Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *	Documentation/RCU
  29 */
 
 
 
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
 
  38#include <linux/nmi.h>
  39#include <linux/atomic.h>
  40#include <linux/bitops.h>
  41#include <linux/export.h>
  42#include <linux/completion.h>
  43#include <linux/moduleparam.h>
 
 
  44#include <linux/percpu.h>
  45#include <linux/notifier.h>
  46#include <linux/cpu.h>
  47#include <linux/mutex.h>
  48#include <linux/time.h>
  49#include <linux/kernel_stat.h>
  50#include <linux/wait.h>
  51#include <linux/kthread.h>
 
  52#include <linux/prefetch.h>
  53#include <linux/delay.h>
  54#include <linux/stop_machine.h>
  55#include <linux/random.h>
  56#include <linux/trace_events.h>
  57#include <linux/suspend.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59#include "tree.h"
  60#include "rcu.h"
  61
  62#ifdef MODULE_PARAM_PREFIX
  63#undef MODULE_PARAM_PREFIX
  64#endif
  65#define MODULE_PARAM_PREFIX "rcutree."
  66
  67/* Data structures. */
  68
  69/*
  70 * In order to export the rcu_state name to the tracing tools, it
  71 * needs to be added in the __tracepoint_string section.
  72 * This requires defining a separate variable tp_<sname>_varname
  73 * that points to the string being used, and this will allow
  74 * the tracing userspace tools to be able to decipher the string
  75 * address to the matching string.
  76 */
  77#ifdef CONFIG_TRACING
  78# define DEFINE_RCU_TPS(sname) \
  79static char sname##_varname[] = #sname; \
  80static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  81# define RCU_STATE_NAME(sname) sname##_varname
  82#else
  83# define DEFINE_RCU_TPS(sname)
  84# define RCU_STATE_NAME(sname) __stringify(sname)
  85#endif
  86
  87#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  88DEFINE_RCU_TPS(sname) \
  89static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  90struct rcu_state sname##_state = { \
  91	.level = { &sname##_state.node[0] }, \
  92	.rda = &sname##_data, \
  93	.call = cr, \
  94	.gp_state = RCU_GP_IDLE, \
  95	.gpnum = 0UL - 300UL, \
  96	.completed = 0UL - 300UL, \
  97	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  98	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
  99	.orphan_donetail = &sname##_state.orphan_donelist, \
 100	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 101	.name = RCU_STATE_NAME(sname), \
 102	.abbr = sabbr, \
 103	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
 104	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
 105}
 106
 107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 109
 110static struct rcu_state *const rcu_state_p;
 111LIST_HEAD(rcu_struct_flavors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112
 113/* Dump rcu_node combining tree at boot to verify correct setup. */
 114static bool dump_tree;
 115module_param(dump_tree, bool, 0444);
 
 
 
 
 
 116/* Control rcu_node-tree auto-balancing at boot time. */
 117static bool rcu_fanout_exact;
 118module_param(rcu_fanout_exact, bool, 0444);
 119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 121module_param(rcu_fanout_leaf, int, 0444);
 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 123/* Number of rcu_nodes at specified level. */
 124static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 126/* panic() on RCU Stall sysctl. */
 127int sysctl_panic_on_rcu_stall __read_mostly;
 128
 129/*
 130 * The rcu_scheduler_active variable is initialized to the value
 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 132 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 133 * RCU can assume that there is but one task, allowing RCU to (for example)
 134 * optimize synchronize_rcu() to a simple barrier().  When this variable
 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 136 * to detect real grace periods.  This variable is also used to suppress
 137 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 139 * is fully initialized, including all of its kthreads having been spawned.
 140 */
 141int rcu_scheduler_active __read_mostly;
 142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 143
 144/*
 145 * The rcu_scheduler_fully_active variable transitions from zero to one
 146 * during the early_initcall() processing, which is after the scheduler
 147 * is capable of creating new tasks.  So RCU processing (for example,
 148 * creating tasks for RCU priority boosting) must be delayed until after
 149 * rcu_scheduler_fully_active transitions from zero to one.  We also
 150 * currently delay invocation of any RCU callbacks until after this point.
 151 *
 152 * It might later prove better for people registering RCU callbacks during
 153 * early boot to take responsibility for these callbacks, but one step at
 154 * a time.
 155 */
 156static int rcu_scheduler_fully_active __read_mostly;
 157
 
 
 158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 161static void invoke_rcu_core(void);
 162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 163static void rcu_report_exp_rdp(struct rcu_state *rsp,
 164			       struct rcu_data *rdp, bool wake);
 165static void sync_sched_exp_online_cleanup(int cpu);
 
 
 166
 167/* rcuc/rcub kthread realtime priority */
 168#ifdef CONFIG_RCU_KTHREAD_PRIO
 169static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
 170#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
 171static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 172#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
 173module_param(kthread_prio, int, 0644);
 174
 175/* Delay in jiffies for grace-period initialization delays, debug only. */
 176
 177#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
 178static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
 179module_param(gp_preinit_delay, int, 0644);
 180#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 181static const int gp_preinit_delay;
 182#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 183
 184#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
 185static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
 186module_param(gp_init_delay, int, 0644);
 187#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 188static const int gp_init_delay;
 189#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 190
 191#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
 192static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
 193module_param(gp_cleanup_delay, int, 0644);
 194#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 195static const int gp_cleanup_delay;
 196#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197
 198/*
 199 * Number of grace periods between delays, normalized by the duration of
 200 * the delay.  The longer the the delay, the more the grace periods between
 201 * each delay.  The reason for this normalization is that it means that,
 202 * for non-zero delays, the overall slowdown of grace periods is constant
 203 * regardless of the duration of the delay.  This arrangement balances
 204 * the need for long delays to increase some race probabilities with the
 205 * need for fast grace periods to increase other race probabilities.
 206 */
 207#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 208
 209/*
 210 * Track the rcutorture test sequence number and the update version
 211 * number within a given test.  The rcutorture_testseq is incremented
 212 * on every rcutorture module load and unload, so has an odd value
 213 * when a test is running.  The rcutorture_vernum is set to zero
 214 * when rcutorture starts and is incremented on each rcutorture update.
 215 * These variables enable correlating rcutorture output with the
 216 * RCU tracing information.
 217 */
 218unsigned long rcutorture_testseq;
 219unsigned long rcutorture_vernum;
 220
 221/*
 222 * Compute the mask of online CPUs for the specified rcu_node structure.
 223 * This will not be stable unless the rcu_node structure's ->lock is
 224 * held, but the bit corresponding to the current CPU will be stable
 225 * in most contexts.
 226 */
 227unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 228{
 229	return READ_ONCE(rnp->qsmaskinitnext);
 230}
 231
 232/*
 233 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 234 * permit this function to be invoked without holding the root rcu_node
 235 * structure's ->lock, but of course results can be subject to change.
 236 */
 237static int rcu_gp_in_progress(struct rcu_state *rsp)
 238{
 239	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 240}
 241
 242/*
 243 * Note a quiescent state.  Because we do not need to know
 244 * how many quiescent states passed, just if there was at least
 245 * one since the start of the grace period, this just sets a flag.
 246 * The caller must have disabled preemption.
 247 */
 248void rcu_sched_qs(void)
 249{
 250	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 251		return;
 252	trace_rcu_grace_period(TPS("rcu_sched"),
 253			       __this_cpu_read(rcu_sched_data.gpnum),
 254			       TPS("cpuqs"));
 255	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 256	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 257		return;
 258	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 259	rcu_report_exp_rdp(&rcu_sched_state,
 260			   this_cpu_ptr(&rcu_sched_data), true);
 261}
 262
 263void rcu_bh_qs(void)
 264{
 265	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 266		trace_rcu_grace_period(TPS("rcu_bh"),
 267				       __this_cpu_read(rcu_bh_data.gpnum),
 268				       TPS("cpuqs"));
 269		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 270	}
 271}
 272
 273static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
 274
 275static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 276	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 277	.dynticks = ATOMIC_INIT(1),
 278#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 279	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
 280	.dynticks_idle = ATOMIC_INIT(1),
 281#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 282};
 283
 284DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
 285EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
 286
 287/*
 288 * Let the RCU core know that this CPU has gone through the scheduler,
 289 * which is a quiescent state.  This is called when the need for a
 290 * quiescent state is urgent, so we burn an atomic operation and full
 291 * memory barriers to let the RCU core know about it, regardless of what
 292 * this CPU might (or might not) do in the near future.
 293 *
 294 * We inform the RCU core by emulating a zero-duration dyntick-idle
 295 * period, which we in turn do by incrementing the ->dynticks counter
 296 * by two.
 297 *
 298 * The caller must have disabled interrupts.
 299 */
 300static void rcu_momentary_dyntick_idle(void)
 301{
 302	struct rcu_data *rdp;
 303	struct rcu_dynticks *rdtp;
 304	int resched_mask;
 305	struct rcu_state *rsp;
 306
 307	/*
 308	 * Yes, we can lose flag-setting operations.  This is OK, because
 309	 * the flag will be set again after some delay.
 
 310	 */
 311	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
 312	raw_cpu_write(rcu_sched_qs_mask, 0);
 313
 314	/* Find the flavor that needs a quiescent state. */
 315	for_each_rcu_flavor(rsp) {
 316		rdp = raw_cpu_ptr(rsp->rda);
 317		if (!(resched_mask & rsp->flavor_mask))
 318			continue;
 319		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
 320		if (READ_ONCE(rdp->mynode->completed) !=
 321		    READ_ONCE(rdp->cond_resched_completed))
 322			continue;
 323
 324		/*
 325		 * Pretend to be momentarily idle for the quiescent state.
 326		 * This allows the grace-period kthread to record the
 327		 * quiescent state, with no need for this CPU to do anything
 328		 * further.
 329		 */
 330		rdtp = this_cpu_ptr(&rcu_dynticks);
 331		smp_mb__before_atomic(); /* Earlier stuff before QS. */
 332		atomic_add(2, &rdtp->dynticks);  /* QS. */
 333		smp_mb__after_atomic(); /* Later stuff after QS. */
 334		break;
 335	}
 336}
 337
 338/*
 339 * Note a context switch.  This is a quiescent state for RCU-sched,
 340 * and requires special handling for preemptible RCU.
 341 * The caller must have disabled interrupts.
 342 */
 343void rcu_note_context_switch(void)
 344{
 345	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 346	trace_rcu_utilization(TPS("Start context switch"));
 347	rcu_sched_qs();
 348	rcu_preempt_note_context_switch();
 349	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
 350		rcu_momentary_dyntick_idle();
 351	trace_rcu_utilization(TPS("End context switch"));
 352	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 
 
 
 
 
 
 
 
 
 353}
 354EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 355
 356/*
 357 * Register a quiescent state for all RCU flavors.  If there is an
 358 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 359 * dyntick-idle quiescent state visible to other CPUs (but only for those
 360 * RCU flavors in desperate need of a quiescent state, which will normally
 361 * be none of them).  Either way, do a lightweight quiescent state for
 362 * all RCU flavors.
 363 *
 364 * The barrier() calls are redundant in the common case when this is
 365 * called externally, but just in case this is called from within this
 366 * file.
 367 *
 
 
 
 368 */
 369void rcu_all_qs(void)
 370{
 371	unsigned long flags;
 372
 373	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 374	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
 375		local_irq_save(flags);
 376		rcu_momentary_dyntick_idle();
 377		local_irq_restore(flags);
 378	}
 379	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
 380		/*
 381		 * Yes, we just checked a per-CPU variable with preemption
 382		 * enabled, so we might be migrated to some other CPU at
 383		 * this point.  That is OK because in that case, the
 384		 * migration will supply the needed quiescent state.
 385		 * We might end up needlessly disabling preemption and
 386		 * invoking rcu_sched_qs() on the destination CPU, but
 387		 * the probability and cost are both quite low, so this
 388		 * should not be a problem in practice.
 389		 */
 390		preempt_disable();
 391		rcu_sched_qs();
 392		preempt_enable();
 393	}
 394	this_cpu_inc(rcu_qs_ctr);
 395	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 396}
 397EXPORT_SYMBOL_GPL(rcu_all_qs);
 398
 399static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
 400static long qhimark = 10000;	/* If this many pending, ignore blimit. */
 401static long qlowmark = 100;	/* Once only this many pending, use blimit. */
 402
 403module_param(blimit, long, 0444);
 404module_param(qhimark, long, 0444);
 405module_param(qlowmark, long, 0444);
 406
 407static ulong jiffies_till_first_fqs = ULONG_MAX;
 408static ulong jiffies_till_next_fqs = ULONG_MAX;
 409static bool rcu_kick_kthreads;
 410
 411module_param(jiffies_till_first_fqs, ulong, 0644);
 412module_param(jiffies_till_next_fqs, ulong, 0644);
 413module_param(rcu_kick_kthreads, bool, 0644);
 414
 415/*
 416 * How long the grace period must be before we start recruiting
 417 * quiescent-state help from rcu_note_context_switch().
 418 */
 419static ulong jiffies_till_sched_qs = HZ / 20;
 420module_param(jiffies_till_sched_qs, ulong, 0644);
 421
 422static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 423				  struct rcu_data *rdp);
 424static void force_qs_rnp(struct rcu_state *rsp,
 425			 int (*f)(struct rcu_data *rsp, bool *isidle,
 426				  unsigned long *maxj),
 427			 bool *isidle, unsigned long *maxj);
 428static void force_quiescent_state(struct rcu_state *rsp);
 429static int rcu_pending(void);
 430
 431/*
 432 * Return the number of RCU batches started thus far for debug & stats.
 433 */
 434unsigned long rcu_batches_started(void)
 435{
 436	return rcu_state_p->gpnum;
 437}
 438EXPORT_SYMBOL_GPL(rcu_batches_started);
 439
 440/*
 441 * Return the number of RCU-sched batches started thus far for debug & stats.
 
 
 442 */
 443unsigned long rcu_batches_started_sched(void)
 444{
 445	return rcu_sched_state.gpnum;
 446}
 447EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 448
 449/*
 450 * Return the number of RCU BH batches started thus far for debug & stats.
 451 */
 452unsigned long rcu_batches_started_bh(void)
 453{
 454	return rcu_bh_state.gpnum;
 455}
 456EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 457
 458/*
 459 * Return the number of RCU batches completed thus far for debug & stats.
 
 460 */
 461unsigned long rcu_batches_completed(void)
 462{
 463	return rcu_state_p->completed;
 464}
 465EXPORT_SYMBOL_GPL(rcu_batches_completed);
 466
 467/*
 468 * Return the number of RCU-sched batches completed thus far for debug & stats.
 469 */
 470unsigned long rcu_batches_completed_sched(void)
 471{
 472	return rcu_sched_state.completed;
 473}
 474EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 475
 476/*
 477 * Return the number of RCU BH batches completed thus far for debug & stats.
 
 478 */
 479unsigned long rcu_batches_completed_bh(void)
 480{
 481	return rcu_bh_state.completed;
 482}
 483EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 484
 485/*
 486 * Return the number of RCU expedited batches completed thus far for
 487 * debug & stats.  Odd numbers mean that a batch is in progress, even
 488 * numbers mean idle.  The value returned will thus be roughly double
 489 * the cumulative batches since boot.
 490 */
 491unsigned long rcu_exp_batches_completed(void)
 492{
 493	return rcu_state_p->expedited_sequence;
 
 
 494}
 495EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 496
 497/*
 498 * Return the number of RCU-sched expedited batches completed thus far
 499 * for debug & stats.  Similar to rcu_exp_batches_completed().
 
 500 */
 501unsigned long rcu_exp_batches_completed_sched(void)
 502{
 503	return rcu_sched_state.expedited_sequence;
 504}
 505EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
 506
 507/*
 508 * Force a quiescent state.
 
 509 */
 510void rcu_force_quiescent_state(void)
 511{
 512	force_quiescent_state(rcu_state_p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 513}
 514EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 515
 516/*
 517 * Force a quiescent state for RCU BH.
 
 
 
 
 518 */
 519void rcu_bh_force_quiescent_state(void)
 520{
 521	force_quiescent_state(&rcu_bh_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 522}
 523EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 524
 525/*
 526 * Force a quiescent state for RCU-sched.
 
 
 
 
 
 
 
 
 527 */
 528void rcu_sched_force_quiescent_state(void)
 529{
 530	force_quiescent_state(&rcu_sched_state);
 
 
 
 
 
 
 
 531}
 532EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 533
 534/*
 535 * Show the state of the grace-period kthreads.
 
 
 
 
 
 536 */
 537void show_rcu_gp_kthreads(void)
 538{
 539	struct rcu_state *rsp;
 540
 541	for_each_rcu_flavor(rsp) {
 542		pr_info("%s: wait state: %d ->state: %#lx\n",
 543			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 544		/* sched_show_task(rsp->gp_kthread); */
 545	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546}
 547EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548
 549/*
 550 * Record the number of times rcutorture tests have been initiated and
 551 * terminated.  This information allows the debugfs tracing stats to be
 552 * correlated to the rcutorture messages, even when the rcutorture module
 553 * is being repeatedly loaded and unloaded.  In other words, we cannot
 554 * store this state in rcutorture itself.
 555 */
 556void rcutorture_record_test_transition(void)
 557{
 558	rcutorture_testseq++;
 559	rcutorture_vernum = 0;
 560}
 561EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 562
 563/*
 564 * Send along grace-period-related data for rcutorture diagnostics.
 
 
 
 565 */
 566void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 567			    unsigned long *gpnum, unsigned long *completed)
 568{
 569	struct rcu_state *rsp = NULL;
 570
 571	switch (test_type) {
 572	case RCU_FLAVOR:
 573		rsp = rcu_state_p;
 574		break;
 575	case RCU_BH_FLAVOR:
 576		rsp = &rcu_bh_state;
 577		break;
 578	case RCU_SCHED_FLAVOR:
 579		rsp = &rcu_sched_state;
 580		break;
 581	default:
 582		break;
 583	}
 584	if (rsp != NULL) {
 585		*flags = READ_ONCE(rsp->gp_flags);
 586		*gpnum = READ_ONCE(rsp->gpnum);
 587		*completed = READ_ONCE(rsp->completed);
 588		return;
 589	}
 590	*flags = 0;
 591	*gpnum = 0;
 592	*completed = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593}
 594EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 595
 596/*
 597 * Record the number of writer passes through the current rcutorture test.
 598 * This is also used to correlate debugfs tracing stats with the rcutorture
 599 * messages.
 600 */
 601void rcutorture_record_progress(unsigned long vernum)
 602{
 603	rcutorture_vernum++;
 604}
 605EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 606
 607/*
 608 * Does the CPU have callbacks ready to be invoked?
 609 */
 610static int
 611cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 612{
 613	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
 614	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
 615}
 616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617/*
 618 * Return the root node of the specified rcu_state structure.
 619 */
 620static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 621{
 622	return &rsp->node[0];
 623}
 
 624
 625/*
 626 * Is there any need for future grace periods?
 627 * Interrupts must be disabled.  If the caller does not hold the root
 628 * rnp_node structure's ->lock, the results are advisory only.
 
 629 */
 630static int rcu_future_needs_gp(struct rcu_state *rsp)
 631{
 632	struct rcu_node *rnp = rcu_get_root(rsp);
 633	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 634	int *fp = &rnp->need_future_gp[idx];
 635
 636	return READ_ONCE(*fp);
 637}
 
 638
 639/*
 640 * Does the current CPU require a not-yet-started grace period?
 641 * The caller must have disabled interrupts to prevent races with
 642 * normal callback registry.
 643 */
 644static bool
 645cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 646{
 647	int i;
 648
 649	if (rcu_gp_in_progress(rsp))
 650		return false;  /* No, a grace period is already in progress. */
 651	if (rcu_future_needs_gp(rsp))
 652		return true;  /* Yes, a no-CBs CPU needs one. */
 653	if (!rdp->nxttail[RCU_NEXT_TAIL])
 654		return false;  /* No, this is a no-CBs (or offline) CPU. */
 655	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
 656		return true;  /* Yes, CPU has newly registered callbacks. */
 657	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
 658		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
 659		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
 660				 rdp->nxtcompleted[i]))
 661			return true;  /* Yes, CBs for future grace period. */
 662	return false; /* No grace period needed. */
 663}
 664
 665/*
 666 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
 667 *
 668 * If the new value of the ->dynticks_nesting counter now is zero,
 669 * we really have entered idle, and must do the appropriate accounting.
 670 * The caller must have disabled interrupts.
 671 */
 672static void rcu_eqs_enter_common(long long oldval, bool user)
 
 673{
 674	struct rcu_state *rsp;
 675	struct rcu_data *rdp;
 676	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 677
 678	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
 679	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 680	    !user && !is_idle_task(current)) {
 681		struct task_struct *idle __maybe_unused =
 682			idle_task(smp_processor_id());
 683
 684		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
 685		rcu_ftrace_dump(DUMP_ORIG);
 686		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 687			  current->pid, current->comm,
 688			  idle->pid, idle->comm); /* must be idle task! */
 689	}
 690	for_each_rcu_flavor(rsp) {
 691		rdp = this_cpu_ptr(rsp->rda);
 692		do_nocb_deferred_wakeup(rdp);
 693	}
 694	rcu_prepare_for_idle();
 695	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 696	smp_mb__before_atomic();  /* See above. */
 697	atomic_inc(&rdtp->dynticks);
 698	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
 699	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 700		     atomic_read(&rdtp->dynticks) & 0x1);
 701	rcu_dynticks_task_enter();
 702
 703	/*
 704	 * It is illegal to enter an extended quiescent state while
 705	 * in an RCU read-side critical section.
 706	 */
 707	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 708			 "Illegal idle entry in RCU read-side critical section.");
 709	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
 710			 "Illegal idle entry in RCU-bh read-side critical section.");
 711	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
 712			 "Illegal idle entry in RCU-sched read-side critical section.");
 713}
 
 714
 715/*
 716 * Enter an RCU extended quiescent state, which can be either the
 717 * idle loop or adaptive-tickless usermode execution.
 
 
 
 
 718 */
 719static void rcu_eqs_enter(bool user)
 720{
 721	long long oldval;
 722	struct rcu_dynticks *rdtp;
 723
 724	rdtp = this_cpu_ptr(&rcu_dynticks);
 725	oldval = rdtp->dynticks_nesting;
 726	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 727		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
 728	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
 729		rdtp->dynticks_nesting = 0;
 730		rcu_eqs_enter_common(oldval, user);
 731	} else {
 732		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 733	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734}
 735
 736/**
 737 * rcu_idle_enter - inform RCU that current CPU is entering idle
 738 *
 739 * Enter idle mode, in other words, -leave- the mode in which RCU
 740 * read-side critical sections can occur.  (Though RCU read-side
 741 * critical sections can occur in irq handlers in idle, a possibility
 742 * handled by irq_enter() and irq_exit().)
 743 *
 744 * We crowbar the ->dynticks_nesting field to zero to allow for
 745 * the possibility of usermode upcalls having messed up our count
 746 * of interrupt nesting level during the prior busy period.
 747 */
 748void rcu_idle_enter(void)
 749{
 750	unsigned long flags;
 751
 752	local_irq_save(flags);
 753	rcu_eqs_enter(false);
 754	rcu_sysidle_enter(0);
 755	local_irq_restore(flags);
 756}
 757EXPORT_SYMBOL_GPL(rcu_idle_enter);
 758
 759#ifdef CONFIG_NO_HZ_FULL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760/**
 761 * rcu_user_enter - inform RCU that we are resuming userspace.
 762 *
 763 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 764 * is permitted between this call and rcu_user_exit(). This way the
 765 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 766 * when the CPU runs in userspace.
 
