Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *	Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/nmi.h>
  39#include <linux/atomic.h>
  40#include <linux/bitops.h>
  41#include <linux/export.h>
  42#include <linux/completion.h>
  43#include <linux/moduleparam.h>
  44#include <linux/percpu.h>
  45#include <linux/notifier.h>
  46#include <linux/cpu.h>
  47#include <linux/mutex.h>
  48#include <linux/time.h>
  49#include <linux/kernel_stat.h>
  50#include <linux/wait.h>
  51#include <linux/kthread.h>
  52#include <linux/prefetch.h>
  53#include <linux/delay.h>
  54#include <linux/stop_machine.h>
  55#include <linux/random.h>
  56#include <linux/trace_events.h>
  57#include <linux/suspend.h>
  58
  59#include "tree.h"
  60#include "rcu.h"
  61
  62#ifdef MODULE_PARAM_PREFIX
  63#undef MODULE_PARAM_PREFIX
  64#endif
  65#define MODULE_PARAM_PREFIX "rcutree."
  66
  67/* Data structures. */
  68
  69/*
  70 * In order to export the rcu_state name to the tracing tools, it
  71 * needs to be added in the __tracepoint_string section.
  72 * This requires defining a separate variable tp_<sname>_varname
  73 * that points to the string being used, and this will allow
  74 * the tracing userspace tools to be able to decipher the string
  75 * address to the matching string.
  76 */
  77#ifdef CONFIG_TRACING
  78# define DEFINE_RCU_TPS(sname) \
  79static char sname##_varname[] = #sname; \
  80static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  81# define RCU_STATE_NAME(sname) sname##_varname
  82#else
  83# define DEFINE_RCU_TPS(sname)
  84# define RCU_STATE_NAME(sname) __stringify(sname)
  85#endif
  86
  87#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  88DEFINE_RCU_TPS(sname) \
  89static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  90struct rcu_state sname##_state = { \
  91	.level = { &sname##_state.node[0] }, \
  92	.rda = &sname##_data, \
  93	.call = cr, \
  94	.gp_state = RCU_GP_IDLE, \
  95	.gpnum = 0UL - 300UL, \
  96	.completed = 0UL - 300UL, \
  97	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  98	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
  99	.orphan_donetail = &sname##_state.orphan_donelist, \
 100	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 101	.name = RCU_STATE_NAME(sname), \
 102	.abbr = sabbr, \
 103	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
 104	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
 105}
 106
 107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 109
 110static struct rcu_state *const rcu_state_p;
 111LIST_HEAD(rcu_struct_flavors);
 112
 113/* Dump rcu_node combining tree at boot to verify correct setup. */
 114static bool dump_tree;
 115module_param(dump_tree, bool, 0444);
 116/* Control rcu_node-tree auto-balancing at boot time. */
 117static bool rcu_fanout_exact;
 118module_param(rcu_fanout_exact, bool, 0444);
 119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 121module_param(rcu_fanout_leaf, int, 0444);
 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 123/* Number of rcu_nodes at specified level. */
 124static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 126/* panic() on RCU Stall sysctl. */
 127int sysctl_panic_on_rcu_stall __read_mostly;
 128
 129/*
 130 * The rcu_scheduler_active variable is initialized to the value
 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 132 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 133 * RCU can assume that there is but one task, allowing RCU to (for example)
 134 * optimize synchronize_rcu() to a simple barrier().  When this variable
 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 136 * to detect real grace periods.  This variable is also used to suppress
 137 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 139 * is fully initialized, including all of its kthreads having been spawned.
 140 */
 141int rcu_scheduler_active __read_mostly;
 142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 143
 144/*
 145 * The rcu_scheduler_fully_active variable transitions from zero to one
 146 * during the early_initcall() processing, which is after the scheduler
 147 * is capable of creating new tasks.  So RCU processing (for example,
 148 * creating tasks for RCU priority boosting) must be delayed until after
 149 * rcu_scheduler_fully_active transitions from zero to one.  We also
 150 * currently delay invocation of any RCU callbacks until after this point.
 151 *
 152 * It might later prove better for people registering RCU callbacks during
 153 * early boot to take responsibility for these callbacks, but one step at
 154 * a time.
 155 */
 156static int rcu_scheduler_fully_active __read_mostly;
 157
 158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 161static void invoke_rcu_core(void);
 162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 163static void rcu_report_exp_rdp(struct rcu_state *rsp,
 164			       struct rcu_data *rdp, bool wake);
 165static void sync_sched_exp_online_cleanup(int cpu);
 166
 167/* rcuc/rcub kthread realtime priority */
 168#ifdef CONFIG_RCU_KTHREAD_PRIO
 169static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
 170#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
 171static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 172#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
 173module_param(kthread_prio, int, 0644);
 174
 175/* Delay in jiffies for grace-period initialization delays, debug only. */
 176
 177#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
 178static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
 179module_param(gp_preinit_delay, int, 0644);
 180#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 181static const int gp_preinit_delay;
 182#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 183
 184#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
 185static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
 186module_param(gp_init_delay, int, 0644);
 187#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 188static const int gp_init_delay;
 189#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 190
 191#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
 192static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
 193module_param(gp_cleanup_delay, int, 0644);
 194#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 195static const int gp_cleanup_delay;
 196#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 197
 198/*
 199 * Number of grace periods between delays, normalized by the duration of
 200 * the delay.  The longer the the delay, the more the grace periods between
 201 * each delay.  The reason for this normalization is that it means that,
 202 * for non-zero delays, the overall slowdown of grace periods is constant
 203 * regardless of the duration of the delay.  This arrangement balances
 204 * the need for long delays to increase some race probabilities with the
 205 * need for fast grace periods to increase other race probabilities.
 206 */
 207#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 208
 209/*
 210 * Track the rcutorture test sequence number and the update version
 211 * number within a given test.  The rcutorture_testseq is incremented
 212 * on every rcutorture module load and unload, so has an odd value
 213 * when a test is running.  The rcutorture_vernum is set to zero
 214 * when rcutorture starts and is incremented on each rcutorture update.
 215 * These variables enable correlating rcutorture output with the
 216 * RCU tracing information.
 217 */
 218unsigned long rcutorture_testseq;
 219unsigned long rcutorture_vernum;
 220
 221/*
 222 * Compute the mask of online CPUs for the specified rcu_node structure.
 223 * This will not be stable unless the rcu_node structure's ->lock is
 224 * held, but the bit corresponding to the current CPU will be stable
 225 * in most contexts.
 226 */
 227unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 228{
 229	return READ_ONCE(rnp->qsmaskinitnext);
 230}
 231
 232/*
 233 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 234 * permit this function to be invoked without holding the root rcu_node
 235 * structure's ->lock, but of course results can be subject to change.
 236 */
 237static int rcu_gp_in_progress(struct rcu_state *rsp)
 238{
 239	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 240}
 241
 242/*
 243 * Note a quiescent state.  Because we do not need to know
 244 * how many quiescent states passed, just if there was at least
 245 * one since the start of the grace period, this just sets a flag.
 246 * The caller must have disabled preemption.
 247 */
 248void rcu_sched_qs(void)
 249{
 250	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 251		return;
 252	trace_rcu_grace_period(TPS("rcu_sched"),
 253			       __this_cpu_read(rcu_sched_data.gpnum),
 254			       TPS("cpuqs"));
 255	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 256	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 257		return;
 258	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 259	rcu_report_exp_rdp(&rcu_sched_state,
 260			   this_cpu_ptr(&rcu_sched_data), true);
 261}
 262
 263void rcu_bh_qs(void)
 264{
 265	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 266		trace_rcu_grace_period(TPS("rcu_bh"),
 267				       __this_cpu_read(rcu_bh_data.gpnum),
 268				       TPS("cpuqs"));
 269		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 270	}
 271}
 272
 273static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
 274
 275static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 276	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 277	.dynticks = ATOMIC_INIT(1),
 278#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 279	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
 280	.dynticks_idle = ATOMIC_INIT(1),
 281#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 282};
 283
 284DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
 285EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
 286
 287/*
 288 * Let the RCU core know that this CPU has gone through the scheduler,
 289 * which is a quiescent state.  This is called when the need for a
 290 * quiescent state is urgent, so we burn an atomic operation and full
 291 * memory barriers to let the RCU core know about it, regardless of what
 292 * this CPU might (or might not) do in the near future.
 293 *
 294 * We inform the RCU core by emulating a zero-duration dyntick-idle
 295 * period, which we in turn do by incrementing the ->dynticks counter
 296 * by two.
 297 *
 298 * The caller must have disabled interrupts.
 299 */
 300static void rcu_momentary_dyntick_idle(void)
 301{
 302	struct rcu_data *rdp;
 303	struct rcu_dynticks *rdtp;
 304	int resched_mask;
 305	struct rcu_state *rsp;
 306
 307	/*
 308	 * Yes, we can lose flag-setting operations.  This is OK, because
 309	 * the flag will be set again after some delay.
 310	 */
 311	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
 312	raw_cpu_write(rcu_sched_qs_mask, 0);
 313
 314	/* Find the flavor that needs a quiescent state. */
 315	for_each_rcu_flavor(rsp) {
 316		rdp = raw_cpu_ptr(rsp->rda);
 317		if (!(resched_mask & rsp->flavor_mask))
 318			continue;
 319		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
 320		if (READ_ONCE(rdp->mynode->completed) !=
 321		    READ_ONCE(rdp->cond_resched_completed))
 322			continue;
 323
 324		/*
 325		 * Pretend to be momentarily idle for the quiescent state.
 326		 * This allows the grace-period kthread to record the
 327		 * quiescent state, with no need for this CPU to do anything
 328		 * further.
 329		 */
 330		rdtp = this_cpu_ptr(&rcu_dynticks);
 331		smp_mb__before_atomic(); /* Earlier stuff before QS. */
 332		atomic_add(2, &rdtp->dynticks);  /* QS. */
 333		smp_mb__after_atomic(); /* Later stuff after QS. */
 334		break;
 335	}
 336}
 337
 338/*
 339 * Note a context switch.  This is a quiescent state for RCU-sched,
 340 * and requires special handling for preemptible RCU.
 341 * The caller must have disabled interrupts.
 342 */
 343void rcu_note_context_switch(void)
 344{
 345	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 346	trace_rcu_utilization(TPS("Start context switch"));
 347	rcu_sched_qs();
 348	rcu_preempt_note_context_switch();
 349	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
 350		rcu_momentary_dyntick_idle();
 351	trace_rcu_utilization(TPS("End context switch"));
 352	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 353}
 354EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 355
 356/*
 357 * Register a quiescent state for all RCU flavors.  If there is an
 358 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 359 * dyntick-idle quiescent state visible to other CPUs (but only for those
 360 * RCU flavors in desperate need of a quiescent state, which will normally
 361 * be none of them).  Either way, do a lightweight quiescent state for
 362 * all RCU flavors.
 363 *
 364 * The barrier() calls are redundant in the common case when this is
 365 * called externally, but just in case this is called from within this
 366 * file.
 367 *
 368 */
 369void rcu_all_qs(void)
 370{
 371	unsigned long flags;
 372
 373	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 374	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
 375		local_irq_save(flags);
 376		rcu_momentary_dyntick_idle();
 377		local_irq_restore(flags);
 378	}
 379	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
 380		/*
 381		 * Yes, we just checked a per-CPU variable with preemption
 382		 * enabled, so we might be migrated to some other CPU at
 383		 * this point.  That is OK because in that case, the
 384		 * migration will supply the needed quiescent state.
 385		 * We might end up needlessly disabling preemption and
 386		 * invoking rcu_sched_qs() on the destination CPU, but
 387		 * the probability and cost are both quite low, so this
 388		 * should not be a problem in practice.
 389		 */
 390		preempt_disable();
 391		rcu_sched_qs();
 392		preempt_enable();
 393	}
 394	this_cpu_inc(rcu_qs_ctr);
 395	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 396}
 397EXPORT_SYMBOL_GPL(rcu_all_qs);
 398
 399static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
 400static long qhimark = 10000;	/* If this many pending, ignore blimit. */
 401static long qlowmark = 100;	/* Once only this many pending, use blimit. */
 402
 403module_param(blimit, long, 0444);
 404module_param(qhimark, long, 0444);
 405module_param(qlowmark, long, 0444);
 406
 407static ulong jiffies_till_first_fqs = ULONG_MAX;
 408static ulong jiffies_till_next_fqs = ULONG_MAX;
 409static bool rcu_kick_kthreads;
 410
 411module_param(jiffies_till_first_fqs, ulong, 0644);
 412module_param(jiffies_till_next_fqs, ulong, 0644);
 413module_param(rcu_kick_kthreads, bool, 0644);
 414
 415/*
 416 * How long the grace period must be before we start recruiting
 417 * quiescent-state help from rcu_note_context_switch().
 418 */
 419static ulong jiffies_till_sched_qs = HZ / 20;
 420module_param(jiffies_till_sched_qs, ulong, 0644);
 421
 422static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 423				  struct rcu_data *rdp);
 424static void force_qs_rnp(struct rcu_state *rsp,
 425			 int (*f)(struct rcu_data *rsp, bool *isidle,
 426				  unsigned long *maxj),
 427			 bool *isidle, unsigned long *maxj);
 428static void force_quiescent_state(struct rcu_state *rsp);
 429static int rcu_pending(void);
 430
 431/*
 432 * Return the number of RCU batches started thus far for debug & stats.
 433 */
 434unsigned long rcu_batches_started(void)
 435{
 436	return rcu_state_p->gpnum;
 437}
 438EXPORT_SYMBOL_GPL(rcu_batches_started);
 439
 440/*
 441 * Return the number of RCU-sched batches started thus far for debug & stats.
 442 */
 443unsigned long rcu_batches_started_sched(void)
 444{
 445	return rcu_sched_state.gpnum;
 446}
 447EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 448
 449/*
 450 * Return the number of RCU BH batches started thus far for debug & stats.
 451 */
 452unsigned long rcu_batches_started_bh(void)
 453{
 454	return rcu_bh_state.gpnum;
 455}
 456EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 457
 458/*
 459 * Return the number of RCU batches completed thus far for debug & stats.
 460 */
 461unsigned long rcu_batches_completed(void)
 462{
 463	return rcu_state_p->completed;
 464}
 465EXPORT_SYMBOL_GPL(rcu_batches_completed);
 466
 467/*
 468 * Return the number of RCU-sched batches completed thus far for debug & stats.
 469 */
 470unsigned long rcu_batches_completed_sched(void)
 471{
 472	return rcu_sched_state.completed;
 473}
 474EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 475
 476/*
 477 * Return the number of RCU BH batches completed thus far for debug & stats.
 478 */
 479unsigned long rcu_batches_completed_bh(void)
 480{
 481	return rcu_bh_state.completed;
 482}
 483EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 484
 485/*
 486 * Return the number of RCU expedited batches completed thus far for
 487 * debug & stats.  Odd numbers mean that a batch is in progress, even
 488 * numbers mean idle.  The value returned will thus be roughly double
 489 * the cumulative batches since boot.
 490 */
 491unsigned long rcu_exp_batches_completed(void)
 492{
 493	return rcu_state_p->expedited_sequence;
 494}
 495EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 496
 497/*
 498 * Return the number of RCU-sched expedited batches completed thus far
 499 * for debug & stats.  Similar to rcu_exp_batches_completed().
 500 */
 501unsigned long rcu_exp_batches_completed_sched(void)
 502{
 503	return rcu_sched_state.expedited_sequence;
 504}
 505EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
 506
 507/*
 508 * Force a quiescent state.
 509 */
 510void rcu_force_quiescent_state(void)
 511{
 512	force_quiescent_state(rcu_state_p);
 513}
 514EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 515
 516/*
 517 * Force a quiescent state for RCU BH.
 518 */
 519void rcu_bh_force_quiescent_state(void)
 520{
 521	force_quiescent_state(&rcu_bh_state);
 522}
 523EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 524
 525/*
 526 * Force a quiescent state for RCU-sched.
 527 */
 528void rcu_sched_force_quiescent_state(void)
 529{
 530	force_quiescent_state(&rcu_sched_state);
 531}
 532EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 533
 534/*
 535 * Show the state of the grace-period kthreads.
 536 */
 537void show_rcu_gp_kthreads(void)
 538{
 539	struct rcu_state *rsp;
 540
 541	for_each_rcu_flavor(rsp) {
 542		pr_info("%s: wait state: %d ->state: %#lx\n",
 543			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 544		/* sched_show_task(rsp->gp_kthread); */
 545	}
 546}
 547EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 548
 549/*
 550 * Record the number of times rcutorture tests have been initiated and
 551 * terminated.  This information allows the debugfs tracing stats to be
 552 * correlated to the rcutorture messages, even when the rcutorture module
 553 * is being repeatedly loaded and unloaded.  In other words, we cannot
 554 * store this state in rcutorture itself.
