->rda);
2133 if (rnp == rdp->mynode)
2134 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2135 /* smp_mb() provided by prior unlock-lock pair. */
2136 nocb += rcu_future_gp_cleanup(rsp, rnp);
2137 sq = rcu_nocb_gp_get(rnp);
2138 raw_spin_unlock_irq_rcu_node(rnp);
2139 rcu_nocb_gp_cleanup(sq);
2140 cond_resched_rcu_qs();
2141 WRITE_ONCE(rsp->gp_activity, jiffies);
2142 rcu_gp_slow(rsp, gp_cleanup_delay);
2143 }
2144 rnp = rcu_get_root(rsp);
2145 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2146 rcu_nocb_gp_set(rnp, nocb);
2147
2148 /* Declare grace period done. */
2149 WRITE_ONCE(rsp->completed, rsp->gpnum);
2150 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2151 rsp->gp_state = RCU_GP_IDLE;
2152 rdp = this_cpu_ptr(rsp->rda);
2153 /* Advance CBs to reduce false positives below. */
2154 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2155 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2156 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2157 trace_rcu_grace_period(rsp->name,
2158 READ_ONCE(rsp->gpnum),
2159 TPS("newreq"));
2160 }
2161 raw_spin_unlock_irq_rcu_node(rnp);
2162}
2163
2164/*
2165 * Body of kthread that handles grace periods.
2166 */
2167static int __noreturn rcu_gp_kthread(void *arg)
2168{
2169 bool first_gp_fqs;
2170 int gf;
2171 unsigned long j;
2172 int ret;
2173 struct rcu_state *rsp = arg;
2174 struct rcu_node *rnp = rcu_get_root(rsp);
2175
2176 rcu_bind_gp_kthread();
2177 for (;;) {
2178
2179 /* Handle grace-period start. */
2180 for (;;) {
2181 trace_rcu_grace_period(rsp->name,
2182 READ_ONCE(rsp->gpnum),
2183 TPS("reqwait"));
2184 rsp->gp_state = RCU_GP_WAIT_GPS;
2185 swait_event_interruptible(rsp->gp_wq,
2186 READ_ONCE(rsp->gp_flags) &
2187 RCU_GP_FLAG_INIT);
2188 rsp->gp_state = RCU_GP_DONE_GPS;
2189 /* Locking provides needed memory barrier. */
2190 if (rcu_gp_init(rsp))
2191 break;
2192 cond_resched_rcu_qs();
2193 WRITE_ONCE(rsp->gp_activity, jiffies);
2194 WARN_ON(signal_pending(current));
2195 trace_rcu_grace_period(rsp->name,
2196 READ_ONCE(rsp->gpnum),
2197 TPS("reqwaitsig"));
2198 }
2199
2200 /* Handle quiescent-state forcing. */
2201 first_gp_fqs = true;
2202 j = jiffies_till_first_fqs;
2203 if (j > HZ) {
2204 j = HZ;
2205 jiffies_till_first_fqs = HZ;
2206 }
2207 ret = 0;
2208 for (;;) {
2209 if (!ret) {
2210 rsp->jiffies_force_qs = jiffies + j;
2211 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2212 jiffies + 3 * j);
2213 }
2214 trace_rcu_grace_period(rsp->name,
2215 READ_ONCE(rsp->gpnum),
2216 TPS("fqswait"));
2217 rsp->gp_state = RCU_GP_WAIT_FQS;
2218 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2219 rcu_gp_fqs_check_wake(rsp, &gf), j);
2220 rsp->gp_state = RCU_GP_DOING_FQS;
2221 /* Locking provides needed memory barriers. */
2222 /* If grace period done, leave loop. */
2223 if (!READ_ONCE(rnp->qsmask) &&
2224 !rcu_preempt_blocked_readers_cgp(rnp))
2225 break;
2226 /* If time for quiescent-state forcing, do it. */
2227 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2228 (gf & RCU_GP_FLAG_FQS)) {
2229 trace_rcu_grace_period(rsp->name,
2230 READ_ONCE(rsp->gpnum),
2231 TPS("fqsstart"));
2232 rcu_gp_fqs(rsp, first_gp_fqs);
2233 first_gp_fqs = false;
2234 trace_rcu_grace_period(rsp->name,
2235 READ_ONCE(rsp->gpnum),
2236 TPS("fqsend"));
2237 cond_resched_rcu_qs();
2238 WRITE_ONCE(rsp->gp_activity, jiffies);
2239 ret = 0; /* Force full wait till next FQS. */
2240 j = jiffies_till_next_fqs;
2241 if (j > HZ) {
2242 j = HZ;
2243 jiffies_till_next_fqs = HZ;
2244 } else if (j < 1) {
2245 j = 1;
2246 jiffies_till_next_fqs = 1;
2247 }
2248 } else {
2249 /* Deal with stray signal. */
2250 cond_resched_rcu_qs();
2251 WRITE_ONCE(rsp->gp_activity, jiffies);
2252 WARN_ON(signal_pending(current));
2253 trace_rcu_grace_period(rsp->name,
2254 READ_ONCE(rsp->gpnum),
2255 TPS("fqswaitsig"));
2256 ret = 1; /* Keep old FQS timing. */
2257 j = jiffies;
2258 if (time_after(jiffies, rsp->jiffies_force_qs))
2259 j = 1;
2260 else
2261 j = rsp->jiffies_force_qs - j;
2262 }
2263 }
2264
2265 /* Handle grace-period end. */
2266 rsp->gp_state = RCU_GP_CLEANUP;
2267 rcu_gp_cleanup(rsp);
2268 rsp->gp_state = RCU_GP_CLEANED;
2269 }
2270}
2271
2272/*
2273 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2274 * in preparation for detecting the next grace period. The caller must hold
2275 * the root node's ->lock and hard irqs must be disabled.
2276 *
2277 * Note that it is legal for a dying CPU (which is marked as offline) to
2278 * invoke this function. This can happen when the dying CPU reports its
2279 * quiescent state.
2280 *
2281 * Returns true if the grace-period kthread must be awakened.
2282 */
2283static bool
2284rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2285 struct rcu_data *rdp)
2286{
2287 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2288 /*
2289 * Either we have not yet spawned the grace-period
2290 * task, this CPU does not need another grace period,
2291 * or a grace period is already in progress.
2292 * Either way, don't start a new grace period.
2293 */
2294 return false;
2295 }
2296 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2297 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2298 TPS("newreq"));
2299
2300 /*
2301 * We can't do wakeups while holding the rnp->lock, as that
2302 * could cause possible deadlocks with the rq->lock. Defer
2303 * the wakeup to our caller.
2304 */
2305 return true;
2306}
2307
2308/*
2309 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2310 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2311 * is invoked indirectly from rcu_advance_cbs(), which would result in
2312 * endless recursion -- or would do so if it wasn't for the self-deadlock
2313 * that is encountered beforehand.
2314 *
2315 * Returns true if the grace-period kthread needs to be awakened.
2316 */
2317static bool rcu_start_gp(struct rcu_state *rsp)
2318{
2319 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2320 struct rcu_node *rnp = rcu_get_root(rsp);
2321 bool ret = false;
2322
2323 /*
2324 * If there is no grace period in progress right now, any
2325 * callbacks we have up to this point will be satisfied by the
2326 * next grace period. Also, advancing the callbacks reduces the
2327 * probability of false positives from cpu_needs_another_gp()
2328 * resulting in pointless grace periods. So, advance callbacks
2329 * then start the grace period!
2330 */
2331 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2332 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2333 return ret;
2334}
2335
2336/*
2337 * Report a full set of quiescent states to the specified rcu_state data
2338 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2339 * kthread if another grace period is required. Whether we wake
2340 * the grace-period kthread or it awakens itself for the next round
2341 * of quiescent-state forcing, that kthread will clean up after the
2342 * just-completed grace period. Note that the caller must hold rnp->lock,
2343 * which is released before return.
2344 */
2345static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2346 __releases(rcu_get_root(rsp)->lock)
2347{
2348 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2349 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2350 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2351 rcu_gp_kthread_wake(rsp);
2352}
2353
2354/*
2355 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2356 * Allows quiescent states for a group of CPUs to be reported at one go
2357 * to the specified rcu_node structure, though all the CPUs in the group
2358 * must be represented by the same rcu_node structure (which need not be a
2359 * leaf rcu_node structure, though it often will be). The gps parameter
2360 * is the grace-period snapshot, which means that the quiescent states
2361 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2362 * must be held upon entry, and it is released before return.
2363 */
2364static void
2365rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2366 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2367 __releases(rnp->lock)
2368{
2369 unsigned long oldmask = 0;
2370 struct rcu_node *rnp_c;
2371
2372 /* Walk up the rcu_node hierarchy. */
2373 for (;;) {
2374 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2375
2376 /*
2377 * Our bit has already been cleared, or the
2378 * relevant grace period is already over, so done.
2379 */
2380 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2381 return;
2382 }
2383 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2384 rnp->qsmask &= ~mask;
2385 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2386 mask, rnp->qsmask, rnp->level,
2387 rnp->grplo, rnp->grphi,
2388 !!rnp->gp_tasks);
2389 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2390
2391 /* Other bits still set at this level, so done. */
2392 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2393 return;
2394 }
2395 mask = rnp->grpmask;
2396 if (rnp->parent == NULL) {
2397
2398 /* No more levels. Exit loop holding root lock. */
2399
2400 break;
2401 }
2402 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2403 rnp_c = rnp;
2404 rnp = rnp->parent;
2405 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2406 oldmask = rnp_c->qsmask;
2407 }
2408
2409 /*
2410 * Get here if we are the last CPU to pass through a quiescent
2411 * state for this grace period. Invoke rcu_report_qs_rsp()
2412 * to clean up and start the next grace period if one is needed.
2413 */
2414 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2415}
2416
2417/*
2418 * Record a quiescent state for all tasks that were previously queued
2419 * on the specified rcu_node structure and that were blocking the current
2420 * RCU grace period. The caller must hold the specified rnp->lock with
2421 * irqs disabled, and this lock is released upon return, but irqs remain
2422 * disabled.
2423 */
2424static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2425 struct rcu_node *rnp, unsigned long flags)
2426 __releases(rnp->lock)
2427{
2428 unsigned long gps;
2429 unsigned long mask;
2430 struct rcu_node *rnp_p;
2431
2432 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2433 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2434 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2435 return; /* Still need more quiescent states! */
2436 }
2437
2438 rnp_p = rnp->parent;
2439 if (rnp_p == NULL) {
2440 /*
2441 * Only one rcu_node structure in the tree, so don't
2442 * try to report up to its nonexistent parent!
2443 */
2444 rcu_report_qs_rsp(rsp, flags);
2445 return;
2446 }
2447
2448 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2449 gps = rnp->gpnum;
2450 mask = rnp->grpmask;
2451 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2452 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2453 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2454}
2455
2456/*
2457 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2458 * structure. This must be called from the specified CPU.
2459 */
2460static void
2461rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2462{
2463 unsigned long flags;
2464 unsigned long mask;
2465 bool needwake;
2466 struct rcu_node *rnp;
2467
2468 rnp = rdp->mynode;
2469 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2470 if ((rdp->cpu_no_qs.b.norm &&
2471 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2472 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2473 rdp->gpwrap) {
2474
2475 /*
2476 * The grace period in which this quiescent state was
2477 * recorded has ended, so don't report it upwards.
2478 * We will instead need a new quiescent state that lies
2479 * within the current grace period.
2480 */
2481 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2482 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2483 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2484 return;
2485 }
2486 mask = rdp->grpmask;
2487 if ((rnp->qsmask & mask) == 0) {
2488 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2489 } else {
2490 rdp->core_needs_qs = false;
2491
2492 /*
2493 * This GP can't end until cpu checks in, so all of our
2494 * callbacks can be processed during the next GP.
2495 */
2496 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2497
2498 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2499 /* ^^^ Released rnp->lock */
2500 if (needwake)
2501 rcu_gp_kthread_wake(rsp);
2502 }
2503}
2504
2505/*
2506 * Check to see if there is a new grace period of which this CPU
2507 * is not yet aware, and if so, set up local rcu_data state for it.
2508 * Otherwise, see if this CPU has just passed through its first
2509 * quiescent state for this grace period, and record that fact if so.
2510 */
2511static void
2512rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2513{
2514 /* Check for grace-period ends and beginnings. */
2515 note_gp_changes(rsp, rdp);
2516
2517 /*
2518 * Does this CPU still need to do its part for current grace period?
2519 * If no, return and let the other CPUs do their part as well.
2520 */
2521 if (!rdp->core_needs_qs)
2522 return;
2523
2524 /*
2525 * Was there a quiescent state since the beginning of the grace
2526 * period? If no, then exit and wait for the next call.
2527 */
2528 if (rdp->cpu_no_qs.b.norm &&
2529 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2530 return;
2531
2532 /*
2533 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2534 * judge of that).
2535 */
2536 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2537}
2538
2539/*
2540 * Send the specified CPU's RCU callbacks to the orphanage. The
2541 * specified CPU must be offline, and the caller must hold the
2542 * ->orphan_lock.
2543 */
2544static void
2545rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2546 struct rcu_node *rnp, struct rcu_data *rdp)
2547{
2548 /* No-CBs CPUs do not have orphanable callbacks. */
2549 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2550 return;
2551
2552 /*
2553 * Orphan the callbacks. First adjust the counts. This is safe
2554 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2555 * cannot be running now. Thus no memory barrier is required.
2556 */
2557 if (rdp->nxtlist != NULL) {
2558 rsp->qlen_lazy += rdp->qlen_lazy;
2559 rsp->qlen += rdp->qlen;
2560 rdp->n_cbs_orphaned += rdp->qlen;
2561 rdp->qlen_lazy = 0;
2562 WRITE_ONCE(rdp->qlen, 0);
2563 }
2564
2565 /*
2566 * Next, move those callbacks still needing a grace period to
2567 * the orphanage, where some other CPU will pick them up.
2568 * Some of the callbacks might have gone partway through a grace
2569 * period, but that is too bad. They get to start over because we
2570 * cannot assume that grace periods are synchronized across CPUs.
2571 * We don't bother updating the ->nxttail[] array yet, instead
2572 * we just reset the whole thing later on.
2573 */
2574 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2575 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2576 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2577 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2578 }
2579
2580 /*
2581 * Then move the ready-to-invoke callbacks to the orphanage,
2582 * where some other CPU will pick them up. These will not be
2583 * required to pass though another grace period: They are done.
2584 */
2585 if (rdp->nxtlist != NULL) {
2586 *rsp->orphan_donetail = rdp->nxtlist;
2587 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2588 }
2589
2590 /*
2591 * Finally, initialize the rcu_data structure's list to empty and
2592 * disallow further callbacks on this CPU.
2593 */
2594 init_callback_list(rdp);
2595 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2596}
2597
2598/*
2599 * Adopt the RCU callbacks from the specified rcu_state structure's
2600 * orphanage. The caller must hold the ->orphan_lock.
2601 */
2602static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2603{
2604 int i;
2605 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2606
2607 /* No-CBs CPUs are handled specially. */
2608 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2609 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2610 return;
2611
2612 /* Do the accounting first. */
2613 rdp->qlen_lazy += rsp->qlen_lazy;
2614 rdp->qlen += rsp->qlen;
2615 rdp->n_cbs_adopted += rsp->qlen;
2616 if (rsp->qlen_lazy != rsp->qlen)
2617 rcu_idle_count_callbacks_posted();
2618 rsp->qlen_lazy = 0;
2619 rsp->qlen = 0;
2620
2621 /*
2622 * We do not need a memory barrier here because the only way we
2623 * can get here if there is an rcu_barrier() in flight is if
2624 * we are the task doing the rcu_barrier().
2625 */
2626
2627 /* First adopt the ready-to-invoke callbacks. */
2628 if (rsp->orphan_donelist != NULL) {
2629 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2630 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2631 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2632 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2633 rdp->nxttail[i] = rsp->orphan_donetail;
2634 rsp->orphan_donelist = NULL;
2635 rsp->orphan_donetail = &rsp->orphan_donelist;
2636 }
2637
2638 /* And then adopt the callbacks that still need a grace period. */
2639 if (rsp->orphan_nxtlist != NULL) {
2640 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2641 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2642 rsp->orphan_nxtlist = NULL;
2643 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2644 }
2645}
2646
2647/*
2648 * Trace the fact that this CPU is going offline.
2649 */
2650static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2651{
2652 RCU_TRACE(unsigned long mask);
2653 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2654 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2655
2656 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2657 return;
2658
2659 RCU_TRACE(mask = rdp->grpmask);
2660 trace_rcu_grace_period(rsp->name,
2661 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2662 TPS("cpuofl"));
2663}
2664
2665/*
2666 * All CPUs for the specified rcu_node structure have gone offline,
2667 * and all tasks that were preempted within an RCU read-side critical
2668 * section while running on one of those CPUs have since exited their RCU
2669 * read-side critical section. Some other CPU is reporting this fact with
2670 * the specified rcu_node structure's ->lock held and interrupts disabled.
2671 * This function therefore goes up the tree of rcu_node structures,
2672 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2673 * the leaf rcu_node structure's ->qsmaskinit field has already been
2674 * updated
2675 *
2676 * This function does check that the specified rcu_node structure has
2677 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2678 * prematurely. That said, invoking it after the fact will cost you
2679 * a needless lock acquisition. So once it has done its work, don't
2680 * invoke it again.
2681 */
2682static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2683{
2684 long mask;
2685 struct rcu_node *rnp = rnp_leaf;
2686
2687 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2688 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2689 return;
2690 for (;;) {
2691 mask = rnp->grpmask;
2692 rnp = rnp->parent;
2693 if (!rnp)
2694 break;
2695 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2696 rnp->qsmaskinit &= ~mask;
2697 rnp->qsmask &= ~mask;
2698 if (rnp->qsmaskinit) {
2699 raw_spin_unlock_rcu_node(rnp);
2700 /* irqs remain disabled. */
2701 return;
2702 }
2703 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2704 }
2705}
2706
2707/*
2708 * The CPU has been completely removed, and some other CPU is reporting
2709 * this fact from process context. Do the remainder of the cleanup,
2710 * including orphaning the outgoing CPU's RCU callbacks, and also
2711 * adopting them. There can only be one CPU hotplug operation at a time,
2712 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2713 */
2714static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2715{
2716 unsigned long flags;
2717 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2718 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2719
2720 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2721 return;
2722
2723 /* Adjust any no-longer-needed kthreads. */
2724 rcu_boost_kthread_setaffinity(rnp, -1);
2725
2726 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2727 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2728 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2729 rcu_adopt_orphan_cbs(rsp, flags);
2730 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2731
2732 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2733 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2734 cpu, rdp->qlen, rdp->nxtlist);
2735}
2736
2737/*
2738 * Invoke any RCU callbacks that have made it to the end of their grace
2739 * period. Thottle as specified by rdp->blimit.
2740 */
2741static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2742{
2743 unsigned long flags;
2744 struct rcu_head *next, *list, **tail;
2745 long bl, count, count_lazy;
2746 int i;
2747
2748 /* If no callbacks are ready, just return. */
2749 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2750 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2751 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2752 need_resched(), is_idle_task(current),
2753 rcu_is_callbacks_kthread());
2754 return;
2755 }
2756
2757 /*
2758 * Extract the list of ready callbacks, disabling to prevent
2759 * races with call_rcu() from interrupt handlers.
2760 */
2761 local_irq_save(flags);
2762 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2763 bl = rdp->blimit;
2764 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2765 list = rdp->nxtlist;
2766 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2767 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2768 tail = rdp->nxttail[RCU_DONE_TAIL];
2769 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2770 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2771 rdp->nxttail[i] = &rdp->nxtlist;
2772 local_irq_restore(flags);
2773
2774 /* Invoke callbacks. */
2775 count = count_lazy = 0;
2776 while (list) {
2777 next = list->next;
2778 prefetch(next);
2779 debug_rcu_head_unqueue(list);
2780 if (__rcu_reclaim(rsp->name, list))
2781 count_lazy++;
2782 list = next;
2783 /* Stop only if limit reached and CPU has something to do. */
2784 if (++count >= bl &&
2785 (need_resched() ||
2786 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2787 break;
2788 }
2789
2790 local_irq_save(flags);
2791 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2792 is_idle_task(current),
2793 rcu_is_callbacks_kthread());
2794
2795 /* Update count, and requeue any remaining callbacks. */
2796 if (list != NULL) {
2797 *tail = rdp->nxtlist;
2798 rdp->nxtlist = list;
2799 for (i = 0; i < RCU_NEXT_SIZE; i++)
2800 if (&rdp->nxtlist == rdp->nxttail[i])
2801 rdp->nxttail[i] = tail;
2802 else
2803 break;
2804 }
2805 smp_mb(); /* List handling before counting for rcu_barrier(). */
2806 rdp->qlen_lazy -= count_lazy;
2807 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2808 rdp->n_cbs_invoked += count;
2809
2810 /* Reinstate batch limit if we have worked down the excess. */
2811 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2812 rdp->blimit = blimit;
2813
2814 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2815 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2816 rdp->qlen_last_fqs_check = 0;
2817 rdp->n_force_qs_snap = rsp->n_force_qs;
2818 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2819 rdp->qlen_last_fqs_check = rdp->qlen;
2820 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2821
2822 local_irq_restore(flags);
2823
2824 /* Re-invoke RCU core processing if there are callbacks remaining. */
2825 if (cpu_has_callbacks_ready_to_invoke(rdp))
2826 invoke_rcu_core();
2827}
2828
2829/*
2830 * Check to see if this CPU is in a non-context-switch quiescent state
2831 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2832 * Also schedule RCU core processing.
2833 *
2834 * This function must be called from hardirq context. It is normally
2835 * invoked from the scheduling-clock interrupt.
2836 */
2837void rcu_check_callbacks(int user)
2838{
2839 trace_rcu_utilization(TPS("Start scheduler-tick"));
2840 increment_cpu_stall_ticks();
2841 if (user || rcu_is_cpu_rrupt_from_idle()) {
2842
2843 /*
2844 * Get here if this CPU took its interrupt from user
2845 * mode or from the idle loop, and if this is not a
2846 * nested interrupt. In this case, the CPU is in
2847 * a quiescent state, so note it.
2848 *
2849 * No memory barrier is required here because both
2850 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2851 * variables that other CPUs neither access nor modify,
2852 * at least not while the corresponding CPU is online.
2853 */
2854
2855 rcu_sched_qs();
2856 rcu_bh_qs();
2857
2858 } else if (!in_softirq()) {
2859
2860 /*
2861 * Get here if this CPU did not take its interrupt from
2862 * softirq, in other words, if it is not interrupting
2863 * a rcu_bh read-side critical section. This is an _bh
2864 * critical section, so note it.
2865 */
2866
2867 rcu_bh_qs();
2868 }
2869 rcu_preempt_check_callbacks();
2870 if (rcu_pending())
2871 invoke_rcu_core();
2872 if (user)
2873 rcu_note_voluntary_context_switch(current);
2874 trace_rcu_utilization(TPS("End scheduler-tick"));
2875}
2876
2877/*
2878 * Scan the leaf rcu_node structures, processing dyntick state for any that
2879 * have not yet encountered a quiescent state, using the function specified.
2880 * Also initiate boosting for any threads blocked on the root rcu_node.
2881 *
2882 * The caller must have suppressed start of new grace periods.
2883 */
2884static void force_qs_rnp(struct rcu_state *rsp,
2885 int (*f)(struct rcu_data *rsp, bool *isidle,
2886 unsigned long *maxj),
2887 bool *isidle, unsigned long *maxj)
2888{
2889 int cpu;
2890 unsigned long flags;
2891 unsigned long mask;
2892 struct rcu_node *rnp;
2893
2894 rcu_for_each_leaf_node(rsp, rnp) {
2895 cond_resched_rcu_qs();
2896 mask = 0;
2897 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2898 if (rnp->qsmask == 0) {
2899 if (rcu_state_p == &rcu_sched_state ||
2900 rsp != rcu_state_p ||
2901 rcu_preempt_blocked_readers_cgp(rnp)) {
2902 /*
2903 * No point in scanning bits because they
2904 * are all zero. But we might need to
2905 * priority-boost blocked readers.