 
 
 767 */
 768void rcu_user_enter(void)
 769{
 770	rcu_eqs_enter(1);
 
 
 
 
 
 
 
 
 771}
 
 772#endif /* CONFIG_NO_HZ_FULL */
 773
 774/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 776 *
 777 * Exit from an interrupt handler, which might possibly result in entering
 778 * idle mode, in other words, leaving the mode in which read-side critical
 779 * sections can occur.  The caller must have disabled interrupts.
 780 *
 781 * This code assumes that the idle loop never does anything that might
 782 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 783 * architecture violates this assumption, RCU will give you what you
 784 * deserve, good and hard.  But very infrequently and irreproducibly.
 785 *
 786 * Use things like work queues to work around this limitation.
 787 *
 788 * You have been warned.
 
 
 
 789 */
 790void rcu_irq_exit(void)
 791{
 792	long long oldval;
 793	struct rcu_dynticks *rdtp;
 
 794
 795	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
 796	rdtp = this_cpu_ptr(&rcu_dynticks);
 797	oldval = rdtp->dynticks_nesting;
 798	rdtp->dynticks_nesting--;
 799	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 800		     rdtp->dynticks_nesting < 0);
 801	if (rdtp->dynticks_nesting)
 802		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
 803	else
 804		rcu_eqs_enter_common(oldval, true);
 805	rcu_sysidle_enter(1);
 
 
 
 
 806}
 
 807
 808/*
 809 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 
 
 
 810 */
 811void rcu_irq_exit_irqson(void)
 812{
 813	unsigned long flags;
 814
 815	local_irq_save(flags);
 816	rcu_irq_exit();
 817	local_irq_restore(flags);
 818}
 819
 820/*
 821 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 822 *
 823 * If the new value of the ->dynticks_nesting counter was previously zero,
 824 * we really have exited idle, and must do the appropriate accounting.
 825 * The caller must have disabled interrupts.
 826 */
 827static void rcu_eqs_exit_common(long long oldval, int user)
 828{
 829	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 830
 831	rcu_dynticks_task_exit();
 832	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
 833	atomic_inc(&rdtp->dynticks);
 834	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 835	smp_mb__after_atomic();  /* See above. */
 836	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 837		     !(atomic_read(&rdtp->dynticks) & 0x1));
 838	rcu_cleanup_after_idle();
 839	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 840	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 841	    !user && !is_idle_task(current)) {
 842		struct task_struct *idle __maybe_unused =
 843			idle_task(smp_processor_id());
 844
 845		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 846				  oldval, rdtp->dynticks_nesting);
 847		rcu_ftrace_dump(DUMP_ORIG);
 848		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 849			  current->pid, current->comm,
 850			  idle->pid, idle->comm); /* must be idle task! */
 851	}
 852}
 853
 854/*
 855 * Exit an RCU extended quiescent state, which can be either the
 856 * idle loop or adaptive-tickless usermode execution.
 
 
 
 
 857 */
 858static void rcu_eqs_exit(bool user)
 859{
 860	struct rcu_dynticks *rdtp;
 861	long long oldval;
 862
 863	rdtp = this_cpu_ptr(&rcu_dynticks);
 864	oldval = rdtp->dynticks_nesting;
 
 865	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 866	if (oldval & DYNTICK_TASK_NEST_MASK) {
 867		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 868	} else {
 869		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 870		rcu_eqs_exit_common(oldval, user);
 871	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872}
 873
 874/**
 875 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 876 *
 877 * Exit idle mode, in other words, -enter- the mode in which RCU
 878 * read-side critical sections can occur.
 879 *
 880 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 881 * allow for the possibility of usermode upcalls messing up our count
 882 * of interrupt nesting level during the busy period that is just
 883 * now starting.
 884 */
 885void rcu_idle_exit(void)
 886{
 887	unsigned long flags;
 888
 889	local_irq_save(flags);
 890	rcu_eqs_exit(false);
 891	rcu_sysidle_exit(0);
 892	local_irq_restore(flags);
 893}
 894EXPORT_SYMBOL_GPL(rcu_idle_exit);
 895
 896#ifdef CONFIG_NO_HZ_FULL
 897/**
 898 * rcu_user_exit - inform RCU that we are exiting userspace.
 899 *
 900 * Exit RCU idle mode while entering the kernel because it can
 901 * run a RCU read side critical section anytime.
 
 
 
 902 */
 903void rcu_user_exit(void)
 904{
 905	rcu_eqs_exit(1);
 906}
 907#endif /* CONFIG_NO_HZ_FULL */
 908
 909/**
 910 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 911 *
 912 * Enter an interrupt handler, which might possibly result in exiting
 913 * idle mode, in other words, entering the mode in which read-side critical
 914 * sections can occur.  The caller must have disabled interrupts.
 915 *
 916 * Note that the Linux kernel is fully capable of entering an interrupt
 917 * handler that it never exits, for example when doing upcalls to
 918 * user mode!  This code assumes that the idle loop never does upcalls to
 919 * user mode.  If your architecture does do upcalls from the idle loop (or
 920 * does anything else that results in unbalanced calls to the irq_enter()
 921 * and irq_exit() functions), RCU will give you what you deserve, good
 922 * and hard.  But very infrequently and irreproducibly.
 923 *
 924 * Use things like work queues to work around this limitation.
 925 *
 926 * You have been warned.
 
 
 
 
 
 
 
 
 
 
 
 927 */
 928void rcu_irq_enter(void)
 929{
 930	struct rcu_dynticks *rdtp;
 931	long long oldval;
 932
 933	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
 934	rdtp = this_cpu_ptr(&rcu_dynticks);
 935	oldval = rdtp->dynticks_nesting;
 936	rdtp->dynticks_nesting++;
 937	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 938		     rdtp->dynticks_nesting == 0);
 939	if (oldval)
 940		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
 941	else
 942		rcu_eqs_exit_common(oldval, true);
 943	rcu_sysidle_exit(1);
 944}
 945
 946/*
 947 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 948 */
 949void rcu_irq_enter_irqson(void)
 950{
 951	unsigned long flags;
 952
 953	local_irq_save(flags);
 954	rcu_irq_enter();
 955	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956}
 
 957
 958/**
 959 * rcu_nmi_enter - inform RCU of entry to NMI context
 960 *
 961 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 962 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 963 * that the CPU is active.  This implementation permits nested NMIs, as
 964 * long as the nesting level does not overflow an int.  (You will probably
 965 * run out of stack space first.)
 
 
 
 966 */
 967void rcu_nmi_enter(void)
 968{
 969	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 970	int incby = 2;
 971
 972	/* Complain about underflow. */
 973	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
 974
 975	/*
 976	 * If idle from RCU viewpoint, atomically increment ->dynticks
 977	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 978	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 979	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 980	 * to be in the outermost NMI handler that interrupted an RCU-idle
 981	 * period (observation due to Andy Lutomirski).
 982	 */
 983	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
 984		smp_mb__before_atomic();  /* Force delay from prior write. */
 985		atomic_inc(&rdtp->dynticks);
 986		/* atomic_inc() before later RCU read-side crit sects */
 987		smp_mb__after_atomic();  /* See above. */
 988		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989		incby = 1;
 
 
 
 
 
 990	}
 991	rdtp->dynticks_nmi_nesting += incby;
 
 
 
 
 
 
 992	barrier();
 993}
 994
 995/**
 996 * rcu_nmi_exit - inform RCU of exit from NMI context
 997 *
 998 * If we are returning from the outermost NMI handler that interrupted an
 999 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1000 * to let the RCU grace-period handling know that the CPU is back to
1001 * being RCU-idle.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002 */
1003void rcu_nmi_exit(void)
1004{
1005	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1006
1007	/*
1008	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1009	 * (We are exiting an NMI handler, so RCU better be paying attention
1010	 * to us!)
1011	 */
1012	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1013	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1014
1015	/*
1016	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1017	 * leave it in non-RCU-idle state.
1018	 */
1019	if (rdtp->dynticks_nmi_nesting != 1) {
1020		rdtp->dynticks_nmi_nesting -= 2;
1021		return;
1022	}
1023
1024	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1025	rdtp->dynticks_nmi_nesting = 0;
1026	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1027	smp_mb__before_atomic();  /* See above. */
1028	atomic_inc(&rdtp->dynticks);
1029	smp_mb__after_atomic();  /* Force delay to next write. */
1030	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1031}
1032
1033/**
1034 * __rcu_is_watching - are RCU read-side critical sections safe?
1035 *
1036 * Return true if RCU is watching the running CPU, which means that
1037 * this CPU can safely enter RCU read-side critical sections.  Unlike
1038 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1039 * least disabled preemption.
1040 */
1041bool notrace __rcu_is_watching(void)
1042{
1043	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044}
1045
1046/**
1047 * rcu_is_watching - see if RCU thinks that the current CPU is idle
 
 
 
 
 
1048 *
1049 * If the current CPU is in its idle loop and is neither in an interrupt
1050 * or NMI handler, return true.
1051 */
1052bool notrace rcu_is_watching(void)
1053{
1054	bool ret;
1055
1056	preempt_disable_notrace();
1057	ret = __rcu_is_watching();
1058	preempt_enable_notrace();
1059	return ret;
1060}
1061EXPORT_SYMBOL_GPL(rcu_is_watching);
1062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1064
1065/*
1066 * Is the current CPU online?  Disable preemption to avoid false positives
1067 * that could otherwise happen due to the current CPU number being sampled,
1068 * this task being preempted, its old CPU being taken offline, resuming
1069 * on some other CPU, then determining that its old CPU is now offline.
1070 * It is OK to use RCU on an offline processor during initial boot, hence
1071 * the check for rcu_scheduler_fully_active.  Note also that it is OK
1072 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1073 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1074 * offline to continue to use RCU for one jiffy after marking itself
1075 * offline in the cpu_online_mask.  This leniency is necessary given the
1076 * non-atomic nature of the online and offline processing, for example,
1077 * the fact that a CPU enters the scheduler after completing the teardown
1078 * of the CPU.
1079 *
1080 * This is also why RCU internally marks CPUs online during in the
1081 * preparation phase and offline after the CPU has been taken down.
1082 *
1083 * Disable checking if in an NMI handler because we cannot safely report
1084 * errors from NMI handlers anyway.
 
 
 
 
1085 */
1086bool rcu_lockdep_current_cpu_online(void)
1087{
1088	struct rcu_data *rdp;
1089	struct rcu_node *rnp;
1090	bool ret;
1091
1092	if (in_nmi())
1093		return true;
1094	preempt_disable();
1095	rdp = this_cpu_ptr(&rcu_sched_data);
1096	rnp = rdp->mynode;
1097	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1098	      !rcu_scheduler_fully_active;
1099	preempt_enable();
1100	return ret;
1101}
1102EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1103
1104#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1105
1106/**
1107 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1108 *
1109 * If the current CPU is idle or running at a first-level (not nested)
1110 * interrupt from idle, return true.  The caller must have at least
1111 * disabled preemption.
1112 */
1113static int rcu_is_cpu_rrupt_from_idle(void)
1114{
1115	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
 
 
 
 
 
1116}
1117
1118/*
1119 * Snapshot the specified CPU's dynticks counter so that we can later
1120 * credit them with an implicit quiescent state.  Return 1 if this CPU
1121 * is in dynticks idle mode, which is an extended quiescent state.
1122 */
1123static int dyntick_save_progress_counter(struct rcu_data *rdp,
1124					 bool *isidle, unsigned long *maxj)
1125{
1126	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1127	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1128	if ((rdp->dynticks_snap & 0x1) == 0) {
1129		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1130		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1131				 rdp->mynode->gpnum))
1132			WRITE_ONCE(rdp->gpwrap, true);
1133		return 1;
1134	}
1135	return 0;
1136}
1137
1138/*
1139 * Return true if the specified CPU has passed through a quiescent
1140 * state by virtue of being in or having passed through an dynticks
1141 * idle state since the last call to dyntick_save_progress_counter()
1142 * for this same CPU, or by virtue of having been offline.
1143 */
1144static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1145				    bool *isidle, unsigned long *maxj)
1146{
1147	unsigned int curr;
1148	int *rcrmp;
1149	unsigned int snap;
1150
1151	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1152	snap = (unsigned int)rdp->dynticks_snap;
1153
1154	/*
1155	 * If the CPU passed through or entered a dynticks idle phase with
1156	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1157	 * already acknowledged the request to pass through a quiescent
1158	 * state.  Either way, that CPU cannot possibly be in an RCU
1159	 * read-side critical section that started before the beginning
1160	 * of the current RCU grace period.
1161	 */
1162	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1163		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1164		rdp->dynticks_fqs++;
1165		return 1;
1166	}
1167
1168	/*
1169	 * Check for the CPU being offline, but only if the grace period
1170	 * is old enough.  We don't need to worry about the CPU changing
1171	 * state: If we see it offline even once, it has been through a
1172	 * quiescent state.
 
 
 
 
 
 
 
 
 
1173	 *
1174	 * The reason for insisting that the grace period be at least
1175	 * one jiffy old is that CPUs that are not quite online and that
1176	 * have just gone offline can still execute RCU read-side critical
1177	 * sections.
1178	 */
1179	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1180		return 0;  /* Grace period is not old enough. */
1181	barrier();
1182	if (cpu_is_offline(rdp->cpu)) {
1183		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1184		rdp->offline_fqs++;
1185		return 1;
 
 
 
 
 
 
 
 
 
1186	}
1187
1188	/*
1189	 * A CPU running for an extended time within the kernel can
1190	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1191	 * even context-switching back and forth between a pair of
1192	 * in-kernel CPU-bound tasks cannot advance grace periods.
1193	 * So if the grace period is old enough, make the CPU pay attention.
1194	 * Note that the unsynchronized assignments to the per-CPU
1195	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1196	 * bits can be lost, but they will be set again on the next
1197	 * force-quiescent-state pass.  So lost bit sets do not result
1198	 * in incorrect behavior, merely in a grace period lasting
1199	 * a few jiffies longer than it might otherwise.  Because
1200	 * there are at most four threads involved, and because the
1201	 * updates are only once every few jiffies, the probability of
1202	 * lossage (and thus of slight grace-period extension) is
1203	 * quite low.
1204	 *
1205	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1206	 * is set too high, we override with half of the RCU CPU stall
1207	 * warning delay.
1208	 */
1209	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1210	if (ULONG_CMP_GE(jiffies,
1211			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1212	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1213		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1214			WRITE_ONCE(rdp->cond_resched_completed,
1215				   READ_ONCE(rdp->mynode->completed));
1216			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1217			WRITE_ONCE(*rcrmp,
1218				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1219		}
1220		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1221	}
1222
1223	/* And if it has been a really long time, kick the CPU as well. */
1224	if (ULONG_CMP_GE(jiffies,
1225			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1226	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1227		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1228
1229	return 0;
1230}
1231
1232static void record_gp_stall_check_time(struct rcu_state *rsp)
1233{
1234	unsigned long j = jiffies;
1235	unsigned long j1;
1236
1237	rsp->gp_start = j;
1238	smp_wmb(); /* Record start time before stall time. */
1239	j1 = rcu_jiffies_till_stall_check();
1240	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1241	rsp->jiffies_resched = j + j1 / 2;
1242	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1243}
1244
1245/*
1246 * Convert a ->gp_state value to a character string.
1247 */
1248static const char *gp_state_getname(short gs)
1249{
1250	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1251		return "???";
1252	return gp_state_names[gs];
1253}
1254
1255/*
1256 * Complain about starvation of grace-period kthread.
1257 */
1258static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1259{
1260	unsigned long gpa;
1261	unsigned long j;
1262
1263	j = jiffies;
1264	gpa = READ_ONCE(rsp->gp_activity);
1265	if (j - gpa > 2 * HZ) {
1266		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1267		       rsp->name, j - gpa,
1268		       rsp->gpnum, rsp->completed,
1269		       rsp->gp_flags,
1270		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1271		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1272		if (rsp->gp_kthread) {
1273			sched_show_task(rsp->gp_kthread);
1274			wake_up_process(rsp->gp_kthread);
1275		}
1276	}
1277}
1278
1279/*
1280 * Dump stacks of all tasks running on stalled CPUs.
1281 */
1282static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1283{
1284	int cpu;
1285	unsigned long flags;
1286	struct rcu_node *rnp;
1287
1288	rcu_for_each_leaf_node(rsp, rnp) {
1289		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1290		if (rnp->qsmask != 0) {
1291			for_each_leaf_node_possible_cpu(rnp, cpu)
1292				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1293					dump_cpu_task(cpu);
1294		}
1295		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1296	}
1297}
1298
1299/*
1300 * If too much time has passed in the current grace period, and if
1301 * so configured, go kick the relevant kthreads.
1302 */
1303static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1304{
1305	unsigned long j;
1306
1307	if (!rcu_kick_kthreads)
1308		return;
1309	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1310	if (time_after(jiffies, j) && rsp->gp_kthread &&
1311	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1312		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1313		rcu_ftrace_dump(DUMP_ALL);
1314		wake_up_process(rsp->gp_kthread);
1315		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1316	}
1317}
1318
1319static inline void panic_on_rcu_stall(void)
1320{
1321	if (sysctl_panic_on_rcu_stall)
1322		panic("RCU Stall\n");
1323}
1324
1325static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1326{
1327	int cpu;
1328	long delta;
1329	unsigned long flags;
1330	unsigned long gpa;
1331	unsigned long j;
1332	int ndetected = 0;
1333	struct rcu_node *rnp = rcu_get_root(rsp);
1334	long totqlen = 0;
1335
1336	/* Kick and suppress, if so configured. */
1337	rcu_stall_kick_kthreads(rsp);
1338	if (rcu_cpu_stall_suppress)
1339		return;
1340
1341	/* Only let one CPU complain about others per time interval. */
1342
1343	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1344	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1345	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1346		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1347		return;
1348	}
1349	WRITE_ONCE(rsp->jiffies_stall,
1350		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1351	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1352
1353	/*
1354	 * OK, time to rat on our buddy...
1355	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1356	 * RCU CPU stall warnings.
1357	 */
1358	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1359	       rsp->name);
1360	print_cpu_stall_info_begin();
1361	rcu_for_each_leaf_node(rsp, rnp) {
1362		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1363		ndetected += rcu_print_task_stall(rnp);
1364		if (rnp->qsmask != 0) {
1365			for_each_leaf_node_possible_cpu(rnp, cpu)
1366				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1367					print_cpu_stall_info(rsp, cpu);
1368					ndetected++;
1369				}
1370		}
1371		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1372	}
1373
1374	print_cpu_stall_info_end();
1375	for_each_possible_cpu(cpu)
1376		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1377	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1378	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1379	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1380	if (ndetected) {
1381		rcu_dump_cpu_stacks(rsp);
1382	} else {
1383		if (READ_ONCE(rsp->gpnum) != gpnum ||
1384		    READ_ONCE(rsp->completed) == gpnum) {
1385			pr_err("INFO: Stall ended before state dump start\n");
1386		} else {
1387			j = jiffies;
1388			gpa = READ_ONCE(rsp->gp_activity);
1389			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1390			       rsp->name, j - gpa, j, gpa,
1391			       jiffies_till_next_fqs,
1392			       rcu_get_root(rsp)->qsmask);
1393			/* In this case, the current CPU might be at fault. */
1394			sched_show_task(current);
1395		}
1396	}
1397
1398	/* Complain about tasks blocking the grace period. */
1399	rcu_print_detail_task_stall(rsp);
1400
1401	rcu_check_gp_kthread_starvation(rsp);
1402
1403	panic_on_rcu_stall();
1404
1405	force_quiescent_state(rsp);  /* Kick them all. */
1406}
1407
1408static void print_cpu_stall(struct rcu_state *rsp)
 
 
1409{
1410	int cpu;
1411	unsigned long flags;
1412	struct rcu_node *rnp = rcu_get_root(rsp);
1413	long totqlen = 0;
1414
1415	/* Kick and suppress, if so configured. */
1416	rcu_stall_kick_kthreads(rsp);
1417	if (rcu_cpu_stall_suppress)
1418		return;
1419
1420	/*
1421	 * OK, time to rat on ourselves...
1422	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1423	 * RCU CPU stall warnings.
1424	 */
1425	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1426	print_cpu_stall_info_begin();
1427	print_cpu_stall_info(rsp, smp_processor_id());
1428	print_cpu_stall_info_end();
1429	for_each_possible_cpu(cpu)
1430		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1431	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1432		jiffies - rsp->gp_start,
1433		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1434
1435	rcu_check_gp_kthread_starvation(rsp);
1436
1437	rcu_dump_cpu_stacks(rsp);
1438
1439	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1440	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1441		WRITE_ONCE(rsp->jiffies_stall,
1442			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1443	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1444
1445	panic_on_rcu_stall();
1446
1447	/*
1448	 * Attempt to revive the RCU machinery by forcing a context switch.
1449	 *
1450	 * A context switch would normally allow the RCU state machine to make
1451	 * progress and it could be we're stuck in kernel space without context
1452	 * switches for an entirely unreasonable amount of time.
1453	 */
1454	resched_cpu(smp_processor_id());
1455}
1456
1457static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458{
1459	unsigned long completed;
1460	unsigned long gpnum;
1461	unsigned long gps;
1462	unsigned long j;
1463	unsigned long js;
1464	struct rcu_node *rnp;
1465
1466	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1467	    !rcu_gp_in_progress(rsp))
1468		return;
1469	rcu_stall_kick_kthreads(rsp);
1470	j = jiffies;
1471
1472	/*
1473	 * Lots of memory barriers to reject false positives.
1474	 *
1475	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1476	 * then rsp->gp_start, and finally rsp->completed.  These values
1477	 * are updated in the opposite order with memory barriers (or
1478	 * equivalent) during grace-period initialization and cleanup.
1479	 * Now, a false positive can occur if we get an new value of
1480	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1481	 * the memory barriers, the only way that this can happen is if one
1482	 * grace period ends and another starts between these two fetches.
1483	 * Detect this by comparing rsp->completed with the previous fetch
1484	 * from rsp->gpnum.
1485	 *
1486	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1487	 * and rsp->gp_start suffice to forestall false positives.
1488	 */
1489	gpnum = READ_ONCE(rsp->gpnum);
1490	smp_rmb(); /* Pick up ->gpnum first... */
1491	js = READ_ONCE(rsp->jiffies_stall);
1492	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1493	gps = READ_ONCE(rsp->gp_start);
1494	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1495	completed = READ_ONCE(rsp->completed);
1496	if (ULONG_CMP_GE(completed, gpnum) ||
1497	    ULONG_CMP_LT(j, js) ||
1498	    ULONG_CMP_GE(gps, js))
1499		return; /* No stall or GP completed since entering function. */
1500	rnp = rdp->mynode;
1501	if (rcu_gp_in_progress(rsp) &&
1502	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1503
1504		/* We haven't checked in, so go dump stack. */
1505		print_cpu_stall(rsp);
1506
1507	} else if (rcu_gp_in_progress(rsp) &&
1508		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1509
1510		/* They had a few time units to dump stack, so complain. */
1511		print_other_cpu_stall(rsp, gpnum);
1512	}
1513}
1514
1515/**
1516 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1517 *
1518 * Set the stall-warning timeout way off into the future, thus preventing
1519 * any RCU CPU stall-warning messages from appearing in the current set of
1520 * RCU grace periods.
1521 *
1522 * The caller must disable hard irqs.
1523 */
1524void rcu_cpu_stall_reset(void)
1525{
1526	struct rcu_state *rsp;
1527
1528	for_each_rcu_flavor(rsp)
1529		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
 
 
 
 
 
 
 
 
1530}
1531
1532/*
1533 * Initialize the specified rcu_data structure's default callback list
1534 * to empty.  The default callback list is the one that is not used by
1535 * no-callbacks CPUs.
1536 */
1537static void init_default_callback_list(struct rcu_data *rdp)
1538{
1539	int i;
 
1540
1541	rdp->nxtlist = NULL;
1542	for (i = 0; i < RCU_NEXT_SIZE; i++)
1543		rdp->nxttail[i] = &rdp->nxtlist;
 
 
 
1544}
1545
1546/*
1547 * Initialize the specified rcu_data structure's callback list to empty.
 
