Loading...
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50#include <linux/wait.h>
51#include <linux/kthread.h>
52#include <linux/prefetch.h>
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
55#include <linux/random.h>
56#include <linux/trace_events.h>
57#include <linux/suspend.h>
58
59#include "tree.h"
60#include "rcu.h"
61
62#ifdef MODULE_PARAM_PREFIX
63#undef MODULE_PARAM_PREFIX
64#endif
65#define MODULE_PARAM_PREFIX "rcutree."
66
67/* Data structures. */
68
69/*
70 * In order to export the rcu_state name to the tracing tools, it
71 * needs to be added in the __tracepoint_string section.
72 * This requires defining a separate variable tp_<sname>_varname
73 * that points to the string being used, and this will allow
74 * the tracing userspace tools to be able to decipher the string
75 * address to the matching string.
76 */
77#ifdef CONFIG_TRACING
78# define DEFINE_RCU_TPS(sname) \
79static char sname##_varname[] = #sname; \
80static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81# define RCU_STATE_NAME(sname) sname##_varname
82#else
83# define DEFINE_RCU_TPS(sname)
84# define RCU_STATE_NAME(sname) __stringify(sname)
85#endif
86
87#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88DEFINE_RCU_TPS(sname) \
89static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90struct rcu_state sname##_state = { \
91 .level = { &sname##_state.node[0] }, \
92 .rda = &sname##_data, \
93 .call = cr, \
94 .gp_state = RCU_GP_IDLE, \
95 .gpnum = 0UL - 300UL, \
96 .completed = 0UL - 300UL, \
97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 .orphan_donetail = &sname##_state.orphan_donelist, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
102 .abbr = sabbr, \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105}
106
107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109
110static struct rcu_state *const rcu_state_p;
111LIST_HEAD(rcu_struct_flavors);
112
113/* Dump rcu_node combining tree at boot to verify correct setup. */
114static bool dump_tree;
115module_param(dump_tree, bool, 0444);
116/* Control rcu_node-tree auto-balancing at boot time. */
117static bool rcu_fanout_exact;
118module_param(rcu_fanout_exact, bool, 0444);
119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121module_param(rcu_fanout_leaf, int, 0444);
122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123/* Number of rcu_nodes at specified level. */
124static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126/* panic() on RCU Stall sysctl. */
127int sysctl_panic_on_rcu_stall __read_mostly;
128
129/*
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
140 */
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
165static void sync_sched_exp_online_cleanup(int cpu);
166
167/* rcuc/rcub kthread realtime priority */
168#ifdef CONFIG_RCU_KTHREAD_PRIO
169static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
170#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
171static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
172#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
173module_param(kthread_prio, int, 0644);
174
175/* Delay in jiffies for grace-period initialization delays, debug only. */
176
177#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
178static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
179module_param(gp_preinit_delay, int, 0644);
180#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181static const int gp_preinit_delay;
182#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183
184#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
185static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
186module_param(gp_init_delay, int, 0644);
187#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188static const int gp_init_delay;
189#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190
191#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
192static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
193module_param(gp_cleanup_delay, int, 0644);
194#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195static const int gp_cleanup_delay;
196#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197
198/*
199 * Number of grace periods between delays, normalized by the duration of
200 * the delay. The longer the the delay, the more the grace periods between
201 * each delay. The reason for this normalization is that it means that,
202 * for non-zero delays, the overall slowdown of grace periods is constant
203 * regardless of the duration of the delay. This arrangement balances
204 * the need for long delays to increase some race probabilities with the
205 * need for fast grace periods to increase other race probabilities.
206 */
207#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
208
209/*
210 * Track the rcutorture test sequence number and the update version
211 * number within a given test. The rcutorture_testseq is incremented
212 * on every rcutorture module load and unload, so has an odd value
213 * when a test is running. The rcutorture_vernum is set to zero
214 * when rcutorture starts and is incremented on each rcutorture update.
215 * These variables enable correlating rcutorture output with the
216 * RCU tracing information.
217 */
218unsigned long rcutorture_testseq;
219unsigned long rcutorture_vernum;
220
221/*
222 * Compute the mask of online CPUs for the specified rcu_node structure.
223 * This will not be stable unless the rcu_node structure's ->lock is
224 * held, but the bit corresponding to the current CPU will be stable
225 * in most contexts.
226 */
227unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
228{
229 return READ_ONCE(rnp->qsmaskinitnext);
230}
231
232/*
233 * Return true if an RCU grace period is in progress. The READ_ONCE()s
234 * permit this function to be invoked without holding the root rcu_node
235 * structure's ->lock, but of course results can be subject to change.
236 */
237static int rcu_gp_in_progress(struct rcu_state *rsp)
238{
239 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
240}
241
242/*
243 * Note a quiescent state. Because we do not need to know
244 * how many quiescent states passed, just if there was at least
245 * one since the start of the grace period, this just sets a flag.
246 * The caller must have disabled preemption.
247 */
248void rcu_sched_qs(void)
249{
250 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
251 return;
252 trace_rcu_grace_period(TPS("rcu_sched"),
253 __this_cpu_read(rcu_sched_data.gpnum),
254 TPS("cpuqs"));
255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
256 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
257 return;
258 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
259 rcu_report_exp_rdp(&rcu_sched_state,
260 this_cpu_ptr(&rcu_sched_data), true);
261}
262
263void rcu_bh_qs(void)
264{
265 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
266 trace_rcu_grace_period(TPS("rcu_bh"),
267 __this_cpu_read(rcu_bh_data.gpnum),
268 TPS("cpuqs"));
269 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
270 }
271}
272
273static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
274
275static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
276 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
277 .dynticks = ATOMIC_INIT(1),
278#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
279 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
280 .dynticks_idle = ATOMIC_INIT(1),
281#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
282};
283
284DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
285EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
286
287/*
288 * Let the RCU core know that this CPU has gone through the scheduler,
289 * which is a quiescent state. This is called when the need for a
290 * quiescent state is urgent, so we burn an atomic operation and full
291 * memory barriers to let the RCU core know about it, regardless of what
292 * this CPU might (or might not) do in the near future.
293 *
294 * We inform the RCU core by emulating a zero-duration dyntick-idle
295 * period, which we in turn do by incrementing the ->dynticks counter
296 * by two.
297 *
298 * The caller must have disabled interrupts.
299 */
300static void rcu_momentary_dyntick_idle(void)
301{
302 struct rcu_data *rdp;
303 struct rcu_dynticks *rdtp;
304 int resched_mask;
305 struct rcu_state *rsp;
306
307 /*
308 * Yes, we can lose flag-setting operations. This is OK, because
309 * the flag will be set again after some delay.
310 */
311 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
312 raw_cpu_write(rcu_sched_qs_mask, 0);
313
314 /* Find the flavor that needs a quiescent state. */
315 for_each_rcu_flavor(rsp) {
316 rdp = raw_cpu_ptr(rsp->rda);
317 if (!(resched_mask & rsp->flavor_mask))
318 continue;
319 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
320 if (READ_ONCE(rdp->mynode->completed) !=
321 READ_ONCE(rdp->cond_resched_completed))
322 continue;
323
324 /*
325 * Pretend to be momentarily idle for the quiescent state.
326 * This allows the grace-period kthread to record the
327 * quiescent state, with no need for this CPU to do anything
328 * further.
329 */
330 rdtp = this_cpu_ptr(&rcu_dynticks);
331 smp_mb__before_atomic(); /* Earlier stuff before QS. */
332 atomic_add(2, &rdtp->dynticks); /* QS. */
333 smp_mb__after_atomic(); /* Later stuff after QS. */
334 break;
335 }
336}
337
338/*
339 * Note a context switch. This is a quiescent state for RCU-sched,
340 * and requires special handling for preemptible RCU.
341 * The caller must have disabled interrupts.
342 */
343void rcu_note_context_switch(void)
344{
345 barrier(); /* Avoid RCU read-side critical sections leaking down. */
346 trace_rcu_utilization(TPS("Start context switch"));
347 rcu_sched_qs();
348 rcu_preempt_note_context_switch();
349 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
350 rcu_momentary_dyntick_idle();
351 trace_rcu_utilization(TPS("End context switch"));
352 barrier(); /* Avoid RCU read-side critical sections leaking up. */
353}
354EXPORT_SYMBOL_GPL(rcu_note_context_switch);
355
356/*
357 * Register a quiescent state for all RCU flavors. If there is an
358 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
359 * dyntick-idle quiescent state visible to other CPUs (but only for those
360 * RCU flavors in desperate need of a quiescent state, which will normally
361 * be none of them). Either way, do a lightweight quiescent state for
362 * all RCU flavors.
363 *
364 * The barrier() calls are redundant in the common case when this is
365 * called externally, but just in case this is called from within this
366 * file.
367 *
368 */
369void rcu_all_qs(void)
370{
371 unsigned long flags;
372
373 barrier(); /* Avoid RCU read-side critical sections leaking down. */
374 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
375 local_irq_save(flags);
376 rcu_momentary_dyntick_idle();
377 local_irq_restore(flags);
378 }
379 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
380 /*
381 * Yes, we just checked a per-CPU variable with preemption
382 * enabled, so we might be migrated to some other CPU at
383 * this point. That is OK because in that case, the
384 * migration will supply the needed quiescent state.
385 * We might end up needlessly disabling preemption and
386 * invoking rcu_sched_qs() on the destination CPU, but
387 * the probability and cost are both quite low, so this
388 * should not be a problem in practice.
389 */
390 preempt_disable();
391 rcu_sched_qs();
392 preempt_enable();
393 }
394 this_cpu_inc(rcu_qs_ctr);
395 barrier(); /* Avoid RCU read-side critical sections leaking up. */
396}
397EXPORT_SYMBOL_GPL(rcu_all_qs);
398
399static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
400static long qhimark = 10000; /* If this many pending, ignore blimit. */
401static long qlowmark = 100; /* Once only this many pending, use blimit. */
402
403module_param(blimit, long, 0444);
404module_param(qhimark, long, 0444);
405module_param(qlowmark, long, 0444);
406
407static ulong jiffies_till_first_fqs = ULONG_MAX;
408static ulong jiffies_till_next_fqs = ULONG_MAX;
409static bool rcu_kick_kthreads;
410
411module_param(jiffies_till_first_fqs, ulong, 0644);
412module_param(jiffies_till_next_fqs, ulong, 0644);
413module_param(rcu_kick_kthreads, bool, 0644);
414
415/*
416 * How long the grace period must be before we start recruiting
417 * quiescent-state help from rcu_note_context_switch().
418 */
419static ulong jiffies_till_sched_qs = HZ / 20;
420module_param(jiffies_till_sched_qs, ulong, 0644);
421
422static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
423 struct rcu_data *rdp);
424static void force_qs_rnp(struct rcu_state *rsp,
425 int (*f)(struct rcu_data *rsp, bool *isidle,
426 unsigned long *maxj),
427 bool *isidle, unsigned long *maxj);
428static void force_quiescent_state(struct rcu_state *rsp);
429static int rcu_pending(void);
430
431/*
432 * Return the number of RCU batches started thus far for debug & stats.
433 */
434unsigned long rcu_batches_started(void)
435{
436 return rcu_state_p->gpnum;
437}
438EXPORT_SYMBOL_GPL(rcu_batches_started);
439
440/*
441 * Return the number of RCU-sched batches started thus far for debug & stats.
442 */
443unsigned long rcu_batches_started_sched(void)
444{
445 return rcu_sched_state.gpnum;
446}
447EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
448
449/*
450 * Return the number of RCU BH batches started thus far for debug & stats.
451 */
452unsigned long rcu_batches_started_bh(void)
453{
454 return rcu_bh_state.gpnum;
455}
456EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
457
458/*
459 * Return the number of RCU batches completed thus far for debug & stats.
460 */
461unsigned long rcu_batches_completed(void)
462{
463 return rcu_state_p->completed;
464}
465EXPORT_SYMBOL_GPL(rcu_batches_completed);
466
467/*
468 * Return the number of RCU-sched batches completed thus far for debug & stats.
469 */
470unsigned long rcu_batches_completed_sched(void)
471{
472 return rcu_sched_state.completed;
473}
474EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
475
476/*
477 * Return the number of RCU BH batches completed thus far for debug & stats.
478 */
479unsigned long rcu_batches_completed_bh(void)
480{
481 return rcu_bh_state.completed;
482}
483EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
484
485/*
486 * Return the number of RCU expedited batches completed thus far for
487 * debug & stats. Odd numbers mean that a batch is in progress, even
488 * numbers mean idle. The value returned will thus be roughly double
489 * the cumulative batches since boot.
490 */
491unsigned long rcu_exp_batches_completed(void)
492{
493 return rcu_state_p->expedited_sequence;
494}
495EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
496
497/*
498 * Return the number of RCU-sched expedited batches completed thus far
499 * for debug & stats. Similar to rcu_exp_batches_completed().
500 */
501unsigned long rcu_exp_batches_completed_sched(void)
502{
503 return rcu_sched_state.expedited_sequence;
504}
505EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
506
507/*
508 * Force a quiescent state.
509 */
510void rcu_force_quiescent_state(void)
511{
512 force_quiescent_state(rcu_state_p);
513}
514EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
515
516/*
517 * Force a quiescent state for RCU BH.
518 */
519void rcu_bh_force_quiescent_state(void)
520{
521 force_quiescent_state(&rcu_bh_state);
522}
523EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
524
525/*
526 * Force a quiescent state for RCU-sched.
527 */
528void rcu_sched_force_quiescent_state(void)
529{
530 force_quiescent_state(&rcu_sched_state);
531}
532EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
533
534/*
535 * Show the state of the grace-period kthreads.
536 */
537void show_rcu_gp_kthreads(void)
538{
539 struct rcu_state *rsp;
540
541 for_each_rcu_flavor(rsp) {
542 pr_info("%s: wait state: %d ->state: %#lx\n",
543 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
544 /* sched_show_task(rsp->gp_kthread); */
545 }
546}
547EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
548
549/*
550 * Record the number of times rcutorture tests have been initiated and
551 * terminated. This information allows the debugfs tracing stats to be
552 * correlated to the rcutorture messages, even when the rcutorture module
553 * is being repeatedly loaded and unloaded. In other words, we cannot
554 * store this state in rcutorture itself.
555 */
556void rcutorture_record_test_transition(void)
557{
558 rcutorture_testseq++;
559 rcutorture_vernum = 0;
560}
561EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
562
563/*
564 * Send along grace-period-related data for rcutorture diagnostics.
565 */
566void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
567 unsigned long *gpnum, unsigned long *completed)
568{
569 struct rcu_state *rsp = NULL;
570
571 switch (test_type) {
572 case RCU_FLAVOR:
573 rsp = rcu_state_p;
574 break;
575 case RCU_BH_FLAVOR:
576 rsp = &rcu_bh_state;
577 break;
578 case RCU_SCHED_FLAVOR:
579 rsp = &rcu_sched_state;
580 break;
581 default:
582 break;
583 }
584 if (rsp != NULL) {
585 *flags = READ_ONCE(rsp->gp_flags);
586 *gpnum = READ_ONCE(rsp->gpnum);
587 *completed = READ_ONCE(rsp->completed);
588 return;
589 }
590 *flags = 0;
591 *gpnum = 0;
592 *completed = 0;
593}
594EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
595
596/*
597 * Record the number of writer passes through the current rcutorture test.
598 * This is also used to correlate debugfs tracing stats with the rcutorture
599 * messages.
600 */
601void rcutorture_record_progress(unsigned long vernum)
602{
603 rcutorture_vernum++;
604}
605EXPORT_SYMBOL_GPL(rcutorture_record_progress);
606
607/*
608 * Does the CPU have callbacks ready to be invoked?
609 */
610static int
611cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
612{
613 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
614 rdp->nxttail[RCU_DONE_TAIL] != NULL;
615}
616
617/*
618 * Return the root node of the specified rcu_state structure.
619 */
620static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
621{
622 return &rsp->node[0];
623}
624
625/*
626 * Is there any need for future grace periods?
627 * Interrupts must be disabled. If the caller does not hold the root
628 * rnp_node structure's ->lock, the results are advisory only.
629 */
630static int rcu_future_needs_gp(struct rcu_state *rsp)
631{
632 struct rcu_node *rnp = rcu_get_root(rsp);
633 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
634 int *fp = &rnp->need_future_gp[idx];
635
636 return READ_ONCE(*fp);
637}
638
639/*
640 * Does the current CPU require a not-yet-started grace period?
641 * The caller must have disabled interrupts to prevent races with
642 * normal callback registry.
643 */
644static bool
645cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
646{
647 int i;
648
649 if (rcu_gp_in_progress(rsp))
650 return false; /* No, a grace period is already in progress. */
651 if (rcu_future_needs_gp(rsp))
652 return true; /* Yes, a no-CBs CPU needs one. */
653 if (!rdp->nxttail[RCU_NEXT_TAIL])
654 return false; /* No, this is a no-CBs (or offline) CPU. */
655 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
656 return true; /* Yes, CPU has newly registered callbacks. */
657 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
658 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
659 ULONG_CMP_LT(READ_ONCE(rsp->completed),
660 rdp->nxtcompleted[i]))
661 return true; /* Yes, CBs for future grace period. */
662 return false; /* No grace period needed. */
663}
664
665/*
666 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
667 *
668 * If the new value of the ->dynticks_nesting counter now is zero,
669 * we really have entered idle, and must do the appropriate accounting.
670 * The caller must have disabled interrupts.
671 */
672static void rcu_eqs_enter_common(long long oldval, bool user)
673{
674 struct rcu_state *rsp;
675 struct rcu_data *rdp;
676 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
677
678 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
679 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
680 !user && !is_idle_task(current)) {
681 struct task_struct *idle __maybe_unused =
682 idle_task(smp_processor_id());
683
684 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
685 rcu_ftrace_dump(DUMP_ORIG);
686 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
687 current->pid, current->comm,
688 idle->pid, idle->comm); /* must be idle task! */
689 }
690 for_each_rcu_flavor(rsp) {
691 rdp = this_cpu_ptr(rsp->rda);
692 do_nocb_deferred_wakeup(rdp);
693 }
694 rcu_prepare_for_idle();
695 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
696 smp_mb__before_atomic(); /* See above. */
697 atomic_inc(&rdtp->dynticks);
698 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
699 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
700 atomic_read(&rdtp->dynticks) & 0x1);
701 rcu_dynticks_task_enter();
702
703 /*
704 * It is illegal to enter an extended quiescent state while
705 * in an RCU read-side critical section.
706 */
707 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
708 "Illegal idle entry in RCU read-side critical section.");
709 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
710 "Illegal idle entry in RCU-bh read-side critical section.");
711 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
712 "Illegal idle entry in RCU-sched read-side critical section.");
713}
714
715/*
716 * Enter an RCU extended quiescent state, which can be either the
717 * idle loop or adaptive-tickless usermode execution.
718 */
719static void rcu_eqs_enter(bool user)
720{
721 long long oldval;
722 struct rcu_dynticks *rdtp;
723
724 rdtp = this_cpu_ptr(&rcu_dynticks);
725 oldval = rdtp->dynticks_nesting;
726 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
727 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
728 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
729 rdtp->dynticks_nesting = 0;
730 rcu_eqs_enter_common(oldval, user);
731 } else {
732 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
733 }
734}
735
736/**
737 * rcu_idle_enter - inform RCU that current CPU is entering idle
738 *
739 * Enter idle mode, in other words, -leave- the mode in which RCU
740 * read-side critical sections can occur. (Though RCU read-side
741 * critical sections can occur in irq handlers in idle, a possibility
742 * handled by irq_enter() and irq_exit().)
743 *
744 * We crowbar the ->dynticks_nesting field to zero to allow for
745 * the possibility of usermode upcalls having messed up our count
746 * of interrupt nesting level during the prior busy period.
747 */
748void rcu_idle_enter(void)
749{
750 unsigned long flags;
751
752 local_irq_save(flags);
753 rcu_eqs_enter(false);
754 rcu_sysidle_enter(0);
755 local_irq_restore(flags);
756}
757EXPORT_SYMBOL_GPL(rcu_idle_enter);
758
759#ifdef CONFIG_NO_HZ_FULL
760/**
761 * rcu_user_enter - inform RCU that we are resuming userspace.
762 *
763 * Enter RCU idle mode right before resuming userspace. No use of RCU
764 * is permitted between this call and rcu_user_exit(). This way the
765 * CPU doesn't need to maintain the tick for RCU maintenance purposes
766 * when the CPU runs in userspace.
767 */
768void rcu_user_enter(void)
769{
770 rcu_eqs_enter(1);
771}
772#endif /* CONFIG_NO_HZ_FULL */
773
774/**
775 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
776 *
777 * Exit from an interrupt handler, which might possibly result in entering
778 * idle mode, in other words, leaving the mode in which read-side critical
779 * sections can occur. The caller must have disabled interrupts.
780 *
781 * This code assumes that the idle loop never does anything that might
782 * result in unbalanced calls to irq_enter() and irq_exit(). If your
783 * architecture violates this assumption, RCU will give you what you
784 * deserve, good and hard. But very infrequently and irreproducibly.
785 *
786 * Use things like work queues to work around this limitation.
787 *
788 * You have been warned.
789 */
790void rcu_irq_exit(void)
791{
792 long long oldval;
793 struct rcu_dynticks *rdtp;
794
795 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
796 rdtp = this_cpu_ptr(&rcu_dynticks);
797 oldval = rdtp->dynticks_nesting;
798 rdtp->dynticks_nesting--;
799 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
800 rdtp->dynticks_nesting < 0);
801 if (rdtp->dynticks_nesting)
802 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
803 else
804 rcu_eqs_enter_common(oldval, true);
805 rcu_sysidle_enter(1);
806}
807
808/*
809 * Wrapper for rcu_irq_exit() where interrupts are enabled.
810 */
811void rcu_irq_exit_irqson(void)
812{
813 unsigned long flags;
814
815 local_irq_save(flags);
816 rcu_irq_exit();
817 local_irq_restore(flags);
818}
819
820/*
821 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
822 *
823 * If the new value of the ->dynticks_nesting counter was previously zero,
824 * we really have exited idle, and must do the appropriate accounting.
825 * The caller must have disabled interrupts.
826 */
827static void rcu_eqs_exit_common(long long oldval, int user)
828{
829 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
830
831 rcu_dynticks_task_exit();
832 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
833 atomic_inc(&rdtp->dynticks);
834 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
835 smp_mb__after_atomic(); /* See above. */
836 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
837 !(atomic_read(&rdtp->dynticks) & 0x1));
838 rcu_cleanup_after_idle();
839 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
840 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
841 !user && !is_idle_task(current)) {
842 struct task_struct *idle __maybe_unused =
843 idle_task(smp_processor_id());
844
845 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
846 oldval, rdtp->dynticks_nesting);
847 rcu_ftrace_dump(DUMP_ORIG);
848 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
849 current->pid, current->comm,
850 idle->pid, idle->comm); /* must be idle task! */
851 }
852}
853
854/*
855 * Exit an RCU extended quiescent state, which can be either the
856 * idle loop or adaptive-tickless usermode execution.
857 */
858static void rcu_eqs_exit(bool user)
859{
860 struct rcu_dynticks *rdtp;
861 long long oldval;
862
863 rdtp = this_cpu_ptr(&rcu_dynticks);
864 oldval = rdtp->dynticks_nesting;
865 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
866 if (oldval & DYNTICK_TASK_NEST_MASK) {
867 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
868 } else {
869 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
870 rcu_eqs_exit_common(oldval, user);
871 }
872}
873
874/**
875 * rcu_idle_exit - inform RCU that current CPU is leaving idle
876 *
877 * Exit idle mode, in other words, -enter- the mode in which RCU
878 * read-side critical sections can occur.
879 *
880 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
881 * allow for the possibility of usermode upcalls messing up our count
882 * of interrupt nesting level during the busy period that is just
883 * now starting.
884 */
885void rcu_idle_exit(void)
886{
887 unsigned long flags;
888
889 local_irq_save(flags);
890 rcu_eqs_exit(false);
891 rcu_sysidle_exit(0);
892 local_irq_restore(flags);
893}
894EXPORT_SYMBOL_GPL(rcu_idle_exit);
895
896#ifdef CONFIG_NO_HZ_FULL
897/**
898 * rcu_user_exit - inform RCU that we are exiting userspace.
899 *
900 * Exit RCU idle mode while entering the kernel because it can
901 * run a RCU read side critical section anytime.
902 */
903void rcu_user_exit(void)
904{
905 rcu_eqs_exit(1);
906}
907#endif /* CONFIG_NO_HZ_FULL */
908
909/**
910 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
911 *
912 * Enter an interrupt handler, which might possibly result in exiting
913 * idle mode, in other words, entering the mode in which read-side critical
914 * sections can occur. The caller must have disabled interrupts.
915 *
916 * Note that the Linux kernel is fully capable of entering an interrupt
917 * handler that it never exits, for example when doing upcalls to
918 * user mode! This code assumes that the idle loop never does upcalls to
919 * user mode. If your architecture does do upcalls from the idle loop (or
920 * does anything else that results in unbalanced calls to the irq_enter()
921 * and irq_exit() functions), RCU will give you what you deserve, good
922 * and hard. But very infrequently and irreproducibly.
923 *
924 * Use things like work queues to work around this limitation.
925 *
926 * You have been warned.
927 */
928void rcu_irq_enter(void)
929{
930 struct rcu_dynticks *rdtp;
931 long long oldval;
932
933 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
934 rdtp = this_cpu_ptr(&rcu_dynticks);
935 oldval = rdtp->dynticks_nesting;
936 rdtp->dynticks_nesting++;
937 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
938 rdtp->dynticks_nesting == 0);
939 if (oldval)
940 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
941 else
942 rcu_eqs_exit_common(oldval, true);
943 rcu_sysidle_exit(1);
944}
945
946/*
947 * Wrapper for rcu_irq_enter() where interrupts are enabled.
948 */
949void rcu_irq_enter_irqson(void)
950{
951 unsigned long flags;
952
953 local_irq_save(flags);
954 rcu_irq_enter();
955 local_irq_restore(flags);
956}
957
958/**
959 * rcu_nmi_enter - inform RCU of entry to NMI context
960 *
961 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
962 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
963 * that the CPU is active. This implementation permits nested NMIs, as
964 * long as the nesting level does not overflow an int. (You will probably
965 * run out of stack space first.)
966 */
967void rcu_nmi_enter(void)
968{
969 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
970 int incby = 2;
971
972 /* Complain about underflow. */
973 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
974
975 /*
976 * If idle from RCU viewpoint, atomically increment ->dynticks
977 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
978 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
979 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
980 * to be in the outermost NMI handler that interrupted an RCU-idle
981 * period (observation due to Andy Lutomirski).
982 */
983 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
984 smp_mb__before_atomic(); /* Force delay from prior write. */
985 atomic_inc(&rdtp->dynticks);
986 /* atomic_inc() before later RCU read-side crit sects */
987 smp_mb__after_atomic(); /* See above. */
988 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
989 incby = 1;
990 }
991 rdtp->dynticks_nmi_nesting += incby;
992 barrier();
993}
994
995/**
996 * rcu_nmi_exit - inform RCU of exit from NMI context
997 *
998 * If we are returning from the outermost NMI handler that interrupted an
999 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1000 * to let the RCU grace-period handling know that the CPU is back to
1001 * being RCU-idle.
1002 */
1003void rcu_nmi_exit(void)
1004{
1005 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1006
1007 /*
1008 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1009 * (We are exiting an NMI handler, so RCU better be paying attention
1010 * to us!)
1011 */
1012 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1013 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1014
1015 /*
1016 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1017 * leave it in non-RCU-idle state.
1018 */
1019 if (rdtp->dynticks_nmi_nesting != 1) {
1020 rdtp->dynticks_nmi_nesting -= 2;
1021 return;
1022 }
1023
1024 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1025 rdtp->dynticks_nmi_nesting = 0;
1026 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1027 smp_mb__before_atomic(); /* See above. */
1028 atomic_inc(&rdtp->dynticks);
1029 smp_mb__after_atomic(); /* Force delay to next write. */
1030 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1031}
1032
1033/**
1034 * __rcu_is_watching - are RCU read-side critical sections safe?
1035 *
1036 * Return true if RCU is watching the running CPU, which means that
1037 * this CPU can safely enter RCU read-side critical sections. Unlike
1038 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1039 * least disabled preemption.
1040 */
1041bool notrace __rcu_is_watching(void)
1042{
1043 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1044}
1045
1046/**
1047 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1048 *
1049 * If the current CPU is in its idle loop and is neither in an interrupt
1050 * or NMI handler, return true.
1051 */
1052bool notrace rcu_is_watching(void)
1053{
1054 bool ret;
1055
1056 preempt_disable_notrace();
1057 ret = __rcu_is_watching();
1058 preempt_enable_notrace();
1059 return ret;
1060}
1061EXPORT_SYMBOL_GPL(rcu_is_watching);
1062
1063#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1064
1065/*
1066 * Is the current CPU online? Disable preemption to avoid false positives
1067 * that could otherwise happen due to the current CPU number being sampled,
1068 * this task being preempted, its old CPU being taken offline, resuming
1069 * on some other CPU, then determining that its old CPU is now offline.
1070 * It is OK to use RCU on an offline processor during initial boot, hence
1071 * the check for rcu_scheduler_fully_active. Note also that it is OK
1072 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1073 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1074 * offline to continue to use RCU for one jiffy after marking itself
1075 * offline in the cpu_online_mask. This leniency is necessary given the
1076 * non-atomic nature of the online and offline processing, for example,
1077 * the fact that a CPU enters the scheduler after completing the teardown
1078 * of the CPU.
1079 *
1080 * This is also why RCU internally marks CPUs online during in the
1081 * preparation phase and offline after the CPU has been taken down.
1082 *
1083 * Disable checking if in an NMI handler because we cannot safely report
1084 * errors from NMI handlers anyway.
1085 */
1086bool rcu_lockdep_current_cpu_online(void)
1087{
1088 struct rcu_data *rdp;
1089 struct rcu_node *rnp;
1090 bool ret;
1091
1092 if (in_nmi())
1093 return true;
1094 preempt_disable();
1095 rdp = this_cpu_ptr(&rcu_sched_data);
1096 rnp = rdp->mynode;
1097 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1098 !rcu_scheduler_fully_active;
1099 preempt_enable();
1100 return ret;
1101}
1102EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1103
1104#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1105
1106/**
1107 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1108 *
1109 * If the current CPU is idle or running at a first-level (not nested)
1110 * interrupt from idle, return true. The caller must have at least
1111 * disabled preemption.
1112 */
1113static int rcu_is_cpu_rrupt_from_idle(void)
1114{
1115 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1116}
1117
1118/*
1119 * Snapshot the specified CPU's dynticks counter so that we can later
1120 * credit them with an implicit quiescent state. Return 1 if this CPU
1121 * is in dynticks idle mode, which is an extended quiescent state.
1122 */
1123static int dyntick_save_progress_counter(struct rcu_data *rdp,
1124 bool *isidle, unsigned long *maxj)
1125{
1126 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1127 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1128 if ((rdp->dynticks_snap & 0x1) == 0) {
1129 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1130 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1131 rdp->mynode->gpnum))
1132 WRITE_ONCE(rdp->gpwrap, true);
1133 return 1;
1134 }
1135 return 0;
1136}
1137
1138/*
1139 * Return true if the specified CPU has passed through a quiescent
1140 * state by virtue of being in or having passed through an dynticks
1141 * idle state since the last call to dyntick_save_progress_counter()
1142 * for this same CPU, or by virtue of having been offline.
1143 */
1144static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1145 bool *isidle, unsigned long *maxj)
1146{
1147 unsigned int curr;
1148 int *rcrmp;
1149 unsigned int snap;
1150
1151 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1152 snap = (unsigned int)rdp->dynticks_snap;
1153
1154 /*
1155 * If the CPU passed through or entered a dynticks idle phase with
1156 * no active irq/NMI handlers, then we can safely pretend that the CPU
1157 * already acknowledged the request to pass through a quiescent
1158 * state. Either way, that CPU cannot possibly be in an RCU
1159 * read-side critical section that started before the beginning
1160 * of the current RCU grace period.
1161 */
1162 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1163 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1164 rdp->dynticks_fqs++;
1165 return 1;
1166 }
1167
1168 /*
1169 * Check for the CPU being offline, but only if the grace period
1170 * is old enough. We don't need to worry about the CPU changing
1171 * state: If we see it offline even once, it has been through a
1172 * quiescent state.
1173 *
1174 * The reason for insisting that the grace period be at least
1175 * one jiffy old is that CPUs that are not quite online and that
1176 * have just gone offline can still execute RCU read-side critical
1177 * sections.
1178 */
1179 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1180 return 0; /* Grace period is not old enough. */
1181 barrier();
1182 if (cpu_is_offline(rdp->cpu)) {
1183 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1184 rdp->offline_fqs++;
1185 return 1;
1186 }
1187
1188 /*
1189 * A CPU running for an extended time within the kernel can
1190 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1191 * even context-switching back and forth between a pair of
1192 * in-kernel CPU-bound tasks cannot advance grace periods.