2906 */
2907 rcu_initiate_boost(rnp, flags);
2908 /* rcu_initiate_boost() releases rnp->lock */
2909 continue;
2910 }
2911 if (rnp->parent &&
2912 (rnp->parent->qsmask & rnp->grpmask)) {
2913 /*
2914 * Race between grace-period
2915 * initialization and task exiting RCU
2916 * read-side critical section: Report.
2917 */
2918 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2919 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2920 continue;
2921 }
2922 }
2923 for_each_leaf_node_possible_cpu(rnp, cpu) {
2924 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2925 if ((rnp->qsmask & bit) != 0) {
2926 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2927 mask |= bit;
2928 }
2929 }
2930 if (mask != 0) {
2931 /* Idle/offline CPUs, report (releases rnp->lock. */
2932 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2933 } else {
2934 /* Nothing to do here, so just drop the lock. */
2935 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2936 }
2937 }
2938}
2939
2940/*
2941 * Force quiescent states on reluctant CPUs, and also detect which
2942 * CPUs are in dyntick-idle mode.
2943 */
2944static void force_quiescent_state(struct rcu_state *rsp)
2945{
2946 unsigned long flags;
2947 bool ret;
2948 struct rcu_node *rnp;
2949 struct rcu_node *rnp_old = NULL;
2950
2951 /* Funnel through hierarchy to reduce memory contention. */
2952 rnp = __this_cpu_read(rsp->rda->mynode);
2953 for (; rnp != NULL; rnp = rnp->parent) {
2954 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2955 !raw_spin_trylock(&rnp->fqslock);
2956 if (rnp_old != NULL)
2957 raw_spin_unlock(&rnp_old->fqslock);
2958 if (ret) {
2959 rsp->n_force_qs_lh++;
2960 return;
2961 }
2962 rnp_old = rnp;
2963 }
2964 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2965
2966 /* Reached the root of the rcu_node tree, acquire lock. */
2967 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2968 raw_spin_unlock(&rnp_old->fqslock);
2969 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2970 rsp->n_force_qs_lh++;
2971 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2972 return; /* Someone beat us to it. */
2973 }
2974 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2975 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2976 rcu_gp_kthread_wake(rsp);
2977}
2978
2979/*
2980 * This does the RCU core processing work for the specified rcu_state
2981 * and rcu_data structures. This may be called only from the CPU to
2982 * whom the rdp belongs.
2983 */
2984static void
2985__rcu_process_callbacks(struct rcu_state *rsp)
2986{
2987 unsigned long flags;
2988 bool needwake;
2989 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2990
2991 WARN_ON_ONCE(rdp->beenonline == 0);
2992
2993 /* Update RCU state based on any recent quiescent states. */
2994 rcu_check_quiescent_state(rsp, rdp);
2995
2996 /* Does this CPU require a not-yet-started grace period? */
2997 local_irq_save(flags);
2998 if (cpu_needs_another_gp(rsp, rdp)) {
2999 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3000 needwake = rcu_start_gp(rsp);
3001 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3002 if (needwake)
3003 rcu_gp_kthread_wake(rsp);
3004 } else {
3005 local_irq_restore(flags);
3006 }
3007
3008 /* If there are callbacks ready, invoke them. */
3009 if (cpu_has_callbacks_ready_to_invoke(rdp))
3010 invoke_rcu_callbacks(rsp, rdp);
3011
3012 /* Do any needed deferred wakeups of rcuo kthreads. */
3013 do_nocb_deferred_wakeup(rdp);
3014}
3015
3016/*
3017 * Do RCU core processing for the current CPU.
3018 */
3019static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3020{
3021 struct rcu_state *rsp;
3022
3023 if (cpu_is_offline(smp_processor_id()))
3024 return;
3025 trace_rcu_utilization(TPS("Start RCU core"));
3026 for_each_rcu_flavor(rsp)
3027 __rcu_process_callbacks(rsp);
3028 trace_rcu_utilization(TPS("End RCU core"));
3029}
3030
3031/*
3032 * Schedule RCU callback invocation. If the specified type of RCU
3033 * does not support RCU priority boosting, just do a direct call,
3034 * otherwise wake up the per-CPU kernel kthread. Note that because we
3035 * are running on the current CPU with softirqs disabled, the
3036 * rcu_cpu_kthread_task cannot disappear out from under us.
3037 */
3038static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3039{
3040 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3041 return;
3042 if (likely(!rsp->boost)) {
3043 rcu_do_batch(rsp, rdp);
3044 return;
3045 }
3046 invoke_rcu_callbacks_kthread();
3047}
3048
3049static void invoke_rcu_core(void)
3050{
3051 if (cpu_online(smp_processor_id()))
3052 raise_softirq(RCU_SOFTIRQ);
3053}
3054
3055/*
3056 * Handle any core-RCU processing required by a call_rcu() invocation.
3057 */
3058static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3059 struct rcu_head *head, unsigned long flags)
3060{
3061 bool needwake;
3062
3063 /*
3064 * If called from an extended quiescent state, invoke the RCU
3065 * core in order to force a re-evaluation of RCU's idleness.
3066 */
3067 if (!rcu_is_watching())
3068 invoke_rcu_core();
3069
3070 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3071 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3072 return;
3073
3074 /*
3075 * Force the grace period if too many callbacks or too long waiting.
3076 * Enforce hysteresis, and don't invoke force_quiescent_state()
3077 * if some other CPU has recently done so. Also, don't bother
3078 * invoking force_quiescent_state() if the newly enqueued callback
3079 * is the only one waiting for a grace period to complete.
3080 */
3081 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3082
3083 /* Are we ignoring a completed grace period? */
3084 note_gp_changes(rsp, rdp);
3085
3086 /* Start a new grace period if one not already started. */
3087 if (!rcu_gp_in_progress(rsp)) {
3088 struct rcu_node *rnp_root = rcu_get_root(rsp);
3089
3090 raw_spin_lock_rcu_node(rnp_root);
3091 needwake = rcu_start_gp(rsp);
3092 raw_spin_unlock_rcu_node(rnp_root);
3093 if (needwake)
3094 rcu_gp_kthread_wake(rsp);
3095 } else {
3096 /* Give the grace period a kick. */
3097 rdp->blimit = LONG_MAX;
3098 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3099 *rdp->nxttail[RCU_DONE_TAIL] != head)
3100 force_quiescent_state(rsp);
3101 rdp->n_force_qs_snap = rsp->n_force_qs;
3102 rdp->qlen_last_fqs_check = rdp->qlen;
3103 }
3104 }
3105}
3106
3107/*
3108 * RCU callback function to leak a callback.
3109 */
3110static void rcu_leak_callback(struct rcu_head *rhp)
3111{
3112}
3113
3114/*
3115 * Helper function for call_rcu() and friends. The cpu argument will
3116 * normally be -1, indicating "currently running CPU". It may specify
3117 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3118 * is expected to specify a CPU.
3119 */
3120static void
3121__call_rcu(struct rcu_head *head, rcu_callback_t func,
3122 struct rcu_state *rsp, int cpu, bool lazy)
3123{
3124 unsigned long flags;
3125 struct rcu_data *rdp;
3126
3127 /* Misaligned rcu_head! */
3128 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3129
3130 if (debug_rcu_head_queue(head)) {
3131 /* Probable double call_rcu(), so leak the callback. */
3132 WRITE_ONCE(head->func, rcu_leak_callback);
3133 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3134 return;
3135 }
3136 head->func = func;
3137 head->next = NULL;
3138 local_irq_save(flags);
3139 rdp = this_cpu_ptr(rsp->rda);
3140
3141 /* Add the callback to our list. */
3142 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3143 int offline;
3144
3145 if (cpu != -1)
3146 rdp = per_cpu_ptr(rsp->rda, cpu);
3147 if (likely(rdp->mynode)) {
3148 /* Post-boot, so this should be for a no-CBs CPU. */
3149 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3150 WARN_ON_ONCE(offline);
3151 /* Offline CPU, _call_rcu() illegal, leak callback. */
3152 local_irq_restore(flags);
3153 return;
3154 }
3155 /*
3156 * Very early boot, before rcu_init(). Initialize if needed
3157 * and then drop through to queue the callback.
3158 */
3159 BUG_ON(cpu != -1);
3160 WARN_ON_ONCE(!rcu_is_watching());
3161 if (!likely(rdp->nxtlist))
3162 init_default_callback_list(rdp);
3163 }
3164 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3165 if (lazy)
3166 rdp->qlen_lazy++;
3167 else
3168 rcu_idle_count_callbacks_posted();
3169 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3170 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3171 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3172
3173 if (__is_kfree_rcu_offset((unsigned long)func))
3174 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3175 rdp->qlen_lazy, rdp->qlen);
3176 else
3177 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3178
3179 /* Go handle any RCU core processing required. */
3180 __call_rcu_core(rsp, rdp, head, flags);
3181 local_irq_restore(flags);
3182}
3183
3184/*
3185 * Queue an RCU-sched callback for invocation after a grace period.
3186 */
3187void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3188{
3189 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3190}
3191EXPORT_SYMBOL_GPL(call_rcu_sched);
3192
3193/*
3194 * Queue an RCU callback for invocation after a quicker grace period.
3195 */
3196void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3197{
3198 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3199}
3200EXPORT_SYMBOL_GPL(call_rcu_bh);
3201
3202/*
3203 * Queue an RCU callback for lazy invocation after a grace period.
3204 * This will likely be later named something like "call_rcu_lazy()",
3205 * but this change will require some way of tagging the lazy RCU
3206 * callbacks in the list of pending callbacks. Until then, this
3207 * function may only be called from __kfree_rcu().
3208 */
3209void kfree_call_rcu(struct rcu_head *head,
3210 rcu_callback_t func)
3211{
3212 __call_rcu(head, func, rcu_state_p, -1, 1);
3213}
3214EXPORT_SYMBOL_GPL(kfree_call_rcu);
3215
3216/*
3217 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3218 * any blocking grace-period wait automatically implies a grace period
3219 * if there is only one CPU online at any point time during execution
3220 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3221 * occasionally incorrectly indicate that there are multiple CPUs online
3222 * when there was in fact only one the whole time, as this just adds
3223 * some overhead: RCU still operates correctly.
3224 */
3225static inline int rcu_blocking_is_gp(void)
3226{
3227 int ret;
3228
3229 might_sleep(); /* Check for RCU read-side critical section. */
3230 preempt_disable();
3231 ret = num_online_cpus() <= 1;
3232 preempt_enable();
3233 return ret;
3234}
3235
3236/**
3237 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3238 *
3239 * Control will return to the caller some time after a full rcu-sched
3240 * grace period has elapsed, in other words after all currently executing
3241 * rcu-sched read-side critical sections have completed. These read-side
3242 * critical sections are delimited by rcu_read_lock_sched() and
3243 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3244 * local_irq_disable(), and so on may be used in place of
3245 * rcu_read_lock_sched().
3246 *
3247 * This means that all preempt_disable code sequences, including NMI and
3248 * non-threaded hardware-interrupt handlers, in progress on entry will
3249 * have completed before this primitive returns. However, this does not
3250 * guarantee that softirq handlers will have completed, since in some
3251 * kernels, these handlers can run in process context, and can block.
3252 *
3253 * Note that this guarantee implies further memory-ordering guarantees.
3254 * On systems with more than one CPU, when synchronize_sched() returns,
3255 * each CPU is guaranteed to have executed a full memory barrier since the
3256 * end of its last RCU-sched read-side critical section whose beginning
3257 * preceded the call to synchronize_sched(). In addition, each CPU having
3258 * an RCU read-side critical section that extends beyond the return from
3259 * synchronize_sched() is guaranteed to have executed a full memory barrier
3260 * after the beginning of synchronize_sched() and before the beginning of
3261 * that RCU read-side critical section. Note that these guarantees include
3262 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3263 * that are executing in the kernel.
3264 *
3265 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3266 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3267 * to have executed a full memory barrier during the execution of
3268 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3269 * again only if the system has more than one CPU).
3270 *
3271 * This primitive provides the guarantees made by the (now removed)
3272 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3273 * guarantees that rcu_read_lock() sections will have completed.
3274 * In "classic RCU", these two guarantees happen to be one and
3275 * the same, but can differ in realtime RCU implementations.
3276 */
3277void synchronize_sched(void)
3278{
3279 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3280 lock_is_held(&rcu_lock_map) ||
3281 lock_is_held(&rcu_sched_lock_map),
3282 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3283 if (rcu_blocking_is_gp())
3284 return;
3285 if (rcu_gp_is_expedited())
3286 synchronize_sched_expedited();
3287 else
3288 wait_rcu_gp(call_rcu_sched);
3289}
3290EXPORT_SYMBOL_GPL(synchronize_sched);
3291
3292/**
3293 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3294 *
3295 * Control will return to the caller some time after a full rcu_bh grace
3296 * period has elapsed, in other words after all currently executing rcu_bh
3297 * read-side critical sections have completed. RCU read-side critical
3298 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3299 * and may be nested.
3300 *
3301 * See the description of synchronize_sched() for more detailed information
3302 * on memory ordering guarantees.
3303 */
3304void synchronize_rcu_bh(void)
3305{
3306 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3307 lock_is_held(&rcu_lock_map) ||
3308 lock_is_held(&rcu_sched_lock_map),
3309 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3310 if (rcu_blocking_is_gp())
3311 return;
3312 if (rcu_gp_is_expedited())
3313 synchronize_rcu_bh_expedited();
3314 else
3315 wait_rcu_gp(call_rcu_bh);
3316}
3317EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3318
3319/**
3320 * get_state_synchronize_rcu - Snapshot current RCU state
3321 *
3322 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3323 * to determine whether or not a full grace period has elapsed in the
3324 * meantime.
3325 */
3326unsigned long get_state_synchronize_rcu(void)
3327{
3328 /*
3329 * Any prior manipulation of RCU-protected data must happen
3330 * before the load from ->gpnum.
3331 */
3332 smp_mb(); /* ^^^ */
3333
3334 /*
3335 * Make sure this load happens before the purportedly
3336 * time-consuming work between get_state_synchronize_rcu()
3337 * and cond_synchronize_rcu().
3338 */
3339 return smp_load_acquire(&rcu_state_p->gpnum);
3340}
3341EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3342
3343/**
3344 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3345 *
3346 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3347 *
3348 * If a full RCU grace period has elapsed since the earlier call to
3349 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3350 * synchronize_rcu() to wait for a full grace period.
3351 *
3352 * Yes, this function does not take counter wrap into account. But
3353 * counter wrap is harmless. If the counter wraps, we have waited for
3354 * more than 2 billion grace periods (and way more on a 64-bit system!),
3355 * so waiting for one additional grace period should be just fine.
3356 */
3357void cond_synchronize_rcu(unsigned long oldstate)
3358{
3359 unsigned long newstate;
3360
3361 /*
3362 * Ensure that this load happens before any RCU-destructive
3363 * actions the caller might carry out after we return.
3364 */
3365 newstate = smp_load_acquire(&rcu_state_p->completed);
3366 if (ULONG_CMP_GE(oldstate, newstate))
3367 synchronize_rcu();
3368}
3369EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3370
3371/**
3372 * get_state_synchronize_sched - Snapshot current RCU-sched state
3373 *
3374 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3375 * to determine whether or not a full grace period has elapsed in the
3376 * meantime.
3377 */
3378unsigned long get_state_synchronize_sched(void)
3379{
3380 /*
3381 * Any prior manipulation of RCU-protected data must happen
3382 * before the load from ->gpnum.
3383 */
3384 smp_mb(); /* ^^^ */
3385
3386 /*
3387 * Make sure this load happens before the purportedly
3388 * time-consuming work between get_state_synchronize_sched()
3389 * and cond_synchronize_sched().
3390 */
3391 return smp_load_acquire(&rcu_sched_state.gpnum);
3392}
3393EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3394
3395/**
3396 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3397 *
3398 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3399 *
3400 * If a full RCU-sched grace period has elapsed since the earlier call to
3401 * get_state_synchronize_sched(), just return. Otherwise, invoke
3402 * synchronize_sched() to wait for a full grace period.
3403 *
3404 * Yes, this function does not take counter wrap into account. But
3405 * counter wrap is harmless. If the counter wraps, we have waited for
3406 * more than 2 billion grace periods (and way more on a 64-bit system!),
3407 * so waiting for one additional grace period should be just fine.
3408 */
3409void cond_synchronize_sched(unsigned long oldstate)
3410{
3411 unsigned long newstate;
3412
3413 /*
3414 * Ensure that this load happens before any RCU-destructive
3415 * actions the caller might carry out after we return.
3416 */
3417 newstate = smp_load_acquire(&rcu_sched_state.completed);
3418 if (ULONG_CMP_GE(oldstate, newstate))
3419 synchronize_sched();
3420}
3421EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3422
3423/* Adjust sequence number for start of update-side operation. */
3424static void rcu_seq_start(unsigned long *sp)
3425{
3426 WRITE_ONCE(*sp, *sp + 1);
3427 smp_mb(); /* Ensure update-side operation after counter increment. */
3428 WARN_ON_ONCE(!(*sp & 0x1));
3429}
3430
3431/* Adjust sequence number for end of update-side operation. */
3432static void rcu_seq_end(unsigned long *sp)
3433{
3434 smp_mb(); /* Ensure update-side operation before counter increment. */
3435 WRITE_ONCE(*sp, *sp + 1);
3436 WARN_ON_ONCE(*sp & 0x1);
3437}
3438
3439/* Take a snapshot of the update side's sequence number. */
3440static unsigned long rcu_seq_snap(unsigned long *sp)
3441{
3442 unsigned long s;
3443
3444 s = (READ_ONCE(*sp) + 3) & ~0x1;
3445 smp_mb(); /* Above access must not bleed into critical section. */
3446 return s;
3447}
3448
3449/*
3450 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3451 * full update-side operation has occurred.
3452 */
3453static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3454{
3455 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3456}
3457
3458/*
3459 * Check to see if there is any immediate RCU-related work to be done
3460 * by the current CPU, for the specified type of RCU, returning 1 if so.
3461 * The checks are in order of increasing expense: checks that can be
3462 * carried out against CPU-local state are performed first. However,
3463 * we must check for CPU stalls first, else we might not get a chance.
3464 */
3465static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3466{
3467 struct rcu_node *rnp = rdp->mynode;
3468
3469 rdp->n_rcu_pending++;
3470
3471 /* Check for CPU stalls, if enabled. */
3472 check_cpu_stall(rsp, rdp);
3473
3474 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3475 if (rcu_nohz_full_cpu(rsp))
3476 return 0;
3477
3478 /* Is the RCU core waiting for a quiescent state from this CPU? */
3479 if (rcu_scheduler_fully_active &&
3480 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3481 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3482 rdp->n_rp_core_needs_qs++;
3483 } else if (rdp->core_needs_qs &&
3484 (!rdp->cpu_no_qs.b.norm ||
3485 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3486 rdp->n_rp_report_qs++;
3487 return 1;
3488 }
3489
3490 /* Does this CPU have callbacks ready to invoke? */
3491 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3492 rdp->n_rp_cb_ready++;
3493 return 1;
3494 }
3495
3496 /* Has RCU gone idle with this CPU needing another grace period? */
3497 if (cpu_needs_another_gp(rsp, rdp)) {
3498 rdp->n_rp_cpu_needs_gp++;
3499 return 1;
3500 }
3501
3502 /* Has another RCU grace period completed? */
3503 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3504 rdp->n_rp_gp_completed++;
3505 return 1;
3506 }
3507
3508 /* Has a new RCU grace period started? */
3509 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3510 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3511 rdp->n_rp_gp_started++;
3512 return 1;
3513 }
3514
3515 /* Does this CPU need a deferred NOCB wakeup? */
3516 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3517 rdp->n_rp_nocb_defer_wakeup++;
3518 return 1;
3519 }
3520
3521 /* nothing to do */
3522 rdp->n_rp_need_nothing++;
3523 return 0;
3524}
3525
3526/*
3527 * Check to see if there is any immediate RCU-related work to be done
3528 * by the current CPU, returning 1 if so. This function is part of the
3529 * RCU implementation; it is -not- an exported member of the RCU API.
3530 */
3531static int rcu_pending(void)
3532{
3533 struct rcu_state *rsp;
3534
3535 for_each_rcu_flavor(rsp)
3536 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3537 return 1;
3538 return 0;
3539}
3540
3541/*
3542 * Return true if the specified CPU has any callback. If all_lazy is
3543 * non-NULL, store an indication of whether all callbacks are lazy.
3544 * (If there are no callbacks, all of them are deemed to be lazy.)
3545 */
3546static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3547{
3548 bool al = true;
3549 bool hc = false;
3550 struct rcu_data *rdp;
3551 struct rcu_state *rsp;
3552
3553 for_each_rcu_flavor(rsp) {
3554 rdp = this_cpu_ptr(rsp->rda);
3555 if (!rdp->nxtlist)
3556 continue;
3557 hc = true;
3558 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3559 al = false;
3560 break;
3561 }
3562 }
3563 if (all_lazy)
3564 *all_lazy = al;
3565 return hc;
3566}
3567
3568/*
3569 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3570 * the compiler is expected to optimize this away.
3571 */
3572static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3573 int cpu, unsigned long done)
3574{
3575 trace_rcu_barrier(rsp->name, s, cpu,
3576 atomic_read(&rsp->barrier_cpu_count), done);
3577}
3578
3579/*
3580 * RCU callback function for _rcu_barrier(). If we are last, wake
3581 * up the task executing _rcu_barrier().
3582 */
3583static void rcu_barrier_callback(struct rcu_head *rhp)
3584{
3585 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3586 struct rcu_state *rsp = rdp->rsp;
3587
3588 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3589 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3590 complete(&rsp->barrier_completion);
3591 } else {
3592 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3593 }
3594}
3595
3596/*
3597 * Called with preemption disabled, and from cross-cpu IRQ context.
3598 */
3599static void rcu_barrier_func(void *type)
3600{
3601 struct rcu_state *rsp = type;
3602 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3603
3604 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3605 atomic_inc(&rsp->barrier_cpu_count);
3606 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3607}
3608
3609/*
3610 * Orchestrate the specified type of RCU barrier, waiting for all
3611 * RCU callbacks of the specified type to complete.
3612 */
3613static void _rcu_barrier(struct rcu_state *rsp)
3614{
3615 int cpu;
3616 struct rcu_data *rdp;
3617 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3618
3619 _rcu_barrier_trace(rsp, "Begin", -1, s);
3620
3621 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3622 mutex_lock(&rsp->barrier_mutex);
3623
3624 /* Did someone else do our work for us? */
3625 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3626 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3627 smp_mb(); /* caller's subsequent code after above check. */
3628 mutex_unlock(&rsp->barrier_mutex);
3629 return;
3630 }
3631
3632 /* Mark the start of the barrier operation. */
3633 rcu_seq_start(&rsp->barrier_sequence);
3634 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3635
3636 /*
3637 * Initialize the count to one rather than to zero in order to
3638 * avoid a too-soon return to zero in case of a short grace period
3639 * (or preemption of this task). Exclude CPU-hotplug operations
3640 * to ensure that no offline CPU has callbacks queued.
3641 */
3642 init_completion(&rsp->barrier_completion);
3643 atomic_set(&rsp->barrier_cpu_count, 1);
3644 get_online_cpus();
3645
3646 /*
3647 * Force each CPU with callbacks to register a new callback.
3648 * When that callback is invoked, we will know that all of the
3649 * corresponding CPU's preceding callbacks have been invoked.