 
 
 
 
 
 
 
 
 
 
 
1548 */
1549static void init_callback_list(struct rcu_data *rdp)
1550{
1551	if (init_nocb_callback_list(rdp))
 
 
 
1552		return;
1553	init_default_callback_list(rdp);
 
 
1554}
1555
1556/*
1557 * Determine the value that ->completed will have at the end of the
1558 * next subsequent grace period.  This is used to tag callbacks so that
1559 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1560 * been dyntick-idle for an extended period with callbacks under the
1561 * influence of RCU_FAST_NO_HZ.
 
 
 
1562 *
1563 * The caller must hold rnp->lock with interrupts disabled.
1564 */
1565static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1566				       struct rcu_node *rnp)
1567{
1568	/*
1569	 * If RCU is idle, we just wait for the next grace period.
1570	 * But we can only be sure that RCU is idle if we are looking
1571	 * at the root rcu_node structure -- otherwise, a new grace
1572	 * period might have started, but just not yet gotten around
1573	 * to initializing the current non-root rcu_node structure.
1574	 */
1575	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1576		return rnp->completed + 1;
1577
1578	/*
1579	 * Otherwise, wait for a possible partial grace period and
1580	 * then the subsequent full grace period.
1581	 */
1582	return rnp->completed + 2;
1583}
1584
1585/*
1586 * Trace-event helper function for rcu_start_future_gp() and
1587 * rcu_nocb_wait_gp().
1588 */
1589static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1590				unsigned long c, const char *s)
1591{
1592	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1593				      rnp->completed, c, rnp->level,
1594				      rnp->grplo, rnp->grphi, s);
1595}
1596
1597/*
1598 * Start some future grace period, as needed to handle newly arrived
1599 * callbacks.  The required future grace periods are recorded in each
1600 * rcu_node structure's ->need_future_gp field.  Returns true if there
1601 * is reason to awaken the grace-period kthread.
1602 *
1603 * The caller must hold the specified rcu_node structure's ->lock.
1604 */
1605static bool __maybe_unused
1606rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1607		    unsigned long *c_out)
1608{
1609	unsigned long c;
1610	int i;
1611	bool ret = false;
1612	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1613
1614	/*
1615	 * Pick up grace-period number for new callbacks.  If this
1616	 * grace period is already marked as needed, return to the caller.
1617	 */
1618	c = rcu_cbs_completed(rdp->rsp, rnp);
1619	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1620	if (rnp->need_future_gp[c & 0x1]) {
1621		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1622		goto out;
1623	}
1624
1625	/*
1626	 * If either this rcu_node structure or the root rcu_node structure
1627	 * believe that a grace period is in progress, then we must wait
1628	 * for the one following, which is in "c".  Because our request
1629	 * will be noticed at the end of the current grace period, we don't
1630	 * need to explicitly start one.  We only do the lockless check
1631	 * of rnp_root's fields if the current rcu_node structure thinks
1632	 * there is no grace period in flight, and because we hold rnp->lock,
1633	 * the only possible change is when rnp_root's two fields are
1634	 * equal, in which case rnp_root->gpnum might be concurrently
1635	 * incremented.  But that is OK, as it will just result in our
1636	 * doing some extra useless work.
1637	 */
1638	if (rnp->gpnum != rnp->completed ||
1639	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1640		rnp->need_future_gp[c & 0x1]++;
1641		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1642		goto out;
1643	}
1644
1645	/*
1646	 * There might be no grace period in progress.  If we don't already
1647	 * hold it, acquire the root rcu_node structure's lock in order to
1648	 * start one (if needed).
1649	 */
1650	if (rnp != rnp_root)
1651		raw_spin_lock_rcu_node(rnp_root);
1652
1653	/*
1654	 * Get a new grace-period number.  If there really is no grace
1655	 * period in progress, it will be smaller than the one we obtained
1656	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1657	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1658	 */
1659	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1660	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1661		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1662			rdp->nxtcompleted[i] = c;
 
 
 
1663
1664	/*
1665	 * If the needed for the required grace period is already
1666	 * recorded, trace and leave.
1667	 */
1668	if (rnp_root->need_future_gp[c & 0x1]) {
1669		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1670		goto unlock_out;
1671	}
1672
1673	/* Record the need for the future grace period. */
1674	rnp_root->need_future_gp[c & 0x1]++;
1675
1676	/* If a grace period is not already in progress, start one. */
1677	if (rnp_root->gpnum != rnp_root->completed) {
1678		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1679	} else {
1680		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1681		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1682	}
1683unlock_out:
1684	if (rnp != rnp_root)
1685		raw_spin_unlock_rcu_node(rnp_root);
1686out:
1687	if (c_out != NULL)
1688		*c_out = c;
1689	return ret;
1690}
1691
1692/*
1693 * Clean up any old requests for the just-ended grace period.  Also return
1694 * whether any additional grace periods have been requested.  Also invoke
1695 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1696 * waiting for this grace period to complete.
1697 */
1698static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1699{
1700	int c = rnp->completed;
1701	int needmore;
1702	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1703
1704	rnp->need_future_gp[c & 0x1] = 0;
1705	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1706	trace_rcu_future_gp(rnp, rdp, c,
1707			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1708	return needmore;
1709}
1710
1711/*
1712 * Awaken the grace-period kthread for the specified flavor of RCU.
1713 * Don't do a self-awaken, and don't bother awakening when there is
1714 * nothing for the grace-period kthread to do (as in several CPUs
1715 * raced to awaken, and we lost), and finally don't try to awaken
1716 * a kthread that has not yet been created.
1717 */
1718static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1719{
1720	if (current == rsp->gp_kthread ||
1721	    !READ_ONCE(rsp->gp_flags) ||
1722	    !rsp->gp_kthread)
1723		return;
1724	swake_up(&rsp->gp_wq);
1725}
1726
1727/*
1728 * If there is room, assign a ->completed number to any callbacks on
1729 * this CPU that have not already been assigned.  Also accelerate any
1730 * callbacks that were previously assigned a ->completed number that has
1731 * since proven to be too conservative, which can happen if callbacks get
1732 * assigned a ->completed number while RCU is idle, but with reference to
1733 * a non-root rcu_node structure.  This function is idempotent, so it does
1734 * not hurt to call it repeatedly.  Returns an flag saying that we should
1735 * awaken the RCU grace-period kthread.
1736 *
1737 * The caller must hold rnp->lock with interrupts disabled.
1738 */
1739static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1740			       struct rcu_data *rdp)
1741{
1742	unsigned long c;
1743	int i;
1744	bool ret;
1745
1746	/* If the CPU has no callbacks, nothing to do. */
1747	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1748		return false;
1749
1750	/*
1751	 * Starting from the sublist containing the callbacks most
1752	 * recently assigned a ->completed number and working down, find the
1753	 * first sublist that is not assignable to an upcoming grace period.
1754	 * Such a sublist has something in it (first two tests) and has
1755	 * a ->completed number assigned that will complete sooner than
1756	 * the ->completed number for newly arrived callbacks (last test).
1757	 *
1758	 * The key point is that any later sublist can be assigned the
1759	 * same ->completed number as the newly arrived callbacks, which
1760	 * means that the callbacks in any of these later sublist can be
1761	 * grouped into a single sublist, whether or not they have already
1762	 * been assigned a ->completed number.
1763	 */
1764	c = rcu_cbs_completed(rsp, rnp);
1765	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1766		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1767		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1768			break;
1769
1770	/*
1771	 * If there are no sublist for unassigned callbacks, leave.
1772	 * At the same time, advance "i" one sublist, so that "i" will
1773	 * index into the sublist where all the remaining callbacks should
1774	 * be grouped into.
1775	 */
1776	if (++i >= RCU_NEXT_TAIL)
1777		return false;
1778
1779	/*
1780	 * Assign all subsequent callbacks' ->completed number to the next
1781	 * full grace period and group them all in the sublist initially
1782	 * indexed by "i".
1783	 */
1784	for (; i <= RCU_NEXT_TAIL; i++) {
1785		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1786		rdp->nxtcompleted[i] = c;
1787	}
1788	/* Record any needed additional grace periods. */
1789	ret = rcu_start_future_gp(rnp, rdp, NULL);
1790
1791	/* Trace depending on how much we were able to accelerate. */
1792	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1793		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1794	else
1795		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1796	return ret;
1797}
1798
1799/*
1800 * Move any callbacks whose grace period has completed to the
1801 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1802 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1803 * sublist.  This function is idempotent, so it does not hurt to
1804 * invoke it repeatedly.  As long as it is not invoked -too- often...
1805 * Returns true if the RCU grace-period kthread needs to be awakened.
1806 *
1807 * The caller must hold rnp->lock with interrupts disabled.
1808 */
1809static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1810			    struct rcu_data *rdp)
1811{
1812	int i, j;
 
1813
1814	/* If the CPU has no callbacks, nothing to do. */
1815	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1816		return false;
1817
1818	/*
1819	 * Find all callbacks whose ->completed numbers indicate that they
1820	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1821	 */
1822	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1823		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1824			break;
1825		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1826	}
1827	/* Clean up any sublist tail pointers that were misordered above. */
1828	for (j = RCU_WAIT_TAIL; j < i; j++)
1829		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1830
1831	/* Copy down callbacks to fill in empty sublists. */
1832	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1833		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1834			break;
1835		rdp->nxttail[j] = rdp->nxttail[i];
1836		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1837	}
1838
1839	/* Classify any remaining callbacks. */
1840	return rcu_accelerate_cbs(rsp, rnp, rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841}
1842
1843/*
1844 * Update CPU-local rcu_data state to record the beginnings and ends of
1845 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1846 * structure corresponding to the current CPU, and must have irqs disabled.
1847 * Returns true if the grace-period kthread needs to be awakened.
1848 */
1849static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1850			      struct rcu_data *rdp)
1851{
1852	bool ret;
1853	bool need_gp;
 
1854
1855	/* Handle the ends of any preceding grace periods first. */
1856	if (rdp->completed == rnp->completed &&
1857	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1858
1859		/* No grace period end, so just accelerate recent callbacks. */
1860		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1861
 
 
 
 
 
 
 
1862	} else {
1863
1864		/* Advance callbacks. */
1865		ret = rcu_advance_cbs(rsp, rnp, rdp);
1866
1867		/* Remember that we saw this grace-period completion. */
1868		rdp->completed = rnp->completed;
1869		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1870	}
1871
1872	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
 
 
1873		/*
1874		 * If the current grace period is waiting for this CPU,
1875		 * set up to detect a quiescent state, otherwise don't
1876		 * go looking for one.
1877		 */
1878		rdp->gpnum = rnp->gpnum;
1879		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1880		need_gp = !!(rnp->qsmask & rdp->grpmask);
1881		rdp->cpu_no_qs.b.norm = need_gp;
1882		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1883		rdp->core_needs_qs = need_gp;
1884		zero_cpu_stall_ticks(rdp);
1885		WRITE_ONCE(rdp->gpwrap, false);
1886	}
 
 
 
 
 
1887	return ret;
1888}
1889
1890static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1891{
1892	unsigned long flags;
1893	bool needwake;
1894	struct rcu_node *rnp;
1895
1896	local_irq_save(flags);
1897	rnp = rdp->mynode;
1898	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1899	     rdp->completed == READ_ONCE(rnp->completed) &&
1900	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1901	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1902		local_irq_restore(flags);
1903		return;
1904	}
1905	needwake = __note_gp_changes(rsp, rnp, rdp);
1906	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
1907	if (needwake)
1908		rcu_gp_kthread_wake(rsp);
1909}
1910
1911static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1912{
1913	if (delay > 0 &&
1914	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1915		schedule_timeout_uninterruptible(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1916}
1917
1918/*
1919 * Initialize a new grace period.  Return false if no grace period required.
1920 */
1921static bool rcu_gp_init(struct rcu_state *rsp)
1922{
 
 
1923	unsigned long oldmask;
 
1924	struct rcu_data *rdp;
1925	struct rcu_node *rnp = rcu_get_root(rsp);
1926
1927	WRITE_ONCE(rsp->gp_activity, jiffies);
1928	raw_spin_lock_irq_rcu_node(rnp);
1929	if (!READ_ONCE(rsp->gp_flags)) {
1930		/* Spurious wakeup, tell caller to go back to sleep.  */
1931		raw_spin_unlock_irq_rcu_node(rnp);
1932		return false;
1933	}
1934	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1935
1936	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1937		/*
1938		 * Grace period already in progress, don't start another.
1939		 * Not supposed to be able to happen.
1940		 */
1941		raw_spin_unlock_irq_rcu_node(rnp);
1942		return false;
1943	}
1944
1945	/* Advance to a new grace period and initialize state. */
1946	record_gp_stall_check_time(rsp);
1947	/* Record GP times before starting GP, hence smp_store_release(). */
1948	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1949	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
 
1950	raw_spin_unlock_irq_rcu_node(rnp);
1951
1952	/*
1953	 * Apply per-leaf buffered online and offline operations to the
1954	 * rcu_node tree.  Note that this new grace period need not wait
1955	 * for subsequent online CPUs, and that quiescent-state forcing
1956	 * will handle subsequent offline CPUs.
1957	 */
1958	rcu_for_each_leaf_node(rsp, rnp) {
1959		rcu_gp_slow(rsp, gp_preinit_delay);
 
 
 
 
 
 
 
 
 
 
1960		raw_spin_lock_irq_rcu_node(rnp);
1961		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1962		    !rnp->wait_blkd_tasks) {
1963			/* Nothing to do on this leaf rcu_node structure. */
1964			raw_spin_unlock_irq_rcu_node(rnp);
 
1965			continue;
1966		}
1967
1968		/* Record old state, apply changes to ->qsmaskinit field. */
1969		oldmask = rnp->qsmaskinit;
1970		rnp->qsmaskinit = rnp->qsmaskinitnext;
1971
1972		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1973		if (!oldmask != !rnp->qsmaskinit) {
1974			if (!oldmask) /* First online CPU for this rcu_node. */
1975				rcu_init_new_rnp(rnp);
1976			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1977				rnp->wait_blkd_tasks = true;
1978			else /* Last offline CPU and can propagate. */
 
1979				rcu_cleanup_dead_rnp(rnp);
 
1980		}
1981
1982		/*
1983		 * If all waited-on tasks from prior grace period are
1984		 * done, and if all this rcu_node structure's CPUs are
1985		 * still offline, propagate up the rcu_node tree and
1986		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1987		 * rcu_node structure's CPUs has since come back online,
1988		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1989		 * checks for this, so just call it unconditionally).
1990		 */
1991		if (rnp->wait_blkd_tasks &&
1992		    (!rcu_preempt_has_tasks(rnp) ||
1993		     rnp->qsmaskinit)) {
1994			rnp->wait_blkd_tasks = false;
1995			rcu_cleanup_dead_rnp(rnp);
 
1996		}
1997
1998		raw_spin_unlock_irq_rcu_node(rnp);
 
1999	}
 
2000
2001	/*
2002	 * Set the quiescent-state-needed bits in all the rcu_node
2003	 * structures for all currently online CPUs in breadth-first order,
2004	 * starting from the root rcu_node structure, relying on the layout
2005	 * of the tree within the rsp->node[] array.  Note that other CPUs
2006	 * will access only the leaves of the hierarchy, thus seeing that no
2007	 * grace period is in progress, at least until the corresponding
2008	 * leaf node has been initialized.
2009	 *
2010	 * The grace period cannot complete until the initialization
2011	 * process finishes, because this kthread handles both.
2012	 */
2013	rcu_for_each_node_breadth_first(rsp, rnp) {
2014		rcu_gp_slow(rsp, gp_init_delay);
2015		raw_spin_lock_irq_rcu_node(rnp);
2016		rdp = this_cpu_ptr(rsp->rda);
 
2017		rcu_preempt_check_blocked_tasks(rnp);
2018		rnp->qsmask = rnp->qsmaskinit;
2019		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2020		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2021			WRITE_ONCE(rnp->completed, rsp->completed);
2022		if (rnp == rdp->mynode)
2023			(void)__note_gp_changes(rsp, rnp, rdp);
2024		rcu_preempt_boost_start_gp(rnp);
2025		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2026					    rnp->level, rnp->grplo,
2027					    rnp->grphi, rnp->qsmask);
2028		raw_spin_unlock_irq_rcu_node(rnp);
2029		cond_resched_rcu_qs();
2030		WRITE_ONCE(rsp->gp_activity, jiffies);
 
 
 
 
 
 
2031	}
2032
 
 
 
 
2033	return true;
2034}
2035
2036/*
2037 * Helper function for wait_event_interruptible_timeout() wakeup
2038 * at force-quiescent-state time.
2039 */
2040static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2041{
2042	struct rcu_node *rnp = rcu_get_root(rsp);
 
 
 
 
2043
2044	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2045	*gfp = READ_ONCE(rsp->gp_flags);
2046	if (*gfp & RCU_GP_FLAG_FQS)
2047		return true;
2048
2049	/* The current grace period has completed. */
2050	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2051		return true;
2052
2053	return false;
2054}
2055
2056/*
2057 * Do one round of quiescent-state forcing.
2058 */
2059static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2060{
2061	bool isidle = false;
2062	unsigned long maxj;
2063	struct rcu_node *rnp = rcu_get_root(rsp);
2064
2065	WRITE_ONCE(rsp->gp_activity, jiffies);
2066	rsp->n_force_qs++;
2067	if (first_time) {
2068		/* Collect dyntick-idle snapshots. */
2069		if (is_sysidle_rcu_state(rsp)) {
2070			isidle = true;
2071			maxj = jiffies - ULONG_MAX / 4;
2072		}
2073		force_qs_rnp(rsp, dyntick_save_progress_counter,
2074			     &isidle, &maxj);
2075		rcu_sysidle_report_gp(rsp, isidle, maxj);
2076	} else {
2077		/* Handle dyntick-idle and offline CPUs. */
2078		isidle = true;
2079		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2080	}
2081	/* Clear flag to prevent immediate re-entry. */
2082	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2083		raw_spin_lock_irq_rcu_node(rnp);
2084		WRITE_ONCE(rsp->gp_flags,
2085			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2086		raw_spin_unlock_irq_rcu_node(rnp);
2087	}
2088}
2089
2090/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2091 * Clean up after the old grace period.
2092 */
2093static void rcu_gp_cleanup(struct rcu_state *rsp)
2094{
2095	unsigned long gp_duration;
2096	bool needgp = false;
2097	int nocb = 0;
 
 
2098	struct rcu_data *rdp;
2099	struct rcu_node *rnp = rcu_get_root(rsp);
2100	struct swait_queue_head *sq;
2101
2102	WRITE_ONCE(rsp->gp_activity, jiffies);
2103	raw_spin_lock_irq_rcu_node(rnp);
2104	gp_duration = jiffies - rsp->gp_start;
2105	if (gp_duration > rsp->gp_max)
2106		rsp->gp_max = gp_duration;
 
2107
2108	/*
2109	 * We know the grace period is complete, but to everyone else
2110	 * it appears to still be ongoing.  But it is also the case
2111	 * that to everyone else it looks like there is nothing that
2112	 * they can do to advance the grace period.  It is therefore
2113	 * safe for us to drop the lock in order to mark the grace
2114	 * period as completed in all of the rcu_node structures.
2115	 */
2116	raw_spin_unlock_irq_rcu_node(rnp);
2117
2118	/*
2119	 * Propagate new ->completed value to rcu_node structures so
2120	 * that other CPUs don't have to wait until the start of the next
2121	 * grace period to process their callbacks.  This also avoids
2122	 * some nasty RCU grace-period initialization races by forcing
2123	 * the end of the current grace period to be completely recorded in
2124	 * all of the rcu_node structures before the beginning of the next
2125	 * grace period is recorded in any of the rcu_node structures.
2126	 */
2127	rcu_for_each_node_breadth_first(rsp, rnp) {
 
 
2128		raw_spin_lock_irq_rcu_node(rnp);
2129		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 
2130		WARN_ON_ONCE(rnp->qsmask);
2131		WRITE_ONCE(rnp->completed, rsp->gpnum);
2132		rdp = this_cpu_ptr(rsp->rda);
2133		if (rnp == rdp->mynode)
2134			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2135		/* smp_mb() provided by prior unlock-lock pair. */
2136		nocb += rcu_future_gp_cleanup(rsp, rnp);
 
 
 
 
 
 
2137		sq = rcu_nocb_gp_get(rnp);
2138		raw_spin_unlock_irq_rcu_node(rnp);
2139		rcu_nocb_gp_cleanup(sq);
2140		cond_resched_rcu_qs();
2141		WRITE_ONCE(rsp->gp_activity, jiffies);
2142		rcu_gp_slow(rsp, gp_cleanup_delay);
2143	}
2144	rnp = rcu_get_root(rsp);
2145	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2146	rcu_nocb_gp_set(rnp, nocb);
2147
2148	/* Declare grace period done. */
2149	WRITE_ONCE(rsp->completed, rsp->gpnum);
2150	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2151	rsp->gp_state = RCU_GP_IDLE;
2152	rdp = this_cpu_ptr(rsp->rda);
 
 
 
 
 
 
2153	/* Advance CBs to reduce false positives below. */
2154	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2155	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2156		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2157		trace_rcu_grace_period(rsp->name,
2158				       READ_ONCE(rsp->gpnum),
 
2159				       TPS("newreq"));
 
 
 
2160	}
2161	raw_spin_unlock_irq_rcu_node(rnp);
 
 
 
 
2162}
2163
2164/*
2165 * Body of kthread that handles grace periods.
2166 */
2167static int __noreturn rcu_gp_kthread(void *arg)
2168{
2169	bool first_gp_fqs;
2170	int gf;
2171	unsigned long j;
2172	int ret;
2173	struct rcu_state *rsp = arg;
2174	struct rcu_node *rnp = rcu_get_root(rsp);
2175
2176	rcu_bind_gp_kthread();
2177	for (;;) {
2178
2179		/* Handle grace-period start. */
2180		for (;;) {
2181			trace_rcu_grace_period(rsp->name,
2182					       READ_ONCE(rsp->gpnum),
2183					       TPS("reqwait"));
2184			rsp->gp_state = RCU_GP_WAIT_GPS;
2185			swait_event_interruptible(rsp->gp_wq,
2186						 READ_ONCE(rsp->gp_flags) &
2187						 RCU_GP_FLAG_INIT);
2188			rsp->gp_state = RCU_GP_DONE_GPS;
 