1193 * So if the grace period is old enough, make the CPU pay attention.
1194 * Note that the unsynchronized assignments to the per-CPU
1195 * rcu_sched_qs_mask variable are safe. Yes, setting of
1196 * bits can be lost, but they will be set again on the next
1197 * force-quiescent-state pass. So lost bit sets do not result
1198 * in incorrect behavior, merely in a grace period lasting
1199 * a few jiffies longer than it might otherwise. Because
1200 * there are at most four threads involved, and because the
1201 * updates are only once every few jiffies, the probability of
1202 * lossage (and thus of slight grace-period extension) is
1203 * quite low.
1204 *
1205 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1206 * is set too high, we override with half of the RCU CPU stall
1207 * warning delay.
1208 */
1209 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1210 if (ULONG_CMP_GE(jiffies,
1211 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1212 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1213 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1214 WRITE_ONCE(rdp->cond_resched_completed,
1215 READ_ONCE(rdp->mynode->completed));
1216 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1217 WRITE_ONCE(*rcrmp,
1218 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1219 }
1220 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1221 }
1222
1223 /* And if it has been a really long time, kick the CPU as well. */
1224 if (ULONG_CMP_GE(jiffies,
1225 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1226 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1227 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1228
1229 return 0;
1230}
1231
1232static void record_gp_stall_check_time(struct rcu_state *rsp)
1233{
1234 unsigned long j = jiffies;
1235 unsigned long j1;
1236
1237 rsp->gp_start = j;
1238 smp_wmb(); /* Record start time before stall time. */
1239 j1 = rcu_jiffies_till_stall_check();
1240 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1241 rsp->jiffies_resched = j + j1 / 2;
1242 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1243}
1244
1245/*
1246 * Convert a ->gp_state value to a character string.
1247 */
1248static const char *gp_state_getname(short gs)
1249{
1250 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1251 return "???";
1252 return gp_state_names[gs];
1253}
1254
1255/*
1256 * Complain about starvation of grace-period kthread.
1257 */
1258static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1259{
1260 unsigned long gpa;
1261 unsigned long j;
1262
1263 j = jiffies;
1264 gpa = READ_ONCE(rsp->gp_activity);
1265 if (j - gpa > 2 * HZ) {
1266 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1267 rsp->name, j - gpa,
1268 rsp->gpnum, rsp->completed,
1269 rsp->gp_flags,
1270 gp_state_getname(rsp->gp_state), rsp->gp_state,
1271 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1272 if (rsp->gp_kthread) {
1273 sched_show_task(rsp->gp_kthread);
1274 wake_up_process(rsp->gp_kthread);
1275 }
1276 }
1277}
1278
1279/*
1280 * Dump stacks of all tasks running on stalled CPUs.
1281 */
1282static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1283{
1284 int cpu;
1285 unsigned long flags;
1286 struct rcu_node *rnp;
1287
1288 rcu_for_each_leaf_node(rsp, rnp) {
1289 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1290 if (rnp->qsmask != 0) {
1291 for_each_leaf_node_possible_cpu(rnp, cpu)
1292 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1293 dump_cpu_task(cpu);
1294 }
1295 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1296 }
1297}
1298
1299/*
1300 * If too much time has passed in the current grace period, and if
1301 * so configured, go kick the relevant kthreads.
1302 */
1303static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1304{
1305 unsigned long j;
1306
1307 if (!rcu_kick_kthreads)
1308 return;
1309 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1310 if (time_after(jiffies, j) && rsp->gp_kthread &&
1311 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1312 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1313 rcu_ftrace_dump(DUMP_ALL);
1314 wake_up_process(rsp->gp_kthread);
1315 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1316 }
1317}
1318
1319static inline void panic_on_rcu_stall(void)
1320{
1321 if (sysctl_panic_on_rcu_stall)
1322 panic("RCU Stall\n");
1323}
1324
1325static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1326{
1327 int cpu;
1328 long delta;
1329 unsigned long flags;
1330 unsigned long gpa;
1331 unsigned long j;
1332 int ndetected = 0;
1333 struct rcu_node *rnp = rcu_get_root(rsp);
1334 long totqlen = 0;
1335
1336 /* Kick and suppress, if so configured. */
1337 rcu_stall_kick_kthreads(rsp);
1338 if (rcu_cpu_stall_suppress)
1339 return;
1340
1341 /* Only let one CPU complain about others per time interval. */
1342
1343 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1344 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1345 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1346 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1347 return;
1348 }
1349 WRITE_ONCE(rsp->jiffies_stall,
1350 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1351 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1352
1353 /*
1354 * OK, time to rat on our buddy...
1355 * See Documentation/RCU/stallwarn.txt for info on how to debug
1356 * RCU CPU stall warnings.
1357 */
1358 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1359 rsp->name);
1360 print_cpu_stall_info_begin();
1361 rcu_for_each_leaf_node(rsp, rnp) {
1362 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1363 ndetected += rcu_print_task_stall(rnp);
1364 if (rnp->qsmask != 0) {
1365 for_each_leaf_node_possible_cpu(rnp, cpu)
1366 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1367 print_cpu_stall_info(rsp, cpu);
1368 ndetected++;
1369 }
1370 }
1371 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1372 }
1373
1374 print_cpu_stall_info_end();
1375 for_each_possible_cpu(cpu)
1376 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1377 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1378 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1379 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1380 if (ndetected) {
1381 rcu_dump_cpu_stacks(rsp);
1382 } else {
1383 if (READ_ONCE(rsp->gpnum) != gpnum ||
1384 READ_ONCE(rsp->completed) == gpnum) {
1385 pr_err("INFO: Stall ended before state dump start\n");
1386 } else {
1387 j = jiffies;
1388 gpa = READ_ONCE(rsp->gp_activity);
1389 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1390 rsp->name, j - gpa, j, gpa,
1391 jiffies_till_next_fqs,
1392 rcu_get_root(rsp)->qsmask);
1393 /* In this case, the current CPU might be at fault. */
1394 sched_show_task(current);
1395 }
1396 }
1397
1398 /* Complain about tasks blocking the grace period. */
1399 rcu_print_detail_task_stall(rsp);
1400
1401 rcu_check_gp_kthread_starvation(rsp);
1402
1403 panic_on_rcu_stall();
1404
1405 force_quiescent_state(rsp); /* Kick them all. */
1406}
1407
1408static void print_cpu_stall(struct rcu_state *rsp)
1409{
1410 int cpu;
1411 unsigned long flags;
1412 struct rcu_node *rnp = rcu_get_root(rsp);
1413 long totqlen = 0;
1414
1415 /* Kick and suppress, if so configured. */
1416 rcu_stall_kick_kthreads(rsp);
1417 if (rcu_cpu_stall_suppress)
1418 return;
1419
1420 /*
1421 * OK, time to rat on ourselves...
1422 * See Documentation/RCU/stallwarn.txt for info on how to debug
1423 * RCU CPU stall warnings.
1424 */
1425 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1426 print_cpu_stall_info_begin();
1427 print_cpu_stall_info(rsp, smp_processor_id());
1428 print_cpu_stall_info_end();
1429 for_each_possible_cpu(cpu)
1430 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1431 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1432 jiffies - rsp->gp_start,
1433 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1434
1435 rcu_check_gp_kthread_starvation(rsp);
1436
1437 rcu_dump_cpu_stacks(rsp);
1438
1439 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1440 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1441 WRITE_ONCE(rsp->jiffies_stall,
1442 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1443 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1444
1445 panic_on_rcu_stall();
1446
1447 /*
1448 * Attempt to revive the RCU machinery by forcing a context switch.
1449 *
1450 * A context switch would normally allow the RCU state machine to make
1451 * progress and it could be we're stuck in kernel space without context
1452 * switches for an entirely unreasonable amount of time.
1453 */
1454 resched_cpu(smp_processor_id());
1455}
1456
1457static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1458{
1459 unsigned long completed;
1460 unsigned long gpnum;
1461 unsigned long gps;
1462 unsigned long j;
1463 unsigned long js;
1464 struct rcu_node *rnp;
1465
1466 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1467 !rcu_gp_in_progress(rsp))
1468 return;
1469 rcu_stall_kick_kthreads(rsp);
1470 j = jiffies;
1471
1472 /*
1473 * Lots of memory barriers to reject false positives.
1474 *
1475 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1476 * then rsp->gp_start, and finally rsp->completed. These values
1477 * are updated in the opposite order with memory barriers (or
1478 * equivalent) during grace-period initialization and cleanup.
1479 * Now, a false positive can occur if we get an new value of
1480 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1481 * the memory barriers, the only way that this can happen is if one
1482 * grace period ends and another starts between these two fetches.
1483 * Detect this by comparing rsp->completed with the previous fetch
1484 * from rsp->gpnum.
1485 *
1486 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1487 * and rsp->gp_start suffice to forestall false positives.
1488 */
1489 gpnum = READ_ONCE(rsp->gpnum);
1490 smp_rmb(); /* Pick up ->gpnum first... */
1491 js = READ_ONCE(rsp->jiffies_stall);
1492 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1493 gps = READ_ONCE(rsp->gp_start);
1494 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1495 completed = READ_ONCE(rsp->completed);
1496 if (ULONG_CMP_GE(completed, gpnum) ||
1497 ULONG_CMP_LT(j, js) ||
1498 ULONG_CMP_GE(gps, js))
1499 return; /* No stall or GP completed since entering function. */
1500 rnp = rdp->mynode;
1501 if (rcu_gp_in_progress(rsp) &&
1502 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1503
1504 /* We haven't checked in, so go dump stack. */
1505 print_cpu_stall(rsp);
1506
1507 } else if (rcu_gp_in_progress(rsp) &&
1508 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1509
1510 /* They had a few time units to dump stack, so complain. */
1511 print_other_cpu_stall(rsp, gpnum);
1512 }
1513}
1514
1515/**
1516 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1517 *
1518 * Set the stall-warning timeout way off into the future, thus preventing
1519 * any RCU CPU stall-warning messages from appearing in the current set of
1520 * RCU grace periods.
1521 *
1522 * The caller must disable hard irqs.
1523 */
1524void rcu_cpu_stall_reset(void)
1525{
1526 struct rcu_state *rsp;
1527
1528 for_each_rcu_flavor(rsp)
1529 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1530}
1531
1532/*
1533 * Initialize the specified rcu_data structure's default callback list
1534 * to empty. The default callback list is the one that is not used by
1535 * no-callbacks CPUs.
1536 */
1537static void init_default_callback_list(struct rcu_data *rdp)
1538{
1539 int i;
1540
1541 rdp->nxtlist = NULL;
1542 for (i = 0; i < RCU_NEXT_SIZE; i++)
1543 rdp->nxttail[i] = &rdp->nxtlist;
1544}
1545
1546/*
1547 * Initialize the specified rcu_data structure's callback list to empty.
1548 */
1549static void init_callback_list(struct rcu_data *rdp)
1550{
1551 if (init_nocb_callback_list(rdp))
1552 return;
1553 init_default_callback_list(rdp);
1554}
1555
1556/*
1557 * Determine the value that ->completed will have at the end of the
1558 * next subsequent grace period. This is used to tag callbacks so that
1559 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1560 * been dyntick-idle for an extended period with callbacks under the
1561 * influence of RCU_FAST_NO_HZ.
1562 *
1563 * The caller must hold rnp->lock with interrupts disabled.
1564 */
1565static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1566 struct rcu_node *rnp)
1567{
1568 /*
1569 * If RCU is idle, we just wait for the next grace period.
1570 * But we can only be sure that RCU is idle if we are looking
1571 * at the root rcu_node structure -- otherwise, a new grace
1572 * period might have started, but just not yet gotten around
1573 * to initializing the current non-root rcu_node structure.
1574 */
1575 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1576 return rnp->completed + 1;
1577
1578 /*
1579 * Otherwise, wait for a possible partial grace period and
1580 * then the subsequent full grace period.
1581 */
1582 return rnp->completed + 2;
1583}
1584
1585/*
1586 * Trace-event helper function for rcu_start_future_gp() and
1587 * rcu_nocb_wait_gp().
1588 */
1589static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1590 unsigned long c, const char *s)
1591{
1592 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1593 rnp->completed, c, rnp->level,
1594 rnp->grplo, rnp->grphi, s);
1595}
1596
1597/*
1598 * Start some future grace period, as needed to handle newly arrived
1599 * callbacks. The required future grace periods are recorded in each
1600 * rcu_node structure's ->need_future_gp field. Returns true if there
1601 * is reason to awaken the grace-period kthread.
1602 *
1603 * The caller must hold the specified rcu_node structure's ->lock.
1604 */
1605static bool __maybe_unused
1606rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1607 unsigned long *c_out)
1608{
1609 unsigned long c;
1610 int i;
1611 bool ret = false;
1612 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1613
1614 /*
1615 * Pick up grace-period number for new callbacks. If this
1616 * grace period is already marked as needed, return to the caller.
1617 */
1618 c = rcu_cbs_completed(rdp->rsp, rnp);
1619 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1620 if (rnp->need_future_gp[c & 0x1]) {
1621 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1622 goto out;
1623 }
1624
1625 /*
1626 * If either this rcu_node structure or the root rcu_node structure
1627 * believe that a grace period is in progress, then we must wait
1628 * for the one following, which is in "c". Because our request
1629 * will be noticed at the end of the current grace period, we don't
1630 * need to explicitly start one. We only do the lockless check
1631 * of rnp_root's fields if the current rcu_node structure thinks
1632 * there is no grace period in flight, and because we hold rnp->lock,
1633 * the only possible change is when rnp_root's two fields are
1634 * equal, in which case rnp_root->gpnum might be concurrently
1635 * incremented. But that is OK, as it will just result in our
1636 * doing some extra useless work.
1637 */
1638 if (rnp->gpnum != rnp->completed ||
1639 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1640 rnp->need_future_gp[c & 0x1]++;
1641 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1642 goto out;
1643 }
1644
1645 /*
1646 * There might be no grace period in progress. If we don't already
1647 * hold it, acquire the root rcu_node structure's lock in order to
1648 * start one (if needed).
1649 */
1650 if (rnp != rnp_root)
1651 raw_spin_lock_rcu_node(rnp_root);
1652
1653 /*
1654 * Get a new grace-period number. If there really is no grace
1655 * period in progress, it will be smaller than the one we obtained
1656 * earlier. Adjust callbacks as needed. Note that even no-CBs
1657 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1658 */
1659 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1660 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1661 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1662 rdp->nxtcompleted[i] = c;
1663
1664 /*
1665 * If the needed for the required grace period is already
1666 * recorded, trace and leave.
1667 */
1668 if (rnp_root->need_future_gp[c & 0x1]) {
1669 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1670 goto unlock_out;
1671 }
1672
1673 /* Record the need for the future grace period. */
1674 rnp_root->need_future_gp[c & 0x1]++;
1675
1676 /* If a grace period is not already in progress, start one. */
1677 if (rnp_root->gpnum != rnp_root->completed) {
1678 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1679 } else {
1680 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1681 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1682 }
1683unlock_out:
1684 if (rnp != rnp_root)
1685 raw_spin_unlock_rcu_node(rnp_root);
1686out:
1687 if (c_out != NULL)
1688 *c_out = c;
1689 return ret;
1690}
1691
1692/*
1693 * Clean up any old requests for the just-ended grace period. Also return
1694 * whether any additional grace periods have been requested. Also invoke
1695 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1696 * waiting for this grace period to complete.
1697 */
1698static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1699{
1700 int c = rnp->completed;
1701 int needmore;
1702 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1703
1704 rnp->need_future_gp[c & 0x1] = 0;
1705 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1706 trace_rcu_future_gp(rnp, rdp, c,
1707 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1708 return needmore;
1709}
1710
1711/*
1712 * Awaken the grace-period kthread for the specified flavor of RCU.
1713 * Don't do a self-awaken, and don't bother awakening when there is
1714 * nothing for the grace-period kthread to do (as in several CPUs
1715 * raced to awaken, and we lost), and finally don't try to awaken
1716 * a kthread that has not yet been created.
1717 */
1718static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1719{
1720 if (current == rsp->gp_kthread ||
1721 !READ_ONCE(rsp->gp_flags) ||
1722 !rsp->gp_kthread)
1723 return;
1724 swake_up(&rsp->gp_wq);
1725}
1726
1727/*
1728 * If there is room, assign a ->completed number to any callbacks on
1729 * this CPU that have not already been assigned. Also accelerate any
1730 * callbacks that were previously assigned a ->completed number that has
1731 * since proven to be too conservative, which can happen if callbacks get
1732 * assigned a ->completed number while RCU is idle, but with reference to
1733 * a non-root rcu_node structure. This function is idempotent, so it does
1734 * not hurt to call it repeatedly. Returns an flag saying that we should
1735 * awaken the RCU grace-period kthread.
1736 *
1737 * The caller must hold rnp->lock with interrupts disabled.
1738 */
1739static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1740 struct rcu_data *rdp)
1741{
1742 unsigned long c;
1743 int i;
1744 bool ret;
1745
1746 /* If the CPU has no callbacks, nothing to do. */
1747 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1748 return false;
1749
1750 /*
1751 * Starting from the sublist containing the callbacks most
1752 * recently assigned a ->completed number and working down, find the
1753 * first sublist that is not assignable to an upcoming grace period.
1754 * Such a sublist has something in it (first two tests) and has
1755 * a ->completed number assigned that will complete sooner than
1756 * the ->completed number for newly arrived callbacks (last test).
1757 *
1758 * The key point is that any later sublist can be assigned the
1759 * same ->completed number as the newly arrived callbacks, which
1760 * means that the callbacks in any of these later sublist can be
1761 * grouped into a single sublist, whether or not they have already
1762 * been assigned a ->completed number.
1763 */
1764 c = rcu_cbs_completed(rsp, rnp);
1765 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1766 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1767 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1768 break;
1769
1770 /*
1771 * If there are no sublist for unassigned callbacks, leave.
1772 * At the same time, advance "i" one sublist, so that "i" will
1773 * index into the sublist where all the remaining callbacks should
1774 * be grouped into.
1775 */
1776 if (++i >= RCU_NEXT_TAIL)
1777 return false;
1778
1779 /*
1780 * Assign all subsequent callbacks' ->completed number to the next
1781 * full grace period and group them all in the sublist initially
1782 * indexed by "i".
1783 */
1784 for (; i <= RCU_NEXT_TAIL; i++) {
1785 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1786 rdp->nxtcompleted[i] = c;
1787 }
1788 /* Record any needed additional grace periods. */
1789 ret = rcu_start_future_gp(rnp, rdp, NULL);
1790
1791 /* Trace depending on how much we were able to accelerate. */
1792 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1793 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1794 else
1795 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1796 return ret;
1797}
1798
1799/*
1800 * Move any callbacks whose grace period has completed to the
1801 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1802 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1803 * sublist. This function is idempotent, so it does not hurt to
1804 * invoke it repeatedly. As long as it is not invoked -too- often...
1805 * Returns true if the RCU grace-period kthread needs to be awakened.
1806 *
1807 * The caller must hold rnp->lock with interrupts disabled.
1808 */
1809static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1810 struct rcu_data *rdp)
1811{
1812 int i, j;
1813
1814 /* If the CPU has no callbacks, nothing to do. */
1815 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1816 return false;
1817
1818 /*
1819 * Find all callbacks whose ->completed numbers indicate that they
1820 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1821 */
1822 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1823 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1824 break;
1825 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1826 }
1827 /* Clean up any sublist tail pointers that were misordered above. */
1828 for (j = RCU_WAIT_TAIL; j < i; j++)
1829 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1830
1831 /* Copy down callbacks to fill in empty sublists. */
1832 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1833 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1834 break;
1835 rdp->nxttail[j] = rdp->nxttail[i];
1836 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1837 }
1838
1839 /* Classify any remaining callbacks. */
1840 return rcu_accelerate_cbs(rsp, rnp, rdp);
1841}
1842
1843/*
1844 * Update CPU-local rcu_data state to record the beginnings and ends of
1845 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1846 * structure corresponding to the current CPU, and must have irqs disabled.
1847 * Returns true if the grace-period kthread needs to be awakened.
1848 */
1849static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1850 struct rcu_data *rdp)
1851{
1852 bool ret;
1853 bool need_gp;
1854
1855 /* Handle the ends of any preceding grace periods first. */
1856 if (rdp->completed == rnp->completed &&
1857 !unlikely(READ_ONCE(rdp->gpwrap))) {
1858
1859 /* No grace period end, so just accelerate recent callbacks. */
1860 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1861
1862 } else {
1863
1864 /* Advance callbacks. */
1865 ret = rcu_advance_cbs(rsp, rnp, rdp);
1866
1867 /* Remember that we saw this grace-period completion. */
1868 rdp->completed = rnp->completed;
1869 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1870 }
1871
1872 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1873 /*
1874 * If the current grace period is waiting for this CPU,
1875 * set up to detect a quiescent state, otherwise don't
1876 * go looking for one.
1877 */
1878 rdp->gpnum = rnp->gpnum;
1879 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1880 need_gp = !!(rnp->qsmask & rdp->grpmask);
1881 rdp->cpu_no_qs.b.norm = need_gp;
1882 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1883 rdp->core_needs_qs = need_gp;
1884 zero_cpu_stall_ticks(rdp);
1885 WRITE_ONCE(rdp->gpwrap, false);
1886 }
1887 return ret;
1888}
1889
1890static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1891{
1892 unsigned long flags;
1893 bool needwake;
1894 struct rcu_node *rnp;
1895
1896 local_irq_save(flags);
1897 rnp = rdp->mynode;
1898 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1899 rdp->completed == READ_ONCE(rnp->completed) &&
1900 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1901 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1902 local_irq_restore(flags);
1903 return;
1904 }
1905 needwake = __note_gp_changes(rsp, rnp, rdp);
1906 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1907 if (needwake)
1908 rcu_gp_kthread_wake(rsp);
1909}
1910
1911static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1912{
1913 if (delay > 0 &&
1914 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1915 schedule_timeout_uninterruptible(delay);
1916}
1917
1918/*
1919 * Initialize a new grace period. Return false if no grace period required.
1920 */
1921static bool rcu_gp_init(struct rcu_state *rsp)
1922{
1923 unsigned long oldmask;
1924 struct rcu_data *rdp;
1925 struct rcu_node *rnp = rcu_get_root(rsp);
1926
1927 WRITE_ONCE(rsp->gp_activity, jiffies);
1928 raw_spin_lock_irq_rcu_node(rnp);
1929 if (!READ_ONCE(rsp->gp_flags)) {
1930 /* Spurious wakeup, tell caller to go back to sleep. */
1931 raw_spin_unlock_irq_rcu_node(rnp);
1932 return false;
1933 }
1934 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1935
1936 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1937 /*
1938 * Grace period already in progress, don't start another.
1939 * Not supposed to be able to happen.
1940 */
1941 raw_spin_unlock_irq_rcu_node(rnp);
1942 return false;
1943 }
1944
1945 /* Advance to a new grace period and initialize state. */
1946 record_gp_stall_check_time(rsp);
1947 /* Record GP times before starting GP, hence smp_store_release(). */
1948 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1949 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1950 raw_spin_unlock_irq_rcu_node(rnp);
1951
1952 /*
1953 * Apply per-leaf buffered online and offline operations to the
1954 * rcu_node tree. Note that this new grace period need not wait
1955 * for subsequent online CPUs, and that quiescent-state forcing
1956 * will handle subsequent offline CPUs.
1957 */
1958 rcu_for_each_leaf_node(rsp, rnp) {
1959 rcu_gp_slow(rsp, gp_preinit_delay);
1960 raw_spin_lock_irq_rcu_node(rnp);
1961 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1962 !rnp->wait_blkd_tasks) {
1963 /* Nothing to do on this leaf rcu_node structure. */
1964 raw_spin_unlock_irq_rcu_node(rnp);
1965 continue;
1966 }
1967
1968 /* Record old state, apply changes to ->qsmaskinit field. */
1969 oldmask = rnp->qsmaskinit;
1970 rnp->qsmaskinit = rnp->qsmaskinitnext;
1971
1972 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1973 if (!oldmask != !rnp->qsmaskinit) {
1974 if (!oldmask) /* First online CPU for this rcu_node. */
1975 rcu_init_new_rnp(rnp);
1976 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1977 rnp->wait_blkd_tasks = true;
1978 else /* Last offline CPU and can propagate. */
1979 rcu_cleanup_dead_rnp(rnp);
1980 }
1981
1982 /*
1983 * If all waited-on tasks from prior grace period are
1984 * done, and if all this rcu_node structure's CPUs are
1985 * still offline, propagate up the rcu_node tree and
1986 * clear ->wait_blkd_tasks. Otherwise, if one of this
1987 * rcu_node structure's CPUs has since come back online,
1988 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1989 * checks for this, so just call it unconditionally).
1990 */
1991 if (rnp->wait_blkd_tasks &&
1992 (!rcu_preempt_has_tasks(rnp) ||
1993 rnp->qsmaskinit)) {
1994 rnp->wait_blkd_tasks = false;
1995 rcu_cleanup_dead_rnp(rnp);
1996 }
1997
1998 raw_spin_unlock_irq_rcu_node(rnp);
1999 }
2000
2001 /*
2002 * Set the quiescent-state-needed bits in all the rcu_node
2003 * structures for all currently online CPUs in breadth-first order,
2004 * starting from the root rcu_node structure, relying on the layout
2005 * of the tree within the rsp->node[] array. Note that other CPUs
2006 * will access only the leaves of the hierarchy, thus seeing that no
2007 * grace period is in progress, at least until the corresponding
2008 * leaf node has been initialized.
2009 *
2010 * The grace period cannot complete until the initialization
2011 * process finishes, because this kthread handles both.
2012 */
2013 rcu_for_each_node_breadth_first(rsp, rnp) {
2014 rcu_gp_slow(rsp, gp_init_delay);
2015 raw_spin_lock_irq_rcu_node(rnp);
2016 rdp = this_cpu_ptr(rsp->rda);
2017 rcu_preempt_check_blocked_tasks(rnp);
2018 rnp->qsmask = rnp->qsmaskinit;
2019 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2020 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2021 WRITE_ONCE(rnp->completed, rsp->completed);
2022 if (rnp == rdp->mynode)
2023 (void)__note_gp_changes(rsp, rnp, rdp);
2024 rcu_preempt_boost_start_gp(rnp);
2025 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2026 rnp->level, rnp->grplo,
2027 rnp->grphi, rnp->qsmask);
2028 raw_spin_unlock_irq_rcu_node(rnp);
2029 cond_resched_rcu_qs();
2030 WRITE_ONCE(rsp->gp_activity, jiffies);
2031 }
2032
2033 return true;
2034}
2035
2036/*
2037 * Helper function for wait_event_interruptible_timeout() wakeup
2038 * at force-quiescent-state time.
2039 */
2040static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2041{
2042 struct rcu_node *rnp = rcu_get_root(rsp);
2043
2044 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2045 *gfp = READ_ONCE(rsp->gp_flags);
2046 if (*gfp & RCU_GP_FLAG_FQS)
2047 return true;
2048
2049 /* The current grace period has completed. */
2050 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2051 return true;
2052
2053 return false;
2054}
2055
2056/*
2057 * Do one round of quiescent-state forcing.
2058 */
2059static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2060{
2061 bool isidle = false;
2062 unsigned long maxj;
2063 struct rcu_node *rnp = rcu_get_root(rsp);
2064
2065 WRITE_ONCE(rsp->gp_activity, jiffies);
2066 rsp->n_force_qs++;
2067 if (first_time) {
2068 /* Collect dyntick-idle snapshots. */
2069 if (is_sysidle_rcu_state(rsp)) {
2070 isidle = true;
2071 maxj = jiffies - ULONG_MAX / 4;
2072 }
2073 force_qs_rnp(rsp, dyntick_save_progress_counter,
2074 &isidle, &maxj);
2075 rcu_sysidle_report_gp(rsp, isidle, maxj);
2076 } else {
2077 /* Handle dyntick-idle and offline CPUs. */
2078 isidle = true;
2079 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2080 }
2081 /* Clear flag to prevent immediate re-entry. */
2082 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2083 raw_spin_lock_irq_rcu_node(rnp);
2084 WRITE_ONCE(rsp->gp_flags,
2085 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2086 raw_spin_unlock_irq_rcu_node(rnp);
2087 }
2088}
2089
2090/*
2091 * Clean up after the old grace period.
2092 */
2093static void rcu_gp_cleanup(struct rcu_state *rsp)
2094{
2095 unsigned long gp_duration;
2096 bool needgp = false;
2097 int nocb = 0;
2098 struct rcu_data *rdp;
2099 struct rcu_node *rnp = rcu_get_root(rsp);
2100 struct swait_queue_head *sq;
2101
2102 WRITE_ONCE(rsp->gp_activity, jiffies);
2103 raw_spin_lock_irq_rcu_node(rnp);
2104 gp_duration = jiffies - rsp->gp_start;
2105 if (gp_duration > rsp->gp_max)
2106 rsp->gp_max = gp_duration;
2107
2108 /*
2109 * We know the grace period is complete, but to everyone else
2110 * it appears to still be ongoing. But it is also the case
2111 * that to everyone else it looks like there is nothing that
2112 * they can do to advance the grace period. It is therefore
2113 * safe for us to drop the lock in order to mark the grace
2114 * period as completed in all of the rcu_node structures.
2115 */
2116 raw_spin_unlock_irq_rcu_node(rnp);
2117
2118 /*
2119 * Propagate new ->completed value to rcu_node structures so
2120 * that other CPUs don't have to wait until the start of the next
2121 * grace period to process their callbacks. This also avoids
2122 * some nasty RCU grace-period initialization races by forcing
2123 * the end of the current grace period to be completely recorded in
2124 * all of the rcu_node structures before the beginning of the next
2125 * grace period is recorded in any of the rcu_node structures.
2126 */
2127 rcu_for_each_node_breadth_first(rsp, rnp) {
2128 raw_spin_lock_irq_rcu_node(rnp);
2129 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2130 WARN_ON_ONCE(rnp->qsmask);
2131 WRITE_ONCE(rnp->completed, rsp->gpnum);
2132 rdp = this_cpu_ptr(rsp->rda);
2133 if (rnp == rdp->mynode)
2134 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2135 /* smp_mb() provided by prior unlock-lock pair. */
2136 nocb += rcu_future_gp_cleanup(rsp, rnp);
2137 sq = rcu_nocb_gp_get(rnp);
2138 raw_spin_unlock_irq_rcu_node(rnp);
2139 rcu_nocb_gp_cleanup(sq);
2140 cond_resched_rcu_qs();
2141 WRITE_ONCE(rsp->gp_activity, jiffies);
2142 rcu_gp_slow(rsp, gp_cleanup_delay);
2143 }
2144 rnp = rcu_get_root(rsp);
2145 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2146 rcu_nocb_gp_set(rnp, nocb);
2147
2148 /* Declare grace period done. */
2149 WRITE_ONCE(rsp->completed, rsp->gpnum);
2150 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2151 rsp->gp_state = RCU_GP_IDLE;
2152 rdp = this_cpu_ptr(rsp->rda);
2153 /* Advance CBs to reduce false positives below. */
2154 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2155 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2156 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2157 trace_rcu_grace_period(rsp->name,
2158 READ_ONCE(rsp->gpnum),
2159 TPS("newreq"));
2160 }
2161 raw_spin_unlock_irq_rcu_node(rnp);
2162}
2163
2164/*
2165 * Body of kthread that handles grace periods.