 555 */
 556void rcutorture_record_test_transition(void)
 557{
 558	rcutorture_testseq++;
 559	rcutorture_vernum = 0;
 560}
 561EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 562
 563/*
 564 * Send along grace-period-related data for rcutorture diagnostics.
 565 */
 566void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 567			    unsigned long *gpnum, unsigned long *completed)
 568{
 569	struct rcu_state *rsp = NULL;
 570
 571	switch (test_type) {
 572	case RCU_FLAVOR:
 573		rsp = rcu_state_p;
 574		break;
 575	case RCU_BH_FLAVOR:
 576		rsp = &rcu_bh_state;
 577		break;
 578	case RCU_SCHED_FLAVOR:
 579		rsp = &rcu_sched_state;
 580		break;
 581	default:
 582		break;
 583	}
 584	if (rsp != NULL) {
 585		*flags = READ_ONCE(rsp->gp_flags);
 586		*gpnum = READ_ONCE(rsp->gpnum);
 587		*completed = READ_ONCE(rsp->completed);
 588		return;
 589	}
 590	*flags = 0;
 591	*gpnum = 0;
 592	*completed = 0;
 593}
 594EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 595
 596/*
 597 * Record the number of writer passes through the current rcutorture test.
 598 * This is also used to correlate debugfs tracing stats with the rcutorture
 599 * messages.
 600 */
 601void rcutorture_record_progress(unsigned long vernum)
 602{
 603	rcutorture_vernum++;
 604}
 605EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 606
 607/*
 608 * Does the CPU have callbacks ready to be invoked?
 609 */
 610static int
 611cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 612{
 613	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
 614	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
 615}
 616
 617/*
 618 * Return the root node of the specified rcu_state structure.
 619 */
 620static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 621{
 622	return &rsp->node[0];
 623}
 624
 625/*
 626 * Is there any need for future grace periods?
 627 * Interrupts must be disabled.  If the caller does not hold the root
 628 * rnp_node structure's ->lock, the results are advisory only.
 629 */
 630static int rcu_future_needs_gp(struct rcu_state *rsp)
 631{
 632	struct rcu_node *rnp = rcu_get_root(rsp);
 633	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 634	int *fp = &rnp->need_future_gp[idx];
 635
 636	return READ_ONCE(*fp);
 637}
 638
 639/*
 640 * Does the current CPU require a not-yet-started grace period?
 641 * The caller must have disabled interrupts to prevent races with
 642 * normal callback registry.
 643 */
 644static bool
 645cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 646{
 647	int i;
 648
 649	if (rcu_gp_in_progress(rsp))
 650		return false;  /* No, a grace period is already in progress. */
 651	if (rcu_future_needs_gp(rsp))
 652		return true;  /* Yes, a no-CBs CPU needs one. */
 653	if (!rdp->nxttail[RCU_NEXT_TAIL])
 654		return false;  /* No, this is a no-CBs (or offline) CPU. */
 655	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
 656		return true;  /* Yes, CPU has newly registered callbacks. */
 657	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
 658		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
 659		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
 660				 rdp->nxtcompleted[i]))
 661			return true;  /* Yes, CBs for future grace period. */
 662	return false; /* No grace period needed. */
 663}
 664
 665/*
 666 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
 667 *
 668 * If the new value of the ->dynticks_nesting counter now is zero,
 669 * we really have entered idle, and must do the appropriate accounting.
 670 * The caller must have disabled interrupts.
 671 */
 672static void rcu_eqs_enter_common(long long oldval, bool user)
 673{
 674	struct rcu_state *rsp;
 675	struct rcu_data *rdp;
 676	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 677
 678	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
 679	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 680	    !user && !is_idle_task(current)) {
 681		struct task_struct *idle __maybe_unused =
 682			idle_task(smp_processor_id());
 683
 684		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
 685		rcu_ftrace_dump(DUMP_ORIG);
 686		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 687			  current->pid, current->comm,
 688			  idle->pid, idle->comm); /* must be idle task! */
 689	}
 690	for_each_rcu_flavor(rsp) {
 691		rdp = this_cpu_ptr(rsp->rda);
 692		do_nocb_deferred_wakeup(rdp);
 693	}
 694	rcu_prepare_for_idle();
 695	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 696	smp_mb__before_atomic();  /* See above. */
 697	atomic_inc(&rdtp->dynticks);
 698	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
 699	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 700		     atomic_read(&rdtp->dynticks) & 0x1);
 701	rcu_dynticks_task_enter();
 702
 703	/*
 704	 * It is illegal to enter an extended quiescent state while
 705	 * in an RCU read-side critical section.
 706	 */
 707	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 708			 "Illegal idle entry in RCU read-side critical section.");
 709	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
 710			 "Illegal idle entry in RCU-bh read-side critical section.");
 711	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
 712			 "Illegal idle entry in RCU-sched read-side critical section.");
 713}
 714
 715/*
 716 * Enter an RCU extended quiescent state, which can be either the
 717 * idle loop or adaptive-tickless usermode execution.
 718 */
 719static void rcu_eqs_enter(bool user)
 720{
 721	long long oldval;
 722	struct rcu_dynticks *rdtp;
 723
 724	rdtp = this_cpu_ptr(&rcu_dynticks);
 725	oldval = rdtp->dynticks_nesting;
 726	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 727		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
 728	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
 729		rdtp->dynticks_nesting = 0;
 730		rcu_eqs_enter_common(oldval, user);
 731	} else {
 732		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 733	}
 734}
 735
 736/**
 737 * rcu_idle_enter - inform RCU that current CPU is entering idle
 738 *
 739 * Enter idle mode, in other words, -leave- the mode in which RCU
 740 * read-side critical sections can occur.  (Though RCU read-side
 741 * critical sections can occur in irq handlers in idle, a possibility
 742 * handled by irq_enter() and irq_exit().)
 743 *
 744 * We crowbar the ->dynticks_nesting field to zero to allow for
 745 * the possibility of usermode upcalls having messed up our count
 746 * of interrupt nesting level during the prior busy period.
 747 */
 748void rcu_idle_enter(void)
 749{
 750	unsigned long flags;
 751
 752	local_irq_save(flags);
 753	rcu_eqs_enter(false);
 754	rcu_sysidle_enter(0);
 755	local_irq_restore(flags);
 756}
 757EXPORT_SYMBOL_GPL(rcu_idle_enter);
 758
 759#ifdef CONFIG_NO_HZ_FULL
 760/**
 761 * rcu_user_enter - inform RCU that we are resuming userspace.
 762 *
 763 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 764 * is permitted between this call and rcu_user_exit(). This way the
 765 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 766 * when the CPU runs in userspace.
 767 */
 768void rcu_user_enter(void)
 769{
 770	rcu_eqs_enter(1);
 771}
 772#endif /* CONFIG_NO_HZ_FULL */
 773
 774/**
 775 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 776 *
 777 * Exit from an interrupt handler, which might possibly result in entering
 778 * idle mode, in other words, leaving the mode in which read-side critical
 779 * sections can occur.  The caller must have disabled interrupts.
 780 *
 781 * This code assumes that the idle loop never does anything that might
 782 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 783 * architecture violates this assumption, RCU will give you what you
 784 * deserve, good and hard.  But very infrequently and irreproducibly.
 785 *
 786 * Use things like work queues to work around this limitation.
 787 *
 788 * You have been warned.
 789 */
 790void rcu_irq_exit(void)
 791{
 792	long long oldval;
 793	struct rcu_dynticks *rdtp;
 794
 795	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
 796	rdtp = this_cpu_ptr(&rcu_dynticks);
 797	oldval = rdtp->dynticks_nesting;
 798	rdtp->dynticks_nesting--;
 799	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 800		     rdtp->dynticks_nesting < 0);
 801	if (rdtp->dynticks_nesting)
 802		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
 803	else
 804		rcu_eqs_enter_common(oldval, true);
 805	rcu_sysidle_enter(1);
 806}
 807
 808/*
 809 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 810 */
 811void rcu_irq_exit_irqson(void)
 812{
 813	unsigned long flags;
 814
 815	local_irq_save(flags);
 816	rcu_irq_exit();
 817	local_irq_restore(flags);
 818}
 819
 820/*
 821 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 822 *
 823 * If the new value of the ->dynticks_nesting counter was previously zero,
 824 * we really have exited idle, and must do the appropriate accounting.
 825 * The caller must have disabled interrupts.
 826 */
 827static void rcu_eqs_exit_common(long long oldval, int user)
 828{
 829	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 830
 831	rcu_dynticks_task_exit();
 832	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
 833	atomic_inc(&rdtp->dynticks);
 834	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 835	smp_mb__after_atomic();  /* See above. */
 836	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 837		     !(atomic_read(&rdtp->dynticks) & 0x1));
 838	rcu_cleanup_after_idle();
 839	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 840	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 841	    !user && !is_idle_task(current)) {
 842		struct task_struct *idle __maybe_unused =
 843			idle_task(smp_processor_id());
 844
 845		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 846				  oldval, rdtp->dynticks_nesting);
 847		rcu_ftrace_dump(DUMP_ORIG);
 848		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 849			  current->pid, current->comm,
 850			  idle->pid, idle->comm); /* must be idle task! */
 851	}
 852}
 853
 854/*
 855 * Exit an RCU extended quiescent state, which can be either the
 856 * idle loop or adaptive-tickless usermode execution.
 857 */
 858static void rcu_eqs_exit(bool user)
 859{
 860	struct rcu_dynticks *rdtp;
 861	long long oldval;
 862
 863	rdtp = this_cpu_ptr(&rcu_dynticks);
 864	oldval = rdtp->dynticks_nesting;
 865	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 866	if (oldval & DYNTICK_TASK_NEST_MASK) {
 867		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 868	} else {
 869		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 870		rcu_eqs_exit_common(oldval, user);
 871	}
 872}
 873
 874/**
 875 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 876 *
 877 * Exit idle mode, in other words, -enter- the mode in which RCU
 878 * read-side critical sections can occur.
 879 *
 880 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 881 * allow for the possibility of usermode upcalls messing up our count
 882 * of interrupt nesting level during the busy period that is just
 883 * now starting.
 884 */
 885void rcu_idle_exit(void)
 886{
 887	unsigned long flags;
 888
 889	local_irq_save(flags);
 890	rcu_eqs_exit(false);
 891	rcu_sysidle_exit(0);
 892	local_irq_restore(flags);
 893}
 894EXPORT_SYMBOL_GPL(rcu_idle_exit);
 895
 896#ifdef CONFIG_NO_HZ_FULL
 897/**
 898 * rcu_user_exit - inform RCU that we are exiting userspace.
 899 *
 900 * Exit RCU idle mode while entering the kernel because it can
 901 * run a RCU read side critical section anytime.
 902 */
 903void rcu_user_exit(void)
 904{
 905	rcu_eqs_exit(1);
 906}
 907#endif /* CONFIG_NO_HZ_FULL */
 908
 909/**
 910 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 911 *
 912 * Enter an interrupt handler, which might possibly result in exiting
 913 * idle mode, in other words, entering the mode in which read-side critical
 914 * sections can occur.  The caller must have disabled interrupts.
 915 *
 916 * Note that the Linux kernel is fully capable of entering an interrupt
 917 * handler that it never exits, for example when doing upcalls to
 918 * user mode!  This code assumes that the idle loop never does upcalls to
 919 * user mode.  If your architecture does do upcalls from the idle loop (or
 920 * does anything else that results in unbalanced calls to the irq_enter()
 921 * and irq_exit() functions), RCU will give you what you deserve, good
 922 * and hard.  But very infrequently and irreproducibly.
 923 *
 924 * Use things like work queues to work around this limitation.
 925 *
 926 * You have been warned.
 927 */
 928void rcu_irq_enter(void)
 929{
 930	struct rcu_dynticks *rdtp;
 931	long long oldval;
 932
 933	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
 934	rdtp = this_cpu_ptr(&rcu_dynticks);
 935	oldval = rdtp->dynticks_nesting;
 936	rdtp->dynticks_nesting++;
 937	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 938		     rdtp->dynticks_nesting == 0);
 939	if (oldval)
 940		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
 941	else
 942		rcu_eqs_exit_common(oldval, true);
 943	rcu_sysidle_exit(1);
 944}
 945
 946/*
 947 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 948 */
 949void rcu_irq_enter_irqson(void)
 950{
 951	unsigned long flags;
 952
 953	local_irq_save(flags);
 954	rcu_irq_enter();
 955	local_irq_restore(flags);
 956}
 957
 958/**
 959 * rcu_nmi_enter - inform RCU of entry to NMI context
 960 *
 961 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 962 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 963 * that the CPU is active.  This implementation permits nested NMIs, as
 964 * long as the nesting level does not overflow an int.  (You will probably
 965 * run out of stack space first.)
 966 */
 967void rcu_nmi_enter(void)
 968{
 969	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 970	int incby = 2;
 971
 972	/* Complain about underflow. */
 973	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
 974
 975	/*
 976	 * If idle from RCU viewpoint, atomically increment ->dynticks
 977	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 978	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 979	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 980	 * to be in the outermost NMI handler that interrupted an RCU-idle
 981	 * period (observation due to Andy Lutomirski).
 982	 */
 983	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
 984		smp_mb__before_atomic();  /* Force delay from prior write. */
 985		atomic_inc(&rdtp->dynticks);
 986		/* atomic_inc() before later RCU read-side crit sects */
 987		smp_mb__after_atomic();  /* See above. */
 988		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 989		incby = 1;
 990	}
 991	rdtp->dynticks_nmi_nesting += incby;
 992	barrier();
 993}
 994
 995/**
 996 * rcu_nmi_exit - inform RCU of exit from NMI context
 997 *
 998 * If we are returning from the outermost NMI handler that interrupted an
 999 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1000 * to let the RCU grace-period handling know that the CPU is back to
1001 * being RCU-idle.
1002 */
1003void rcu_nmi_exit(void)
1004{
1005	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1006
1007	/*
1008	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1009	 * (We are exiting an NMI handler, so RCU better be paying attention
1010	 * to us!)
1011	 */
1012	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1013	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1014
1015	/*
1016	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1017	 * leave it in non-RCU-idle state.
1018	 */
1019	if (rdtp->dynticks_nmi_nesting != 1) {
1020		rdtp->dynticks_nmi_nesting -= 2;
1021		return;
1022	}
1023
1024	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1025	rdtp->dynticks_nmi_nesting = 0;
1026	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1027	smp_mb__before_atomic();  /* See above. */
1028	atomic_inc(&rdtp->dynticks);
1029	smp_mb__after_atomic();  /* Force delay to next write. */
1030	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1031}
1032
1033/**
1034 * __rcu_is_watching - are RCU read-side critical sections safe?
1035 *
1036 * Return true if RCU is watching the running CPU, which means that
1037 * this CPU can safely enter RCU read-side critical sections.  Unlike
1038 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1039 * least disabled preemption.
1040 */
1041bool notrace __rcu_is_watching(void)
1042{
1043	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1044}
1045
1046/**
1047 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1048 *
1049 * If the current CPU is in its idle loop and is neither in an interrupt
1050 * or NMI handler, return true.
1051 */
1052bool notrace rcu_is_watching(void)
1053{
1054	bool ret;
1055
1056	preempt_disable_notrace();
1057	ret = __rcu_is_watching();
1058	preempt_enable_notrace();
1059	return ret;
1060}
1061EXPORT_SYMBOL_GPL(rcu_is_watching);
1062
1063#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1064
1065/*
1066 * Is the current CPU online?  Disable preemption to avoid false positives
1067 * that could otherwise happen due to the current CPU number being sampled,
1068 * this task being preempted, its old CPU being taken offline, resuming
1069 * on some other CPU, then determining that its old CPU is now offline.
1070 * It is OK to use RCU on an offline processor during initial boot, hence
1071 * the check for rcu_scheduler_fully_active.  Note also that it is OK
1072 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1073 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1074 * offline to continue to use RCU for one jiffy after marking itself
1075 * offline in the cpu_online_mask.  This leniency is necessary given the
1076 * non-atomic nature of the online and offline processing, for example,
1077 * the fact that a CPU enters the scheduler after completing the teardown
1078 * of the CPU.
1079 *
1080 * This is also why RCU internally marks CPUs online during in the
1081 * preparation phase and offline after the CPU has been taken down.
1082 *
1083 * Disable checking if in an NMI handler because we cannot safely report
1084 * errors from NMI handlers anyway.