2189			/* Locking provides needed memory barrier. */
2190			if (rcu_gp_init(rsp))
2191				break;
2192			cond_resched_rcu_qs();
2193			WRITE_ONCE(rsp->gp_activity, jiffies);
2194			WARN_ON(signal_pending(current));
2195			trace_rcu_grace_period(rsp->name,
2196					       READ_ONCE(rsp->gpnum),
2197					       TPS("reqwaitsig"));
2198		}
2199
2200		/* Handle quiescent-state forcing. */
2201		first_gp_fqs = true;
2202		j = jiffies_till_first_fqs;
2203		if (j > HZ) {
2204			j = HZ;
2205			jiffies_till_first_fqs = HZ;
2206		}
2207		ret = 0;
2208		for (;;) {
2209			if (!ret) {
2210				rsp->jiffies_force_qs = jiffies + j;
2211				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2212					   jiffies + 3 * j);
2213			}
2214			trace_rcu_grace_period(rsp->name,
2215					       READ_ONCE(rsp->gpnum),
2216					       TPS("fqswait"));
2217			rsp->gp_state = RCU_GP_WAIT_FQS;
2218			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2219					rcu_gp_fqs_check_wake(rsp, &gf), j);
2220			rsp->gp_state = RCU_GP_DOING_FQS;
2221			/* Locking provides needed memory barriers. */
2222			/* If grace period done, leave loop. */
2223			if (!READ_ONCE(rnp->qsmask) &&
2224			    !rcu_preempt_blocked_readers_cgp(rnp))
2225				break;
2226			/* If time for quiescent-state forcing, do it. */
2227			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2228			    (gf & RCU_GP_FLAG_FQS)) {
2229				trace_rcu_grace_period(rsp->name,
2230						       READ_ONCE(rsp->gpnum),
2231						       TPS("fqsstart"));
2232				rcu_gp_fqs(rsp, first_gp_fqs);
2233				first_gp_fqs = false;
2234				trace_rcu_grace_period(rsp->name,
2235						       READ_ONCE(rsp->gpnum),
2236						       TPS("fqsend"));
2237				cond_resched_rcu_qs();
2238				WRITE_ONCE(rsp->gp_activity, jiffies);
2239				ret = 0; /* Force full wait till next FQS. */
2240				j = jiffies_till_next_fqs;
2241				if (j > HZ) {
2242					j = HZ;
2243					jiffies_till_next_fqs = HZ;
2244				} else if (j < 1) {
2245					j = 1;
2246					jiffies_till_next_fqs = 1;
2247				}
2248			} else {
2249				/* Deal with stray signal. */
2250				cond_resched_rcu_qs();
2251				WRITE_ONCE(rsp->gp_activity, jiffies);
2252				WARN_ON(signal_pending(current));
2253				trace_rcu_grace_period(rsp->name,
2254						       READ_ONCE(rsp->gpnum),
2255						       TPS("fqswaitsig"));
2256				ret = 1; /* Keep old FQS timing. */
2257				j = jiffies;
2258				if (time_after(jiffies, rsp->jiffies_force_qs))
2259					j = 1;
2260				else
2261					j = rsp->jiffies_force_qs - j;
2262			}
2263		}
2264
2265		/* Handle grace-period end. */
2266		rsp->gp_state = RCU_GP_CLEANUP;
2267		rcu_gp_cleanup(rsp);
2268		rsp->gp_state = RCU_GP_CLEANED;
2269	}
2270}
2271
2272/*
2273 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2274 * in preparation for detecting the next grace period.  The caller must hold
2275 * the root node's ->lock and hard irqs must be disabled.
2276 *
2277 * Note that it is legal for a dying CPU (which is marked as offline) to
2278 * invoke this function.  This can happen when the dying CPU reports its
2279 * quiescent state.
2280 *
2281 * Returns true if the grace-period kthread must be awakened.
2282 */
2283static bool
2284rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2285		      struct rcu_data *rdp)
2286{
2287	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2288		/*
2289		 * Either we have not yet spawned the grace-period
2290		 * task, this CPU does not need another grace period,
2291		 * or a grace period is already in progress.
2292		 * Either way, don't start a new grace period.
2293		 */
2294		return false;
2295	}
2296	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2297	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2298			       TPS("newreq"));
2299
2300	/*
2301	 * We can't do wakeups while holding the rnp->lock, as that
2302	 * could cause possible deadlocks with the rq->lock. Defer
2303	 * the wakeup to our caller.
2304	 */
2305	return true;
2306}
2307
2308/*
2309 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2310 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2311 * is invoked indirectly from rcu_advance_cbs(), which would result in
2312 * endless recursion -- or would do so if it wasn't for the self-deadlock
2313 * that is encountered beforehand.
2314 *
2315 * Returns true if the grace-period kthread needs to be awakened.
2316 */
2317static bool rcu_start_gp(struct rcu_state *rsp)
2318{
2319	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2320	struct rcu_node *rnp = rcu_get_root(rsp);
2321	bool ret = false;
2322
2323	/*
2324	 * If there is no grace period in progress right now, any
2325	 * callbacks we have up to this point will be satisfied by the
2326	 * next grace period.  Also, advancing the callbacks reduces the
2327	 * probability of false positives from cpu_needs_another_gp()
2328	 * resulting in pointless grace periods.  So, advance callbacks
2329	 * then start the grace period!
2330	 */
2331	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2332	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2333	return ret;
2334}
2335
2336/*
2337 * Report a full set of quiescent states to the specified rcu_state data
2338 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2339 * kthread if another grace period is required.  Whether we wake
2340 * the grace-period kthread or it awakens itself for the next round
2341 * of quiescent-state forcing, that kthread will clean up after the
2342 * just-completed grace period.  Note that the caller must hold rnp->lock,
2343 * which is released before return.
2344 */
2345static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2346	__releases(rcu_get_root(rsp)->lock)
2347{
2348	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2349	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2350	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2351	rcu_gp_kthread_wake(rsp);
2352}
2353
2354/*
2355 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2356 * Allows quiescent states for a group of CPUs to be reported at one go
2357 * to the specified rcu_node structure, though all the CPUs in the group
2358 * must be represented by the same rcu_node structure (which need not be a
2359 * leaf rcu_node structure, though it often will be).  The gps parameter
2360 * is the grace-period snapshot, which means that the quiescent states
2361 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2362 * must be held upon entry, and it is released before return.
 
 
 
 
2363 */
2364static void
2365rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2366		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2367	__releases(rnp->lock)
2368{
2369	unsigned long oldmask = 0;
2370	struct rcu_node *rnp_c;
2371
 
 
2372	/* Walk up the rcu_node hierarchy. */
2373	for (;;) {
2374		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2375
2376			/*
2377			 * Our bit has already been cleared, or the
2378			 * relevant grace period is already over, so done.
2379			 */
2380			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2381			return;
2382		}
2383		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2384		rnp->qsmask &= ~mask;
2385		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
 
 
2386						 mask, rnp->qsmask, rnp->level,
2387						 rnp->grplo, rnp->grphi,
2388						 !!rnp->gp_tasks);
2389		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2390
2391			/* Other bits still set at this level, so done. */
2392			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2393			return;
2394		}
 
2395		mask = rnp->grpmask;
2396		if (rnp->parent == NULL) {
2397
2398			/* No more levels.  Exit loop holding root lock. */
2399
2400			break;
2401		}
2402		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2403		rnp_c = rnp;
2404		rnp = rnp->parent;
2405		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2406		oldmask = rnp_c->qsmask;
2407	}
2408
2409	/*
2410	 * Get here if we are the last CPU to pass through a quiescent
2411	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2412	 * to clean up and start the next grace period if one is needed.
2413	 */
2414	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2415}
2416
2417/*
2418 * Record a quiescent state for all tasks that were previously queued
2419 * on the specified rcu_node structure and that were blocking the current
2420 * RCU grace period.  The caller must hold the specified rnp->lock with
2421 * irqs disabled, and this lock is released upon return, but irqs remain
2422 * disabled.
2423 */
2424static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2425				      struct rcu_node *rnp, unsigned long flags)
2426	__releases(rnp->lock)
2427{
2428	unsigned long gps;
2429	unsigned long mask;
2430	struct rcu_node *rnp_p;
2431
2432	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2433	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 
 
2434		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2435		return;  /* Still need more quiescent states! */
2436	}
2437
 
2438	rnp_p = rnp->parent;
2439	if (rnp_p == NULL) {
2440		/*
2441		 * Only one rcu_node structure in the tree, so don't
2442		 * try to report up to its nonexistent parent!
2443		 */
2444		rcu_report_qs_rsp(rsp, flags);
2445		return;
2446	}
2447
2448	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2449	gps = rnp->gpnum;
2450	mask = rnp->grpmask;
2451	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2452	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2453	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2454}
2455
2456/*
2457 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2458 * structure.  This must be called from the specified CPU.
2459 */
2460static void
2461rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2462{
2463	unsigned long flags;
2464	unsigned long mask;
2465	bool needwake;
 
2466	struct rcu_node *rnp;
2467
 
2468	rnp = rdp->mynode;
2469	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2470	if ((rdp->cpu_no_qs.b.norm &&
2471	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2472	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2473	    rdp->gpwrap) {
2474
2475		/*
2476		 * The grace period in which this quiescent state was
2477		 * recorded has ended, so don't report it upwards.
2478		 * We will instead need a new quiescent state that lies
2479		 * within the current grace period.
2480		 */
2481		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2482		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2483		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2484		return;
2485	}
2486	mask = rdp->grpmask;
 
2487	if ((rnp->qsmask & mask) == 0) {
2488		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2489	} else {
2490		rdp->core_needs_qs = false;
2491
2492		/*
2493		 * This GP can't end until cpu checks in, so all of our
2494		 * callbacks can be processed during the next GP.
2495		 */
2496		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
 
2497
2498		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
 
2499		/* ^^^ Released rnp->lock */
2500		if (needwake)
2501			rcu_gp_kthread_wake(rsp);
2502	}
2503}
2504
2505/*
2506 * Check to see if there is a new grace period of which this CPU
2507 * is not yet aware, and if so, set up local rcu_data state for it.
2508 * Otherwise, see if this CPU has just passed through its first
2509 * quiescent state for this grace period, and record that fact if so.
2510 */
2511static void
2512rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2513{
2514	/* Check for grace-period ends and beginnings. */
2515	note_gp_changes(rsp, rdp);
2516
2517	/*
2518	 * Does this CPU still need to do its part for current grace period?
2519	 * If no, return and let the other CPUs do their part as well.
2520	 */
2521	if (!rdp->core_needs_qs)
2522		return;
2523
2524	/*
2525	 * Was there a quiescent state since the beginning of the grace
2526	 * period? If no, then exit and wait for the next call.
2527	 */
2528	if (rdp->cpu_no_qs.b.norm &&
2529	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2530		return;
2531
2532	/*
2533	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2534	 * judge of that).
2535	 */
2536	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2537}
2538
2539/*
2540 * Send the specified CPU's RCU callbacks to the orphanage.  The
2541 * specified CPU must be offline, and the caller must hold the
2542 * ->orphan_lock.
2543 */
2544static void
2545rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2546			  struct rcu_node *rnp, struct rcu_data *rdp)
2547{
2548	/* No-CBs CPUs do not have orphanable callbacks. */
2549	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2550		return;
2551
2552	/*
2553	 * Orphan the callbacks.  First adjust the counts.  This is safe
2554	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2555	 * cannot be running now.  Thus no memory barrier is required.
2556	 */
2557	if (rdp->nxtlist != NULL) {
2558		rsp->qlen_lazy += rdp->qlen_lazy;
2559		rsp->qlen += rdp->qlen;
2560		rdp->n_cbs_orphaned += rdp->qlen;
2561		rdp->qlen_lazy = 0;
2562		WRITE_ONCE(rdp->qlen, 0);
2563	}
2564
2565	/*
2566	 * Next, move those callbacks still needing a grace period to
2567	 * the orphanage, where some other CPU will pick them up.
2568	 * Some of the callbacks might have gone partway through a grace
2569	 * period, but that is too bad.  They get to start over because we
2570	 * cannot assume that grace periods are synchronized across CPUs.
2571	 * We don't bother updating the ->nxttail[] array yet, instead
2572	 * we just reset the whole thing later on.
2573	 */
2574	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2575		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2576		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2577		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2578	}
2579
2580	/*
2581	 * Then move the ready-to-invoke callbacks to the orphanage,
2582	 * where some other CPU will pick them up.  These will not be
2583	 * required to pass though another grace period: They are done.
2584	 */
2585	if (rdp->nxtlist != NULL) {
2586		*rsp->orphan_donetail = rdp->nxtlist;
2587		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2588	}
2589
2590	/*
2591	 * Finally, initialize the rcu_data structure's list to empty and
2592	 * disallow further callbacks on this CPU.
2593	 */
2594	init_callback_list(rdp);
2595	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2596}
2597
2598/*
2599 * Adopt the RCU callbacks from the specified rcu_state structure's
2600 * orphanage.  The caller must hold the ->orphan_lock.
2601 */
2602static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2603{
2604	int i;
2605	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2606
2607	/* No-CBs CPUs are handled specially. */
2608	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2609	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2610		return;
2611
2612	/* Do the accounting first. */
2613	rdp->qlen_lazy += rsp->qlen_lazy;
2614	rdp->qlen += rsp->qlen;
2615	rdp->n_cbs_adopted += rsp->qlen;
2616	if (rsp->qlen_lazy != rsp->qlen)
2617		rcu_idle_count_callbacks_posted();
2618	rsp->qlen_lazy = 0;
2619	rsp->qlen = 0;
2620
2621	/*
2622	 * We do not need a memory barrier here because the only way we
2623	 * can get here if there is an rcu_barrier() in flight is if
2624	 * we are the task doing the rcu_barrier().
2625	 */
2626
2627	/* First adopt the ready-to-invoke callbacks. */
2628	if (rsp->orphan_donelist != NULL) {
2629		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2630		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2631		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2632			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2633				rdp->nxttail[i] = rsp->orphan_donetail;
2634		rsp->orphan_donelist = NULL;
2635		rsp->orphan_donetail = &rsp->orphan_donelist;
2636	}
2637
2638	/* And then adopt the callbacks that still need a grace period. */
2639	if (rsp->orphan_nxtlist != NULL) {
2640		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2641		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2642		rsp->orphan_nxtlist = NULL;
2643		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2644	}
2645}
2646
2647/*
2648 * Trace the fact that this CPU is going offline.
2649 */
2650static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2651{
2652	RCU_TRACE(unsigned long mask);
2653	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2654	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2655
2656	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2657		return;
2658
2659	RCU_TRACE(mask = rdp->grpmask);
2660	trace_rcu_grace_period(rsp->name,
2661			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2662			       TPS("cpuofl"));
2663}
2664
2665/*
2666 * All CPUs for the specified rcu_node structure have gone offline,
2667 * and all tasks that were preempted within an RCU read-side critical
2668 * section while running on one of those CPUs have since exited their RCU
2669 * read-side critical section.  Some other CPU is reporting this fact with
2670 * the specified rcu_node structure's ->lock held and interrupts disabled.
2671 * This function therefore goes up the tree of rcu_node structures,
2672 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2673 * the leaf rcu_node structure's ->qsmaskinit field has already been
2674 * updated
2675 *
2676 * This function does check that the specified rcu_node structure has
2677 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2678 * prematurely.  That said, invoking it after the fact will cost you
2679 * a needless lock acquisition.  So once it has done its work, don't
2680 * invoke it again.
2681 */
2682static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2683{
2684	long mask;
2685	struct rcu_node *rnp = rnp_leaf;
2686
 
2687	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2688	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
 
2689		return;
2690	for (;;) {
2691		mask = rnp->grpmask;
2692		rnp = rnp->parent;
2693		if (!rnp)
2694			break;
2695		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2696		rnp->qsmaskinit &= ~mask;
2697		rnp->qsmask &= ~mask;
 
2698		if (rnp->qsmaskinit) {
2699			raw_spin_unlock_rcu_node(rnp);
2700			/* irqs remain disabled. */
2701			return;
2702		}
2703		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2704	}
2705}
2706
2707/*
2708 * The CPU has been completely removed, and some other CPU is reporting
2709 * this fact from process context.  Do the remainder of the cleanup,
2710 * including orphaning the outgoing CPU's RCU callbacks, and also
2711 * adopting them.  There can only be one CPU hotplug operation at a time,
2712 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2713 */
2714static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2715{
2716	unsigned long flags;
2717	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2718	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2719
2720	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2721		return;
2722
 
2723	/* Adjust any no-longer-needed kthreads. */
2724	rcu_boost_kthread_setaffinity(rnp, -1);
 
 
2725
2726	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2727	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2728	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2729	rcu_adopt_orphan_cbs(rsp, flags);
2730	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2731
2732	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2733		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2734		  cpu, rdp->qlen, rdp->nxtlist);
2735}
2736
2737/*
2738 * Invoke any RCU callbacks that have made it to the end of their grace
2739 * period.  Thottle as specified by rdp->blimit.
2740 */
2741static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2742{
 
 
2743	unsigned long flags;
2744	struct rcu_head *next, *list, **tail;
2745	long bl, count, count_lazy;
2746	int i;
 
 
2747
2748	/* If no callbacks are ready, just return. */
2749	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2750		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2751		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
 
 
2752				    need_resched(), is_idle_task(current),
2753				    rcu_is_callbacks_kthread());
2754		return;
2755	}
2756
2757	/*
2758	 * Extract the list of ready callbacks, disabling to prevent
2759	 * races with call_rcu() from interrupt handlers.
 
2760	 */
2761	local_irq_save(flags);
 
2762	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2763	bl = rdp->blimit;
2764	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2765	list = rdp->nxtlist;
2766	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2767	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2768	tail = rdp->nxttail[RCU_DONE_TAIL];
2769	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2770		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2771			rdp->nxttail[i] = &rdp->nxtlist;
2772	local_irq_restore(flags);
 
 
 
 
 
 
 
 
2773
2774	/* Invoke callbacks. */
2775	count = count_lazy = 0;
2776	while (list) {
2777		next = list->next;
2778		prefetch(next);
2779		debug_rcu_head_unqueue(list);
2780		if (__rcu_reclaim(rsp->name, list))
2781			count_lazy++;
2782		list = next;
2783		/* Stop only if limit reached and CPU has something to do. */
2784		if (++count >= bl &&
 
 
 
 
 
 
 
 
 
 
 
 
2785		    (need_resched() ||
2786		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2787			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788	}
2789
2790	local_irq_save(flags);
2791	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2792			    is_idle_task(current),
2793			    rcu_is_callbacks_kthread());
2794
2795	/* Update count, and requeue any remaining callbacks. */
2796	if (list != NULL) {
2797		*tail = rdp->nxtlist;
2798		rdp->nxtlist = list;
2799		for (i = 0; i < RCU_NEXT_SIZE; i++)
2800			if (&rdp->nxtlist == rdp->nxttail[i])
2801				rdp->nxttail[i] = tail;
2802			else
2803				break;
2804	}
2805	smp_mb(); /* List handling before counting for rcu_barrier(). */
2806	rdp->qlen_lazy -= count_lazy;
2807	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2808	rdp->n_cbs_invoked += count;
 
 
 
 
 
 
2809
2810	/* Reinstate batch limit if we have worked down the excess. */
2811	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
 
2812		rdp->blimit = blimit;
2813
2814	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2815	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2816		rdp->qlen_last_fqs_check = 0;
2817		rdp->n_force_qs_snap = rsp->n_force_qs;
2818	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2819		rdp->qlen_last_fqs_check = rdp->qlen;
2820	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
 
 
 
 
 
 
 
 
 
 
2821
2822	local_irq_restore(flags);
2823
2824	/* Re-invoke RCU core processing if there are callbacks remaining. */
2825	if (cpu_has_callbacks_ready_to_invoke(rdp))
2826		invoke_rcu_core();
 
2827}
2828
2829/*
2830 * Check to see if this CPU is in a non-context-switch quiescent state
2831 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2832 * Also schedule RCU core processing.
2833 *
2834 * This function must be called from hardirq context.  It is normally
2835 * invoked from the scheduling-clock interrupt.
2836 */
2837void rcu_check_callbacks(int user)
2838{
2839	trace_rcu_utilization(TPS("Start scheduler-tick"));
2840	increment_cpu_stall_ticks();
2841	if (user || rcu_is_cpu_rrupt_from_idle()) {
2842
2843		/*
2844		 * Get here if this CPU took its interrupt from user
2845		 * mode or from the idle loop, and if this is not a
2846		 * nested interrupt.  In this case, the CPU is in
2847		 * a quiescent state, so note it.
2848		 *
2849		 * No memory barrier is required here because both
2850		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2851		 * variables that other CPUs neither access nor modify,
2852		 * at least not while the corresponding CPU is online.
2853		 */
2854
2855		rcu_sched_qs();
2856		rcu_bh_qs();
2857
2858	} else if (!in_softirq()) {
2859
2860		/*
2861		 * Get here if this CPU did not take its interrupt from
2862		 * softirq, in other words, if it is not interrupting
2863		 * a rcu_bh read-side critical section.  This is an _bh
2864		 * critical section, so note it.
2865		 */
2866
2867		rcu_bh_qs();
2868	}
2869	rcu_preempt_check_callbacks();
2870	if (rcu_pending())
2871		invoke_rcu_core();
2872	if (user)
2873		rcu_note_voluntary_context_switch(current);
2874	trace_rcu_utilization(TPS("End scheduler-tick"));
2875}
2876
2877/*
2878 * Scan the leaf rcu_node structures, processing dyntick state for any that
2879 * have not yet encountered a quiescent state, using the function specified.
2880 * Also initiate boosting for any threads blocked on the root rcu_node.
2881 *
2882 * The caller must have suppressed start of new grace periods.
2883 */
2884static void force_qs_rnp(struct rcu_state *rsp,
2885			 int (*f)(struct rcu_data *rsp, bool *isidle,
2886				  unsigned long *maxj),
2887			 bool *isidle, unsigned long *maxj)
2888{
2889	int cpu;
2890	unsigned long flags;
2891	unsigned long mask;
 
2892	struct rcu_node *rnp;
2893
2894	rcu_for_each_leaf_node(rsp, rnp) {
2895		cond_resched_rcu_qs();
 
 
2896		mask = 0;
2897		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
2898		if (rnp->qsmask == 0) {
2899			if (rcu_state_p == &rcu_sched_state ||
2900			    rsp != rcu_state_p ||
2901			    rcu_preempt_blocked_readers_cgp(rnp)) {
2902				/*
2903				 * No point in scanning bits because they
2904				 * are all zero.  But we might need to
2905				 * priority-boost blocked readers.
2906				 */
2907				rcu_initiate_boost(rnp, flags);
2908				/* rcu_initiate_boost() releases rnp->lock */
2909				continue;
2910			}
2911			if (rnp->parent &&
2912			    (rnp->parent->qsmask & rnp->grpmask)) {
2913				/*
2914				 * Race between grace-period
2915				 * initialization and task exiting RCU
2916				 * read-side critical section: Report.
2917				 */
2918				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2919				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2920				continue;
2921			}
2922		}
2923		for_each_leaf_node_possible_cpu(rnp, cpu) {
2924			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2925			if ((rnp->qsmask & bit) != 0) {
2926				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2927					mask |= bit;
2928			}
2929		}
2930		if (mask != 0) {
2931			/* Idle/offline CPUs, report (releases rnp->lock. */
2932			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2933		} else {
2934			/* Nothing to do here, so just drop the lock. */
2935			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2936		}
2937	}
2938}
2939
2940/*
2941 * Force quiescent states on reluctant CPUs, and also detect which
2942 * CPUs are in dyntick-idle mode.
2943 */
2944static void force_quiescent_state(struct rcu_state *rsp)
2945{
2946	unsigned long flags;
2947	bool ret;
2948	struct rcu_node *rnp;
2949	struct rcu_node *rnp_old = NULL;
2950
2951	/* Funnel through hierarchy to reduce memory contention. */
2952	rnp = __this_cpu_read(rsp->rda->mynode);
2953	for (; rnp != NULL; rnp = rnp->parent) {
2954		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2955		      !raw_spin_trylock(&rnp->fqslock);
2956		if (rnp_old != NULL)
2957			raw_spin_unlock(&rnp_old->fqslock);
2958		if (ret) {
2959			rsp->n_force_qs_lh++;
2960			return;
2961		}
2962		rnp_old = rnp;
2963	}
2964	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2965
2966	/* Reached the root of the rcu_node tree, acquire lock. */
2967	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2968	raw_spin_unlock(&rnp_old->fqslock);
2969	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2970		rsp->n_force_qs_lh++;
2971		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2972		return;  /* Someone beat us to it. */
2973	}
2974	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
 
2975	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2976	rcu_gp_kthread_wake(rsp);
2977}
 
2978
2979/*
2980 * This does the RCU core processing work for the specified rcu_state
2981 * and rcu_data structures.  This may be called only from the CPU to
2982 * whom the rdp belongs.
2983 */
2984static void
2985__rcu_process_callbacks(struct rcu_state *rsp)
 