2166 */
2167static int __noreturn rcu_gp_kthread(void *arg)
2168{
2169 bool first_gp_fqs;
2170 int gf;
2171 unsigned long j;
2172 int ret;
2173 struct rcu_state *rsp = arg;
2174 struct rcu_node *rnp = rcu_get_root(rsp);
2175
2176 rcu_bind_gp_kthread();
2177 for (;;) {
2178
2179 /* Handle grace-period start. */
2180 for (;;) {
2181 trace_rcu_grace_period(rsp->name,
2182 READ_ONCE(rsp->gpnum),
2183 TPS("reqwait"));
2184 rsp->gp_state = RCU_GP_WAIT_GPS;
2185 swait_event_interruptible(rsp->gp_wq,
2186 READ_ONCE(rsp->gp_flags) &
2187 RCU_GP_FLAG_INIT);
2188 rsp->gp_state = RCU_GP_DONE_GPS;
2189 /* Locking provides needed memory barrier. */
2190 if (rcu_gp_init(rsp))
2191 break;
2192 cond_resched_rcu_qs();
2193 WRITE_ONCE(rsp->gp_activity, jiffies);
2194 WARN_ON(signal_pending(current));
2195 trace_rcu_grace_period(rsp->name,
2196 READ_ONCE(rsp->gpnum),
2197 TPS("reqwaitsig"));
2198 }
2199
2200 /* Handle quiescent-state forcing. */
2201 first_gp_fqs = true;
2202 j = jiffies_till_first_fqs;
2203 if (j > HZ) {
2204 j = HZ;
2205 jiffies_till_first_fqs = HZ;
2206 }
2207 ret = 0;
2208 for (;;) {
2209 if (!ret) {
2210 rsp->jiffies_force_qs = jiffies + j;
2211 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2212 jiffies + 3 * j);
2213 }
2214 trace_rcu_grace_period(rsp->name,
2215 READ_ONCE(rsp->gpnum),
2216 TPS("fqswait"));
2217 rsp->gp_state = RCU_GP_WAIT_FQS;
2218 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2219 rcu_gp_fqs_check_wake(rsp, &gf), j);
2220 rsp->gp_state = RCU_GP_DOING_FQS;
2221 /* Locking provides needed memory barriers. */
2222 /* If grace period done, leave loop. */
2223 if (!READ_ONCE(rnp->qsmask) &&
2224 !rcu_preempt_blocked_readers_cgp(rnp))
2225 break;
2226 /* If time for quiescent-state forcing, do it. */
2227 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2228 (gf & RCU_GP_FLAG_FQS)) {
2229 trace_rcu_grace_period(rsp->name,
2230 READ_ONCE(rsp->gpnum),
2231 TPS("fqsstart"));
2232 rcu_gp_fqs(rsp, first_gp_fqs);
2233 first_gp_fqs = false;
2234 trace_rcu_grace_period(rsp->name,
2235 READ_ONCE(rsp->gpnum),
2236 TPS("fqsend"));
2237 cond_resched_rcu_qs();
2238 WRITE_ONCE(rsp->gp_activity, jiffies);
2239 ret = 0; /* Force full wait till next FQS. */
2240 j = jiffies_till_next_fqs;
2241 if (j > HZ) {
2242 j = HZ;
2243 jiffies_till_next_fqs = HZ;
2244 } else if (j < 1) {
2245 j = 1;
2246 jiffies_till_next_fqs = 1;
2247 }
2248 } else {
2249 /* Deal with stray signal. */
2250 cond_resched_rcu_qs();
2251 WRITE_ONCE(rsp->gp_activity, jiffies);
2252 WARN_ON(signal_pending(current));
2253 trace_rcu_grace_period(rsp->name,
2254 READ_ONCE(rsp->gpnum),
2255 TPS("fqswaitsig"));
2256 ret = 1; /* Keep old FQS timing. */
2257 j = jiffies;
2258 if (time_after(jiffies, rsp->jiffies_force_qs))
2259 j = 1;
2260 else
2261 j = rsp->jiffies_force_qs - j;
2262 }
2263 }
2264
2265 /* Handle grace-period end. */
2266 rsp->gp_state = RCU_GP_CLEANUP;
2267 rcu_gp_cleanup(rsp);
2268 rsp->gp_state = RCU_GP_CLEANED;
2269 }
2270}
2271
2272/*
2273 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2274 * in preparation for detecting the next grace period. The caller must hold
2275 * the root node's ->lock and hard irqs must be disabled.
2276 *
2277 * Note that it is legal for a dying CPU (which is marked as offline) to
2278 * invoke this function. This can happen when the dying CPU reports its
2279 * quiescent state.
2280 *
2281 * Returns true if the grace-period kthread must be awakened.
2282 */
2283static bool
2284rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2285 struct rcu_data *rdp)
2286{
2287 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2288 /*
2289 * Either we have not yet spawned the grace-period
2290 * task, this CPU does not need another grace period,
2291 * or a grace period is already in progress.
2292 * Either way, don't start a new grace period.
2293 */
2294 return false;
2295 }
2296 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2297 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2298 TPS("newreq"));
2299
2300 /*
2301 * We can't do wakeups while holding the rnp->lock, as that
2302 * could cause possible deadlocks with the rq->lock. Defer
2303 * the wakeup to our caller.
2304 */
2305 return true;
2306}
2307
2308/*
2309 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2310 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2311 * is invoked indirectly from rcu_advance_cbs(), which would result in
2312 * endless recursion -- or would do so if it wasn't for the self-deadlock
2313 * that is encountered beforehand.
2314 *
2315 * Returns true if the grace-period kthread needs to be awakened.
2316 */
2317static bool rcu_start_gp(struct rcu_state *rsp)
2318{
2319 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2320 struct rcu_node *rnp = rcu_get_root(rsp);
2321 bool ret = false;
2322
2323 /*
2324 * If there is no grace period in progress right now, any
2325 * callbacks we have up to this point will be satisfied by the
2326 * next grace period. Also, advancing the callbacks reduces the
2327 * probability of false positives from cpu_needs_another_gp()
2328 * resulting in pointless grace periods. So, advance callbacks
2329 * then start the grace period!
2330 */
2331 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2332 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2333 return ret;
2334}
2335
2336/*
2337 * Report a full set of quiescent states to the specified rcu_state data
2338 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2339 * kthread if another grace period is required. Whether we wake
2340 * the grace-period kthread or it awakens itself for the next round
2341 * of quiescent-state forcing, that kthread will clean up after the
2342 * just-completed grace period. Note that the caller must hold rnp->lock,
2343 * which is released before return.
2344 */
2345static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2346 __releases(rcu_get_root(rsp)->lock)
2347{
2348 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2349 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2350 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2351 rcu_gp_kthread_wake(rsp);
2352}
2353
2354/*
2355 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2356 * Allows quiescent states for a group of CPUs to be reported at one go
2357 * to the specified rcu_node structure, though all the CPUs in the group
2358 * must be represented by the same rcu_node structure (which need not be a
2359 * leaf rcu_node structure, though it often will be). The gps parameter
2360 * is the grace-period snapshot, which means that the quiescent states
2361 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2362 * must be held upon entry, and it is released before return.
2363 */
2364static void
2365rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2366 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2367 __releases(rnp->lock)
2368{
2369 unsigned long oldmask = 0;
2370 struct rcu_node *rnp_c;
2371
2372 /* Walk up the rcu_node hierarchy. */
2373 for (;;) {
2374 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2375
2376 /*
2377 * Our bit has already been cleared, or the
2378 * relevant grace period is already over, so done.
2379 */
2380 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2381 return;
2382 }
2383 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2384 rnp->qsmask &= ~mask;
2385 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2386 mask, rnp->qsmask, rnp->level,
2387 rnp->grplo, rnp->grphi,
2388 !!rnp->gp_tasks);
2389 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2390
2391 /* Other bits still set at this level, so done. */
2392 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2393 return;
2394 }
2395 mask = rnp->grpmask;
2396 if (rnp->parent == NULL) {
2397
2398 /* No more levels. Exit loop holding root lock. */
2399
2400 break;
2401 }
2402 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2403 rnp_c = rnp;
2404 rnp = rnp->parent;
2405 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2406 oldmask = rnp_c->qsmask;
2407 }
2408
2409 /*
2410 * Get here if we are the last CPU to pass through a quiescent
2411 * state for this grace period. Invoke rcu_report_qs_rsp()
2412 * to clean up and start the next grace period if one is needed.
2413 */
2414 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2415}
2416
2417/*
2418 * Record a quiescent state for all tasks that were previously queued
2419 * on the specified rcu_node structure and that were blocking the current
2420 * RCU grace period. The caller must hold the specified rnp->lock with
2421 * irqs disabled, and this lock is released upon return, but irqs remain
2422 * disabled.
2423 */
2424static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2425 struct rcu_node *rnp, unsigned long flags)
2426 __releases(rnp->lock)
2427{
2428 unsigned long gps;
2429 unsigned long mask;
2430 struct rcu_node *rnp_p;
2431
2432 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2433 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2434 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2435 return; /* Still need more quiescent states! */
2436 }
2437
2438 rnp_p = rnp->parent;
2439 if (rnp_p == NULL) {
2440 /*
2441 * Only one rcu_node structure in the tree, so don't
2442 * try to report up to its nonexistent parent!
2443 */
2444 rcu_report_qs_rsp(rsp, flags);
2445 return;
2446 }
2447
2448 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2449 gps = rnp->gpnum;
2450 mask = rnp->grpmask;
2451 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2452 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2453 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2454}
2455
2456/*
2457 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2458 * structure. This must be called from the specified CPU.
2459 */
2460static void
2461rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2462{
2463 unsigned long flags;
2464 unsigned long mask;
2465 bool needwake;
2466 struct rcu_node *rnp;
2467
2468 rnp = rdp->mynode;
2469 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2470 if ((rdp->cpu_no_qs.b.norm &&
2471 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2472 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2473 rdp->gpwrap) {
2474
2475 /*
2476 * The grace period in which this quiescent state was
2477 * recorded has ended, so don't report it upwards.
2478 * We will instead need a new quiescent state that lies
2479 * within the current grace period.
2480 */
2481 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2482 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2483 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2484 return;
2485 }
2486 mask = rdp->grpmask;
2487 if ((rnp->qsmask & mask) == 0) {
2488 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2489 } else {
2490 rdp->core_needs_qs = false;
2491
2492 /*
2493 * This GP can't end until cpu checks in, so all of our
2494 * callbacks can be processed during the next GP.
2495 */
2496 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2497
2498 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2499 /* ^^^ Released rnp->lock */
2500 if (needwake)
2501 rcu_gp_kthread_wake(rsp);
2502 }
2503}
2504
2505/*
2506 * Check to see if there is a new grace period of which this CPU
2507 * is not yet aware, and if so, set up local rcu_data state for it.
2508 * Otherwise, see if this CPU has just passed through its first
2509 * quiescent state for this grace period, and record that fact if so.
2510 */
2511static void
2512rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2513{
2514 /* Check for grace-period ends and beginnings. */
2515 note_gp_changes(rsp, rdp);
2516
2517 /*
2518 * Does this CPU still need to do its part for current grace period?
2519 * If no, return and let the other CPUs do their part as well.
2520 */
2521 if (!rdp->core_needs_qs)
2522 return;
2523
2524 /*
2525 * Was there a quiescent state since the beginning of the grace
2526 * period? If no, then exit and wait for the next call.
2527 */
2528 if (rdp->cpu_no_qs.b.norm &&
2529 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2530 return;
2531
2532 /*
2533 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2534 * judge of that).
2535 */
2536 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2537}
2538
2539/*
2540 * Send the specified CPU's RCU callbacks to the orphanage. The
2541 * specified CPU must be offline, and the caller must hold the
2542 * ->orphan_lock.
2543 */
2544static void
2545rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2546 struct rcu_node *rnp, struct rcu_data *rdp)
2547{
2548 /* No-CBs CPUs do not have orphanable callbacks. */
2549 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2550 return;
2551
2552 /*
2553 * Orphan the callbacks. First adjust the counts. This is safe
2554 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2555 * cannot be running now. Thus no memory barrier is required.
2556 */
2557 if (rdp->nxtlist != NULL) {
2558 rsp->qlen_lazy += rdp->qlen_lazy;
2559 rsp->qlen += rdp->qlen;
2560 rdp->n_cbs_orphaned += rdp->qlen;
2561 rdp->qlen_lazy = 0;
2562 WRITE_ONCE(rdp->qlen, 0);
2563 }
2564
2565 /*
2566 * Next, move those callbacks still needing a grace period to
2567 * the orphanage, where some other CPU will pick them up.
2568 * Some of the callbacks might have gone partway through a grace
2569 * period, but that is too bad. They get to start over because we
2570 * cannot assume that grace periods are synchronized across CPUs.
2571 * We don't bother updating the ->nxttail[] array yet, instead
2572 * we just reset the whole thing later on.
2573 */
2574 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2575 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2576 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2577 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2578 }
2579
2580 /*
2581 * Then move the ready-to-invoke callbacks to the orphanage,
2582 * where some other CPU will pick them up. These will not be
2583 * required to pass though another grace period: They are done.
2584 */
2585 if (rdp->nxtlist != NULL) {
2586 *rsp->orphan_donetail = rdp->nxtlist;
2587 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2588 }
2589
2590 /*
2591 * Finally, initialize the rcu_data structure's list to empty and
2592 * disallow further callbacks on this CPU.
2593 */
2594 init_callback_list(rdp);
2595 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2596}
2597
2598/*
2599 * Adopt the RCU callbacks from the specified rcu_state structure's
2600 * orphanage. The caller must hold the ->orphan_lock.
2601 */
2602static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2603{
2604 int i;
2605 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2606
2607 /* No-CBs CPUs are handled specially. */
2608 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2609 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2610 return;
2611
2612 /* Do the accounting first. */
2613 rdp->qlen_lazy += rsp->qlen_lazy;
2614 rdp->qlen += rsp->qlen;
2615 rdp->n_cbs_adopted += rsp->qlen;
2616 if (rsp->qlen_lazy != rsp->qlen)
2617 rcu_idle_count_callbacks_posted();
2618 rsp->qlen_lazy = 0;
2619 rsp->qlen = 0;
2620
2621 /*
2622 * We do not need a memory barrier here because the only way we
2623 * can get here if there is an rcu_barrier() in flight is if
2624 * we are the task doing the rcu_barrier().
2625 */
2626
2627 /* First adopt the ready-to-invoke callbacks. */
2628 if (rsp->orphan_donelist != NULL) {
2629 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2630 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2631 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2632 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2633 rdp->nxttail[i] = rsp->orphan_donetail;
2634 rsp->orphan_donelist = NULL;
2635 rsp->orphan_donetail = &rsp->orphan_donelist;
2636 }
2637
2638 /* And then adopt the callbacks that still need a grace period. */
2639 if (rsp->orphan_nxtlist != NULL) {
2640 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2641 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2642 rsp->orphan_nxtlist = NULL;
2643 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2644 }
2645}
2646
2647/*
2648 * Trace the fact that this CPU is going offline.
2649 */
2650static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2651{
2652 RCU_TRACE(unsigned long mask);
2653 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2654 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2655
2656 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2657 return;
2658
2659 RCU_TRACE(mask = rdp->grpmask);
2660 trace_rcu_grace_period(rsp->name,
2661 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2662 TPS("cpuofl"));
2663}
2664
2665/*
2666 * All CPUs for the specified rcu_node structure have gone offline,
2667 * and all tasks that were preempted within an RCU read-side critical
2668 * section while running on one of those CPUs have since exited their RCU
2669 * read-side critical section. Some other CPU is reporting this fact with
2670 * the specified rcu_node structure's ->lock held and interrupts disabled.
2671 * This function therefore goes up the tree of rcu_node structures,
2672 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2673 * the leaf rcu_node structure's ->qsmaskinit field has already been
2674 * updated
2675 *
2676 * This function does check that the specified rcu_node structure has
2677 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2678 * prematurely. That said, invoking it after the fact will cost you
2679 * a needless lock acquisition. So once it has done its work, don't
2680 * invoke it again.
2681 */
2682static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2683{
2684 long mask;
2685 struct rcu_node *rnp = rnp_leaf;
2686
2687 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2688 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2689 return;
2690 for (;;) {
2691 mask = rnp->grpmask;
2692 rnp = rnp->parent;
2693 if (!rnp)
2694 break;
2695 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2696 rnp->qsmaskinit &= ~mask;
2697 rnp->qsmask &= ~mask;
2698 if (rnp->qsmaskinit) {
2699 raw_spin_unlock_rcu_node(rnp);
2700 /* irqs remain disabled. */
2701 return;
2702 }
2703 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2704 }
2705}
2706
2707/*
2708 * The CPU has been completely removed, and some other CPU is reporting
2709 * this fact from process context. Do the remainder of the cleanup,
2710 * including orphaning the outgoing CPU's RCU callbacks, and also
2711 * adopting them. There can only be one CPU hotplug operation at a time,
2712 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2713 */
2714static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2715{
2716 unsigned long flags;
2717 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2718 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2719
2720 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2721 return;
2722
2723 /* Adjust any no-longer-needed kthreads. */
2724 rcu_boost_kthread_setaffinity(rnp, -1);
2725
2726 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2727 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2728 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2729 rcu_adopt_orphan_cbs(rsp, flags);
2730 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2731
2732 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2733 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2734 cpu, rdp->qlen, rdp->nxtlist);
2735}
2736
2737/*
2738 * Invoke any RCU callbacks that have made it to the end of their grace
2739 * period. Thottle as specified by rdp->blimit.
2740 */
2741static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2742{
2743 unsigned long flags;
2744 struct rcu_head *next, *list, **tail;
2745 long bl, count, count_lazy;
2746 int i;
2747
2748 /* If no callbacks are ready, just return. */
2749 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2750 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2751 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2752 need_resched(), is_idle_task(current),
2753 rcu_is_callbacks_kthread());
2754 return;
2755 }
2756
2757 /*
2758 * Extract the list of ready callbacks, disabling to prevent
2759 * races with call_rcu() from interrupt handlers.
2760 */
2761 local_irq_save(flags);
2762 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2763 bl = rdp->blimit;
2764 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2765 list = rdp->nxtlist;
2766 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2767 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2768 tail = rdp->nxttail[RCU_DONE_TAIL];
2769 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2770 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2771 rdp->nxttail[i] = &rdp->nxtlist;
2772 local_irq_restore(flags);
2773
2774 /* Invoke callbacks. */
2775 count = count_lazy = 0;
2776 while (list) {
2777 next = list->next;
2778 prefetch(next);
2779 debug_rcu_head_unqueue(list);
2780 if (__rcu_reclaim(rsp->name, list))
2781 count_lazy++;
2782 list = next;
2783 /* Stop only if limit reached and CPU has something to do. */
2784 if (++count >= bl &&
2785 (need_resched() ||
2786 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2787 break;
2788 }
2789
2790 local_irq_save(flags);
2791 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2792 is_idle_task(current),
2793 rcu_is_callbacks_kthread());
2794
2795 /* Update count, and requeue any remaining callbacks. */
2796 if (list != NULL) {
2797 *tail = rdp->nxtlist;
2798 rdp->nxtlist = list;
2799 for (i = 0; i < RCU_NEXT_SIZE; i++)
2800 if (&rdp->nxtlist == rdp->nxttail[i])
2801 rdp->nxttail[i] = tail;
2802 else
2803 break;
2804 }
2805 smp_mb(); /* List handling before counting for rcu_barrier(). */
2806 rdp->qlen_lazy -= count_lazy;
2807 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2808 rdp->n_cbs_invoked += count;
2809
2810 /* Reinstate batch limit if we have worked down the excess. */
2811 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2812 rdp->blimit = blimit;
2813
2814 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2815 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2816 rdp->qlen_last_fqs_check = 0;
2817 rdp->n_force_qs_snap = rsp->n_force_qs;
2818 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2819 rdp->qlen_last_fqs_check = rdp->qlen;
2820 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2821
2822 local_irq_restore(flags);
2823
2824 /* Re-invoke RCU core processing if there are callbacks remaining. */
2825 if (cpu_has_callbacks_ready_to_invoke(rdp))
2826 invoke_rcu_core();
2827}
2828
2829/*
2830 * Check to see if this CPU is in a non-context-switch quiescent state
2831 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2832 * Also schedule RCU core processing.
2833 *
2834 * This function must be called from hardirq context. It is normally
2835 * invoked from the scheduling-clock interrupt.
2836 */
2837void rcu_check_callbacks(int user)
2838{
2839 trace_rcu_utilization(TPS("Start scheduler-tick"));
2840 increment_cpu_stall_ticks();
2841 if (user || rcu_is_cpu_rrupt_from_idle()) {
2842
2843 /*
2844 * Get here if this CPU took its interrupt from user
2845 * mode or from the idle loop, and if this is not a
2846 * nested interrupt. In this case, the CPU is in
2847 * a quiescent state, so note it.
2848 *
2849 * No memory barrier is required here because both
2850 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2851 * variables that other CPUs neither access nor modify,
2852 * at least not while the corresponding CPU is online.
2853 */
2854
2855 rcu_sched_qs();
2856 rcu_bh_qs();
2857
2858 } else if (!in_softirq()) {
2859
2860 /*
2861 * Get here if this CPU did not take its interrupt from
2862 * softirq, in other words, if it is not interrupting
2863 * a rcu_bh read-side critical section. This is an _bh
2864 * critical section, so note it.
2865 */
2866
2867 rcu_bh_qs();
2868 }
2869 rcu_preempt_check_callbacks();
2870 if (rcu_pending())
2871 invoke_rcu_core();
2872 if (user)
2873 rcu_note_voluntary_context_switch(current);
2874 trace_rcu_utilization(TPS("End scheduler-tick"));
2875}
2876
2877/*
2878 * Scan the leaf rcu_node structures, processing dyntick state for any that
2879 * have not yet encountered a quiescent state, using the function specified.
2880 * Also initiate boosting for any threads blocked on the root rcu_node.
2881 *
2882 * The caller must have suppressed start of new grace periods.
2883 */
2884static void force_qs_rnp(struct rcu_state *rsp,
2885 int (*f)(struct rcu_data *rsp, bool *isidle,
2886 unsigned long *maxj),
2887 bool *isidle, unsigned long *maxj)
2888{
2889 int cpu;
2890 unsigned long flags;
2891 unsigned long mask;
2892 struct rcu_node *rnp;
2893
2894 rcu_for_each_leaf_node(rsp, rnp) {
2895 cond_resched_rcu_qs();
2896 mask = 0;
2897 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2898 if (rnp->qsmask == 0) {
2899 if (rcu_state_p == &rcu_sched_state ||
2900 rsp != rcu_state_p ||
2901 rcu_preempt_blocked_readers_cgp(rnp)) {
2902 /*
2903 * No point in scanning bits because they
2904 * are all zero. But we might need to
2905 * priority-boost blocked readers.
2906 */
2907 rcu_initiate_boost(rnp, flags);
2908 /* rcu_initiate_boost() releases rnp->lock */
2909 continue;
2910 }
2911 if (rnp->parent &&
2912 (rnp->parent->qsmask & rnp->grpmask)) {
2913 /*
2914 * Race between grace-period
2915 * initialization and task exiting RCU
2916 * read-side critical section: Report.
2917 */
2918 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2919 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2920 continue;
2921 }
2922 }
2923 for_each_leaf_node_possible_cpu(rnp, cpu) {
2924 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2925 if ((rnp->qsmask & bit) != 0) {
2926 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2927 mask |= bit;
2928 }
2929 }
2930 if (mask != 0) {
2931 /* Idle/offline CPUs, report (releases rnp->lock. */
2932 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2933 } else {
2934 /* Nothing to do here, so just drop the lock. */
2935 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2936 }
2937 }
2938}
2939
2940/*
2941 * Force quiescent states on reluctant CPUs, and also detect which
2942 * CPUs are in dyntick-idle mode.
2943 */
2944static void force_quiescent_state(struct rcu_state *rsp)
2945{
2946 unsigned long flags;
2947 bool ret;
2948 struct rcu_node *rnp;
2949 struct rcu_node *rnp_old = NULL;
2950
2951 /* Funnel through hierarchy to reduce memory contention. */
2952 rnp = __this_cpu_read(rsp->rda->mynode);
2953 for (; rnp != NULL; rnp = rnp->parent) {
2954 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2955 !raw_spin_trylock(&rnp->fqslock);
2956 if (rnp_old != NULL)
2957 raw_spin_unlock(&rnp_old->fqslock);
2958 if (ret) {
2959 rsp->n_force_qs_lh++;
2960 return;
2961 }
2962 rnp_old = rnp;
2963 }
2964 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2965
2966 /* Reached the root of the rcu_node tree, acquire lock. */
2967 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2968 raw_spin_unlock(&rnp_old->fqslock);
2969 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2970 rsp->n_force_qs_lh++;
2971 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2972 return; /* Someone beat us to it. */
2973 }
2974 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2975 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2976 rcu_gp_kthread_wake(rsp);
2977}
2978
2979/*
2980 * This does the RCU core processing work for the specified rcu_state
2981 * and rcu_data structures. This may be called only from the CPU to
2982 * whom the rdp belongs.
2983 */
2984static void
2985__rcu_process_callbacks(struct rcu_state *rsp)
2986{
2987 unsigned long flags;
2988 bool needwake;
2989 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2990
2991 WARN_ON_ONCE(rdp->beenonline == 0);
2992
2993 /* Update RCU state based on any recent quiescent states. */
2994 rcu_check_quiescent_state(rsp, rdp);
2995
2996 /* Does this CPU require a not-yet-started grace period? */
2997 local_irq_save(flags);
2998 if (cpu_needs_another_gp(rsp, rdp)) {
2999 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3000 needwake = rcu_start_gp(rsp);
3001 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3002 if (needwake)
3003 rcu_gp_kthread_wake(rsp);
3004 } else {
3005 local_irq_restore(flags);
3006 }
3007
3008 /* If there are callbacks ready, invoke them. */
3009 if (cpu_has_callbacks_ready_to_invoke(rdp))
3010 invoke_rcu_callbacks(rsp, rdp);
3011
3012 /* Do any needed deferred wakeups of rcuo kthreads. */
3013 do_nocb_deferred_wakeup(rdp);
3014}
3015
3016/*
3017 * Do RCU core processing for the current CPU.
3018 */
3019static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3020{
3021 struct rcu_state *rsp;
3022
3023 if (cpu_is_offline(smp_processor_id()))
3024 return;
3025 trace_rcu_utilization(TPS("Start RCU core"));
3026 for_each_rcu_flavor(rsp)
3027 __rcu_process_callbacks(rsp);
3028 trace_rcu_utilization(TPS("End RCU core"));
3029}
3030
3031/*
3032 * Schedule RCU callback invocation. If the specified type of RCU
3033 * does not support RCU priority boosting, just do a direct call,
3034 * otherwise wake up the per-CPU kernel kthread. Note that because we
3035 * are running on the current CPU with softirqs disabled, the
3036 * rcu_cpu_kthread_task cannot disappear out from under us.
3037 */
3038static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3039{
3040 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3041 return;
3042 if (likely(!rsp->boost)) {
3043 rcu_do_batch(rsp, rdp);
3044 return;
3045 }
3046 invoke_rcu_callbacks_kthread();
3047}
3048
3049static void invoke_rcu_core(void)
3050{
3051 if (cpu_online(smp_processor_id()))
3052 raise_softirq(RCU_SOFTIRQ);
3053}
3054
3055/*
3056 * Handle any core-RCU processing required by a call_rcu() invocation.
3057 */
3058static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3059 struct rcu_head *head, unsigned long flags)
3060{
3061 bool needwake;
3062
3063 /*
3064 * If called from an extended quiescent state, invoke the RCU
3065 * core in order to force a re-evaluation of RCU's idleness.
3066 */
3067 if (!rcu_is_watching())
3068 invoke_rcu_core();
3069
3070 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3071 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3072 return;
3073
3074 /*
3075 * Force the grace period if too many callbacks or too long waiting.
3076 * Enforce hysteresis, and don't invoke force_quiescent_state()
3077 * if some other CPU has recently done so. Also, don't bother
3078 * invoking force_quiescent_state() if the newly enqueued callback
3079 * is the only one waiting for a grace period to complete.
3080 */
3081 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3082
3083 /* Are we ignoring a completed grace period? */
3084 note_gp_changes(rsp, rdp);
3085
3086 /* Start a new grace period if one not already started. */
3087 if (!rcu_gp_in_progress(rsp)) {
3088 struct rcu_node *rnp_root = rcu_get_root(rsp);
3089
3090 raw_spin_lock_rcu_node(rnp_root);
3091 needwake = rcu_start_gp(rsp);
3092 raw_spin_unlock_rcu_node(rnp_root);
3093 if (needwake)
3094 rcu_gp_kthread_wake(rsp);
3095 } else {
3096 /* Give the grace period a kick. */
3097 rdp->blimit = LONG_MAX;
3098 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3099 *rdp->nxttail[RCU_DONE_TAIL] != head)
3100 force_quiescent_state(rsp);
3101 rdp->n_force_qs_snap = rsp->n_force_qs;
3102 rdp->qlen_last_fqs_check = rdp->qlen;
3103 }
3104 }
3105}
3106
3107/*
3108 * RCU callback function to leak a callback.
3109 */
3110static void rcu_leak_callback(struct rcu_head *rhp)
3111{
3112}
3113
3114/*
3115 * Helper function for call_rcu() and friends. The cpu argument will
3116 * normally be -1, indicating "currently running CPU". It may specify
3117 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3118 * is expected to specify a CPU.
3119 */
3120static void
3121__call_rcu(struct rcu_head *head, rcu_callback_t func,
3122 struct rcu_state *rsp, int cpu, bool lazy)
3123{
3124 unsigned long flags;
3125 struct rcu_data *rdp;
3126
3127 /* Misaligned rcu_head! */
3128 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3129
3130 if (debug_rcu_head_queue(head)) {
3131 /* Probable double call_rcu(), so leak the callback. */
3132 WRITE_ONCE(head->func, rcu_leak_callback);
3133 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3134 return;
3135 }
3136 head->func = func;
3137 head->next = NULL;
3138 local_irq_save(flags);
3139 rdp = this_cpu_ptr(rsp->rda);
3140
3141 /* Add the callback to our list. */
3142 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3143 int offline;
3144
3145 if (cpu != -1)
3146 rdp = per_cpu_ptr(rsp->rda, cpu);
3147 if (likely(rdp->mynode)) {
3148 /* Post-boot, so this should be for a no-CBs CPU. */
3149 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3150 WARN_ON_ONCE(offline);
3151 /* Offline CPU, _call_rcu() illegal, leak callback. */
3152 local_irq_restore(flags);
3153 return;
3154 }
3155 /*
3156 * Very early boot, before rcu_init(). Initialize if needed
3157 * and then drop through to queue the callback.
3158 */
3159 BUG_ON(cpu != -1);
3160 WARN_ON_ONCE(!rcu_is_watching());
3161 if (!likely(rdp->nxtlist))
3162 init_default_callback_list(rdp);
3163 }
3164 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3165 if (lazy)
3166 rdp->qlen_lazy++;
3167 else
3168 rcu_idle_count_callbacks_posted();
3169 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3170 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3171 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3172
3173 if (__is_kfree_rcu_offset((unsigned long)func))
3174 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3175 rdp->qlen_lazy, rdp->qlen);
3176 else
3177 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3178
3179 /* Go handle any RCU core processing required. */
3180 __call_rcu_core(rsp, rdp, head, flags);
3181 local_irq_restore(flags);
3182}
3183
3184/*
3185 * Queue an RCU-sched callback for invocation after a grace period.
3186 */
3187void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3188{
3189 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3190}
3191EXPORT_SYMBOL_GPL(call_rcu_sched);
3192
3193/*
3194 * Queue an RCU callback for invocation after a quicker grace period.
3195 */
3196void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3197{
3198 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3199}
3200EXPORT_SYMBOL_GPL(call_rcu_bh);
3201
3202/*
3203 * Queue an RCU callback for lazy invocation after a grace period.
3204 * This will likely be later named something like "call_rcu_lazy()",
3205 * but this change will require some way of tagging the lazy RCU
3206 * callbacks in the list of pending callbacks. Until then, this
3207 * function may only be called from __kfree_rcu().
3208 */
3209void kfree_call_rcu(struct rcu_head *head,
3210 rcu_callback_t func)
3211{
3212 __call_rcu(head, func, rcu_state_p, -1, 1);
3213}
3214EXPORT_SYMBOL_GPL(kfree_call_rcu);
3215
3216/*
3217 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3218 * any blocking grace-period wait automatically implies a grace period
3219 * if there is only one CPU online at any point time during execution
3220 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3221 * occasionally incorrectly indicate that there are multiple CPUs online
3222 * when there was in fact only one the whole time, as this just adds
3223 * some overhead: RCU still operates correctly.
3224 */
3225static inline int rcu_blocking_is_gp(void)
3226{
3227 int ret;
3228
3229 might_sleep(); /* Check for RCU read-side critical section. */
3230 preempt_disable();
3231 ret = num_online_cpus() <= 1;
3232 preempt_enable();
3233 return ret;
3234}
3235
3236/**
3237 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3238 *
3239 * Control will return to the caller some time after a full rcu-sched
3240 * grace period has elapsed, in other words after all currently executing
3241 * rcu-sched read-side critical sections have completed. These read-side
3242 * critical sections are delimited by rcu_read_lock_sched() and
3243 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3244 * local_irq_disable(), and so on may be used in place of
3245 * rcu_read_lock_sched().
3246 *
3247 * This means that all preempt_disable code sequences, including NMI and
3248 * non-threaded hardware-interrupt handlers, in progress on entry will
3249 * have completed before this primitive returns. However, this does not
3250 * guarantee that softirq handlers will have completed, since in some
3251 * kernels, these handlers can run in process context, and can block.
3252 *
3253 * Note that this guarantee implies further memory-ordering guarantees.
3254 * On systems with more than one CPU, when synchronize_sched() returns,
3255 * each CPU is guaranteed to have executed a full memory barrier since the
3256 * end of its last RCU-sched read-side critical section whose beginning
3257 * preceded the call to synchronize_sched(). In addition, each CPU having
3258 * an RCU read-side critical section that extends beyond the return from
3259 * synchronize_sched() is guaranteed to have executed a full memory barrier
3260 * after the beginning of synchronize_sched() and before the beginning of
3261 * that RCU read-side critical section. Note that these guarantees include
3262 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3263 * that are executing in the kernel.