3650 */
3651 for_each_possible_cpu(cpu) {
3652 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3653 continue;
3654 rdp = per_cpu_ptr(rsp->rda, cpu);
3655 if (rcu_is_nocb_cpu(cpu)) {
3656 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3657 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3658 rsp->barrier_sequence);
3659 } else {
3660 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3661 rsp->barrier_sequence);
3662 smp_mb__before_atomic();
3663 atomic_inc(&rsp->barrier_cpu_count);
3664 __call_rcu(&rdp->barrier_head,
3665 rcu_barrier_callback, rsp, cpu, 0);
3666 }
3667 } else if (READ_ONCE(rdp->qlen)) {
3668 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3669 rsp->barrier_sequence);
3670 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3671 } else {
3672 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3673 rsp->barrier_sequence);
3674 }
3675 }
3676 put_online_cpus();
3677
3678 /*
3679 * Now that we have an rcu_barrier_callback() callback on each
3680 * CPU, and thus each counted, remove the initial count.
3681 */
3682 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3683 complete(&rsp->barrier_completion);
3684
3685 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3686 wait_for_completion(&rsp->barrier_completion);
3687
3688 /* Mark the end of the barrier operation. */
3689 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3690 rcu_seq_end(&rsp->barrier_sequence);
3691
3692 /* Other rcu_barrier() invocations can now safely proceed. */
3693 mutex_unlock(&rsp->barrier_mutex);
3694}
3695
3696/**
3697 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3698 */
3699void rcu_barrier_bh(void)
3700{
3701 _rcu_barrier(&rcu_bh_state);
3702}
3703EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3704
3705/**
3706 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3707 */
3708void rcu_barrier_sched(void)
3709{
3710 _rcu_barrier(&rcu_sched_state);
3711}
3712EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3713
3714/*
3715 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3716 * first CPU in a given leaf rcu_node structure coming online. The caller
3717 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3718 * disabled.
3719 */
3720static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3721{
3722 long mask;
3723 struct rcu_node *rnp = rnp_leaf;
3724
3725 for (;;) {
3726 mask = rnp->grpmask;
3727 rnp = rnp->parent;
3728 if (rnp == NULL)
3729 return;
3730 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3731 rnp->qsmaskinit |= mask;
3732 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3733 }
3734}
3735
3736/*
3737 * Do boot-time initialization of a CPU's per-CPU RCU data.
3738 */
3739static void __init
3740rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3741{
3742 unsigned long flags;
3743 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3744 struct rcu_node *rnp = rcu_get_root(rsp);
3745
3746 /* Set up local state, ensuring consistent view of global state. */
3747 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3748 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3749 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3750 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3751 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3752 rdp->cpu = cpu;
3753 rdp->rsp = rsp;
3754 rcu_boot_init_nocb_percpu_data(rdp);
3755 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3756}
3757
3758/*
3759 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3760 * offline event can be happening at a given time. Note also that we
3761 * can accept some slop in the rsp->completed access due to the fact
3762 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3763 */
3764static void
3765rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3766{
3767 unsigned long flags;
3768 unsigned long mask;
3769 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3770 struct rcu_node *rnp = rcu_get_root(rsp);
3771
3772 /* Set up local state, ensuring consistent view of global state. */
3773 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3774 rdp->qlen_last_fqs_check = 0;
3775 rdp->n_force_qs_snap = rsp->n_force_qs;
3776 rdp->blimit = blimit;
3777 if (!rdp->nxtlist)
3778 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3779 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3780 rcu_sysidle_init_percpu_data(rdp->dynticks);
3781 atomic_set(&rdp->dynticks->dynticks,
3782 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3783 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3784
3785 /*
3786 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3787 * propagation up the rcu_node tree will happen at the beginning
3788 * of the next grace period.
3789 */
3790 rnp = rdp->mynode;
3791 mask = rdp->grpmask;
3792 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3793 if (!rdp->beenonline)
3794 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3795 rdp->beenonline = true; /* We have now been online. */
3796 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3797 rdp->completed = rnp->completed;
3798 rdp->cpu_no_qs.b.norm = true;
3799 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3800 rdp->core_needs_qs = false;
3801 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3802 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3803}
3804
3805int rcutree_prepare_cpu(unsigned int cpu)
3806{
3807 struct rcu_state *rsp;
3808
3809 for_each_rcu_flavor(rsp)
3810 rcu_init_percpu_data(cpu, rsp);
3811
3812 rcu_prepare_kthreads(cpu);
3813 rcu_spawn_all_nocb_kthreads(cpu);
3814
3815 return 0;
3816}
3817
3818static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3819{
3820 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3821
3822 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3823}
3824
3825int rcutree_online_cpu(unsigned int cpu)
3826{
3827 sync_sched_exp_online_cleanup(cpu);
3828 rcutree_affinity_setting(cpu, -1);
3829 return 0;
3830}
3831
3832int rcutree_offline_cpu(unsigned int cpu)
3833{
3834 rcutree_affinity_setting(cpu, cpu);
3835 return 0;
3836}
3837
3838
3839int rcutree_dying_cpu(unsigned int cpu)
3840{
3841 struct rcu_state *rsp;
3842
3843 for_each_rcu_flavor(rsp)
3844 rcu_cleanup_dying_cpu(rsp);
3845 return 0;
3846}
3847
3848int rcutree_dead_cpu(unsigned int cpu)
3849{
3850 struct rcu_state *rsp;
3851
3852 for_each_rcu_flavor(rsp) {
3853 rcu_cleanup_dead_cpu(cpu, rsp);
3854 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3855 }
3856 return 0;
3857}
3858
3859/*
3860 * Mark the specified CPU as being online so that subsequent grace periods
3861 * (both expedited and normal) will wait on it. Note that this means that
3862 * incoming CPUs are not allowed to use RCU read-side critical sections
3863 * until this function is called. Failing to observe this restriction
3864 * will result in lockdep splats.
3865 */
3866void rcu_cpu_starting(unsigned int cpu)
3867{
3868 unsigned long flags;
3869 unsigned long mask;
3870 struct rcu_data *rdp;
3871 struct rcu_node *rnp;
3872 struct rcu_state *rsp;
3873
3874 for_each_rcu_flavor(rsp) {
3875 rdp = this_cpu_ptr(rsp->rda);
3876 rnp = rdp->mynode;
3877 mask = rdp->grpmask;
3878 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3879 rnp->qsmaskinitnext |= mask;
3880 rnp->expmaskinitnext |= mask;
3881 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3882 }
3883}
3884
3885#ifdef CONFIG_HOTPLUG_CPU
3886/*
3887 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3888 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3889 * bit masks.
3890 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3891 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3892 * bit masks.
3893 */
3894static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3895{
3896 unsigned long flags;
3897 unsigned long mask;
3898 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3899 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3900
3901 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3902 mask = rdp->grpmask;
3903 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3904 rnp->qsmaskinitnext &= ~mask;
3905 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3906}
3907
3908void rcu_report_dead(unsigned int cpu)
3909{
3910 struct rcu_state *rsp;
3911
3912 /* QS for any half-done expedited RCU-sched GP. */
3913 preempt_disable();
3914 rcu_report_exp_rdp(&rcu_sched_state,
3915 this_cpu_ptr(rcu_sched_state.rda), true);
3916 preempt_enable();
3917 for_each_rcu_flavor(rsp)
3918 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3919}
3920#endif
3921
3922static int rcu_pm_notify(struct notifier_block *self,
3923 unsigned long action, void *hcpu)
3924{
3925 switch (action) {
3926 case PM_HIBERNATION_PREPARE:
3927 case PM_SUSPEND_PREPARE:
3928 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3929 rcu_expedite_gp();
3930 break;
3931 case PM_POST_HIBERNATION:
3932 case PM_POST_SUSPEND:
3933 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3934 rcu_unexpedite_gp();
3935 break;
3936 default:
3937 break;
3938 }
3939 return NOTIFY_OK;
3940}
3941
3942/*
3943 * Spawn the kthreads that handle each RCU flavor's grace periods.
3944 */
3945static int __init rcu_spawn_gp_kthread(void)
3946{
3947 unsigned long flags;
3948 int kthread_prio_in = kthread_prio;
3949 struct rcu_node *rnp;
3950 struct rcu_state *rsp;
3951 struct sched_param sp;
3952 struct task_struct *t;
3953
3954 /* Force priority into range. */
3955 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3956 kthread_prio = 1;
3957 else if (kthread_prio < 0)
3958 kthread_prio = 0;
3959 else if (kthread_prio > 99)
3960 kthread_prio = 99;
3961 if (kthread_prio != kthread_prio_in)
3962 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3963 kthread_prio, kthread_prio_in);
3964
3965 rcu_scheduler_fully_active = 1;
3966 for_each_rcu_flavor(rsp) {
3967 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3968 BUG_ON(IS_ERR(t));
3969 rnp = rcu_get_root(rsp);
3970 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3971 rsp->gp_kthread = t;
3972 if (kthread_prio) {
3973 sp.sched_priority = kthread_prio;
3974 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3975 }
3976 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3977 wake_up_process(t);
3978 }
3979 rcu_spawn_nocb_kthreads();
3980 rcu_spawn_boost_kthreads();
3981 return 0;
3982}
3983early_initcall(rcu_spawn_gp_kthread);
3984
3985/*
3986 * This function is invoked towards the end of the scheduler's
3987 * initialization process. Before this is called, the idle task might
3988 * contain synchronous grace-period primitives (during which time, this idle
3989 * task is booting the system, and such primitives are no-ops). After this
3990 * function is called, any synchronous grace-period primitives are run as
3991 * expedited, with the requesting task driving the grace period forward.
3992 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
3993 * runtime RCU functionality.
3994 */
3995void rcu_scheduler_starting(void)
3996{
3997 WARN_ON(num_online_cpus() != 1);
3998 WARN_ON(nr_context_switches() > 0);
3999 rcu_test_sync_prims();
4000 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4001 rcu_test_sync_prims();
4002}
4003
4004/*
4005 * Compute the per-level fanout, either using the exact fanout specified
4006 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4007 */
4008static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4009{
4010 int i;
4011
4012 if (rcu_fanout_exact) {
4013 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4014 for (i = rcu_num_lvls - 2; i >= 0; i--)
4015 levelspread[i] = RCU_FANOUT;
4016 } else {
4017 int ccur;
4018 int cprv;
4019
4020 cprv = nr_cpu_ids;
4021 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4022 ccur = levelcnt[i];
4023 levelspread[i] = (cprv + ccur - 1) / ccur;
4024 cprv = ccur;
4025 }
4026 }
4027}
4028
4029/*
4030 * Helper function for rcu_init() that initializes one rcu_state structure.
4031 */
4032static void __init rcu_init_one(struct rcu_state *rsp)
4033{
4034 static const char * const buf[] = RCU_NODE_NAME_INIT;
4035 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4036 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4037 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4038 static u8 fl_mask = 0x1;
4039
4040 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4041 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4042 int cpustride = 1;
4043 int i;
4044 int j;
4045 struct rcu_node *rnp;
4046
4047 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4048
4049 /* Silence gcc 4.8 false positive about array index out of range. */
4050 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4051 panic("rcu_init_one: rcu_num_lvls out of range");
4052
4053 /* Initialize the level-tracking arrays. */
4054
4055 for (i = 0; i < rcu_num_lvls; i++)
4056 levelcnt[i] = num_rcu_lvl[i];
4057 for (i = 1; i < rcu_num_lvls; i++)
4058 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4059 rcu_init_levelspread(levelspread, levelcnt);
4060 rsp->flavor_mask = fl_mask;
4061 fl_mask <<= 1;
4062
4063 /* Initialize the elements themselves, starting from the leaves. */
4064
4065 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4066 cpustride *= levelspread[i];
4067 rnp = rsp->level[i];
4068 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4069 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4070 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4071 &rcu_node_class[i], buf[i]);
4072 raw_spin_lock_init(&rnp->fqslock);
4073 lockdep_set_class_and_name(&rnp->fqslock,
4074 &rcu_fqs_class[i], fqs[i]);
4075 rnp->gpnum = rsp->gpnum;
4076 rnp->completed = rsp->completed;
4077 rnp->qsmask = 0;
4078 rnp->qsmaskinit = 0;
4079 rnp->grplo = j * cpustride;
4080 rnp->grphi = (j + 1) * cpustride - 1;
4081 if (rnp->grphi >= nr_cpu_ids)
4082 rnp->grphi = nr_cpu_ids - 1;
4083 if (i == 0) {
4084 rnp->grpnum = 0;
4085 rnp->grpmask = 0;
4086 rnp->parent = NULL;
4087 } else {
4088 rnp->grpnum = j % levelspread[i - 1];
4089 rnp->grpmask = 1UL << rnp->grpnum;
4090 rnp->parent = rsp->level[i - 1] +
4091 j / levelspread[i - 1];
4092 }
4093 rnp->level = i;
4094 INIT_LIST_HEAD(&rnp->blkd_tasks);
4095 rcu_init_one_nocb(rnp);
4096 init_waitqueue_head(&rnp->exp_wq[0]);
4097 init_waitqueue_head(&rnp->exp_wq[1]);
4098 init_waitqueue_head(&rnp->exp_wq[2]);
4099 init_waitqueue_head(&rnp->exp_wq[3]);
4100 spin_lock_init(&rnp->exp_lock);
4101 }
4102 }
4103
4104 init_swait_queue_head(&rsp->gp_wq);
4105 init_swait_queue_head(&rsp->expedited_wq);
4106 rnp = rsp->level[rcu_num_lvls - 1];
4107 for_each_possible_cpu(i) {
4108 while (i > rnp->grphi)
4109 rnp++;
4110 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4111 rcu_boot_init_percpu_data(i, rsp);
4112 }
4113 list_add(&rsp->flavors, &rcu_struct_flavors);
4114}
4115
4116/*
4117 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4118 * replace the definitions in tree.h because those are needed to size
4119 * the ->node array in the rcu_state structure.
4120 */
4121static void __init rcu_init_geometry(void)
4122{
4123 ulong d;
4124 int i;
4125 int rcu_capacity[RCU_NUM_LVLS];
4126
4127 /*
4128 * Initialize any unspecified boot parameters.
4129 * The default values of jiffies_till_first_fqs and
4130 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4131 * value, which is a function of HZ, then adding one for each
4132 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4133 */
4134 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4135 if (jiffies_till_first_fqs == ULONG_MAX)
4136 jiffies_till_first_fqs = d;
4137 if (jiffies_till_next_fqs == ULONG_MAX)
4138 jiffies_till_next_fqs = d;
4139
4140 /* If the compile-time values are accurate, just leave. */
4141 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4142 nr_cpu_ids == NR_CPUS)
4143 return;
4144 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4145 rcu_fanout_leaf, nr_cpu_ids);
4146
4147 /*
4148 * The boot-time rcu_fanout_leaf parameter must be at least two
4149 * and cannot exceed the number of bits in the rcu_node masks.
4150 * Complain and fall back to the compile-time values if this
4151 * limit is exceeded.
4152 */
4153 if (rcu_fanout_leaf < 2 ||
4154 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4155 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4156 WARN_ON(1);
4157 return;
4158 }
4159
4160 /*
4161 * Compute number of nodes that can be handled an rcu_node tree
4162 * with the given number of levels.
4163 */
4164 rcu_capacity[0] = rcu_fanout_leaf;
4165 for (i = 1; i < RCU_NUM_LVLS; i++)
4166 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4167
4168 /*
4169 * The tree must be able to accommodate the configured number of CPUs.
4170 * If this limit is exceeded, fall back to the compile-time values.
4171 */
4172 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4173 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4174 WARN_ON(1);
4175 return;
4176 }
4177
4178 /* Calculate the number of levels in the tree. */
4179 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4180 }
4181 rcu_num_lvls = i + 1;
4182
4183 /* Calculate the number of rcu_nodes at each level of the tree. */
4184 for (i = 0; i < rcu_num_lvls; i++) {
4185 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4186 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4187 }
4188
4189 /* Calculate the total number of rcu_node structures. */
4190 rcu_num_nodes = 0;
4191 for (i = 0; i < rcu_num_lvls; i++)
4192 rcu_num_nodes += num_rcu_lvl[i];
4193}
4194
4195/*
4196 * Dump out the structure of the rcu_node combining tree associated
4197 * with the rcu_state structure referenced by rsp.
4198 */
4199static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4200{
4201 int level = 0;
4202 struct rcu_node *rnp;
4203
4204 pr_info("rcu_node tree layout dump\n");
4205 pr_info(" ");
4206 rcu_for_each_node_breadth_first(rsp, rnp) {
4207 if (rnp->level != level) {
4208 pr_cont("\n");
4209 pr_info(" ");
4210 level = rnp->level;
4211 }
4212 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4213 }
4214 pr_cont("\n");
4215}
4216
4217void __init rcu_init(void)
4218{
4219 int cpu;
4220
4221 rcu_early_boot_tests();
4222
4223 rcu_bootup_announce();
4224 rcu_init_geometry();
4225 rcu_init_one(&rcu_bh_state);
4226 rcu_init_one(&rcu_sched_state);
4227 if (dump_tree)
4228 rcu_dump_rcu_node_tree(&rcu_sched_state);
4229 __rcu_init_preempt();
4230 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4231
4232 /*
4233 * We don't need protection against CPU-hotplug here because
4234 * this is called early in boot, before either interrupts
4235 * or the scheduler are operational.
4236 */
4237 pm_notifier(rcu_pm_notify, 0);
4238 for_each_online_cpu(cpu) {
4239 rcutree_prepare_cpu(cpu);
4240 rcu_cpu_starting(cpu);
4241 }
4242}
4243
4244#include "tree_exp.h"
4245#include "tree_plugin.h"
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate_wait.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/sched/debug.h>
39#include <linux/nmi.h>
40#include <linux/atomic.h>
41#include <linux/bitops.h>
42#include <linux/export.h>
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
50#include <linux/kernel_stat.h>
51#include <linux/wait.h>
52#include <linux/kthread.h>
53#include <uapi/linux/sched/types.h>
54#include <linux/prefetch.h>
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
57#include <linux/random.h>
58#include <linux/trace_events.h>
59#include <linux/suspend.h>
60#include <linux/ftrace.h>
61
62#include "tree.h"
63#include "rcu.h"
64
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
70/* Data structures. */
71
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
82static char sname##_varname[] = #sname; \
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93struct rcu_state sname##_state = { \
94 .level = { &sname##_state.node[0] }, \
95 .rda = &sname##_data, \
96 .call = cr, \
97 .gp_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
102 .abbr = sabbr, \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105}
106
107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109
110static struct rcu_state *const rcu_state_p;
111LIST_HEAD(rcu_struct_flavors);
112
113/* Dump rcu_node combining tree at boot to verify correct setup. */
114static bool dump_tree;
115module_param(dump_tree, bool, 0444);
116/* Control rcu_node-tree auto-balancing at boot time. */
117static bool rcu_fanout_exact;
118module_param(rcu_fanout_exact, bool, 0444);
119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121module_param(rcu_fanout_leaf, int, 0444);
122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123/* Number of rcu_nodes at specified level. */
124int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126/* panic() on RCU Stall sysctl. */
127int sysctl_panic_on_rcu_stall __read_mostly;
128
129/*
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
140 */
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
165static void sync_sched_exp_online_cleanup(int cpu);
166
167/* rcuc/rcub kthread realtime priority */
168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169module_param(kthread_prio, int, 0644);
170
171/* Delay in jiffies for grace-period initialization delays, debug only. */
172
173static int gp_preinit_delay;
174module_param(gp_preinit_delay, int, 0444);
175static int gp_init_delay;
176module_param(gp_init_delay, int, 0444);
177static int gp_cleanup_delay;
178module_param(gp_cleanup_delay, int, 0444);
179
180/*
181 * Number of grace periods between delays, normalized by the duration of
182 * the delay. The longer the delay, the more the grace periods between
183 * each delay. The reason for this normalization is that it means that,
184 * for non-zero delays, the overall slowdown of grace periods is constant
185 * regardless of the duration of the delay. This arrangement balances
186 * the need for long delays to increase some race probabilities with the
187 * need for fast grace periods to increase other race probabilities.
188 */
189#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
190
191/*
192 * Track the rcutorture test sequence number and the update version
193 * number within a given test. The rcutorture_testseq is incremented
194 * on every rcutorture module load and unload, so has an odd value
195 * when a test is running. The rcutorture_vernum is set to zero
196 * when rcutorture starts and is incremented on each rcutorture update.
197 * These variables enable correlating rcutorture output with the
198 * RCU tracing information.
199 */
200unsigned long rcutorture_testseq;
201unsigned long rcutorture_vernum;
202
203/*
204 * Compute the mask of online CPUs for the specified rcu_node structure.
205 * This will not be stable unless the rcu_node structure's ->lock is
206 * held, but the bit corresponding to the current CPU will be stable
207 * in most contexts.
208 */
209unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
210{
211 return READ_ONCE(rnp->qsmaskinitnext);
212}
213
214/*
215 * Return true if an RCU grace period is in progress. The READ_ONCE()s
216 * permit this function to be invoked without holding the root rcu_node
217 * structure's ->lock, but of course results can be subject to change.
218 */
219static int rcu_gp_in_progress(struct rcu_state *rsp)
220{
221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
222}
223
224/*
225 * Note a quiescent state. Because we do not need to know
226 * how many quiescent states passed, just if there was at least
227 * one since the start of the grace period, this just sets a flag.
228 * The caller must have disabled preemption.
229 */
230void rcu_sched_qs(void)
231{
232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 return;
235 trace_rcu_grace_period(TPS("rcu_sched"),
236 __this_cpu_read(rcu_sched_data.gpnum),
237 TPS("cpuqs"));
238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 return;
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 rcu_report_exp_rdp(&rcu_sched_state,
243 this_cpu_ptr(&rcu_sched_data), true);
244}
245
246void rcu_bh_qs(void)
247{
248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
250 trace_rcu_grace_period(TPS("rcu_bh"),
251 __this_cpu_read(rcu_bh_data.gpnum),
252 TPS("cpuqs"));
253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
254 }
255}
256
257/*
258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
259 * control. Initially this is for TLB flushing.
260 */
261#define RCU_DYNTICK_CTRL_MASK 0x1
262#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
263#ifndef rcu_eqs_special_exit
264#define rcu_eqs_special_exit() do { } while (0)
265#endif
266
267static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
268 .dynticks_nesting = 1,
269 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
270 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
271};
272
273/*
274 * Record entry into an extended quiescent state. This is only to be
275 * called when not already in an extended quiescent state.
276 */
277static void rcu_dynticks_eqs_enter(void)
278{
279 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
280 int seq;
281
282 /*
283 * CPUs seeing atomic_add_return() must see prior RCU read-side
284 * critical sections, and we also must force ordering with the
285 * next idle sojourn.
286 */
287 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
288 /* Better be in an extended quiescent state! */
289 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
290 (seq & RCU_DYNTICK_CTRL_CTR));
291 /* Better not have special action (TLB flush) pending! */
292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 (seq & RCU_DYNTICK_CTRL_MASK));
294}
295
296/*
297 * Record exit from an extended quiescent state. This is only to be
298 * called from an extended quiescent state.
299 */
300static void rcu_dynticks_eqs_exit(void)
301{
302 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
303 int seq;
304
305 /*
306 * CPUs seeing atomic_add_return() must see prior idle sojourns,
307 * and we also must force ordering with the next RCU read-side
308 * critical section.
309 */
310 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
311 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
312 !(seq & RCU_DYNTICK_CTRL_CTR));
313 if (seq & RCU_DYNTICK_CTRL_MASK) {
314 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
315 smp_mb__after_atomic(); /* _exit after clearing mask. */
316 /* Prefer duplicate flushes to losing a flush. */
317 rcu_eqs_special_exit();
318 }
319}
320
321/*
322 * Reset the current CPU's ->dynticks counter to indicate that the
323 * newly onlined CPU is no longer in an extended quiescent state.
324 * This will either leave the counter unchanged, or increment it
325 * to the next non-quiescent value.
326 *
327 * The non-atomic test/increment sequence works because the upper bits
328 * of the ->dynticks counter are manipulated only by the corresponding CPU,
329 * or when the corresponding CPU is offline.
330 */
331static void rcu_dynticks_eqs_online(void)
332{
333 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
334
335 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
336 return;
337 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
338}
339
340/*
341 * Is the current CPU in an extended quiescent state?