 
 
2986{
2987	unsigned long flags;
2988	bool needwake;
2989	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
 
2990
2991	WARN_ON_ONCE(rdp->beenonline == 0);
 
 
 
 
 
 
 
 
 
 
 
2992
2993	/* Update RCU state based on any recent quiescent states. */
2994	rcu_check_quiescent_state(rsp, rdp);
2995
2996	/* Does this CPU require a not-yet-started grace period? */
2997	local_irq_save(flags);
2998	if (cpu_needs_another_gp(rsp, rdp)) {
2999		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3000		needwake = rcu_start_gp(rsp);
3001		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3002		if (needwake)
3003			rcu_gp_kthread_wake(rsp);
3004	} else {
3005		local_irq_restore(flags);
3006	}
3007
 
 
3008	/* If there are callbacks ready, invoke them. */
3009	if (cpu_has_callbacks_ready_to_invoke(rdp))
3010		invoke_rcu_callbacks(rsp, rdp);
 
3011
3012	/* Do any needed deferred wakeups of rcuo kthreads. */
3013	do_nocb_deferred_wakeup(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014}
3015
3016/*
3017 * Do RCU core processing for the current CPU.
3018 */
3019static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3020{
3021	struct rcu_state *rsp;
3022
3023	if (cpu_is_offline(smp_processor_id()))
3024		return;
3025	trace_rcu_utilization(TPS("Start RCU core"));
3026	for_each_rcu_flavor(rsp)
3027		__rcu_process_callbacks(rsp);
3028	trace_rcu_utilization(TPS("End RCU core"));
 
 
 
 
 
 
 
 
 
 
3029}
3030
3031/*
3032 * Schedule RCU callback invocation.  If the specified type of RCU
3033 * does not support RCU priority boosting, just do a direct call,
3034 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3035 * are running on the current CPU with softirqs disabled, the
3036 * rcu_cpu_kthread_task cannot disappear out from under us.
3037 */
3038static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3039{
3040	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3041		return;
3042	if (likely(!rsp->boost)) {
3043		rcu_do_batch(rsp, rdp);
3044		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3045	}
3046	invoke_rcu_callbacks_kthread();
 
 
 
 
3047}
3048
3049static void invoke_rcu_core(void)
 
 
 
 
 
 
 
 
 
 
 
 
3050{
3051	if (cpu_online(smp_processor_id()))
3052		raise_softirq(RCU_SOFTIRQ);
 
 
 
 
 
 
 
3053}
3054
3055/*
3056 * Handle any core-RCU processing required by a call_rcu() invocation.
3057 */
3058static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3059			    struct rcu_head *head, unsigned long flags)
3060{
3061	bool needwake;
3062
3063	/*
3064	 * If called from an extended quiescent state, invoke the RCU
3065	 * core in order to force a re-evaluation of RCU's idleness.
3066	 */
3067	if (!rcu_is_watching())
3068		invoke_rcu_core();
3069
3070	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3071	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3072		return;
3073
3074	/*
3075	 * Force the grace period if too many callbacks or too long waiting.
3076	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3077	 * if some other CPU has recently done so.  Also, don't bother
3078	 * invoking force_quiescent_state() if the newly enqueued callback
3079	 * is the only one waiting for a grace period to complete.
3080	 */
3081	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
 
3082
3083		/* Are we ignoring a completed grace period? */
3084		note_gp_changes(rsp, rdp);
3085
3086		/* Start a new grace period if one not already started. */
3087		if (!rcu_gp_in_progress(rsp)) {
3088			struct rcu_node *rnp_root = rcu_get_root(rsp);
3089
3090			raw_spin_lock_rcu_node(rnp_root);
3091			needwake = rcu_start_gp(rsp);
3092			raw_spin_unlock_rcu_node(rnp_root);
3093			if (needwake)
3094				rcu_gp_kthread_wake(rsp);
3095		} else {
3096			/* Give the grace period a kick. */
3097			rdp->blimit = LONG_MAX;
3098			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3099			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3100				force_quiescent_state(rsp);
3101			rdp->n_force_qs_snap = rsp->n_force_qs;
3102			rdp->qlen_last_fqs_check = rdp->qlen;
3103		}
3104	}
3105}
3106
3107/*
3108 * RCU callback function to leak a callback.
3109 */
3110static void rcu_leak_callback(struct rcu_head *rhp)
3111{
3112}
3113
3114/*
3115 * Helper function for call_rcu() and friends.  The cpu argument will
3116 * normally be -1, indicating "currently running CPU".  It may specify
3117 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3118 * is expected to specify a CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3119 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3120static void
3121__call_rcu(struct rcu_head *head, rcu_callback_t func,
3122	   struct rcu_state *rsp, int cpu, bool lazy)
3123{
 
3124	unsigned long flags;
3125	struct rcu_data *rdp;
 
3126
3127	/* Misaligned rcu_head! */
3128	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3129
3130	if (debug_rcu_head_queue(head)) {
3131		/* Probable double call_rcu(), so leak the callback. */
 
 
 
 
 
 
 
 
3132		WRITE_ONCE(head->func, rcu_leak_callback);
3133		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3134		return;
3135	}
3136	head->func = func;
3137	head->next = NULL;
3138	local_irq_save(flags);
3139	rdp = this_cpu_ptr(rsp->rda);
 
3140
3141	/* Add the callback to our list. */
3142	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3143		int offline;
3144
3145		if (cpu != -1)
3146			rdp = per_cpu_ptr(rsp->rda, cpu);
3147		if (likely(rdp->mynode)) {
3148			/* Post-boot, so this should be for a no-CBs CPU. */
3149			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3150			WARN_ON_ONCE(offline);
3151			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3152			local_irq_restore(flags);
3153			return;
3154		}
3155		/*
3156		 * Very early boot, before rcu_init().  Initialize if needed
3157		 * and then drop through to queue the callback.
3158		 */
3159		BUG_ON(cpu != -1);
3160		WARN_ON_ONCE(!rcu_is_watching());
3161		if (!likely(rdp->nxtlist))
3162			init_default_callback_list(rdp);
 
 
3163	}
3164	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3165	if (lazy)
3166		rdp->qlen_lazy++;
3167	else
3168		rcu_idle_count_callbacks_posted();
3169	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3170	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3171	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3172
3173	if (__is_kfree_rcu_offset((unsigned long)func))
3174		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3175					 rdp->qlen_lazy, rdp->qlen);
3176	else
3177		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
 
 
 
3178
3179	/* Go handle any RCU core processing required. */
3180	__call_rcu_core(rsp, rdp, head, flags);
3181	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3182}
3183
3184/*
3185 * Queue an RCU-sched callback for invocation after a grace period.
 
3186 */
3187void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3188{
3189	__call_rcu(head, func, &rcu_sched_state, -1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190}
3191EXPORT_SYMBOL_GPL(call_rcu_sched);
3192
3193/*
3194 * Queue an RCU callback for invocation after a quicker grace period.
3195 */
3196void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197{
3198	__call_rcu(head, func, &rcu_bh_state, -1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3199}
3200EXPORT_SYMBOL_GPL(call_rcu_bh);
3201
3202/*
3203 * Queue an RCU callback for lazy invocation after a grace period.
3204 * This will likely be later named something like "call_rcu_lazy()",
3205 * but this change will require some way of tagging the lazy RCU
3206 * callbacks in the list of pending callbacks. Until then, this
3207 * function may only be called from __kfree_rcu().
 
 
 
 
 
3208 */
3209void kfree_call_rcu(struct rcu_head *head,
3210		    rcu_callback_t func)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3211{
3212	__call_rcu(head, func, rcu_state_p, -1, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3213}
3214EXPORT_SYMBOL_GPL(kfree_call_rcu);
3215
3216/*
3217 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3218 * any blocking grace-period wait automatically implies a grace period
3219 * if there is only one CPU online at any point time during execution
3220 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 
 
 
3221 * occasionally incorrectly indicate that there are multiple CPUs online
3222 * when there was in fact only one the whole time, as this just adds
3223 * some overhead: RCU still operates correctly.
3224 */
3225static inline int rcu_blocking_is_gp(void)
3226{
3227	int ret;
3228
 
 
3229	might_sleep();  /* Check for RCU read-side critical section. */
3230	preempt_disable();
3231	ret = num_online_cpus() <= 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
3232	preempt_enable();
3233	return ret;
3234}
3235
3236/**
3237 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3238 *
3239 * Control will return to the caller some time after a full rcu-sched
3240 * grace period has elapsed, in other words after all currently executing
3241 * rcu-sched read-side critical sections have completed.   These read-side
3242 * critical sections are delimited by rcu_read_lock_sched() and
3243 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3244 * local_irq_disable(), and so on may be used in place of
3245 * rcu_read_lock_sched().
3246 *
3247 * This means that all preempt_disable code sequences, including NMI and
3248 * non-threaded hardware-interrupt handlers, in progress on entry will
3249 * have completed before this primitive returns.  However, this does not
3250 * guarantee that softirq handlers will have completed, since in some
3251 * kernels, these handlers can run in process context, and can block.
3252 *
3253 * Note that this guarantee implies further memory-ordering guarantees.
3254 * On systems with more than one CPU, when synchronize_sched() returns,
3255 * each CPU is guaranteed to have executed a full memory barrier since the
3256 * end of its last RCU-sched read-side critical section whose beginning
3257 * preceded the call to synchronize_sched().  In addition, each CPU having
3258 * an RCU read-side critical section that extends beyond the return from
3259 * synchronize_sched() is guaranteed to have executed a full memory barrier
3260 * after the beginning of synchronize_sched() and before the beginning of
3261 * that RCU read-side critical section.  Note that these guarantees include
3262 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3263 * that are executing in the kernel.
3264 *
3265 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3266 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3267 * to have executed a full memory barrier during the execution of
3268 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3269 * again only if the system has more than one CPU).
3270 *
3271 * This primitive provides the guarantees made by the (now removed)
3272 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3273 * guarantees that rcu_read_lock() sections will have completed.
3274 * In "classic RCU", these two guarantees happen to be one and
3275 * the same, but can differ in realtime RCU implementations.
3276 */
3277void synchronize_sched(void)
3278{
3279	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3280			 lock_is_held(&rcu_lock_map) ||
3281			 lock_is_held(&rcu_sched_lock_map),
3282			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3283	if (rcu_blocking_is_gp())
3284		return;
3285	if (rcu_gp_is_expedited())
3286		synchronize_sched_expedited();
3287	else
3288		wait_rcu_gp(call_rcu_sched);
3289}
3290EXPORT_SYMBOL_GPL(synchronize_sched);
3291
3292/**
3293 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3294 *
3295 * Control will return to the caller some time after a full rcu_bh grace
3296 * period has elapsed, in other words after all currently executing rcu_bh
3297 * read-side critical sections have completed.  RCU read-side critical
3298 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3299 * and may be nested.
3300 *
3301 * See the description of synchronize_sched() for more detailed information
3302 * on memory ordering guarantees.
3303 */
3304void synchronize_rcu_bh(void)
3305{
3306	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3307			 lock_is_held(&rcu_lock_map) ||
3308			 lock_is_held(&rcu_sched_lock_map),
3309			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3310	if (rcu_blocking_is_gp())
3311		return;
3312	if (rcu_gp_is_expedited())
3313		synchronize_rcu_bh_expedited();
3314	else
3315		wait_rcu_gp(call_rcu_bh);
3316}
3317EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3318
3319/**
3320 * get_state_synchronize_rcu - Snapshot current RCU state
3321 *
3322 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3323 * to determine whether or not a full grace period has elapsed in the
3324 * meantime.
3325 */
3326unsigned long get_state_synchronize_rcu(void)
3327{
3328	/*
3329	 * Any prior manipulation of RCU-protected data must happen
3330	 * before the load from ->gpnum.
3331	 */
3332	smp_mb();  /* ^^^ */
3333
3334	/*
3335	 * Make sure this load happens before the purportedly
3336	 * time-consuming work between get_state_synchronize_rcu()
3337	 * and cond_synchronize_rcu().
3338	 */
3339	return smp_load_acquire(&rcu_state_p->gpnum);
3340}
3341EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3342
3343/**
3344 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3345 *
3346 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3347 *
3348 * If a full RCU grace period has elapsed since the earlier call to
3349 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3350 * synchronize_rcu() to wait for a full grace period.
3351 *
3352 * Yes, this function does not take counter wrap into account.  But
3353 * counter wrap is harmless.  If the counter wraps, we have waited for
3354 * more than 2 billion grace periods (and way more on a 64-bit system!),
3355 * so waiting for one additional grace period should be just fine.
3356 */
3357void cond_synchronize_rcu(unsigned long oldstate)
3358{
3359	unsigned long newstate;
 
 
 
 
3360
3361	/*
3362	 * Ensure that this load happens before any RCU-destructive
3363	 * actions the caller might carry out after we return.
3364	 */
3365	newstate = smp_load_acquire(&rcu_state_p->completed);
3366	if (ULONG_CMP_GE(oldstate, newstate))
3367		synchronize_rcu();
 
 
 
3368}
3369EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3370
3371/**
3372 * get_state_synchronize_sched - Snapshot current RCU-sched state
 
 
3373 *
3374 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3375 * to determine whether or not a full grace period has elapsed in the
3376 * meantime.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3377 */
3378unsigned long get_state_synchronize_sched(void)
3379{
3380	/*
3381	 * Any prior manipulation of RCU-protected data must happen
3382	 * before the load from ->gpnum.
3383	 */
3384	smp_mb();  /* ^^^ */
3385
3386	/*
3387	 * Make sure this load happens before the purportedly
3388	 * time-consuming work between get_state_synchronize_sched()
3389	 * and cond_synchronize_sched().
3390	 */
3391	return smp_load_acquire(&rcu_sched_state.gpnum);
3392}
3393EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3394
3395/**
3396 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3397 *
3398 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3399 *
3400 * If a full RCU-sched grace period has elapsed since the earlier call to
3401 * get_state_synchronize_sched(), just return.  Otherwise, invoke
3402 * synchronize_sched() to wait for a full grace period.
3403 *
3404 * Yes, this function does not take counter wrap into account.  But
3405 * counter wrap is harmless.  If the counter wraps, we have waited for
3406 * more than 2 billion grace periods (and way more on a 64-bit system!),
3407 * so waiting for one additional grace period should be just fine.
 
 
 
 
 
3408 */
3409void cond_synchronize_sched(unsigned long oldstate)
3410{
3411	unsigned long newstate;
3412
3413	/*
3414	 * Ensure that this load happens before any RCU-destructive
3415	 * actions the caller might carry out after we return.
3416	 */
3417	newstate = smp_load_acquire(&rcu_sched_state.completed);
3418	if (ULONG_CMP_GE(oldstate, newstate))
3419		synchronize_sched();
3420}
3421EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3422
3423/* Adjust sequence number for start of update-side operation. */
3424static void rcu_seq_start(unsigned long *sp)
3425{
3426	WRITE_ONCE(*sp, *sp + 1);
3427	smp_mb(); /* Ensure update-side operation after counter increment. */
3428	WARN_ON_ONCE(!(*sp & 0x1));
3429}
3430
3431/* Adjust sequence number for end of update-side operation. */
3432static void rcu_seq_end(unsigned long *sp)
3433{
3434	smp_mb(); /* Ensure update-side operation before counter increment. */
3435	WRITE_ONCE(*sp, *sp + 1);
3436	WARN_ON_ONCE(*sp & 0x1);
3437}
3438
3439/* Take a snapshot of the update side's sequence number. */
3440static unsigned long rcu_seq_snap(unsigned long *sp)
3441{
3442	unsigned long s;
3443
3444	s = (READ_ONCE(*sp) + 3) & ~0x1;
3445	smp_mb(); /* Above access must not bleed into critical section. */
3446	return s;
3447}
3448
3449/*
3450 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3451 * full update-side operation has occurred.
3452 */
3453static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3454{
3455	return ULONG_CMP_GE(READ_ONCE(*sp), s);
 
3456}
 
3457
3458/*
3459 * Check to see if there is any immediate RCU-related work to be done
3460 * by the current CPU, for the specified type of RCU, returning 1 if so.
3461 * The checks are in order of increasing expense: checks that can be
3462 * carried out against CPU-local state are performed first.  However,
3463 * we must check for CPU stalls first, else we might not get a chance.
3464 */
3465static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3466{
 
 
3467	struct rcu_node *rnp = rdp->mynode;
3468
3469	rdp->n_rcu_pending++;
3470
3471	/* Check for CPU stalls, if enabled. */
3472	check_cpu_stall(rsp, rdp);
3473
3474	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3475	if (rcu_nohz_full_cpu(rsp))
 
 
 
 
3476		return 0;
3477
3478	/* Is the RCU core waiting for a quiescent state from this CPU? */
3479	if (rcu_scheduler_fully_active &&
3480	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3481	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3482		rdp->n_rp_core_needs_qs++;
3483	} else if (rdp->core_needs_qs &&
3484		   (!rdp->cpu_no_qs.b.norm ||
3485		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3486		rdp->n_rp_report_qs++;
3487		return 1;
3488	}
3489
3490	/* Does this CPU have callbacks ready to invoke? */
3491	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3492		rdp->n_rp_cb_ready++;
3493		return 1;
3494	}
3495
3496	/* Has RCU gone idle with this CPU needing another grace period? */
3497	if (cpu_needs_another_gp(rsp, rdp)) {
3498		rdp->n_rp_cpu_needs_gp++;
 
3499		return 1;
3500	}
3501
3502	/* Has another RCU grace period completed?  */
3503	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3504		rdp->n_rp_gp_completed++;
3505		return 1;
3506	}
3507
3508	/* Has a new RCU grace period started? */
3509	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3510	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3511		rdp->n_rp_gp_started++;
3512		return 1;
3513	}
3514
3515	/* Does this CPU need a deferred NOCB wakeup? */
3516	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3517		rdp->n_rp_nocb_defer_wakeup++;
3518		return 1;
3519	}
3520
3521	/* nothing to do */
3522	rdp->n_rp_need_nothing++;
3523	return 0;
3524}
3525
3526/*
3527 * Check to see if there is any immediate RCU-related work to be done
3528 * by the current CPU, returning 1 if so.  This function is part of the
3529 * RCU implementation; it is -not- an exported member of the RCU API.
3530 */
3531static int rcu_pending(void)
3532{
3533	struct rcu_state *rsp;
3534
3535	for_each_rcu_flavor(rsp)
3536		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3537			return 1;
3538	return 0;
3539}
3540
3541/*
3542 * Return true if the specified CPU has any callback.  If all_lazy is
3543 * non-NULL, store an indication of whether all callbacks are lazy.
3544 * (If there are no callbacks, all of them are deemed to be lazy.)
3545 */
3546static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3547{
3548	bool al = true;
3549	bool hc = false;
3550	struct rcu_data *rdp;
3551	struct rcu_state *rsp;
3552
3553	for_each_rcu_flavor(rsp) {
3554		rdp = this_cpu_ptr(rsp->rda);
3555		if (!rdp->nxtlist)
3556			continue;
3557		hc = true;
3558		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3559			al = false;
3560			break;
3561		}
3562	}
3563	if (all_lazy)
3564		*all_lazy = al;
3565	return hc;
3566}
3567
3568/*
3569 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3570 * the compiler is expected to optimize this away.
3571 */
3572static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3573			       int cpu, unsigned long done)
3574{
3575	trace_rcu_barrier(rsp->name, s, cpu,
3576			  atomic_read(&rsp->barrier_cpu_count), done);
3577}
3578
3579/*
3580 * RCU callback function for _rcu_barrier().  If we are last, wake
3581 * up the task executing _rcu_barrier().
 
 
 
 
 
 
3582 */
3583static void rcu_barrier_callback(struct rcu_head *rhp)
3584{
3585	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3586	struct rcu_state *rsp = rdp->rsp;
3587
3588	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3589		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3590		complete(&rsp->barrier_completion);
3591	} else {
3592		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3593	}
3594}
3595
3596/*
3597 * Called with preemption disabled, and from cross-cpu IRQ context.
3598 */
3599static void rcu_barrier_func(void *type)
3600{
3601	struct rcu_state *rsp = type;
3602	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3603
3604	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3605	atomic_inc(&rsp->barrier_cpu_count);
3606	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
 
 
 
 
 
 
 
 
 
 
3607}
3608
3609/*
3610 * Orchestrate the specified type of RCU barrier, waiting for all
3611 * RCU callbacks of the specified type to complete.
 
 
 
 
3612 */
3613static void _rcu_barrier(struct rcu_state *rsp)
3614{
3615	int cpu;
3616	struct rcu_data *rdp;
3617	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3618
3619	_rcu_barrier_trace(rsp, "Begin", -1, s);
3620
3621	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3622	mutex_lock(&rsp->barrier_mutex);
3623
3624	/* Did someone else do our work for us? */
3625	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3626		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
 
3627		smp_mb(); /* caller's subsequent code after above check. */
3628		mutex_unlock(&rsp->barrier_mutex);
3629		return;
3630	}
3631
3632	/* Mark the start of the barrier operation. */
3633	rcu_seq_start(&rsp->barrier_sequence);
3634	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3635
3636	/*
3637	 * Initialize the count to one rather than to zero in order to
3638	 * avoid a too-soon return to zero in case of a short grace period
3639	 * (or preemption of this task).  Exclude CPU-hotplug operations
3640	 * to ensure that no offline CPU has callbacks queued.
 
3641	 */
3642	init_completion(&rsp->barrier_completion);
3643	atomic_set(&rsp->barrier_cpu_count, 1);
3644	get_online_cpus();
3645
3646	/*
3647	 * Force each CPU with callbacks to register a new callback.
3648	 * When that callback is invoked, we will know that all of the
3649	 * corresponding CPU's preceding callbacks have been invoked.
3650	 */
3651	for_each_possible_cpu(cpu) {
3652		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
 
 
3653			continue;
3654		rdp = per_cpu_ptr(rsp->rda, cpu);
3655		if (rcu_is_nocb_cpu(cpu)) {
3656			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3657				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3658						   rsp->barrier_sequence);
3659			} else {
3660				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3661						   rsp->barrier_sequence);
3662				smp_mb__before_atomic();
3663				atomic_inc(&rsp->barrier_cpu_count);
3664				__call_rcu(&rdp->barrier_head,
3665					   rcu_barrier_callback, rsp, cpu, 0);
3666			}
3667		} else if (READ_ONCE(rdp->qlen)) {
3668			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3669					   rsp->barrier_sequence);
3670			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3671		} else {
3672			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3673					   rsp->barrier_sequence);
3674		}
3675	}
3676	put_online_cpus();
3677
3678	/*
3679	 * Now that we have an rcu_barrier_callback() callback on each
3680	 * CPU, and thus each counted, remove the initial count.
3681	 */
3682	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3683		complete(&rsp->barrier_completion);
3684
3685	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3686	wait_for_completion(&rsp->barrier_completion);
3687
3688	/* Mark the end of the barrier operation. */
3689	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3690	rcu_seq_end(&rsp->barrier_sequence);
3691
3692	/* Other rcu_barrier() invocations can now safely proceed. */
3693	mutex_unlock(&rsp->barrier_mutex);
3694}
3695
3696/**
3697 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3698 */
3699void rcu_barrier_bh(void)
3700{
3701	_rcu_barrier(&rcu_bh_state);
3702}
3703EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3704
3705/**
3706 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3707 */
3708void rcu_barrier_sched(void)
3709{
3710	_rcu_barrier(&rcu_sched_state);
3711}
3712EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3713
3714/*
3715 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3716 * first CPU in a given leaf rcu_node structure coming online.  The caller
3717 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3718 * disabled.
3719 */
3720static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3721{
3722	long mask;
 
3723	struct rcu_node *rnp = rnp_leaf;
3724
 
 
3725	for (;;) {
3726		mask = rnp->grpmask;
3727		rnp = rnp->parent;
3728		if (rnp == NULL)
3729			return;
3730		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
 
3731		rnp->qsmaskinit |= mask;
3732		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
 
 
3733	}
3734}
3735
3736/*
3737 * Do boot-time initialization of a CPU's per-CPU RCU data.
3738 */
3739static void __init
3740rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3741{
3742	unsigned long flags;
3743	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3744	struct rcu_node *rnp = rcu_get_root(rsp);
3745
3746	/* Set up local state, ensuring consistent view of global state. */
3747	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3748	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3749	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3750	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3751	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
 
 
 
 
3752	rdp->cpu = cpu;
3753	rdp->rsp = rsp;
3754	rcu_boot_init_nocb_percpu_data(rdp);
3755	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3756}
3757
3758/*
3759 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3760 * offline event can be happening at a given time.  Note also that we
3761 * can accept some slop in the rsp->completed access due to the fact
3762 * that this CPU cannot possibly have any RCU callbacks in flight yet.
 