1085 */
1086bool rcu_lockdep_current_cpu_online(void)
1087{
1088	struct rcu_data *rdp;
1089	struct rcu_node *rnp;
1090	bool ret;
1091
1092	if (in_nmi())
1093		return true;
1094	preempt_disable();
1095	rdp = this_cpu_ptr(&rcu_sched_data);
1096	rnp = rdp->mynode;
1097	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1098	      !rcu_scheduler_fully_active;
1099	preempt_enable();
1100	return ret;
1101}
1102EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1103
1104#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1105
1106/**
1107 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1108 *
1109 * If the current CPU is idle or running at a first-level (not nested)
1110 * interrupt from idle, return true.  The caller must have at least
1111 * disabled preemption.
1112 */
1113static int rcu_is_cpu_rrupt_from_idle(void)
1114{
1115	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1116}
1117
1118/*
1119 * Snapshot the specified CPU's dynticks counter so that we can later
1120 * credit them with an implicit quiescent state.  Return 1 if this CPU
1121 * is in dynticks idle mode, which is an extended quiescent state.
1122 */
1123static int dyntick_save_progress_counter(struct rcu_data *rdp,
1124					 bool *isidle, unsigned long *maxj)
1125{
1126	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1127	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1128	if ((rdp->dynticks_snap & 0x1) == 0) {
1129		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1130		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1131				 rdp->mynode->gpnum))
1132			WRITE_ONCE(rdp->gpwrap, true);
1133		return 1;
1134	}
1135	return 0;
1136}
1137
1138/*
1139 * Return true if the specified CPU has passed through a quiescent
1140 * state by virtue of being in or having passed through an dynticks
1141 * idle state since the last call to dyntick_save_progress_counter()
1142 * for this same CPU, or by virtue of having been offline.
1143 */
1144static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1145				    bool *isidle, unsigned long *maxj)
1146{
1147	unsigned int curr;
1148	int *rcrmp;
1149	unsigned int snap;
1150
1151	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1152	snap = (unsigned int)rdp->dynticks_snap;
1153
1154	/*
1155	 * If the CPU passed through or entered a dynticks idle phase with
1156	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1157	 * already acknowledged the request to pass through a quiescent
1158	 * state.  Either way, that CPU cannot possibly be in an RCU
1159	 * read-side critical section that started before the beginning
1160	 * of the current RCU grace period.
1161	 */
1162	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1163		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1164		rdp->dynticks_fqs++;
1165		return 1;
1166	}
1167
1168	/*
1169	 * Check for the CPU being offline, but only if the grace period
1170	 * is old enough.  We don't need to worry about the CPU changing
1171	 * state: If we see it offline even once, it has been through a
1172	 * quiescent state.
1173	 *
1174	 * The reason for insisting that the grace period be at least
1175	 * one jiffy old is that CPUs that are not quite online and that
1176	 * have just gone offline can still execute RCU read-side critical
1177	 * sections.
1178	 */
1179	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1180		return 0;  /* Grace period is not old enough. */
1181	barrier();
1182	if (cpu_is_offline(rdp->cpu)) {
1183		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1184		rdp->offline_fqs++;
1185		return 1;
1186	}
1187
1188	/*
1189	 * A CPU running for an extended time within the kernel can
1190	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1191	 * even context-switching back and forth between a pair of
1192	 * in-kernel CPU-bound tasks cannot advance grace periods.
1193	 * So if the grace period is old enough, make the CPU pay attention.
1194	 * Note that the unsynchronized assignments to the per-CPU
1195	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1196	 * bits can be lost, but they will be set again on the next
1197	 * force-quiescent-state pass.  So lost bit sets do not result
1198	 * in incorrect behavior, merely in a grace period lasting
1199	 * a few jiffies longer than it might otherwise.  Because
1200	 * there are at most four threads involved, and because the
1201	 * updates are only once every few jiffies, the probability of
1202	 * lossage (and thus of slight grace-period extension) is
1203	 * quite low.
1204	 *
1205	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1206	 * is set too high, we override with half of the RCU CPU stall
1207	 * warning delay.
1208	 */
1209	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1210	if (ULONG_CMP_GE(jiffies,
1211			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1212	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1213		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1214			WRITE_ONCE(rdp->cond_resched_completed,
1215				   READ_ONCE(rdp->mynode->completed));
1216			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1217			WRITE_ONCE(*rcrmp,
1218				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1219		}
1220		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1221	}
1222
1223	/* And if it has been a really long time, kick the CPU as well. */
1224	if (ULONG_CMP_GE(jiffies,
1225			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1226	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1227		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1228
1229	return 0;
1230}
1231
1232static void record_gp_stall_check_time(struct rcu_state *rsp)
1233{
1234	unsigned long j = jiffies;
1235	unsigned long j1;
1236
1237	rsp->gp_start = j;
1238	smp_wmb(); /* Record start time before stall time. */
1239	j1 = rcu_jiffies_till_stall_check();
1240	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1241	rsp->jiffies_resched = j + j1 / 2;
1242	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1243}
1244
1245/*
1246 * Convert a ->gp_state value to a character string.
1247 */
1248static const char *gp_state_getname(short gs)
1249{
1250	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1251		return "???";
1252	return gp_state_names[gs];
1253}
1254
1255/*
1256 * Complain about starvation of grace-period kthread.
1257 */
1258static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1259{
1260	unsigned long gpa;
1261	unsigned long j;
1262
1263	j = jiffies;
1264	gpa = READ_ONCE(rsp->gp_activity);
1265	if (j - gpa > 2 * HZ) {
1266		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1267		       rsp->name, j - gpa,
1268		       rsp->gpnum, rsp->completed,
1269		       rsp->gp_flags,
1270		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1271		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1272		if (rsp->gp_kthread) {
1273			sched_show_task(rsp->gp_kthread);
1274			wake_up_process(rsp->gp_kthread);
1275		}
1276	}
1277}
1278
1279/*
1280 * Dump stacks of all tasks running on stalled CPUs.
1281 */
1282static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1283{
1284	int cpu;
1285	unsigned long flags;
1286	struct rcu_node *rnp;
1287
1288	rcu_for_each_leaf_node(rsp, rnp) {
1289		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1290		if (rnp->qsmask != 0) {
1291			for_each_leaf_node_possible_cpu(rnp, cpu)
1292				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1293					dump_cpu_task(cpu);
1294		}
1295		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1296	}
1297}
1298
1299/*
1300 * If too much time has passed in the current grace period, and if
1301 * so configured, go kick the relevant kthreads.
1302 */
1303static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1304{
1305	unsigned long j;
1306
1307	if (!rcu_kick_kthreads)
1308		return;
1309	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1310	if (time_after(jiffies, j) && rsp->gp_kthread &&
1311	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1312		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1313		rcu_ftrace_dump(DUMP_ALL);
1314		wake_up_process(rsp->gp_kthread);
1315		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1316	}
1317}
1318
1319static inline void panic_on_rcu_stall(void)
1320{
1321	if (sysctl_panic_on_rcu_stall)
1322		panic("RCU Stall\n");
1323}
1324
1325static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1326{
1327	int cpu;
1328	long delta;
1329	unsigned long flags;
1330	unsigned long gpa;
1331	unsigned long j;
1332	int ndetected = 0;
1333	struct rcu_node *rnp = rcu_get_root(rsp);
1334	long totqlen = 0;
1335
1336	/* Kick and suppress, if so configured. */
1337	rcu_stall_kick_kthreads(rsp);
1338	if (rcu_cpu_stall_suppress)
1339		return;
1340
1341	/* Only let one CPU complain about others per time interval. */
1342
1343	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1344	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1345	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1346		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1347		return;
1348	}
1349	WRITE_ONCE(rsp->jiffies_stall,
1350		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1351	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1352
1353	/*
1354	 * OK, time to rat on our buddy...
1355	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1356	 * RCU CPU stall warnings.
1357	 */
1358	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1359	       rsp->name);
1360	print_cpu_stall_info_begin();
1361	rcu_for_each_leaf_node(rsp, rnp) {
1362		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1363		ndetected += rcu_print_task_stall(rnp);
1364		if (rnp->qsmask != 0) {
1365			for_each_leaf_node_possible_cpu(rnp, cpu)
1366				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1367					print_cpu_stall_info(rsp, cpu);
1368					ndetected++;
1369				}
1370		}
1371		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1372	}
1373
1374	print_cpu_stall_info_end();
1375	for_each_possible_cpu(cpu)
1376		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1377	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1378	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1379	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1380	if (ndetected) {
1381		rcu_dump_cpu_stacks(rsp);
1382	} else {
1383		if (READ_ONCE(rsp->gpnum) != gpnum ||
1384		    READ_ONCE(rsp->completed) == gpnum) {
1385			pr_err("INFO: Stall ended before state dump start\n");
1386		} else {
1387			j = jiffies;
1388			gpa = READ_ONCE(rsp->gp_activity);
1389			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1390			       rsp->name, j - gpa, j, gpa,
1391			       jiffies_till_next_fqs,
1392			       rcu_get_root(rsp)->qsmask);
1393			/* In this case, the current CPU might be at fault. */
1394			sched_show_task(current);
1395		}
1396	}
1397
1398	/* Complain about tasks blocking the grace period. */
1399	rcu_print_detail_task_stall(rsp);
1400
1401	rcu_check_gp_kthread_starvation(rsp);
1402
1403	panic_on_rcu_stall();
1404
1405	force_quiescent_state(rsp);  /* Kick them all. */
1406}
1407
1408static void print_cpu_stall(struct rcu_state *rsp)
1409{
1410	int cpu;
1411	unsigned long flags;
1412	struct rcu_node *rnp = rcu_get_root(rsp);
1413	long totqlen = 0;
1414
1415	/* Kick and suppress, if so configured. */
1416	rcu_stall_kick_kthreads(rsp);
1417	if (rcu_cpu_stall_suppress)
1418		return;
1419
1420	/*
1421	 * OK, time to rat on ourselves...
1422	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1423	 * RCU CPU stall warnings.
1424	 */
1425	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1426	print_cpu_stall_info_begin();
1427	print_cpu_stall_info(rsp, smp_processor_id());
1428	print_cpu_stall_info_end();
1429	for_each_possible_cpu(cpu)
1430		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1431	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1432		jiffies - rsp->gp_start,
1433		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1434
1435	rcu_check_gp_kthread_starvation(rsp);
1436
1437	rcu_dump_cpu_stacks(rsp);
1438
1439	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1440	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1441		WRITE_ONCE(rsp->jiffies_stall,
1442			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1443	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1444
1445	panic_on_rcu_stall();
1446
1447	/*
1448	 * Attempt to revive the RCU machinery by forcing a context switch.
1449	 *
1450	 * A context switch would normally allow the RCU state machine to make
1451	 * progress and it could be we're stuck in kernel space without context
1452	 * switches for an entirely unreasonable amount of time.
1453	 */
1454	resched_cpu(smp_processor_id());
1455}
1456
1457static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1458{
1459	unsigned long completed;
1460	unsigned long gpnum;
1461	unsigned long gps;
1462	unsigned long j;
1463	unsigned long js;
1464	struct rcu_node *rnp;
1465
1466	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1467	    !rcu_gp_in_progress(rsp))
1468		return;
1469	rcu_stall_kick_kthreads(rsp);
1470	j = jiffies;
1471
1472	/*
1473	 * Lots of memory barriers to reject false positives.
1474	 *
1475	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1476	 * then rsp->gp_start, and finally rsp->completed.  These values
1477	 * are updated in the opposite order with memory barriers (or
1478	 * equivalent) during grace-period initialization and cleanup.
1479	 * Now, a false positive can occur if we get an new value of
1480	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1481	 * the memory barriers, the only way that this can happen is if one
1482	 * grace period ends and another starts between these two fetches.
1483	 * Detect this by comparing rsp->completed with the previous fetch
1484	 * from rsp->gpnum.
1485	 *
1486	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1487	 * and rsp->gp_start suffice to forestall false positives.
1488	 */
1489	gpnum = READ_ONCE(rsp->gpnum);
1490	smp_rmb(); /* Pick up ->gpnum first... */
1491	js = READ_ONCE(rsp->jiffies_stall);
1492	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1493	gps = READ_ONCE(rsp->gp_start);
1494	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1495	completed = READ_ONCE(rsp->completed);
1496	if (ULONG_CMP_GE(completed, gpnum) ||
1497	    ULONG_CMP_LT(j, js) ||
1498	    ULONG_CMP_GE(gps, js))
1499		return; /* No stall or GP completed since entering function. */
1500	rnp = rdp->mynode;
1501	if (rcu_gp_in_progress(rsp) &&
1502	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1503
1504		/* We haven't checked in, so go dump stack. */
1505		print_cpu_stall(rsp);
1506
1507	} else if (rcu_gp_in_progress(rsp) &&
1508		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1509
1510		/* They had a few time units to dump stack, so complain. */
1511		print_other_cpu_stall(rsp, gpnum);
1512	}
1513}
1514
1515/**
1516 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1517 *
1518 * Set the stall-warning timeout way off into the future, thus preventing
1519 * any RCU CPU stall-warning messages from appearing in the current set of
1520 * RCU grace periods.
1521 *
1522 * The caller must disable hard irqs.
1523 */
1524void rcu_cpu_stall_reset(void)
1525{
1526	struct rcu_state *rsp;
1527
1528	for_each_rcu_flavor(rsp)
1529		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1530}
1531
1532/*
1533 * Initialize the specified rcu_data structure's default callback list
1534 * to empty.  The default callback list is the one that is not used by
1535 * no-callbacks CPUs.
1536 */
1537static void init_default_callback_list(struct rcu_data *rdp)
1538{
1539	int i;
1540
1541	rdp->nxtlist = NULL;
1542	for (i = 0; i < RCU_NEXT_SIZE; i++)
1543		rdp->nxttail[i] = &rdp->nxtlist;
1544}
1545
1546/*
1547 * Initialize the specified rcu_data structure's callback list to empty.
1548 */
1549static void init_callback_list(struct rcu_data *rdp)
1550{
1551	if (init_nocb_callback_list(rdp))
1552		return;
1553	init_default_callback_list(rdp);
1554}
1555
1556/*
1557 * Determine the value that ->completed will have at the end of the
1558 * next subsequent grace period.  This is used to tag callbacks so that
1559 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1560 * been dyntick-idle for an extended period with callbacks under the
1561 * influence of RCU_FAST_NO_HZ.
1562 *
1563 * The caller must hold rnp->lock with interrupts disabled.
1564 */
1565static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1566				       struct rcu_node *rnp)
1567{
1568	/*
1569	 * If RCU is idle, we just wait for the next grace period.
1570	 * But we can only be sure that RCU is idle if we are looking
1571	 * at the root rcu_node structure -- otherwise, a new grace
1572	 * period might have started, but just not yet gotten around
1573	 * to initializing the current non-root rcu_node structure.
1574	 */
1575	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1576		return rnp->completed + 1;
1577
1578	/*
1579	 * Otherwise, wait for a possible partial grace period and
1580	 * then the subsequent full grace period.
1581	 */
1582	return rnp->completed + 2;
1583}
1584
1585/*
1586 * Trace-event helper function for rcu_start_future_gp() and
1587 * rcu_nocb_wait_gp().
1588 */
1589static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1590				unsigned long c, const char *s)
1591{
1592	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1593				      rnp->completed, c, rnp->level,
1594				      rnp->grplo, rnp->grphi, s);
1595}
1596
1597/*
1598 * Start some future grace period, as needed to handle newly arrived
1599 * callbacks.  The required future grace periods are recorded in each
1600 * rcu_node structure's ->need_future_gp field.  Returns true if there
1601 * is reason to awaken the grace-period kthread.
1602 *
1603 * The caller must hold the specified rcu_node structure's ->lock.
1604 */
1605static bool __maybe_unused
1606rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1607		    unsigned long *c_out)
1608{
1609	unsigned long c;
1610	int i;
1611	bool ret = false;
1612	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1613
1614	/*
1615	 * Pick up grace-period number for new callbacks.  If this
1616	 * grace period is already marked as needed, return to the caller.
1617	 */
1618	c = rcu_cbs_completed(rdp->rsp, rnp);
1619	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1620	if (rnp->need_future_gp[c & 0x1]) {
1621		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1622		goto out;
1623	}
1624
1625	/*
1626	 * If either this rcu_node structure or the root rcu_node structure
1627	 * believe that a grace period is in progress, then we must wait
1628	 * for the one following, which is in "c".  Because our request
1629	 * will be noticed at the end of the current grace period, we don't
1630	 * need to explicitly start one.  We only do the lockless check
1631	 * of rnp_root's fields if the current rcu_node structure thinks
1632	 * there is no grace period in flight, and because we hold rnp->lock,
1633	 * the only possible change is when rnp_root's two fields are
1634	 * equal, in which case rnp_root->gpnum might be concurrently
1635	 * incremented.  But that is OK, as it will just result in our
1636	 * doing some extra useless work.