342 *
343 * No ordering, as we are sampling CPU-local information.
344 */
345bool rcu_dynticks_curr_cpu_in_eqs(void)
346{
347 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
348
349 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
350}
351
352/*
353 * Snapshot the ->dynticks counter with full ordering so as to allow
354 * stable comparison of this counter with past and future snapshots.
355 */
356int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
357{
358 int snap = atomic_add_return(0, &rdtp->dynticks);
359
360 return snap & ~RCU_DYNTICK_CTRL_MASK;
361}
362
363/*
364 * Return true if the snapshot returned from rcu_dynticks_snap()
365 * indicates that RCU is in an extended quiescent state.
366 */
367static bool rcu_dynticks_in_eqs(int snap)
368{
369 return !(snap & RCU_DYNTICK_CTRL_CTR);
370}
371
372/*
373 * Return true if the CPU corresponding to the specified rcu_dynticks
374 * structure has spent some time in an extended quiescent state since
375 * rcu_dynticks_snap() returned the specified snapshot.
376 */
377static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
378{
379 return snap != rcu_dynticks_snap(rdtp);
380}
381
382/*
383 * Do a double-increment of the ->dynticks counter to emulate a
384 * momentary idle-CPU quiescent state.
385 */
386static void rcu_dynticks_momentary_idle(void)
387{
388 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
389 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
390 &rdtp->dynticks);
391
392 /* It is illegal to call this from idle state. */
393 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
394}
395
396/*
397 * Set the special (bottom) bit of the specified CPU so that it
398 * will take special action (such as flushing its TLB) on the
399 * next exit from an extended quiescent state. Returns true if
400 * the bit was successfully set, or false if the CPU was not in
401 * an extended quiescent state.
402 */
403bool rcu_eqs_special_set(int cpu)
404{
405 int old;
406 int new;
407 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
408
409 do {
410 old = atomic_read(&rdtp->dynticks);
411 if (old & RCU_DYNTICK_CTRL_CTR)
412 return false;
413 new = old | RCU_DYNTICK_CTRL_MASK;
414 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
415 return true;
416}
417
418/*
419 * Let the RCU core know that this CPU has gone through the scheduler,
420 * which is a quiescent state. This is called when the need for a
421 * quiescent state is urgent, so we burn an atomic operation and full
422 * memory barriers to let the RCU core know about it, regardless of what
423 * this CPU might (or might not) do in the near future.
424 *
425 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
426 *
427 * The caller must have disabled interrupts.
428 */
429static void rcu_momentary_dyntick_idle(void)
430{
431 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
432 rcu_dynticks_momentary_idle();
433}
434
435/*
436 * Note a context switch. This is a quiescent state for RCU-sched,
437 * and requires special handling for preemptible RCU.
438 * The caller must have disabled interrupts.
439 */
440void rcu_note_context_switch(bool preempt)
441{
442 barrier(); /* Avoid RCU read-side critical sections leaking down. */
443 trace_rcu_utilization(TPS("Start context switch"));
444 rcu_sched_qs();
445 rcu_preempt_note_context_switch(preempt);
446 /* Load rcu_urgent_qs before other flags. */
447 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
448 goto out;
449 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
450 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
451 rcu_momentary_dyntick_idle();
452 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
453 if (!preempt)
454 rcu_note_voluntary_context_switch_lite(current);
455out:
456 trace_rcu_utilization(TPS("End context switch"));
457 barrier(); /* Avoid RCU read-side critical sections leaking up. */
458}
459EXPORT_SYMBOL_GPL(rcu_note_context_switch);
460
461/*
462 * Register a quiescent state for all RCU flavors. If there is an
463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
464 * dyntick-idle quiescent state visible to other CPUs (but only for those
465 * RCU flavors in desperate need of a quiescent state, which will normally
466 * be none of them). Either way, do a lightweight quiescent state for
467 * all RCU flavors.
468 *
469 * The barrier() calls are redundant in the common case when this is
470 * called externally, but just in case this is called from within this
471 * file.
472 *
473 */
474void rcu_all_qs(void)
475{
476 unsigned long flags;
477
478 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
479 return;
480 preempt_disable();
481 /* Load rcu_urgent_qs before other flags. */
482 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
483 preempt_enable();
484 return;
485 }
486 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
487 barrier(); /* Avoid RCU read-side critical sections leaking down. */
488 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
489 local_irq_save(flags);
490 rcu_momentary_dyntick_idle();
491 local_irq_restore(flags);
492 }
493 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
494 rcu_sched_qs();
495 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
496 barrier(); /* Avoid RCU read-side critical sections leaking up. */
497 preempt_enable();
498}
499EXPORT_SYMBOL_GPL(rcu_all_qs);
500
501#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
502static long blimit = DEFAULT_RCU_BLIMIT;
503#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
504static long qhimark = DEFAULT_RCU_QHIMARK;
505#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
506static long qlowmark = DEFAULT_RCU_QLOMARK;
507
508module_param(blimit, long, 0444);
509module_param(qhimark, long, 0444);
510module_param(qlowmark, long, 0444);
511
512static ulong jiffies_till_first_fqs = ULONG_MAX;
513static ulong jiffies_till_next_fqs = ULONG_MAX;
514static bool rcu_kick_kthreads;
515
516module_param(jiffies_till_first_fqs, ulong, 0644);
517module_param(jiffies_till_next_fqs, ulong, 0644);
518module_param(rcu_kick_kthreads, bool, 0644);
519
520/*
521 * How long the grace period must be before we start recruiting
522 * quiescent-state help from rcu_note_context_switch().
523 */
524static ulong jiffies_till_sched_qs = HZ / 10;
525module_param(jiffies_till_sched_qs, ulong, 0444);
526
527static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
528 struct rcu_data *rdp);
529static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
530static void force_quiescent_state(struct rcu_state *rsp);
531static int rcu_pending(void);
532
533/*
534 * Return the number of RCU batches started thus far for debug & stats.
535 */
536unsigned long rcu_batches_started(void)
537{
538 return rcu_state_p->gpnum;
539}
540EXPORT_SYMBOL_GPL(rcu_batches_started);
541
542/*
543 * Return the number of RCU-sched batches started thus far for debug & stats.
544 */
545unsigned long rcu_batches_started_sched(void)
546{
547 return rcu_sched_state.gpnum;
548}
549EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
550
551/*
552 * Return the number of RCU BH batches started thus far for debug & stats.
553 */
554unsigned long rcu_batches_started_bh(void)
555{
556 return rcu_bh_state.gpnum;
557}
558EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
559
560/*
561 * Return the number of RCU batches completed thus far for debug & stats.
562 */
563unsigned long rcu_batches_completed(void)
564{
565 return rcu_state_p->completed;
566}
567EXPORT_SYMBOL_GPL(rcu_batches_completed);
568
569/*
570 * Return the number of RCU-sched batches completed thus far for debug & stats.
571 */
572unsigned long rcu_batches_completed_sched(void)
573{
574 return rcu_sched_state.completed;
575}
576EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
577
578/*
579 * Return the number of RCU BH batches completed thus far for debug & stats.
580 */
581unsigned long rcu_batches_completed_bh(void)
582{
583 return rcu_bh_state.completed;
584}
585EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
586
587/*
588 * Return the number of RCU expedited batches completed thus far for
589 * debug & stats. Odd numbers mean that a batch is in progress, even
590 * numbers mean idle. The value returned will thus be roughly double
591 * the cumulative batches since boot.
592 */
593unsigned long rcu_exp_batches_completed(void)
594{
595 return rcu_state_p->expedited_sequence;
596}
597EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
598
599/*
600 * Return the number of RCU-sched expedited batches completed thus far
601 * for debug & stats. Similar to rcu_exp_batches_completed().
602 */
603unsigned long rcu_exp_batches_completed_sched(void)
604{
605 return rcu_sched_state.expedited_sequence;
606}
607EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
608
609/*
610 * Force a quiescent state.
611 */
612void rcu_force_quiescent_state(void)
613{
614 force_quiescent_state(rcu_state_p);
615}
616EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
617
618/*
619 * Force a quiescent state for RCU BH.
620 */
621void rcu_bh_force_quiescent_state(void)
622{
623 force_quiescent_state(&rcu_bh_state);
624}
625EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
626
627/*
628 * Force a quiescent state for RCU-sched.
629 */
630void rcu_sched_force_quiescent_state(void)
631{
632 force_quiescent_state(&rcu_sched_state);
633}
634EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
635
636/*
637 * Show the state of the grace-period kthreads.
638 */
639void show_rcu_gp_kthreads(void)
640{
641 struct rcu_state *rsp;
642
643 for_each_rcu_flavor(rsp) {
644 pr_info("%s: wait state: %d ->state: %#lx\n",
645 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
646 /* sched_show_task(rsp->gp_kthread); */
647 }
648}
649EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
650
651/*
652 * Record the number of times rcutorture tests have been initiated and
653 * terminated. This information allows the debugfs tracing stats to be
654 * correlated to the rcutorture messages, even when the rcutorture module
655 * is being repeatedly loaded and unloaded. In other words, we cannot
656 * store this state in rcutorture itself.
657 */
658void rcutorture_record_test_transition(void)
659{
660 rcutorture_testseq++;
661 rcutorture_vernum = 0;
662}
663EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
664
665/*
666 * Send along grace-period-related data for rcutorture diagnostics.
667 */
668void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
669 unsigned long *gpnum, unsigned long *completed)
670{
671 struct rcu_state *rsp = NULL;
672
673 switch (test_type) {
674 case RCU_FLAVOR:
675 rsp = rcu_state_p;
676 break;
677 case RCU_BH_FLAVOR:
678 rsp = &rcu_bh_state;
679 break;
680 case RCU_SCHED_FLAVOR:
681 rsp = &rcu_sched_state;
682 break;
683 default:
684 break;
685 }
686 if (rsp == NULL)
687 return;
688 *flags = READ_ONCE(rsp->gp_flags);
689 *gpnum = READ_ONCE(rsp->gpnum);
690 *completed = READ_ONCE(rsp->completed);
691}
692EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
693
694/*
695 * Record the number of writer passes through the current rcutorture test.
696 * This is also used to correlate debugfs tracing stats with the rcutorture
697 * messages.
698 */
699void rcutorture_record_progress(unsigned long vernum)
700{
701 rcutorture_vernum++;
702}
703EXPORT_SYMBOL_GPL(rcutorture_record_progress);
704
705/*
706 * Return the root node of the specified rcu_state structure.
707 */
708static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
709{
710 return &rsp->node[0];
711}
712
713/*
714 * Is there any need for future grace periods?
715 * Interrupts must be disabled. If the caller does not hold the root
716 * rnp_node structure's ->lock, the results are advisory only.
717 */
718static int rcu_future_needs_gp(struct rcu_state *rsp)
719{
720 struct rcu_node *rnp = rcu_get_root(rsp);
721 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
722 int *fp = &rnp->need_future_gp[idx];
723
724 lockdep_assert_irqs_disabled();
725 return READ_ONCE(*fp);
726}
727
728/*
729 * Does the current CPU require a not-yet-started grace period?
730 * The caller must have disabled interrupts to prevent races with
731 * normal callback registry.
732 */
733static bool
734cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
735{
736 lockdep_assert_irqs_disabled();
737 if (rcu_gp_in_progress(rsp))
738 return false; /* No, a grace period is already in progress. */
739 if (rcu_future_needs_gp(rsp))
740 return true; /* Yes, a no-CBs CPU needs one. */
741 if (!rcu_segcblist_is_enabled(&rdp->cblist))
742 return false; /* No, this is a no-CBs (or offline) CPU. */
743 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
744 return true; /* Yes, CPU has newly registered callbacks. */
745 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
746 READ_ONCE(rsp->completed)))
747 return true; /* Yes, CBs for future grace period. */
748 return false; /* No grace period needed. */
749}
750
751/*
752 * Enter an RCU extended quiescent state, which can be either the
753 * idle loop or adaptive-tickless usermode execution.
754 *
755 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
756 * the possibility of usermode upcalls having messed up our count
757 * of interrupt nesting level during the prior busy period.
758 */
759static void rcu_eqs_enter(bool user)
760{
761 struct rcu_state *rsp;
762 struct rcu_data *rdp;
763 struct rcu_dynticks *rdtp;
764
765 rdtp = this_cpu_ptr(&rcu_dynticks);
766 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
767 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
768 rdtp->dynticks_nesting == 0);
769 if (rdtp->dynticks_nesting != 1) {
770 rdtp->dynticks_nesting--;
771 return;
772 }
773
774 lockdep_assert_irqs_disabled();
775 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
776 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
777 for_each_rcu_flavor(rsp) {
778 rdp = this_cpu_ptr(rsp->rda);
779 do_nocb_deferred_wakeup(rdp);
780 }
781 rcu_prepare_for_idle();
782 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
783 rcu_dynticks_eqs_enter();
784 rcu_dynticks_task_enter();
785}
786
787/**
788 * rcu_idle_enter - inform RCU that current CPU is entering idle
789 *
790 * Enter idle mode, in other words, -leave- the mode in which RCU
791 * read-side critical sections can occur. (Though RCU read-side
792 * critical sections can occur in irq handlers in idle, a possibility
793 * handled by irq_enter() and irq_exit().)
794 *
795 * If you add or remove a call to rcu_idle_enter(), be sure to test with
796 * CONFIG_RCU_EQS_DEBUG=y.
797 */
798void rcu_idle_enter(void)
799{
800 lockdep_assert_irqs_disabled();
801 rcu_eqs_enter(false);
802}
803
804#ifdef CONFIG_NO_HZ_FULL
805/**
806 * rcu_user_enter - inform RCU that we are resuming userspace.
807 *
808 * Enter RCU idle mode right before resuming userspace. No use of RCU
809 * is permitted between this call and rcu_user_exit(). This way the
810 * CPU doesn't need to maintain the tick for RCU maintenance purposes
811 * when the CPU runs in userspace.
812 *
813 * If you add or remove a call to rcu_user_enter(), be sure to test with
814 * CONFIG_RCU_EQS_DEBUG=y.
815 */
816void rcu_user_enter(void)
817{
818 lockdep_assert_irqs_disabled();
819 rcu_eqs_enter(true);
820}
821#endif /* CONFIG_NO_HZ_FULL */
822
823/**
824 * rcu_nmi_exit - inform RCU of exit from NMI context
825 *
826 * If we are returning from the outermost NMI handler that interrupted an
827 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
828 * to let the RCU grace-period handling know that the CPU is back to
829 * being RCU-idle.
830 *
831 * If you add or remove a call to rcu_nmi_exit(), be sure to test
832 * with CONFIG_RCU_EQS_DEBUG=y.
833 */
834void rcu_nmi_exit(void)
835{
836 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
837
838 /*
839 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
840 * (We are exiting an NMI handler, so RCU better be paying attention
841 * to us!)
842 */
843 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
844 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
845
846 /*
847 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
848 * leave it in non-RCU-idle state.
849 */
850 if (rdtp->dynticks_nmi_nesting != 1) {
851 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
852 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
853 rdtp->dynticks_nmi_nesting - 2);
854 return;
855 }
856
857 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
858 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
859 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
860 rcu_dynticks_eqs_enter();
861}
862
863/**
864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
865 *
866 * Exit from an interrupt handler, which might possibly result in entering
867 * idle mode, in other words, leaving the mode in which read-side critical
868 * sections can occur. The caller must have disabled interrupts.
869 *
870 * This code assumes that the idle loop never does anything that might
871 * result in unbalanced calls to irq_enter() and irq_exit(). If your
872 * architecture's idle loop violates this assumption, RCU will give you what
873 * you deserve, good and hard. But very infrequently and irreproducibly.
874 *
875 * Use things like work queues to work around this limitation.
876 *
877 * You have been warned.
878 *
879 * If you add or remove a call to rcu_irq_exit(), be sure to test with
880 * CONFIG_RCU_EQS_DEBUG=y.
881 */
882void rcu_irq_exit(void)
883{
884 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
885
886 lockdep_assert_irqs_disabled();
887 if (rdtp->dynticks_nmi_nesting == 1)
888 rcu_prepare_for_idle();
889 rcu_nmi_exit();
890 if (rdtp->dynticks_nmi_nesting == 0)
891 rcu_dynticks_task_enter();
892}
893
894/*
895 * Wrapper for rcu_irq_exit() where interrupts are enabled.
896 *
897 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
898 * with CONFIG_RCU_EQS_DEBUG=y.
899 */
900void rcu_irq_exit_irqson(void)
901{
902 unsigned long flags;
903
904 local_irq_save(flags);
905 rcu_irq_exit();
906 local_irq_restore(flags);
907}
908
909/*
910 * Exit an RCU extended quiescent state, which can be either the
911 * idle loop or adaptive-tickless usermode execution.
912 *
913 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
914 * allow for the possibility of usermode upcalls messing up our count of
915 * interrupt nesting level during the busy period that is just now starting.
916 */
917static void rcu_eqs_exit(bool user)
918{
919 struct rcu_dynticks *rdtp;
920 long oldval;
921
922 lockdep_assert_irqs_disabled();
923 rdtp = this_cpu_ptr(&rcu_dynticks);
924 oldval = rdtp->dynticks_nesting;
925 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
926 if (oldval) {
927 rdtp->dynticks_nesting++;
928 return;
929 }
930 rcu_dynticks_task_exit();
931 rcu_dynticks_eqs_exit();
932 rcu_cleanup_after_idle();
933 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
934 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
935 WRITE_ONCE(rdtp->dynticks_nesting, 1);
936 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
937}
938
939/**
940 * rcu_idle_exit - inform RCU that current CPU is leaving idle
941 *
942 * Exit idle mode, in other words, -enter- the mode in which RCU
943 * read-side critical sections can occur.
944 *
945 * If you add or remove a call to rcu_idle_exit(), be sure to test with
946 * CONFIG_RCU_EQS_DEBUG=y.
947 */
948void rcu_idle_exit(void)
949{
950 unsigned long flags;
951
952 local_irq_save(flags);
953 rcu_eqs_exit(false);
954 local_irq_restore(flags);
955}
956
957#ifdef CONFIG_NO_HZ_FULL
958/**
959 * rcu_user_exit - inform RCU that we are exiting userspace.
960 *
961 * Exit RCU idle mode while entering the kernel because it can
962 * run a RCU read side critical section anytime.
963 *
964 * If you add or remove a call to rcu_user_exit(), be sure to test with
965 * CONFIG_RCU_EQS_DEBUG=y.
966 */
967void rcu_user_exit(void)
968{
969 rcu_eqs_exit(1);
970}
971#endif /* CONFIG_NO_HZ_FULL */
972
973/**
974 * rcu_nmi_enter - inform RCU of entry to NMI context
975 *
976 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
977 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
978 * that the CPU is active. This implementation permits nested NMIs, as
979 * long as the nesting level does not overflow an int. (You will probably
980 * run out of stack space first.)
981 *
982 * If you add or remove a call to rcu_nmi_enter(), be sure to test
983 * with CONFIG_RCU_EQS_DEBUG=y.
984 */
985void rcu_nmi_enter(void)
986{
987 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
988 long incby = 2;
989
990 /* Complain about underflow. */
991 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
992
993 /*
994 * If idle from RCU viewpoint, atomically increment ->dynticks
995 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
996 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
997 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
998 * to be in the outermost NMI handler that interrupted an RCU-idle
999 * period (observation due to Andy Lutomirski).
1000 */
1001 if (rcu_dynticks_curr_cpu_in_eqs()) {
1002 rcu_dynticks_eqs_exit();
1003 incby = 1;
1004 }
1005 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1006 rdtp->dynticks_nmi_nesting,
1007 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
1008 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
1009 rdtp->dynticks_nmi_nesting + incby);
1010 barrier();
1011}
1012
1013/**
1014 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1015 *
1016 * Enter an interrupt handler, which might possibly result in exiting
1017 * idle mode, in other words, entering the mode in which read-side critical
1018 * sections can occur. The caller must have disabled interrupts.
1019 *
1020 * Note that the Linux kernel is fully capable of entering an interrupt
1021 * handler that it never exits, for example when doing upcalls to user mode!
1022 * This code assumes that the idle loop never does upcalls to user mode.
1023 * If your architecture's idle loop does do upcalls to user mode (or does
1024 * anything else that results in unbalanced calls to the irq_enter() and
1025 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1026 * But very infrequently and irreproducibly.
1027 *
1028 * Use things like work queues to work around this limitation.
1029 *
1030 * You have been warned.
1031 *
1032 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1033 * CONFIG_RCU_EQS_DEBUG=y.
1034 */
1035void rcu_irq_enter(void)
1036{
1037 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1038
1039 lockdep_assert_irqs_disabled();
1040 if (rdtp->dynticks_nmi_nesting == 0)
1041 rcu_dynticks_task_exit();
1042 rcu_nmi_enter();
1043 if (rdtp->dynticks_nmi_nesting == 1)
1044 rcu_cleanup_after_idle();
1045}
1046
1047/*
1048 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1049 *
1050 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1051 * with CONFIG_RCU_EQS_DEBUG=y.
1052 */
1053void rcu_irq_enter_irqson(void)
1054{
1055 unsigned long flags;
1056
1057 local_irq_save(flags);
1058 rcu_irq_enter();
1059 local_irq_restore(flags);
1060}
1061
1062/**
1063 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1064 *
1065 * Return true if RCU is watching the running CPU, which means that this
1066 * CPU can safely enter RCU read-side critical sections. In other words,
1067 * if the current CPU is in its idle loop and is neither in an interrupt
1068 * or NMI handler, return true.
1069 */
1070bool notrace rcu_is_watching(void)
1071{
1072 bool ret;
1073
1074 preempt_disable_notrace();
1075 ret = !rcu_dynticks_curr_cpu_in_eqs();
1076 preempt_enable_notrace();
1077 return ret;
1078}
1079EXPORT_SYMBOL_GPL(rcu_is_watching);
1080
1081/*
1082 * If a holdout task is actually running, request an urgent quiescent
1083 * state from its CPU. This is unsynchronized, so migrations can cause
1084 * the request to go to the wrong CPU. Which is OK, all that will happen
1085 * is that the CPU's next context switch will be a bit slower and next
1086 * time around this task will generate another request.
1087 */
1088void rcu_request_urgent_qs_task(struct task_struct *t)
1089{
1090 int cpu;
1091
1092 barrier();
1093 cpu = task_cpu(t);
1094 if (!task_curr(t))
1095 return; /* This task is not running on that CPU. */
1096 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1097}
1098
1099#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1100
1101/*
1102 * Is the current CPU online? Disable preemption to avoid false positives
1103 * that could otherwise happen due to the current CPU number being sampled,
1104 * this task being preempted, its old CPU being taken offline, resuming
1105 * on some other CPU, then determining that its old CPU is now offline.
1106 * It is OK to use RCU on an offline processor during initial boot, hence
1107 * the check for rcu_scheduler_fully_active. Note also that it is OK
1108 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1109 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1110 * offline to continue to use RCU for one jiffy after marking itself
1111 * offline in the cpu_online_mask. This leniency is necessary given the
1112 * non-atomic nature of the online and offline processing, for example,
1113 * the fact that a CPU enters the scheduler after completing the teardown
1114 * of the CPU.
1115 *
1116 * This is also why RCU internally marks CPUs online during in the
1117 * preparation phase and offline after the CPU has been taken down.
1118 *
1119 * Disable checking if in an NMI handler because we cannot safely report
1120 * errors from NMI handlers anyway.
1121 */
1122bool rcu_lockdep_current_cpu_online(void)
1123{
1124 struct rcu_data *rdp;
1125 struct rcu_node *rnp;
1126 bool ret;
1127
1128 if (in_nmi())
1129 return true;
1130 preempt_disable();
1131 rdp = this_cpu_ptr(&rcu_sched_data);
1132 rnp = rdp->mynode;
1133 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1134 !rcu_scheduler_fully_active;
1135 preempt_enable();
1136 return ret;
1137}
1138EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1139
1140#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1141
1142/**
1143 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1144 *
1145 * If the current CPU is idle or running at a first-level (not nested)
1146 * interrupt from idle, return true. The caller must have at least
1147 * disabled preemption.