 
 
 
3763 */
3764static void
3765rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3766{
3767	unsigned long flags;
3768	unsigned long mask;
3769	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3770	struct rcu_node *rnp = rcu_get_root(rsp);
3771
3772	/* Set up local state, ensuring consistent view of global state. */
3773	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3774	rdp->qlen_last_fqs_check = 0;
3775	rdp->n_force_qs_snap = rsp->n_force_qs;
3776	rdp->blimit = blimit;
3777	if (!rdp->nxtlist)
3778		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3779	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3780	rcu_sysidle_init_percpu_data(rdp->dynticks);
3781	atomic_set(&rdp->dynticks->dynticks,
3782		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3783	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3784
3785	/*
 
 
 
 
 
 
 
3786	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3787	 * propagation up the rcu_node tree will happen at the beginning
3788	 * of the next grace period.
3789	 */
3790	rnp = rdp->mynode;
3791	mask = rdp->grpmask;
3792	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3793	if (!rdp->beenonline)
3794		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3795	rdp->beenonline = true;	 /* We have now been online. */
3796	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3797	rdp->completed = rnp->completed;
3798	rdp->cpu_no_qs.b.norm = true;
3799	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3800	rdp->core_needs_qs = false;
3801	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
 
 
 
3802	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3803}
3804
3805int rcutree_prepare_cpu(unsigned int cpu)
3806{
3807	struct rcu_state *rsp;
3808
3809	for_each_rcu_flavor(rsp)
3810		rcu_init_percpu_data(cpu, rsp);
3811
3812	rcu_prepare_kthreads(cpu);
3813	rcu_spawn_all_nocb_kthreads(cpu);
3814
3815	return 0;
3816}
3817
 
 
 
3818static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3819{
3820	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3821
3822	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3823}
3824
 
 
 
 
3825int rcutree_online_cpu(unsigned int cpu)
3826{
 
 
 
 
 
 
 
 
 
 
 
3827	sync_sched_exp_online_cleanup(cpu);
3828	rcutree_affinity_setting(cpu, -1);
3829	return 0;
3830}
3831
3832int rcutree_offline_cpu(unsigned int cpu)
3833{
3834	rcutree_affinity_setting(cpu, cpu);
3835	return 0;
3836}
3837
3838
3839int rcutree_dying_cpu(unsigned int cpu)
 
 
 
3840{
3841	struct rcu_state *rsp;
 
 
3842
3843	for_each_rcu_flavor(rsp)
3844		rcu_cleanup_dying_cpu(rsp);
3845	return 0;
3846}
 
3847
3848int rcutree_dead_cpu(unsigned int cpu)
3849{
3850	struct rcu_state *rsp;
3851
3852	for_each_rcu_flavor(rsp) {
3853		rcu_cleanup_dead_cpu(cpu, rsp);
3854		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3855	}
3856	return 0;
3857}
3858
3859/*
3860 * Mark the specified CPU as being online so that subsequent grace periods
3861 * (both expedited and normal) will wait on it.  Note that this means that
3862 * incoming CPUs are not allowed to use RCU read-side critical sections
3863 * until this function is called.  Failing to observe this restriction
3864 * will result in lockdep splats.
 
 
 
 
3865 */
3866void rcu_cpu_starting(unsigned int cpu)
3867{
3868	unsigned long flags;
3869	unsigned long mask;
3870	struct rcu_data *rdp;
3871	struct rcu_node *rnp;
3872	struct rcu_state *rsp;
3873
3874	for_each_rcu_flavor(rsp) {
3875		rdp = this_cpu_ptr(rsp->rda);
3876		rnp = rdp->mynode;
3877		mask = rdp->grpmask;
3878		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3879		rnp->qsmaskinitnext |= mask;
3880		rnp->expmaskinitnext |= mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3881		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3882	}
 
 
 
 
3883}
3884
3885#ifdef CONFIG_HOTPLUG_CPU
3886/*
3887 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3888 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3889 * bit masks.
3890 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3891 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3892 * bit masks.
3893 */
3894static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3895{
3896	unsigned long flags;
3897	unsigned long mask;
3898	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3899	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3900
 
 
 
 
 
 
 
 
 
3901	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3902	mask = rdp->grpmask;
 
 
 
 
3903	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3904	rnp->qsmaskinitnext &= ~mask;
 
 
 
 
 
 
 
3905	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
 
 
 
 
3906}
3907
3908void rcu_report_dead(unsigned int cpu)
 
 
 
 
 
 
3909{
3910	struct rcu_state *rsp;
 
 
 
 
3911
3912	/* QS for any half-done expedited RCU-sched GP. */
3913	preempt_disable();
3914	rcu_report_exp_rdp(&rcu_sched_state,
3915			   this_cpu_ptr(rcu_sched_state.rda), true);
3916	preempt_enable();
3917	for_each_rcu_flavor(rsp)
3918		rcu_cleanup_dying_idle_cpu(cpu, rsp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3919}
3920#endif
3921
 
 
 
 
3922static int rcu_pm_notify(struct notifier_block *self,
3923			 unsigned long action, void *hcpu)
3924{
3925	switch (action) {
3926	case PM_HIBERNATION_PREPARE:
3927	case PM_SUSPEND_PREPARE:
3928		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3929			rcu_expedite_gp();
3930		break;
3931	case PM_POST_HIBERNATION:
3932	case PM_POST_SUSPEND:
3933		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3934			rcu_unexpedite_gp();
3935		break;
3936	default:
3937		break;
3938	}
3939	return NOTIFY_OK;
3940}
3941
3942/*
3943 * Spawn the kthreads that handle each RCU flavor's grace periods.
3944 */
3945static int __init rcu_spawn_gp_kthread(void)
3946{
3947	unsigned long flags;
3948	int kthread_prio_in = kthread_prio;
3949	struct rcu_node *rnp;
3950	struct rcu_state *rsp;
3951	struct sched_param sp;
3952	struct task_struct *t;
3953
3954	/* Force priority into range. */
3955	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
 
 
 
3956		kthread_prio = 1;
3957	else if (kthread_prio < 0)
3958		kthread_prio = 0;
3959	else if (kthread_prio > 99)
3960		kthread_prio = 99;
 
3961	if (kthread_prio != kthread_prio_in)
3962		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3963			 kthread_prio, kthread_prio_in);
3964
3965	rcu_scheduler_fully_active = 1;
3966	for_each_rcu_flavor(rsp) {
3967		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3968		BUG_ON(IS_ERR(t));
3969		rnp = rcu_get_root(rsp);
3970		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3971		rsp->gp_kthread = t;
3972		if (kthread_prio) {
3973			sp.sched_priority = kthread_prio;
3974			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3975		}
3976		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3977		wake_up_process(t);
3978	}
 
 
 
 
 
 
 
 
3979	rcu_spawn_nocb_kthreads();
3980	rcu_spawn_boost_kthreads();
 
3981	return 0;
3982}
3983early_initcall(rcu_spawn_gp_kthread);
3984
3985/*
3986 * This function is invoked towards the end of the scheduler's
3987 * initialization process.  Before this is called, the idle task might
3988 * contain synchronous grace-period primitives (during which time, this idle
3989 * task is booting the system, and such primitives are no-ops).  After this
3990 * function is called, any synchronous grace-period primitives are run as
3991 * expedited, with the requesting task driving the grace period forward.
3992 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
3993 * runtime RCU functionality.
3994 */
3995void rcu_scheduler_starting(void)
3996{
3997	WARN_ON(num_online_cpus() != 1);
3998	WARN_ON(nr_context_switches() > 0);
3999	rcu_test_sync_prims();
4000	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4001	rcu_test_sync_prims();
4002}
4003
4004/*
4005 * Compute the per-level fanout, either using the exact fanout specified
4006 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4007 */
4008static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4009{
4010	int i;
4011
4012	if (rcu_fanout_exact) {
4013		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4014		for (i = rcu_num_lvls - 2; i >= 0; i--)
4015			levelspread[i] = RCU_FANOUT;
4016	} else {
4017		int ccur;
4018		int cprv;
4019
4020		cprv = nr_cpu_ids;
4021		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4022			ccur = levelcnt[i];
4023			levelspread[i] = (cprv + ccur - 1) / ccur;
4024			cprv = ccur;
4025		}
4026	}
4027}
4028
4029/*
4030 * Helper function for rcu_init() that initializes one rcu_state structure.
4031 */
4032static void __init rcu_init_one(struct rcu_state *rsp)
4033{
4034	static const char * const buf[] = RCU_NODE_NAME_INIT;
4035	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4036	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4037	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4038	static u8 fl_mask = 0x1;
4039
4040	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4041	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4042	int cpustride = 1;
4043	int i;
4044	int j;
4045	struct rcu_node *rnp;
4046
4047	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4048
4049	/* Silence gcc 4.8 false positive about array index out of range. */
4050	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4051		panic("rcu_init_one: rcu_num_lvls out of range");
4052
4053	/* Initialize the level-tracking arrays. */
4054
4055	for (i = 0; i < rcu_num_lvls; i++)
4056		levelcnt[i] = num_rcu_lvl[i];
4057	for (i = 1; i < rcu_num_lvls; i++)
4058		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4059	rcu_init_levelspread(levelspread, levelcnt);
4060	rsp->flavor_mask = fl_mask;
4061	fl_mask <<= 1;
4062
4063	/* Initialize the elements themselves, starting from the leaves. */
4064
4065	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4066		cpustride *= levelspread[i];
4067		rnp = rsp->level[i];
4068		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4069			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4070			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4071						   &rcu_node_class[i], buf[i]);
4072			raw_spin_lock_init(&rnp->fqslock);
4073			lockdep_set_class_and_name(&rnp->fqslock,
4074						   &rcu_fqs_class[i], fqs[i]);
4075			rnp->gpnum = rsp->gpnum;
4076			rnp->completed = rsp->completed;
 
4077			rnp->qsmask = 0;
4078			rnp->qsmaskinit = 0;
4079			rnp->grplo = j * cpustride;
4080			rnp->grphi = (j + 1) * cpustride - 1;
4081			if (rnp->grphi >= nr_cpu_ids)
4082				rnp->grphi = nr_cpu_ids - 1;
4083			if (i == 0) {
4084				rnp->grpnum = 0;
4085				rnp->grpmask = 0;
4086				rnp->parent = NULL;
4087			} else {
4088				rnp->grpnum = j % levelspread[i - 1];
4089				rnp->grpmask = 1UL << rnp->grpnum;
4090				rnp->parent = rsp->level[i - 1] +
4091					      j / levelspread[i - 1];
4092			}
4093			rnp->level = i;
4094			INIT_LIST_HEAD(&rnp->blkd_tasks);
4095			rcu_init_one_nocb(rnp);
4096			init_waitqueue_head(&rnp->exp_wq[0]);
4097			init_waitqueue_head(&rnp->exp_wq[1]);
4098			init_waitqueue_head(&rnp->exp_wq[2]);
4099			init_waitqueue_head(&rnp->exp_wq[3]);
4100			spin_lock_init(&rnp->exp_lock);
4101		}
4102	}
4103
4104	init_swait_queue_head(&rsp->gp_wq);
4105	init_swait_queue_head(&rsp->expedited_wq);
4106	rnp = rsp->level[rcu_num_lvls - 1];
4107	for_each_possible_cpu(i) {
4108		while (i > rnp->grphi)
4109			rnp++;
4110		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4111		rcu_boot_init_percpu_data(i, rsp);
4112	}
4113	list_add(&rsp->flavors, &rcu_struct_flavors);
4114}
4115
4116/*
4117 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4118 * replace the definitions in tree.h because those are needed to size
4119 * the ->node array in the rcu_state structure.
4120 */
4121static void __init rcu_init_geometry(void)
4122{
4123	ulong d;
4124	int i;
 
4125	int rcu_capacity[RCU_NUM_LVLS];
 
 
 
 
 
 
 
 
 
 
 
 
 
4126
4127	/*
4128	 * Initialize any unspecified boot parameters.
4129	 * The default values of jiffies_till_first_fqs and
4130	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4131	 * value, which is a function of HZ, then adding one for each
4132	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4133	 */
4134	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4135	if (jiffies_till_first_fqs == ULONG_MAX)
4136		jiffies_till_first_fqs = d;
4137	if (jiffies_till_next_fqs == ULONG_MAX)
4138		jiffies_till_next_fqs = d;
 
4139
4140	/* If the compile-time values are accurate, just leave. */
4141	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4142	    nr_cpu_ids == NR_CPUS)
4143		return;
4144	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4145		rcu_fanout_leaf, nr_cpu_ids);
4146
4147	/*
4148	 * The boot-time rcu_fanout_leaf parameter must be at least two
4149	 * and cannot exceed the number of bits in the rcu_node masks.
4150	 * Complain and fall back to the compile-time values if this
4151	 * limit is exceeded.
4152	 */
4153	if (rcu_fanout_leaf < 2 ||
4154	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4155		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4156		WARN_ON(1);
4157		return;
4158	}
4159
4160	/*
4161	 * Compute number of nodes that can be handled an rcu_node tree
4162	 * with the given number of levels.
4163	 */
4164	rcu_capacity[0] = rcu_fanout_leaf;
4165	for (i = 1; i < RCU_NUM_LVLS; i++)
4166		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4167
4168	/*
4169	 * The tree must be able to accommodate the configured number of CPUs.
4170	 * If this limit is exceeded, fall back to the compile-time values.
4171	 */
4172	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4173		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4174		WARN_ON(1);
4175		return;
4176	}
4177
4178	/* Calculate the number of levels in the tree. */
4179	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4180	}
4181	rcu_num_lvls = i + 1;
4182
4183	/* Calculate the number of rcu_nodes at each level of the tree. */
4184	for (i = 0; i < rcu_num_lvls; i++) {
4185		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4186		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4187	}
4188
4189	/* Calculate the total number of rcu_node structures. */
4190	rcu_num_nodes = 0;
4191	for (i = 0; i < rcu_num_lvls; i++)
4192		rcu_num_nodes += num_rcu_lvl[i];
4193}
4194
4195/*
4196 * Dump out the structure of the rcu_node combining tree associated
4197 * with the rcu_state structure referenced by rsp.
4198 */
4199static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4200{
4201	int level = 0;
4202	struct rcu_node *rnp;
4203
4204	pr_info("rcu_node tree layout dump\n");
4205	pr_info(" ");
4206	rcu_for_each_node_breadth_first(rsp, rnp) {
4207		if (rnp->level != level) {
4208			pr_cont("\n");
4209			pr_info(" ");
4210			level = rnp->level;
4211		}
4212		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4213	}
4214	pr_cont("\n");
4215}
4216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4217void __init rcu_init(void)
4218{
4219	int cpu;
4220
4221	rcu_early_boot_tests();
4222
 
4223	rcu_bootup_announce();
4224	rcu_init_geometry();
4225	rcu_init_one(&rcu_bh_state);
4226	rcu_init_one(&rcu_sched_state);
4227	if (dump_tree)
4228		rcu_dump_rcu_node_tree(&rcu_sched_state);
4229	__rcu_init_preempt();
4230	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4231
4232	/*
4233	 * We don't need protection against CPU-hotplug here because
4234	 * this is called early in boot, before either interrupts
4235	 * or the scheduler are operational.
4236	 */
4237	pm_notifier(rcu_pm_notify, 0);
4238	for_each_online_cpu(cpu) {
4239		rcutree_prepare_cpu(cpu);
4240		rcu_cpu_starting(cpu);
 
4241	}
 
 
 
 
 
 
 
 
 
 
 
 
 
4242}
4243
 
4244#include "tree_exp.h"
4245#include "tree_plugin.h"
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com>
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/moduleparam.h>
  35#include <linux/panic.h>
  36#include <linux/panic_notifier.h>
  37#include <linux/percpu.h>
  38#include <linux/notifier.h>
  39#include <linux/cpu.h>
  40#include <linux/mutex.h>
  41#include <linux/time.h>
  42#include <linux/kernel_stat.h>
  43#include <linux/wait.h>
  44#include <linux/kthread.h>
  45#include <uapi/linux/sched/types.h>
  46#include <linux/prefetch.h>
  47#include <linux/delay.h>
 
  48#include <linux/random.h>
  49#include <linux/trace_events.h>
  50#include <linux/suspend.h>
  51#include <linux/ftrace.h>
  52#include <linux/tick.h>
  53#include <linux/sysrq.h>
  54#include <linux/kprobes.h>
  55#include <linux/gfp.h>
  56#include <linux/oom.h>
  57#include <linux/smpboot.h>
  58#include <linux/jiffies.h>
  59#include <linux/slab.h>
  60#include <linux/sched/isolation.h>
  61#include <linux/sched/clock.h>
  62#include <linux/vmalloc.h>
  63#include <linux/mm.h>
  64#include <linux/kasan.h>
  65#include "../time/tick-internal.h"
  66
  67#include "tree.h"
  68#include "rcu.h"
  69
  70#ifdef MODULE_PARAM_PREFIX
  71#undef MODULE_PARAM_PREFIX
  72#endif
  73#define MODULE_PARAM_PREFIX "rcutree."
  74
  75/* Data structures. */
  76
  77/*
  78 * Steal a bit from the bottom of ->dynticks for idle entry/exit
  79 * control.  Initially this is for TLB flushing.
  80 */
  81#define RCU_DYNTICK_CTRL_MASK 0x1
  82#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83
  84static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  85	.dynticks_nesting = 1,
  86	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
  87	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
  88#ifdef CONFIG_RCU_NOCB_CPU
  89	.cblist.flags = SEGCBLIST_SOFTIRQ_ONLY,
  90#endif
  91};
  92static struct rcu_state rcu_state = {
  93	.level = { &rcu_state.node[0] },
  94	.gp_state = RCU_GP_IDLE,
  95	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  96	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  97	.name = RCU_NAME,
  98	.abbr = RCU_ABBR,
  99	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
 100	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
 101	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
 102};
 103
 104/* Dump rcu_node combining tree at boot to verify correct setup. */
 105static bool dump_tree;
 106module_param(dump_tree, bool, 0444);
 107/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 108static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 109#ifndef CONFIG_PREEMPT_RT
 110module_param(use_softirq, bool, 0444);
 111#endif
 112/* Control rcu_node-tree auto-balancing at boot time. */
 113static bool rcu_fanout_exact;
 114module_param(rcu_fanout_exact, bool, 0444);
 115/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 116static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 117module_param(rcu_fanout_leaf, int, 0444);
 118int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 119/* Number of rcu_nodes at specified level. */
 120int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 121int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 
 
 122
 123/*
 124 * The rcu_scheduler_active variable is initialized to the value
 125 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 126 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 127 * RCU can assume that there is but one task, allowing RCU to (for example)
 128 * optimize synchronize_rcu() to a simple barrier().  When this variable
 129 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 130 * to detect real grace periods.  This variable is also used to suppress
 131 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 132 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 133 * is fully initialized, including all of its kthreads having been spawned.
 134 */
 135int rcu_scheduler_active __read_mostly;
 136EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 137
 138/*
 139 * The rcu_scheduler_fully_active variable transitions from zero to one
 140 * during the early_initcall() processing, which is after the scheduler
 141 * is capable of creating new tasks.  So RCU processing (for example,
 142 * creating tasks for RCU priority boosting) must be delayed until after
 143 * rcu_scheduler_fully_active transitions from zero to one.  We also
 144 * currently delay invocation of any RCU callbacks until after this point.
 145 *
 146 * It might later prove better for people registering RCU callbacks during
 147 * early boot to take responsibility for these callbacks, but one step at
 148 * a time.
 149 */
 150static int rcu_scheduler_fully_active __read_mostly;
 151
 152static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 153			      unsigned long gps, unsigned long flags);
 154static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 155static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 156static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 157static void invoke_rcu_core(void);
 158static void rcu_report_exp_rdp(struct rcu_data *rdp);
 
 
 159static void sync_sched_exp_online_cleanup(int cpu);
 160static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 161static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 162
 163/* rcuc/rcub kthread realtime priority */
 
 
 
 164static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 165module_param(kthread_prio, int, 0444);
 
 166
 167/* Delay in jiffies for grace-period initialization delays, debug only. */
 168
 169static int gp_preinit_delay;
 170module_param(gp_preinit_delay, int, 0444);
 171static int gp_init_delay;
 172module_param(gp_init_delay, int, 0444);
 173static int gp_cleanup_delay;
 174module_param(gp_cleanup_delay, int, 0444);
 175
 176// Add delay to rcu_read_unlock() for strict grace periods.
 177static int rcu_unlock_delay;
 178#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 179module_param(rcu_unlock_delay, int, 0444);
 180#endif
 181
 182/*
 183 * This rcu parameter is runtime-read-only. It reflects
 184 * a minimum allowed number of objects which can be cached
 185 * per-CPU. Object size is equal to one page. This value
 186 * can be changed at boot time.
 187 */
 188static int rcu_min_cached_objs = 5;
 189module_param(rcu_min_cached_objs, int, 0444);
 190
 191// A page shrinker can ask for pages to be freed to make them
 192// available for other parts of the system. This usually happens
 193// under low memory conditions, and in that case we should also
 194// defer page-cache filling for a short time period.
 195//
 196// The default value is 5 seconds, which is long enough to reduce
 197// interference with the shrinker while it asks other systems to
 198// drain their caches.
 199static int rcu_delay_page_cache_fill_msec = 5000;
 200module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 201
 202/* Retrieve RCU kthreads priority for rcutorture */
 203int rcu_get_gp_kthreads_prio(void)
 204{
 205	return kthread_prio;
 206}
 207EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 208
 209/*
 210 * Number of grace periods between delays, normalized by the duration of
 211 * the delay.  The longer the delay, the more the grace periods between
 212 * each delay.  The reason for this normalization is that it means that,
 213 * for non-zero delays, the overall slowdown of grace periods is constant
 214 * regardless of the duration of the delay.  This arrangement balances
 215 * the need for long delays to increase some race probabilities with the
 216 * need for fast grace periods to increase other race probabilities.
 217 */
 218#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
 
 
 
 
 
 
 
 
 
 
 
 
 219
 220/*
 221 * Compute the mask of online CPUs for the specified rcu_node structure.
 222 * This will not be stable unless the rcu_node structure's ->lock is
 223 * held, but the bit corresponding to the current CPU will be stable
 224 * in most contexts.
 225 */
 226static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 227{
 228	return READ_ONCE(rnp->qsmaskinitnext);
 229}
 230
 231/*
 232 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 233 * permit this function to be invoked without holding the root rcu_node
 234 * structure's ->lock, but of course results can be subject to change.
 235 */
 236static int rcu_gp_in_progress(void)
 237{
 238	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 239}
 240
 241/*
 242 * Return the number of callbacks queued on the specified CPU.
 243 * Handles both the nocbs and normal cases.
 