1637	 */
1638	if (rnp->gpnum != rnp->completed ||
1639	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1640		rnp->need_future_gp[c & 0x1]++;
1641		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1642		goto out;
1643	}
1644
1645	/*
1646	 * There might be no grace period in progress.  If we don't already
1647	 * hold it, acquire the root rcu_node structure's lock in order to
1648	 * start one (if needed).
1649	 */
1650	if (rnp != rnp_root)
1651		raw_spin_lock_rcu_node(rnp_root);
1652
1653	/*
1654	 * Get a new grace-period number.  If there really is no grace
1655	 * period in progress, it will be smaller than the one we obtained
1656	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1657	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1658	 */
1659	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1660	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1661		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1662			rdp->nxtcompleted[i] = c;
1663
1664	/*
1665	 * If the needed for the required grace period is already
1666	 * recorded, trace and leave.
1667	 */
1668	if (rnp_root->need_future_gp[c & 0x1]) {
1669		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1670		goto unlock_out;
1671	}
1672
1673	/* Record the need for the future grace period. */
1674	rnp_root->need_future_gp[c & 0x1]++;
1675
1676	/* If a grace period is not already in progress, start one. */
1677	if (rnp_root->gpnum != rnp_root->completed) {
1678		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1679	} else {
1680		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1681		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1682	}
1683unlock_out:
1684	if (rnp != rnp_root)
1685		raw_spin_unlock_rcu_node(rnp_root);
1686out:
1687	if (c_out != NULL)
1688		*c_out = c;
1689	return ret;
1690}
1691
1692/*
1693 * Clean up any old requests for the just-ended grace period.  Also return
1694 * whether any additional grace periods have been requested.  Also invoke
1695 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1696 * waiting for this grace period to complete.
1697 */
1698static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1699{
1700	int c = rnp->completed;
1701	int needmore;
1702	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1703
1704	rnp->need_future_gp[c & 0x1] = 0;
1705	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1706	trace_rcu_future_gp(rnp, rdp, c,
1707			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1708	return needmore;
1709}
1710
1711/*
1712 * Awaken the grace-period kthread for the specified flavor of RCU.
1713 * Don't do a self-awaken, and don't bother awakening when there is
1714 * nothing for the grace-period kthread to do (as in several CPUs
1715 * raced to awaken, and we lost), and finally don't try to awaken
1716 * a kthread that has not yet been created.
1717 */
1718static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1719{
1720	if (current == rsp->gp_kthread ||
1721	    !READ_ONCE(rsp->gp_flags) ||
1722	    !rsp->gp_kthread)
1723		return;
1724	swake_up(&rsp->gp_wq);
1725}
1726
1727/*
1728 * If there is room, assign a ->completed number to any callbacks on
1729 * this CPU that have not already been assigned.  Also accelerate any
1730 * callbacks that were previously assigned a ->completed number that has
1731 * since proven to be too conservative, which can happen if callbacks get
1732 * assigned a ->completed number while RCU is idle, but with reference to
1733 * a non-root rcu_node structure.  This function is idempotent, so it does
1734 * not hurt to call it repeatedly.  Returns an flag saying that we should
1735 * awaken the RCU grace-period kthread.
1736 *
1737 * The caller must hold rnp->lock with interrupts disabled.
1738 */
1739static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1740			       struct rcu_data *rdp)
1741{
1742	unsigned long c;
1743	int i;
1744	bool ret;
1745
1746	/* If the CPU has no callbacks, nothing to do. */
1747	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1748		return false;
1749
1750	/*
1751	 * Starting from the sublist containing the callbacks most
1752	 * recently assigned a ->completed number and working down, find the
1753	 * first sublist that is not assignable to an upcoming grace period.
1754	 * Such a sublist has something in it (first two tests) and has
1755	 * a ->completed number assigned that will complete sooner than
1756	 * the ->completed number for newly arrived callbacks (last test).
1757	 *
1758	 * The key point is that any later sublist can be assigned the
1759	 * same ->completed number as the newly arrived callbacks, which
1760	 * means that the callbacks in any of these later sublist can be
1761	 * grouped into a single sublist, whether or not they have already
1762	 * been assigned a ->completed number.
1763	 */
1764	c = rcu_cbs_completed(rsp, rnp);
1765	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1766		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1767		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1768			break;
1769
1770	/*
1771	 * If there are no sublist for unassigned callbacks, leave.
1772	 * At the same time, advance "i" one sublist, so that "i" will
1773	 * index into the sublist where all the remaining callbacks should
1774	 * be grouped into.
1775	 */
1776	if (++i >= RCU_NEXT_TAIL)
1777		return false;
1778
1779	/*
1780	 * Assign all subsequent callbacks' ->completed number to the next
1781	 * full grace period and group them all in the sublist initially
1782	 * indexed by "i".
1783	 */
1784	for (; i <= RCU_NEXT_TAIL; i++) {
1785		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1786		rdp->nxtcompleted[i] = c;
1787	}
1788	/* Record any needed additional grace periods. */
1789	ret = rcu_start_future_gp(rnp, rdp, NULL);
1790
1791	/* Trace depending on how much we were able to accelerate. */
1792	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1793		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1794	else
1795		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1796	return ret;
1797}
1798
1799/*
1800 * Move any callbacks whose grace period has completed to the
1801 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1802 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1803 * sublist.  This function is idempotent, so it does not hurt to
1804 * invoke it repeatedly.  As long as it is not invoked -too- often...
1805 * Returns true if the RCU grace-period kthread needs to be awakened.
1806 *
1807 * The caller must hold rnp->lock with interrupts disabled.
1808 */
1809static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1810			    struct rcu_data *rdp)
1811{
1812	int i, j;
1813
1814	/* If the CPU has no callbacks, nothing to do. */
1815	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1816		return false;
1817
1818	/*
1819	 * Find all callbacks whose ->completed numbers indicate that they
1820	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1821	 */
1822	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1823		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1824			break;
1825		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1826	}
1827	/* Clean up any sublist tail pointers that were misordered above. */
1828	for (j = RCU_WAIT_TAIL; j < i; j++)
1829		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1830
1831	/* Copy down callbacks to fill in empty sublists. */
1832	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1833		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1834			break;
1835		rdp->nxttail[j] = rdp->nxttail[i];
1836		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1837	}
1838
1839	/* Classify any remaining callbacks. */
1840	return rcu_accelerate_cbs(rsp, rnp, rdp);
1841}
1842
1843/*
1844 * Update CPU-local rcu_data state to record the beginnings and ends of
1845 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1846 * structure corresponding to the current CPU, and must have irqs disabled.
1847 * Returns true if the grace-period kthread needs to be awakened.
1848 */
1849static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1850			      struct rcu_data *rdp)
1851{
1852	bool ret;
1853	bool need_gp;
1854
1855	/* Handle the ends of any preceding grace periods first. */
1856	if (rdp->completed == rnp->completed &&
1857	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1858
1859		/* No grace period end, so just accelerate recent callbacks. */
1860		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1861
1862	} else {
1863
1864		/* Advance callbacks. */
1865		ret = rcu_advance_cbs(rsp, rnp, rdp);
1866
1867		/* Remember that we saw this grace-period completion. */
1868		rdp->completed = rnp->completed;
1869		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1870	}
1871
1872	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1873		/*
1874		 * If the current grace period is waiting for this CPU,
1875		 * set up to detect a quiescent state, otherwise don't
1876		 * go looking for one.
1877		 */
1878		rdp->gpnum = rnp->gpnum;
1879		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1880		need_gp = !!(rnp->qsmask & rdp->grpmask);
1881		rdp->cpu_no_qs.b.norm = need_gp;
1882		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1883		rdp->core_needs_qs = need_gp;
1884		zero_cpu_stall_ticks(rdp);
1885		WRITE_ONCE(rdp->gpwrap, false);
1886	}
1887	return ret;
1888}
1889
1890static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1891{
1892	unsigned long flags;
1893	bool needwake;
1894	struct rcu_node *rnp;
1895
1896	local_irq_save(flags);
1897	rnp = rdp->mynode;
1898	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1899	     rdp->completed == READ_ONCE(rnp->completed) &&
1900	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1901	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1902		local_irq_restore(flags);
1903		return;
1904	}
1905	needwake = __note_gp_changes(rsp, rnp, rdp);
1906	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1907	if (needwake)
1908		rcu_gp_kthread_wake(rsp);
1909}
1910
1911static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1912{
1913	if (delay > 0 &&
1914	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1915		schedule_timeout_uninterruptible(delay);
1916}
1917
1918/*
1919 * Initialize a new grace period.  Return false if no grace period required.
1920 */
1921static bool rcu_gp_init(struct rcu_state *rsp)
1922{
1923	unsigned long oldmask;
1924	struct rcu_data *rdp;
1925	struct rcu_node *rnp = rcu_get_root(rsp);
1926
1927	WRITE_ONCE(rsp->gp_activity, jiffies);
1928	raw_spin_lock_irq_rcu_node(rnp);
1929	if (!READ_ONCE(rsp->gp_flags)) {
1930		/* Spurious wakeup, tell caller to go back to sleep.  */
1931		raw_spin_unlock_irq_rcu_node(rnp);
1932		return false;
1933	}
1934	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1935
1936	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1937		/*
1938		 * Grace period already in progress, don't start another.
1939		 * Not supposed to be able to happen.
1940		 */
1941		raw_spin_unlock_irq_rcu_node(rnp);
1942		return false;
1943	}
1944
1945	/* Advance to a new grace period and initialize state. */
1946	record_gp_stall_check_time(rsp);
1947	/* Record GP times before starting GP, hence smp_store_release(). */
1948	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1949	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1950	raw_spin_unlock_irq_rcu_node(rnp);
1951
1952	/*
1953	 * Apply per-leaf buffered online and offline operations to the
1954	 * rcu_node tree.  Note that this new grace period need not wait
1955	 * for subsequent online CPUs, and that quiescent-state forcing
1956	 * will handle subsequent offline CPUs.
1957	 */
1958	rcu_for_each_leaf_node(rsp, rnp) {
1959		rcu_gp_slow(rsp, gp_preinit_delay);
1960		raw_spin_lock_irq_rcu_node(rnp);
1961		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1962		    !rnp->wait_blkd_tasks) {
1963			/* Nothing to do on this leaf rcu_node structure. */
1964			raw_spin_unlock_irq_rcu_node(rnp);
1965			continue;
1966		}
1967
1968		/* Record old state, apply changes to ->qsmaskinit field. */
1969		oldmask = rnp->qsmaskinit;
1970		rnp->qsmaskinit = rnp->qsmaskinitnext;
1971
1972		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1973		if (!oldmask != !rnp->qsmaskinit) {
1974			if (!oldmask) /* First online CPU for this rcu_node. */
1975				rcu_init_new_rnp(rnp);
1976			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1977				rnp->wait_blkd_tasks = true;
1978			else /* Last offline CPU and can propagate. */
1979				rcu_cleanup_dead_rnp(rnp);
1980		}
1981
1982		/*
1983		 * If all waited-on tasks from prior grace period are
1984		 * done, and if all this rcu_node structure's CPUs are
1985		 * still offline, propagate up the rcu_node tree and
1986		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1987		 * rcu_node structure's CPUs has since come back online,
1988		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1989		 * checks for this, so just call it unconditionally).
1990		 */
1991		if (rnp->wait_blkd_tasks &&
1992		    (!rcu_preempt_has_tasks(rnp) ||
1993		     rnp->qsmaskinit)) {
1994			rnp->wait_blkd_tasks = false;
1995			rcu_cleanup_dead_rnp(rnp);
1996		}
1997
1998		raw_spin_unlock_irq_rcu_node(rnp);
1999	}
2000
2001	/*
2002	 * Set the quiescent-state-needed bits in all the rcu_node
2003	 * structures for all currently online CPUs in breadth-first order,
2004	 * starting from the root rcu_node structure, relying on the layout
2005	 * of the tree within the rsp->node[] array.  Note that other CPUs
2006	 * will access only the leaves of the hierarchy, thus seeing that no
2007	 * grace period is in progress, at least until the corresponding
2008	 * leaf node has been initialized.
2009	 *
2010	 * The grace period cannot complete until the initialization
2011	 * process finishes, because this kthread handles both.
2012	 */
2013	rcu_for_each_node_breadth_first(rsp, rnp) {
2014		rcu_gp_slow(rsp, gp_init_delay);
2015		raw_spin_lock_irq_rcu_node(rnp);
2016		rdp = this_cpu_ptr(rsp->rda);
2017		rcu_preempt_check_blocked_tasks(rnp);
2018		rnp->qsmask = rnp->qsmaskinit;
2019		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2020		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2021			WRITE_ONCE(rnp->completed, rsp->completed);
2022		if (rnp == rdp->mynode)
2023			(void)__note_gp_changes(rsp, rnp, rdp);
2024		rcu_preempt_boost_start_gp(rnp);
2025		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2026					    rnp->level, rnp->grplo,
2027					    rnp->grphi, rnp->qsmask);
2028		raw_spin_unlock_irq_rcu_node(rnp);
2029		cond_resched_rcu_qs();
2030		WRITE_ONCE(rsp->gp_activity, jiffies);
2031	}
2032
2033	return true;
2034}
2035
2036/*
2037 * Helper function for wait_event_interruptible_timeout() wakeup
2038 * at force-quiescent-state time.
2039 */
2040static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2041{
2042	struct rcu_node *rnp = rcu_get_root(rsp);
2043
2044	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2045	*gfp = READ_ONCE(rsp->gp_flags);
2046	if (*gfp & RCU_GP_FLAG_FQS)
2047		return true;
2048
2049	/* The current grace period has completed. */
2050	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2051		return true;
2052
2053	return false;
2054}
2055
2056/*
2057 * Do one round of quiescent-state forcing.
2058 */
2059static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2060{
2061	bool isidle = false;
2062	unsigned long maxj;
2063	struct rcu_node *rnp = rcu_get_root(rsp);
2064
2065	WRITE_ONCE(rsp->gp_activity, jiffies);
2066	rsp->n_force_qs++;
2067	if (first_time) {
2068		/* Collect dyntick-idle snapshots. */
2069		if (is_sysidle_rcu_state(rsp)) {
2070			isidle = true;
2071			maxj = jiffies - ULONG_MAX / 4;
2072		}
2073		force_qs_rnp(rsp, dyntick_save_progress_counter,
2074			     &isidle, &maxj);
2075		rcu_sysidle_report_gp(rsp, isidle, maxj);
2076	} else {
2077		/* Handle dyntick-idle and offline CPUs. */
2078		isidle = true;
2079		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2080	}
2081	/* Clear flag to prevent immediate re-entry. */
2082	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2083		raw_spin_lock_irq_rcu_node(rnp);
2084		WRITE_ONCE(rsp->gp_flags,
2085			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2086		raw_spin_unlock_irq_rcu_node(rnp);
2087	}
2088}
2089
2090/*
2091 * Clean up after the old grace period.
2092 */
2093static void rcu_gp_cleanup(struct rcu_state *rsp)
2094{
2095	unsigned long gp_duration;
2096	bool needgp = false;
2097	int nocb = 0;
2098	struct rcu_data *rdp;
2099	struct rcu_node *rnp = rcu_get_root(rsp);
2100	struct swait_queue_head *sq;
2101
2102	WRITE_ONCE(rsp->gp_activity, jiffies);
2103	raw_spin_lock_irq_rcu_node(rnp);
2104	gp_duration = jiffies - rsp->gp_start;
2105	if (gp_duration > rsp->gp_max)
2106		rsp->gp_max = gp_duration;
2107
2108	/*
2109	 * We know the grace period is complete, but to everyone else
2110	 * it appears to still be ongoing.  But it is also the case
2111	 * that to everyone else it looks like there is nothing that
2112	 * they can do to advance the grace period.  It is therefore
2113	 * safe for us to drop the lock in order to mark the grace
2114	 * period as completed in all of the rcu_node structures.
2115	 */
2116	raw_spin_unlock_irq_rcu_node(rnp);
2117
2118	/*
2119	 * Propagate new ->completed value to rcu_node structures so
2120	 * that other CPUs don't have to wait until the start of the next
2121	 * grace period to process their callbacks.  This also avoids
2122	 * some nasty RCU grace-period initialization races by forcing
2123	 * the end of the current grace period to be completely recorded in
2124	 * all of the rcu_node structures before the beginning of the next
2125	 * grace period is recorded in any of the rcu_node structures.