1148 */
1149static int rcu_is_cpu_rrupt_from_idle(void)
1150{
1151 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1152 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
1153}
1154
1155/*
1156 * We are reporting a quiescent state on behalf of some other CPU, so
1157 * it is our responsibility to check for and handle potential overflow
1158 * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1159 * After all, the CPU might be in deep idle state, and thus executing no
1160 * code whatsoever.
1161 */
1162static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1163{
1164 raw_lockdep_assert_held_rcu_node(rnp);
1165 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
1166 WRITE_ONCE(rdp->gpwrap, true);
1167 if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1168 rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1169}
1170
1171/*
1172 * Snapshot the specified CPU's dynticks counter so that we can later
1173 * credit them with an implicit quiescent state. Return 1 if this CPU
1174 * is in dynticks idle mode, which is an extended quiescent state.
1175 */
1176static int dyntick_save_progress_counter(struct rcu_data *rdp)
1177{
1178 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1179 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1180 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1181 rcu_gpnum_ovf(rdp->mynode, rdp);
1182 return 1;
1183 }
1184 return 0;
1185}
1186
1187/*
1188 * Handler for the irq_work request posted when a grace period has
1189 * gone on for too long, but not yet long enough for an RCU CPU
1190 * stall warning. Set state appropriately, but just complain if
1191 * there is unexpected state on entry.
1192 */
1193static void rcu_iw_handler(struct irq_work *iwp)
1194{
1195 struct rcu_data *rdp;
1196 struct rcu_node *rnp;
1197
1198 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1199 rnp = rdp->mynode;
1200 raw_spin_lock_rcu_node(rnp);
1201 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1202 rdp->rcu_iw_gpnum = rnp->gpnum;
1203 rdp->rcu_iw_pending = false;
1204 }
1205 raw_spin_unlock_rcu_node(rnp);
1206}
1207
1208/*
1209 * Return true if the specified CPU has passed through a quiescent
1210 * state by virtue of being in or having passed through an dynticks
1211 * idle state since the last call to dyntick_save_progress_counter()
1212 * for this same CPU, or by virtue of having been offline.
1213 */
1214static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1215{
1216 unsigned long jtsq;
1217 bool *rnhqp;
1218 bool *ruqp;
1219 struct rcu_node *rnp = rdp->mynode;
1220
1221 /*
1222 * If the CPU passed through or entered a dynticks idle phase with
1223 * no active irq/NMI handlers, then we can safely pretend that the CPU
1224 * already acknowledged the request to pass through a quiescent
1225 * state. Either way, that CPU cannot possibly be in an RCU
1226 * read-side critical section that started before the beginning
1227 * of the current RCU grace period.
1228 */
1229 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1230 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1231 rdp->dynticks_fqs++;
1232 rcu_gpnum_ovf(rnp, rdp);
1233 return 1;
1234 }
1235
1236 /*
1237 * Has this CPU encountered a cond_resched_rcu_qs() since the
1238 * beginning of the grace period? For this to be the case,
1239 * the CPU has to have noticed the current grace period. This
1240 * might not be the case for nohz_full CPUs looping in the kernel.
1241 */
1242 jtsq = jiffies_till_sched_qs;
1243 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1244 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1245 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1246 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1247 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1248 rcu_gpnum_ovf(rnp, rdp);
1249 return 1;
1250 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
1251 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1252 smp_store_release(ruqp, true);
1253 }
1254
1255 /* Check for the CPU being offline. */
1256 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1257 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1258 rdp->offline_fqs++;
1259 rcu_gpnum_ovf(rnp, rdp);
1260 return 1;
1261 }
1262
1263 /*
1264 * A CPU running for an extended time within the kernel can
1265 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1266 * even context-switching back and forth between a pair of
1267 * in-kernel CPU-bound tasks cannot advance grace periods.
1268 * So if the grace period is old enough, make the CPU pay attention.
1269 * Note that the unsynchronized assignments to the per-CPU
1270 * rcu_need_heavy_qs variable are safe. Yes, setting of
1271 * bits can be lost, but they will be set again on the next
1272 * force-quiescent-state pass. So lost bit sets do not result
1273 * in incorrect behavior, merely in a grace period lasting
1274 * a few jiffies longer than it might otherwise. Because
1275 * there are at most four threads involved, and because the
1276 * updates are only once every few jiffies, the probability of
1277 * lossage (and thus of slight grace-period extension) is
1278 * quite low.
1279 */
1280 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1281 if (!READ_ONCE(*rnhqp) &&
1282 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1283 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1284 WRITE_ONCE(*rnhqp, true);
1285 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1286 smp_store_release(ruqp, true);
1287 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
1288 }
1289
1290 /*
1291 * If more than halfway to RCU CPU stall-warning time, do a
1292 * resched_cpu() to try to loosen things up a bit. Also check to
1293 * see if the CPU is getting hammered with interrupts, but only
1294 * once per grace period, just to keep the IPIs down to a dull roar.
1295 */
1296 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
1297 resched_cpu(rdp->cpu);
1298 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1299 !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1300 (rnp->ffmask & rdp->grpmask)) {
1301 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1302 rdp->rcu_iw_pending = true;
1303 rdp->rcu_iw_gpnum = rnp->gpnum;
1304 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1305 }
1306 }
1307
1308 return 0;
1309}
1310
1311static void record_gp_stall_check_time(struct rcu_state *rsp)
1312{
1313 unsigned long j = jiffies;
1314 unsigned long j1;
1315
1316 rsp->gp_start = j;
1317 smp_wmb(); /* Record start time before stall time. */
1318 j1 = rcu_jiffies_till_stall_check();
1319 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1320 rsp->jiffies_resched = j + j1 / 2;
1321 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1322}
1323
1324/*
1325 * Convert a ->gp_state value to a character string.
1326 */
1327static const char *gp_state_getname(short gs)
1328{
1329 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1330 return "???";
1331 return gp_state_names[gs];
1332}
1333
1334/*
1335 * Complain about starvation of grace-period kthread.
1336 */
1337static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1338{
1339 unsigned long gpa;
1340 unsigned long j;
1341
1342 j = jiffies;
1343 gpa = READ_ONCE(rsp->gp_activity);
1344 if (j - gpa > 2 * HZ) {
1345 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1346 rsp->name, j - gpa,
1347 rsp->gpnum, rsp->completed,
1348 rsp->gp_flags,
1349 gp_state_getname(rsp->gp_state), rsp->gp_state,
1350 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1351 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1352 if (rsp->gp_kthread) {
1353 pr_err("RCU grace-period kthread stack dump:\n");
1354 sched_show_task(rsp->gp_kthread);
1355 wake_up_process(rsp->gp_kthread);
1356 }
1357 }
1358}
1359
1360/*
1361 * Dump stacks of all tasks running on stalled CPUs. First try using
1362 * NMIs, but fall back to manual remote stack tracing on architectures
1363 * that don't support NMI-based stack dumps. The NMI-triggered stack
1364 * traces are more accurate because they are printed by the target CPU.
1365 */
1366static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1367{
1368 int cpu;
1369 unsigned long flags;
1370 struct rcu_node *rnp;
1371
1372 rcu_for_each_leaf_node(rsp, rnp) {
1373 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1374 for_each_leaf_node_possible_cpu(rnp, cpu)
1375 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1376 if (!trigger_single_cpu_backtrace(cpu))
1377 dump_cpu_task(cpu);
1378 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1379 }
1380}
1381
1382/*
1383 * If too much time has passed in the current grace period, and if
1384 * so configured, go kick the relevant kthreads.
1385 */
1386static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1387{
1388 unsigned long j;
1389
1390 if (!rcu_kick_kthreads)
1391 return;
1392 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1393 if (time_after(jiffies, j) && rsp->gp_kthread &&
1394 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1395 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1396 rcu_ftrace_dump(DUMP_ALL);
1397 wake_up_process(rsp->gp_kthread);
1398 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1399 }
1400}
1401
1402static inline void panic_on_rcu_stall(void)
1403{
1404 if (sysctl_panic_on_rcu_stall)
1405 panic("RCU Stall\n");
1406}
1407
1408static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1409{
1410 int cpu;
1411 long delta;
1412 unsigned long flags;
1413 unsigned long gpa;
1414 unsigned long j;
1415 int ndetected = 0;
1416 struct rcu_node *rnp = rcu_get_root(rsp);
1417 long totqlen = 0;
1418
1419 /* Kick and suppress, if so configured. */
1420 rcu_stall_kick_kthreads(rsp);
1421 if (rcu_cpu_stall_suppress)
1422 return;
1423
1424 /* Only let one CPU complain about others per time interval. */
1425
1426 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1427 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1428 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1429 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1430 return;
1431 }
1432 WRITE_ONCE(rsp->jiffies_stall,
1433 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1434 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1435
1436 /*
1437 * OK, time to rat on our buddy...
1438 * See Documentation/RCU/stallwarn.txt for info on how to debug
1439 * RCU CPU stall warnings.
1440 */
1441 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1442 rsp->name);
1443 print_cpu_stall_info_begin();
1444 rcu_for_each_leaf_node(rsp, rnp) {
1445 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1446 ndetected += rcu_print_task_stall(rnp);
1447 if (rnp->qsmask != 0) {
1448 for_each_leaf_node_possible_cpu(rnp, cpu)
1449 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1450 print_cpu_stall_info(rsp, cpu);
1451 ndetected++;
1452 }
1453 }
1454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1455 }
1456
1457 print_cpu_stall_info_end();
1458 for_each_possible_cpu(cpu)
1459 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1460 cpu)->cblist);
1461 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1462 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1463 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1464 if (ndetected) {
1465 rcu_dump_cpu_stacks(rsp);
1466
1467 /* Complain about tasks blocking the grace period. */
1468 rcu_print_detail_task_stall(rsp);
1469 } else {
1470 if (READ_ONCE(rsp->gpnum) != gpnum ||
1471 READ_ONCE(rsp->completed) == gpnum) {
1472 pr_err("INFO: Stall ended before state dump start\n");
1473 } else {
1474 j = jiffies;
1475 gpa = READ_ONCE(rsp->gp_activity);
1476 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1477 rsp->name, j - gpa, j, gpa,
1478 jiffies_till_next_fqs,
1479 rcu_get_root(rsp)->qsmask);
1480 /* In this case, the current CPU might be at fault. */
1481 sched_show_task(current);
1482 }
1483 }
1484
1485 rcu_check_gp_kthread_starvation(rsp);
1486
1487 panic_on_rcu_stall();
1488
1489 force_quiescent_state(rsp); /* Kick them all. */
1490}
1491
1492static void print_cpu_stall(struct rcu_state *rsp)
1493{
1494 int cpu;
1495 unsigned long flags;
1496 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1497 struct rcu_node *rnp = rcu_get_root(rsp);
1498 long totqlen = 0;
1499
1500 /* Kick and suppress, if so configured. */
1501 rcu_stall_kick_kthreads(rsp);
1502 if (rcu_cpu_stall_suppress)
1503 return;
1504
1505 /*
1506 * OK, time to rat on ourselves...
1507 * See Documentation/RCU/stallwarn.txt for info on how to debug
1508 * RCU CPU stall warnings.
1509 */
1510 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1511 print_cpu_stall_info_begin();
1512 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1513 print_cpu_stall_info(rsp, smp_processor_id());
1514 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1515 print_cpu_stall_info_end();
1516 for_each_possible_cpu(cpu)
1517 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1518 cpu)->cblist);
1519 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1520 jiffies - rsp->gp_start,
1521 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1522
1523 rcu_check_gp_kthread_starvation(rsp);
1524
1525 rcu_dump_cpu_stacks(rsp);
1526
1527 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1528 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1529 WRITE_ONCE(rsp->jiffies_stall,
1530 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1531 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1532
1533 panic_on_rcu_stall();
1534
1535 /*
1536 * Attempt to revive the RCU machinery by forcing a context switch.
1537 *
1538 * A context switch would normally allow the RCU state machine to make
1539 * progress and it could be we're stuck in kernel space without context
1540 * switches for an entirely unreasonable amount of time.
1541 */
1542 resched_cpu(smp_processor_id());
1543}
1544
1545static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1546{
1547 unsigned long completed;
1548 unsigned long gpnum;
1549 unsigned long gps;
1550 unsigned long j;
1551 unsigned long js;
1552 struct rcu_node *rnp;
1553
1554 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1555 !rcu_gp_in_progress(rsp))
1556 return;
1557 rcu_stall_kick_kthreads(rsp);
1558 j = jiffies;
1559
1560 /*
1561 * Lots of memory barriers to reject false positives.
1562 *
1563 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1564 * then rsp->gp_start, and finally rsp->completed. These values
1565 * are updated in the opposite order with memory barriers (or
1566 * equivalent) during grace-period initialization and cleanup.
1567 * Now, a false positive can occur if we get an new value of
1568 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1569 * the memory barriers, the only way that this can happen is if one
1570 * grace period ends and another starts between these two fetches.
1571 * Detect this by comparing rsp->completed with the previous fetch
1572 * from rsp->gpnum.
1573 *
1574 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1575 * and rsp->gp_start suffice to forestall false positives.
1576 */
1577 gpnum = READ_ONCE(rsp->gpnum);
1578 smp_rmb(); /* Pick up ->gpnum first... */
1579 js = READ_ONCE(rsp->jiffies_stall);
1580 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1581 gps = READ_ONCE(rsp->gp_start);
1582 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1583 completed = READ_ONCE(rsp->completed);
1584 if (ULONG_CMP_GE(completed, gpnum) ||
1585 ULONG_CMP_LT(j, js) ||
1586 ULONG_CMP_GE(gps, js))
1587 return; /* No stall or GP completed since entering function. */
1588 rnp = rdp->mynode;
1589 if (rcu_gp_in_progress(rsp) &&
1590 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1591
1592 /* We haven't checked in, so go dump stack. */
1593 print_cpu_stall(rsp);
1594
1595 } else if (rcu_gp_in_progress(rsp) &&
1596 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1597
1598 /* They had a few time units to dump stack, so complain. */
1599 print_other_cpu_stall(rsp, gpnum);
1600 }
1601}
1602
1603/**
1604 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1605 *
1606 * Set the stall-warning timeout way off into the future, thus preventing
1607 * any RCU CPU stall-warning messages from appearing in the current set of
1608 * RCU grace periods.
1609 *
1610 * The caller must disable hard irqs.
1611 */
1612void rcu_cpu_stall_reset(void)
1613{
1614 struct rcu_state *rsp;
1615
1616 for_each_rcu_flavor(rsp)
1617 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1618}
1619
1620/*
1621 * Determine the value that ->completed will have at the end of the
1622 * next subsequent grace period. This is used to tag callbacks so that
1623 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1624 * been dyntick-idle for an extended period with callbacks under the
1625 * influence of RCU_FAST_NO_HZ.
1626 *
1627 * The caller must hold rnp->lock with interrupts disabled.
1628 */
1629static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1630 struct rcu_node *rnp)
1631{
1632 raw_lockdep_assert_held_rcu_node(rnp);
1633
1634 /*
1635 * If RCU is idle, we just wait for the next grace period.
1636 * But we can only be sure that RCU is idle if we are looking
1637 * at the root rcu_node structure -- otherwise, a new grace
1638 * period might have started, but just not yet gotten around
1639 * to initializing the current non-root rcu_node structure.
1640 */
1641 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1642 return rnp->completed + 1;
1643
1644 /*
1645 * Otherwise, wait for a possible partial grace period and
1646 * then the subsequent full grace period.
1647 */
1648 return rnp->completed + 2;
1649}
1650
1651/*
1652 * Trace-event helper function for rcu_start_future_gp() and
1653 * rcu_nocb_wait_gp().
1654 */
1655static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1656 unsigned long c, const char *s)
1657{
1658 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1659 rnp->completed, c, rnp->level,
1660 rnp->grplo, rnp->grphi, s);
1661}
1662
1663/*
1664 * Start some future grace period, as needed to handle newly arrived
1665 * callbacks. The required future grace periods are recorded in each
1666 * rcu_node structure's ->need_future_gp field. Returns true if there
1667 * is reason to awaken the grace-period kthread.
1668 *
1669 * The caller must hold the specified rcu_node structure's ->lock.
1670 */
1671static bool __maybe_unused
1672rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1673 unsigned long *c_out)
1674{
1675 unsigned long c;
1676 bool ret = false;
1677 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1678
1679 raw_lockdep_assert_held_rcu_node(rnp);
1680
1681 /*
1682 * Pick up grace-period number for new callbacks. If this
1683 * grace period is already marked as needed, return to the caller.
1684 */
1685 c = rcu_cbs_completed(rdp->rsp, rnp);
1686 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1687 if (rnp->need_future_gp[c & 0x1]) {
1688 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1689 goto out;
1690 }
1691
1692 /*
1693 * If either this rcu_node structure or the root rcu_node structure
1694 * believe that a grace period is in progress, then we must wait
1695 * for the one following, which is in "c". Because our request
1696 * will be noticed at the end of the current grace period, we don't
1697 * need to explicitly start one. We only do the lockless check
1698 * of rnp_root's fields if the current rcu_node structure thinks
1699 * there is no grace period in flight, and because we hold rnp->lock,
1700 * the only possible change is when rnp_root's two fields are
1701 * equal, in which case rnp_root->gpnum might be concurrently
1702 * incremented. But that is OK, as it will just result in our
1703 * doing some extra useless work.
1704 */
1705 if (rnp->gpnum != rnp->completed ||
1706 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1707 rnp->need_future_gp[c & 0x1]++;
1708 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1709 goto out;
1710 }
1711
1712 /*
1713 * There might be no grace period in progress. If we don't already
1714 * hold it, acquire the root rcu_node structure's lock in order to
1715 * start one (if needed).
1716 */
1717 if (rnp != rnp_root)
1718 raw_spin_lock_rcu_node(rnp_root);
1719
1720 /*
1721 * Get a new grace-period number. If there really is no grace
1722 * period in progress, it will be smaller than the one we obtained
1723 * earlier. Adjust callbacks as needed.
1724 */
1725 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1726 if (!rcu_is_nocb_cpu(rdp->cpu))
1727 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1728
1729 /*
1730 * If the needed for the required grace period is already
1731 * recorded, trace and leave.
1732 */
1733 if (rnp_root->need_future_gp[c & 0x1]) {
1734 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1735 goto unlock_out;
1736 }
1737
1738 /* Record the need for the future grace period. */
1739 rnp_root->need_future_gp[c & 0x1]++;
1740
1741 /* If a grace period is not already in progress, start one. */
1742 if (rnp_root->gpnum != rnp_root->completed) {
1743 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1744 } else {
1745 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1746 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1747 }
1748unlock_out:
1749 if (rnp != rnp_root)
1750 raw_spin_unlock_rcu_node(rnp_root);
1751out:
1752 if (c_out != NULL)
1753 *c_out = c;
1754 return ret;
1755}
1756
1757/*
1758 * Clean up any old requests for the just-ended grace period. Also return
1759 * whether any additional grace periods have been requested.
1760 */
1761static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1762{
1763 int c = rnp->completed;
1764 int needmore;
1765 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1766
1767 rnp->need_future_gp[c & 0x1] = 0;
1768 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1769 trace_rcu_future_gp(rnp, rdp, c,
1770 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1771 return needmore;
1772}
1773
1774/*
1775 * Awaken the grace-period kthread for the specified flavor of RCU.
1776 * Don't do a self-awaken, and don't bother awakening when there is
1777 * nothing for the grace-period kthread to do (as in several CPUs
1778 * raced to awaken, and we lost), and finally don't try to awaken
1779 * a kthread that has not yet been created.
1780 */
1781static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1782{
1783 if (current == rsp->gp_kthread ||
1784 !READ_ONCE(rsp->gp_flags) ||
1785 !rsp->gp_kthread)
1786 return;
1787 swake_up(&rsp->gp_wq);
1788}
1789
1790/*
1791 * If there is room, assign a ->completed number to any callbacks on
1792 * this CPU that have not already been assigned. Also accelerate any
1793 * callbacks that were previously assigned a ->completed number that has
1794 * since proven to be too conservative, which can happen if callbacks get
1795 * assigned a ->completed number while RCU is idle, but with reference to
1796 * a non-root rcu_node structure. This function is idempotent, so it does
1797 * not hurt to call it repeatedly. Returns an flag saying that we should
1798 * awaken the RCU grace-period kthread.
1799 *
1800 * The caller must hold rnp->lock with interrupts disabled.
1801 */
1802static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1803 struct rcu_data *rdp)
1804{
1805 bool ret = false;
1806
1807 raw_lockdep_assert_held_rcu_node(rnp);
1808
1809 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1810 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1811 return false;
1812
1813 /*
1814 * Callbacks are often registered with incomplete grace-period
1815 * information. Something about the fact that getting exact
1816 * information requires acquiring a global lock... RCU therefore
1817 * makes a conservative estimate of the grace period number at which
1818 * a given callback will become ready to invoke. The following
1819 * code checks this estimate and improves it when possible, thus
1820 * accelerating callback invocation to an earlier grace-period
1821 * number.
1822 */
1823 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1824 ret = rcu_start_future_gp(rnp, rdp, NULL);
1825
1826 /* Trace depending on how much we were able to accelerate. */
1827 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1828 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1829 else
1830 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1831 return ret;
1832}
1833
1834/*
1835 * Move any callbacks whose grace period has completed to the
1836 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1837 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1838 * sublist. This function is idempotent, so it does not hurt to
1839 * invoke it repeatedly. As long as it is not invoked -too- often...
1840 * Returns true if the RCU grace-period kthread needs to be awakened.
1841 *
1842 * The caller must hold rnp->lock with interrupts disabled.
1843 */
1844static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1845 struct rcu_data *rdp)
1846{
1847 raw_lockdep_assert_held_rcu_node(rnp);
1848
1849 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1850 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1851 return false;
1852
1853 /*
1854 * Find all callbacks whose ->completed numbers indicate that they
1855 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1856 */
1857 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1858
1859 /* Classify any remaining callbacks. */
1860 return rcu_accelerate_cbs(rsp, rnp, rdp);
1861}
1862
1863/*
1864 * Update CPU-local rcu_data state to record the beginnings and ends of
1865 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1866 * structure corresponding to the current CPU, and must have irqs disabled.
1867 * Returns true if the grace-period kthread needs to be awakened.
1868 */
1869static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1870 struct rcu_data *rdp)
1871{
1872 bool ret;
1873 bool need_gp;
1874
1875 raw_lockdep_assert_held_rcu_node(rnp);
1876
1877 /* Handle the ends of any preceding grace periods first. */
1878 if (rdp->completed == rnp->completed &&
1879 !unlikely(READ_ONCE(rdp->gpwrap))) {
1880
1881 /* No grace period end, so just accelerate recent callbacks. */
1882 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1883
1884 } else {
1885
1886 /* Advance callbacks. */
1887 ret = rcu_advance_cbs(rsp, rnp, rdp);
1888
1889 /* Remember that we saw this grace-period completion. */
1890 rdp->completed = rnp->completed;
1891 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1892 }
1893
1894 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1895 /*
1896 * If the current grace period is waiting for this CPU,
1897 * set up to detect a quiescent state, otherwise don't
1898 * go looking for one.
1899 */
1900 rdp->gpnum = rnp->gpnum;
1901 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1902 need_gp = !!(rnp->qsmask & rdp->grpmask);
1903 rdp->cpu_no_qs.b.norm = need_gp;
1904 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1905 rdp->core_needs_qs = need_gp;
1906 zero_cpu_stall_ticks(rdp);
1907 WRITE_ONCE(rdp->gpwrap, false);
1908 rcu_gpnum_ovf(rnp, rdp);
1909 }
1910 return ret;
1911}
1912
1913static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1914{
1915 unsigned long flags;
1916 bool needwake;
1917 struct rcu_node *rnp;
1918
1919 local_irq_save(flags);
1920 rnp = rdp->mynode;
1921 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1922 rdp->completed == READ_ONCE(rnp->completed) &&
1923 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1924 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1925 local_irq_restore(flags);
1926 return;
1927 }
1928 needwake = __note_gp_changes(rsp, rnp, rdp);
1929 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1930 if (needwake)
1931 rcu_gp_kthread_wake(rsp);
1932}
1933
1934static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1935{
1936 if (delay > 0 &&
1937 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1938 schedule_timeout_uninterruptible(delay);
1939}
1940
1941/*
1942 * Initialize a new grace period. Return false if no grace period required.