3264 *
3265 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3266 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3267 * to have executed a full memory barrier during the execution of
3268 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3269 * again only if the system has more than one CPU).
3270 *
3271 * This primitive provides the guarantees made by the (now removed)
3272 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3273 * guarantees that rcu_read_lock() sections will have completed.
3274 * In "classic RCU", these two guarantees happen to be one and
3275 * the same, but can differ in realtime RCU implementations.
3276 */
3277void synchronize_sched(void)
3278{
3279 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3280 lock_is_held(&rcu_lock_map) ||
3281 lock_is_held(&rcu_sched_lock_map),
3282 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3283 if (rcu_blocking_is_gp())
3284 return;
3285 if (rcu_gp_is_expedited())
3286 synchronize_sched_expedited();
3287 else
3288 wait_rcu_gp(call_rcu_sched);
3289}
3290EXPORT_SYMBOL_GPL(synchronize_sched);
3291
3292/**
3293 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3294 *
3295 * Control will return to the caller some time after a full rcu_bh grace
3296 * period has elapsed, in other words after all currently executing rcu_bh
3297 * read-side critical sections have completed. RCU read-side critical
3298 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3299 * and may be nested.
3300 *
3301 * See the description of synchronize_sched() for more detailed information
3302 * on memory ordering guarantees.
3303 */
3304void synchronize_rcu_bh(void)
3305{
3306 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3307 lock_is_held(&rcu_lock_map) ||
3308 lock_is_held(&rcu_sched_lock_map),
3309 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3310 if (rcu_blocking_is_gp())
3311 return;
3312 if (rcu_gp_is_expedited())
3313 synchronize_rcu_bh_expedited();
3314 else
3315 wait_rcu_gp(call_rcu_bh);
3316}
3317EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3318
3319/**
3320 * get_state_synchronize_rcu - Snapshot current RCU state
3321 *
3322 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3323 * to determine whether or not a full grace period has elapsed in the
3324 * meantime.
3325 */
3326unsigned long get_state_synchronize_rcu(void)
3327{
3328 /*
3329 * Any prior manipulation of RCU-protected data must happen
3330 * before the load from ->gpnum.
3331 */
3332 smp_mb(); /* ^^^ */
3333
3334 /*
3335 * Make sure this load happens before the purportedly
3336 * time-consuming work between get_state_synchronize_rcu()
3337 * and cond_synchronize_rcu().
3338 */
3339 return smp_load_acquire(&rcu_state_p->gpnum);
3340}
3341EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3342
3343/**
3344 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3345 *
3346 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3347 *
3348 * If a full RCU grace period has elapsed since the earlier call to
3349 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3350 * synchronize_rcu() to wait for a full grace period.
3351 *
3352 * Yes, this function does not take counter wrap into account. But
3353 * counter wrap is harmless. If the counter wraps, we have waited for
3354 * more than 2 billion grace periods (and way more on a 64-bit system!),
3355 * so waiting for one additional grace period should be just fine.
3356 */
3357void cond_synchronize_rcu(unsigned long oldstate)
3358{
3359 unsigned long newstate;
3360
3361 /*
3362 * Ensure that this load happens before any RCU-destructive
3363 * actions the caller might carry out after we return.
3364 */
3365 newstate = smp_load_acquire(&rcu_state_p->completed);
3366 if (ULONG_CMP_GE(oldstate, newstate))
3367 synchronize_rcu();
3368}
3369EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3370
3371/**
3372 * get_state_synchronize_sched - Snapshot current RCU-sched state
3373 *
3374 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3375 * to determine whether or not a full grace period has elapsed in the
3376 * meantime.
3377 */
3378unsigned long get_state_synchronize_sched(void)
3379{
3380 /*
3381 * Any prior manipulation of RCU-protected data must happen
3382 * before the load from ->gpnum.
3383 */
3384 smp_mb(); /* ^^^ */
3385
3386 /*
3387 * Make sure this load happens before the purportedly
3388 * time-consuming work between get_state_synchronize_sched()
3389 * and cond_synchronize_sched().
3390 */
3391 return smp_load_acquire(&rcu_sched_state.gpnum);
3392}
3393EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3394
3395/**
3396 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3397 *
3398 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3399 *
3400 * If a full RCU-sched grace period has elapsed since the earlier call to
3401 * get_state_synchronize_sched(), just return. Otherwise, invoke
3402 * synchronize_sched() to wait for a full grace period.
3403 *
3404 * Yes, this function does not take counter wrap into account. But
3405 * counter wrap is harmless. If the counter wraps, we have waited for
3406 * more than 2 billion grace periods (and way more on a 64-bit system!),
3407 * so waiting for one additional grace period should be just fine.
3408 */
3409void cond_synchronize_sched(unsigned long oldstate)
3410{
3411 unsigned long newstate;
3412
3413 /*
3414 * Ensure that this load happens before any RCU-destructive
3415 * actions the caller might carry out after we return.
3416 */
3417 newstate = smp_load_acquire(&rcu_sched_state.completed);
3418 if (ULONG_CMP_GE(oldstate, newstate))
3419 synchronize_sched();
3420}
3421EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3422
3423/* Adjust sequence number for start of update-side operation. */
3424static void rcu_seq_start(unsigned long *sp)
3425{
3426 WRITE_ONCE(*sp, *sp + 1);
3427 smp_mb(); /* Ensure update-side operation after counter increment. */
3428 WARN_ON_ONCE(!(*sp & 0x1));
3429}
3430
3431/* Adjust sequence number for end of update-side operation. */
3432static void rcu_seq_end(unsigned long *sp)
3433{
3434 smp_mb(); /* Ensure update-side operation before counter increment. */
3435 WRITE_ONCE(*sp, *sp + 1);
3436 WARN_ON_ONCE(*sp & 0x1);
3437}
3438
3439/* Take a snapshot of the update side's sequence number. */
3440static unsigned long rcu_seq_snap(unsigned long *sp)
3441{
3442 unsigned long s;
3443
3444 s = (READ_ONCE(*sp) + 3) & ~0x1;
3445 smp_mb(); /* Above access must not bleed into critical section. */
3446 return s;
3447}
3448
3449/*
3450 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3451 * full update-side operation has occurred.
3452 */
3453static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3454{
3455 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3456}
3457
3458/*
3459 * Check to see if there is any immediate RCU-related work to be done
3460 * by the current CPU, for the specified type of RCU, returning 1 if so.
3461 * The checks are in order of increasing expense: checks that can be
3462 * carried out against CPU-local state are performed first. However,
3463 * we must check for CPU stalls first, else we might not get a chance.
3464 */
3465static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3466{
3467 struct rcu_node *rnp = rdp->mynode;
3468
3469 rdp->n_rcu_pending++;
3470
3471 /* Check for CPU stalls, if enabled. */
3472 check_cpu_stall(rsp, rdp);
3473
3474 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3475 if (rcu_nohz_full_cpu(rsp))
3476 return 0;
3477
3478 /* Is the RCU core waiting for a quiescent state from this CPU? */
3479 if (rcu_scheduler_fully_active &&
3480 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3481 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3482 rdp->n_rp_core_needs_qs++;
3483 } else if (rdp->core_needs_qs &&
3484 (!rdp->cpu_no_qs.b.norm ||
3485 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3486 rdp->n_rp_report_qs++;
3487 return 1;
3488 }
3489
3490 /* Does this CPU have callbacks ready to invoke? */
3491 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3492 rdp->n_rp_cb_ready++;
3493 return 1;
3494 }
3495
3496 /* Has RCU gone idle with this CPU needing another grace period? */
3497 if (cpu_needs_another_gp(rsp, rdp)) {
3498 rdp->n_rp_cpu_needs_gp++;
3499 return 1;
3500 }
3501
3502 /* Has another RCU grace period completed? */
3503 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3504 rdp->n_rp_gp_completed++;
3505 return 1;
3506 }
3507
3508 /* Has a new RCU grace period started? */
3509 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3510 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3511 rdp->n_rp_gp_started++;
3512 return 1;
3513 }
3514
3515 /* Does this CPU need a deferred NOCB wakeup? */
3516 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3517 rdp->n_rp_nocb_defer_wakeup++;
3518 return 1;
3519 }
3520
3521 /* nothing to do */
3522 rdp->n_rp_need_nothing++;
3523 return 0;
3524}
3525
3526/*
3527 * Check to see if there is any immediate RCU-related work to be done
3528 * by the current CPU, returning 1 if so. This function is part of the
3529 * RCU implementation; it is -not- an exported member of the RCU API.
3530 */
3531static int rcu_pending(void)
3532{
3533 struct rcu_state *rsp;
3534
3535 for_each_rcu_flavor(rsp)
3536 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3537 return 1;
3538 return 0;
3539}
3540
3541/*
3542 * Return true if the specified CPU has any callback. If all_lazy is
3543 * non-NULL, store an indication of whether all callbacks are lazy.
3544 * (If there are no callbacks, all of them are deemed to be lazy.)
3545 */
3546static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3547{
3548 bool al = true;
3549 bool hc = false;
3550 struct rcu_data *rdp;
3551 struct rcu_state *rsp;
3552
3553 for_each_rcu_flavor(rsp) {
3554 rdp = this_cpu_ptr(rsp->rda);
3555 if (!rdp->nxtlist)
3556 continue;
3557 hc = true;
3558 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3559 al = false;
3560 break;
3561 }
3562 }
3563 if (all_lazy)
3564 *all_lazy = al;
3565 return hc;
3566}
3567
3568/*
3569 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3570 * the compiler is expected to optimize this away.
3571 */
3572static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3573 int cpu, unsigned long done)
3574{
3575 trace_rcu_barrier(rsp->name, s, cpu,
3576 atomic_read(&rsp->barrier_cpu_count), done);
3577}
3578
3579/*
3580 * RCU callback function for _rcu_barrier(). If we are last, wake
3581 * up the task executing _rcu_barrier().
3582 */
3583static void rcu_barrier_callback(struct rcu_head *rhp)
3584{
3585 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3586 struct rcu_state *rsp = rdp->rsp;
3587
3588 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3589 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3590 complete(&rsp->barrier_completion);
3591 } else {
3592 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3593 }
3594}
3595
3596/*
3597 * Called with preemption disabled, and from cross-cpu IRQ context.
3598 */
3599static void rcu_barrier_func(void *type)
3600{
3601 struct rcu_state *rsp = type;
3602 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3603
3604 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3605 atomic_inc(&rsp->barrier_cpu_count);
3606 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3607}
3608
3609/*
3610 * Orchestrate the specified type of RCU barrier, waiting for all
3611 * RCU callbacks of the specified type to complete.
3612 */
3613static void _rcu_barrier(struct rcu_state *rsp)
3614{
3615 int cpu;
3616 struct rcu_data *rdp;
3617 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3618
3619 _rcu_barrier_trace(rsp, "Begin", -1, s);
3620
3621 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3622 mutex_lock(&rsp->barrier_mutex);
3623
3624 /* Did someone else do our work for us? */
3625 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3626 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3627 smp_mb(); /* caller's subsequent code after above check. */
3628 mutex_unlock(&rsp->barrier_mutex);
3629 return;
3630 }
3631
3632 /* Mark the start of the barrier operation. */
3633 rcu_seq_start(&rsp->barrier_sequence);
3634 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3635
3636 /*
3637 * Initialize the count to one rather than to zero in order to
3638 * avoid a too-soon return to zero in case of a short grace period
3639 * (or preemption of this task). Exclude CPU-hotplug operations
3640 * to ensure that no offline CPU has callbacks queued.
3641 */
3642 init_completion(&rsp->barrier_completion);
3643 atomic_set(&rsp->barrier_cpu_count, 1);
3644 get_online_cpus();
3645
3646 /*
3647 * Force each CPU with callbacks to register a new callback.
3648 * When that callback is invoked, we will know that all of the
3649 * corresponding CPU's preceding callbacks have been invoked.
3650 */
3651 for_each_possible_cpu(cpu) {
3652 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3653 continue;
3654 rdp = per_cpu_ptr(rsp->rda, cpu);
3655 if (rcu_is_nocb_cpu(cpu)) {
3656 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3657 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3658 rsp->barrier_sequence);
3659 } else {
3660 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3661 rsp->barrier_sequence);
3662 smp_mb__before_atomic();
3663 atomic_inc(&rsp->barrier_cpu_count);
3664 __call_rcu(&rdp->barrier_head,
3665 rcu_barrier_callback, rsp, cpu, 0);
3666 }
3667 } else if (READ_ONCE(rdp->qlen)) {
3668 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3669 rsp->barrier_sequence);
3670 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3671 } else {
3672 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3673 rsp->barrier_sequence);
3674 }
3675 }
3676 put_online_cpus();
3677
3678 /*
3679 * Now that we have an rcu_barrier_callback() callback on each
3680 * CPU, and thus each counted, remove the initial count.
3681 */
3682 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3683 complete(&rsp->barrier_completion);
3684
3685 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3686 wait_for_completion(&rsp->barrier_completion);
3687
3688 /* Mark the end of the barrier operation. */
3689 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3690 rcu_seq_end(&rsp->barrier_sequence);
3691
3692 /* Other rcu_barrier() invocations can now safely proceed. */
3693 mutex_unlock(&rsp->barrier_mutex);
3694}
3695
3696/**
3697 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3698 */
3699void rcu_barrier_bh(void)
3700{
3701 _rcu_barrier(&rcu_bh_state);
3702}
3703EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3704
3705/**
3706 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3707 */
3708void rcu_barrier_sched(void)
3709{
3710 _rcu_barrier(&rcu_sched_state);
3711}
3712EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3713
3714/*
3715 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3716 * first CPU in a given leaf rcu_node structure coming online. The caller
3717 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3718 * disabled.
3719 */
3720static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3721{
3722 long mask;
3723 struct rcu_node *rnp = rnp_leaf;
3724
3725 for (;;) {
3726 mask = rnp->grpmask;
3727 rnp = rnp->parent;
3728 if (rnp == NULL)
3729 return;
3730 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3731 rnp->qsmaskinit |= mask;
3732 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3733 }
3734}
3735
3736/*
3737 * Do boot-time initialization of a CPU's per-CPU RCU data.
3738 */
3739static void __init
3740rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3741{
3742 unsigned long flags;
3743 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3744 struct rcu_node *rnp = rcu_get_root(rsp);
3745
3746 /* Set up local state, ensuring consistent view of global state. */
3747 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3748 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3749 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3750 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3751 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3752 rdp->cpu = cpu;
3753 rdp->rsp = rsp;
3754 rcu_boot_init_nocb_percpu_data(rdp);
3755 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3756}
3757
3758/*
3759 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3760 * offline event can be happening at a given time. Note also that we
3761 * can accept some slop in the rsp->completed access due to the fact
3762 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3763 */
3764static void
3765rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3766{
3767 unsigned long flags;
3768 unsigned long mask;
3769 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3770 struct rcu_node *rnp = rcu_get_root(rsp);
3771
3772 /* Set up local state, ensuring consistent view of global state. */
3773 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3774 rdp->qlen_last_fqs_check = 0;
3775 rdp->n_force_qs_snap = rsp->n_force_qs;
3776 rdp->blimit = blimit;
3777 if (!rdp->nxtlist)
3778 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3779 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3780 rcu_sysidle_init_percpu_data(rdp->dynticks);
3781 atomic_set(&rdp->dynticks->dynticks,
3782 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3783 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3784
3785 /*
3786 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3787 * propagation up the rcu_node tree will happen at the beginning
3788 * of the next grace period.
3789 */
3790 rnp = rdp->mynode;
3791 mask = rdp->grpmask;
3792 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3793 if (!rdp->beenonline)
3794 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3795 rdp->beenonline = true; /* We have now been online. */
3796 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3797 rdp->completed = rnp->completed;
3798 rdp->cpu_no_qs.b.norm = true;
3799 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3800 rdp->core_needs_qs = false;
3801 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3802 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3803}
3804
3805int rcutree_prepare_cpu(unsigned int cpu)
3806{
3807 struct rcu_state *rsp;
3808
3809 for_each_rcu_flavor(rsp)
3810 rcu_init_percpu_data(cpu, rsp);
3811
3812 rcu_prepare_kthreads(cpu);
3813 rcu_spawn_all_nocb_kthreads(cpu);
3814
3815 return 0;
3816}
3817
3818static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3819{
3820 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3821
3822 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3823}
3824
3825int rcutree_online_cpu(unsigned int cpu)
3826{
3827 sync_sched_exp_online_cleanup(cpu);
3828 rcutree_affinity_setting(cpu, -1);
3829 return 0;
3830}
3831
3832int rcutree_offline_cpu(unsigned int cpu)
3833{
3834 rcutree_affinity_setting(cpu, cpu);
3835 return 0;
3836}
3837
3838
3839int rcutree_dying_cpu(unsigned int cpu)
3840{
3841 struct rcu_state *rsp;
3842
3843 for_each_rcu_flavor(rsp)
3844 rcu_cleanup_dying_cpu(rsp);
3845 return 0;
3846}
3847
3848int rcutree_dead_cpu(unsigned int cpu)
3849{
3850 struct rcu_state *rsp;
3851
3852 for_each_rcu_flavor(rsp) {
3853 rcu_cleanup_dead_cpu(cpu, rsp);
3854 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3855 }
3856 return 0;
3857}
3858
3859/*
3860 * Mark the specified CPU as being online so that subsequent grace periods
3861 * (both expedited and normal) will wait on it. Note that this means that
3862 * incoming CPUs are not allowed to use RCU read-side critical sections
3863 * until this function is called. Failing to observe this restriction
3864 * will result in lockdep splats.
3865 */
3866void rcu_cpu_starting(unsigned int cpu)
3867{
3868 unsigned long flags;
3869 unsigned long mask;
3870 struct rcu_data *rdp;
3871 struct rcu_node *rnp;
3872 struct rcu_state *rsp;
3873
3874 for_each_rcu_flavor(rsp) {
3875 rdp = this_cpu_ptr(rsp->rda);
3876 rnp = rdp->mynode;
3877 mask = rdp->grpmask;
3878 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3879 rnp->qsmaskinitnext |= mask;
3880 rnp->expmaskinitnext |= mask;
3881 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3882 }
3883}
3884
3885#ifdef CONFIG_HOTPLUG_CPU
3886/*
3887 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3888 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3889 * bit masks.
3890 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3891 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3892 * bit masks.
3893 */
3894static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3895{
3896 unsigned long flags;
3897 unsigned long mask;
3898 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3899 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3900
3901 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3902 mask = rdp->grpmask;
3903 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3904 rnp->qsmaskinitnext &= ~mask;
3905 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3906}
3907
3908void rcu_report_dead(unsigned int cpu)
3909{
3910 struct rcu_state *rsp;
3911
3912 /* QS for any half-done expedited RCU-sched GP. */
3913 preempt_disable();
3914 rcu_report_exp_rdp(&rcu_sched_state,
3915 this_cpu_ptr(rcu_sched_state.rda), true);
3916 preempt_enable();
3917 for_each_rcu_flavor(rsp)
3918 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3919}
3920#endif
3921
3922static int rcu_pm_notify(struct notifier_block *self,
3923 unsigned long action, void *hcpu)
3924{
3925 switch (action) {
3926 case PM_HIBERNATION_PREPARE:
3927 case PM_SUSPEND_PREPARE:
3928 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3929 rcu_expedite_gp();
3930 break;
3931 case PM_POST_HIBERNATION:
3932 case PM_POST_SUSPEND:
3933 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3934 rcu_unexpedite_gp();
3935 break;
3936 default:
3937 break;
3938 }
3939 return NOTIFY_OK;
3940}
3941
3942/*
3943 * Spawn the kthreads that handle each RCU flavor's grace periods.
3944 */
3945static int __init rcu_spawn_gp_kthread(void)
3946{
3947 unsigned long flags;
3948 int kthread_prio_in = kthread_prio;
3949 struct rcu_node *rnp;
3950 struct rcu_state *rsp;
3951 struct sched_param sp;
3952 struct task_struct *t;
3953
3954 /* Force priority into range. */
3955 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3956 kthread_prio = 1;
3957 else if (kthread_prio < 0)
3958 kthread_prio = 0;
3959 else if (kthread_prio > 99)
3960 kthread_prio = 99;
3961 if (kthread_prio != kthread_prio_in)
3962 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3963 kthread_prio, kthread_prio_in);
3964
3965 rcu_scheduler_fully_active = 1;
3966 for_each_rcu_flavor(rsp) {
3967 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3968 BUG_ON(IS_ERR(t));
3969 rnp = rcu_get_root(rsp);
3970 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3971 rsp->gp_kthread = t;
3972 if (kthread_prio) {
3973 sp.sched_priority = kthread_prio;
3974 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3975 }
3976 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3977 wake_up_process(t);
3978 }
3979 rcu_spawn_nocb_kthreads();
3980 rcu_spawn_boost_kthreads();
3981 return 0;
3982}
3983early_initcall(rcu_spawn_gp_kthread);
3984
3985/*
3986 * This function is invoked towards the end of the scheduler's
3987 * initialization process. Before this is called, the idle task might
3988 * contain synchronous grace-period primitives (during which time, this idle
3989 * task is booting the system, and such primitives are no-ops). After this
3990 * function is called, any synchronous grace-period primitives are run as
3991 * expedited, with the requesting task driving the grace period forward.
3992 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
3993 * runtime RCU functionality.
3994 */
3995void rcu_scheduler_starting(void)
3996{
3997 WARN_ON(num_online_cpus() != 1);
3998 WARN_ON(nr_context_switches() > 0);
3999 rcu_test_sync_prims();
4000 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4001 rcu_test_sync_prims();
4002}
4003
4004/*
4005 * Compute the per-level fanout, either using the exact fanout specified
4006 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4007 */
4008static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4009{
4010 int i;
4011
4012 if (rcu_fanout_exact) {
4013 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4014 for (i = rcu_num_lvls - 2; i >= 0; i--)
4015 levelspread[i] = RCU_FANOUT;
4016 } else {
4017 int ccur;
4018 int cprv;
4019
4020 cprv = nr_cpu_ids;
4021 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4022 ccur = levelcnt[i];
4023 levelspread[i] = (cprv + ccur - 1) / ccur;
4024 cprv = ccur;
4025 }
4026 }
4027}
4028
4029/*
4030 * Helper function for rcu_init() that initializes one rcu_state structure.
4031 */
4032static void __init rcu_init_one(struct rcu_state *rsp)
4033{
4034 static const char * const buf[] = RCU_NODE_NAME_INIT;
4035 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4036 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4037 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4038 static u8 fl_mask = 0x1;
4039
4040 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4041 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4042 int cpustride = 1;
4043 int i;
4044 int j;
4045 struct rcu_node *rnp;
4046
4047 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4048
4049 /* Silence gcc 4.8 false positive about array index out of range. */
4050 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4051 panic("rcu_init_one: rcu_num_lvls out of range");
4052
4053 /* Initialize the level-tracking arrays. */
4054
4055 for (i = 0; i < rcu_num_lvls; i++)
4056 levelcnt[i] = num_rcu_lvl[i];
4057 for (i = 1; i < rcu_num_lvls; i++)
4058 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4059 rcu_init_levelspread(levelspread, levelcnt);
4060 rsp->flavor_mask = fl_mask;
4061 fl_mask <<= 1;
4062
4063 /* Initialize the elements themselves, starting from the leaves. */
4064
4065 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4066 cpustride *= levelspread[i];
4067 rnp = rsp->level[i];
4068 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4069 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4070 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4071 &rcu_node_class[i], buf[i]);
4072 raw_spin_lock_init(&rnp->fqslock);
4073 lockdep_set_class_and_name(&rnp->fqslock,
4074 &rcu_fqs_class[i], fqs[i]);
4075 rnp->gpnum = rsp->gpnum;
4076 rnp->completed = rsp->completed;
4077 rnp->qsmask = 0;
4078 rnp->qsmaskinit = 0;
4079 rnp->grplo = j * cpustride;
4080 rnp->grphi = (j + 1) * cpustride - 1;
4081 if (rnp->grphi >= nr_cpu_ids)
4082 rnp->grphi = nr_cpu_ids - 1;
4083 if (i == 0) {
4084 rnp->grpnum = 0;
4085 rnp->grpmask = 0;
4086 rnp->parent = NULL;
4087 } else {
4088 rnp->grpnum = j % levelspread[i - 1];
4089 rnp->grpmask = 1UL << rnp->grpnum;
4090 rnp->parent = rsp->level[i - 1] +
4091 j / levelspread[i - 1];
4092 }
4093 rnp->level = i;
4094 INIT_LIST_HEAD(&rnp->blkd_tasks);
4095 rcu_init_one_nocb(rnp);
4096 init_waitqueue_head(&rnp->exp_wq[0]);
4097 init_waitqueue_head(&rnp->exp_wq[1]);
4098 init_waitqueue_head(&rnp->exp_wq[2]);
4099 init_waitqueue_head(&rnp->exp_wq[3]);
4100 spin_lock_init(&rnp->exp_lock);
4101 }
4102 }
4103
4104 init_swait_queue_head(&rsp->gp_wq);
4105 init_swait_queue_head(&rsp->expedited_wq);
4106 rnp = rsp->level[rcu_num_lvls - 1];
4107 for_each_possible_cpu(i) {
4108 while (i > rnp->grphi)
4109 rnp++;
4110 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4111 rcu_boot_init_percpu_data(i, rsp);
4112 }
4113 list_add(&rsp->flavors, &rcu_struct_flavors);
4114}
4115
4116/*
4117 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4118 * replace the definitions in tree.h because those are needed to size
4119 * the ->node array in the rcu_state structure.
4120 */
4121static void __init rcu_init_geometry(void)
4122{
4123 ulong d;
4124 int i;
4125 int rcu_capacity[RCU_NUM_LVLS];
4126
4127 /*
4128 * Initialize any unspecified boot parameters.
4129 * The default values of jiffies_till_first_fqs and
4130 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4131 * value, which is a function of HZ, then adding one for each
4132 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4133 */
4134 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4135 if (jiffies_till_first_fqs == ULONG_MAX)
4136 jiffies_till_first_fqs = d;
4137 if (jiffies_till_next_fqs == ULONG_MAX)
4138 jiffies_till_next_fqs = d;
4139
4140 /* If the compile-time values are accurate, just leave. */
4141 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4142 nr_cpu_ids == NR_CPUS)
4143 return;
4144 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4145 rcu_fanout_leaf, nr_cpu_ids);
4146
4147 /*
4148 * The boot-time rcu_fanout_leaf parameter must be at least two
4149 * and cannot exceed the number of bits in the rcu_node masks.
4150 * Complain and fall back to the compile-time values if this
4151 * limit is exceeded.
4152 */
4153 if (rcu_fanout_leaf < 2 ||
4154 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4155 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4156 WARN_ON(1);
4157 return;
4158 }
4159
4160 /*
4161 * Compute number of nodes that can be handled an rcu_node tree
4162 * with the given number of levels.
4163 */
4164 rcu_capacity[0] = rcu_fanout_leaf;
4165 for (i = 1; i < RCU_NUM_LVLS; i++)
4166 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4167
4168 /*
4169 * The tree must be able to accommodate the configured number of CPUs.
4170 * If this limit is exceeded, fall back to the compile-time values.
4171 */
4172 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4173 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4174 WARN_ON(1);
4175 return;
4176 }
4177
4178 /* Calculate the number of levels in the tree. */
4179 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4180 }
4181 rcu_num_lvls = i + 1;
4182
4183 /* Calculate the number of rcu_nodes at each level of the tree. */
4184 for (i = 0; i < rcu_num_lvls; i++) {
4185 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4186 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4187 }
4188
4189 /* Calculate the total number of rcu_node structures. */
4190 rcu_num_nodes = 0;
4191 for (i = 0; i < rcu_num_lvls; i++)
4192 rcu_num_nodes += num_rcu_lvl[i];
4193}
4194
4195/*
4196 * Dump out the structure of the rcu_node combining tree associated
4197 * with the rcu_state structure referenced by rsp.
4198 */
4199static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4200{
4201 int level = 0;
4202 struct rcu_node *rnp;
4203
4204 pr_info("rcu_node tree layout dump\n");
4205 pr_info(" ");
4206 rcu_for_each_node_breadth_first(rsp, rnp) {
4207 if (rnp->level != level) {
4208 pr_cont("\n");
4209 pr_info(" ");
4210 level = rnp->level;
4211 }
4212 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4213 }
4214 pr_cont("\n");
4215}
4216
4217void __init rcu_init(void)
4218{
4219 int cpu;
4220
4221 rcu_early_boot_tests();
4222
4223 rcu_bootup_announce();
4224 rcu_init_geometry();
4225 rcu_init_one(&rcu_bh_state);
4226 rcu_init_one(&rcu_sched_state);
4227 if (dump_tree)
4228 rcu_dump_rcu_node_tree(&rcu_sched_state);
4229 __rcu_init_preempt();
4230 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4231
4232 /*
4233 * We don't need protection against CPU-hotplug here because
4234 * this is called early in boot, before either interrupts
4235 * or the scheduler are operational.
4236 */
4237 pm_notifier(rcu_pm_notify, 0);
4238 for_each_online_cpu(cpu) {
4239 rcutree_prepare_cpu(cpu);
4240 rcu_cpu_starting(cpu);
4241 }
4242}
4243
4244#include "tree_exp.h"
4245#include "tree_plugin.h"
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18#define pr_fmt(fmt) "rcu: " fmt
19
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/spinlock.h>
24#include <linux/smp.h>
25#include <linux/rcupdate_wait.h>
26#include <linux/interrupt.h>
27#include <linux/sched.h>
28#include <linux/sched/debug.h>
29#include <linux/nmi.h>
30#include <linux/atomic.h>
31#include <linux/bitops.h>
32#include <linux/export.h>
33#include <linux/completion.h>
34#include <linux/moduleparam.h>
35#include <linux/percpu.h>
36#include <linux/notifier.h>
37#include <linux/cpu.h>
38#include <linux/mutex.h>
39#include <linux/time.h>
40#include <linux/kernel_stat.h>
41#include <linux/wait.h>
42#include <linux/kthread.h>
43#include <uapi/linux/sched/types.h>
44#include <linux/prefetch.h>
45#include <linux/delay.h>
46#include <linux/random.h>
47#include <linux/trace_events.h>
48#include <linux/suspend.h>
49#include <linux/ftrace.h>
50#include <linux/tick.h>
51#include <linux/sysrq.h>
52#include <linux/kprobes.h>
53#include <linux/gfp.h>
54#include <linux/oom.h>
55#include <linux/smpboot.h>
56#include <linux/jiffies.h>
57#include <linux/slab.h>
58#include <linux/sched/isolation.h>
59#include <linux/sched/clock.h>
60#include <linux/vmalloc.h>
61#include <linux/mm.h>
62#include <linux/kasan.h>
63#include "../time/tick-internal.h"
64
65#include "tree.h"
66#include "rcu.h"
67
68#ifdef MODULE_PARAM_PREFIX
69#undef MODULE_PARAM_PREFIX
70#endif
71#define MODULE_PARAM_PREFIX "rcutree."
72
73#ifndef data_race
74#define data_race(expr) \
75 ({ \
76 expr; \
77 })
78#endif
79#ifndef ASSERT_EXCLUSIVE_WRITER
80#define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0)
81#endif
82#ifndef ASSERT_EXCLUSIVE_ACCESS
83#define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0)
84#endif
85
86/* Data structures. */
87
88/*
89 * Steal a bit from the bottom of ->dynticks for idle entry/exit
90 * control. Initially this is for TLB flushing.
91 */
92#define RCU_DYNTICK_CTRL_MASK 0x1
93#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
94
95static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
96 .dynticks_nesting = 1,
97 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
98 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
99};
100static struct rcu_state rcu_state = {
101 .level = { &rcu_state.node[0] },
102 .gp_state = RCU_GP_IDLE,
103 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
104 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
105 .name = RCU_NAME,
106 .abbr = RCU_ABBR,
107 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
108 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
109 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
110};
111
112/* Dump rcu_node combining tree at boot to verify correct setup. */
113static bool dump_tree;
114module_param(dump_tree, bool, 0444);
115/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
116static bool use_softirq = true;
117module_param(use_softirq, bool, 0444);
118/* Control rcu_node-tree auto-balancing at boot time. */
119static bool rcu_fanout_exact;
120module_param(rcu_fanout_exact, bool, 0444);
121/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123module_param(rcu_fanout_leaf, int, 0444);
124int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125/* Number of rcu_nodes at specified level. */
126int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
129/*
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
140 */
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
158static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
159 unsigned long gps, unsigned long flags);
160static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
162static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163static void invoke_rcu_core(void);
164static void rcu_report_exp_rdp(struct rcu_data *rdp);
165static void sync_sched_exp_online_cleanup(int cpu);
166static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
167
168/* rcuc/rcub kthread realtime priority */
169static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
170module_param(kthread_prio, int, 0444);
171
172/* Delay in jiffies for grace-period initialization delays, debug only. */
173
174static int gp_preinit_delay;
175module_param(gp_preinit_delay, int, 0444);
176static int gp_init_delay;
177module_param(gp_init_delay, int, 0444);
178static int gp_cleanup_delay;
179module_param(gp_cleanup_delay, int, 0444);
180
181/*
182 * This rcu parameter is runtime-read-only. It reflects
183 * a minimum allowed number of objects which can be cached
184 * per-CPU. Object size is equal to one page. This value
185 * can be changed at boot time.