2126	 */
2127	rcu_for_each_node_breadth_first(rsp, rnp) {
2128		raw_spin_lock_irq_rcu_node(rnp);
2129		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2130		WARN_ON_ONCE(rnp->qsmask);
2131		WRITE_ONCE(rnp->completed, rsp->gpnum);
2132		rdp = this_cpu_ptr(rsp->rda);
2133		if (rnp == rdp->mynode)
2134			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2135		/* smp_mb() provided by prior unlock-lock pair. */
2136		nocb += rcu_future_gp_cleanup(rsp, rnp);
2137		sq = rcu_nocb_gp_get(rnp);
2138		raw_spin_unlock_irq_rcu_node(rnp);
2139		rcu_nocb_gp_cleanup(sq);
2140		cond_resched_rcu_qs();
2141		WRITE_ONCE(rsp->gp_activity, jiffies);
2142		rcu_gp_slow(rsp, gp_cleanup_delay);
2143	}
2144	rnp = rcu_get_root(rsp);
2145	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2146	rcu_nocb_gp_set(rnp, nocb);
2147
2148	/* Declare grace period done. */
2149	WRITE_ONCE(rsp->completed, rsp->gpnum);
2150	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2151	rsp->gp_state = RCU_GP_IDLE;
2152	rdp = this_cpu_ptr(rsp->rda);
2153	/* Advance CBs to reduce false positives below. */
2154	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2155	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2156		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2157		trace_rcu_grace_period(rsp->name,
2158				       READ_ONCE(rsp->gpnum),
2159				       TPS("newreq"));
2160	}
2161	raw_spin_unlock_irq_rcu_node(rnp);
2162}
2163
2164/*
2165 * Body of kthread that handles grace periods.
2166 */
2167static int __noreturn rcu_gp_kthread(void *arg)
2168{
2169	bool first_gp_fqs;
2170	int gf;
2171	unsigned long j;
2172	int ret;
2173	struct rcu_state *rsp = arg;
2174	struct rcu_node *rnp = rcu_get_root(rsp);
2175
2176	rcu_bind_gp_kthread();
2177	for (;;) {
2178
2179		/* Handle grace-period start. */
2180		for (;;) {
2181			trace_rcu_grace_period(rsp->name,
2182					       READ_ONCE(rsp->gpnum),
2183					       TPS("reqwait"));
2184			rsp->gp_state = RCU_GP_WAIT_GPS;
2185			swait_event_interruptible(rsp->gp_wq,
2186						 READ_ONCE(rsp->gp_flags) &
2187						 RCU_GP_FLAG_INIT);
2188			rsp->gp_state = RCU_GP_DONE_GPS;
2189			/* Locking provides needed memory barrier. */
2190			if (rcu_gp_init(rsp))
2191				break;
2192			cond_resched_rcu_qs();
2193			WRITE_ONCE(rsp->gp_activity, jiffies);
2194			WARN_ON(signal_pending(current));
2195			trace_rcu_grace_period(rsp->name,
2196					       READ_ONCE(rsp->gpnum),
2197					       TPS("reqwaitsig"));
2198		}
2199
2200		/* Handle quiescent-state forcing. */
2201		first_gp_fqs = true;
2202		j = jiffies_till_first_fqs;
2203		if (j > HZ) {
2204			j = HZ;
2205			jiffies_till_first_fqs = HZ;
2206		}
2207		ret = 0;
2208		for (;;) {
2209			if (!ret) {
2210				rsp->jiffies_force_qs = jiffies + j;
2211				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2212					   jiffies + 3 * j);
2213			}
2214			trace_rcu_grace_period(rsp->name,
2215					       READ_ONCE(rsp->gpnum),
2216					       TPS("fqswait"));
2217			rsp->gp_state = RCU_GP_WAIT_FQS;
2218			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2219					rcu_gp_fqs_check_wake(rsp, &gf), j);
2220			rsp->gp_state = RCU_GP_DOING_FQS;
2221			/* Locking provides needed memory barriers. */
2222			/* If grace period done, leave loop. */
2223			if (!READ_ONCE(rnp->qsmask) &&
2224			    !rcu_preempt_blocked_readers_cgp(rnp))
2225				break;
2226			/* If time for quiescent-state forcing, do it. */
2227			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2228			    (gf & RCU_GP_FLAG_FQS)) {
2229				trace_rcu_grace_period(rsp->name,
2230						       READ_ONCE(rsp->gpnum),
2231						       TPS("fqsstart"));
2232				rcu_gp_fqs(rsp, first_gp_fqs);
2233				first_gp_fqs = false;
2234				trace_rcu_grace_period(rsp->name,
2235						       READ_ONCE(rsp->gpnum),
2236						       TPS("fqsend"));
2237				cond_resched_rcu_qs();
2238				WRITE_ONCE(rsp->gp_activity, jiffies);
2239				ret = 0; /* Force full wait till next FQS. */
2240				j = jiffies_till_next_fqs;
2241				if (j > HZ) {
2242					j = HZ;
2243					jiffies_till_next_fqs = HZ;
2244				} else if (j < 1) {
2245					j = 1;
2246					jiffies_till_next_fqs = 1;
2247				}
2248			} else {
2249				/* Deal with stray signal. */
2250				cond_resched_rcu_qs();
2251				WRITE_ONCE(rsp->gp_activity, jiffies);
2252				WARN_ON(signal_pending(current));
2253				trace_rcu_grace_period(rsp->name,
2254						       READ_ONCE(rsp->gpnum),
2255						       TPS("fqswaitsig"));
2256				ret = 1; /* Keep old FQS timing. */
2257				j = jiffies;
2258				if (time_after(jiffies, rsp->jiffies_force_qs))
2259					j = 1;
2260				else
2261					j = rsp->jiffies_force_qs - j;
2262			}
2263		}
2264
2265		/* Handle grace-period end. */
2266		rsp->gp_state = RCU_GP_CLEANUP;
2267		rcu_gp_cleanup(rsp);
2268		rsp->gp_state = RCU_GP_CLEANED;
2269	}
2270}
2271
2272/*
2273 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2274 * in preparation for detecting the next grace period.  The caller must hold
2275 * the root node's ->lock and hard irqs must be disabled.
2276 *
2277 * Note that it is legal for a dying CPU (which is marked as offline) to
2278 * invoke this function.  This can happen when the dying CPU reports its
2279 * quiescent state.
2280 *
2281 * Returns true if the grace-period kthread must be awakened.
2282 */
2283static bool
2284rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2285		      struct rcu_data *rdp)
2286{
2287	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2288		/*
2289		 * Either we have not yet spawned the grace-period
2290		 * task, this CPU does not need another grace period,
2291		 * or a grace period is already in progress.
2292		 * Either way, don't start a new grace period.
2293		 */
2294		return false;
2295	}
2296	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2297	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2298			       TPS("newreq"));
2299
2300	/*
2301	 * We can't do wakeups while holding the rnp->lock, as that
2302	 * could cause possible deadlocks with the rq->lock. Defer
2303	 * the wakeup to our caller.
2304	 */
2305	return true;
2306}
2307
2308/*
2309 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2310 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2311 * is invoked indirectly from rcu_advance_cbs(), which would result in
2312 * endless recursion -- or would do so if it wasn't for the self-deadlock
2313 * that is encountered beforehand.
2314 *
2315 * Returns true if the grace-period kthread needs to be awakened.
2316 */
2317static bool rcu_start_gp(struct rcu_state *rsp)
2318{
2319	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2320	struct rcu_node *rnp = rcu_get_root(rsp);
2321	bool ret = false;
2322
2323	/*
2324	 * If there is no grace period in progress right now, any
2325	 * callbacks we have up to this point will be satisfied by the
2326	 * next grace period.  Also, advancing the callbacks reduces the
2327	 * probability of false positives from cpu_needs_another_gp()
2328	 * resulting in pointless grace periods.  So, advance callbacks
2329	 * then start the grace period!
2330	 */
2331	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2332	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2333	return ret;
2334}
2335
2336/*
2337 * Report a full set of quiescent states to the specified rcu_state data
2338 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2339 * kthread if another grace period is required.  Whether we wake
2340 * the grace-period kthread or it awakens itself for the next round
2341 * of quiescent-state forcing, that kthread will clean up after the
2342 * just-completed grace period.  Note that the caller must hold rnp->lock,
2343 * which is released before return.
2344 */
2345static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2346	__releases(rcu_get_root(rsp)->lock)
2347{
2348	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2349	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2350	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2351	rcu_gp_kthread_wake(rsp);
2352}
2353
2354/*
2355 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2356 * Allows quiescent states for a group of CPUs to be reported at one go
2357 * to the specified rcu_node structure, though all the CPUs in the group
2358 * must be represented by the same rcu_node structure (which need not be a
2359 * leaf rcu_node structure, though it often will be).  The gps parameter
2360 * is the grace-period snapshot, which means that the quiescent states
2361 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2362 * must be held upon entry, and it is released before return.
2363 */
2364static void
2365rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2366		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2367	__releases(rnp->lock)
2368{
2369	unsigned long oldmask = 0;
2370	struct rcu_node *rnp_c;
2371
2372	/* Walk up the rcu_node hierarchy. */
2373	for (;;) {
2374		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2375
2376			/*
2377			 * Our bit has already been cleared, or the
2378			 * relevant grace period is already over, so done.
2379			 */
2380			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2381			return;
2382		}
2383		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2384		rnp->qsmask &= ~mask;
2385		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2386						 mask, rnp->qsmask, rnp->level,
2387						 rnp->grplo, rnp->grphi,
2388						 !!rnp->gp_tasks);
2389		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2390
2391			/* Other bits still set at this level, so done. */
2392			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2393			return;
2394		}
2395		mask = rnp->grpmask;
2396		if (rnp->parent == NULL) {
2397
2398			/* No more levels.  Exit loop holding root lock. */
2399
2400			break;
2401		}
2402		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2403		rnp_c = rnp;
2404		rnp = rnp->parent;
2405		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2406		oldmask = rnp_c->qsmask;
2407	}
2408
2409	/*
2410	 * Get here if we are the last CPU to pass through a quiescent
2411	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2412	 * to clean up and start the next grace period if one is needed.
2413	 */
2414	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2415}
2416
2417/*
2418 * Record a quiescent state for all tasks that were previously queued
2419 * on the specified rcu_node structure and that were blocking the current
2420 * RCU grace period.  The caller must hold the specified rnp->lock with
2421 * irqs disabled, and this lock is released upon return, but irqs remain
2422 * disabled.
2423 */
2424static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2425				      struct rcu_node *rnp, unsigned long flags)
2426	__releases(rnp->lock)
2427{
2428	unsigned long gps;
2429	unsigned long mask;
2430	struct rcu_node *rnp_p;
2431
2432	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2433	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2434		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2435		return;  /* Still need more quiescent states! */
2436	}
2437
2438	rnp_p = rnp->parent;
2439	if (rnp_p == NULL) {
2440		/*
2441		 * Only one rcu_node structure in the tree, so don't
2442		 * try to report up to its nonexistent parent!
2443		 */
2444		rcu_report_qs_rsp(rsp, flags);
2445		return;
2446	}
2447
2448	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2449	gps = rnp->gpnum;
2450	mask = rnp->grpmask;
2451	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2452	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2453	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2454}
2455
2456/*
2457 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2458 * structure.  This must be called from the specified CPU.
2459 */
2460static void
2461rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2462{
2463	unsigned long flags;
2464	unsigned long mask;
2465	bool needwake;
2466	struct rcu_node *rnp;
2467
2468	rnp = rdp->mynode;
2469	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2470	if ((rdp->cpu_no_qs.b.norm &&
2471	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2472	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2473	    rdp->gpwrap) {
2474
2475		/*
2476		 * The grace period in which this quiescent state was
2477		 * recorded has ended, so don't report it upwards.
2478		 * We will instead need a new quiescent state that lies
2479		 * within the current grace period.
2480		 */
2481		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2482		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2483		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2484		return;
2485	}
2486	mask = rdp->grpmask;
2487	if ((rnp->qsmask & mask) == 0) {
2488		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2489	} else {
2490		rdp->core_needs_qs = false;
2491
2492		/*
2493		 * This GP can't end until cpu checks in, so all of our
2494		 * callbacks can be processed during the next GP.
2495		 */
2496		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2497
2498		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2499		/* ^^^ Released rnp->lock */
2500		if (needwake)
2501			rcu_gp_kthread_wake(rsp);
2502	}
2503}
2504
2505/*
2506 * Check to see if there is a new grace period of which this CPU
2507 * is not yet aware, and if so, set up local rcu_data state for it.
2508 * Otherwise, see if this CPU has just passed through its first
2509 * quiescent state for this grace period, and record that fact if so.
2510 */
2511static void
2512rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2513{
2514	/* Check for grace-period ends and beginnings. */
2515	note_gp_changes(rsp, rdp);
2516
2517	/*
2518	 * Does this CPU still need to do its part for current grace period?
2519	 * If no, return and let the other CPUs do their part as well.
2520	 */
2521	if (!rdp->core_needs_qs)
2522		return;
2523
2524	/*
2525	 * Was there a quiescent state since the beginning of the grace
2526	 * period? If no, then exit and wait for the next call.
2527	 */
2528	if (rdp->cpu_no_qs.b.norm &&
2529	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2530		return;
2531
2532	/*
2533	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2534	 * judge of that).
2535	 */
2536	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2537}
2538
2539/*
2540 * Send the specified CPU's RCU callbacks to the orphanage.  The
2541 * specified CPU must be offline, and the caller must hold the
2542 * ->orphan_lock.
2543 */
2544static void
2545rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2546			  struct rcu_node *rnp, struct rcu_data *rdp)
2547{
2548	/* No-CBs CPUs do not have orphanable callbacks. */
2549	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2550		return;
2551
2552	/*
2553	 * Orphan the callbacks.  First adjust the counts.  This is safe
2554	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2555	 * cannot be running now.  Thus no memory barrier is required.
2556	 */
2557	if (rdp->nxtlist != NULL) {
2558		rsp->qlen_lazy += rdp->qlen_lazy;
2559		rsp->qlen += rdp->qlen;
2560		rdp->n_cbs_orphaned += rdp->qlen;
2561		rdp->qlen_lazy = 0;
2562		WRITE_ONCE(rdp->qlen, 0);
2563	}
2564
2565	/*
2566	 * Next, move those callbacks still needing a grace period to
2567	 * the orphanage, where some other CPU will pick them up.
2568	 * Some of the callbacks might have gone partway through a grace
2569	 * period, but that is too bad.  They get to start over because we
2570	 * cannot assume that grace periods are synchronized across CPUs.
2571	 * We don't bother updating the ->nxttail[] array yet, instead
2572	 * we just reset the whole thing later on.
2573	 */
2574	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2575		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2576		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2577		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2578	}
2579
2580	/*
2581	 * Then move the ready-to-invoke callbacks to the orphanage,
2582	 * where some other CPU will pick them up.  These will not be
2583	 * required to pass though another grace period: They are done.
2584	 */
2585	if (rdp->nxtlist != NULL) {
2586		*rsp->orphan_donetail = rdp->nxtlist;
2587		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2588	}
2589
2590	/*
2591	 * Finally, initialize the rcu_data structure's list to empty and
2592	 * disallow further callbacks on this CPU.
2593	 */
2594	init_callback_list(rdp);
2595	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2596}
2597
2598/*
2599 * Adopt the RCU callbacks from the specified rcu_state structure's
2600 * orphanage.  The caller must hold the ->orphan_lock.
2601 */
2602static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2603{
2604	int i;
2605	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2606
2607	/* No-CBs CPUs are handled specially. */
2608	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2609	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2610		return;
2611
2612	/* Do the accounting first. */
2613	rdp->qlen_lazy += rsp->qlen_lazy;
2614	rdp->qlen += rsp->qlen;
2615	rdp->n_cbs_adopted += rsp->qlen;
2616	if (rsp->qlen_lazy != rsp->qlen)
2617		rcu_idle_count_callbacks_posted();
2618	rsp->qlen_lazy = 0;
2619	rsp->qlen = 0;
2620
2621	/*
2622	 * We do not need a memory barrier here because the only way we
2623	 * can get here if there is an rcu_barrier() in flight is if
2624	 * we are the task doing the rcu_barrier().