1943 */
1944static bool rcu_gp_init(struct rcu_state *rsp)
1945{
1946 unsigned long oldmask;
1947 struct rcu_data *rdp;
1948 struct rcu_node *rnp = rcu_get_root(rsp);
1949
1950 WRITE_ONCE(rsp->gp_activity, jiffies);
1951 raw_spin_lock_irq_rcu_node(rnp);
1952 if (!READ_ONCE(rsp->gp_flags)) {
1953 /* Spurious wakeup, tell caller to go back to sleep. */
1954 raw_spin_unlock_irq_rcu_node(rnp);
1955 return false;
1956 }
1957 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1958
1959 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1960 /*
1961 * Grace period already in progress, don't start another.
1962 * Not supposed to be able to happen.
1963 */
1964 raw_spin_unlock_irq_rcu_node(rnp);
1965 return false;
1966 }
1967
1968 /* Advance to a new grace period and initialize state. */
1969 record_gp_stall_check_time(rsp);
1970 /* Record GP times before starting GP, hence smp_store_release(). */
1971 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1972 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1973 raw_spin_unlock_irq_rcu_node(rnp);
1974
1975 /*
1976 * Apply per-leaf buffered online and offline operations to the
1977 * rcu_node tree. Note that this new grace period need not wait
1978 * for subsequent online CPUs, and that quiescent-state forcing
1979 * will handle subsequent offline CPUs.
1980 */
1981 rcu_for_each_leaf_node(rsp, rnp) {
1982 rcu_gp_slow(rsp, gp_preinit_delay);
1983 raw_spin_lock_irq_rcu_node(rnp);
1984 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1985 !rnp->wait_blkd_tasks) {
1986 /* Nothing to do on this leaf rcu_node structure. */
1987 raw_spin_unlock_irq_rcu_node(rnp);
1988 continue;
1989 }
1990
1991 /* Record old state, apply changes to ->qsmaskinit field. */
1992 oldmask = rnp->qsmaskinit;
1993 rnp->qsmaskinit = rnp->qsmaskinitnext;
1994
1995 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1996 if (!oldmask != !rnp->qsmaskinit) {
1997 if (!oldmask) /* First online CPU for this rcu_node. */
1998 rcu_init_new_rnp(rnp);
1999 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2000 rnp->wait_blkd_tasks = true;
2001 else /* Last offline CPU and can propagate. */
2002 rcu_cleanup_dead_rnp(rnp);
2003 }
2004
2005 /*
2006 * If all waited-on tasks from prior grace period are
2007 * done, and if all this rcu_node structure's CPUs are
2008 * still offline, propagate up the rcu_node tree and
2009 * clear ->wait_blkd_tasks. Otherwise, if one of this
2010 * rcu_node structure's CPUs has since come back online,
2011 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2012 * checks for this, so just call it unconditionally).
2013 */
2014 if (rnp->wait_blkd_tasks &&
2015 (!rcu_preempt_has_tasks(rnp) ||
2016 rnp->qsmaskinit)) {
2017 rnp->wait_blkd_tasks = false;
2018 rcu_cleanup_dead_rnp(rnp);
2019 }
2020
2021 raw_spin_unlock_irq_rcu_node(rnp);
2022 }
2023
2024 /*
2025 * Set the quiescent-state-needed bits in all the rcu_node
2026 * structures for all currently online CPUs in breadth-first order,
2027 * starting from the root rcu_node structure, relying on the layout
2028 * of the tree within the rsp->node[] array. Note that other CPUs
2029 * will access only the leaves of the hierarchy, thus seeing that no
2030 * grace period is in progress, at least until the corresponding
2031 * leaf node has been initialized.
2032 *
2033 * The grace period cannot complete until the initialization
2034 * process finishes, because this kthread handles both.
2035 */
2036 rcu_for_each_node_breadth_first(rsp, rnp) {
2037 rcu_gp_slow(rsp, gp_init_delay);
2038 raw_spin_lock_irq_rcu_node(rnp);
2039 rdp = this_cpu_ptr(rsp->rda);
2040 rcu_preempt_check_blocked_tasks(rnp);
2041 rnp->qsmask = rnp->qsmaskinit;
2042 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2043 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2044 WRITE_ONCE(rnp->completed, rsp->completed);
2045 if (rnp == rdp->mynode)
2046 (void)__note_gp_changes(rsp, rnp, rdp);
2047 rcu_preempt_boost_start_gp(rnp);
2048 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2049 rnp->level, rnp->grplo,
2050 rnp->grphi, rnp->qsmask);
2051 raw_spin_unlock_irq_rcu_node(rnp);
2052 cond_resched_rcu_qs();
2053 WRITE_ONCE(rsp->gp_activity, jiffies);
2054 }
2055
2056 return true;
2057}
2058
2059/*
2060 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2061 * time.
2062 */
2063static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2064{
2065 struct rcu_node *rnp = rcu_get_root(rsp);
2066
2067 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2068 *gfp = READ_ONCE(rsp->gp_flags);
2069 if (*gfp & RCU_GP_FLAG_FQS)
2070 return true;
2071
2072 /* The current grace period has completed. */
2073 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2074 return true;
2075
2076 return false;
2077}
2078
2079/*
2080 * Do one round of quiescent-state forcing.
2081 */
2082static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2083{
2084 struct rcu_node *rnp = rcu_get_root(rsp);
2085
2086 WRITE_ONCE(rsp->gp_activity, jiffies);
2087 rsp->n_force_qs++;
2088 if (first_time) {
2089 /* Collect dyntick-idle snapshots. */
2090 force_qs_rnp(rsp, dyntick_save_progress_counter);
2091 } else {
2092 /* Handle dyntick-idle and offline CPUs. */
2093 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2094 }
2095 /* Clear flag to prevent immediate re-entry. */
2096 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2097 raw_spin_lock_irq_rcu_node(rnp);
2098 WRITE_ONCE(rsp->gp_flags,
2099 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2100 raw_spin_unlock_irq_rcu_node(rnp);
2101 }
2102}
2103
2104/*
2105 * Clean up after the old grace period.
2106 */
2107static void rcu_gp_cleanup(struct rcu_state *rsp)
2108{
2109 unsigned long gp_duration;
2110 bool needgp = false;
2111 int nocb = 0;
2112 struct rcu_data *rdp;
2113 struct rcu_node *rnp = rcu_get_root(rsp);
2114 struct swait_queue_head *sq;
2115
2116 WRITE_ONCE(rsp->gp_activity, jiffies);
2117 raw_spin_lock_irq_rcu_node(rnp);
2118 gp_duration = jiffies - rsp->gp_start;
2119 if (gp_duration > rsp->gp_max)
2120 rsp->gp_max = gp_duration;
2121
2122 /*
2123 * We know the grace period is complete, but to everyone else
2124 * it appears to still be ongoing. But it is also the case
2125 * that to everyone else it looks like there is nothing that
2126 * they can do to advance the grace period. It is therefore
2127 * safe for us to drop the lock in order to mark the grace
2128 * period as completed in all of the rcu_node structures.
2129 */
2130 raw_spin_unlock_irq_rcu_node(rnp);
2131
2132 /*
2133 * Propagate new ->completed value to rcu_node structures so
2134 * that other CPUs don't have to wait until the start of the next
2135 * grace period to process their callbacks. This also avoids
2136 * some nasty RCU grace-period initialization races by forcing
2137 * the end of the current grace period to be completely recorded in
2138 * all of the rcu_node structures before the beginning of the next
2139 * grace period is recorded in any of the rcu_node structures.
2140 */
2141 rcu_for_each_node_breadth_first(rsp, rnp) {
2142 raw_spin_lock_irq_rcu_node(rnp);
2143 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2144 WARN_ON_ONCE(rnp->qsmask);
2145 WRITE_ONCE(rnp->completed, rsp->gpnum);
2146 rdp = this_cpu_ptr(rsp->rda);
2147 if (rnp == rdp->mynode)
2148 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2149 /* smp_mb() provided by prior unlock-lock pair. */
2150 nocb += rcu_future_gp_cleanup(rsp, rnp);
2151 sq = rcu_nocb_gp_get(rnp);
2152 raw_spin_unlock_irq_rcu_node(rnp);
2153 rcu_nocb_gp_cleanup(sq);
2154 cond_resched_rcu_qs();
2155 WRITE_ONCE(rsp->gp_activity, jiffies);
2156 rcu_gp_slow(rsp, gp_cleanup_delay);
2157 }
2158 rnp = rcu_get_root(rsp);
2159 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2160 rcu_nocb_gp_set(rnp, nocb);
2161
2162 /* Declare grace period done. */
2163 WRITE_ONCE(rsp->completed, rsp->gpnum);
2164 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2165 rsp->gp_state = RCU_GP_IDLE;
2166 rdp = this_cpu_ptr(rsp->rda);
2167 /* Advance CBs to reduce false positives below. */
2168 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2169 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2170 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2171 trace_rcu_grace_period(rsp->name,
2172 READ_ONCE(rsp->gpnum),
2173 TPS("newreq"));
2174 }
2175 raw_spin_unlock_irq_rcu_node(rnp);
2176}
2177
2178/*
2179 * Body of kthread that handles grace periods.
2180 */
2181static int __noreturn rcu_gp_kthread(void *arg)
2182{
2183 bool first_gp_fqs;
2184 int gf;
2185 unsigned long j;
2186 int ret;
2187 struct rcu_state *rsp = arg;
2188 struct rcu_node *rnp = rcu_get_root(rsp);
2189
2190 rcu_bind_gp_kthread();
2191 for (;;) {
2192
2193 /* Handle grace-period start. */
2194 for (;;) {
2195 trace_rcu_grace_period(rsp->name,
2196 READ_ONCE(rsp->gpnum),
2197 TPS("reqwait"));
2198 rsp->gp_state = RCU_GP_WAIT_GPS;
2199 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2200 RCU_GP_FLAG_INIT);
2201 rsp->gp_state = RCU_GP_DONE_GPS;
2202 /* Locking provides needed memory barrier. */
2203 if (rcu_gp_init(rsp))
2204 break;
2205 cond_resched_rcu_qs();
2206 WRITE_ONCE(rsp->gp_activity, jiffies);
2207 WARN_ON(signal_pending(current));
2208 trace_rcu_grace_period(rsp->name,
2209 READ_ONCE(rsp->gpnum),
2210 TPS("reqwaitsig"));
2211 }
2212
2213 /* Handle quiescent-state forcing. */
2214 first_gp_fqs = true;
2215 j = jiffies_till_first_fqs;
2216 if (j > HZ) {
2217 j = HZ;
2218 jiffies_till_first_fqs = HZ;
2219 }
2220 ret = 0;
2221 for (;;) {
2222 if (!ret) {
2223 rsp->jiffies_force_qs = jiffies + j;
2224 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2225 jiffies + 3 * j);
2226 }
2227 trace_rcu_grace_period(rsp->name,
2228 READ_ONCE(rsp->gpnum),
2229 TPS("fqswait"));
2230 rsp->gp_state = RCU_GP_WAIT_FQS;
2231 ret = swait_event_idle_timeout(rsp->gp_wq,
2232 rcu_gp_fqs_check_wake(rsp, &gf), j);
2233 rsp->gp_state = RCU_GP_DOING_FQS;
2234 /* Locking provides needed memory barriers. */
2235 /* If grace period done, leave loop. */
2236 if (!READ_ONCE(rnp->qsmask) &&
2237 !rcu_preempt_blocked_readers_cgp(rnp))
2238 break;
2239 /* If time for quiescent-state forcing, do it. */
2240 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2241 (gf & RCU_GP_FLAG_FQS)) {
2242 trace_rcu_grace_period(rsp->name,
2243 READ_ONCE(rsp->gpnum),
2244 TPS("fqsstart"));
2245 rcu_gp_fqs(rsp, first_gp_fqs);
2246 first_gp_fqs = false;
2247 trace_rcu_grace_period(rsp->name,
2248 READ_ONCE(rsp->gpnum),
2249 TPS("fqsend"));
2250 cond_resched_rcu_qs();
2251 WRITE_ONCE(rsp->gp_activity, jiffies);
2252 ret = 0; /* Force full wait till next FQS. */
2253 j = jiffies_till_next_fqs;
2254 if (j > HZ) {
2255 j = HZ;
2256 jiffies_till_next_fqs = HZ;
2257 } else if (j < 1) {
2258 j = 1;
2259 jiffies_till_next_fqs = 1;
2260 }
2261 } else {
2262 /* Deal with stray signal. */
2263 cond_resched_rcu_qs();
2264 WRITE_ONCE(rsp->gp_activity, jiffies);
2265 WARN_ON(signal_pending(current));
2266 trace_rcu_grace_period(rsp->name,
2267 READ_ONCE(rsp->gpnum),
2268 TPS("fqswaitsig"));
2269 ret = 1; /* Keep old FQS timing. */
2270 j = jiffies;
2271 if (time_after(jiffies, rsp->jiffies_force_qs))
2272 j = 1;
2273 else
2274 j = rsp->jiffies_force_qs - j;
2275 }
2276 }
2277
2278 /* Handle grace-period end. */
2279 rsp->gp_state = RCU_GP_CLEANUP;
2280 rcu_gp_cleanup(rsp);
2281 rsp->gp_state = RCU_GP_CLEANED;
2282 }
2283}
2284
2285/*
2286 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2287 * in preparation for detecting the next grace period. The caller must hold
2288 * the root node's ->lock and hard irqs must be disabled.
2289 *
2290 * Note that it is legal for a dying CPU (which is marked as offline) to
2291 * invoke this function. This can happen when the dying CPU reports its
2292 * quiescent state.
2293 *
2294 * Returns true if the grace-period kthread must be awakened.
2295 */
2296static bool
2297rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2298 struct rcu_data *rdp)
2299{
2300 raw_lockdep_assert_held_rcu_node(rnp);
2301 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2302 /*
2303 * Either we have not yet spawned the grace-period
2304 * task, this CPU does not need another grace period,
2305 * or a grace period is already in progress.
2306 * Either way, don't start a new grace period.
2307 */
2308 return false;
2309 }
2310 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2311 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2312 TPS("newreq"));
2313
2314 /*
2315 * We can't do wakeups while holding the rnp->lock, as that
2316 * could cause possible deadlocks with the rq->lock. Defer
2317 * the wakeup to our caller.
2318 */
2319 return true;
2320}
2321
2322/*
2323 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2324 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2325 * is invoked indirectly from rcu_advance_cbs(), which would result in
2326 * endless recursion -- or would do so if it wasn't for the self-deadlock
2327 * that is encountered beforehand.
2328 *
2329 * Returns true if the grace-period kthread needs to be awakened.
2330 */
2331static bool rcu_start_gp(struct rcu_state *rsp)
2332{
2333 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2334 struct rcu_node *rnp = rcu_get_root(rsp);
2335 bool ret = false;
2336
2337 /*
2338 * If there is no grace period in progress right now, any
2339 * callbacks we have up to this point will be satisfied by the
2340 * next grace period. Also, advancing the callbacks reduces the
2341 * probability of false positives from cpu_needs_another_gp()
2342 * resulting in pointless grace periods. So, advance callbacks
2343 * then start the grace period!
2344 */
2345 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2346 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2347 return ret;
2348}
2349
2350/*
2351 * Report a full set of quiescent states to the specified rcu_state data
2352 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2353 * kthread if another grace period is required. Whether we wake
2354 * the grace-period kthread or it awakens itself for the next round
2355 * of quiescent-state forcing, that kthread will clean up after the
2356 * just-completed grace period. Note that the caller must hold rnp->lock,
2357 * which is released before return.
2358 */
2359static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2360 __releases(rcu_get_root(rsp)->lock)
2361{
2362 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
2363 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2364 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2365 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2366 rcu_gp_kthread_wake(rsp);
2367}
2368
2369/*
2370 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2371 * Allows quiescent states for a group of CPUs to be reported at one go
2372 * to the specified rcu_node structure, though all the CPUs in the group
2373 * must be represented by the same rcu_node structure (which need not be a
2374 * leaf rcu_node structure, though it often will be). The gps parameter
2375 * is the grace-period snapshot, which means that the quiescent states
2376 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2377 * must be held upon entry, and it is released before return.
2378 */
2379static void
2380rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2381 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2382 __releases(rnp->lock)
2383{
2384 unsigned long oldmask = 0;
2385 struct rcu_node *rnp_c;
2386
2387 raw_lockdep_assert_held_rcu_node(rnp);
2388
2389 /* Walk up the rcu_node hierarchy. */
2390 for (;;) {
2391 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2392
2393 /*
2394 * Our bit has already been cleared, or the
2395 * relevant grace period is already over, so done.
2396 */
2397 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2398 return;
2399 }
2400 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2401 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2402 rcu_preempt_blocked_readers_cgp(rnp));
2403 rnp->qsmask &= ~mask;
2404 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2405 mask, rnp->qsmask, rnp->level,
2406 rnp->grplo, rnp->grphi,
2407 !!rnp->gp_tasks);
2408 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2409
2410 /* Other bits still set at this level, so done. */
2411 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2412 return;
2413 }
2414 mask = rnp->grpmask;
2415 if (rnp->parent == NULL) {
2416
2417 /* No more levels. Exit loop holding root lock. */
2418
2419 break;
2420 }
2421 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2422 rnp_c = rnp;
2423 rnp = rnp->parent;
2424 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2425 oldmask = rnp_c->qsmask;
2426 }
2427
2428 /*
2429 * Get here if we are the last CPU to pass through a quiescent
2430 * state for this grace period. Invoke rcu_report_qs_rsp()
2431 * to clean up and start the next grace period if one is needed.
2432 */
2433 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2434}
2435
2436/*
2437 * Record a quiescent state for all tasks that were previously queued
2438 * on the specified rcu_node structure and that were blocking the current
2439 * RCU grace period. The caller must hold the specified rnp->lock with
2440 * irqs disabled, and this lock is released upon return, but irqs remain
2441 * disabled.
2442 */
2443static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2444 struct rcu_node *rnp, unsigned long flags)
2445 __releases(rnp->lock)
2446{
2447 unsigned long gps;
2448 unsigned long mask;
2449 struct rcu_node *rnp_p;
2450
2451 raw_lockdep_assert_held_rcu_node(rnp);
2452 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2453 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2455 return; /* Still need more quiescent states! */
2456 }
2457
2458 rnp_p = rnp->parent;
2459 if (rnp_p == NULL) {
2460 /*
2461 * Only one rcu_node structure in the tree, so don't
2462 * try to report up to its nonexistent parent!
2463 */
2464 rcu_report_qs_rsp(rsp, flags);
2465 return;
2466 }
2467
2468 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2469 gps = rnp->gpnum;
2470 mask = rnp->grpmask;
2471 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2472 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2473 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2474}
2475
2476/*
2477 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2478 * structure. This must be called from the specified CPU.
2479 */
2480static void
2481rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2482{
2483 unsigned long flags;
2484 unsigned long mask;
2485 bool needwake;
2486 struct rcu_node *rnp;
2487
2488 rnp = rdp->mynode;
2489 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2490 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2491 rnp->completed == rnp->gpnum || rdp->gpwrap) {
2492
2493 /*
2494 * The grace period in which this quiescent state was
2495 * recorded has ended, so don't report it upwards.
2496 * We will instead need a new quiescent state that lies
2497 * within the current grace period.
2498 */
2499 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2500 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2501 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2502 return;
2503 }
2504 mask = rdp->grpmask;
2505 if ((rnp->qsmask & mask) == 0) {
2506 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2507 } else {
2508 rdp->core_needs_qs = false;
2509
2510 /*
2511 * This GP can't end until cpu checks in, so all of our
2512 * callbacks can be processed during the next GP.
2513 */
2514 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2515
2516 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2517 /* ^^^ Released rnp->lock */
2518 if (needwake)
2519 rcu_gp_kthread_wake(rsp);
2520 }
2521}
2522
2523/*
2524 * Check to see if there is a new grace period of which this CPU
2525 * is not yet aware, and if so, set up local rcu_data state for it.
2526 * Otherwise, see if this CPU has just passed through its first
2527 * quiescent state for this grace period, and record that fact if so.
2528 */
2529static void
2530rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2531{
2532 /* Check for grace-period ends and beginnings. */
2533 note_gp_changes(rsp, rdp);
2534
2535 /*
2536 * Does this CPU still need to do its part for current grace period?
2537 * If no, return and let the other CPUs do their part as well.
2538 */
2539 if (!rdp->core_needs_qs)
2540 return;
2541
2542 /*
2543 * Was there a quiescent state since the beginning of the grace
2544 * period? If no, then exit and wait for the next call.
2545 */
2546 if (rdp->cpu_no_qs.b.norm)
2547 return;
2548
2549 /*
2550 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2551 * judge of that).
2552 */
2553 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2554}
2555
2556/*
2557 * Trace the fact that this CPU is going offline.
2558 */
2559static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2560{
2561 RCU_TRACE(unsigned long mask;)
2562 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2563 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2564
2565 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2566 return;
2567
2568 RCU_TRACE(mask = rdp->grpmask;)
2569 trace_rcu_grace_period(rsp->name,
2570 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2571 TPS("cpuofl"));
2572}
2573
2574/*
2575 * All CPUs for the specified rcu_node structure have gone offline,
2576 * and all tasks that were preempted within an RCU read-side critical
2577 * section while running on one of those CPUs have since exited their RCU
2578 * read-side critical section. Some other CPU is reporting this fact with
2579 * the specified rcu_node structure's ->lock held and interrupts disabled.
2580 * This function therefore goes up the tree of rcu_node structures,
2581 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2582 * the leaf rcu_node structure's ->qsmaskinit field has already been
2583 * updated
2584 *
2585 * This function does check that the specified rcu_node structure has
2586 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2587 * prematurely. That said, invoking it after the fact will cost you
2588 * a needless lock acquisition. So once it has done its work, don't
2589 * invoke it again.
2590 */
2591static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2592{
2593 long mask;
2594 struct rcu_node *rnp = rnp_leaf;
2595
2596 raw_lockdep_assert_held_rcu_node(rnp);
2597 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2598 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2599 return;
2600 for (;;) {
2601 mask = rnp->grpmask;
2602 rnp = rnp->parent;
2603 if (!rnp)
2604 break;
2605 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2606 rnp->qsmaskinit &= ~mask;
2607 rnp->qsmask &= ~mask;
2608 if (rnp->qsmaskinit) {
2609 raw_spin_unlock_rcu_node(rnp);
2610 /* irqs remain disabled. */
2611 return;
2612 }
2613 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2614 }
2615}
2616
2617/*
2618 * The CPU has been completely removed, and some other CPU is reporting
2619 * this fact from process context. Do the remainder of the cleanup.
2620 * There can only be one CPU hotplug operation at a time, so no need for
2621 * explicit locking.
2622 */
2623static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2624{
2625 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2626 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2627
2628 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2629 return;
2630
2631 /* Adjust any no-longer-needed kthreads. */
2632 rcu_boost_kthread_setaffinity(rnp, -1);
2633}
2634
2635/*
2636 * Invoke any RCU callbacks that have made it to the end of their grace
2637 * period. Thottle as specified by rdp->blimit.
2638 */
2639static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2640{
2641 unsigned long flags;
2642 struct rcu_head *rhp;
2643 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2644 long bl, count;
2645
2646 /* If no callbacks are ready, just return. */
2647 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2648 trace_rcu_batch_start(rsp->name,
2649 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2650 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2651 trace_rcu_batch_end(rsp->name, 0,
2652 !rcu_segcblist_empty(&rdp->cblist),
2653 need_resched(), is_idle_task(current),
2654 rcu_is_callbacks_kthread());
2655 return;
2656 }
2657
2658 /*
2659 * Extract the list of ready callbacks, disabling to prevent
2660 * races with call_rcu() from interrupt handlers. Leave the
2661 * callback counts, as rcu_barrier() needs to be conservative.