186 */
187static int rcu_min_cached_objs = 2;
188module_param(rcu_min_cached_objs, int, 0444);
189
190/* Retrieve RCU kthreads priority for rcutorture */
191int rcu_get_gp_kthreads_prio(void)
192{
193 return kthread_prio;
194}
195EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
196
197/*
198 * Number of grace periods between delays, normalized by the duration of
199 * the delay. The longer the delay, the more the grace periods between
200 * each delay. The reason for this normalization is that it means that,
201 * for non-zero delays, the overall slowdown of grace periods is constant
202 * regardless of the duration of the delay. This arrangement balances
203 * the need for long delays to increase some race probabilities with the
204 * need for fast grace periods to increase other race probabilities.
205 */
206#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
207
208/*
209 * Compute the mask of online CPUs for the specified rcu_node structure.
210 * This will not be stable unless the rcu_node structure's ->lock is
211 * held, but the bit corresponding to the current CPU will be stable
212 * in most contexts.
213 */
214static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
215{
216 return READ_ONCE(rnp->qsmaskinitnext);
217}
218
219/*
220 * Return true if an RCU grace period is in progress. The READ_ONCE()s
221 * permit this function to be invoked without holding the root rcu_node
222 * structure's ->lock, but of course results can be subject to change.
223 */
224static int rcu_gp_in_progress(void)
225{
226 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
227}
228
229/*
230 * Return the number of callbacks queued on the specified CPU.
231 * Handles both the nocbs and normal cases.
232 */
233static long rcu_get_n_cbs_cpu(int cpu)
234{
235 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
236
237 if (rcu_segcblist_is_enabled(&rdp->cblist))
238 return rcu_segcblist_n_cbs(&rdp->cblist);
239 return 0;
240}
241
242void rcu_softirq_qs(void)
243{
244 rcu_qs();
245 rcu_preempt_deferred_qs(current);
246}
247
248/*
249 * Record entry into an extended quiescent state. This is only to be
250 * called when not already in an extended quiescent state, that is,
251 * RCU is watching prior to the call to this function and is no longer
252 * watching upon return.
253 */
254static noinstr void rcu_dynticks_eqs_enter(void)
255{
256 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
257 int seq;
258
259 /*
260 * CPUs seeing atomic_add_return() must see prior RCU read-side
261 * critical sections, and we also must force ordering with the
262 * next idle sojourn.
263 */
264 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
265 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
266 // RCU is no longer watching. Better be in extended quiescent state!
267 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
268 (seq & RCU_DYNTICK_CTRL_CTR));
269 /* Better not have special action (TLB flush) pending! */
270 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
271 (seq & RCU_DYNTICK_CTRL_MASK));
272}
273
274/*
275 * Record exit from an extended quiescent state. This is only to be
276 * called from an extended quiescent state, that is, RCU is not watching
277 * prior to the call to this function and is watching upon return.
278 */
279static noinstr void rcu_dynticks_eqs_exit(void)
280{
281 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
282 int seq;
283
284 /*
285 * CPUs seeing atomic_add_return() must see prior idle sojourns,
286 * and we also must force ordering with the next RCU read-side
287 * critical section.
288 */
289 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
290 // RCU is now watching. Better not be in an extended quiescent state!
291 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 !(seq & RCU_DYNTICK_CTRL_CTR));
294 if (seq & RCU_DYNTICK_CTRL_MASK) {
295 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
296 smp_mb__after_atomic(); /* _exit after clearing mask. */
297 }
298}
299
300/*
301 * Reset the current CPU's ->dynticks counter to indicate that the
302 * newly onlined CPU is no longer in an extended quiescent state.
303 * This will either leave the counter unchanged, or increment it
304 * to the next non-quiescent value.
305 *
306 * The non-atomic test/increment sequence works because the upper bits
307 * of the ->dynticks counter are manipulated only by the corresponding CPU,
308 * or when the corresponding CPU is offline.
309 */
310static void rcu_dynticks_eqs_online(void)
311{
312 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
313
314 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
315 return;
316 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
317}
318
319/*
320 * Is the current CPU in an extended quiescent state?
321 *
322 * No ordering, as we are sampling CPU-local information.
323 */
324static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
325{
326 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
327
328 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
329}
330
331/*
332 * Snapshot the ->dynticks counter with full ordering so as to allow
333 * stable comparison of this counter with past and future snapshots.
334 */
335static int rcu_dynticks_snap(struct rcu_data *rdp)
336{
337 int snap = atomic_add_return(0, &rdp->dynticks);
338
339 return snap & ~RCU_DYNTICK_CTRL_MASK;
340}
341
342/*
343 * Return true if the snapshot returned from rcu_dynticks_snap()
344 * indicates that RCU is in an extended quiescent state.
345 */
346static bool rcu_dynticks_in_eqs(int snap)
347{
348 return !(snap & RCU_DYNTICK_CTRL_CTR);
349}
350
351/*
352 * Return true if the CPU corresponding to the specified rcu_data
353 * structure has spent some time in an extended quiescent state since
354 * rcu_dynticks_snap() returned the specified snapshot.
355 */
356static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
357{
358 return snap != rcu_dynticks_snap(rdp);
359}
360
361/*
362 * Return true if the referenced integer is zero while the specified
363 * CPU remains within a single extended quiescent state.
364 */
365bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
366{
367 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
368 int snap;
369
370 // If not quiescent, force back to earlier extended quiescent state.
371 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
372 RCU_DYNTICK_CTRL_CTR);
373
374 smp_rmb(); // Order ->dynticks and *vp reads.
375 if (READ_ONCE(*vp))
376 return false; // Non-zero, so report failure;
377 smp_rmb(); // Order *vp read and ->dynticks re-read.
378
379 // If still in the same extended quiescent state, we are good!
380 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
381}
382
383/*
384 * Set the special (bottom) bit of the specified CPU so that it
385 * will take special action (such as flushing its TLB) on the
386 * next exit from an extended quiescent state. Returns true if
387 * the bit was successfully set, or false if the CPU was not in
388 * an extended quiescent state.
389 */
390bool rcu_eqs_special_set(int cpu)
391{
392 int old;
393 int new;
394 int new_old;
395 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
396
397 new_old = atomic_read(&rdp->dynticks);
398 do {
399 old = new_old;
400 if (old & RCU_DYNTICK_CTRL_CTR)
401 return false;
402 new = old | RCU_DYNTICK_CTRL_MASK;
403 new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
404 } while (new_old != old);
405 return true;
406}
407
408/*
409 * Let the RCU core know that this CPU has gone through the scheduler,
410 * which is a quiescent state. This is called when the need for a
411 * quiescent state is urgent, so we burn an atomic operation and full
412 * memory barriers to let the RCU core know about it, regardless of what
413 * this CPU might (or might not) do in the near future.
414 *
415 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
416 *
417 * The caller must have disabled interrupts and must not be idle.
418 */
419void rcu_momentary_dyntick_idle(void)
420{
421 int special;
422
423 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
424 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
425 &this_cpu_ptr(&rcu_data)->dynticks);
426 /* It is illegal to call this from idle state. */
427 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
428 rcu_preempt_deferred_qs(current);
429}
430EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
431
432/**
433 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
434 *
435 * If the current CPU is idle and running at a first-level (not nested)
436 * interrupt, or directly, from idle, return true.
437 *
438 * The caller must have at least disabled IRQs.
439 */
440static int rcu_is_cpu_rrupt_from_idle(void)
441{
442 long nesting;
443
444 /*
445 * Usually called from the tick; but also used from smp_function_call()
446 * for expedited grace periods. This latter can result in running from
447 * the idle task, instead of an actual IPI.
448 */
449 lockdep_assert_irqs_disabled();
450
451 /* Check for counter underflows */
452 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
453 "RCU dynticks_nesting counter underflow!");
454 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
455 "RCU dynticks_nmi_nesting counter underflow/zero!");
456
457 /* Are we at first interrupt nesting level? */
458 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
459 if (nesting > 1)
460 return false;
461
462 /*
463 * If we're not in an interrupt, we must be in the idle task!
464 */
465 WARN_ON_ONCE(!nesting && !is_idle_task(current));
466
467 /* Does CPU appear to be idle from an RCU standpoint? */
468 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
469}
470
471#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */
472#define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
473static long blimit = DEFAULT_RCU_BLIMIT;
474#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
475static long qhimark = DEFAULT_RCU_QHIMARK;
476#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
477static long qlowmark = DEFAULT_RCU_QLOMARK;
478#define DEFAULT_RCU_QOVLD_MULT 2
479#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
480static long qovld = DEFAULT_RCU_QOVLD; /* If this many pending, hammer QS. */
481static long qovld_calc = -1; /* No pre-initialization lock acquisitions! */
482
483module_param(blimit, long, 0444);
484module_param(qhimark, long, 0444);
485module_param(qlowmark, long, 0444);
486module_param(qovld, long, 0444);
487
488static ulong jiffies_till_first_fqs = ULONG_MAX;
489static ulong jiffies_till_next_fqs = ULONG_MAX;
490static bool rcu_kick_kthreads;
491static int rcu_divisor = 7;
492module_param(rcu_divisor, int, 0644);
493
494/* Force an exit from rcu_do_batch() after 3 milliseconds. */
495static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
496module_param(rcu_resched_ns, long, 0644);
497
498/*
499 * How long the grace period must be before we start recruiting
500 * quiescent-state help from rcu_note_context_switch().
501 */
502static ulong jiffies_till_sched_qs = ULONG_MAX;
503module_param(jiffies_till_sched_qs, ulong, 0444);
504static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
505module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
506
507/*
508 * Make sure that we give the grace-period kthread time to detect any
509 * idle CPUs before taking active measures to force quiescent states.
510 * However, don't go below 100 milliseconds, adjusted upwards for really
511 * large systems.
512 */
513static void adjust_jiffies_till_sched_qs(void)
514{
515 unsigned long j;
516
517 /* If jiffies_till_sched_qs was specified, respect the request. */
518 if (jiffies_till_sched_qs != ULONG_MAX) {
519 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
520 return;
521 }
522 /* Otherwise, set to third fqs scan, but bound below on large system. */
523 j = READ_ONCE(jiffies_till_first_fqs) +
524 2 * READ_ONCE(jiffies_till_next_fqs);
525 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
526 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
527 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
528 WRITE_ONCE(jiffies_to_sched_qs, j);
529}
530
531static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
532{
533 ulong j;
534 int ret = kstrtoul(val, 0, &j);
535
536 if (!ret) {
537 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
538 adjust_jiffies_till_sched_qs();
539 }
540 return ret;
541}
542
543static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
544{
545 ulong j;
546 int ret = kstrtoul(val, 0, &j);
547
548 if (!ret) {
549 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
550 adjust_jiffies_till_sched_qs();
551 }
552 return ret;
553}
554
555static struct kernel_param_ops first_fqs_jiffies_ops = {
556 .set = param_set_first_fqs_jiffies,
557 .get = param_get_ulong,
558};
559
560static struct kernel_param_ops next_fqs_jiffies_ops = {
561 .set = param_set_next_fqs_jiffies,
562 .get = param_get_ulong,
563};
564
565module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
566module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
567module_param(rcu_kick_kthreads, bool, 0644);
568
569static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
570static int rcu_pending(int user);
571
572/*
573 * Return the number of RCU GPs completed thus far for debug & stats.
574 */
575unsigned long rcu_get_gp_seq(void)
576{
577 return READ_ONCE(rcu_state.gp_seq);
578}
579EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
580
581/*
582 * Return the number of RCU expedited batches completed thus far for
583 * debug & stats. Odd numbers mean that a batch is in progress, even
584 * numbers mean idle. The value returned will thus be roughly double
585 * the cumulative batches since boot.
586 */
587unsigned long rcu_exp_batches_completed(void)
588{
589 return rcu_state.expedited_sequence;
590}
591EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
592
593/*
594 * Return the root node of the rcu_state structure.
595 */
596static struct rcu_node *rcu_get_root(void)
597{
598 return &rcu_state.node[0];
599}
600
601/*
602 * Send along grace-period-related data for rcutorture diagnostics.
603 */
604void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
605 unsigned long *gp_seq)
606{
607 switch (test_type) {
608 case RCU_FLAVOR:
609 *flags = READ_ONCE(rcu_state.gp_flags);
610 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
611 break;
612 default:
613 break;
614 }
615}
616EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
617
618/*
619 * Enter an RCU extended quiescent state, which can be either the
620 * idle loop or adaptive-tickless usermode execution.
621 *
622 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
623 * the possibility of usermode upcalls having messed up our count
624 * of interrupt nesting level during the prior busy period.
625 */
626static noinstr void rcu_eqs_enter(bool user)
627{
628 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
629
630 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
631 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
632 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
633 rdp->dynticks_nesting == 0);
634 if (rdp->dynticks_nesting != 1) {
635 // RCU will still be watching, so just do accounting and leave.
636 rdp->dynticks_nesting--;
637 return;
638 }
639
640 lockdep_assert_irqs_disabled();
641 instrumentation_begin();
642 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
643 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
644 rdp = this_cpu_ptr(&rcu_data);
645 do_nocb_deferred_wakeup(rdp);
646 rcu_prepare_for_idle();
647 rcu_preempt_deferred_qs(current);
648
649 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
650 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
651
652 instrumentation_end();
653 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
654 // RCU is watching here ...
655 rcu_dynticks_eqs_enter();
656 // ... but is no longer watching here.
657 rcu_dynticks_task_enter();
658}
659
660/**
661 * rcu_idle_enter - inform RCU that current CPU is entering idle
662 *
663 * Enter idle mode, in other words, -leave- the mode in which RCU
664 * read-side critical sections can occur. (Though RCU read-side
665 * critical sections can occur in irq handlers in idle, a possibility
666 * handled by irq_enter() and irq_exit().)
667 *
668 * If you add or remove a call to rcu_idle_enter(), be sure to test with
669 * CONFIG_RCU_EQS_DEBUG=y.
670 */
671void rcu_idle_enter(void)
672{
673 lockdep_assert_irqs_disabled();
674 rcu_eqs_enter(false);
675}
676EXPORT_SYMBOL_GPL(rcu_idle_enter);
677
678#ifdef CONFIG_NO_HZ_FULL
679/**
680 * rcu_user_enter - inform RCU that we are resuming userspace.
681 *
682 * Enter RCU idle mode right before resuming userspace. No use of RCU
683 * is permitted between this call and rcu_user_exit(). This way the
684 * CPU doesn't need to maintain the tick for RCU maintenance purposes
685 * when the CPU runs in userspace.
686 *
687 * If you add or remove a call to rcu_user_enter(), be sure to test with
688 * CONFIG_RCU_EQS_DEBUG=y.
689 */
690noinstr void rcu_user_enter(void)
691{
692 lockdep_assert_irqs_disabled();
693 rcu_eqs_enter(true);
694}
695#endif /* CONFIG_NO_HZ_FULL */
696
697/**
698 * rcu_nmi_exit - inform RCU of exit from NMI context
699 *
700 * If we are returning from the outermost NMI handler that interrupted an
701 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
702 * to let the RCU grace-period handling know that the CPU is back to
703 * being RCU-idle.
704 *
705 * If you add or remove a call to rcu_nmi_exit(), be sure to test
706 * with CONFIG_RCU_EQS_DEBUG=y.
707 */
708noinstr void rcu_nmi_exit(void)
709{
710 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
711
712 instrumentation_begin();
713 /*
714 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
715 * (We are exiting an NMI handler, so RCU better be paying attention
716 * to us!)
717 */
718 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
719 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
720
721 /*
722 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
723 * leave it in non-RCU-idle state.
724 */
725 if (rdp->dynticks_nmi_nesting != 1) {
726 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
727 atomic_read(&rdp->dynticks));
728 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
729 rdp->dynticks_nmi_nesting - 2);
730 instrumentation_end();
731 return;
732 }
733
734 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
735 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
736 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
737
738 if (!in_nmi())
739 rcu_prepare_for_idle();
740
741 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
742 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
743 instrumentation_end();
744
745 // RCU is watching here ...
746 rcu_dynticks_eqs_enter();
747 // ... but is no longer watching here.
748
749 if (!in_nmi())
750 rcu_dynticks_task_enter();
751}
752
753/**
754 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
755 *
756 * Exit from an interrupt handler, which might possibly result in entering
757 * idle mode, in other words, leaving the mode in which read-side critical
758 * sections can occur. The caller must have disabled interrupts.
759 *
760 * This code assumes that the idle loop never does anything that might
761 * result in unbalanced calls to irq_enter() and irq_exit(). If your
762 * architecture's idle loop violates this assumption, RCU will give you what
763 * you deserve, good and hard. But very infrequently and irreproducibly.
764 *
765 * Use things like work queues to work around this limitation.
766 *
767 * You have been warned.
768 *
769 * If you add or remove a call to rcu_irq_exit(), be sure to test with
770 * CONFIG_RCU_EQS_DEBUG=y.
771 */
772void noinstr rcu_irq_exit(void)
773{
774 lockdep_assert_irqs_disabled();
775 rcu_nmi_exit();
776}
777
778/**
779 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
780 * towards in kernel preemption
781 *
782 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
783 * from RCU point of view. Invoked from return from interrupt before kernel
784 * preemption.
785 */
786void rcu_irq_exit_preempt(void)
787{
788 lockdep_assert_irqs_disabled();
789 rcu_nmi_exit();
790
791 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
792 "RCU dynticks_nesting counter underflow/zero!");
793 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
794 DYNTICK_IRQ_NONIDLE,
795 "Bad RCU dynticks_nmi_nesting counter\n");
796 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
797 "RCU in extended quiescent state!");
798}
799
800#ifdef CONFIG_PROVE_RCU
801/**
802 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
803 */
804void rcu_irq_exit_check_preempt(void)
805{
806 lockdep_assert_irqs_disabled();
807
808 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
809 "RCU dynticks_nesting counter underflow/zero!");
810 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
811 DYNTICK_IRQ_NONIDLE,
812 "Bad RCU dynticks_nmi_nesting counter\n");
813 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
814 "RCU in extended quiescent state!");
815}
816#endif /* #ifdef CONFIG_PROVE_RCU */
817
818/*
819 * Wrapper for rcu_irq_exit() where interrupts are enabled.
820 *
821 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
822 * with CONFIG_RCU_EQS_DEBUG=y.
823 */
824void rcu_irq_exit_irqson(void)
825{
826 unsigned long flags;
827
828 local_irq_save(flags);
829 rcu_irq_exit();
830 local_irq_restore(flags);
831}
832
833/*
834 * Exit an RCU extended quiescent state, which can be either the
835 * idle loop or adaptive-tickless usermode execution.
836 *
837 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
838 * allow for the possibility of usermode upcalls messing up our count of
839 * interrupt nesting level during the busy period that is just now starting.
840 */
841static void noinstr rcu_eqs_exit(bool user)
842{
843 struct rcu_data *rdp;
844 long oldval;
845
846 lockdep_assert_irqs_disabled();
847 rdp = this_cpu_ptr(&rcu_data);
848 oldval = rdp->dynticks_nesting;
849 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
850 if (oldval) {
851 // RCU was already watching, so just do accounting and leave.
852 rdp->dynticks_nesting++;
853 return;
854 }
855 rcu_dynticks_task_exit();
856 // RCU is not watching here ...
857 rcu_dynticks_eqs_exit();
858 // ... but is watching here.
859 instrumentation_begin();
860
861 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
862 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
863
864 rcu_cleanup_after_idle();
865 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
866 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
867 WRITE_ONCE(rdp->dynticks_nesting, 1);
868 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
869 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
870 instrumentation_end();
871}
872
873/**
874 * rcu_idle_exit - inform RCU that current CPU is leaving idle
875 *
876 * Exit idle mode, in other words, -enter- the mode in which RCU
877 * read-side critical sections can occur.
878 *
879 * If you add or remove a call to rcu_idle_exit(), be sure to test with
880 * CONFIG_RCU_EQS_DEBUG=y.
881 */
882void rcu_idle_exit(void)
883{
884 unsigned long flags;
885
886 local_irq_save(flags);
887 rcu_eqs_exit(false);
888 local_irq_restore(flags);
889}
890EXPORT_SYMBOL_GPL(rcu_idle_exit);
891
892#ifdef CONFIG_NO_HZ_FULL
893/**
894 * rcu_user_exit - inform RCU that we are exiting userspace.
895 *
896 * Exit RCU idle mode while entering the kernel because it can
897 * run a RCU read side critical section anytime.
898 *
899 * If you add or remove a call to rcu_user_exit(), be sure to test with
900 * CONFIG_RCU_EQS_DEBUG=y.
901 */
902void noinstr rcu_user_exit(void)
903{
904 rcu_eqs_exit(1);
905}
906
907/**
908 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
909 *
910 * The scheduler tick is not normally enabled when CPUs enter the kernel
911 * from nohz_full userspace execution. After all, nohz_full userspace
912 * execution is an RCU quiescent state and the time executing in the kernel
913 * is quite short. Except of course when it isn't. And it is not hard to
914 * cause a large system to spend tens of seconds or even minutes looping
915 * in the kernel, which can cause a number of problems, include RCU CPU
916 * stall warnings.
917 *
918 * Therefore, if a nohz_full CPU fails to report a quiescent state
919 * in a timely manner, the RCU grace-period kthread sets that CPU's
920 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
921 * exception will invoke this function, which will turn on the scheduler
922 * tick, which will enable RCU to detect that CPU's quiescent states,
923 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
924 * The tick will be disabled once a quiescent state is reported for
925 * this CPU.
926 *
927 * Of course, in carefully tuned systems, there might never be an
928 * interrupt or exception. In that case, the RCU grace-period kthread
929 * will eventually cause one to happen. However, in less carefully
930 * controlled environments, this function allows RCU to get what it
931 * needs without creating otherwise useless interruptions.
932 */
933void __rcu_irq_enter_check_tick(void)
934{
935 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
936
937 // Enabling the tick is unsafe in NMI handlers.
938 if (WARN_ON_ONCE(in_nmi()))
939 return;
940
941 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
942 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
943
944 if (!tick_nohz_full_cpu(rdp->cpu) ||
945 !READ_ONCE(rdp->rcu_urgent_qs) ||
946 READ_ONCE(rdp->rcu_forced_tick)) {
947 // RCU doesn't need nohz_full help from this CPU, or it is
948 // already getting that help.
949 return;
950 }
951
952 // We get here only when not in an extended quiescent state and
953 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
954 // already watching and (2) The fact that we are in an interrupt
955 // handler and that the rcu_node lock is an irq-disabled lock
956 // prevents self-deadlock. So we can safely recheck under the lock.
957 // Note that the nohz_full state currently cannot change.
958 raw_spin_lock_rcu_node(rdp->mynode);
959 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
960 // A nohz_full CPU is in the kernel and RCU needs a
961 // quiescent state. Turn on the tick!
962 WRITE_ONCE(rdp->rcu_forced_tick, true);
963 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
964 }
965 raw_spin_unlock_rcu_node(rdp->mynode);
966}
967#endif /* CONFIG_NO_HZ_FULL */
968
969/**
970 * rcu_nmi_enter - inform RCU of entry to NMI context
971 *
972 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
973 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
974 * that the CPU is active. This implementation permits nested NMIs, as
975 * long as the nesting level does not overflow an int. (You will probably
976 * run out of stack space first.)
977 *
978 * If you add or remove a call to rcu_nmi_enter(), be sure to test
979 * with CONFIG_RCU_EQS_DEBUG=y.
980 */
981noinstr void rcu_nmi_enter(void)
982{
983 long incby = 2;
984 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
985
986 /* Complain about underflow. */
987 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
988
989 /*
990 * If idle from RCU viewpoint, atomically increment ->dynticks
991 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
992 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
993 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
994 * to be in the outermost NMI handler that interrupted an RCU-idle
995 * period (observation due to Andy Lutomirski).
996 */
997 if (rcu_dynticks_curr_cpu_in_eqs()) {
998
999 if (!in_nmi())
1000 rcu_dynticks_task_exit();
1001
1002 // RCU is not watching here ...
1003 rcu_dynticks_eqs_exit();
1004 // ... but is watching here.
1005
1006 if (!in_nmi()) {
1007 instrumentation_begin();
1008 rcu_cleanup_after_idle();
1009 instrumentation_end();
1010 }
1011
1012 instrumentation_begin();
1013 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1014 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1015 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
1016 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1017
1018 incby = 1;
1019 } else if (!in_nmi()) {
1020 instrumentation_begin();
1021 rcu_irq_enter_check_tick();
1022 instrumentation_end();
1023 } else {
1024 instrumentation_begin();
1025 }
1026
1027 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1028 rdp->dynticks_nmi_nesting,
1029 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1030 instrumentation_end();
1031 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1032 rdp->dynticks_nmi_nesting + incby);
1033 barrier();
1034}
1035
1036/**
1037 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1038 *
1039 * Enter an interrupt handler, which might possibly result in exiting
1040 * idle mode, in other words, entering the mode in which read-side critical
1041 * sections can occur. The caller must have disabled interrupts.
1042 *
1043 * Note that the Linux kernel is fully capable of entering an interrupt
1044 * handler that it never exits, for example when doing upcalls to user mode!
1045 * This code assumes that the idle loop never does upcalls to user mode.
1046 * If your architecture's idle loop does do upcalls to user mode (or does
1047 * anything else that results in unbalanced calls to the irq_enter() and
1048 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1049 * But very infrequently and irreproducibly.
1050 *
1051 * Use things like work queues to work around this limitation.
1052 *
1053 * You have been warned.
1054 *
1055 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1056 * CONFIG_RCU_EQS_DEBUG=y.
1057 */
1058noinstr void rcu_irq_enter(void)
1059{
1060 lockdep_assert_irqs_disabled();
1061 rcu_nmi_enter();
1062}
1063
1064/*
1065 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1066 *
1067 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1068 * with CONFIG_RCU_EQS_DEBUG=y.
1069 */
1070void rcu_irq_enter_irqson(void)
1071{
1072 unsigned long flags;
1073
1074 local_irq_save(flags);
1075 rcu_irq_enter();
1076 local_irq_restore(flags);
1077}
1078
1079/*
1080 * If any sort of urgency was applied to the current CPU (for example,
1081 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1082 * to get to a quiescent state, disable it.
1083 */
1084static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1085{
1086 raw_lockdep_assert_held_rcu_node(rdp->mynode);
1087 WRITE_ONCE(rdp->rcu_urgent_qs, false);
1088 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1089 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1090 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1091 WRITE_ONCE(rdp->rcu_forced_tick, false);
1092 }
1093}
1094
1095noinstr bool __rcu_is_watching(void)
1096{
1097 return !rcu_dynticks_curr_cpu_in_eqs();
1098}
1099
1100/**
1101 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1102 *
1103 * Return true if RCU is watching the running CPU, which means that this
1104 * CPU can safely enter RCU read-side critical sections. In other words,
1105 * if the current CPU is not in its idle loop or is in an interrupt or
1106 * NMI handler, return true.
1107 */
1108bool rcu_is_watching(void)
1109{
1110 bool ret;
1111
1112 preempt_disable_notrace();
1113 ret = !rcu_dynticks_curr_cpu_in_eqs();
1114 preempt_enable_notrace();
1115 return ret;
1116}
1117EXPORT_SYMBOL_GPL(rcu_is_watching);
1118
1119/*
1120 * If a holdout task is actually running, request an urgent quiescent
1121 * state from its CPU. This is unsynchronized, so migrations can cause
1122 * the request to go to the wrong CPU. Which is OK, all that will happen
1123 * is that the CPU's next context switch will be a bit slower and next
1124 * time around this task will generate another request.
1125 */
1126void rcu_request_urgent_qs_task(struct task_struct *t)
1127{
1128 int cpu;
1129
1130 barrier();
1131 cpu = task_cpu(t);
1132 if (!task_curr(t))
1133 return; /* This task is not running on that CPU. */
1134 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1135}
1136
1137#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1138
1139/*
1140 * Is the current CPU online as far as RCU is concerned?
1141 *
1142 * Disable preemption to avoid false positives that could otherwise
1143 * happen due to the current CPU number being sampled, this task being
1144 * preempted, its old CPU being taken offline, resuming on some other CPU,
1145 * then determining that its old CPU is now offline.
1146 *
1147 * Disable checking if in an NMI handler because we cannot safely
1148 * report errors from NMI handlers anyway. In addition, it is OK to use
1149 * RCU on an offline processor during initial boot, hence the check for
1150 * rcu_scheduler_fully_active.
1151 */
1152bool rcu_lockdep_current_cpu_online(void)
1153{
1154 struct rcu_data *rdp;
1155 struct rcu_node *rnp;
1156 bool ret = false;
1157
1158 if (in_nmi() || !rcu_scheduler_fully_active)
1159 return true;
1160 preempt_disable_notrace();
1161 rdp = this_cpu_ptr(&rcu_data);
1162 rnp = rdp->mynode;
1163 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
1164 ret = true;
1165 preempt_enable_notrace();
1166 return ret;
1167}
1168EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1169
1170#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1171
1172/*
1173 * We are reporting a quiescent state on behalf of some other CPU, so
1174 * it is our responsibility to check for and handle potential overflow
1175 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1176 * After all, the CPU might be in deep idle state, and thus executing no
1177 * code whatsoever.
1178 */
1179static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1180{
1181 raw_lockdep_assert_held_rcu_node(rnp);
1182 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1183 rnp->gp_seq))
1184 WRITE_ONCE(rdp->gpwrap, true);
1185 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1186 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1187}
1188
1189/*
1190 * Snapshot the specified CPU's dynticks counter so that we can later
1191 * credit them with an implicit quiescent state. Return 1 if this CPU
1192 * is in dynticks idle mode, which is an extended quiescent state.
1193 */
1194static int dyntick_save_progress_counter(struct rcu_data *rdp)
1195{
1196 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1197 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1198 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1199 rcu_gpnum_ovf(rdp->mynode, rdp);
1200 return 1;
1201 }
1202 return 0;
1203}
1204
1205/*
1206 * Return true if the specified CPU has passed through a quiescent
1207 * state by virtue of being in or having passed through an dynticks
1208 * idle state since the last call to dyntick_save_progress_counter()
1209 * for this same CPU, or by virtue of having been offline.
1210 */
1211static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1212{
1213 unsigned long jtsq;
1214 bool *rnhqp;
1215 bool *ruqp;
1216 struct rcu_node *rnp = rdp->mynode;
1217
1218 /*
1219 * If the CPU passed through or entered a dynticks idle phase with
1220 * no active irq/NMI handlers, then we can safely pretend that the CPU
1221 * already acknowledged the request to pass through a quiescent
1222 * state. Either way, that CPU cannot possibly be in an RCU
1223 * read-side critical section that started before the beginning
1224 * of the current RCU grace period.
1225 */
1226 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1227 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1228 rcu_gpnum_ovf(rnp, rdp);
1229 return 1;
1230 }
1231
1232 /* If waiting too long on an offline CPU, complain. */
1233 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1234 time_after(jiffies, rcu_state.gp_start + HZ)) {
1235 bool onl;
1236 struct rcu_node *rnp1;
1237
1238 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1239 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1240 __func__, rnp->grplo, rnp->grphi, rnp->level,
1241 (long)rnp->gp_seq, (long)rnp->completedqs);
1242 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1243 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1244 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1245 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1246 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1247 __func__, rdp->cpu, ".o"[onl],
1248 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1249 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1250 return 1; /* Break things loose after complaining. */
1251 }
1252
1253 /*
1254 * A CPU running for an extended time within the kernel can
1255 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1256 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1257 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1258 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1259 * variable are safe because the assignments are repeated if this
1260 * CPU failed to pass through a quiescent state. This code
1261 * also checks .jiffies_resched in case jiffies_to_sched_qs
1262 * is set way high.
1263 */
1264 jtsq = READ_ONCE(jiffies_to_sched_qs);
1265 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1266 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1267 if (!READ_ONCE(*rnhqp) &&
1268 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1269 time_after(jiffies, rcu_state.jiffies_resched) ||
1270 rcu_state.cbovld)) {
1271 WRITE_ONCE(*rnhqp, true);
1272 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1273 smp_store_release(ruqp, true);
1274 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1275 WRITE_ONCE(*ruqp, true);
1276 }
1277
1278 /*
1279 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1280 * The above code handles this, but only for straight cond_resched().
1281 * And some in-kernel loops check need_resched() before calling
1282 * cond_resched(), which defeats the above code for CPUs that are
1283 * running in-kernel with scheduling-clock interrupts disabled.
1284 * So hit them over the head with the resched_cpu() hammer!
1285 */
1286 if (tick_nohz_full_cpu(rdp->cpu) &&
1287 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1288 rcu_state.cbovld)) {
1289 WRITE_ONCE(*ruqp, true);
1290 resched_cpu(rdp->cpu);
1291 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1292 }
1293
1294 /*
1295 * If more than halfway to RCU CPU stall-warning time, invoke
1296 * resched_cpu() more frequently to try to loosen things up a bit.