2625	 */
2626
2627	/* First adopt the ready-to-invoke callbacks. */
2628	if (rsp->orphan_donelist != NULL) {
2629		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2630		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2631		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2632			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2633				rdp->nxttail[i] = rsp->orphan_donetail;
2634		rsp->orphan_donelist = NULL;
2635		rsp->orphan_donetail = &rsp->orphan_donelist;
2636	}
2637
2638	/* And then adopt the callbacks that still need a grace period. */
2639	if (rsp->orphan_nxtlist != NULL) {
2640		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2641		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2642		rsp->orphan_nxtlist = NULL;
2643		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2644	}
2645}
2646
2647/*
2648 * Trace the fact that this CPU is going offline.
2649 */
2650static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2651{
2652	RCU_TRACE(unsigned long mask);
2653	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2654	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2655
2656	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2657		return;
2658
2659	RCU_TRACE(mask = rdp->grpmask);
2660	trace_rcu_grace_period(rsp->name,
2661			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2662			       TPS("cpuofl"));
2663}
2664
2665/*
2666 * All CPUs for the specified rcu_node structure have gone offline,
2667 * and all tasks that were preempted within an RCU read-side critical
2668 * section while running on one of those CPUs have since exited their RCU
2669 * read-side critical section.  Some other CPU is reporting this fact with
2670 * the specified rcu_node structure's ->lock held and interrupts disabled.
2671 * This function therefore goes up the tree of rcu_node structures,
2672 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2673 * the leaf rcu_node structure's ->qsmaskinit field has already been
2674 * updated
2675 *
2676 * This function does check that the specified rcu_node structure has
2677 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2678 * prematurely.  That said, invoking it after the fact will cost you
2679 * a needless lock acquisition.  So once it has done its work, don't
2680 * invoke it again.
2681 */
2682static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2683{
2684	long mask;
2685	struct rcu_node *rnp = rnp_leaf;
2686
2687	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2688	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2689		return;
2690	for (;;) {
2691		mask = rnp->grpmask;
2692		rnp = rnp->parent;
2693		if (!rnp)
2694			break;
2695		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2696		rnp->qsmaskinit &= ~mask;
2697		rnp->qsmask &= ~mask;
2698		if (rnp->qsmaskinit) {
2699			raw_spin_unlock_rcu_node(rnp);
2700			/* irqs remain disabled. */
2701			return;
2702		}
2703		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2704	}
2705}
2706
2707/*
2708 * The CPU has been completely removed, and some other CPU is reporting
2709 * this fact from process context.  Do the remainder of the cleanup,
2710 * including orphaning the outgoing CPU's RCU callbacks, and also
2711 * adopting them.  There can only be one CPU hotplug operation at a time,
2712 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2713 */
2714static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2715{
2716	unsigned long flags;
2717	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2718	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2719
2720	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2721		return;
2722
2723	/* Adjust any no-longer-needed kthreads. */
2724	rcu_boost_kthread_setaffinity(rnp, -1);
2725
2726	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2727	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2728	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2729	rcu_adopt_orphan_cbs(rsp, flags);
2730	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2731
2732	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2733		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2734		  cpu, rdp->qlen, rdp->nxtlist);
2735}
2736
2737/*
2738 * Invoke any RCU callbacks that have made it to the end of their grace
2739 * period.  Thottle as specified by rdp->blimit.
2740 */
2741static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2742{
2743	unsigned long flags;
2744	struct rcu_head *next, *list, **tail;
2745	long bl, count, count_lazy;
2746	int i;
2747
2748	/* If no callbacks are ready, just return. */
2749	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2750		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2751		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2752				    need_resched(), is_idle_task(current),
2753				    rcu_is_callbacks_kthread());
2754		return;
2755	}
2756
2757	/*
2758	 * Extract the list of ready callbacks, disabling to prevent
2759	 * races with call_rcu() from interrupt handlers.
2760	 */
2761	local_irq_save(flags);
2762	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2763	bl = rdp->blimit;
2764	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2765	list = rdp->nxtlist;
2766	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2767	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2768	tail = rdp->nxttail[RCU_DONE_TAIL];
2769	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2770		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2771			rdp->nxttail[i] = &rdp->nxtlist;
2772	local_irq_restore(flags);
2773
2774	/* Invoke callbacks. */
2775	count = count_lazy = 0;
2776	while (list) {
2777		next = list->next;
2778		prefetch(next);
2779		debug_rcu_head_unqueue(list);
2780		if (__rcu_reclaim(rsp->name, list))
2781			count_lazy++;
2782		list = next;
2783		/* Stop only if limit reached and CPU has something to do. */
2784		if (++count >= bl &&
2785		    (need_resched() ||
2786		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2787			break;
2788	}
2789
2790	local_irq_save(flags);
2791	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2792			    is_idle_task(current),
2793			    rcu_is_callbacks_kthread());
2794
2795	/* Update count, and requeue any remaining callbacks. */
2796	if (list != NULL) {
2797		*tail = rdp->nxtlist;
2798		rdp->nxtlist = list;
2799		for (i = 0; i < RCU_NEXT_SIZE; i++)
2800			if (&rdp->nxtlist == rdp->nxttail[i])
2801				rdp->nxttail[i] = tail;
2802			else
2803				break;
2804	}
2805	smp_mb(); /* List handling before counting for rcu_barrier(). */
2806	rdp->qlen_lazy -= count_lazy;
2807	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2808	rdp->n_cbs_invoked += count;
2809
2810	/* Reinstate batch limit if we have worked down the excess. */
2811	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2812		rdp->blimit = blimit;
2813
2814	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2815	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2816		rdp->qlen_last_fqs_check = 0;
2817		rdp->n_force_qs_snap = rsp->n_force_qs;
2818	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2819		rdp->qlen_last_fqs_check = rdp->qlen;
2820	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2821
2822	local_irq_restore(flags);
2823
2824	/* Re-invoke RCU core processing if there are callbacks remaining. */
2825	if (cpu_has_callbacks_ready_to_invoke(rdp))
2826		invoke_rcu_core();
2827}
2828
2829/*
2830 * Check to see if this CPU is in a non-context-switch quiescent state
2831 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2832 * Also schedule RCU core processing.
2833 *
2834 * This function must be called from hardirq context.  It is normally
2835 * invoked from the scheduling-clock interrupt.
2836 */
2837void rcu_check_callbacks(int user)
2838{
2839	trace_rcu_utilization(TPS("Start scheduler-tick"));
2840	increment_cpu_stall_ticks();
2841	if (user || rcu_is_cpu_rrupt_from_idle()) {
2842
2843		/*
2844		 * Get here if this CPU took its interrupt from user
2845		 * mode or from the idle loop, and if this is not a
2846		 * nested interrupt.  In this case, the CPU is in
2847		 * a quiescent state, so note it.
2848		 *
2849		 * No memory barrier is required here because both
2850		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2851		 * variables that other CPUs neither access nor modify,
2852		 * at least not while the corresponding CPU is online.
2853		 */
2854
2855		rcu_sched_qs();
2856		rcu_bh_qs();
2857
2858	} else if (!in_softirq()) {
2859
2860		/*
2861		 * Get here if this CPU did not take its interrupt from
2862		 * softirq, in other words, if it is not interrupting
2863		 * a rcu_bh read-side critical section.  This is an _bh
2864		 * critical section, so note it.
2865		 */
2866
2867		rcu_bh_qs();
2868	}
2869	rcu_preempt_check_callbacks();
2870	if (rcu_pending())
2871		invoke_rcu_core();
2872	if (user)
2873		rcu_note_voluntary_context_switch(current);
2874	trace_rcu_utilization(TPS("End scheduler-tick"));
2875}
2876
2877/*
2878 * Scan the leaf rcu_node structures, processing dyntick state for any that
2879 * have not yet encountered a quiescent state, using the function specified.
2880 * Also initiate boosting for any threads blocked on the root rcu_node.
2881 *
2882 * The caller must have suppressed start of new grace periods.
2883 */
2884static void force_qs_rnp(struct rcu_state *rsp,
2885			 int (*f)(struct rcu_data *rsp, bool *isidle,
2886				  unsigned long *maxj),
2887			 bool *isidle, unsigned long *maxj)
2888{
2889	int cpu;
2890	unsigned long flags;
2891	unsigned long mask;
2892	struct rcu_node *rnp;
2893
2894	rcu_for_each_leaf_node(rsp, rnp) {
2895		cond_resched_rcu_qs();
2896		mask = 0;
2897		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2898		if (rnp->qsmask == 0) {
2899			if (rcu_state_p == &rcu_sched_state ||
2900			    rsp != rcu_state_p ||
2901			    rcu_preempt_blocked_readers_cgp(rnp)) {
2902				/*
2903				 * No point in scanning bits because they
2904				 * are all zero.  But we might need to
2905				 * priority-boost blocked readers.
2906				 */
2907				rcu_initiate_boost(rnp, flags);
2908				/* rcu_initiate_boost() releases rnp->lock */
2909				continue;
2910			}
2911			if (rnp->parent &&
2912			    (rnp->parent->qsmask & rnp->grpmask)) {
2913				/*
2914				 * Race between grace-period
2915				 * initialization and task exiting RCU
2916				 * read-side critical section: Report.
2917				 */
2918				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2919				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2920				continue;
2921			}
2922		}
2923		for_each_leaf_node_possible_cpu(rnp, cpu) {
2924			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2925			if ((rnp->qsmask & bit) != 0) {
2926				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2927					mask |= bit;
2928			}
2929		}
2930		if (mask != 0) {
2931			/* Idle/offline CPUs, report (releases rnp->lock. */
2932			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2933		} else {
2934			/* Nothing to do here, so just drop the lock. */
2935			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2936		}
2937	}
2938}
2939
2940/*
2941 * Force quiescent states on reluctant CPUs, and also detect which
2942 * CPUs are in dyntick-idle mode.
2943 */
2944static void force_quiescent_state(struct rcu_state *rsp)
2945{
2946	unsigned long flags;
2947	bool ret;
2948	struct rcu_node *rnp;
2949	struct rcu_node *rnp_old = NULL;
2950
2951	/* Funnel through hierarchy to reduce memory contention. */
2952	rnp = __this_cpu_read(rsp->rda->mynode);
2953	for (; rnp != NULL; rnp = rnp->parent) {
2954		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2955		      !raw_spin_trylock(&rnp->fqslock);
2956		if (rnp_old != NULL)
2957			raw_spin_unlock(&rnp_old->fqslock);
2958		if (ret) {
2959			rsp->n_force_qs_lh++;
2960			return;
2961		}
2962		rnp_old = rnp;
2963	}
2964	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2965
2966	/* Reached the root of the rcu_node tree, acquire lock. */
2967	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2968	raw_spin_unlock(&rnp_old->fqslock);
2969	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2970		rsp->n_force_qs_lh++;
2971		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2972		return;  /* Someone beat us to it. */
2973	}
2974	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2975	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2976	rcu_gp_kthread_wake(rsp);
2977}
2978
2979/*
2980 * This does the RCU core processing work for the specified rcu_state
2981 * and rcu_data structures.  This may be called only from the CPU to
2982 * whom the rdp belongs.
2983 */
2984static void
2985__rcu_process_callbacks(struct rcu_state *rsp)
2986{
2987	unsigned long flags;
2988	bool needwake;
2989	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2990
2991	WARN_ON_ONCE(rdp->beenonline == 0);
2992
2993	/* Update RCU state based on any recent quiescent states. */
2994	rcu_check_quiescent_state(rsp, rdp);
2995
2996	/* Does this CPU require a not-yet-started grace period? */
2997	local_irq_save(flags);
2998	if (cpu_needs_another_gp(rsp, rdp)) {
2999		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3000		needwake = rcu_start_gp(rsp);
3001		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3002		if (needwake)
3003			rcu_gp_kthread_wake(rsp);
3004	} else {
3005		local_irq_restore(flags);
3006	}
3007
3008	/* If there are callbacks ready, invoke them. */
3009	if (cpu_has_callbacks_ready_to_invoke(rdp))
3010		invoke_rcu_callbacks(rsp, rdp);
3011
3012	/* Do any needed deferred wakeups of rcuo kthreads. */
3013	do_nocb_deferred_wakeup(rdp);
3014}
3015
3016/*
3017 * Do RCU core processing for the current CPU.
3018 */
3019static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3020{
3021	struct rcu_state *rsp;
3022
3023	if (cpu_is_offline(smp_processor_id()))
3024		return;
3025	trace_rcu_utilization(TPS("Start RCU core"));
3026	for_each_rcu_flavor(rsp)
3027		__rcu_process_callbacks(rsp);
3028	trace_rcu_utilization(TPS("End RCU core"));
3029}
3030
3031/*
3032 * Schedule RCU callback invocation.  If the specified type of RCU
3033 * does not support RCU priority boosting, just do a direct call,
3034 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3035 * are running on the current CPU with softirqs disabled, the
3036 * rcu_cpu_kthread_task cannot disappear out from under us.
3037 */
3038static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3039{
3040	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3041		return;
3042	if (likely(!rsp->boost)) {
3043		rcu_do_batch(rsp, rdp);
3044		return;
3045	}
3046	invoke_rcu_callbacks_kthread();
3047}
3048
3049static void invoke_rcu_core(void)
3050{
3051	if (cpu_online(smp_processor_id()))
3052		raise_softirq(RCU_SOFTIRQ);
3053}
3054
3055/*
3056 * Handle any core-RCU processing required by a call_rcu() invocation.
3057 */
3058static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3059			    struct rcu_head *head, unsigned long flags)
3060{
3061	bool needwake;
3062
3063	/*
3064	 * If called from an extended quiescent state, invoke the RCU
3065	 * core in order to force a re-evaluation of RCU's idleness.
3066	 */
3067	if (!rcu_is_watching())
3068		invoke_rcu_core();
3069
3070	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3071	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3072		return;
3073
3074	/*
3075	 * Force the grace period if too many callbacks or too long waiting.
3076	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3077	 * if some other CPU has recently done so.  Also, don't bother
3078	 * invoking force_quiescent_state() if the newly enqueued callback
3079	 * is the only one waiting for a grace period to complete.
3080	 */
3081	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3082
3083		/* Are we ignoring a completed grace period? */
3084		note_gp_changes(rsp, rdp);
3085
3086		/* Start a new grace period if one not already started. */
3087		if (!rcu_gp_in_progress(rsp)) {
3088			struct rcu_node *rnp_root = rcu_get_root(rsp);
3089
3090			raw_spin_lock_rcu_node(rnp_root);
3091			needwake = rcu_start_gp(rsp);
3092			raw_spin_unlock_rcu_node(rnp_root);
3093			if (needwake)
3094				rcu_gp_kthread_wake(rsp);
3095		} else {
3096			/* Give the grace period a kick. */
3097			rdp->blimit = LONG_MAX;
3098			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3099			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3100				force_quiescent_state(rsp);
3101			rdp->n_force_qs_snap = rsp->n_force_qs;
3102			rdp->qlen_last_fqs_check = rdp->qlen;
3103		}
3104	}
3105}
3106
3107/*
3108 * RCU callback function to leak a callback.
3109 */
3110static void rcu_leak_callback(struct rcu_head *rhp)
3111{
3112}
3113
3114/*
3115 * Helper function for call_rcu() and friends.  The cpu argument will
3116 * normally be -1, indicating "currently running CPU".  It may specify
3117 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3118 * is expected to specify a CPU.
3119 */
3120static void
3121__call_rcu(struct rcu_head *head, rcu_callback_t func,
3122	   struct rcu_state *rsp, int cpu, bool lazy)
3123{
3124	unsigned long flags;
3125	struct rcu_data *rdp;
3126
3127	/* Misaligned rcu_head! */
3128	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3129
3130	if (debug_rcu_head_queue(head)) {
3131		/* Probable double call_rcu(), so leak the callback. */
3132		WRITE_ONCE(head->func, rcu_leak_callback);
3133		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3134		return;
3135	}
3136	head->func = func;
3137	head->next = NULL;
3138	local_irq_save(flags);
3139	rdp = this_cpu_ptr(rsp->rda);
3140
3141	/* Add the callback to our list. */
3142	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3143		int offline;
3144
3145		if (cpu != -1)
3146			rdp = per_cpu_ptr(rsp->rda, cpu);
3147		if (likely(rdp->mynode)) {
3148			/* Post-boot, so this should be for a no-CBs CPU. */
3149			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3150			WARN_ON_ONCE(offline);
3151			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3152			local_irq_restore(flags);
3153			return;
3154		}
3155		/*
3156		 * Very early boot, before rcu_init().  Initialize if needed
3157		 * and then drop through to queue the callback.