2662 */
2663 local_irq_save(flags);
2664 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2665 bl = rdp->blimit;
2666 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2667 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2668 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2669 local_irq_restore(flags);
2670
2671 /* Invoke callbacks. */
2672 rhp = rcu_cblist_dequeue(&rcl);
2673 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2674 debug_rcu_head_unqueue(rhp);
2675 if (__rcu_reclaim(rsp->name, rhp))
2676 rcu_cblist_dequeued_lazy(&rcl);
2677 /*
2678 * Stop only if limit reached and CPU has something to do.
2679 * Note: The rcl structure counts down from zero.
2680 */
2681 if (-rcl.len >= bl &&
2682 (need_resched() ||
2683 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2684 break;
2685 }
2686
2687 local_irq_save(flags);
2688 count = -rcl.len;
2689 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2690 is_idle_task(current), rcu_is_callbacks_kthread());
2691
2692 /* Update counts and requeue any remaining callbacks. */
2693 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2694 smp_mb(); /* List handling before counting for rcu_barrier(). */
2695 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2696
2697 /* Reinstate batch limit if we have worked down the excess. */
2698 count = rcu_segcblist_n_cbs(&rdp->cblist);
2699 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2700 rdp->blimit = blimit;
2701
2702 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2703 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2704 rdp->qlen_last_fqs_check = 0;
2705 rdp->n_force_qs_snap = rsp->n_force_qs;
2706 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2707 rdp->qlen_last_fqs_check = count;
2708
2709 /*
2710 * The following usually indicates a double call_rcu(). To track
2711 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2712 */
2713 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2714
2715 local_irq_restore(flags);
2716
2717 /* Re-invoke RCU core processing if there are callbacks remaining. */
2718 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2719 invoke_rcu_core();
2720}
2721
2722/*
2723 * Check to see if this CPU is in a non-context-switch quiescent state
2724 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2725 * Also schedule RCU core processing.
2726 *
2727 * This function must be called from hardirq context. It is normally
2728 * invoked from the scheduling-clock interrupt.
2729 */
2730void rcu_check_callbacks(int user)
2731{
2732 trace_rcu_utilization(TPS("Start scheduler-tick"));
2733 increment_cpu_stall_ticks();
2734 if (user || rcu_is_cpu_rrupt_from_idle()) {
2735
2736 /*
2737 * Get here if this CPU took its interrupt from user
2738 * mode or from the idle loop, and if this is not a
2739 * nested interrupt. In this case, the CPU is in
2740 * a quiescent state, so note it.
2741 *
2742 * No memory barrier is required here because both
2743 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2744 * variables that other CPUs neither access nor modify,
2745 * at least not while the corresponding CPU is online.
2746 */
2747
2748 rcu_sched_qs();
2749 rcu_bh_qs();
2750
2751 } else if (!in_softirq()) {
2752
2753 /*
2754 * Get here if this CPU did not take its interrupt from
2755 * softirq, in other words, if it is not interrupting
2756 * a rcu_bh read-side critical section. This is an _bh
2757 * critical section, so note it.
2758 */
2759
2760 rcu_bh_qs();
2761 }
2762 rcu_preempt_check_callbacks();
2763 if (rcu_pending())
2764 invoke_rcu_core();
2765 if (user)
2766 rcu_note_voluntary_context_switch(current);
2767 trace_rcu_utilization(TPS("End scheduler-tick"));
2768}
2769
2770/*
2771 * Scan the leaf rcu_node structures, processing dyntick state for any that
2772 * have not yet encountered a quiescent state, using the function specified.
2773 * Also initiate boosting for any threads blocked on the root rcu_node.
2774 *
2775 * The caller must have suppressed start of new grace periods.
2776 */
2777static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2778{
2779 int cpu;
2780 unsigned long flags;
2781 unsigned long mask;
2782 struct rcu_node *rnp;
2783
2784 rcu_for_each_leaf_node(rsp, rnp) {
2785 cond_resched_rcu_qs();
2786 mask = 0;
2787 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2788 if (rnp->qsmask == 0) {
2789 if (rcu_state_p == &rcu_sched_state ||
2790 rsp != rcu_state_p ||
2791 rcu_preempt_blocked_readers_cgp(rnp)) {
2792 /*
2793 * No point in scanning bits because they
2794 * are all zero. But we might need to
2795 * priority-boost blocked readers.
2796 */
2797 rcu_initiate_boost(rnp, flags);
2798 /* rcu_initiate_boost() releases rnp->lock */
2799 continue;
2800 }
2801 if (rnp->parent &&
2802 (rnp->parent->qsmask & rnp->grpmask)) {
2803 /*
2804 * Race between grace-period
2805 * initialization and task exiting RCU
2806 * read-side critical section: Report.
2807 */
2808 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2809 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2810 continue;
2811 }
2812 }
2813 for_each_leaf_node_possible_cpu(rnp, cpu) {
2814 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2815 if ((rnp->qsmask & bit) != 0) {
2816 if (f(per_cpu_ptr(rsp->rda, cpu)))
2817 mask |= bit;
2818 }
2819 }
2820 if (mask != 0) {
2821 /* Idle/offline CPUs, report (releases rnp->lock. */
2822 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2823 } else {
2824 /* Nothing to do here, so just drop the lock. */
2825 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2826 }
2827 }
2828}
2829
2830/*
2831 * Force quiescent states on reluctant CPUs, and also detect which
2832 * CPUs are in dyntick-idle mode.
2833 */
2834static void force_quiescent_state(struct rcu_state *rsp)
2835{
2836 unsigned long flags;
2837 bool ret;
2838 struct rcu_node *rnp;
2839 struct rcu_node *rnp_old = NULL;
2840
2841 /* Funnel through hierarchy to reduce memory contention. */
2842 rnp = __this_cpu_read(rsp->rda->mynode);
2843 for (; rnp != NULL; rnp = rnp->parent) {
2844 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2845 !raw_spin_trylock(&rnp->fqslock);
2846 if (rnp_old != NULL)
2847 raw_spin_unlock(&rnp_old->fqslock);
2848 if (ret)
2849 return;
2850 rnp_old = rnp;
2851 }
2852 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2853
2854 /* Reached the root of the rcu_node tree, acquire lock. */
2855 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2856 raw_spin_unlock(&rnp_old->fqslock);
2857 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2858 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2859 return; /* Someone beat us to it. */
2860 }
2861 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2862 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2863 rcu_gp_kthread_wake(rsp);
2864}
2865
2866/*
2867 * This does the RCU core processing work for the specified rcu_state
2868 * and rcu_data structures. This may be called only from the CPU to
2869 * whom the rdp belongs.
2870 */
2871static void
2872__rcu_process_callbacks(struct rcu_state *rsp)
2873{
2874 unsigned long flags;
2875 bool needwake;
2876 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2877
2878 WARN_ON_ONCE(!rdp->beenonline);
2879
2880 /* Update RCU state based on any recent quiescent states. */
2881 rcu_check_quiescent_state(rsp, rdp);
2882
2883 /* Does this CPU require a not-yet-started grace period? */
2884 local_irq_save(flags);
2885 if (cpu_needs_another_gp(rsp, rdp)) {
2886 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2887 needwake = rcu_start_gp(rsp);
2888 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2889 if (needwake)
2890 rcu_gp_kthread_wake(rsp);
2891 } else {
2892 local_irq_restore(flags);
2893 }
2894
2895 /* If there are callbacks ready, invoke them. */
2896 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2897 invoke_rcu_callbacks(rsp, rdp);
2898
2899 /* Do any needed deferred wakeups of rcuo kthreads. */
2900 do_nocb_deferred_wakeup(rdp);
2901}
2902
2903/*
2904 * Do RCU core processing for the current CPU.
2905 */
2906static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2907{
2908 struct rcu_state *rsp;
2909
2910 if (cpu_is_offline(smp_processor_id()))
2911 return;
2912 trace_rcu_utilization(TPS("Start RCU core"));
2913 for_each_rcu_flavor(rsp)
2914 __rcu_process_callbacks(rsp);
2915 trace_rcu_utilization(TPS("End RCU core"));
2916}
2917
2918/*
2919 * Schedule RCU callback invocation. If the specified type of RCU
2920 * does not support RCU priority boosting, just do a direct call,
2921 * otherwise wake up the per-CPU kernel kthread. Note that because we
2922 * are running on the current CPU with softirqs disabled, the
2923 * rcu_cpu_kthread_task cannot disappear out from under us.
2924 */
2925static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2926{
2927 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2928 return;
2929 if (likely(!rsp->boost)) {
2930 rcu_do_batch(rsp, rdp);
2931 return;
2932 }
2933 invoke_rcu_callbacks_kthread();
2934}
2935
2936static void invoke_rcu_core(void)
2937{
2938 if (cpu_online(smp_processor_id()))
2939 raise_softirq(RCU_SOFTIRQ);
2940}
2941
2942/*
2943 * Handle any core-RCU processing required by a call_rcu() invocation.
2944 */
2945static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2946 struct rcu_head *head, unsigned long flags)
2947{
2948 bool needwake;
2949
2950 /*
2951 * If called from an extended quiescent state, invoke the RCU
2952 * core in order to force a re-evaluation of RCU's idleness.
2953 */
2954 if (!rcu_is_watching())
2955 invoke_rcu_core();
2956
2957 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2958 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2959 return;
2960
2961 /*
2962 * Force the grace period if too many callbacks or too long waiting.
2963 * Enforce hysteresis, and don't invoke force_quiescent_state()
2964 * if some other CPU has recently done so. Also, don't bother
2965 * invoking force_quiescent_state() if the newly enqueued callback
2966 * is the only one waiting for a grace period to complete.
2967 */
2968 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2969 rdp->qlen_last_fqs_check + qhimark)) {
2970
2971 /* Are we ignoring a completed grace period? */
2972 note_gp_changes(rsp, rdp);
2973
2974 /* Start a new grace period if one not already started. */
2975 if (!rcu_gp_in_progress(rsp)) {
2976 struct rcu_node *rnp_root = rcu_get_root(rsp);
2977
2978 raw_spin_lock_rcu_node(rnp_root);
2979 needwake = rcu_start_gp(rsp);
2980 raw_spin_unlock_rcu_node(rnp_root);
2981 if (needwake)
2982 rcu_gp_kthread_wake(rsp);
2983 } else {
2984 /* Give the grace period a kick. */
2985 rdp->blimit = LONG_MAX;
2986 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2987 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2988 force_quiescent_state(rsp);
2989 rdp->n_force_qs_snap = rsp->n_force_qs;
2990 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2991 }
2992 }
2993}
2994
2995/*
2996 * RCU callback function to leak a callback.
2997 */
2998static void rcu_leak_callback(struct rcu_head *rhp)
2999{
3000}
3001
3002/*
3003 * Helper function for call_rcu() and friends. The cpu argument will
3004 * normally be -1, indicating "currently running CPU". It may specify
3005 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3006 * is expected to specify a CPU.
3007 */
3008static void
3009__call_rcu(struct rcu_head *head, rcu_callback_t func,
3010 struct rcu_state *rsp, int cpu, bool lazy)
3011{
3012 unsigned long flags;
3013 struct rcu_data *rdp;
3014
3015 /* Misaligned rcu_head! */
3016 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3017
3018 if (debug_rcu_head_queue(head)) {
3019 /*
3020 * Probable double call_rcu(), so leak the callback.
3021 * Use rcu:rcu_callback trace event to find the previous
3022 * time callback was passed to __call_rcu().
3023 */
3024 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3025 head, head->func);
3026 WRITE_ONCE(head->func, rcu_leak_callback);
3027 return;
3028 }
3029 head->func = func;
3030 head->next = NULL;
3031 local_irq_save(flags);
3032 rdp = this_cpu_ptr(rsp->rda);
3033
3034 /* Add the callback to our list. */
3035 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3036 int offline;
3037
3038 if (cpu != -1)
3039 rdp = per_cpu_ptr(rsp->rda, cpu);
3040 if (likely(rdp->mynode)) {
3041 /* Post-boot, so this should be for a no-CBs CPU. */
3042 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3043 WARN_ON_ONCE(offline);
3044 /* Offline CPU, _call_rcu() illegal, leak callback. */
3045 local_irq_restore(flags);
3046 return;
3047 }
3048 /*
3049 * Very early boot, before rcu_init(). Initialize if needed
3050 * and then drop through to queue the callback.
3051 */
3052 BUG_ON(cpu != -1);
3053 WARN_ON_ONCE(!rcu_is_watching());
3054 if (rcu_segcblist_empty(&rdp->cblist))
3055 rcu_segcblist_init(&rdp->cblist);
3056 }
3057 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3058 if (!lazy)
3059 rcu_idle_count_callbacks_posted();
3060
3061 if (__is_kfree_rcu_offset((unsigned long)func))
3062 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3063 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3064 rcu_segcblist_n_cbs(&rdp->cblist));
3065 else
3066 trace_rcu_callback(rsp->name, head,
3067 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3068 rcu_segcblist_n_cbs(&rdp->cblist));
3069
3070 /* Go handle any RCU core processing required. */
3071 __call_rcu_core(rsp, rdp, head, flags);
3072 local_irq_restore(flags);
3073}
3074
3075/**
3076 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3077 * @head: structure to be used for queueing the RCU updates.
3078 * @func: actual callback function to be invoked after the grace period
3079 *
3080 * The callback function will be invoked some time after a full grace
3081 * period elapses, in other words after all currently executing RCU
3082 * read-side critical sections have completed. call_rcu_sched() assumes
3083 * that the read-side critical sections end on enabling of preemption
3084 * or on voluntary preemption.
3085 * RCU read-side critical sections are delimited by:
3086 *
3087 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3088 * - anything that disables preemption.
3089 *
3090 * These may be nested.
3091 *
3092 * See the description of call_rcu() for more detailed information on
3093 * memory ordering guarantees.
3094 */
3095void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3096{
3097 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3098}
3099EXPORT_SYMBOL_GPL(call_rcu_sched);
3100
3101/**
3102 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3103 * @head: structure to be used for queueing the RCU updates.
3104 * @func: actual callback function to be invoked after the grace period
3105 *
3106 * The callback function will be invoked some time after a full grace
3107 * period elapses, in other words after all currently executing RCU
3108 * read-side critical sections have completed. call_rcu_bh() assumes
3109 * that the read-side critical sections end on completion of a softirq
3110 * handler. This means that read-side critical sections in process
3111 * context must not be interrupted by softirqs. This interface is to be
3112 * used when most of the read-side critical sections are in softirq context.
3113 * RCU read-side critical sections are delimited by:
3114 *
3115 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3116 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3117 *
3118 * These may be nested.
3119 *
3120 * See the description of call_rcu() for more detailed information on
3121 * memory ordering guarantees.
3122 */
3123void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3124{
3125 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3126}
3127EXPORT_SYMBOL_GPL(call_rcu_bh);
3128
3129/*
3130 * Queue an RCU callback for lazy invocation after a grace period.
3131 * This will likely be later named something like "call_rcu_lazy()",
3132 * but this change will require some way of tagging the lazy RCU
3133 * callbacks in the list of pending callbacks. Until then, this
3134 * function may only be called from __kfree_rcu().
3135 */
3136void kfree_call_rcu(struct rcu_head *head,
3137 rcu_callback_t func)
3138{
3139 __call_rcu(head, func, rcu_state_p, -1, 1);
3140}
3141EXPORT_SYMBOL_GPL(kfree_call_rcu);
3142
3143/*
3144 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3145 * any blocking grace-period wait automatically implies a grace period
3146 * if there is only one CPU online at any point time during execution
3147 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3148 * occasionally incorrectly indicate that there are multiple CPUs online
3149 * when there was in fact only one the whole time, as this just adds
3150 * some overhead: RCU still operates correctly.
3151 */
3152static inline int rcu_blocking_is_gp(void)
3153{
3154 int ret;
3155
3156 might_sleep(); /* Check for RCU read-side critical section. */
3157 preempt_disable();
3158 ret = num_online_cpus() <= 1;
3159 preempt_enable();
3160 return ret;
3161}
3162
3163/**
3164 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3165 *
3166 * Control will return to the caller some time after a full rcu-sched
3167 * grace period has elapsed, in other words after all currently executing
3168 * rcu-sched read-side critical sections have completed. These read-side
3169 * critical sections are delimited by rcu_read_lock_sched() and
3170 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3171 * local_irq_disable(), and so on may be used in place of
3172 * rcu_read_lock_sched().
3173 *
3174 * This means that all preempt_disable code sequences, including NMI and
3175 * non-threaded hardware-interrupt handlers, in progress on entry will
3176 * have completed before this primitive returns. However, this does not
3177 * guarantee that softirq handlers will have completed, since in some
3178 * kernels, these handlers can run in process context, and can block.
3179 *
3180 * Note that this guarantee implies further memory-ordering guarantees.
3181 * On systems with more than one CPU, when synchronize_sched() returns,
3182 * each CPU is guaranteed to have executed a full memory barrier since the
3183 * end of its last RCU-sched read-side critical section whose beginning
3184 * preceded the call to synchronize_sched(). In addition, each CPU having
3185 * an RCU read-side critical section that extends beyond the return from
3186 * synchronize_sched() is guaranteed to have executed a full memory barrier
3187 * after the beginning of synchronize_sched() and before the beginning of
3188 * that RCU read-side critical section. Note that these guarantees include
3189 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3190 * that are executing in the kernel.
3191 *
3192 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3193 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3194 * to have executed a full memory barrier during the execution of
3195 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3196 * again only if the system has more than one CPU).
3197 */
3198void synchronize_sched(void)
3199{
3200 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3201 lock_is_held(&rcu_lock_map) ||
3202 lock_is_held(&rcu_sched_lock_map),
3203 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3204 if (rcu_blocking_is_gp())
3205 return;
3206 if (rcu_gp_is_expedited())
3207 synchronize_sched_expedited();
3208 else
3209 wait_rcu_gp(call_rcu_sched);
3210}
3211EXPORT_SYMBOL_GPL(synchronize_sched);
3212
3213/**
3214 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3215 *
3216 * Control will return to the caller some time after a full rcu_bh grace
3217 * period has elapsed, in other words after all currently executing rcu_bh
3218 * read-side critical sections have completed. RCU read-side critical
3219 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3220 * and may be nested.
3221 *
3222 * See the description of synchronize_sched() for more detailed information
3223 * on memory ordering guarantees.
3224 */
3225void synchronize_rcu_bh(void)
3226{
3227 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3228 lock_is_held(&rcu_lock_map) ||
3229 lock_is_held(&rcu_sched_lock_map),
3230 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3231 if (rcu_blocking_is_gp())
3232 return;
3233 if (rcu_gp_is_expedited())
3234 synchronize_rcu_bh_expedited();
3235 else
3236 wait_rcu_gp(call_rcu_bh);
3237}
3238EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3239
3240/**
3241 * get_state_synchronize_rcu - Snapshot current RCU state
3242 *
3243 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3244 * to determine whether or not a full grace period has elapsed in the
3245 * meantime.
3246 */
3247unsigned long get_state_synchronize_rcu(void)
3248{
3249 /*
3250 * Any prior manipulation of RCU-protected data must happen
3251 * before the load from ->gpnum.
3252 */
3253 smp_mb(); /* ^^^ */
3254
3255 /*
3256 * Make sure this load happens before the purportedly
3257 * time-consuming work between get_state_synchronize_rcu()
3258 * and cond_synchronize_rcu().
3259 */
3260 return smp_load_acquire(&rcu_state_p->gpnum);
3261}
3262EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3263
3264/**
3265 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3266 *
3267 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3268 *
3269 * If a full RCU grace period has elapsed since the earlier call to
3270 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3271 * synchronize_rcu() to wait for a full grace period.
3272 *
3273 * Yes, this function does not take counter wrap into account. But
3274 * counter wrap is harmless. If the counter wraps, we have waited for
3275 * more than 2 billion grace periods (and way more on a 64-bit system!),
3276 * so waiting for one additional grace period should be just fine.
3277 */
3278void cond_synchronize_rcu(unsigned long oldstate)
3279{
3280 unsigned long newstate;
3281
3282 /*
3283 * Ensure that this load happens before any RCU-destructive
3284 * actions the caller might carry out after we return.
3285 */
3286 newstate = smp_load_acquire(&rcu_state_p->completed);
3287 if (ULONG_CMP_GE(oldstate, newstate))
3288 synchronize_rcu();
3289}
3290EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3291
3292/**
3293 * get_state_synchronize_sched - Snapshot current RCU-sched state
3294 *
3295 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3296 * to determine whether or not a full grace period has elapsed in the
3297 * meantime.
3298 */
3299unsigned long get_state_synchronize_sched(void)
3300{
3301 /*
3302 * Any prior manipulation of RCU-protected data must happen
3303 * before the load from ->gpnum.
3304 */
3305 smp_mb(); /* ^^^ */
3306
3307 /*
3308 * Make sure this load happens before the purportedly
3309 * time-consuming work between get_state_synchronize_sched()
3310 * and cond_synchronize_sched().
3311 */
3312 return smp_load_acquire(&rcu_sched_state.gpnum);
3313}
3314EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3315
3316/**
3317 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3318 *
3319 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3320 *
3321 * If a full RCU-sched grace period has elapsed since the earlier call to
3322 * get_state_synchronize_sched(), just return. Otherwise, invoke
3323 * synchronize_sched() to wait for a full grace period.
3324 *
3325 * Yes, this function does not take counter wrap into account. But
3326 * counter wrap is harmless. If the counter wraps, we have waited for
3327 * more than 2 billion grace periods (and way more on a 64-bit system!),
3328 * so waiting for one additional grace period should be just fine.
3329 */
3330void cond_synchronize_sched(unsigned long oldstate)
3331{
3332 unsigned long newstate;
3333
3334 /*
3335 * Ensure that this load happens before any RCU-destructive
3336 * actions the caller might carry out after we return.
3337 */
3338 newstate = smp_load_acquire(&rcu_sched_state.completed);
3339 if (ULONG_CMP_GE(oldstate, newstate))
3340 synchronize_sched();
3341}
3342EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3343
3344/*
3345 * Check to see if there is any immediate RCU-related work to be done
3346 * by the current CPU, for the specified type of RCU, returning 1 if so.
3347 * The checks are in order of increasing expense: checks that can be
3348 * carried out against CPU-local state are performed first. However,
3349 * we must check for CPU stalls first, else we might not get a chance.
3350 */
3351static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3352{
3353 struct rcu_node *rnp = rdp->mynode;
3354
3355 /* Check for CPU stalls, if enabled. */
3356 check_cpu_stall(rsp, rdp);
3357
3358 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3359 if (rcu_nohz_full_cpu(rsp))
3360 return 0;
3361
3362 /* Is the RCU core waiting for a quiescent state from this CPU? */
3363 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
3364 return 1;
3365
3366 /* Does this CPU have callbacks ready to invoke? */
3367 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3368 return 1;
3369
3370 /* Has RCU gone idle with this CPU needing another grace period? */
3371 if (cpu_needs_another_gp(rsp, rdp))
3372 return 1;
3373
3374 /* Has another RCU grace period completed? */
3375 if (READ_ONCE(rnp->completed) != rdp->completed) /* outside lock */
3376 return 1;
3377
3378 /* Has a new RCU grace period started? */
3379 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3380 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3381 return 1;
3382
3383 /* Does this CPU need a deferred NOCB wakeup? */
3384 if (rcu_nocb_need_deferred_wakeup(rdp))
3385 return 1;
3386
3387 /* nothing to do */
3388 return 0;
3389}
3390
3391/*
3392 * Check to see if there is any immediate RCU-related work to be done
3393 * by the current CPU, returning 1 if so. This function is part of the
3394 * RCU implementation; it is -not- an exported member of the RCU API.