1297 * Also check to see if the CPU is getting hammered with interrupts,
1298 * but only once per grace period, just to keep the IPIs down to
1299 * a dull roar.
1300 */
1301 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1302 if (time_after(jiffies,
1303 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1304 resched_cpu(rdp->cpu);
1305 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1306 }
1307 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1308 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1309 (rnp->ffmask & rdp->grpmask)) {
1310 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1311 atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
1312 rdp->rcu_iw_pending = true;
1313 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1314 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1315 }
1316 }
1317
1318 return 0;
1319}
1320
1321/* Trace-event wrapper function for trace_rcu_future_grace_period. */
1322static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1323 unsigned long gp_seq_req, const char *s)
1324{
1325 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1326 gp_seq_req, rnp->level,
1327 rnp->grplo, rnp->grphi, s);
1328}
1329
1330/*
1331 * rcu_start_this_gp - Request the start of a particular grace period
1332 * @rnp_start: The leaf node of the CPU from which to start.
1333 * @rdp: The rcu_data corresponding to the CPU from which to start.
1334 * @gp_seq_req: The gp_seq of the grace period to start.
1335 *
1336 * Start the specified grace period, as needed to handle newly arrived
1337 * callbacks. The required future grace periods are recorded in each
1338 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1339 * is reason to awaken the grace-period kthread.
1340 *
1341 * The caller must hold the specified rcu_node structure's ->lock, which
1342 * is why the caller is responsible for waking the grace-period kthread.
1343 *
1344 * Returns true if the GP thread needs to be awakened else false.
1345 */
1346static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1347 unsigned long gp_seq_req)
1348{
1349 bool ret = false;
1350 struct rcu_node *rnp;
1351
1352 /*
1353 * Use funnel locking to either acquire the root rcu_node
1354 * structure's lock or bail out if the need for this grace period
1355 * has already been recorded -- or if that grace period has in
1356 * fact already started. If there is already a grace period in
1357 * progress in a non-leaf node, no recording is needed because the
1358 * end of the grace period will scan the leaf rcu_node structures.
1359 * Note that rnp_start->lock must not be released.
1360 */
1361 raw_lockdep_assert_held_rcu_node(rnp_start);
1362 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1363 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1364 if (rnp != rnp_start)
1365 raw_spin_lock_rcu_node(rnp);
1366 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1367 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1368 (rnp != rnp_start &&
1369 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1370 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1371 TPS("Prestarted"));
1372 goto unlock_out;
1373 }
1374 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1375 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1376 /*
1377 * We just marked the leaf or internal node, and a
1378 * grace period is in progress, which means that
1379 * rcu_gp_cleanup() will see the marking. Bail to
1380 * reduce contention.
1381 */
1382 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1383 TPS("Startedleaf"));
1384 goto unlock_out;
1385 }
1386 if (rnp != rnp_start && rnp->parent != NULL)
1387 raw_spin_unlock_rcu_node(rnp);
1388 if (!rnp->parent)
1389 break; /* At root, and perhaps also leaf. */
1390 }
1391
1392 /* If GP already in progress, just leave, otherwise start one. */
1393 if (rcu_gp_in_progress()) {
1394 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1395 goto unlock_out;
1396 }
1397 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1398 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1399 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1400 if (!READ_ONCE(rcu_state.gp_kthread)) {
1401 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1402 goto unlock_out;
1403 }
1404 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1405 ret = true; /* Caller must wake GP kthread. */
1406unlock_out:
1407 /* Push furthest requested GP to leaf node and rcu_data structure. */
1408 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1409 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1410 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1411 }
1412 if (rnp != rnp_start)
1413 raw_spin_unlock_rcu_node(rnp);
1414 return ret;
1415}
1416
1417/*
1418 * Clean up any old requests for the just-ended grace period. Also return
1419 * whether any additional grace periods have been requested.
1420 */
1421static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1422{
1423 bool needmore;
1424 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1425
1426 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1427 if (!needmore)
1428 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1429 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1430 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1431 return needmore;
1432}
1433
1434/*
1435 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1436 * interrupt or softirq handler, in which case we just might immediately
1437 * sleep upon return, resulting in a grace-period hang), and don't bother
1438 * awakening when there is nothing for the grace-period kthread to do
1439 * (as in several CPUs raced to awaken, we lost), and finally don't try
1440 * to awaken a kthread that has not yet been created. If all those checks
1441 * are passed, track some debug information and awaken.
1442 *
1443 * So why do the self-wakeup when in an interrupt or softirq handler
1444 * in the grace-period kthread's context? Because the kthread might have
1445 * been interrupted just as it was going to sleep, and just after the final
1446 * pre-sleep check of the awaken condition. In this case, a wakeup really
1447 * is required, and is therefore supplied.
1448 */
1449static void rcu_gp_kthread_wake(void)
1450{
1451 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1452
1453 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1454 !READ_ONCE(rcu_state.gp_flags) || !t)
1455 return;
1456 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1457 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1458 swake_up_one(&rcu_state.gp_wq);
1459}
1460
1461/*
1462 * If there is room, assign a ->gp_seq number to any callbacks on this
1463 * CPU that have not already been assigned. Also accelerate any callbacks
1464 * that were previously assigned a ->gp_seq number that has since proven
1465 * to be too conservative, which can happen if callbacks get assigned a
1466 * ->gp_seq number while RCU is idle, but with reference to a non-root
1467 * rcu_node structure. This function is idempotent, so it does not hurt
1468 * to call it repeatedly. Returns an flag saying that we should awaken
1469 * the RCU grace-period kthread.
1470 *
1471 * The caller must hold rnp->lock with interrupts disabled.
1472 */
1473static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1474{
1475 unsigned long gp_seq_req;
1476 bool ret = false;
1477
1478 rcu_lockdep_assert_cblist_protected(rdp);
1479 raw_lockdep_assert_held_rcu_node(rnp);
1480
1481 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1482 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1483 return false;
1484
1485 /*
1486 * Callbacks are often registered with incomplete grace-period
1487 * information. Something about the fact that getting exact
1488 * information requires acquiring a global lock... RCU therefore
1489 * makes a conservative estimate of the grace period number at which
1490 * a given callback will become ready to invoke. The following
1491 * code checks this estimate and improves it when possible, thus
1492 * accelerating callback invocation to an earlier grace-period
1493 * number.
1494 */
1495 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1496 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1497 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1498
1499 /* Trace depending on how much we were able to accelerate. */
1500 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1501 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1502 else
1503 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1504 return ret;
1505}
1506
1507/*
1508 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1509 * rcu_node structure's ->lock be held. It consults the cached value
1510 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1511 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1512 * while holding the leaf rcu_node structure's ->lock.
1513 */
1514static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1515 struct rcu_data *rdp)
1516{
1517 unsigned long c;
1518 bool needwake;
1519
1520 rcu_lockdep_assert_cblist_protected(rdp);
1521 c = rcu_seq_snap(&rcu_state.gp_seq);
1522 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1523 /* Old request still live, so mark recent callbacks. */
1524 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1525 return;
1526 }
1527 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1528 needwake = rcu_accelerate_cbs(rnp, rdp);
1529 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1530 if (needwake)
1531 rcu_gp_kthread_wake();
1532}
1533
1534/*
1535 * Move any callbacks whose grace period has completed to the
1536 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1537 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1538 * sublist. This function is idempotent, so it does not hurt to
1539 * invoke it repeatedly. As long as it is not invoked -too- often...
1540 * Returns true if the RCU grace-period kthread needs to be awakened.
1541 *
1542 * The caller must hold rnp->lock with interrupts disabled.
1543 */
1544static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1545{
1546 rcu_lockdep_assert_cblist_protected(rdp);
1547 raw_lockdep_assert_held_rcu_node(rnp);
1548
1549 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1550 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1551 return false;
1552
1553 /*
1554 * Find all callbacks whose ->gp_seq numbers indicate that they
1555 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1556 */
1557 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1558
1559 /* Classify any remaining callbacks. */
1560 return rcu_accelerate_cbs(rnp, rdp);
1561}
1562
1563/*
1564 * Move and classify callbacks, but only if doing so won't require
1565 * that the RCU grace-period kthread be awakened.
1566 */
1567static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1568 struct rcu_data *rdp)
1569{
1570 rcu_lockdep_assert_cblist_protected(rdp);
1571 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1572 !raw_spin_trylock_rcu_node(rnp))
1573 return;
1574 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1575 raw_spin_unlock_rcu_node(rnp);
1576}
1577
1578/*
1579 * Update CPU-local rcu_data state to record the beginnings and ends of
1580 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1581 * structure corresponding to the current CPU, and must have irqs disabled.
1582 * Returns true if the grace-period kthread needs to be awakened.
1583 */
1584static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1585{
1586 bool ret = false;
1587 bool need_qs;
1588 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1589 rcu_segcblist_is_offloaded(&rdp->cblist);
1590
1591 raw_lockdep_assert_held_rcu_node(rnp);
1592
1593 if (rdp->gp_seq == rnp->gp_seq)
1594 return false; /* Nothing to do. */
1595
1596 /* Handle the ends of any preceding grace periods first. */
1597 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1598 unlikely(READ_ONCE(rdp->gpwrap))) {
1599 if (!offloaded)
1600 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1601 rdp->core_needs_qs = false;
1602 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1603 } else {
1604 if (!offloaded)
1605 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1606 if (rdp->core_needs_qs)
1607 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1608 }
1609
1610 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1611 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1612 unlikely(READ_ONCE(rdp->gpwrap))) {
1613 /*
1614 * If the current grace period is waiting for this CPU,
1615 * set up to detect a quiescent state, otherwise don't
1616 * go looking for one.
1617 */
1618 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1619 need_qs = !!(rnp->qsmask & rdp->grpmask);
1620 rdp->cpu_no_qs.b.norm = need_qs;
1621 rdp->core_needs_qs = need_qs;
1622 zero_cpu_stall_ticks(rdp);
1623 }
1624 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1625 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1626 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1627 WRITE_ONCE(rdp->gpwrap, false);
1628 rcu_gpnum_ovf(rnp, rdp);
1629 return ret;
1630}
1631
1632static void note_gp_changes(struct rcu_data *rdp)
1633{
1634 unsigned long flags;
1635 bool needwake;
1636 struct rcu_node *rnp;
1637
1638 local_irq_save(flags);
1639 rnp = rdp->mynode;
1640 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1641 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1642 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1643 local_irq_restore(flags);
1644 return;
1645 }
1646 needwake = __note_gp_changes(rnp, rdp);
1647 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1648 if (needwake)
1649 rcu_gp_kthread_wake();
1650}
1651
1652static void rcu_gp_slow(int delay)
1653{
1654 if (delay > 0 &&
1655 !(rcu_seq_ctr(rcu_state.gp_seq) %
1656 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1657 schedule_timeout_idle(delay);
1658}
1659
1660static unsigned long sleep_duration;
1661
1662/* Allow rcutorture to stall the grace-period kthread. */
1663void rcu_gp_set_torture_wait(int duration)
1664{
1665 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1666 WRITE_ONCE(sleep_duration, duration);
1667}
1668EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1669
1670/* Actually implement the aforementioned wait. */
1671static void rcu_gp_torture_wait(void)
1672{
1673 unsigned long duration;
1674
1675 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1676 return;
1677 duration = xchg(&sleep_duration, 0UL);
1678 if (duration > 0) {
1679 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1680 schedule_timeout_idle(duration);
1681 pr_alert("%s: Wait complete\n", __func__);
1682 }
1683}
1684
1685/*
1686 * Initialize a new grace period. Return false if no grace period required.
1687 */
1688static bool rcu_gp_init(void)
1689{
1690 unsigned long flags;
1691 unsigned long oldmask;
1692 unsigned long mask;
1693 struct rcu_data *rdp;
1694 struct rcu_node *rnp = rcu_get_root();
1695
1696 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1697 raw_spin_lock_irq_rcu_node(rnp);
1698 if (!READ_ONCE(rcu_state.gp_flags)) {
1699 /* Spurious wakeup, tell caller to go back to sleep. */
1700 raw_spin_unlock_irq_rcu_node(rnp);
1701 return false;
1702 }
1703 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1704
1705 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1706 /*
1707 * Grace period already in progress, don't start another.
1708 * Not supposed to be able to happen.
1709 */
1710 raw_spin_unlock_irq_rcu_node(rnp);
1711 return false;
1712 }
1713
1714 /* Advance to a new grace period and initialize state. */
1715 record_gp_stall_check_time();
1716 /* Record GP times before starting GP, hence rcu_seq_start(). */
1717 rcu_seq_start(&rcu_state.gp_seq);
1718 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1719 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1720 raw_spin_unlock_irq_rcu_node(rnp);
1721
1722 /*
1723 * Apply per-leaf buffered online and offline operations to the
1724 * rcu_node tree. Note that this new grace period need not wait
1725 * for subsequent online CPUs, and that quiescent-state forcing
1726 * will handle subsequent offline CPUs.
1727 */
1728 rcu_state.gp_state = RCU_GP_ONOFF;
1729 rcu_for_each_leaf_node(rnp) {
1730 raw_spin_lock(&rcu_state.ofl_lock);
1731 raw_spin_lock_irq_rcu_node(rnp);
1732 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1733 !rnp->wait_blkd_tasks) {
1734 /* Nothing to do on this leaf rcu_node structure. */
1735 raw_spin_unlock_irq_rcu_node(rnp);
1736 raw_spin_unlock(&rcu_state.ofl_lock);
1737 continue;
1738 }
1739
1740 /* Record old state, apply changes to ->qsmaskinit field. */
1741 oldmask = rnp->qsmaskinit;
1742 rnp->qsmaskinit = rnp->qsmaskinitnext;
1743
1744 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1745 if (!oldmask != !rnp->qsmaskinit) {
1746 if (!oldmask) { /* First online CPU for rcu_node. */
1747 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1748 rcu_init_new_rnp(rnp);
1749 } else if (rcu_preempt_has_tasks(rnp)) {
1750 rnp->wait_blkd_tasks = true; /* blocked tasks */
1751 } else { /* Last offline CPU and can propagate. */
1752 rcu_cleanup_dead_rnp(rnp);
1753 }
1754 }
1755
1756 /*
1757 * If all waited-on tasks from prior grace period are
1758 * done, and if all this rcu_node structure's CPUs are
1759 * still offline, propagate up the rcu_node tree and
1760 * clear ->wait_blkd_tasks. Otherwise, if one of this
1761 * rcu_node structure's CPUs has since come back online,
1762 * simply clear ->wait_blkd_tasks.
1763 */
1764 if (rnp->wait_blkd_tasks &&
1765 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1766 rnp->wait_blkd_tasks = false;
1767 if (!rnp->qsmaskinit)
1768 rcu_cleanup_dead_rnp(rnp);
1769 }
1770
1771 raw_spin_unlock_irq_rcu_node(rnp);
1772 raw_spin_unlock(&rcu_state.ofl_lock);
1773 }
1774 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1775
1776 /*
1777 * Set the quiescent-state-needed bits in all the rcu_node
1778 * structures for all currently online CPUs in breadth-first
1779 * order, starting from the root rcu_node structure, relying on the
1780 * layout of the tree within the rcu_state.node[] array. Note that
1781 * other CPUs will access only the leaves of the hierarchy, thus
1782 * seeing that no grace period is in progress, at least until the
1783 * corresponding leaf node has been initialized.
1784 *
1785 * The grace period cannot complete until the initialization
1786 * process finishes, because this kthread handles both.
1787 */
1788 rcu_state.gp_state = RCU_GP_INIT;
1789 rcu_for_each_node_breadth_first(rnp) {
1790 rcu_gp_slow(gp_init_delay);
1791 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1792 rdp = this_cpu_ptr(&rcu_data);
1793 rcu_preempt_check_blocked_tasks(rnp);
1794 rnp->qsmask = rnp->qsmaskinit;
1795 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1796 if (rnp == rdp->mynode)
1797 (void)__note_gp_changes(rnp, rdp);
1798 rcu_preempt_boost_start_gp(rnp);
1799 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1800 rnp->level, rnp->grplo,
1801 rnp->grphi, rnp->qsmask);
1802 /* Quiescent states for tasks on any now-offline CPUs. */
1803 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1804 rnp->rcu_gp_init_mask = mask;
1805 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1806 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1807 else
1808 raw_spin_unlock_irq_rcu_node(rnp);
1809 cond_resched_tasks_rcu_qs();
1810 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1811 }
1812
1813 return true;
1814}
1815
1816/*
1817 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1818 * time.
1819 */
1820static bool rcu_gp_fqs_check_wake(int *gfp)
1821{
1822 struct rcu_node *rnp = rcu_get_root();
1823
1824 // If under overload conditions, force an immediate FQS scan.
1825 if (*gfp & RCU_GP_FLAG_OVLD)
1826 return true;
1827
1828 // Someone like call_rcu() requested a force-quiescent-state scan.
1829 *gfp = READ_ONCE(rcu_state.gp_flags);
1830 if (*gfp & RCU_GP_FLAG_FQS)
1831 return true;
1832
1833 // The current grace period has completed.
1834 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1835 return true;
1836
1837 return false;
1838}
1839
1840/*
1841 * Do one round of quiescent-state forcing.
1842 */
1843static void rcu_gp_fqs(bool first_time)
1844{
1845 struct rcu_node *rnp = rcu_get_root();
1846
1847 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1848 rcu_state.n_force_qs++;
1849 if (first_time) {
1850 /* Collect dyntick-idle snapshots. */
1851 force_qs_rnp(dyntick_save_progress_counter);
1852 } else {
1853 /* Handle dyntick-idle and offline CPUs. */
1854 force_qs_rnp(rcu_implicit_dynticks_qs);
1855 }
1856 /* Clear flag to prevent immediate re-entry. */
1857 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1858 raw_spin_lock_irq_rcu_node(rnp);
1859 WRITE_ONCE(rcu_state.gp_flags,
1860 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1861 raw_spin_unlock_irq_rcu_node(rnp);
1862 }
1863}
1864
1865/*
1866 * Loop doing repeated quiescent-state forcing until the grace period ends.
1867 */
1868static void rcu_gp_fqs_loop(void)
1869{
1870 bool first_gp_fqs;
1871 int gf = 0;
1872 unsigned long j;
1873 int ret;
1874 struct rcu_node *rnp = rcu_get_root();
1875
1876 first_gp_fqs = true;
1877 j = READ_ONCE(jiffies_till_first_fqs);
1878 if (rcu_state.cbovld)
1879 gf = RCU_GP_FLAG_OVLD;
1880 ret = 0;
1881 for (;;) {
1882 if (!ret) {
1883 rcu_state.jiffies_force_qs = jiffies + j;
1884 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1885 jiffies + (j ? 3 * j : 2));
1886 }
1887 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1888 TPS("fqswait"));
1889 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1890 ret = swait_event_idle_timeout_exclusive(
1891 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1892 rcu_gp_torture_wait();
1893 rcu_state.gp_state = RCU_GP_DOING_FQS;
1894 /* Locking provides needed memory barriers. */
1895 /* If grace period done, leave loop. */
1896 if (!READ_ONCE(rnp->qsmask) &&
1897 !rcu_preempt_blocked_readers_cgp(rnp))
1898 break;
1899 /* If time for quiescent-state forcing, do it. */
1900 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1901 (gf & RCU_GP_FLAG_FQS)) {
1902 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1903 TPS("fqsstart"));
1904 rcu_gp_fqs(first_gp_fqs);
1905 gf = 0;
1906 if (first_gp_fqs) {
1907 first_gp_fqs = false;
1908 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1909 }
1910 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1911 TPS("fqsend"));
1912 cond_resched_tasks_rcu_qs();
1913 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1914 ret = 0; /* Force full wait till next FQS. */
1915 j = READ_ONCE(jiffies_till_next_fqs);
1916 } else {
1917 /* Deal with stray signal. */
1918 cond_resched_tasks_rcu_qs();
1919 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1920 WARN_ON(signal_pending(current));
1921 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1922 TPS("fqswaitsig"));
1923 ret = 1; /* Keep old FQS timing. */
1924 j = jiffies;
1925 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1926 j = 1;
1927 else
1928 j = rcu_state.jiffies_force_qs - j;
1929 gf = 0;
1930 }
1931 }
1932}
1933
1934/*
1935 * Clean up after the old grace period.
1936 */
1937static void rcu_gp_cleanup(void)
1938{
1939 int cpu;
1940 bool needgp = false;
1941 unsigned long gp_duration;
1942 unsigned long new_gp_seq;
1943 bool offloaded;
1944 struct rcu_data *rdp;
1945 struct rcu_node *rnp = rcu_get_root();
1946 struct swait_queue_head *sq;
1947
1948 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1949 raw_spin_lock_irq_rcu_node(rnp);
1950 rcu_state.gp_end = jiffies;
1951 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1952 if (gp_duration > rcu_state.gp_max)
1953 rcu_state.gp_max = gp_duration;
1954
1955 /*
1956 * We know the grace period is complete, but to everyone else
1957 * it appears to still be ongoing. But it is also the case
1958 * that to everyone else it looks like there is nothing that
1959 * they can do to advance the grace period. It is therefore
1960 * safe for us to drop the lock in order to mark the grace
1961 * period as completed in all of the rcu_node structures.
1962 */
1963 raw_spin_unlock_irq_rcu_node(rnp);
1964
1965 /*
1966 * Propagate new ->gp_seq value to rcu_node structures so that
1967 * other CPUs don't have to wait until the start of the next grace
1968 * period to process their callbacks. This also avoids some nasty
1969 * RCU grace-period initialization races by forcing the end of
1970 * the current grace period to be completely recorded in all of
1971 * the rcu_node structures before the beginning of the next grace
1972 * period is recorded in any of the rcu_node structures.
1973 */
1974 new_gp_seq = rcu_state.gp_seq;
1975 rcu_seq_end(&new_gp_seq);
1976 rcu_for_each_node_breadth_first(rnp) {
1977 raw_spin_lock_irq_rcu_node(rnp);
1978 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1979 dump_blkd_tasks(rnp, 10);
1980 WARN_ON_ONCE(rnp->qsmask);
1981 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1982 rdp = this_cpu_ptr(&rcu_data);
1983 if (rnp == rdp->mynode)
1984 needgp = __note_gp_changes(rnp, rdp) || needgp;
1985 /* smp_mb() provided by prior unlock-lock pair. */
1986 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1987 // Reset overload indication for CPUs no longer overloaded
1988 if (rcu_is_leaf_node(rnp))
1989 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1990 rdp = per_cpu_ptr(&rcu_data, cpu);
1991 check_cb_ovld_locked(rdp, rnp);
1992 }
1993 sq = rcu_nocb_gp_get(rnp);
1994 raw_spin_unlock_irq_rcu_node(rnp);
1995 rcu_nocb_gp_cleanup(sq);
1996 cond_resched_tasks_rcu_qs();
1997 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1998 rcu_gp_slow(gp_cleanup_delay);
1999 }
2000 rnp = rcu_get_root();
2001 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2002
2003 /* Declare grace period done, trace first to use old GP number. */
2004 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2005 rcu_seq_end(&rcu_state.gp_seq);
2006 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2007 rcu_state.gp_state = RCU_GP_IDLE;
2008 /* Check for GP requests since above loop. */
2009 rdp = this_cpu_ptr(&rcu_data);
2010 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2011 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2012 TPS("CleanupMore"));
2013 needgp = true;
2014 }
2015 /* Advance CBs to reduce false positives below. */
2016 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2017 rcu_segcblist_is_offloaded(&rdp->cblist);
2018 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2019 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2020 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2021 trace_rcu_grace_period(rcu_state.name,
2022 rcu_state.gp_seq,
2023 TPS("newreq"));
2024 } else {
2025 WRITE_ONCE(rcu_state.gp_flags,
2026 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2027 }
2028 raw_spin_unlock_irq_rcu_node(rnp);
2029}
2030
2031/*
2032 * Body of kthread that handles grace periods.
2033 */
2034static int __noreturn rcu_gp_kthread(void *unused)
2035{
2036 rcu_bind_gp_kthread();
2037 for (;;) {
2038
2039 /* Handle grace-period start. */
2040 for (;;) {
2041 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2042 TPS("reqwait"));
2043 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2044 swait_event_idle_exclusive(rcu_state.gp_wq,
2045 READ_ONCE(rcu_state.gp_flags) &
2046 RCU_GP_FLAG_INIT);
2047 rcu_gp_torture_wait();
2048 rcu_state.gp_state = RCU_GP_DONE_GPS;
2049 /* Locking provides needed memory barrier. */
2050 if (rcu_gp_init())
2051 break;
2052 cond_resched_tasks_rcu_qs();
2053 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2054 WARN_ON(signal_pending(current));
2055 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2056 TPS("reqwaitsig"));
2057 }
2058
2059 /* Handle quiescent-state forcing. */
2060 rcu_gp_fqs_loop();
2061
2062 /* Handle grace-period end. */
2063 rcu_state.gp_state = RCU_GP_CLEANUP;
2064 rcu_gp_cleanup();
2065 rcu_state.gp_state = RCU_GP_CLEANED;
2066 }
2067}
2068
2069/*
2070 * Report a full set of quiescent states to the rcu_state data structure.
2071 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2072 * another grace period is required. Whether we wake the grace-period
2073 * kthread or it awakens itself for the next round of quiescent-state
2074 * forcing, that kthread will clean up after the just-completed grace
2075 * period. Note that the caller must hold rnp->lock, which is released
2076 * before return.
2077 */
2078static void rcu_report_qs_rsp(unsigned long flags)
2079 __releases(rcu_get_root()->lock)
2080{
2081 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2082 WARN_ON_ONCE(!rcu_gp_in_progress());
2083 WRITE_ONCE(rcu_state.gp_flags,
2084 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2085 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2086 rcu_gp_kthread_wake();
2087}
2088
2089/*
2090 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2091 * Allows quiescent states for a group of CPUs to be reported at one go
2092 * to the specified rcu_node structure, though all the CPUs in the group
2093 * must be represented by the same rcu_node structure (which need not be a
2094 * leaf rcu_node structure, though it often will be). The gps parameter
2095 * is the grace-period snapshot, which means that the quiescent states
2096 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2097 * must be held upon entry, and it is released before return.
2098 *
2099 * As a special case, if mask is zero, the bit-already-cleared check is
2100 * disabled. This allows propagating quiescent state due to resumed tasks
2101 * during grace-period initialization.
2102 */
2103static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2104 unsigned long gps, unsigned long flags)
2105 __releases(rnp->lock)
2106{
2107 unsigned long oldmask = 0;
2108 struct rcu_node *rnp_c;
2109
2110 raw_lockdep_assert_held_rcu_node(rnp);
2111
2112 /* Walk up the rcu_node hierarchy. */
2113 for (;;) {
2114 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2115
2116 /*
2117 * Our bit has already been cleared, or the
2118 * relevant grace period is already over, so done.
2119 */
2120 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2121 return;
2122 }
2123 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2124 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2125 rcu_preempt_blocked_readers_cgp(rnp));
2126 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2127 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2128 mask, rnp->qsmask, rnp->level,
2129 rnp->grplo, rnp->grphi,
2130 !!rnp->gp_tasks);
2131 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2132
2133 /* Other bits still set at this level, so done. */
2134 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2135 return;
2136 }
2137 rnp->completedqs = rnp->gp_seq;
2138 mask = rnp->grpmask;
2139 if (rnp->parent == NULL) {
2140
2141 /* No more levels. Exit loop holding root lock. */
2142
2143 break;
2144 }
2145 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2146 rnp_c = rnp;
2147 rnp = rnp->parent;
2148 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2149 oldmask = READ_ONCE(rnp_c->qsmask);
2150 }
2151
2152 /*
2153 * Get here if we are the last CPU to pass through a quiescent
2154 * state for this grace period. Invoke rcu_report_qs_rsp()
2155 * to clean up and start the next grace period if one is needed.
2156 */
2157 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2158}
2159
2160/*
2161 * Record a quiescent state for all tasks that were previously queued
2162 * on the specified rcu_node structure and that were blocking the current
2163 * RCU grace period. The caller must hold the corresponding rnp->lock with
2164 * irqs disabled, and this lock is released upon return, but irqs remain
2165 * disabled.
2166 */
2167static void __maybe_unused
2168rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2169 __releases(rnp->lock)
2170{
2171 unsigned long gps;
2172 unsigned long mask;
2173 struct rcu_node *rnp_p;
2174
2175 raw_lockdep_assert_held_rcu_node(rnp);
2176 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2177 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2178 rnp->qsmask != 0) {
2179 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2180 return; /* Still need more quiescent states! */
2181 }
2182
2183 rnp->completedqs = rnp->gp_seq;
2184 rnp_p = rnp->parent;
2185 if (rnp_p == NULL) {
2186 /*
2187 * Only one rcu_node structure in the tree, so don't
2188 * try to report up to its nonexistent parent!
2189 */
2190 rcu_report_qs_rsp(flags);
2191 return;
2192 }
2193
2194 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2195 gps = rnp->gp_seq;
2196 mask = rnp->grpmask;
2197 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2198 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2199 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2200}
2201
2202/*
2203 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2204 * structure. This must be called from the specified CPU.
2205 */
2206static void
2207rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2208{
2209 unsigned long flags;
2210 unsigned long mask;
2211 bool needwake = false;
2212 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2213 rcu_segcblist_is_offloaded(&rdp->cblist);
2214 struct rcu_node *rnp;
2215
2216 rnp = rdp->mynode;
2217 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2218 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2219 rdp->gpwrap) {
2220
2221 /*
2222 * The grace period in which this quiescent state was
2223 * recorded has ended, so don't report it upwards.
2224 * We will instead need a new quiescent state that lies
2225 * within the current grace period.
2226 */
2227 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2228 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2229 return;
2230 }
2231 mask = rdp->grpmask;
2232 if (rdp->cpu == smp_processor_id())
2233 rdp->core_needs_qs = false;
2234 if ((rnp->qsmask & mask) == 0) {
2235 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2236 } else {
2237 /*
2238 * This GP can't end until cpu checks in, so all of our
2239 * callbacks can be processed during the next GP.
2240 */
2241 if (!offloaded)
2242 needwake = rcu_accelerate_cbs(rnp, rdp);
2243
2244 rcu_disable_urgency_upon_qs(rdp);
2245 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2246 /* ^^^ Released rnp->lock */
2247 if (needwake)
2248 rcu_gp_kthread_wake();
2249 }
2250}
2251
2252/*
2253 * Check to see if there is a new grace period of which this CPU
2254 * is not yet aware, and if so, set up local rcu_data state for it.
2255 * Otherwise, see if this CPU has just passed through its first
2256 * quiescent state for this grace period, and record that fact if so.
2257 */
2258static void
2259rcu_check_quiescent_state(struct rcu_data *rdp)
2260{
2261 /* Check for grace-period ends and beginnings. */
2262 note_gp_changes(rdp);
2263
2264 /*
2265 * Does this CPU still need to do its part for current grace period?
2266 * If no, return and let the other CPUs do their part as well.
2267 */
2268 if (!rdp->core_needs_qs)
2269 return;
2270
2271 /*
2272 * Was there a quiescent state since the beginning of the grace
2273 * period? If no, then exit and wait for the next call.
2274 */
2275 if (rdp->cpu_no_qs.b.norm)
2276 return;
2277
2278 /*
2279 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2280 * judge of that).
2281 */
2282 rcu_report_qs_rdp(rdp->cpu, rdp);
2283}
2284
2285/*
2286 * Near the end of the offline process. Trace the fact that this CPU
2287 * is going offline.
2288 */
2289int rcutree_dying_cpu(unsigned int cpu)
2290{
2291 bool blkd;
2292 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2293 struct rcu_node *rnp = rdp->mynode;
2294
2295 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2296 return 0;
2297
2298 blkd = !!(rnp->qsmask & rdp->grpmask);
2299 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2300 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2301 return 0;
2302}
2303
2304/*
2305 * All CPUs for the specified rcu_node structure have gone offline,
2306 * and all tasks that were preempted within an RCU read-side critical
2307 * section while running on one of those CPUs have since exited their RCU
2308 * read-side critical section. Some other CPU is reporting this fact with
2309 * the specified rcu_node structure's ->lock held and interrupts disabled.
2310 * This function therefore goes up the tree of rcu_node structures,
2311 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2312 * the leaf rcu_node structure's ->qsmaskinit field has already been
2313 * updated.
2314 *
2315 * This function does check that the specified rcu_node structure has
2316 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2317 * prematurely. That said, invoking it after the fact will cost you
2318 * a needless lock acquisition. So once it has done its work, don't
2319 * invoke it again.