3158		 */
3159		BUG_ON(cpu != -1);
3160		WARN_ON_ONCE(!rcu_is_watching());
3161		if (!likely(rdp->nxtlist))
3162			init_default_callback_list(rdp);
3163	}
3164	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3165	if (lazy)
3166		rdp->qlen_lazy++;
3167	else
3168		rcu_idle_count_callbacks_posted();
3169	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3170	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3171	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3172
3173	if (__is_kfree_rcu_offset((unsigned long)func))
3174		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3175					 rdp->qlen_lazy, rdp->qlen);
3176	else
3177		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3178
3179	/* Go handle any RCU core processing required. */
3180	__call_rcu_core(rsp, rdp, head, flags);
3181	local_irq_restore(flags);
3182}
3183
3184/*
3185 * Queue an RCU-sched callback for invocation after a grace period.
3186 */
3187void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3188{
3189	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3190}
3191EXPORT_SYMBOL_GPL(call_rcu_sched);
3192
3193/*
3194 * Queue an RCU callback for invocation after a quicker grace period.
3195 */
3196void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3197{
3198	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3199}
3200EXPORT_SYMBOL_GPL(call_rcu_bh);
3201
3202/*
3203 * Queue an RCU callback for lazy invocation after a grace period.
3204 * This will likely be later named something like "call_rcu_lazy()",
3205 * but this change will require some way of tagging the lazy RCU
3206 * callbacks in the list of pending callbacks. Until then, this
3207 * function may only be called from __kfree_rcu().
3208 */
3209void kfree_call_rcu(struct rcu_head *head,
3210		    rcu_callback_t func)
3211{
3212	__call_rcu(head, func, rcu_state_p, -1, 1);
3213}
3214EXPORT_SYMBOL_GPL(kfree_call_rcu);
3215
3216/*
3217 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3218 * any blocking grace-period wait automatically implies a grace period
3219 * if there is only one CPU online at any point time during execution
3220 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3221 * occasionally incorrectly indicate that there are multiple CPUs online
3222 * when there was in fact only one the whole time, as this just adds
3223 * some overhead: RCU still operates correctly.
3224 */
3225static inline int rcu_blocking_is_gp(void)
3226{
3227	int ret;
3228
3229	might_sleep();  /* Check for RCU read-side critical section. */
3230	preempt_disable();
3231	ret = num_online_cpus() <= 1;
3232	preempt_enable();
3233	return ret;
3234}
3235
3236/**
3237 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3238 *
3239 * Control will return to the caller some time after a full rcu-sched
3240 * grace period has elapsed, in other words after all currently executing
3241 * rcu-sched read-side critical sections have completed.   These read-side
3242 * critical sections are delimited by rcu_read_lock_sched() and
3243 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3244 * local_irq_disable(), and so on may be used in place of
3245 * rcu_read_lock_sched().
3246 *
3247 * This means that all preempt_disable code sequences, including NMI and
3248 * non-threaded hardware-interrupt handlers, in progress on entry will
3249 * have completed before this primitive returns.  However, this does not
3250 * guarantee that softirq handlers will have completed, since in some
3251 * kernels, these handlers can run in process context, and can block.
3252 *
3253 * Note that this guarantee implies further memory-ordering guarantees.
3254 * On systems with more than one CPU, when synchronize_sched() returns,
3255 * each CPU is guaranteed to have executed a full memory barrier since the
3256 * end of its last RCU-sched read-side critical section whose beginning
3257 * preceded the call to synchronize_sched().  In addition, each CPU having
3258 * an RCU read-side critical section that extends beyond the return from
3259 * synchronize_sched() is guaranteed to have executed a full memory barrier
3260 * after the beginning of synchronize_sched() and before the beginning of
3261 * that RCU read-side critical section.  Note that these guarantees include
3262 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3263 * that are executing in the kernel.
3264 *
3265 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3266 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3267 * to have executed a full memory barrier during the execution of
3268 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3269 * again only if the system has more than one CPU).
3270 *
3271 * This primitive provides the guarantees made by the (now removed)
3272 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3273 * guarantees that rcu_read_lock() sections will have completed.
3274 * In "classic RCU", these two guarantees happen to be one and
3275 * the same, but can differ in realtime RCU implementations.
3276 */
3277void synchronize_sched(void)
3278{
3279	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3280			 lock_is_held(&rcu_lock_map) ||
3281			 lock_is_held(&rcu_sched_lock_map),
3282			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3283	if (rcu_blocking_is_gp())
3284		return;
3285	if (rcu_gp_is_expedited())
3286		synchronize_sched_expedited();
3287	else
3288		wait_rcu_gp(call_rcu_sched);
3289}
3290EXPORT_SYMBOL_GPL(synchronize_sched);
3291
3292/**
3293 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3294 *
3295 * Control will return to the caller some time after a full rcu_bh grace
3296 * period has elapsed, in other words after all currently executing rcu_bh
3297 * read-side critical sections have completed.  RCU read-side critical
3298 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3299 * and may be nested.
3300 *
3301 * See the description of synchronize_sched() for more detailed information
3302 * on memory ordering guarantees.
3303 */
3304void synchronize_rcu_bh(void)
3305{
3306	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3307			 lock_is_held(&rcu_lock_map) ||
3308			 lock_is_held(&rcu_sched_lock_map),
3309			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3310	if (rcu_blocking_is_gp())
3311		return;
3312	if (rcu_gp_is_expedited())
3313		synchronize_rcu_bh_expedited();
3314	else
3315		wait_rcu_gp(call_rcu_bh);
3316}
3317EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3318
3319/**
3320 * get_state_synchronize_rcu - Snapshot current RCU state
3321 *
3322 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3323 * to determine whether or not a full grace period has elapsed in the
3324 * meantime.
3325 */
3326unsigned long get_state_synchronize_rcu(void)
3327{
3328	/*
3329	 * Any prior manipulation of RCU-protected data must happen
3330	 * before the load from ->gpnum.
3331	 */
3332	smp_mb();  /* ^^^ */
3333
3334	/*
3335	 * Make sure this load happens before the purportedly
3336	 * time-consuming work between get_state_synchronize_rcu()
3337	 * and cond_synchronize_rcu().
3338	 */
3339	return smp_load_acquire(&rcu_state_p->gpnum);
3340}
3341EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3342
3343/**
3344 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3345 *
3346 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3347 *
3348 * If a full RCU grace period has elapsed since the earlier call to
3349 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3350 * synchronize_rcu() to wait for a full grace period.
3351 *
3352 * Yes, this function does not take counter wrap into account.  But
3353 * counter wrap is harmless.  If the counter wraps, we have waited for
3354 * more than 2 billion grace periods (and way more on a 64-bit system!),
3355 * so waiting for one additional grace period should be just fine.
3356 */
3357void cond_synchronize_rcu(unsigned long oldstate)
3358{
3359	unsigned long newstate;
3360
3361	/*
3362	 * Ensure that this load happens before any RCU-destructive
3363	 * actions the caller might carry out after we return.
3364	 */
3365	newstate = smp_load_acquire(&rcu_state_p->completed);
3366	if (ULONG_CMP_GE(oldstate, newstate))
3367		synchronize_rcu();
3368}
3369EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3370
3371/**
3372 * get_state_synchronize_sched - Snapshot current RCU-sched state
3373 *
3374 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3375 * to determine whether or not a full grace period has elapsed in the
3376 * meantime.
3377 */
3378unsigned long get_state_synchronize_sched(void)
3379{
3380	/*
3381	 * Any prior manipulation of RCU-protected data must happen
3382	 * before the load from ->gpnum.
3383	 */
3384	smp_mb();  /* ^^^ */
3385
3386	/*
3387	 * Make sure this load happens before the purportedly
3388	 * time-consuming work between get_state_synchronize_sched()
3389	 * and cond_synchronize_sched().
3390	 */
3391	return smp_load_acquire(&rcu_sched_state.gpnum);
3392}
3393EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3394
3395/**
3396 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3397 *
3398 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3399 *
3400 * If a full RCU-sched grace period has elapsed since the earlier call to
3401 * get_state_synchronize_sched(), just return.  Otherwise, invoke
3402 * synchronize_sched() to wait for a full grace period.
3403 *
3404 * Yes, this function does not take counter wrap into account.  But
3405 * counter wrap is harmless.  If the counter wraps, we have waited for
3406 * more than 2 billion grace periods (and way more on a 64-bit system!),
3407 * so waiting for one additional grace period should be just fine.
3408 */
3409void cond_synchronize_sched(unsigned long oldstate)
3410{
3411	unsigned long newstate;
3412
3413	/*
3414	 * Ensure that this load happens before any RCU-destructive
3415	 * actions the caller might carry out after we return.
3416	 */
3417	newstate = smp_load_acquire(&rcu_sched_state.completed);
3418	if (ULONG_CMP_GE(oldstate, newstate))
3419		synchronize_sched();
3420}
3421EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3422
3423/* Adjust sequence number for start of update-side operation. */
3424static void rcu_seq_start(unsigned long *sp)
3425{
3426	WRITE_ONCE(*sp, *sp + 1);
3427	smp_mb(); /* Ensure update-side operation after counter increment. */
3428	WARN_ON_ONCE(!(*sp & 0x1));
3429}
3430
3431/* Adjust sequence number for end of update-side operation. */
3432static void rcu_seq_end(unsigned long *sp)
3433{
3434	smp_mb(); /* Ensure update-side operation before counter increment. */
3435	WRITE_ONCE(*sp, *sp + 1);
3436	WARN_ON_ONCE(*sp & 0x1);
3437}
3438
3439/* Take a snapshot of the update side's sequence number. */
3440static unsigned long rcu_seq_snap(unsigned long *sp)
3441{
3442	unsigned long s;
3443
3444	s = (READ_ONCE(*sp) + 3) & ~0x1;
3445	smp_mb(); /* Above access must not bleed into critical section. */
3446	return s;
3447}
3448
3449/*
3450 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3451 * full update-side operation has occurred.
3452 */
3453static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3454{
3455	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3456}
3457
3458/*
3459 * Check to see if there is any immediate RCU-related work to be done
3460 * by the current CPU, for the specified type of RCU, returning 1 if so.
3461 * The checks are in order of increasing expense: checks that can be
3462 * carried out against CPU-local state are performed first.  However,
3463 * we must check for CPU stalls first, else we might not get a chance.
3464 */
3465static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3466{
3467	struct rcu_node *rnp = rdp->mynode;
3468
3469	rdp->n_rcu_pending++;
3470
3471	/* Check for CPU stalls, if enabled. */
3472	check_cpu_stall(rsp, rdp);
3473
3474	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3475	if (rcu_nohz_full_cpu(rsp))
3476		return 0;
3477
3478	/* Is the RCU core waiting for a quiescent state from this CPU? */
3479	if (rcu_scheduler_fully_active &&
3480	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3481	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3482		rdp->n_rp_core_needs_qs++;
3483	} else if (rdp->core_needs_qs &&
3484		   (!rdp->cpu_no_qs.b.norm ||
3485		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3486		rdp->n_rp_report_qs++;
3487		return 1;
3488	}
3489
3490	/* Does this CPU have callbacks ready to invoke? */
3491	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3492		rdp->n_rp_cb_ready++;
3493		return 1;
3494	}
3495
3496	/* Has RCU gone idle with this CPU needing another grace period? */
3497	if (cpu_needs_another_gp(rsp, rdp)) {
3498		rdp->n_rp_cpu_needs_gp++;
3499		return 1;
3500	}
3501
3502	/* Has another RCU grace period completed?  */
3503	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3504		rdp->n_rp_gp_completed++;
3505		return 1;
3506	}
3507
3508	/* Has a new RCU grace period started? */
3509	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3510	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3511		rdp->n_rp_gp_started++;
3512		return 1;
3513	}
3514
3515	/* Does this CPU need a deferred NOCB wakeup? */
3516	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3517		rdp->n_rp_nocb_defer_wakeup++;
3518		return 1;
3519	}
3520
3521	/* nothing to do */
3522	rdp->n_rp_need_nothing++;
3523	return 0;
3524}
3525
3526/*
3527 * Check to see if there is any immediate RCU-related work to be done
3528 * by the current CPU, returning 1 if so.  This function is part of the
3529 * RCU implementation; it is -not- an exported member of the RCU API.
3530 */
3531static int rcu_pending(void)
3532{
3533	struct rcu_state *rsp;
3534
3535	for_each_rcu_flavor(rsp)
3536		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3537			return 1;
3538	return 0;
3539}
3540
3541/*
3542 * Return true if the specified CPU has any callback.  If all_lazy is
3543 * non-NULL, store an indication of whether all callbacks are lazy.
3544 * (If there are no callbacks, all of them are deemed to be lazy.)
3545 */
3546static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3547{
3548	bool al = true;
3549	bool hc = false;
3550	struct rcu_data *rdp;
3551	struct rcu_state *rsp;
3552
3553	for_each_rcu_flavor(rsp) {
3554		rdp = this_cpu_ptr(rsp->rda);
3555		if (!rdp->nxtlist)
3556			continue;
3557		hc = true;
3558		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3559			al = false;
3560			break;
3561		}
3562	}
3563	if (all_lazy)
3564		*all_lazy = al;
3565	return hc;
3566}
3567
3568/*
3569 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3570 * the compiler is expected to optimize this away.
3571 */
3572static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3573			       int cpu, unsigned long done)
3574{
3575	trace_rcu_barrier(rsp->name, s, cpu,
3576			  atomic_read(&rsp->barrier_cpu_count), done);
3577}
3578
3579/*
3580 * RCU callback function for _rcu_barrier().  If we are last, wake
3581 * up the task executing _rcu_barrier().
3582 */
3583static void rcu_barrier_callback(struct rcu_head *rhp)
3584{
3585	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3586	struct rcu_state *rsp = rdp->rsp;
3587
3588	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3589		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3590		complete(&rsp->barrier_completion);
3591	} else {
3592		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3593	}
3594}
3595
3596/*
3597 * Called with preemption disabled, and from cross-cpu IRQ context.
3598 */
3599static void rcu_barrier_func(void *type)
3600{
3601	struct rcu_state *rsp = type;
3602	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3603
3604	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3605	atomic_inc(&rsp->barrier_cpu_count);
3606	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3607}
3608
3609/*
3610 * Orchestrate the specified type of RCU barrier, waiting for all
3611 * RCU callbacks of the specified type to complete.
3612 */
3613static void _rcu_barrier(struct rcu_state *rsp)
3614{
3615	int cpu;
3616	struct rcu_data *rdp;
3617	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3618
3619	_rcu_barrier_trace(rsp, "Begin", -1, s);
3620
3621	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3622	mutex_lock(&rsp->barrier_mutex);
3623
3624	/* Did someone else do our work for us? */
3625	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3626		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3627		smp_mb(); /* caller's subsequent code after above check. */
3628		mutex_unlock(&rsp->barrier_mutex);
3629		return;
3630	}
3631
3632	/* Mark the start of the barrier operation. */
3633	rcu_seq_start(&rsp->barrier_sequence);
3634	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3635
3636	/*
3637	 * Initialize the count to one rather than to zero in order to
3638	 * avoid a too-soon return to zero in case of a short grace period
3639	 * (or preemption of this task).  Exclude CPU-hotplug operations
3640	 * to ensure that no offline CPU has callbacks queued.
3641	 */
3642	init_completion(&rsp->barrier_completion);
3643	atomic_set(&rsp->barrier_cpu_count, 1);
3644	get_online_cpus();
3645
3646	/*
3647	 * Force each CPU with callbacks to register a new callback.
3648	 * When that callback is invoked, we will know that all of the
3649	 * corresponding CPU's preceding callbacks have been invoked.
3650	 */
3651	for_each_possible_cpu(cpu) {
3652		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3653			continue;
3654		rdp = per_cpu_ptr(rsp->rda, cpu);
3655		if (rcu_is_nocb_cpu(cpu)) {
3656			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3657				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3658						   rsp->barrier_sequence);
3659			} else {
3660				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3661						   rsp->barrier_sequence);
3662				smp_mb__before_atomic();
3663				atomic_inc(&rsp->barrier_cpu_count);
3664				__call_rcu(&rdp->barrier_head,
3665					   rcu_barrier_callback, rsp, cpu, 0);
3666			}
3667		} else if (READ_ONCE(rdp->qlen)) {
3668			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3669					   rsp->barrier_sequence);
3670			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3671		} else {
3672			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3673					   rsp->barrier_sequence);
3674		}
3675	}
3676	put_online_cpus();
3677
3678	/*
3679	 * Now that we have an rcu_barrier_callback() callback on each
3680	 * CPU, and thus each counted, remove the initial count.