3395 */
3396static int rcu_pending(void)
3397{
3398 struct rcu_state *rsp;
3399
3400 for_each_rcu_flavor(rsp)
3401 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3402 return 1;
3403 return 0;
3404}
3405
3406/*
3407 * Return true if the specified CPU has any callback. If all_lazy is
3408 * non-NULL, store an indication of whether all callbacks are lazy.
3409 * (If there are no callbacks, all of them are deemed to be lazy.)
3410 */
3411static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3412{
3413 bool al = true;
3414 bool hc = false;
3415 struct rcu_data *rdp;
3416 struct rcu_state *rsp;
3417
3418 for_each_rcu_flavor(rsp) {
3419 rdp = this_cpu_ptr(rsp->rda);
3420 if (rcu_segcblist_empty(&rdp->cblist))
3421 continue;
3422 hc = true;
3423 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3424 al = false;
3425 break;
3426 }
3427 }
3428 if (all_lazy)
3429 *all_lazy = al;
3430 return hc;
3431}
3432
3433/*
3434 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3435 * the compiler is expected to optimize this away.
3436 */
3437static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3438 int cpu, unsigned long done)
3439{
3440 trace_rcu_barrier(rsp->name, s, cpu,
3441 atomic_read(&rsp->barrier_cpu_count), done);
3442}
3443
3444/*
3445 * RCU callback function for _rcu_barrier(). If we are last, wake
3446 * up the task executing _rcu_barrier().
3447 */
3448static void rcu_barrier_callback(struct rcu_head *rhp)
3449{
3450 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3451 struct rcu_state *rsp = rdp->rsp;
3452
3453 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3454 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3455 rsp->barrier_sequence);
3456 complete(&rsp->barrier_completion);
3457 } else {
3458 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3459 }
3460}
3461
3462/*
3463 * Called with preemption disabled, and from cross-cpu IRQ context.
3464 */
3465static void rcu_barrier_func(void *type)
3466{
3467 struct rcu_state *rsp = type;
3468 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3469
3470 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3471 rdp->barrier_head.func = rcu_barrier_callback;
3472 debug_rcu_head_queue(&rdp->barrier_head);
3473 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3474 atomic_inc(&rsp->barrier_cpu_count);
3475 } else {
3476 debug_rcu_head_unqueue(&rdp->barrier_head);
3477 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3478 rsp->barrier_sequence);
3479 }
3480}
3481
3482/*
3483 * Orchestrate the specified type of RCU barrier, waiting for all
3484 * RCU callbacks of the specified type to complete.
3485 */
3486static void _rcu_barrier(struct rcu_state *rsp)
3487{
3488 int cpu;
3489 struct rcu_data *rdp;
3490 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3491
3492 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3493
3494 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3495 mutex_lock(&rsp->barrier_mutex);
3496
3497 /* Did someone else do our work for us? */
3498 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3499 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3500 rsp->barrier_sequence);
3501 smp_mb(); /* caller's subsequent code after above check. */
3502 mutex_unlock(&rsp->barrier_mutex);
3503 return;
3504 }
3505
3506 /* Mark the start of the barrier operation. */
3507 rcu_seq_start(&rsp->barrier_sequence);
3508 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3509
3510 /*
3511 * Initialize the count to one rather than to zero in order to
3512 * avoid a too-soon return to zero in case of a short grace period
3513 * (or preemption of this task). Exclude CPU-hotplug operations
3514 * to ensure that no offline CPU has callbacks queued.
3515 */
3516 init_completion(&rsp->barrier_completion);
3517 atomic_set(&rsp->barrier_cpu_count, 1);
3518 get_online_cpus();
3519
3520 /*
3521 * Force each CPU with callbacks to register a new callback.
3522 * When that callback is invoked, we will know that all of the
3523 * corresponding CPU's preceding callbacks have been invoked.
3524 */
3525 for_each_possible_cpu(cpu) {
3526 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3527 continue;
3528 rdp = per_cpu_ptr(rsp->rda, cpu);
3529 if (rcu_is_nocb_cpu(cpu)) {
3530 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3531 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3532 rsp->barrier_sequence);
3533 } else {
3534 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3535 rsp->barrier_sequence);
3536 smp_mb__before_atomic();
3537 atomic_inc(&rsp->barrier_cpu_count);
3538 __call_rcu(&rdp->barrier_head,
3539 rcu_barrier_callback, rsp, cpu, 0);
3540 }
3541 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3542 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3543 rsp->barrier_sequence);
3544 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3545 } else {
3546 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3547 rsp->barrier_sequence);
3548 }
3549 }
3550 put_online_cpus();
3551
3552 /*
3553 * Now that we have an rcu_barrier_callback() callback on each
3554 * CPU, and thus each counted, remove the initial count.
3555 */
3556 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3557 complete(&rsp->barrier_completion);
3558
3559 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3560 wait_for_completion(&rsp->barrier_completion);
3561
3562 /* Mark the end of the barrier operation. */
3563 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3564 rcu_seq_end(&rsp->barrier_sequence);
3565
3566 /* Other rcu_barrier() invocations can now safely proceed. */
3567 mutex_unlock(&rsp->barrier_mutex);
3568}
3569
3570/**
3571 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3572 */
3573void rcu_barrier_bh(void)
3574{
3575 _rcu_barrier(&rcu_bh_state);
3576}
3577EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3578
3579/**
3580 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3581 */
3582void rcu_barrier_sched(void)
3583{
3584 _rcu_barrier(&rcu_sched_state);
3585}
3586EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3587
3588/*
3589 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3590 * first CPU in a given leaf rcu_node structure coming online. The caller
3591 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3592 * disabled.
3593 */
3594static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3595{
3596 long mask;
3597 struct rcu_node *rnp = rnp_leaf;
3598
3599 raw_lockdep_assert_held_rcu_node(rnp);
3600 for (;;) {
3601 mask = rnp->grpmask;
3602 rnp = rnp->parent;
3603 if (rnp == NULL)
3604 return;
3605 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3606 rnp->qsmaskinit |= mask;
3607 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3608 }
3609}
3610
3611/*
3612 * Do boot-time initialization of a CPU's per-CPU RCU data.
3613 */
3614static void __init
3615rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3616{
3617 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3618
3619 /* Set up local state, ensuring consistent view of global state. */
3620 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3621 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3622 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
3623 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3624 rdp->cpu = cpu;
3625 rdp->rsp = rsp;
3626 rcu_boot_init_nocb_percpu_data(rdp);
3627}
3628
3629/*
3630 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3631 * offline event can be happening at a given time. Note also that we
3632 * can accept some slop in the rsp->completed access due to the fact
3633 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3634 */
3635static void
3636rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3637{
3638 unsigned long flags;
3639 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3640 struct rcu_node *rnp = rcu_get_root(rsp);
3641
3642 /* Set up local state, ensuring consistent view of global state. */
3643 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3644 rdp->qlen_last_fqs_check = 0;
3645 rdp->n_force_qs_snap = rsp->n_force_qs;
3646 rdp->blimit = blimit;
3647 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3648 !init_nocb_callback_list(rdp))
3649 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3650 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */
3651 rcu_dynticks_eqs_online();
3652 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3653
3654 /*
3655 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3656 * propagation up the rcu_node tree will happen at the beginning
3657 * of the next grace period.
3658 */
3659 rnp = rdp->mynode;
3660 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3661 rdp->beenonline = true; /* We have now been online. */
3662 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3663 rdp->completed = rnp->completed;
3664 rdp->cpu_no_qs.b.norm = true;
3665 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3666 rdp->core_needs_qs = false;
3667 rdp->rcu_iw_pending = false;
3668 rdp->rcu_iw_gpnum = rnp->gpnum - 1;
3669 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3670 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3671}
3672
3673/*
3674 * Invoked early in the CPU-online process, when pretty much all
3675 * services are available. The incoming CPU is not present.
3676 */
3677int rcutree_prepare_cpu(unsigned int cpu)
3678{
3679 struct rcu_state *rsp;
3680
3681 for_each_rcu_flavor(rsp)
3682 rcu_init_percpu_data(cpu, rsp);
3683
3684 rcu_prepare_kthreads(cpu);
3685 rcu_spawn_all_nocb_kthreads(cpu);
3686
3687 return 0;
3688}
3689
3690/*
3691 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3692 */
3693static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3694{
3695 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3696
3697 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3698}
3699
3700/*
3701 * Near the end of the CPU-online process. Pretty much all services
3702 * enabled, and the CPU is now very much alive.
3703 */
3704int rcutree_online_cpu(unsigned int cpu)
3705{
3706 unsigned long flags;
3707 struct rcu_data *rdp;
3708 struct rcu_node *rnp;
3709 struct rcu_state *rsp;
3710
3711 for_each_rcu_flavor(rsp) {
3712 rdp = per_cpu_ptr(rsp->rda, cpu);
3713 rnp = rdp->mynode;
3714 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3715 rnp->ffmask |= rdp->grpmask;
3716 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3717 }
3718 if (IS_ENABLED(CONFIG_TREE_SRCU))
3719 srcu_online_cpu(cpu);
3720 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3721 return 0; /* Too early in boot for scheduler work. */
3722 sync_sched_exp_online_cleanup(cpu);
3723 rcutree_affinity_setting(cpu, -1);
3724 return 0;
3725}
3726
3727/*
3728 * Near the beginning of the process. The CPU is still very much alive
3729 * with pretty much all services enabled.
3730 */
3731int rcutree_offline_cpu(unsigned int cpu)
3732{
3733 unsigned long flags;
3734 struct rcu_data *rdp;
3735 struct rcu_node *rnp;
3736 struct rcu_state *rsp;
3737
3738 for_each_rcu_flavor(rsp) {
3739 rdp = per_cpu_ptr(rsp->rda, cpu);
3740 rnp = rdp->mynode;
3741 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3742 rnp->ffmask &= ~rdp->grpmask;
3743 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3744 }
3745
3746 rcutree_affinity_setting(cpu, cpu);
3747 if (IS_ENABLED(CONFIG_TREE_SRCU))
3748 srcu_offline_cpu(cpu);
3749 return 0;
3750}
3751
3752/*
3753 * Near the end of the offline process. We do only tracing here.
3754 */
3755int rcutree_dying_cpu(unsigned int cpu)
3756{
3757 struct rcu_state *rsp;
3758
3759 for_each_rcu_flavor(rsp)
3760 rcu_cleanup_dying_cpu(rsp);
3761 return 0;
3762}
3763
3764/*
3765 * The outgoing CPU is gone and we are running elsewhere.
3766 */
3767int rcutree_dead_cpu(unsigned int cpu)
3768{
3769 struct rcu_state *rsp;
3770
3771 for_each_rcu_flavor(rsp) {
3772 rcu_cleanup_dead_cpu(cpu, rsp);
3773 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3774 }
3775 return 0;
3776}
3777
3778/*
3779 * Mark the specified CPU as being online so that subsequent grace periods
3780 * (both expedited and normal) will wait on it. Note that this means that
3781 * incoming CPUs are not allowed to use RCU read-side critical sections
3782 * until this function is called. Failing to observe this restriction
3783 * will result in lockdep splats.
3784 *
3785 * Note that this function is special in that it is invoked directly
3786 * from the incoming CPU rather than from the cpuhp_step mechanism.
3787 * This is because this function must be invoked at a precise location.
3788 */
3789void rcu_cpu_starting(unsigned int cpu)
3790{
3791 unsigned long flags;
3792 unsigned long mask;
3793 int nbits;
3794 unsigned long oldmask;
3795 struct rcu_data *rdp;
3796 struct rcu_node *rnp;
3797 struct rcu_state *rsp;
3798
3799 for_each_rcu_flavor(rsp) {
3800 rdp = per_cpu_ptr(rsp->rda, cpu);
3801 rnp = rdp->mynode;
3802 mask = rdp->grpmask;
3803 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3804 rnp->qsmaskinitnext |= mask;
3805 oldmask = rnp->expmaskinitnext;
3806 rnp->expmaskinitnext |= mask;
3807 oldmask ^= rnp->expmaskinitnext;
3808 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3809 /* Allow lockless access for expedited grace periods. */
3810 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3811 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3812 }
3813 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3814}
3815
3816#ifdef CONFIG_HOTPLUG_CPU
3817/*
3818 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3819 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3820 * bit masks.
3821 */
3822static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3823{
3824 unsigned long flags;
3825 unsigned long mask;
3826 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3827 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3828
3829 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3830 mask = rdp->grpmask;
3831 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3832 rnp->qsmaskinitnext &= ~mask;
3833 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3834}
3835
3836/*
3837 * The outgoing function has no further need of RCU, so remove it from
3838 * the list of CPUs that RCU must track.
3839 *
3840 * Note that this function is special in that it is invoked directly
3841 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3842 * This is because this function must be invoked at a precise location.
3843 */
3844void rcu_report_dead(unsigned int cpu)
3845{
3846 struct rcu_state *rsp;
3847
3848 /* QS for any half-done expedited RCU-sched GP. */
3849 preempt_disable();
3850 rcu_report_exp_rdp(&rcu_sched_state,
3851 this_cpu_ptr(rcu_sched_state.rda), true);
3852 preempt_enable();
3853 for_each_rcu_flavor(rsp)
3854 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3855}
3856
3857/* Migrate the dead CPU's callbacks to the current CPU. */
3858static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3859{
3860 unsigned long flags;
3861 struct rcu_data *my_rdp;
3862 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3863 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3864
3865 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3866 return; /* No callbacks to migrate. */
3867
3868 local_irq_save(flags);
3869 my_rdp = this_cpu_ptr(rsp->rda);
3870 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3871 local_irq_restore(flags);
3872 return;
3873 }
3874 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3875 rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3876 rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3877 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3878 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3879 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3880 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3881 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3882 !rcu_segcblist_empty(&rdp->cblist),
3883 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3884 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3885 rcu_segcblist_first_cb(&rdp->cblist));
3886}
3887
3888/*
3889 * The outgoing CPU has just passed through the dying-idle state,
3890 * and we are being invoked from the CPU that was IPIed to continue the
3891 * offline operation. We need to migrate the outgoing CPU's callbacks.
3892 */
3893void rcutree_migrate_callbacks(int cpu)
3894{
3895 struct rcu_state *rsp;
3896
3897 for_each_rcu_flavor(rsp)
3898 rcu_migrate_callbacks(cpu, rsp);
3899}
3900#endif
3901
3902/*
3903 * On non-huge systems, use expedited RCU grace periods to make suspend
3904 * and hibernation run faster.
3905 */
3906static int rcu_pm_notify(struct notifier_block *self,
3907 unsigned long action, void *hcpu)
3908{
3909 switch (action) {
3910 case PM_HIBERNATION_PREPARE:
3911 case PM_SUSPEND_PREPARE:
3912 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3913 rcu_expedite_gp();
3914 break;
3915 case PM_POST_HIBERNATION:
3916 case PM_POST_SUSPEND:
3917 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3918 rcu_unexpedite_gp();
3919 break;
3920 default:
3921 break;
3922 }
3923 return NOTIFY_OK;
3924}
3925
3926/*
3927 * Spawn the kthreads that handle each RCU flavor's grace periods.
3928 */
3929static int __init rcu_spawn_gp_kthread(void)
3930{
3931 unsigned long flags;
3932 int kthread_prio_in = kthread_prio;
3933 struct rcu_node *rnp;
3934 struct rcu_state *rsp;
3935 struct sched_param sp;
3936 struct task_struct *t;
3937
3938 /* Force priority into range. */
3939 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3940 kthread_prio = 1;
3941 else if (kthread_prio < 0)
3942 kthread_prio = 0;
3943 else if (kthread_prio > 99)
3944 kthread_prio = 99;
3945 if (kthread_prio != kthread_prio_in)
3946 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3947 kthread_prio, kthread_prio_in);
3948
3949 rcu_scheduler_fully_active = 1;
3950 for_each_rcu_flavor(rsp) {
3951 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3952 BUG_ON(IS_ERR(t));
3953 rnp = rcu_get_root(rsp);
3954 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3955 rsp->gp_kthread = t;
3956 if (kthread_prio) {
3957 sp.sched_priority = kthread_prio;
3958 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3959 }
3960 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3961 wake_up_process(t);
3962 }
3963 rcu_spawn_nocb_kthreads();
3964 rcu_spawn_boost_kthreads();
3965 return 0;
3966}
3967early_initcall(rcu_spawn_gp_kthread);
3968
3969/*
3970 * This function is invoked towards the end of the scheduler's
3971 * initialization process. Before this is called, the idle task might
3972 * contain synchronous grace-period primitives (during which time, this idle
3973 * task is booting the system, and such primitives are no-ops). After this
3974 * function is called, any synchronous grace-period primitives are run as
3975 * expedited, with the requesting task driving the grace period forward.
3976 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3977 * runtime RCU functionality.
3978 */
3979void rcu_scheduler_starting(void)
3980{
3981 WARN_ON(num_online_cpus() != 1);
3982 WARN_ON(nr_context_switches() > 0);
3983 rcu_test_sync_prims();
3984 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3985 rcu_test_sync_prims();
3986}
3987
3988/*
3989 * Helper function for rcu_init() that initializes one rcu_state structure.
3990 */
3991static void __init rcu_init_one(struct rcu_state *rsp)
3992{
3993 static const char * const buf[] = RCU_NODE_NAME_INIT;
3994 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3995 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3996 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3997
3998 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3999 int cpustride = 1;
4000 int i;
4001 int j;
4002 struct rcu_node *rnp;
4003
4004 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4005
4006 /* Silence gcc 4.8 false positive about array index out of range. */
4007 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4008 panic("rcu_init_one: rcu_num_lvls out of range");
4009
4010 /* Initialize the level-tracking arrays. */
4011
4012 for (i = 1; i < rcu_num_lvls; i++)
4013 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4014 rcu_init_levelspread(levelspread, num_rcu_lvl);
4015
4016 /* Initialize the elements themselves, starting from the leaves. */
4017
4018 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4019 cpustride *= levelspread[i];
4020 rnp = rsp->level[i];
4021 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4022 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4023 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4024 &rcu_node_class[i], buf[i]);
4025 raw_spin_lock_init(&rnp->fqslock);
4026 lockdep_set_class_and_name(&rnp->fqslock,
4027 &rcu_fqs_class[i], fqs[i]);
4028 rnp->gpnum = rsp->gpnum;
4029 rnp->completed = rsp->completed;
4030 rnp->qsmask = 0;
4031 rnp->qsmaskinit = 0;
4032 rnp->grplo = j * cpustride;
4033 rnp->grphi = (j + 1) * cpustride - 1;
4034 if (rnp->grphi >= nr_cpu_ids)
4035 rnp->grphi = nr_cpu_ids - 1;
4036 if (i == 0) {
4037 rnp->grpnum = 0;
4038 rnp->grpmask = 0;
4039 rnp->parent = NULL;
4040 } else {
4041 rnp->grpnum = j % levelspread[i - 1];
4042 rnp->grpmask = 1UL << rnp->grpnum;
4043 rnp->parent = rsp->level[i - 1] +
4044 j / levelspread[i - 1];
4045 }
4046 rnp->level = i;
4047 INIT_LIST_HEAD(&rnp->blkd_tasks);
4048 rcu_init_one_nocb(rnp);
4049 init_waitqueue_head(&rnp->exp_wq[0]);
4050 init_waitqueue_head(&rnp->exp_wq[1]);
4051 init_waitqueue_head(&rnp->exp_wq[2]);
4052 init_waitqueue_head(&rnp->exp_wq[3]);
4053 spin_lock_init(&rnp->exp_lock);
4054 }
4055 }
4056
4057 init_swait_queue_head(&rsp->gp_wq);
4058 init_swait_queue_head(&rsp->expedited_wq);
4059 rnp = rsp->level[rcu_num_lvls - 1];
4060 for_each_possible_cpu(i) {
4061 while (i > rnp->grphi)
4062 rnp++;
4063 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4064 rcu_boot_init_percpu_data(i, rsp);
4065 }
4066 list_add(&rsp->flavors, &rcu_struct_flavors);
4067}
4068
4069/*
4070 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4071 * replace the definitions in tree.h because those are needed to size
4072 * the ->node array in the rcu_state structure.
4073 */
4074static void __init rcu_init_geometry(void)
4075{
4076 ulong d;
4077 int i;
4078 int rcu_capacity[RCU_NUM_LVLS];
4079
4080 /*
4081 * Initialize any unspecified boot parameters.
4082 * The default values of jiffies_till_first_fqs and
4083 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4084 * value, which is a function of HZ, then adding one for each
4085 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4086 */
4087 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4088 if (jiffies_till_first_fqs == ULONG_MAX)
4089 jiffies_till_first_fqs = d;
4090 if (jiffies_till_next_fqs == ULONG_MAX)
4091 jiffies_till_next_fqs = d;
4092
4093 /* If the compile-time values are accurate, just leave. */
4094 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4095 nr_cpu_ids == NR_CPUS)
4096 return;
4097 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4098 rcu_fanout_leaf, nr_cpu_ids);
4099
4100 /*
4101 * The boot-time rcu_fanout_leaf parameter must be at least two
4102 * and cannot exceed the number of bits in the rcu_node masks.
4103 * Complain and fall back to the compile-time values if this
4104 * limit is exceeded.
4105 */
4106 if (rcu_fanout_leaf < 2 ||
4107 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4108 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4109 WARN_ON(1);
4110 return;
4111 }
4112
4113 /*
4114 * Compute number of nodes that can be handled an rcu_node tree
4115 * with the given number of levels.
4116 */
4117 rcu_capacity[0] = rcu_fanout_leaf;
4118 for (i = 1; i < RCU_NUM_LVLS; i++)
4119 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4120
4121 /*
4122 * The tree must be able to accommodate the configured number of CPUs.
4123 * If this limit is exceeded, fall back to the compile-time values.
4124 */
4125 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4126 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4127 WARN_ON(1);
4128 return;
4129 }
4130
4131 /* Calculate the number of levels in the tree. */
4132 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4133 }
4134 rcu_num_lvls = i + 1;
4135
4136 /* Calculate the number of rcu_nodes at each level of the tree. */
4137 for (i = 0; i < rcu_num_lvls; i++) {
4138 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4139 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4140 }
4141
4142 /* Calculate the total number of rcu_node structures. */
4143 rcu_num_nodes = 0;
4144 for (i = 0; i < rcu_num_lvls; i++)
4145 rcu_num_nodes += num_rcu_lvl[i];
4146}
4147
4148/*
4149 * Dump out the structure of the rcu_node combining tree associated
4150 * with the rcu_state structure referenced by rsp.
4151 */
4152static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4153{
4154 int level = 0;
4155 struct rcu_node *rnp;
4156
4157 pr_info("rcu_node tree layout dump\n");
4158 pr_info(" ");
4159 rcu_for_each_node_breadth_first(rsp, rnp) {
4160 if (rnp->level != level) {
4161 pr_cont("\n");
4162 pr_info(" ");
4163 level = rnp->level;
4164 }
4165 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4166 }
4167 pr_cont("\n");
4168}
4169
4170struct workqueue_struct *rcu_gp_wq;
4171
4172void __init rcu_init(void)
4173{
4174 int cpu;
4175
4176 rcu_early_boot_tests();
4177
4178 rcu_bootup_announce();
4179 rcu_init_geometry();
4180 rcu_init_one(&rcu_bh_state);
4181 rcu_init_one(&rcu_sched_state);
4182 if (dump_tree)
4183 rcu_dump_rcu_node_tree(&rcu_sched_state);
4184 __rcu_init_preempt();
4185 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4186
4187 /*
4188 * We don't need protection against CPU-hotplug here because
4189 * this is called early in boot, before either interrupts
4190 * or the scheduler are operational.
4191 */
4192 pm_notifier(rcu_pm_notify, 0);
4193 for_each_online_cpu(cpu) {
4194 rcutree_prepare_cpu(cpu);
4195 rcu_cpu_starting(cpu);
4196 rcutree_online_cpu(cpu);
4197 }
4198
4199 /* Create workqueue for expedited GPs and for Tree SRCU. */
4200 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4201 WARN_ON(!rcu_gp_wq);
4202}
4203
4204#include "tree_exp.h"
4205#include "tree_plugin.h"