 
 244 */
 245static long rcu_get_n_cbs_cpu(int cpu)
 246{
 247	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 248
 249	if (rcu_segcblist_is_enabled(&rdp->cblist))
 250		return rcu_segcblist_n_cbs(&rdp->cblist);
 251	return 0;
 
 
 
 
 
 
 252}
 253
 254void rcu_softirq_qs(void)
 255{
 256	rcu_qs();
 257	rcu_preempt_deferred_qs(current);
 258	rcu_tasks_qs(current, false);
 
 
 
 259}
 260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261/*
 262 * Record entry into an extended quiescent state.  This is only to be
 263 * called when not already in an extended quiescent state, that is,
 264 * RCU is watching prior to the call to this function and is no longer
 265 * watching upon return.
 
 
 
 
 
 
 
 266 */
 267static noinstr void rcu_dynticks_eqs_enter(void)
 268{
 269	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 270	int seq;
 
 
 271
 272	/*
 273	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 274	 * critical sections, and we also must force ordering with the
 275	 * next idle sojourn.
 276	 */
 277	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
 278	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 279	// RCU is no longer watching.  Better be in extended quiescent state!
 280	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 281		     (seq & RCU_DYNTICK_CTRL_CTR));
 282	/* Better not have special action (TLB flush) pending! */
 283	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 284		     (seq & RCU_DYNTICK_CTRL_MASK));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285}
 286
 287/*
 288 * Record exit from an extended quiescent state.  This is only to be
 289 * called from an extended quiescent state, that is, RCU is not watching
 290 * prior to the call to this function and is watching upon return.
 291 */
 292static noinstr void rcu_dynticks_eqs_exit(void)
 293{
 294	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 295	int seq;
 296
 297	/*
 298	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
 299	 * and we also must force ordering with the next RCU read-side
 300	 * critical section.
 301	 */
 302	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 303	// RCU is now watching.  Better not be in an extended quiescent state!
 304	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
 305	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 306		     !(seq & RCU_DYNTICK_CTRL_CTR));
 307	if (seq & RCU_DYNTICK_CTRL_MASK) {
 308		arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
 309		smp_mb__after_atomic(); /* _exit after clearing mask. */
 310	}
 311}
 
 312
 313/*
 314 * Reset the current CPU's ->dynticks counter to indicate that the
 315 * newly onlined CPU is no longer in an extended quiescent state.
 316 * This will either leave the counter unchanged, or increment it
 317 * to the next non-quiescent value.
 
 
 
 
 
 
 318 *
 319 * The non-atomic test/increment sequence works because the upper bits
 320 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 321 * or when the corresponding CPU is offline.
 322 */
 323static void rcu_dynticks_eqs_online(void)
 324{
 325	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326
 327	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 328		return;
 329	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330}
 
 331
 332/*
 333 * Is the current CPU in an extended quiescent state?
 334 *
 335 * No ordering, as we are sampling CPU-local information.
 336 */
 337static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
 338{
 339	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 340
 341	return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 
 
 
 
 
 342}
 
 343
 344/*
 345 * Snapshot the ->dynticks counter with full ordering so as to allow
 346 * stable comparison of this counter with past and future snapshots.
 347 */
 348static int rcu_dynticks_snap(struct rcu_data *rdp)
 349{
 350	int snap = atomic_add_return(0, &rdp->dynticks);
 
 
 351
 352	return snap & ~RCU_DYNTICK_CTRL_MASK;
 
 
 
 
 
 353}
 
 354
 355/*
 356 * Return true if the snapshot returned from rcu_dynticks_snap()
 357 * indicates that RCU is in an extended quiescent state.
 358 */
 359static bool rcu_dynticks_in_eqs(int snap)
 360{
 361	return !(snap & RCU_DYNTICK_CTRL_CTR);
 362}
 
 363
 364/* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
 365bool rcu_is_idle_cpu(int cpu)
 
 
 
 
 
 366{
 367	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 368
 369	return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
 370}
 
 371
 372/*
 373 * Return true if the CPU corresponding to the specified rcu_data
 374 * structure has spent some time in an extended quiescent state since
 375 * rcu_dynticks_snap() returned the specified snapshot.
 376 */
 377static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 378{
 379	return snap != rcu_dynticks_snap(rdp);
 380}
 
 381
 382/*
 383 * Return true if the referenced integer is zero while the specified
 384 * CPU remains within a single extended quiescent state.
 385 */
 386bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
 387{
 388	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 389	int snap;
 390
 391	// If not quiescent, force back to earlier extended quiescent state.
 392	snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
 393					       RCU_DYNTICK_CTRL_CTR);
 394
 395	smp_rmb(); // Order ->dynticks and *vp reads.
 396	if (READ_ONCE(*vp))
 397		return false;  // Non-zero, so report failure;
 398	smp_rmb(); // Order *vp read and ->dynticks re-read.
 399
 400	// If still in the same extended quiescent state, we are good!
 401	return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
 402}
 
 403
 404/*
 405 * Set the special (bottom) bit of the specified CPU so that it
 406 * will take special action (such as flushing its TLB) on the
 407 * next exit from an extended quiescent state.  Returns true if
 408 * the bit was successfully set, or false if the CPU was not in
 409 * an extended quiescent state.
 410 */
 411bool rcu_eqs_special_set(int cpu)
 412{
 413	int old;
 414	int new;
 415	int new_old;
 416	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
 417
 418	new_old = atomic_read(&rdp->dynticks);
 419	do {
 420		old = new_old;
 421		if (old & RCU_DYNTICK_CTRL_CTR)
 422			return false;
 423		new = old | RCU_DYNTICK_CTRL_MASK;
 424		new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
 425	} while (new_old != old);
 426	return true;
 427}
 
 428
 429/*
 430 * Let the RCU core know that this CPU has gone through the scheduler,
 431 * which is a quiescent state.  This is called when the need for a
 432 * quiescent state is urgent, so we burn an atomic operation and full
 433 * memory barriers to let the RCU core know about it, regardless of what
 434 * this CPU might (or might not) do in the near future.
 435 *
 436 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 437 *
 438 * The caller must have disabled interrupts and must not be idle.
 439 */
 440notrace void rcu_momentary_dyntick_idle(void)
 441{
 442	int special;
 443
 444	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 445	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 446				    &this_cpu_ptr(&rcu_data)->dynticks);
 447	/* It is illegal to call this from idle state. */
 448	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 449	rcu_preempt_deferred_qs(current);
 450}
 451EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
 452
 453/**
 454 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 455 *
 456 * If the current CPU is idle and running at a first-level (not nested)
 457 * interrupt, or directly, from idle, return true.
 458 *
 459 * The caller must have at least disabled IRQs.
 460 */
 461static int rcu_is_cpu_rrupt_from_idle(void)
 462{
 463	long nesting;
 464
 465	/*
 466	 * Usually called from the tick; but also used from smp_function_call()
 467	 * for expedited grace periods. This latter can result in running from
 468	 * the idle task, instead of an actual IPI.
 469	 */
 470	lockdep_assert_irqs_disabled();
 471
 472	/* Check for counter underflows */
 473	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
 474			 "RCU dynticks_nesting counter underflow!");
 475	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
 476			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 477
 478	/* Are we at first interrupt nesting level? */
 479	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
 480	if (nesting > 1)
 481		return false;
 482
 483	/*
 484	 * If we're not in an interrupt, we must be in the idle task!
 485	 */
 486	WARN_ON_ONCE(!nesting && !is_idle_task(current));
 487
 488	/* Does CPU appear to be idle from an RCU standpoint? */
 489	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
 490}
 491
 492#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 493				// Maximum callbacks per rcu_do_batch ...
 494#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 495static long blimit = DEFAULT_RCU_BLIMIT;
 496#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 497static long qhimark = DEFAULT_RCU_QHIMARK;
 498#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 499static long qlowmark = DEFAULT_RCU_QLOMARK;
 500#define DEFAULT_RCU_QOVLD_MULT 2
 501#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 502static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 503static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
 504
 505module_param(blimit, long, 0444);
 506module_param(qhimark, long, 0444);
 507module_param(qlowmark, long, 0444);
 508module_param(qovld, long, 0444);
 509
 510static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 511static ulong jiffies_till_next_fqs = ULONG_MAX;
 512static bool rcu_kick_kthreads;
 513static int rcu_divisor = 7;
 514module_param(rcu_divisor, int, 0644);
 515
 516/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 517static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 518module_param(rcu_resched_ns, long, 0644);
 519
 520/*
 521 * How long the grace period must be before we start recruiting
 522 * quiescent-state help from rcu_note_context_switch().
 
 
 
 523 */
 524static ulong jiffies_till_sched_qs = ULONG_MAX;
 525module_param(jiffies_till_sched_qs, ulong, 0444);
 526static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 527module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 
 
 528
 529/*
 530 * Make sure that we give the grace-period kthread time to detect any
 531 * idle CPUs before taking active measures to force quiescent states.
 532 * However, don't go below 100 milliseconds, adjusted upwards for really
 533 * large systems.
 534 */
 535static void adjust_jiffies_till_sched_qs(void)
 
 536{
 537	unsigned long j;
 538
 539	/* If jiffies_till_sched_qs was specified, respect the request. */
 540	if (jiffies_till_sched_qs != ULONG_MAX) {
 541		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542		return;
 543	}
 544	/* Otherwise, set to third fqs scan, but bound below on large system. */
 545	j = READ_ONCE(jiffies_till_first_fqs) +
 546		      2 * READ_ONCE(jiffies_till_next_fqs);
 547	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 548		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 549	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 550	WRITE_ONCE(jiffies_to_sched_qs, j);
 551}
 552
 553static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 554{
 555	ulong j;
 556	int ret = kstrtoul(val, 0, &j);
 557
 558	if (!ret) {
 559		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 560		adjust_jiffies_till_sched_qs();
 561	}
 562	return ret;
 563}
 
 564
 565static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 
 
 
 
 
 566{
 567	ulong j;
 568	int ret = kstrtoul(val, 0, &j);
 
 569
 570	if (!ret) {
 571		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 572		adjust_jiffies_till_sched_qs();
 573	}
 574	return ret;
 
 
 
 575}
 576
 577static const struct kernel_param_ops first_fqs_jiffies_ops = {
 578	.set = param_set_first_fqs_jiffies,
 579	.get = param_get_ulong,
 580};
 581
 582static const struct kernel_param_ops next_fqs_jiffies_ops = {
 583	.set = param_set_next_fqs_jiffies,
 584	.get = param_get_ulong,
 585};
 586
 587module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 588module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 589module_param(rcu_kick_kthreads, bool, 0644);
 590
 591static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 592static int rcu_pending(int user);
 593
 594/*
 595 * Return the number of RCU GPs completed thus far for debug & stats.
 596 */
 597unsigned long rcu_get_gp_seq(void)
 598{
 599	return READ_ONCE(rcu_state.gp_seq);
 600}
 601EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 602
 603/*
 604 * Return the number of RCU expedited batches completed thus far for
 605 * debug & stats.  Odd numbers mean that a batch is in progress, even
 606 * numbers mean idle.  The value returned will thus be roughly double
 607 * the cumulative batches since boot.
 608 */
 609unsigned long rcu_exp_batches_completed(void)
 610{
 611	return rcu_state.expedited_sequence;
 
 
 
 
 612}
 613EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 614
 615/*
 616 * Return the root node of the rcu_state structure.
 
 
 617 */
 618static struct rcu_node *rcu_get_root(void)
 
 619{
 620	return &rcu_state.node[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621}
 622
 623/*
 624 * Send along grace-period-related data for rcutorture diagnostics.
 
 
 
 
 625 */
 626void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 627			    unsigned long *gp_seq)
 628{
 629	switch (test_type) {
 630	case RCU_FLAVOR:
 631		*flags = READ_ONCE(rcu_state.gp_flags);
 632		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 633		break;
 634	default:
 635		break;
 
 
 
 
 
 
 
 
 
 
 
 
 636	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637}
 638EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 639
 640/*
 641 * Enter an RCU extended quiescent state, which can be either the
 642 * idle loop or adaptive-tickless usermode execution.
 643 *
 644 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 645 * the possibility of usermode upcalls having messed up our count
 646 * of interrupt nesting level during the prior busy period.
 647 */
 648static noinstr void rcu_eqs_enter(bool user)
 649{
 650	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 651
 652	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
 653	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
 654	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 655		     rdp->dynticks_nesting == 0);
 656	if (rdp->dynticks_nesting != 1) {
 657		// RCU will still be watching, so just do accounting and leave.
 658		rdp->dynticks_nesting--;
 659		return;
 
 660	}
 661
 662	lockdep_assert_irqs_disabled();
 663	instrumentation_begin();
 664	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
 665	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 666	rcu_prepare_for_idle();
 667	rcu_preempt_deferred_qs(current);
 668
 669	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
 670	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
 671
 672	instrumentation_end();
 673	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 674	// RCU is watching here ...
 675	rcu_dynticks_eqs_enter();
 676	// ... but is no longer watching here.
 677	rcu_dynticks_task_enter();
 678}
 679
 680/**
 681 * rcu_idle_enter - inform RCU that current CPU is entering idle
 682 *
 683 * Enter idle mode, in other words, -leave- the mode in which RCU
 684 * read-side critical sections can occur.  (Though RCU read-side
 685 * critical sections can occur in irq handlers in idle, a possibility
 686 * handled by irq_enter() and irq_exit().)
 687 *
 688 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 689 * CONFIG_RCU_EQS_DEBUG=y.
 
 690 */
 691void rcu_idle_enter(void)
 692{
 693	lockdep_assert_irqs_disabled();
 
 
 694	rcu_eqs_enter(false);
 
 
 695}
 696EXPORT_SYMBOL_GPL(rcu_idle_enter);
 697
 698#ifdef CONFIG_NO_HZ_FULL
 699
 700#if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
 701/*
 702 * An empty function that will trigger a reschedule on
 703 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 704 */
 705static void late_wakeup_func(struct irq_work *work)
 706{
 707}
 708
 709static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 710	IRQ_WORK_INIT(late_wakeup_func);
 711
 712/*
 713 * If either:
 714 *
 715 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 716 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 717 *
 718 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 719 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 720 * get re-enabled again.
 721 */
 722noinstr static void rcu_irq_work_resched(void)
 723{
 724	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 725
 726	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 727		return;
 728
 729	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 730		return;
 731
 732	instrumentation_begin();
 733	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 734		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 735	}
 736	instrumentation_end();
 737}
 738
 739#else
 740static inline void rcu_irq_work_resched(void) { }
 741#endif
 742
 743/**
 744 * rcu_user_enter - inform RCU that we are resuming userspace.
 745 *
 746 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 747 * is permitted between this call and rcu_user_exit(). This way the
 748 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 749 * when the CPU runs in userspace.
 750 *
 751 * If you add or remove a call to rcu_user_enter(), be sure to test with
 752 * CONFIG_RCU_EQS_DEBUG=y.
 753 */
 754noinstr void rcu_user_enter(void)
 755{
 756	lockdep_assert_irqs_disabled();
 757
 758	/*
 759	 * Other than generic entry implementation, we may be past the last
 760	 * rescheduling opportunity in the entry code. Trigger a self IPI
 761	 * that will fire and reschedule once we resume in user/guest mode.
 762	 */
 763	rcu_irq_work_resched();
 764	rcu_eqs_enter(true);
 765}
 766
 767#endif /* CONFIG_NO_HZ_FULL */
 768
 769/**
 770 * rcu_nmi_exit - inform RCU of exit from NMI context
 771 *
 772 * If we are returning from the outermost NMI handler that interrupted an
 773 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
 774 * to let the RCU grace-period handling know that the CPU is back to
 775 * being RCU-idle.
 776 *
 777 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 778 * with CONFIG_RCU_EQS_DEBUG=y.
 779 */
 780noinstr void rcu_nmi_exit(void)
 781{
 782	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 783
 784	instrumentation_begin();
 785	/*
 786	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 787	 * (We are exiting an NMI handler, so RCU better be paying attention
 788	 * to us!)
 789	 */
 790	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
 791	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 792
 793	/*
 794	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 795	 * leave it in non-RCU-idle state.
 796	 */
 797	if (rdp->dynticks_nmi_nesting != 1) {
 798		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
 799				  atomic_read(&rdp->dynticks));
 800		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
 801			   rdp->dynticks_nmi_nesting - 2);
 802		instrumentation_end();
 803		return;
 804	}
 805
 806	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 807	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
 808	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 809
 810	if (!in_nmi())
 811		rcu_prepare_for_idle();
 812
 813	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
 814	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
 815	instrumentation_end();
 816
 817	// RCU is watching here ...
 818	rcu_dynticks_eqs_enter();
 819	// ... but is no longer watching here.
 820
 821	if (!in_nmi())
 822		rcu_dynticks_task_enter();
 823}
 824
 825/**
 826 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 827 *
 828 * Exit from an interrupt handler, which might possibly result in entering
 829 * idle mode, in other words, leaving the mode in which read-side critical
 830 * sections can occur.  The caller must have disabled interrupts.
 831 *
 832 * This code assumes that the idle loop never does anything that might
 833 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 834 * architecture's idle loop violates this assumption, RCU will give you what
 835 * you deserve, good and hard.  But very infrequently and irreproducibly.
 836 *
 837 * Use things like work queues to work around this limitation.
 838 *
 839 * You have been warned.
 840 *
 841 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 842 * CONFIG_RCU_EQS_DEBUG=y.
 843 */
 844void noinstr rcu_irq_exit(void)
 845{
 846	lockdep_assert_irqs_disabled();
 847	rcu_nmi_exit();
 848}
 849
 850#ifdef CONFIG_PROVE_RCU
 851/**
 852 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 853 */
 854void rcu_irq_exit_check_preempt(void)
 855{
 856	lockdep_assert_irqs_disabled();
 857
 858	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
 859			 "RCU dynticks_nesting counter underflow/zero!");
 860	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
 861			 DYNTICK_IRQ_NONIDLE,
 862			 "Bad RCU  dynticks_nmi_nesting counter\n");
 863	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 864			 "RCU in extended quiescent state!");
 865}
 866#endif /* #ifdef CONFIG_PROVE_RCU */
 867
 868/*
 869 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 870 *
 871 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 872 * with CONFIG_RCU_EQS_DEBUG=y.
 873 */
 874void rcu_irq_exit_irqson(void)
 875{
 876	unsigned long flags;
 877
 878	local_irq_save(flags);
 879	rcu_irq_exit();
 880	local_irq_restore(flags);
 881}
 882
 883/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884 * Exit an RCU extended quiescent state, which can be either the
 885 * idle loop or adaptive-tickless usermode execution.
 886 *
 887 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 888 * allow for the possibility of usermode upcalls messing up our count of
 889 * interrupt nesting level during the busy period that is just now starting.
 890 */
 891static void noinstr rcu_eqs_exit(bool user)
 892{
 893	struct rcu_data *rdp;
 894	long oldval;
 895
 896	lockdep_assert_irqs_disabled();
 897	rdp = this_cpu_ptr(&rcu_data);
 898	oldval = rdp->dynticks_nesting;
 899	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 900	if (oldval) {
 901		// RCU was already watching, so just do accounting and leave.
 902		rdp->dynticks_nesting++;
 903		return;
 
 904	}
 905	rcu_dynticks_task_exit();
 906	// RCU is not watching here ...
 907	rcu_dynticks_eqs_exit();
 908	// ... but is watching here.
 909	instrumentation_begin();
 910
 911	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
 912	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
 913
 914	rcu_cleanup_after_idle();
 915	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
 916	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 917	WRITE_ONCE(rdp->dynticks_nesting, 1);
 918	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
 919	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 920	instrumentation_end();
 921}
 922
 923/**
 924 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 925 *
 926 * Exit idle mode, in other words, -enter- the mode in which RCU
 927 * read-side critical sections can occur.
 928 *
 929 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 930 * CONFIG_RCU_EQS_DEBUG=y.
 
 
 931 */
 932void rcu_idle_exit(void)
 933{
 934	unsigned long flags;
 935
 936	local_irq_save(flags);
 937	rcu_eqs_exit(false);
 
 938	local_irq_restore(flags);
 939}
 940EXPORT_SYMBOL_GPL(rcu_idle_exit);
 941
 942#ifdef CONFIG_NO_HZ_FULL
 943/**
 944 * rcu_user_exit - inform RCU that we are exiting userspace.
 945 *
 946 * Exit RCU idle mode while entering the kernel because it can
 947 * run a RCU read side critical section anytime.
 948 *
 949 * If you add or remove a call to rcu_user_exit(), be sure to test with
 950 * CONFIG_RCU_EQS_DEBUG=y.
 951 */
 952void noinstr rcu_user_exit(void)
 953{
 954	rcu_eqs_exit(true);
 955}
 
 956
 957/**
 958 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 
 
 
 
 959 *
 960 * The scheduler tick is not normally enabled when CPUs enter the kernel
 961 * from nohz_full userspace execution.  After all, nohz_full userspace
 962 * execution is an RCU quiescent state and the time executing in the kernel
 963 * is quite short.  Except of course when it isn't.  And it is not hard to
 964 * cause a large system to spend tens of seconds or even minutes looping
 965 * in the kernel, which can cause a number of problems, include RCU CPU
 966 * stall warnings.
 967 *
 968 * Therefore, if a nohz_full CPU fails to report a quiescent state
 969 * in a timely manner, the RCU grace-period kthread sets that CPU's
 970 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 971 * exception will invoke this function, which will turn on the scheduler
 972 * tick, which will enable RCU to detect that CPU's quiescent states,
 973 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 974 * The tick will be disabled once a quiescent state is reported for
 975 * this CPU.
 976 *
 977 * Of course, in carefully tuned systems, there might never be an
 978 * interrupt or exception.  In that case, the RCU grace-period kthread
 979 * will eventually cause one to happen.  However, in less carefully
 980 * controlled environments, this function allows RCU to get what it
 981 * needs without creating otherwise useless interruptions.
 982 */
 983void __rcu_irq_enter_check_tick(void)
 984{
 985	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 986
 987	// If we're here from NMI there's nothing to do.
 988	if (in_nmi())
 989		return;
 
 
 
 
 
 
 
 
 
 990
 991	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 992			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 
 
 
 
 993
 994	if (!tick_nohz_full_cpu(rdp->cpu) ||
 995	    !READ_ONCE(rdp->rcu_urgent_qs) ||
 996	    READ_ONCE(rdp->rcu_forced_tick)) {
 997		// RCU doesn't need nohz_full help from this CPU, or it is
 998		// already getting that help.
 999		return;
1000	}
1001
1002	// We get here only when not in an extended quiescent state and
1003	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
1004	// already watching and (2) The fact that we are in an interrupt
1005	// handler and that the rcu_node lock is an irq-disabled lock
1006	// prevents self-deadlock.  So we can safely recheck under the lock.
1007	// Note that the nohz_full state currently cannot change.
1008	raw_spin_lock_rcu_node(rdp->mynode);
1009	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
1010		// A nohz_full CPU is in the kernel and RCU needs a
1011		// quiescent state.  Turn on the tick!
1012		WRITE_ONCE(rdp->rcu_forced_tick, true);
1013		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1014	}
1015	raw_spin_unlock_rcu_node(rdp->mynode);
1016}
1017#endif /* CONFIG_NO_HZ_FULL */
1018
1019/**
1020 * rcu_nmi_enter - inform RCU of entry to NMI context
1021 *
1022 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
1023 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
1024 * that the CPU is active.  This implementation permits nested NMIs, as
1025 * long as the nesting level does not overflow an int.  (You will probably
1026 * run out of stack space first.)
1027 *
1028 * If you add or remove a call to rcu_nmi_enter(), be sure to test
1029 * with CONFIG_RCU_EQS_DEBUG=y.
1030 */
1031noinstr void rcu_nmi_enter(void)
1032{
1033	long incby = 2;
1034	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1035
1036	/* Complain about underflow. */
1037	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
1038
1039	/*
1040	 * If idle from RCU viewpoint, atomically increment ->dynticks
1041	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1042	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1043	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1044	 * to be in the outermost NMI handler that interrupted an RCU-idle
1045	 * period (observation due to Andy Lutomirski).
1046	 */
1047	if (rcu_dynticks_curr_cpu_in_eqs()) {
1048
1049		if (!in_nmi())
1050			rcu_dynticks_task_exit();
1051
1052		// RCU is not watching here ...
1053		rcu_dynticks_eqs_exit();
1054		// ... but is watching here.
1055
1056		if (!in_nmi()) {
1057			instrumentation_begin();
1058			rcu_cleanup_after_idle();
1059			instrumentation_end();
1060		}
1061
1062		instrumentation_begin();
1063		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1064		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1065		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1066		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1067
1068		incby = 1;
1069	} else if (!in_nmi()) {
1070		instrumentation_begin();
1071		rcu_irq_enter_check_tick();
1072	} else  {
1073		instrumentation_begin();
1074	}
1075
1076	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1077			  rdp->dynticks_nmi_nesting,
1078			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1079	instrumentation_end();
1080	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1081		   rdp->dynticks_nmi_nesting + incby);
1082	barrier();
1083}
1084
1085/**
1086 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1087 *
1088 * Enter an interrupt handler, which might possibly result in exiting
1089 * idle mode, in other words, entering the mode in which read-side critical
1090 * sections can occur.  The caller must have disabled interrupts.
1091 *
1092 * Note that the Linux kernel is fully capable of entering an interrupt
1093 * handler that it never exits, for example when doing upcalls to user mode!
1094 * This code assumes that the idle loop never does upcalls to user mode.
1095 * If your architecture's idle loop does do upcalls to user mode (or does
1096 * anything else that results in unbalanced calls to the irq_enter() and
1097 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1098 * But very infrequently and irreproducibly.
1099 *
1100 * Use things like work queues to work around this limitation.
1101 *
1102 * You have been warned.
1103 *
1104 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1105 * CONFIG_RCU_EQS_DEBUG=y.
1106 */
1107noinstr void rcu_irq_enter(void)
1108{
1109	lockdep_assert_irqs_disabled();
1110	rcu_nmi_enter();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111}
1112
1113/*
1114 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1115 *
1116 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1117 * with CONFIG_RCU_EQS_DEBUG=y.
 