2320 */
2321static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2322{
2323 long mask;
2324 struct rcu_node *rnp = rnp_leaf;
2325
2326 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2327 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2328 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2329 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2330 return;
2331 for (;;) {
2332 mask = rnp->grpmask;
2333 rnp = rnp->parent;
2334 if (!rnp)
2335 break;
2336 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2337 rnp->qsmaskinit &= ~mask;
2338 /* Between grace periods, so better already be zero! */
2339 WARN_ON_ONCE(rnp->qsmask);
2340 if (rnp->qsmaskinit) {
2341 raw_spin_unlock_rcu_node(rnp);
2342 /* irqs remain disabled. */
2343 return;
2344 }
2345 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2346 }
2347}
2348
2349/*
2350 * The CPU has been completely removed, and some other CPU is reporting
2351 * this fact from process context. Do the remainder of the cleanup.
2352 * There can only be one CPU hotplug operation at a time, so no need for
2353 * explicit locking.
2354 */
2355int rcutree_dead_cpu(unsigned int cpu)
2356{
2357 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2358 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2359
2360 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2361 return 0;
2362
2363 /* Adjust any no-longer-needed kthreads. */
2364 rcu_boost_kthread_setaffinity(rnp, -1);
2365 /* Do any needed no-CB deferred wakeups from this CPU. */
2366 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2367
2368 // Stop-machine done, so allow nohz_full to disable tick.
2369 tick_dep_clear(TICK_DEP_BIT_RCU);
2370 return 0;
2371}
2372
2373/*
2374 * Invoke any RCU callbacks that have made it to the end of their grace
2375 * period. Thottle as specified by rdp->blimit.
2376 */
2377static void rcu_do_batch(struct rcu_data *rdp)
2378{
2379 unsigned long flags;
2380 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2381 rcu_segcblist_is_offloaded(&rdp->cblist);
2382 struct rcu_head *rhp;
2383 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2384 long bl, count;
2385 long pending, tlimit = 0;
2386
2387 /* If no callbacks are ready, just return. */
2388 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2389 trace_rcu_batch_start(rcu_state.name,
2390 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2391 trace_rcu_batch_end(rcu_state.name, 0,
2392 !rcu_segcblist_empty(&rdp->cblist),
2393 need_resched(), is_idle_task(current),
2394 rcu_is_callbacks_kthread());
2395 return;
2396 }
2397
2398 /*
2399 * Extract the list of ready callbacks, disabling to prevent
2400 * races with call_rcu() from interrupt handlers. Leave the
2401 * callback counts, as rcu_barrier() needs to be conservative.
2402 */
2403 local_irq_save(flags);
2404 rcu_nocb_lock(rdp);
2405 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2406 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2407 bl = max(rdp->blimit, pending >> rcu_divisor);
2408 if (unlikely(bl > 100))
2409 tlimit = local_clock() + rcu_resched_ns;
2410 trace_rcu_batch_start(rcu_state.name,
2411 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2412 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2413 if (offloaded)
2414 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2415 rcu_nocb_unlock_irqrestore(rdp, flags);
2416
2417 /* Invoke callbacks. */
2418 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2419 rhp = rcu_cblist_dequeue(&rcl);
2420 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2421 rcu_callback_t f;
2422
2423 debug_rcu_head_unqueue(rhp);
2424
2425 rcu_lock_acquire(&rcu_callback_map);
2426 trace_rcu_invoke_callback(rcu_state.name, rhp);
2427
2428 f = rhp->func;
2429 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2430 f(rhp);
2431
2432 rcu_lock_release(&rcu_callback_map);
2433
2434 /*
2435 * Stop only if limit reached and CPU has something to do.
2436 * Note: The rcl structure counts down from zero.
2437 */
2438 if (-rcl.len >= bl && !offloaded &&
2439 (need_resched() ||
2440 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2441 break;
2442 if (unlikely(tlimit)) {
2443 /* only call local_clock() every 32 callbacks */
2444 if (likely((-rcl.len & 31) || local_clock() < tlimit))
2445 continue;
2446 /* Exceeded the time limit, so leave. */
2447 break;
2448 }
2449 if (offloaded) {
2450 WARN_ON_ONCE(in_serving_softirq());
2451 local_bh_enable();
2452 lockdep_assert_irqs_enabled();
2453 cond_resched_tasks_rcu_qs();
2454 lockdep_assert_irqs_enabled();
2455 local_bh_disable();
2456 }
2457 }
2458
2459 local_irq_save(flags);
2460 rcu_nocb_lock(rdp);
2461 count = -rcl.len;
2462 rdp->n_cbs_invoked += count;
2463 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2464 is_idle_task(current), rcu_is_callbacks_kthread());
2465
2466 /* Update counts and requeue any remaining callbacks. */
2467 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2468 smp_mb(); /* List handling before counting for rcu_barrier(). */
2469 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2470
2471 /* Reinstate batch limit if we have worked down the excess. */
2472 count = rcu_segcblist_n_cbs(&rdp->cblist);
2473 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2474 rdp->blimit = blimit;
2475
2476 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2477 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2478 rdp->qlen_last_fqs_check = 0;
2479 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2480 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2481 rdp->qlen_last_fqs_check = count;
2482
2483 /*
2484 * The following usually indicates a double call_rcu(). To track
2485 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2486 */
2487 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2488 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2489 count != 0 && rcu_segcblist_empty(&rdp->cblist));
2490
2491 rcu_nocb_unlock_irqrestore(rdp, flags);
2492
2493 /* Re-invoke RCU core processing if there are callbacks remaining. */
2494 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2495 invoke_rcu_core();
2496 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2497}
2498
2499/*
2500 * This function is invoked from each scheduling-clock interrupt,
2501 * and checks to see if this CPU is in a non-context-switch quiescent
2502 * state, for example, user mode or idle loop. It also schedules RCU
2503 * core processing. If the current grace period has gone on too long,
2504 * it will ask the scheduler to manufacture a context switch for the sole
2505 * purpose of providing a providing the needed quiescent state.
2506 */
2507void rcu_sched_clock_irq(int user)
2508{
2509 trace_rcu_utilization(TPS("Start scheduler-tick"));
2510 raw_cpu_inc(rcu_data.ticks_this_gp);
2511 /* The load-acquire pairs with the store-release setting to true. */
2512 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2513 /* Idle and userspace execution already are quiescent states. */
2514 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2515 set_tsk_need_resched(current);
2516 set_preempt_need_resched();
2517 }
2518 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2519 }
2520 rcu_flavor_sched_clock_irq(user);
2521 if (rcu_pending(user))
2522 invoke_rcu_core();
2523
2524 trace_rcu_utilization(TPS("End scheduler-tick"));
2525}
2526
2527/*
2528 * Scan the leaf rcu_node structures. For each structure on which all
2529 * CPUs have reported a quiescent state and on which there are tasks
2530 * blocking the current grace period, initiate RCU priority boosting.
2531 * Otherwise, invoke the specified function to check dyntick state for
2532 * each CPU that has not yet reported a quiescent state.
2533 */
2534static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2535{
2536 int cpu;
2537 unsigned long flags;
2538 unsigned long mask;
2539 struct rcu_data *rdp;
2540 struct rcu_node *rnp;
2541
2542 rcu_state.cbovld = rcu_state.cbovldnext;
2543 rcu_state.cbovldnext = false;
2544 rcu_for_each_leaf_node(rnp) {
2545 cond_resched_tasks_rcu_qs();
2546 mask = 0;
2547 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2548 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2549 if (rnp->qsmask == 0) {
2550 if (!IS_ENABLED(CONFIG_PREEMPT_RCU) ||
2551 rcu_preempt_blocked_readers_cgp(rnp)) {
2552 /*
2553 * No point in scanning bits because they
2554 * are all zero. But we might need to
2555 * priority-boost blocked readers.
2556 */
2557 rcu_initiate_boost(rnp, flags);
2558 /* rcu_initiate_boost() releases rnp->lock */
2559 continue;
2560 }
2561 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2562 continue;
2563 }
2564 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2565 rdp = per_cpu_ptr(&rcu_data, cpu);
2566 if (f(rdp)) {
2567 mask |= rdp->grpmask;
2568 rcu_disable_urgency_upon_qs(rdp);
2569 }
2570 }
2571 if (mask != 0) {
2572 /* Idle/offline CPUs, report (releases rnp->lock). */
2573 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2574 } else {
2575 /* Nothing to do here, so just drop the lock. */
2576 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2577 }
2578 }
2579}
2580
2581/*
2582 * Force quiescent states on reluctant CPUs, and also detect which
2583 * CPUs are in dyntick-idle mode.
2584 */
2585void rcu_force_quiescent_state(void)
2586{
2587 unsigned long flags;
2588 bool ret;
2589 struct rcu_node *rnp;
2590 struct rcu_node *rnp_old = NULL;
2591
2592 /* Funnel through hierarchy to reduce memory contention. */
2593 rnp = __this_cpu_read(rcu_data.mynode);
2594 for (; rnp != NULL; rnp = rnp->parent) {
2595 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2596 !raw_spin_trylock(&rnp->fqslock);
2597 if (rnp_old != NULL)
2598 raw_spin_unlock(&rnp_old->fqslock);
2599 if (ret)
2600 return;
2601 rnp_old = rnp;
2602 }
2603 /* rnp_old == rcu_get_root(), rnp == NULL. */
2604
2605 /* Reached the root of the rcu_node tree, acquire lock. */
2606 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2607 raw_spin_unlock(&rnp_old->fqslock);
2608 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2609 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2610 return; /* Someone beat us to it. */
2611 }
2612 WRITE_ONCE(rcu_state.gp_flags,
2613 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2614 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2615 rcu_gp_kthread_wake();
2616}
2617EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2618
2619/* Perform RCU core processing work for the current CPU. */
2620static __latent_entropy void rcu_core(void)
2621{
2622 unsigned long flags;
2623 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2624 struct rcu_node *rnp = rdp->mynode;
2625 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2626 rcu_segcblist_is_offloaded(&rdp->cblist);
2627
2628 if (cpu_is_offline(smp_processor_id()))
2629 return;
2630 trace_rcu_utilization(TPS("Start RCU core"));
2631 WARN_ON_ONCE(!rdp->beenonline);
2632
2633 /* Report any deferred quiescent states if preemption enabled. */
2634 if (!(preempt_count() & PREEMPT_MASK)) {
2635 rcu_preempt_deferred_qs(current);
2636 } else if (rcu_preempt_need_deferred_qs(current)) {
2637 set_tsk_need_resched(current);
2638 set_preempt_need_resched();
2639 }
2640
2641 /* Update RCU state based on any recent quiescent states. */
2642 rcu_check_quiescent_state(rdp);
2643
2644 /* No grace period and unregistered callbacks? */
2645 if (!rcu_gp_in_progress() &&
2646 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2647 local_irq_save(flags);
2648 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2649 rcu_accelerate_cbs_unlocked(rnp, rdp);
2650 local_irq_restore(flags);
2651 }
2652
2653 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2654
2655 /* If there are callbacks ready, invoke them. */
2656 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2657 likely(READ_ONCE(rcu_scheduler_fully_active)))
2658 rcu_do_batch(rdp);
2659
2660 /* Do any needed deferred wakeups of rcuo kthreads. */
2661 do_nocb_deferred_wakeup(rdp);
2662 trace_rcu_utilization(TPS("End RCU core"));
2663}
2664
2665static void rcu_core_si(struct softirq_action *h)
2666{
2667 rcu_core();
2668}
2669
2670static void rcu_wake_cond(struct task_struct *t, int status)
2671{
2672 /*
2673 * If the thread is yielding, only wake it when this
2674 * is invoked from idle
2675 */
2676 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2677 wake_up_process(t);
2678}
2679
2680static void invoke_rcu_core_kthread(void)
2681{
2682 struct task_struct *t;
2683 unsigned long flags;
2684
2685 local_irq_save(flags);
2686 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2687 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2688 if (t != NULL && t != current)
2689 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2690 local_irq_restore(flags);
2691}
2692
2693/*
2694 * Wake up this CPU's rcuc kthread to do RCU core processing.
2695 */
2696static void invoke_rcu_core(void)
2697{
2698 if (!cpu_online(smp_processor_id()))
2699 return;
2700 if (use_softirq)
2701 raise_softirq(RCU_SOFTIRQ);
2702 else
2703 invoke_rcu_core_kthread();
2704}
2705
2706static void rcu_cpu_kthread_park(unsigned int cpu)
2707{
2708 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2709}
2710
2711static int rcu_cpu_kthread_should_run(unsigned int cpu)
2712{
2713 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2714}
2715
2716/*
2717 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2718 * the RCU softirq used in configurations of RCU that do not support RCU
2719 * priority boosting.
2720 */
2721static void rcu_cpu_kthread(unsigned int cpu)
2722{
2723 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2724 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2725 int spincnt;
2726
2727 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2728 for (spincnt = 0; spincnt < 10; spincnt++) {
2729 local_bh_disable();
2730 *statusp = RCU_KTHREAD_RUNNING;
2731 local_irq_disable();
2732 work = *workp;
2733 *workp = 0;
2734 local_irq_enable();
2735 if (work)
2736 rcu_core();
2737 local_bh_enable();
2738 if (*workp == 0) {
2739 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2740 *statusp = RCU_KTHREAD_WAITING;
2741 return;
2742 }
2743 }
2744 *statusp = RCU_KTHREAD_YIELDING;
2745 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2746 schedule_timeout_idle(2);
2747 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2748 *statusp = RCU_KTHREAD_WAITING;
2749}
2750
2751static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2752 .store = &rcu_data.rcu_cpu_kthread_task,
2753 .thread_should_run = rcu_cpu_kthread_should_run,
2754 .thread_fn = rcu_cpu_kthread,
2755 .thread_comm = "rcuc/%u",
2756 .setup = rcu_cpu_kthread_setup,
2757 .park = rcu_cpu_kthread_park,
2758};
2759
2760/*
2761 * Spawn per-CPU RCU core processing kthreads.
2762 */
2763static int __init rcu_spawn_core_kthreads(void)
2764{
2765 int cpu;
2766
2767 for_each_possible_cpu(cpu)
2768 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2769 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2770 return 0;
2771 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2772 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2773 return 0;
2774}
2775early_initcall(rcu_spawn_core_kthreads);
2776
2777/*
2778 * Handle any core-RCU processing required by a call_rcu() invocation.
2779 */
2780static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2781 unsigned long flags)
2782{
2783 /*
2784 * If called from an extended quiescent state, invoke the RCU
2785 * core in order to force a re-evaluation of RCU's idleness.
2786 */
2787 if (!rcu_is_watching())
2788 invoke_rcu_core();
2789
2790 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2791 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2792 return;
2793
2794 /*
2795 * Force the grace period if too many callbacks or too long waiting.
2796 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2797 * if some other CPU has recently done so. Also, don't bother
2798 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2799 * is the only one waiting for a grace period to complete.
2800 */
2801 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2802 rdp->qlen_last_fqs_check + qhimark)) {
2803
2804 /* Are we ignoring a completed grace period? */
2805 note_gp_changes(rdp);
2806
2807 /* Start a new grace period if one not already started. */
2808 if (!rcu_gp_in_progress()) {
2809 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2810 } else {
2811 /* Give the grace period a kick. */
2812 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2813 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2814 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2815 rcu_force_quiescent_state();
2816 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2817 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2818 }
2819 }
2820}
2821
2822/*
2823 * RCU callback function to leak a callback.
2824 */
2825static void rcu_leak_callback(struct rcu_head *rhp)
2826{
2827}
2828
2829/*
2830 * Check and if necessary update the leaf rcu_node structure's
2831 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2832 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2833 * structure's ->lock.
2834 */
2835static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2836{
2837 raw_lockdep_assert_held_rcu_node(rnp);
2838 if (qovld_calc <= 0)
2839 return; // Early boot and wildcard value set.
2840 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2841 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2842 else
2843 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2844}
2845
2846/*
2847 * Check and if necessary update the leaf rcu_node structure's
2848 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2849 * number of queued RCU callbacks. No locks need be held, but the
2850 * caller must have disabled interrupts.
2851 *
2852 * Note that this function ignores the possibility that there are a lot
2853 * of callbacks all of which have already seen the end of their respective
2854 * grace periods. This omission is due to the need for no-CBs CPUs to
2855 * be holding ->nocb_lock to do this check, which is too heavy for a
2856 * common-case operation.
2857 */
2858static void check_cb_ovld(struct rcu_data *rdp)
2859{
2860 struct rcu_node *const rnp = rdp->mynode;
2861
2862 if (qovld_calc <= 0 ||
2863 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2864 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2865 return; // Early boot wildcard value or already set correctly.
2866 raw_spin_lock_rcu_node(rnp);
2867 check_cb_ovld_locked(rdp, rnp);
2868 raw_spin_unlock_rcu_node(rnp);
2869}
2870
2871/* Helper function for call_rcu() and friends. */
2872static void
2873__call_rcu(struct rcu_head *head, rcu_callback_t func)
2874{
2875 unsigned long flags;
2876 struct rcu_data *rdp;
2877 bool was_alldone;
2878
2879 /* Misaligned rcu_head! */
2880 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2881
2882 if (debug_rcu_head_queue(head)) {
2883 /*
2884 * Probable double call_rcu(), so leak the callback.
2885 * Use rcu:rcu_callback trace event to find the previous
2886 * time callback was passed to __call_rcu().
2887 */
2888 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2889 head, head->func);
2890 WRITE_ONCE(head->func, rcu_leak_callback);
2891 return;
2892 }
2893 head->func = func;
2894 head->next = NULL;
2895 local_irq_save(flags);
2896 kasan_record_aux_stack(head);
2897 rdp = this_cpu_ptr(&rcu_data);
2898
2899 /* Add the callback to our list. */
2900 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2901 // This can trigger due to call_rcu() from offline CPU:
2902 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2903 WARN_ON_ONCE(!rcu_is_watching());
2904 // Very early boot, before rcu_init(). Initialize if needed
2905 // and then drop through to queue the callback.
2906 if (rcu_segcblist_empty(&rdp->cblist))
2907 rcu_segcblist_init(&rdp->cblist);
2908 }
2909
2910 check_cb_ovld(rdp);
2911 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2912 return; // Enqueued onto ->nocb_bypass, so just leave.
2913 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2914 rcu_segcblist_enqueue(&rdp->cblist, head);
2915 if (__is_kvfree_rcu_offset((unsigned long)func))
2916 trace_rcu_kvfree_callback(rcu_state.name, head,
2917 (unsigned long)func,
2918 rcu_segcblist_n_cbs(&rdp->cblist));
2919 else
2920 trace_rcu_callback(rcu_state.name, head,
2921 rcu_segcblist_n_cbs(&rdp->cblist));
2922
2923 /* Go handle any RCU core processing required. */
2924 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2925 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2926 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2927 } else {
2928 __call_rcu_core(rdp, head, flags);
2929 local_irq_restore(flags);
2930 }
2931}
2932
2933/**
2934 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2935 * @head: structure to be used for queueing the RCU updates.
2936 * @func: actual callback function to be invoked after the grace period
2937 *
2938 * The callback function will be invoked some time after a full grace
2939 * period elapses, in other words after all pre-existing RCU read-side
2940 * critical sections have completed. However, the callback function
2941 * might well execute concurrently with RCU read-side critical sections
2942 * that started after call_rcu() was invoked. RCU read-side critical
2943 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2944 * may be nested. In addition, regions of code across which interrupts,
2945 * preemption, or softirqs have been disabled also serve as RCU read-side
2946 * critical sections. This includes hardware interrupt handlers, softirq
2947 * handlers, and NMI handlers.
2948 *
2949 * Note that all CPUs must agree that the grace period extended beyond
2950 * all pre-existing RCU read-side critical section. On systems with more
2951 * than one CPU, this means that when "func()" is invoked, each CPU is
2952 * guaranteed to have executed a full memory barrier since the end of its
2953 * last RCU read-side critical section whose beginning preceded the call
2954 * to call_rcu(). It also means that each CPU executing an RCU read-side
2955 * critical section that continues beyond the start of "func()" must have
2956 * executed a memory barrier after the call_rcu() but before the beginning
2957 * of that RCU read-side critical section. Note that these guarantees
2958 * include CPUs that are offline, idle, or executing in user mode, as
2959 * well as CPUs that are executing in the kernel.
2960 *
2961 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2962 * resulting RCU callback function "func()", then both CPU A and CPU B are
2963 * guaranteed to execute a full memory barrier during the time interval
2964 * between the call to call_rcu() and the invocation of "func()" -- even
2965 * if CPU A and CPU B are the same CPU (but again only if the system has
2966 * more than one CPU).
2967 */
2968void call_rcu(struct rcu_head *head, rcu_callback_t func)
2969{
2970 __call_rcu(head, func);
2971}
2972EXPORT_SYMBOL_GPL(call_rcu);
2973
2974
2975/* Maximum number of jiffies to wait before draining a batch. */
2976#define KFREE_DRAIN_JIFFIES (HZ / 50)
2977#define KFREE_N_BATCHES 2
2978#define FREE_N_CHANNELS 2
2979
2980/**
2981 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2982 * @nr_records: Number of active pointers in the array
2983 * @next: Next bulk object in the block chain
2984 * @records: Array of the kvfree_rcu() pointers
2985 */
2986struct kvfree_rcu_bulk_data {
2987 unsigned long nr_records;
2988 struct kvfree_rcu_bulk_data *next;
2989 void *records[];
2990};
2991
2992/*
2993 * This macro defines how many entries the "records" array
2994 * will contain. It is based on the fact that the size of
2995 * kvfree_rcu_bulk_data structure becomes exactly one page.
2996 */
2997#define KVFREE_BULK_MAX_ENTR \
2998 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2999
3000/**
3001 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3002 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3003 * @head_free: List of kfree_rcu() objects waiting for a grace period
3004 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3005 * @krcp: Pointer to @kfree_rcu_cpu structure
3006 */
3007
3008struct kfree_rcu_cpu_work {
3009 struct rcu_work rcu_work;
3010 struct rcu_head *head_free;
3011 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3012 struct kfree_rcu_cpu *krcp;
3013};
3014
3015/**
3016 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3017 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3018 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3019 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3020 * @lock: Synchronize access to this structure
3021 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3022 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3023 * @initialized: The @rcu_work fields have been initialized
3024 * @count: Number of objects for which GP not started
3025 *
3026 * This is a per-CPU structure. The reason that it is not included in
3027 * the rcu_data structure is to permit this code to be extracted from
3028 * the RCU files. Such extraction could allow further optimization of
3029 * the interactions with the slab allocators.
3030 */
3031struct kfree_rcu_cpu {
3032 struct rcu_head *head;
3033 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3034 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3035 raw_spinlock_t lock;
3036 struct delayed_work monitor_work;
3037 bool monitor_todo;
3038 bool initialized;
3039 int count;
3040
3041 /*
3042 * A simple cache list that contains objects for
3043 * reuse purpose. In order to save some per-cpu
3044 * space the list is singular. Even though it is
3045 * lockless an access has to be protected by the
3046 * per-cpu lock.
3047 */
3048 struct llist_head bkvcache;
3049 int nr_bkv_objs;
3050};
3051
3052static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3053 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3054};
3055
3056static __always_inline void
3057debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3058{
3059#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3060 int i;
3061
3062 for (i = 0; i < bhead->nr_records; i++)
3063 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3064#endif
3065}
3066
3067static inline struct kfree_rcu_cpu *
3068krc_this_cpu_lock(unsigned long *flags)
3069{
3070 struct kfree_rcu_cpu *krcp;
3071
3072 local_irq_save(*flags); // For safely calling this_cpu_ptr().
3073 krcp = this_cpu_ptr(&krc);
3074 raw_spin_lock(&krcp->lock);
3075
3076 return krcp;
3077}
3078
3079static inline void
3080krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3081{
3082 raw_spin_unlock(&krcp->lock);
3083 local_irq_restore(flags);
3084}
3085
3086static inline struct kvfree_rcu_bulk_data *
3087get_cached_bnode(struct kfree_rcu_cpu *krcp)
3088{
3089 if (!krcp->nr_bkv_objs)
3090 return NULL;
3091
3092 krcp->nr_bkv_objs--;
3093 return (struct kvfree_rcu_bulk_data *)
3094 llist_del_first(&krcp->bkvcache);
3095}
3096
3097static inline bool
3098put_cached_bnode(struct kfree_rcu_cpu *krcp,
3099 struct kvfree_rcu_bulk_data *bnode)
3100{
3101 // Check the limit.
3102 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3103 return false;
3104
3105 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3106 krcp->nr_bkv_objs++;
3107 return true;
3108
3109}
3110
3111/*
3112 * This function is invoked in workqueue context after a grace period.
3113 * It frees all the objects queued on ->bhead_free or ->head_free.
3114 */
3115static void kfree_rcu_work(struct work_struct *work)
3116{
3117 unsigned long flags;
3118 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3119 struct rcu_head *head, *next;
3120 struct kfree_rcu_cpu *krcp;
3121 struct kfree_rcu_cpu_work *krwp;
3122 int i, j;
3123
3124 krwp = container_of(to_rcu_work(work),
3125 struct kfree_rcu_cpu_work, rcu_work);
3126 krcp = krwp->krcp;
3127
3128 raw_spin_lock_irqsave(&krcp->lock, flags);
3129 // Channels 1 and 2.
3130 for (i = 0; i < FREE_N_CHANNELS; i++) {
3131 bkvhead[i] = krwp->bkvhead_free[i];
3132 krwp->bkvhead_free[i] = NULL;
3133 }
3134
3135 // Channel 3.
3136 head = krwp->head_free;
3137 krwp->head_free = NULL;
3138 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3139
3140 // Handle two first channels.
3141 for (i = 0; i < FREE_N_CHANNELS; i++) {
3142 for (; bkvhead[i]; bkvhead[i] = bnext) {
3143 bnext = bkvhead[i]->next;
3144 debug_rcu_bhead_unqueue(bkvhead[i]);
3145
3146 rcu_lock_acquire(&rcu_callback_map);
3147 if (i == 0) { // kmalloc() / kfree().
3148 trace_rcu_invoke_kfree_bulk_callback(
3149 rcu_state.name, bkvhead[i]->nr_records,
3150 bkvhead[i]->records);
3151
3152 kfree_bulk(bkvhead[i]->nr_records,
3153 bkvhead[i]->records);
3154 } else { // vmalloc() / vfree().
3155 for (j = 0; j < bkvhead[i]->nr_records; j++) {
3156 trace_rcu_invoke_kvfree_callback(
3157 rcu_state.name,
3158 bkvhead[i]->records[j], 0);
3159
3160 vfree(bkvhead[i]->records[j]);
3161 }
3162 }
3163 rcu_lock_release(&rcu_callback_map);
3164
3165 krcp = krc_this_cpu_lock(&flags);
3166 if (put_cached_bnode(krcp, bkvhead[i]))
3167 bkvhead[i] = NULL;
3168 krc_this_cpu_unlock(krcp, flags);
3169
3170 if (bkvhead[i])
3171 free_page((unsigned long) bkvhead[i]);
3172
3173 cond_resched_tasks_rcu_qs();
3174 }
3175 }
3176
3177 /*
3178 * Emergency case only. It can happen under low memory
3179 * condition when an allocation gets failed, so the "bulk"
3180 * path can not be temporary maintained.
3181 */
3182 for (; head; head = next) {
3183 unsigned long offset = (unsigned long)head->func;
3184 void *ptr = (void *)head - offset;
3185
3186 next = head->next;
3187 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3188 rcu_lock_acquire(&rcu_callback_map);
3189 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3190
3191 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3192 kvfree(ptr);
3193
3194 rcu_lock_release(&rcu_callback_map);
3195 cond_resched_tasks_rcu_qs();
3196 }
3197}
3198
3199/*
3200 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3201 *
3202 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3203 * timeout has been reached.
3204 */
3205static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3206{
3207 struct kfree_rcu_cpu_work *krwp;
3208 bool repeat = false;
3209 int i, j;
3210
3211 lockdep_assert_held(&krcp->lock);
3212
3213 for (i = 0; i < KFREE_N_BATCHES; i++) {
3214 krwp = &(krcp->krw_arr[i]);
3215
3216 /*
3217 * Try to detach bkvhead or head and attach it over any
3218 * available corresponding free channel. It can be that
3219 * a previous RCU batch is in progress, it means that
3220 * immediately to queue another one is not possible so
3221 * return false to tell caller to retry.
3222 */
3223 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3224 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3225 (krcp->head && !krwp->head_free)) {
3226 // Channel 1 corresponds to SLAB ptrs.
3227 // Channel 2 corresponds to vmalloc ptrs.
3228 for (j = 0; j < FREE_N_CHANNELS; j++) {
3229 if (!krwp->bkvhead_free[j]) {
3230 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3231 krcp->bkvhead[j] = NULL;
3232 }
3233 }
3234
3235 // Channel 3 corresponds to emergency path.
3236 if (!krwp->head_free) {
3237 krwp->head_free = krcp->head;
3238 krcp->head = NULL;
3239 }
3240
3241 WRITE_ONCE(krcp->count, 0);
3242
3243 /*
3244 * One work is per one batch, so there are three
3245 * "free channels", the batch can handle. It can
3246 * be that the work is in the pending state when
3247 * channels have been detached following by each
3248 * other.
3249 */
3250 queue_rcu_work(system_wq, &krwp->rcu_work);
3251 }
3252
3253 // Repeat if any "free" corresponding channel is still busy.
3254 if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head)
3255 repeat = true;
3256 }
3257
3258 return !repeat;
3259}
3260
3261static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3262 unsigned long flags)
3263{
3264 // Attempt to start a new batch.
3265 krcp->monitor_todo = false;
3266 if (queue_kfree_rcu_work(krcp)) {
3267 // Success! Our job is done here.
3268 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3269 return;
3270 }
3271
3272 // Previous RCU batch still in progress, try again later.
3273 krcp->monitor_todo = true;
3274 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3275 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3276}
3277
3278/*
3279 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3280 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3281 */
3282static void kfree_rcu_monitor(struct work_struct *work)
3283{
3284 unsigned long flags;
3285 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3286 monitor_work.work);
3287
3288 raw_spin_lock_irqsave(&krcp->lock, flags);
3289 if (krcp->monitor_todo)
3290 kfree_rcu_drain_unlock(krcp, flags);
3291 else
3292 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3293}
3294
3295static inline bool
3296kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr)
3297{
3298 struct kvfree_rcu_bulk_data *bnode;
3299 int idx;
3300
3301 if (unlikely(!krcp->initialized))
3302 return false;
3303
3304 lockdep_assert_held(&krcp->lock);
3305 idx = !!is_vmalloc_addr(ptr);
3306
3307 /* Check if a new block is required. */
3308 if (!krcp->bkvhead[idx] ||
3309 krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3310 bnode = get_cached_bnode(krcp);
3311 if (!bnode) {
3312 /*
3313 * To keep this path working on raw non-preemptible
3314 * sections, prevent the optional entry into the
3315 * allocator as it uses sleeping locks. In fact, even
3316 * if the caller of kfree_rcu() is preemptible, this
3317 * path still is not, as krcp->lock is a raw spinlock.
3318 * With additional page pre-allocation in the works,
3319 * hitting this return is going to be much less likely.
3320 */
3321 if (IS_ENABLED(CONFIG_PREEMPT_RT))
3322 return false;
3323
3324 /*
3325 * NOTE: For one argument of kvfree_rcu() we can
3326 * drop the lock and get the page in sleepable
3327 * context. That would allow to maintain an array
3328 * for the CONFIG_PREEMPT_RT as well if no cached
3329 * pages are available.
3330 */
3331 bnode = (struct kvfree_rcu_bulk_data *)
3332 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
3333 }
3334
3335 /* Switch to emergency path. */
3336 if (unlikely(!bnode))
3337 return false;
3338
3339 /* Initialize the new block. */
3340 bnode->nr_records = 0;
3341 bnode->next = krcp->bkvhead[idx];
3342
3343 /* Attach it to the head. */
3344 krcp->bkvhead[idx] = bnode;
3345 }
3346
3347 /* Finally insert. */
3348 krcp->bkvhead[idx]->records
3349 [krcp->bkvhead[idx]->nr_records++] = ptr;
3350
3351 return true;
3352}
3353
3354/*
3355 * Queue a request for lazy invocation of appropriate free routine after a
3356 * grace period. Please note there are three paths are maintained, two are the
3357 * main ones that use array of pointers interface and third one is emergency
3358 * one, that is used only when the main path can not be maintained temporary,
3359 * due to memory pressure.
3360 *
3361 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3362 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3363 * be free'd in workqueue context. This allows us to: batch requests together to
3364 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3365 */
3366void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3367{
3368 unsigned long flags;
3369 struct kfree_rcu_cpu *krcp;
3370 bool success;
3371 void *ptr;
3372
3373 if (head) {
3374 ptr = (void *) head - (unsigned long) func;
3375 } else {
3376 /*
3377 * Please note there is a limitation for the head-less
3378 * variant, that is why there is a clear rule for such
3379 * objects: it can be used from might_sleep() context
3380 * only. For other places please embed an rcu_head to
3381 * your data.
3382 */
3383 might_sleep();
3384 ptr = (unsigned long *) func;
3385 }
3386
3387 krcp = krc_this_cpu_lock(&flags);
3388
3389 // Queue the object but don't yet schedule the batch.