3681	 */
3682	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3683		complete(&rsp->barrier_completion);
3684
3685	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3686	wait_for_completion(&rsp->barrier_completion);
3687
3688	/* Mark the end of the barrier operation. */
3689	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3690	rcu_seq_end(&rsp->barrier_sequence);
3691
3692	/* Other rcu_barrier() invocations can now safely proceed. */
3693	mutex_unlock(&rsp->barrier_mutex);
3694}
3695
3696/**
3697 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3698 */
3699void rcu_barrier_bh(void)
3700{
3701	_rcu_barrier(&rcu_bh_state);
3702}
3703EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3704
3705/**
3706 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3707 */
3708void rcu_barrier_sched(void)
3709{
3710	_rcu_barrier(&rcu_sched_state);
3711}
3712EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3713
3714/*
3715 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3716 * first CPU in a given leaf rcu_node structure coming online.  The caller
3717 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3718 * disabled.
3719 */
3720static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3721{
3722	long mask;
3723	struct rcu_node *rnp = rnp_leaf;
3724
3725	for (;;) {
3726		mask = rnp->grpmask;
3727		rnp = rnp->parent;
3728		if (rnp == NULL)
3729			return;
3730		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3731		rnp->qsmaskinit |= mask;
3732		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3733	}
3734}
3735
3736/*
3737 * Do boot-time initialization of a CPU's per-CPU RCU data.
3738 */
3739static void __init
3740rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3741{
3742	unsigned long flags;
3743	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3744	struct rcu_node *rnp = rcu_get_root(rsp);
3745
3746	/* Set up local state, ensuring consistent view of global state. */
3747	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3748	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3749	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3750	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3751	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3752	rdp->cpu = cpu;
3753	rdp->rsp = rsp;
3754	rcu_boot_init_nocb_percpu_data(rdp);
3755	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3756}
3757
3758/*
3759 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3760 * offline event can be happening at a given time.  Note also that we
3761 * can accept some slop in the rsp->completed access due to the fact
3762 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3763 */
3764static void
3765rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3766{
3767	unsigned long flags;
3768	unsigned long mask;
3769	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3770	struct rcu_node *rnp = rcu_get_root(rsp);
3771
3772	/* Set up local state, ensuring consistent view of global state. */
3773	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3774	rdp->qlen_last_fqs_check = 0;
3775	rdp->n_force_qs_snap = rsp->n_force_qs;
3776	rdp->blimit = blimit;
3777	if (!rdp->nxtlist)
3778		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3779	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3780	rcu_sysidle_init_percpu_data(rdp->dynticks);
3781	atomic_set(&rdp->dynticks->dynticks,
3782		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3783	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3784
3785	/*
3786	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3787	 * propagation up the rcu_node tree will happen at the beginning
3788	 * of the next grace period.
3789	 */
3790	rnp = rdp->mynode;
3791	mask = rdp->grpmask;
3792	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3793	if (!rdp->beenonline)
3794		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3795	rdp->beenonline = true;	 /* We have now been online. */
3796	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3797	rdp->completed = rnp->completed;
3798	rdp->cpu_no_qs.b.norm = true;
3799	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3800	rdp->core_needs_qs = false;
3801	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3802	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3803}
3804
3805int rcutree_prepare_cpu(unsigned int cpu)
3806{
3807	struct rcu_state *rsp;
3808
3809	for_each_rcu_flavor(rsp)
3810		rcu_init_percpu_data(cpu, rsp);
3811
3812	rcu_prepare_kthreads(cpu);
3813	rcu_spawn_all_nocb_kthreads(cpu);
3814
3815	return 0;
3816}
3817
3818static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3819{
3820	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3821
3822	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3823}
3824
3825int rcutree_online_cpu(unsigned int cpu)
3826{
3827	sync_sched_exp_online_cleanup(cpu);
3828	rcutree_affinity_setting(cpu, -1);
3829	return 0;
3830}
3831
3832int rcutree_offline_cpu(unsigned int cpu)
3833{
3834	rcutree_affinity_setting(cpu, cpu);
3835	return 0;
3836}
3837
3838
3839int rcutree_dying_cpu(unsigned int cpu)
3840{
3841	struct rcu_state *rsp;
3842
3843	for_each_rcu_flavor(rsp)
3844		rcu_cleanup_dying_cpu(rsp);
3845	return 0;
3846}
3847
3848int rcutree_dead_cpu(unsigned int cpu)
3849{
3850	struct rcu_state *rsp;
3851
3852	for_each_rcu_flavor(rsp) {
3853		rcu_cleanup_dead_cpu(cpu, rsp);
3854		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3855	}
3856	return 0;
3857}
3858
3859/*
3860 * Mark the specified CPU as being online so that subsequent grace periods
3861 * (both expedited and normal) will wait on it.  Note that this means that
3862 * incoming CPUs are not allowed to use RCU read-side critical sections
3863 * until this function is called.  Failing to observe this restriction
3864 * will result in lockdep splats.
3865 */
3866void rcu_cpu_starting(unsigned int cpu)
3867{
3868	unsigned long flags;
3869	unsigned long mask;
3870	struct rcu_data *rdp;
3871	struct rcu_node *rnp;
3872	struct rcu_state *rsp;
3873
3874	for_each_rcu_flavor(rsp) {
3875		rdp = this_cpu_ptr(rsp->rda);
3876		rnp = rdp->mynode;
3877		mask = rdp->grpmask;
3878		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3879		rnp->qsmaskinitnext |= mask;
3880		rnp->expmaskinitnext |= mask;
3881		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3882	}
3883}
3884
3885#ifdef CONFIG_HOTPLUG_CPU
3886/*
3887 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3888 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3889 * bit masks.
3890 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3891 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3892 * bit masks.
3893 */
3894static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3895{
3896	unsigned long flags;
3897	unsigned long mask;
3898	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3899	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3900
3901	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3902	mask = rdp->grpmask;
3903	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3904	rnp->qsmaskinitnext &= ~mask;
3905	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3906}
3907
3908void rcu_report_dead(unsigned int cpu)
3909{
3910	struct rcu_state *rsp;
3911
3912	/* QS for any half-done expedited RCU-sched GP. */
3913	preempt_disable();
3914	rcu_report_exp_rdp(&rcu_sched_state,
3915			   this_cpu_ptr(rcu_sched_state.rda), true);
3916	preempt_enable();
3917	for_each_rcu_flavor(rsp)
3918		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3919}
3920#endif
3921
3922static int rcu_pm_notify(struct notifier_block *self,
3923			 unsigned long action, void *hcpu)
3924{
3925	switch (action) {
3926	case PM_HIBERNATION_PREPARE:
3927	case PM_SUSPEND_PREPARE:
3928		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3929			rcu_expedite_gp();
3930		break;
3931	case PM_POST_HIBERNATION:
3932	case PM_POST_SUSPEND:
3933		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3934			rcu_unexpedite_gp();
3935		break;
3936	default:
3937		break;
3938	}
3939	return NOTIFY_OK;
3940}
3941
3942/*
3943 * Spawn the kthreads that handle each RCU flavor's grace periods.
3944 */
3945static int __init rcu_spawn_gp_kthread(void)
3946{
3947	unsigned long flags;
3948	int kthread_prio_in = kthread_prio;
3949	struct rcu_node *rnp;
3950	struct rcu_state *rsp;
3951	struct sched_param sp;
3952	struct task_struct *t;
3953
3954	/* Force priority into range. */
3955	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3956		kthread_prio = 1;
3957	else if (kthread_prio < 0)
3958		kthread_prio = 0;
3959	else if (kthread_prio > 99)
3960		kthread_prio = 99;
3961	if (kthread_prio != kthread_prio_in)
3962		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3963			 kthread_prio, kthread_prio_in);
3964
3965	rcu_scheduler_fully_active = 1;
3966	for_each_rcu_flavor(rsp) {
3967		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3968		BUG_ON(IS_ERR(t));
3969		rnp = rcu_get_root(rsp);
3970		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3971		rsp->gp_kthread = t;
3972		if (kthread_prio) {
3973			sp.sched_priority = kthread_prio;
3974			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3975		}
3976		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3977		wake_up_process(t);
3978	}
3979	rcu_spawn_nocb_kthreads();
3980	rcu_spawn_boost_kthreads();
3981	return 0;
3982}
3983early_initcall(rcu_spawn_gp_kthread);
3984
3985/*
3986 * This function is invoked towards the end of the scheduler's
3987 * initialization process.  Before this is called, the idle task might
3988 * contain synchronous grace-period primitives (during which time, this idle
3989 * task is booting the system, and such primitives are no-ops).  After this
3990 * function is called, any synchronous grace-period primitives are run as
3991 * expedited, with the requesting task driving the grace period forward.
3992 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
3993 * runtime RCU functionality.
3994 */
3995void rcu_scheduler_starting(void)
3996{
3997	WARN_ON(num_online_cpus() != 1);
3998	WARN_ON(nr_context_switches() > 0);
3999	rcu_test_sync_prims();
4000	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4001	rcu_test_sync_prims();
4002}
4003
4004/*
4005 * Compute the per-level fanout, either using the exact fanout specified
4006 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4007 */
4008static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4009{
4010	int i;
4011
4012	if (rcu_fanout_exact) {
4013		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4014		for (i = rcu_num_lvls - 2; i >= 0; i--)
4015			levelspread[i] = RCU_FANOUT;
4016	} else {
4017		int ccur;
4018		int cprv;
4019
4020		cprv = nr_cpu_ids;
4021		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4022			ccur = levelcnt[i];
4023			levelspread[i] = (cprv + ccur - 1) / ccur;
4024			cprv = ccur;
4025		}
4026	}
4027}
4028
4029/*
4030 * Helper function for rcu_init() that initializes one rcu_state structure.
4031 */
4032static void __init rcu_init_one(struct rcu_state *rsp)
4033{
4034	static const char * const buf[] = RCU_NODE_NAME_INIT;
4035	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4036	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4037	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4038	static u8 fl_mask = 0x1;
4039
4040	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4041	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4042	int cpustride = 1;
4043	int i;
4044	int j;
4045	struct rcu_node *rnp;
4046
4047	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4048
4049	/* Silence gcc 4.8 false positive about array index out of range. */
4050	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4051		panic("rcu_init_one: rcu_num_lvls out of range");
4052
4053	/* Initialize the level-tracking arrays. */
4054
4055	for (i = 0; i < rcu_num_lvls; i++)
4056		levelcnt[i] = num_rcu_lvl[i];
4057	for (i = 1; i < rcu_num_lvls; i++)
4058		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4059	rcu_init_levelspread(levelspread, levelcnt);
4060	rsp->flavor_mask = fl_mask;
4061	fl_mask <<= 1;
4062
4063	/* Initialize the elements themselves, starting from the leaves. */
4064
4065	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4066		cpustride *= levelspread[i];
4067		rnp = rsp->level[i];
4068		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4069			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4070			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4071						   &rcu_node_class[i], buf[i]);
4072			raw_spin_lock_init(&rnp->fqslock);
4073			lockdep_set_class_and_name(&rnp->fqslock,
4074						   &rcu_fqs_class[i], fqs[i]);
4075			rnp->gpnum = rsp->gpnum;
4076			rnp->completed = rsp->completed;
4077			rnp->qsmask = 0;
4078			rnp->qsmaskinit = 0;
4079			rnp->grplo = j * cpustride;
4080			rnp->grphi = (j + 1) * cpustride - 1;
4081			if (rnp->grphi >= nr_cpu_ids)
4082				rnp->grphi = nr_cpu_ids - 1;
4083			if (i == 0) {
4084				rnp->grpnum = 0;
4085				rnp->grpmask = 0;
4086				rnp->parent = NULL;
4087			} else {
4088				rnp->grpnum = j % levelspread[i - 1];
4089				rnp->grpmask = 1UL << rnp->grpnum;
4090				rnp->parent = rsp->level[i - 1] +
4091					      j / levelspread[i - 1];
4092			}
4093			rnp->level = i;
4094			INIT_LIST_HEAD(&rnp->blkd_tasks);
4095			rcu_init_one_nocb(rnp);
4096			init_waitqueue_head(&rnp->exp_wq[0]);
4097			init_waitqueue_head(&rnp->exp_wq[1]);
4098			init_waitqueue_head(&rnp->exp_wq[2]);
4099			init_waitqueue_head(&rnp->exp_wq[3]);
4100			spin_lock_init(&rnp->exp_lock);
4101		}
4102	}
4103
4104	init_swait_queue_head(&rsp->gp_wq);
4105	init_swait_queue_head(&rsp->expedited_wq);
4106	rnp = rsp->level[rcu_num_lvls - 1];
4107	for_each_possible_cpu(i) {
4108		while (i > rnp->grphi)
4109			rnp++;
4110		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4111		rcu_boot_init_percpu_data(i, rsp);
4112	}
4113	list_add(&rsp->flavors, &rcu_struct_flavors);
4114}
4115
4116/*
4117 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4118 * replace the definitions in tree.h because those are needed to size
4119 * the ->node array in the rcu_state structure.
4120 */
4121static void __init rcu_init_geometry(void)
4122{
4123	ulong d;
4124	int i;
4125	int rcu_capacity[RCU_NUM_LVLS];
4126
4127	/*
4128	 * Initialize any unspecified boot parameters.
4129	 * The default values of jiffies_till_first_fqs and
4130	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4131	 * value, which is a function of HZ, then adding one for each
4132	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4133	 */
4134	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4135	if (jiffies_till_first_fqs == ULONG_MAX)
4136		jiffies_till_first_fqs = d;
4137	if (jiffies_till_next_fqs == ULONG_MAX)
4138		jiffies_till_next_fqs = d;
4139
4140	/* If the compile-time values are accurate, just leave. */
4141	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4142	    nr_cpu_ids == NR_CPUS)
4143		return;
4144	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4145		rcu_fanout_leaf, nr_cpu_ids);
4146
4147	/*
4148	 * The boot-time rcu_fanout_leaf parameter must be at least two
4149	 * and cannot exceed the number of bits in the rcu_node masks.
4150	 * Complain and fall back to the compile-time values if this
4151	 * limit is exceeded.
4152	 */
4153	if (rcu_fanout_leaf < 2 ||
4154	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4155		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4156		WARN_ON(1);
4157		return;
4158	}
4159
4160	/*
4161	 * Compute number of nodes that can be handled an rcu_node tree
4162	 * with the given number of levels.
4163	 */
4164	rcu_capacity[0] = rcu_fanout_leaf;
4165	for (i = 1; i < RCU_NUM_LVLS; i++)
4166		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4167
4168	/*
4169	 * The tree must be able to accommodate the configured number of CPUs.
4170	 * If this limit is exceeded, fall back to the compile-time values.
4171	 */
4172	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4173		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4174		WARN_ON(1);
4175		return;
4176	}
4177
4178	/* Calculate the number of levels in the tree. */
4179	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4180	}
4181	rcu_num_lvls = i + 1;
4182
4183	/* Calculate the number of rcu_nodes at each level of the tree. */
4184	for (i = 0; i < rcu_num_lvls; i++) {
4185		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4186		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4187	}
4188
4189	/* Calculate the total number of rcu_node structures. */
4190	rcu_num_nodes = 0;
4191	for (i = 0; i < rcu_num_lvls; i++)
4192		rcu_num_nodes += num_rcu_lvl[i];
4193}
4194
4195/*
4196 * Dump out the structure of the rcu_node combining tree associated
4197 * with the rcu_state structure referenced by rsp.
4198 */
4199static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4200{
4201	int level = 0;
4202	struct rcu_node *rnp;
4203
4204	pr_info("rcu_node tree layout dump\n");
4205	pr_info(" ");
4206	rcu_for_each_node_breadth_first(rsp, rnp) {
4207		if (rnp->level != level) {
4208			pr_cont("\n");
4209			pr_info(" ");
4210			level = rnp->level;
4211		}
4212		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4213	}
4214	pr_cont("\n");
4215}
4216
4217void __init rcu_init(void)
4218{
4219	int cpu;
4220
4221	rcu_early_boot_tests();
4222
4223	rcu_bootup_announce();
4224	rcu_init_geometry();
4225	rcu_init_one(&rcu_bh_state);
4226	rcu_init_one(&rcu_sched_state);
4227	if (dump_tree)
4228		rcu_dump_rcu_node_tree(&rcu_sched_state);
4229	__rcu_init_preempt();
4230	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4231
4232	/*
4233	 * We don't need protection against CPU-hotplug here because
4234	 * this is called early in boot, before either interrupts
4235	 * or the scheduler are operational.
4236	 */
4237	pm_notifier(rcu_pm_notify, 0);
4238	for_each_online_cpu(cpu) {
4239		rcutree_prepare_cpu(cpu);
4240		rcu_cpu_starting(cpu);
4241	}
4242}
4243
4244#include "tree_exp.h"
4245#include "tree_plugin.h"