3390 if (debug_rcu_head_queue(ptr)) {
3391 // Probable double kfree_rcu(), just leak.
3392 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3393 __func__, head);
3394
3395 // Mark as success and leave.
3396 success = true;
3397 goto unlock_return;
3398 }
3399
3400 /*
3401 * Under high memory pressure GFP_NOWAIT can fail,
3402 * in that case the emergency path is maintained.
3403 */
3404 success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr);
3405 if (!success) {
3406 if (head == NULL)
3407 // Inline if kvfree_rcu(one_arg) call.
3408 goto unlock_return;
3409
3410 head->func = func;
3411 head->next = krcp->head;
3412 krcp->head = head;
3413 success = true;
3414 }
3415
3416 WRITE_ONCE(krcp->count, krcp->count + 1);
3417
3418 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3419 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3420 !krcp->monitor_todo) {
3421 krcp->monitor_todo = true;
3422 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3423 }
3424
3425unlock_return:
3426 krc_this_cpu_unlock(krcp, flags);
3427
3428 /*
3429 * Inline kvfree() after synchronize_rcu(). We can do
3430 * it from might_sleep() context only, so the current
3431 * CPU can pass the QS state.
3432 */
3433 if (!success) {
3434 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3435 synchronize_rcu();
3436 kvfree(ptr);
3437 }
3438}
3439EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3440
3441static unsigned long
3442kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3443{
3444 int cpu;
3445 unsigned long count = 0;
3446
3447 /* Snapshot count of all CPUs */
3448 for_each_online_cpu(cpu) {
3449 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3450
3451 count += READ_ONCE(krcp->count);
3452 }
3453
3454 return count;
3455}
3456
3457static unsigned long
3458kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3459{
3460 int cpu, freed = 0;
3461 unsigned long flags;
3462
3463 for_each_online_cpu(cpu) {
3464 int count;
3465 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3466
3467 count = krcp->count;
3468 raw_spin_lock_irqsave(&krcp->lock, flags);
3469 if (krcp->monitor_todo)
3470 kfree_rcu_drain_unlock(krcp, flags);
3471 else
3472 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3473
3474 sc->nr_to_scan -= count;
3475 freed += count;
3476
3477 if (sc->nr_to_scan <= 0)
3478 break;
3479 }
3480
3481 return freed == 0 ? SHRINK_STOP : freed;
3482}
3483
3484static struct shrinker kfree_rcu_shrinker = {
3485 .count_objects = kfree_rcu_shrink_count,
3486 .scan_objects = kfree_rcu_shrink_scan,
3487 .batch = 0,
3488 .seeks = DEFAULT_SEEKS,
3489};
3490
3491void __init kfree_rcu_scheduler_running(void)
3492{
3493 int cpu;
3494 unsigned long flags;
3495
3496 for_each_online_cpu(cpu) {
3497 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3498
3499 raw_spin_lock_irqsave(&krcp->lock, flags);
3500 if (!krcp->head || krcp->monitor_todo) {
3501 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3502 continue;
3503 }
3504 krcp->monitor_todo = true;
3505 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3506 KFREE_DRAIN_JIFFIES);
3507 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3508 }
3509}
3510
3511/*
3512 * During early boot, any blocking grace-period wait automatically
3513 * implies a grace period. Later on, this is never the case for PREEMPTION.
3514 *
3515 * Howevr, because a context switch is a grace period for !PREEMPTION, any
3516 * blocking grace-period wait automatically implies a grace period if
3517 * there is only one CPU online at any point time during execution of
3518 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3519 * occasionally incorrectly indicate that there are multiple CPUs online
3520 * when there was in fact only one the whole time, as this just adds some
3521 * overhead: RCU still operates correctly.
3522 */
3523static int rcu_blocking_is_gp(void)
3524{
3525 int ret;
3526
3527 if (IS_ENABLED(CONFIG_PREEMPTION))
3528 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3529 might_sleep(); /* Check for RCU read-side critical section. */
3530 preempt_disable();
3531 ret = num_online_cpus() <= 1;
3532 preempt_enable();
3533 return ret;
3534}
3535
3536/**
3537 * synchronize_rcu - wait until a grace period has elapsed.
3538 *
3539 * Control will return to the caller some time after a full grace
3540 * period has elapsed, in other words after all currently executing RCU
3541 * read-side critical sections have completed. Note, however, that
3542 * upon return from synchronize_rcu(), the caller might well be executing
3543 * concurrently with new RCU read-side critical sections that began while
3544 * synchronize_rcu() was waiting. RCU read-side critical sections are
3545 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3546 * In addition, regions of code across which interrupts, preemption, or
3547 * softirqs have been disabled also serve as RCU read-side critical
3548 * sections. This includes hardware interrupt handlers, softirq handlers,
3549 * and NMI handlers.
3550 *
3551 * Note that this guarantee implies further memory-ordering guarantees.
3552 * On systems with more than one CPU, when synchronize_rcu() returns,
3553 * each CPU is guaranteed to have executed a full memory barrier since
3554 * the end of its last RCU read-side critical section whose beginning
3555 * preceded the call to synchronize_rcu(). In addition, each CPU having
3556 * an RCU read-side critical section that extends beyond the return from
3557 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3558 * after the beginning of synchronize_rcu() and before the beginning of
3559 * that RCU read-side critical section. Note that these guarantees include
3560 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3561 * that are executing in the kernel.
3562 *
3563 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3564 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3565 * to have executed a full memory barrier during the execution of
3566 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3567 * again only if the system has more than one CPU).
3568 */
3569void synchronize_rcu(void)
3570{
3571 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3572 lock_is_held(&rcu_lock_map) ||
3573 lock_is_held(&rcu_sched_lock_map),
3574 "Illegal synchronize_rcu() in RCU read-side critical section");
3575 if (rcu_blocking_is_gp())
3576 return;
3577 if (rcu_gp_is_expedited())
3578 synchronize_rcu_expedited();
3579 else
3580 wait_rcu_gp(call_rcu);
3581}
3582EXPORT_SYMBOL_GPL(synchronize_rcu);
3583
3584/**
3585 * get_state_synchronize_rcu - Snapshot current RCU state
3586 *
3587 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3588 * to determine whether or not a full grace period has elapsed in the
3589 * meantime.
3590 */
3591unsigned long get_state_synchronize_rcu(void)
3592{
3593 /*
3594 * Any prior manipulation of RCU-protected data must happen
3595 * before the load from ->gp_seq.
3596 */
3597 smp_mb(); /* ^^^ */
3598 return rcu_seq_snap(&rcu_state.gp_seq);
3599}
3600EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3601
3602/**
3603 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3604 *
3605 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3606 *
3607 * If a full RCU grace period has elapsed since the earlier call to
3608 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3609 * synchronize_rcu() to wait for a full grace period.
3610 *
3611 * Yes, this function does not take counter wrap into account. But
3612 * counter wrap is harmless. If the counter wraps, we have waited for
3613 * more than 2 billion grace periods (and way more on a 64-bit system!),
3614 * so waiting for one additional grace period should be just fine.
3615 */
3616void cond_synchronize_rcu(unsigned long oldstate)
3617{
3618 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3619 synchronize_rcu();
3620 else
3621 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3622}
3623EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3624
3625/*
3626 * Check to see if there is any immediate RCU-related work to be done by
3627 * the current CPU, returning 1 if so and zero otherwise. The checks are
3628 * in order of increasing expense: checks that can be carried out against
3629 * CPU-local state are performed first. However, we must check for CPU
3630 * stalls first, else we might not get a chance.
3631 */
3632static int rcu_pending(int user)
3633{
3634 bool gp_in_progress;
3635 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3636 struct rcu_node *rnp = rdp->mynode;
3637
3638 /* Check for CPU stalls, if enabled. */
3639 check_cpu_stall(rdp);
3640
3641 /* Does this CPU need a deferred NOCB wakeup? */
3642 if (rcu_nocb_need_deferred_wakeup(rdp))
3643 return 1;
3644
3645 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3646 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3647 return 0;
3648
3649 /* Is the RCU core waiting for a quiescent state from this CPU? */
3650 gp_in_progress = rcu_gp_in_progress();
3651 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3652 return 1;
3653
3654 /* Does this CPU have callbacks ready to invoke? */
3655 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3656 return 1;
3657
3658 /* Has RCU gone idle with this CPU needing another grace period? */
3659 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3660 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3661 !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3662 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3663 return 1;
3664
3665 /* Have RCU grace period completed or started? */
3666 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3667 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3668 return 1;
3669
3670 /* nothing to do */
3671 return 0;
3672}
3673
3674/*
3675 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3676 * the compiler is expected to optimize this away.
3677 */
3678static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3679{
3680 trace_rcu_barrier(rcu_state.name, s, cpu,
3681 atomic_read(&rcu_state.barrier_cpu_count), done);
3682}
3683
3684/*
3685 * RCU callback function for rcu_barrier(). If we are last, wake
3686 * up the task executing rcu_barrier().
3687 *
3688 * Note that the value of rcu_state.barrier_sequence must be captured
3689 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3690 * other CPUs might count the value down to zero before this CPU gets
3691 * around to invoking rcu_barrier_trace(), which might result in bogus
3692 * data from the next instance of rcu_barrier().
3693 */
3694static void rcu_barrier_callback(struct rcu_head *rhp)
3695{
3696 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3697
3698 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3699 rcu_barrier_trace(TPS("LastCB"), -1, s);
3700 complete(&rcu_state.barrier_completion);
3701 } else {
3702 rcu_barrier_trace(TPS("CB"), -1, s);
3703 }
3704}
3705
3706/*
3707 * Called with preemption disabled, and from cross-cpu IRQ context.
3708 */
3709static void rcu_barrier_func(void *cpu_in)
3710{
3711 uintptr_t cpu = (uintptr_t)cpu_in;
3712 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3713
3714 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3715 rdp->barrier_head.func = rcu_barrier_callback;
3716 debug_rcu_head_queue(&rdp->barrier_head);
3717 rcu_nocb_lock(rdp);
3718 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3719 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3720 atomic_inc(&rcu_state.barrier_cpu_count);
3721 } else {
3722 debug_rcu_head_unqueue(&rdp->barrier_head);
3723 rcu_barrier_trace(TPS("IRQNQ"), -1,
3724 rcu_state.barrier_sequence);
3725 }
3726 rcu_nocb_unlock(rdp);
3727}
3728
3729/**
3730 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3731 *
3732 * Note that this primitive does not necessarily wait for an RCU grace period
3733 * to complete. For example, if there are no RCU callbacks queued anywhere
3734 * in the system, then rcu_barrier() is within its rights to return
3735 * immediately, without waiting for anything, much less an RCU grace period.
3736 */
3737void rcu_barrier(void)
3738{
3739 uintptr_t cpu;
3740 struct rcu_data *rdp;
3741 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3742
3743 rcu_barrier_trace(TPS("Begin"), -1, s);
3744
3745 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3746 mutex_lock(&rcu_state.barrier_mutex);
3747
3748 /* Did someone else do our work for us? */
3749 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3750 rcu_barrier_trace(TPS("EarlyExit"), -1,
3751 rcu_state.barrier_sequence);
3752 smp_mb(); /* caller's subsequent code after above check. */
3753 mutex_unlock(&rcu_state.barrier_mutex);
3754 return;
3755 }
3756
3757 /* Mark the start of the barrier operation. */
3758 rcu_seq_start(&rcu_state.barrier_sequence);
3759 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3760
3761 /*
3762 * Initialize the count to two rather than to zero in order
3763 * to avoid a too-soon return to zero in case of an immediate
3764 * invocation of the just-enqueued callback (or preemption of
3765 * this task). Exclude CPU-hotplug operations to ensure that no
3766 * offline non-offloaded CPU has callbacks queued.
3767 */
3768 init_completion(&rcu_state.barrier_completion);
3769 atomic_set(&rcu_state.barrier_cpu_count, 2);
3770 get_online_cpus();
3771
3772 /*
3773 * Force each CPU with callbacks to register a new callback.
3774 * When that callback is invoked, we will know that all of the
3775 * corresponding CPU's preceding callbacks have been invoked.
3776 */
3777 for_each_possible_cpu(cpu) {
3778 rdp = per_cpu_ptr(&rcu_data, cpu);
3779 if (cpu_is_offline(cpu) &&
3780 !rcu_segcblist_is_offloaded(&rdp->cblist))
3781 continue;
3782 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3783 rcu_barrier_trace(TPS("OnlineQ"), cpu,
3784 rcu_state.barrier_sequence);
3785 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3786 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3787 cpu_is_offline(cpu)) {
3788 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3789 rcu_state.barrier_sequence);
3790 local_irq_disable();
3791 rcu_barrier_func((void *)cpu);
3792 local_irq_enable();
3793 } else if (cpu_is_offline(cpu)) {
3794 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3795 rcu_state.barrier_sequence);
3796 } else {
3797 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3798 rcu_state.barrier_sequence);
3799 }
3800 }
3801 put_online_cpus();
3802
3803 /*
3804 * Now that we have an rcu_barrier_callback() callback on each
3805 * CPU, and thus each counted, remove the initial count.
3806 */
3807 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3808 complete(&rcu_state.barrier_completion);
3809
3810 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3811 wait_for_completion(&rcu_state.barrier_completion);
3812
3813 /* Mark the end of the barrier operation. */
3814 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3815 rcu_seq_end(&rcu_state.barrier_sequence);
3816
3817 /* Other rcu_barrier() invocations can now safely proceed. */
3818 mutex_unlock(&rcu_state.barrier_mutex);
3819}
3820EXPORT_SYMBOL_GPL(rcu_barrier);
3821
3822/*
3823 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3824 * first CPU in a given leaf rcu_node structure coming online. The caller
3825 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3826 * disabled.
3827 */
3828static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3829{
3830 long mask;
3831 long oldmask;
3832 struct rcu_node *rnp = rnp_leaf;
3833
3834 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3835 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3836 for (;;) {
3837 mask = rnp->grpmask;
3838 rnp = rnp->parent;
3839 if (rnp == NULL)
3840 return;
3841 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3842 oldmask = rnp->qsmaskinit;
3843 rnp->qsmaskinit |= mask;
3844 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3845 if (oldmask)
3846 return;
3847 }
3848}
3849
3850/*
3851 * Do boot-time initialization of a CPU's per-CPU RCU data.
3852 */
3853static void __init
3854rcu_boot_init_percpu_data(int cpu)
3855{
3856 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3857
3858 /* Set up local state, ensuring consistent view of global state. */
3859 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3860 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3861 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3862 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3863 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3864 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3865 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3866 rdp->cpu = cpu;
3867 rcu_boot_init_nocb_percpu_data(rdp);
3868}
3869
3870/*
3871 * Invoked early in the CPU-online process, when pretty much all services
3872 * are available. The incoming CPU is not present.
3873 *
3874 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3875 * offline event can be happening at a given time. Note also that we can
3876 * accept some slop in the rsp->gp_seq access due to the fact that this
3877 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3878 * And any offloaded callbacks are being numbered elsewhere.
3879 */
3880int rcutree_prepare_cpu(unsigned int cpu)
3881{
3882 unsigned long flags;
3883 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3884 struct rcu_node *rnp = rcu_get_root();
3885
3886 /* Set up local state, ensuring consistent view of global state. */
3887 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3888 rdp->qlen_last_fqs_check = 0;
3889 rdp->n_force_qs_snap = rcu_state.n_force_qs;
3890 rdp->blimit = blimit;
3891 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3892 !rcu_segcblist_is_offloaded(&rdp->cblist))
3893 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3894 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
3895 rcu_dynticks_eqs_online();
3896 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3897
3898 /*
3899 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3900 * propagation up the rcu_node tree will happen at the beginning
3901 * of the next grace period.
3902 */
3903 rnp = rdp->mynode;
3904 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3905 rdp->beenonline = true; /* We have now been online. */
3906 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
3907 rdp->gp_seq_needed = rdp->gp_seq;
3908 rdp->cpu_no_qs.b.norm = true;
3909 rdp->core_needs_qs = false;
3910 rdp->rcu_iw_pending = false;
3911 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
3912 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3913 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3914 rcu_prepare_kthreads(cpu);
3915 rcu_spawn_cpu_nocb_kthread(cpu);
3916
3917 return 0;
3918}
3919
3920/*
3921 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3922 */
3923static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3924{
3925 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3926
3927 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3928}
3929
3930/*
3931 * Near the end of the CPU-online process. Pretty much all services
3932 * enabled, and the CPU is now very much alive.
3933 */
3934int rcutree_online_cpu(unsigned int cpu)
3935{
3936 unsigned long flags;
3937 struct rcu_data *rdp;
3938 struct rcu_node *rnp;
3939
3940 rdp = per_cpu_ptr(&rcu_data, cpu);
3941 rnp = rdp->mynode;
3942 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3943 rnp->ffmask |= rdp->grpmask;
3944 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3945 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3946 return 0; /* Too early in boot for scheduler work. */
3947 sync_sched_exp_online_cleanup(cpu);
3948 rcutree_affinity_setting(cpu, -1);
3949
3950 // Stop-machine done, so allow nohz_full to disable tick.
3951 tick_dep_clear(TICK_DEP_BIT_RCU);
3952 return 0;
3953}
3954
3955/*
3956 * Near the beginning of the process. The CPU is still very much alive
3957 * with pretty much all services enabled.
3958 */
3959int rcutree_offline_cpu(unsigned int cpu)
3960{
3961 unsigned long flags;
3962 struct rcu_data *rdp;
3963 struct rcu_node *rnp;
3964
3965 rdp = per_cpu_ptr(&rcu_data, cpu);
3966 rnp = rdp->mynode;
3967 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3968 rnp->ffmask &= ~rdp->grpmask;
3969 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3970
3971 rcutree_affinity_setting(cpu, cpu);
3972
3973 // nohz_full CPUs need the tick for stop-machine to work quickly
3974 tick_dep_set(TICK_DEP_BIT_RCU);
3975 return 0;
3976}
3977
3978static DEFINE_PER_CPU(int, rcu_cpu_started);
3979
3980/*
3981 * Mark the specified CPU as being online so that subsequent grace periods
3982 * (both expedited and normal) will wait on it. Note that this means that
3983 * incoming CPUs are not allowed to use RCU read-side critical sections
3984 * until this function is called. Failing to observe this restriction
3985 * will result in lockdep splats.
3986 *
3987 * Note that this function is special in that it is invoked directly
3988 * from the incoming CPU rather than from the cpuhp_step mechanism.
3989 * This is because this function must be invoked at a precise location.
3990 */
3991void rcu_cpu_starting(unsigned int cpu)
3992{
3993 unsigned long flags;
3994 unsigned long mask;
3995 struct rcu_data *rdp;
3996 struct rcu_node *rnp;
3997 bool newcpu;
3998
3999 if (per_cpu(rcu_cpu_started, cpu))
4000 return;
4001
4002 per_cpu(rcu_cpu_started, cpu) = 1;
4003
4004 rdp = per_cpu_ptr(&rcu_data, cpu);
4005 rnp = rdp->mynode;
4006 mask = rdp->grpmask;
4007 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4008 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4009 newcpu = !(rnp->expmaskinitnext & mask);
4010 rnp->expmaskinitnext |= mask;
4011 /* Allow lockless access for expedited grace periods. */
4012 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4013 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4014 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4015 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4016 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4017 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
4018 rcu_disable_urgency_upon_qs(rdp);
4019 /* Report QS -after- changing ->qsmaskinitnext! */
4020 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4021 } else {
4022 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4023 }
4024 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4025}
4026
4027#ifdef CONFIG_HOTPLUG_CPU
4028/*
4029 * The outgoing function has no further need of RCU, so remove it from
4030 * the rcu_node tree's ->qsmaskinitnext bit masks.
4031 *
4032 * Note that this function is special in that it is invoked directly
4033 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4034 * This is because this function must be invoked at a precise location.
4035 */
4036void rcu_report_dead(unsigned int cpu)
4037{
4038 unsigned long flags;
4039 unsigned long mask;
4040 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4041 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4042
4043 /* QS for any half-done expedited grace period. */
4044 preempt_disable();
4045 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4046 preempt_enable();
4047 rcu_preempt_deferred_qs(current);
4048
4049 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4050 mask = rdp->grpmask;
4051 raw_spin_lock(&rcu_state.ofl_lock);
4052 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4053 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4054 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4055 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4056 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4057 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4058 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4059 }
4060 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4061 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4062 raw_spin_unlock(&rcu_state.ofl_lock);
4063
4064 per_cpu(rcu_cpu_started, cpu) = 0;
4065}
4066
4067/*
4068 * The outgoing CPU has just passed through the dying-idle state, and we
4069 * are being invoked from the CPU that was IPIed to continue the offline
4070 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4071 */
4072void rcutree_migrate_callbacks(int cpu)
4073{
4074 unsigned long flags;
4075 struct rcu_data *my_rdp;
4076 struct rcu_node *my_rnp;
4077 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4078 bool needwake;
4079
4080 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
4081 rcu_segcblist_empty(&rdp->cblist))
4082 return; /* No callbacks to migrate. */
4083
4084 local_irq_save(flags);
4085 my_rdp = this_cpu_ptr(&rcu_data);
4086 my_rnp = my_rdp->mynode;
4087 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4088 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4089 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4090 /* Leverage recent GPs and set GP for new callbacks. */
4091 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4092 rcu_advance_cbs(my_rnp, my_rdp);
4093 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4094 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4095 rcu_segcblist_disable(&rdp->cblist);
4096 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4097 !rcu_segcblist_n_cbs(&my_rdp->cblist));
4098 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
4099 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4100 __call_rcu_nocb_wake(my_rdp, true, flags);
4101 } else {
4102 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4103 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4104 }
4105 if (needwake)
4106 rcu_gp_kthread_wake();
4107 lockdep_assert_irqs_enabled();
4108 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4109 !rcu_segcblist_empty(&rdp->cblist),
4110 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4111 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4112 rcu_segcblist_first_cb(&rdp->cblist));
4113}
4114#endif
4115
4116/*
4117 * On non-huge systems, use expedited RCU grace periods to make suspend
4118 * and hibernation run faster.
4119 */
4120static int rcu_pm_notify(struct notifier_block *self,
4121 unsigned long action, void *hcpu)
4122{
4123 switch (action) {
4124 case PM_HIBERNATION_PREPARE:
4125 case PM_SUSPEND_PREPARE:
4126 rcu_expedite_gp();
4127 break;
4128 case PM_POST_HIBERNATION:
4129 case PM_POST_SUSPEND:
4130 rcu_unexpedite_gp();
4131 break;
4132 default:
4133 break;
4134 }
4135 return NOTIFY_OK;
4136}
4137
4138/*
4139 * Spawn the kthreads that handle RCU's grace periods.
4140 */
4141static int __init rcu_spawn_gp_kthread(void)
4142{
4143 unsigned long flags;
4144 int kthread_prio_in = kthread_prio;
4145 struct rcu_node *rnp;
4146 struct sched_param sp;
4147 struct task_struct *t;
4148
4149 /* Force priority into range. */
4150 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4151 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4152 kthread_prio = 2;
4153 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4154 kthread_prio = 1;
4155 else if (kthread_prio < 0)
4156 kthread_prio = 0;
4157 else if (kthread_prio > 99)
4158 kthread_prio = 99;
4159
4160 if (kthread_prio != kthread_prio_in)
4161 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4162 kthread_prio, kthread_prio_in);
4163
4164 rcu_scheduler_fully_active = 1;
4165 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4166 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4167 return 0;
4168 if (kthread_prio) {
4169 sp.sched_priority = kthread_prio;
4170 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4171 }
4172 rnp = rcu_get_root();
4173 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4174 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4175 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4176 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4177 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4178 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4179 wake_up_process(t);
4180 rcu_spawn_nocb_kthreads();
4181 rcu_spawn_boost_kthreads();
4182 return 0;
4183}
4184early_initcall(rcu_spawn_gp_kthread);
4185
4186/*
4187 * This function is invoked towards the end of the scheduler's
4188 * initialization process. Before this is called, the idle task might
4189 * contain synchronous grace-period primitives (during which time, this idle
4190 * task is booting the system, and such primitives are no-ops). After this
4191 * function is called, any synchronous grace-period primitives are run as
4192 * expedited, with the requesting task driving the grace period forward.
4193 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4194 * runtime RCU functionality.
4195 */
4196void rcu_scheduler_starting(void)
4197{
4198 WARN_ON(num_online_cpus() != 1);
4199 WARN_ON(nr_context_switches() > 0);
4200 rcu_test_sync_prims();
4201 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4202 rcu_test_sync_prims();
4203}
4204
4205/*
4206 * Helper function for rcu_init() that initializes the rcu_state structure.
4207 */
4208static void __init rcu_init_one(void)
4209{
4210 static const char * const buf[] = RCU_NODE_NAME_INIT;
4211 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4212 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4213 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4214
4215 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4216 int cpustride = 1;
4217 int i;
4218 int j;
4219 struct rcu_node *rnp;
4220
4221 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4222
4223 /* Silence gcc 4.8 false positive about array index out of range. */
4224 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4225 panic("rcu_init_one: rcu_num_lvls out of range");
4226
4227 /* Initialize the level-tracking arrays. */
4228
4229 for (i = 1; i < rcu_num_lvls; i++)
4230 rcu_state.level[i] =
4231 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4232 rcu_init_levelspread(levelspread, num_rcu_lvl);
4233
4234 /* Initialize the elements themselves, starting from the leaves. */
4235
4236 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4237 cpustride *= levelspread[i];
4238 rnp = rcu_state.level[i];
4239 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4240 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4241 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4242 &rcu_node_class[i], buf[i]);
4243 raw_spin_lock_init(&rnp->fqslock);
4244 lockdep_set_class_and_name(&rnp->fqslock,
4245 &rcu_fqs_class[i], fqs[i]);
4246 rnp->gp_seq = rcu_state.gp_seq;
4247 rnp->gp_seq_needed = rcu_state.gp_seq;
4248 rnp->completedqs = rcu_state.gp_seq;
4249 rnp->qsmask = 0;
4250 rnp->qsmaskinit = 0;
4251 rnp->grplo = j * cpustride;
4252 rnp->grphi = (j + 1) * cpustride - 1;
4253 if (rnp->grphi >= nr_cpu_ids)
4254 rnp->grphi = nr_cpu_ids - 1;
4255 if (i == 0) {
4256 rnp->grpnum = 0;
4257 rnp->grpmask = 0;
4258 rnp->parent = NULL;
4259 } else {
4260 rnp->grpnum = j % levelspread[i - 1];
4261 rnp->grpmask = BIT(rnp->grpnum);
4262 rnp->parent = rcu_state.level[i - 1] +
4263 j / levelspread[i - 1];
4264 }
4265 rnp->level = i;
4266 INIT_LIST_HEAD(&rnp->blkd_tasks);
4267 rcu_init_one_nocb(rnp);
4268 init_waitqueue_head(&rnp->exp_wq[0]);
4269 init_waitqueue_head(&rnp->exp_wq[1]);
4270 init_waitqueue_head(&rnp->exp_wq[2]);
4271 init_waitqueue_head(&rnp->exp_wq[3]);
4272 spin_lock_init(&rnp->exp_lock);
4273 }
4274 }
4275
4276 init_swait_queue_head(&rcu_state.gp_wq);
4277 init_swait_queue_head(&rcu_state.expedited_wq);
4278 rnp = rcu_first_leaf_node();
4279 for_each_possible_cpu(i) {
4280 while (i > rnp->grphi)
4281 rnp++;
4282 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4283 rcu_boot_init_percpu_data(i);
4284 }
4285}
4286
4287/*
4288 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4289 * replace the definitions in tree.h because those are needed to size
4290 * the ->node array in the rcu_state structure.
4291 */
4292static void __init rcu_init_geometry(void)
4293{
4294 ulong d;
4295 int i;
4296 int rcu_capacity[RCU_NUM_LVLS];
4297
4298 /*
4299 * Initialize any unspecified boot parameters.
4300 * The default values of jiffies_till_first_fqs and
4301 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4302 * value, which is a function of HZ, then adding one for each
4303 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4304 */
4305 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4306 if (jiffies_till_first_fqs == ULONG_MAX)
4307 jiffies_till_first_fqs = d;
4308 if (jiffies_till_next_fqs == ULONG_MAX)
4309 jiffies_till_next_fqs = d;
4310 adjust_jiffies_till_sched_qs();
4311
4312 /* If the compile-time values are accurate, just leave. */
4313 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4314 nr_cpu_ids == NR_CPUS)
4315 return;
4316 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4317 rcu_fanout_leaf, nr_cpu_ids);
4318
4319 /*
4320 * The boot-time rcu_fanout_leaf parameter must be at least two
4321 * and cannot exceed the number of bits in the rcu_node masks.
4322 * Complain and fall back to the compile-time values if this
4323 * limit is exceeded.
4324 */
4325 if (rcu_fanout_leaf < 2 ||
4326 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4327 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4328 WARN_ON(1);
4329 return;
4330 }
4331
4332 /*
4333 * Compute number of nodes that can be handled an rcu_node tree
4334 * with the given number of levels.
4335 */
4336 rcu_capacity[0] = rcu_fanout_leaf;
4337 for (i = 1; i < RCU_NUM_LVLS; i++)
4338 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4339
4340 /*
4341 * The tree must be able to accommodate the configured number of CPUs.
4342 * If this limit is exceeded, fall back to the compile-time values.
4343 */
4344 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4345 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4346 WARN_ON(1);
4347 return;
4348 }
4349
4350 /* Calculate the number of levels in the tree. */
4351 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4352 }
4353 rcu_num_lvls = i + 1;
4354
4355 /* Calculate the number of rcu_nodes at each level of the tree. */
4356 for (i = 0; i < rcu_num_lvls; i++) {
4357 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4358 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4359 }
4360
4361 /* Calculate the total number of rcu_node structures. */
4362 rcu_num_nodes = 0;
4363 for (i = 0; i < rcu_num_lvls; i++)
4364 rcu_num_nodes += num_rcu_lvl[i];
4365}
4366
4367/*
4368 * Dump out the structure of the rcu_node combining tree associated
4369 * with the rcu_state structure.
4370 */
4371static void __init rcu_dump_rcu_node_tree(void)
4372{
4373 int level = 0;
4374 struct rcu_node *rnp;
4375
4376 pr_info("rcu_node tree layout dump\n");
4377 pr_info(" ");
4378 rcu_for_each_node_breadth_first(rnp) {
4379 if (rnp->level != level) {
4380 pr_cont("\n");
4381 pr_info(" ");
4382 level = rnp->level;
4383 }
4384 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4385 }
4386 pr_cont("\n");
4387}
4388
4389struct workqueue_struct *rcu_gp_wq;
4390struct workqueue_struct *rcu_par_gp_wq;
4391
4392static void __init kfree_rcu_batch_init(void)
4393{
4394 int cpu;
4395 int i;
4396
4397 for_each_possible_cpu(cpu) {
4398 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4399 struct kvfree_rcu_bulk_data *bnode;
4400
4401 for (i = 0; i < KFREE_N_BATCHES; i++) {
4402 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4403 krcp->krw_arr[i].krcp = krcp;
4404 }
4405
4406 for (i = 0; i < rcu_min_cached_objs; i++) {
4407 bnode = (struct kvfree_rcu_bulk_data *)
4408 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
4409
4410 if (bnode)
4411 put_cached_bnode(krcp, bnode);
4412 else
4413 pr_err("Failed to preallocate for %d CPU!\n", cpu);
4414 }
4415
4416 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4417 krcp->initialized = true;
4418 }
4419 if (register_shrinker(&kfree_rcu_shrinker))
4420 pr_err("Failed to register kfree_rcu() shrinker!\n");
4421}
4422
4423void __init rcu_init(void)
4424{
4425 int cpu;
4426
4427 rcu_early_boot_tests();
4428
4429 kfree_rcu_batch_init();
4430 rcu_bootup_announce();
4431 rcu_init_geometry();
4432 rcu_init_one();
4433 if (dump_tree)
4434 rcu_dump_rcu_node_tree();
4435 if (use_softirq)
4436 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4437
4438 /*
4439 * We don't need protection against CPU-hotplug here because
4440 * this is called early in boot, before either interrupts
4441 * or the scheduler are operational.
4442 */
4443 pm_notifier(rcu_pm_notify, 0);
4444 for_each_online_cpu(cpu) {
4445 rcutree_prepare_cpu(cpu);
4446 rcu_cpu_starting(cpu);
4447 rcutree_online_cpu(cpu);
4448 }
4449
4450 /* Create workqueue for expedited GPs and for Tree SRCU. */
4451 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4452 WARN_ON(!rcu_gp_wq);
4453 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4454 WARN_ON(!rcu_par_gp_wq);
4455 srcu_init();
4456
4457 /* Fill in default value for rcutree.qovld boot parameter. */
4458 /* -After- the rcu_node ->lock fields are initialized! */
4459 if (qovld < 0)
4460 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4461 else
4462 qovld_calc = qovld;
4463}
4464
4465#include "tree_stall.h"
4466#include "tree_exp.h"
4467#include "tree_plugin.h"