 
1118 */
1119void rcu_irq_enter_irqson(void)
1120{
1121	unsigned long flags;
1122
1123	local_irq_save(flags);
1124	rcu_irq_enter();
1125	local_irq_restore(flags);
1126}
1127
1128/*
1129 * If any sort of urgency was applied to the current CPU (for example,
1130 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1131 * to get to a quiescent state, disable it.
1132 */
1133static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1134{
1135	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1136	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1137	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1138	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1139		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1140		WRITE_ONCE(rdp->rcu_forced_tick, false);
1141	}
1142}
1143
1144/**
1145 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1146 *
1147 * Return true if RCU is watching the running CPU, which means that this
1148 * CPU can safely enter RCU read-side critical sections.  In other words,
1149 * if the current CPU is not in its idle loop or is in an interrupt or
1150 * NMI handler, return true.
1151 *
1152 * Make notrace because it can be called by the internal functions of
1153 * ftrace, and making this notrace removes unnecessary recursion calls.
1154 */
1155notrace bool rcu_is_watching(void)
1156{
1157	bool ret;
1158
1159	preempt_disable_notrace();
1160	ret = !rcu_dynticks_curr_cpu_in_eqs();
1161	preempt_enable_notrace();
1162	return ret;
1163}
1164EXPORT_SYMBOL_GPL(rcu_is_watching);
1165
1166/*
1167 * If a holdout task is actually running, request an urgent quiescent
1168 * state from its CPU.  This is unsynchronized, so migrations can cause
1169 * the request to go to the wrong CPU.  Which is OK, all that will happen
1170 * is that the CPU's next context switch will be a bit slower and next
1171 * time around this task will generate another request.
1172 */
1173void rcu_request_urgent_qs_task(struct task_struct *t)
1174{
1175	int cpu;
1176
1177	barrier();
1178	cpu = task_cpu(t);
1179	if (!task_curr(t))
1180		return; /* This task is not running on that CPU. */
1181	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1182}
1183
1184#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1185
1186/*
1187 * Is the current CPU online as far as RCU is concerned?
 
 
 
 
 
 
 
 
 
 
 
 
1188 *
1189 * Disable preemption to avoid false positives that could otherwise
1190 * happen due to the current CPU number being sampled, this task being
1191 * preempted, its old CPU being taken offline, resuming on some other CPU,
1192 * then determining that its old CPU is now offline.
1193 *
1194 * Disable checking if in an NMI handler because we cannot safely
1195 * report errors from NMI handlers anyway.  In addition, it is OK to use
1196 * RCU on an offline processor during initial boot, hence the check for
1197 * rcu_scheduler_fully_active.
1198 */
1199bool rcu_lockdep_current_cpu_online(void)
1200{
1201	struct rcu_data *rdp;
1202	struct rcu_node *rnp;
1203	bool ret = false;
1204
1205	if (in_nmi() || !rcu_scheduler_fully_active)
1206		return true;
1207	preempt_disable_notrace();
1208	rdp = this_cpu_ptr(&rcu_data);
1209	rnp = rdp->mynode;
1210	if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1211		ret = true;
1212	preempt_enable_notrace();
1213	return ret;
1214}
1215EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1216
1217#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1218
1219/*
1220 * When trying to report a quiescent state on behalf of some other CPU,
1221 * it is our responsibility to check for and handle potential overflow
1222 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1223 * After all, the CPU might be in deep idle state, and thus executing no
1224 * code whatsoever.
1225 */
1226static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1227{
1228	raw_lockdep_assert_held_rcu_node(rnp);
1229	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1230			 rnp->gp_seq))
1231		WRITE_ONCE(rdp->gpwrap, true);
1232	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1233		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1234}
1235
1236/*
1237 * Snapshot the specified CPU's dynticks counter so that we can later
1238 * credit them with an implicit quiescent state.  Return 1 if this CPU
1239 * is in dynticks idle mode, which is an extended quiescent state.
1240 */
1241static int dyntick_save_progress_counter(struct rcu_data *rdp)
 
1242{
1243	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1244	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1245		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1246		rcu_gpnum_ovf(rdp->mynode, rdp);
 
 
 
1247		return 1;
1248	}
1249	return 0;
1250}
1251
1252/*
1253 * Return true if the specified CPU has passed through a quiescent
1254 * state by virtue of being in or having passed through an dynticks
1255 * idle state since the last call to dyntick_save_progress_counter()
1256 * for this same CPU, or by virtue of having been offline.
1257 */
1258static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 
1259{
1260	unsigned long jtsq;
1261	bool *rnhqp;
1262	bool *ruqp;
1263	struct rcu_node *rnp = rdp->mynode;
 
 
1264
1265	/*
1266	 * If the CPU passed through or entered a dynticks idle phase with
1267	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1268	 * already acknowledged the request to pass through a quiescent
1269	 * state.  Either way, that CPU cannot possibly be in an RCU
1270	 * read-side critical section that started before the beginning
1271	 * of the current RCU grace period.
1272	 */
1273	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1274		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1275		rcu_gpnum_ovf(rnp, rdp);
1276		return 1;
1277	}
1278
1279	/*
1280	 * Complain if a CPU that is considered to be offline from RCU's
1281	 * perspective has not yet reported a quiescent state.  After all,
1282	 * the offline CPU should have reported a quiescent state during
1283	 * the CPU-offline process, or, failing that, by rcu_gp_init()
1284	 * if it ran concurrently with either the CPU going offline or the
1285	 * last task on a leaf rcu_node structure exiting its RCU read-side
1286	 * critical section while all CPUs corresponding to that structure
1287	 * are offline.  This added warning detects bugs in any of these
1288	 * code paths.
1289	 *
1290	 * The rcu_node structure's ->lock is held here, which excludes
1291	 * the relevant portions the CPU-hotplug code, the grace-period
1292	 * initialization code, and the rcu_read_unlock() code paths.
1293	 *
1294	 * For more detail, please refer to the "Hotplug CPU" section
1295	 * of RCU's Requirements documentation.
 
 
1296	 */
1297	if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1298		bool onl;
1299		struct rcu_node *rnp1;
1300
1301		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1302			__func__, rnp->grplo, rnp->grphi, rnp->level,
1303			(long)rnp->gp_seq, (long)rnp->completedqs);
1304		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1305			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1306				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1307		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1308		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1309			__func__, rdp->cpu, ".o"[onl],
1310			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1311			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1312		return 1; /* Break things loose after complaining. */
1313	}
1314
1315	/*
1316	 * A CPU running for an extended time within the kernel can
1317	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1318	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1319	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1320	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1321	 * variable are safe because the assignments are repeated if this
1322	 * CPU failed to pass through a quiescent state.  This code
1323	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1324	 * is set way high.
1325	 */
1326	jtsq = READ_ONCE(jiffies_to_sched_qs);
1327	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1328	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1329	if (!READ_ONCE(*rnhqp) &&
1330	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1331	     time_after(jiffies, rcu_state.jiffies_resched) ||
1332	     rcu_state.cbovld)) {
1333		WRITE_ONCE(*rnhqp, true);
1334		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1335		smp_store_release(ruqp, true);
1336	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1337		WRITE_ONCE(*ruqp, true);
 
 
 
 
 
 
 
 
 
 
1338	}
1339
1340	/*
1341	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1342	 * The above code handles this, but only for straight cond_resched().
1343	 * And some in-kernel loops check need_resched() before calling
1344	 * cond_resched(), which defeats the above code for CPUs that are
1345	 * running in-kernel with scheduling-clock interrupts disabled.
1346	 * So hit them over the head with the resched_cpu() hammer!
1347	 */
1348	if (tick_nohz_full_cpu(rdp->cpu) &&
1349	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1350	     rcu_state.cbovld)) {
1351		WRITE_ONCE(*ruqp, true);
1352		resched_cpu(rdp->cpu);
1353		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1354	}
 
 
 
1355
1356	/*
1357	 * If more than halfway to RCU CPU stall-warning time, invoke
1358	 * resched_cpu() more frequently to try to loosen things up a bit.
1359	 * Also check to see if the CPU is getting hammered with interrupts,
1360	 * but only once per grace period, just to keep the IPIs down to
1361	 * a dull roar.
1362	 */
1363	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1364		if (time_after(jiffies,
1365			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1366			resched_cpu(rdp->cpu);
1367			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 
 
 
 
 
1368		}
1369		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1370		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1371		    (rnp->ffmask & rdp->grpmask)) {
1372			rdp->rcu_iw_pending = true;
1373			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1374			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375		}
1376	}
1377
1378	return 0;
 
 
 
 
 
 
 
1379}
1380
1381/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1382static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1383			      unsigned long gp_seq_req, const char *s)
1384{
1385	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1386				      gp_seq_req, rnp->level,
1387				      rnp->grplo, rnp->grphi, s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388}
1389
1390/*
1391 * rcu_start_this_gp - Request the start of a particular grace period
1392 * @rnp_start: The leaf node of the CPU from which to start.
1393 * @rdp: The rcu_data corresponding to the CPU from which to start.
1394 * @gp_seq_req: The gp_seq of the grace period to start.
1395 *
1396 * Start the specified grace period, as needed to handle newly arrived
1397 * callbacks.  The required future grace periods are recorded in each
1398 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1399 * is reason to awaken the grace-period kthread.
1400 *
1401 * The caller must hold the specified rcu_node structure's ->lock, which
1402 * is why the caller is responsible for waking the grace-period kthread.
1403 *
1404 * Returns true if the GP thread needs to be awakened else false.
1405 */
1406static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1407			      unsigned long gp_seq_req)
1408{
1409	bool ret = false;
 
 
 
 
1410	struct rcu_node *rnp;
1411
 
 
 
 
 
 
1412	/*
1413	 * Use funnel locking to either acquire the root rcu_node
1414	 * structure's lock or bail out if the need for this grace period
1415	 * has already been recorded -- or if that grace period has in
1416	 * fact already started.  If there is already a grace period in
1417	 * progress in a non-leaf node, no recording is needed because the
1418	 * end of the grace period will scan the leaf rcu_node structures.
1419	 * Note that rnp_start->lock must not be released.
1420	 */
1421	raw_lockdep_assert_held_rcu_node(rnp_start);
1422	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1423	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1424		if (rnp != rnp_start)
1425			raw_spin_lock_rcu_node(rnp);
1426		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1427		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1428		    (rnp != rnp_start &&
1429		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1430			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1431					  TPS("Prestarted"));
1432			goto unlock_out;
1433		}
1434		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1435		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1436			/*
1437			 * We just marked the leaf or internal node, and a
1438			 * grace period is in progress, which means that
1439			 * rcu_gp_cleanup() will see the marking.  Bail to
1440			 * reduce contention.
1441			 */
1442			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1443					  TPS("Startedleaf"));
1444			goto unlock_out;
1445		}
1446		if (rnp != rnp_start && rnp->parent != NULL)
1447			raw_spin_unlock_rcu_node(rnp);
1448		if (!rnp->parent)
1449			break;  /* At root, and perhaps also leaf. */
 
 
1450	}
 
1451
1452	/* If GP already in progress, just leave, otherwise start one. */
1453	if (rcu_gp_in_progress()) {
1454		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1455		goto unlock_out;
1456	}
1457	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1458	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1459	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1460	if (!READ_ONCE(rcu_state.gp_kthread)) {
1461		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1462		goto unlock_out;
1463	}
1464	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1465	ret = true;  /* Caller must wake GP kthread. */
1466unlock_out:
1467	/* Push furthest requested GP to leaf node and rcu_data structure. */
1468	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1469		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1470		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1471	}
1472	if (rnp != rnp_start)
1473		raw_spin_unlock_rcu_node(rnp);
1474	return ret;
1475}
1476
1477/*
1478 * Clean up any old requests for the just-ended grace period.  Also return
1479 * whether any additional grace periods have been requested.
 
1480 */
1481static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1482{
1483	bool needmore;
1484	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1485
1486	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1487	if (!needmore)
1488		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1489	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1490			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1491	return needmore;
1492}
1493
1494/*
1495 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1496 * interrupt or softirq handler, in which case we just might immediately
1497 * sleep upon return, resulting in a grace-period hang), and don't bother
1498 * awakening when there is nothing for the grace-period kthread to do
1499 * (as in several CPUs raced to awaken, we lost), and finally don't try
1500 * to awaken a kthread that has not yet been created.  If all those checks
1501 * are passed, track some debug information and awaken.
1502 *
1503 * So why do the self-wakeup when in an interrupt or softirq handler
1504 * in the grace-period kthread's context?  Because the kthread might have
1505 * been interrupted just as it was going to sleep, and just after the final
1506 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1507 * is required, and is therefore supplied.
1508 */
1509static void rcu_gp_kthread_wake(void)
1510{
1511	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1512
1513	if ((current == t && !in_irq() && !in_serving_softirq()) ||
1514	    !READ_ONCE(rcu_state.gp_flags) || !t)
1515		return;
1516	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1517	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1518	swake_up_one(&rcu_state.gp_wq);
1519}
1520
1521/*
1522 * If there is room, assign a ->gp_seq number to any callbacks on this
1523 * CPU that have not already been assigned.  Also accelerate any callbacks
1524 * that were previously assigned a ->gp_seq number that has since proven
1525 * to be too conservative, which can happen if callbacks get assigned a
1526 * ->gp_seq number while RCU is idle, but with reference to a non-root
1527 * rcu_node structure.  This function is idempotent, so it does not hurt
1528 * to call it repeatedly.  Returns an flag saying that we should awaken
1529 * the RCU grace-period kthread.
1530 *
1531 * The caller must hold rnp->lock with interrupts disabled.
1532 */
1533static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 
1534{
1535	unsigned long gp_seq_req;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536	bool ret = false;
 
1537
1538	rcu_lockdep_assert_cblist_protected(rdp);
1539	raw_lockdep_assert_held_rcu_node(rnp);
 
 
 
 
 
 
 
 
1540
1541	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1542	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1543		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544
1545	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
 
 
 
 
 
 
1546
1547	/*
1548	 * Callbacks are often registered with incomplete grace-period
1549	 * information.  Something about the fact that getting exact
1550	 * information requires acquiring a global lock...  RCU therefore
1551	 * makes a conservative estimate of the grace period number at which
1552	 * a given callback will become ready to invoke.	The following
1553	 * code checks this estimate and improves it when possible, thus
1554	 * accelerating callback invocation to an earlier grace-period
1555	 * number.
1556	 */
1557	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1558	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1559		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1560
1561	/* Trace depending on how much we were able to accelerate. */
1562	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1563		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1564	else
1565		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
 
 
 
1566
1567	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
 
1568
 
 
 
 
 
 
 
 
 
 
 
 
 
1569	return ret;
1570}
1571
1572/*
1573 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1574 * rcu_node structure's ->lock be held.  It consults the cached value
1575 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1576 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1577 * while holding the leaf rcu_node structure's ->lock.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578 */
1579static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1580					struct rcu_data *rdp)
1581{
1582	unsigned long c;
1583	bool needwake;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584
1585	rcu_lockdep_assert_cblist_protected(rdp);
1586	c = rcu_seq_snap(&rcu_state.gp_seq);
1587	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1588		/* Old request still live, so mark recent callbacks. */
1589		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1590		return;
 
 
1591	}
1592	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1593	needwake = rcu_accelerate_cbs(rnp, rdp);
1594	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1595	if (needwake)
1596		rcu_gp_kthread_wake();
 
 
 
 
1597}
1598
1599/*
1600 * Move any callbacks whose grace period has completed to the
1601 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1602 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1603 * sublist.  This function is idempotent, so it does not hurt to
1604 * invoke it repeatedly.  As long as it is not invoked -too- often...
1605 * Returns true if the RCU grace-period kthread needs to be awakened.
1606 *
1607 * The caller must hold rnp->lock with interrupts disabled.
1608 */
1609static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 
1610{
1611	rcu_lockdep_assert_cblist_protected(rdp);
1612	raw_lockdep_assert_held_rcu_node(rnp);
1613
1614	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1615	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1616		return false;
1617
1618	/*
1619	 * Find all callbacks whose ->gp_seq numbers indicate that they
1620	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1621	 */
1622	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623
1624	/* Classify any remaining callbacks. */
1625	return rcu_accelerate_cbs(rnp, rdp);
1626}
1627
1628/*
1629 * Move and classify callbacks, but only if doing so won't require
1630 * that the RCU grace-period kthread be awakened.
1631 */
1632static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1633						  struct rcu_data *rdp)
1634{
1635	rcu_lockdep_assert_cblist_protected(rdp);
1636	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1637	    !raw_spin_trylock_rcu_node(rnp))
1638		return;
1639	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1640	raw_spin_unlock_rcu_node(rnp);
1641}
1642
1643/*
1644 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1645 * quiescent state.  This is intended to be invoked when the CPU notices
1646 * a new grace period.
1647 */
1648static void rcu_strict_gp_check_qs(void)
1649{
1650	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1651		rcu_read_lock();
1652		rcu_read_unlock();
1653	}
1654}
1655
1656/*
1657 * Update CPU-local rcu_data state to record the beginnings and ends of
1658 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1659 * structure corresponding to the current CPU, and must have irqs disabled.
1660 * Returns true if the grace-period kthread needs to be awakened.
1661 */
1662static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
 
1663{
1664	bool ret = false;
1665	bool need_qs;
1666	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1667
1668	raw_lockdep_assert_held_rcu_node(rnp);
 
 
1669
1670	if (rdp->gp_seq == rnp->gp_seq)
1671		return false; /* Nothing to do. */
1672
1673	/* Handle the ends of any preceding grace periods first. */
1674	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1675	    unlikely(READ_ONCE(rdp->gpwrap))) {
1676		if (!offloaded)
1677			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1678		rdp->core_needs_qs = false;
1679		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1680	} else {
1681		if (!offloaded)
1682			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1683		if (rdp->core_needs_qs)
1684			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
 
 
 
1685	}
1686
1687	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1688	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1689	    unlikely(READ_ONCE(rdp->gpwrap))) {
1690		/*
1691		 * If the current grace period is waiting for this CPU,
1692		 * set up to detect a quiescent state, otherwise don't
1693		 * go looking for one.
1694		 */
1695		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1696		need_qs = !!(rnp->qsmask & rdp->grpmask);
1697		rdp->cpu_no_qs.b.norm = need_qs;
1698		rdp->core_needs_qs = need_qs;
 
 
1699		zero_cpu_stall_ticks(rdp);
 
1700	}
1701	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1702	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1703		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1704	WRITE_ONCE(rdp->gpwrap, false);
1705	rcu_gpnum_ovf(rnp, rdp);
1706	return ret;
1707}
1708
1709static void note_gp_changes(struct rcu_data *rdp)
1710{
1711	unsigned long flags;
1712	bool needwake;
1713	struct rcu_node *rnp;
1714
1715	local_irq_save(flags);
1716	rnp = rdp->mynode;
1717	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
 
1718	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1719	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1720		local_irq_restore(flags);
1721		return;
1722	}
1723	needwake = __note_gp_changes(rnp, rdp);
1724	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1725	rcu_strict_gp_check_qs();
1726	if (needwake)
1727		rcu_gp_kthread_wake();
1728}
1729
1730static void rcu_gp_slow(int delay)
1731{
1732	if (delay > 0 &&
1733	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1734	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1735		schedule_timeout_idle(delay);
1736}
1737
1738static unsigned long sleep_duration;
1739
1740/* Allow rcutorture to stall the grace-period kthread. */
1741void rcu_gp_set_torture_wait(int duration)
1742{
1743	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1744		WRITE_ONCE(sleep_duration, duration);
1745}
1746EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1747
1748/* Actually implement the aforementioned wait. */
1749static void rcu_gp_torture_wait(void)
1750{
1751	unsigned long duration;
1752
1753	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1754		return;
1755	duration = xchg(&sleep_duration, 0UL);
1756	if (duration > 0) {
1757		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1758		schedule_timeout_idle(duration);
1759		pr_alert("%s: Wait complete\n", __func__);
1760	}
1761}
1762
1763/*
1764 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1765 * processing.
1766 */
1767static void rcu_strict_gp_boundary(void *unused)
1768{
1769	invoke_rcu_core();
1770}
1771
1772/*
1773 * Initialize a new grace period.  Return false if no grace period required.
1774 */
1775static bool rcu_gp_init(void)
1776{
1777	unsigned long firstseq;
1778	unsigned long flags;
1779	unsigned long oldmask;
1780	unsigned long mask;
1781	struct rcu_data *rdp;
1782	struct rcu_node *rnp = rcu_get_root();
1783
1784	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1785	raw_spin_lock_irq_rcu_node(rnp);
1786	if (!READ_ONCE(rcu_state.gp_flags)) {
1787		/* Spurious wakeup, tell caller to go back to sleep.  */
1788		raw_spin_unlock_irq_rcu_node(rnp);
1789		return false;
1790	}
1791	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1792
1793	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1794		/*
1795		 * Grace period already in progress, don't start another.
1796		 * Not supposed to be able to happen.
1797		 */
1798		raw_spin_unlock_irq_rcu_node(rnp);
1799		return false;
1800	}
1801
1802	/* Advance to a new grace period and initialize state. */
1803	record_gp_stall_check_time();
1804	/* Record GP times before starting GP, hence rcu_seq_start(). */
1805	rcu_seq_start(&rcu_state.gp_seq);
1806	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1807	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1808	raw_spin_unlock_irq_rcu_node(rnp);
1809
1810	/*
1811	 * Apply per-leaf buffered online and offline operations to
1812	 * the rcu_node tree. Note that this new grace period need not
1813	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1814	 * offlining path, when combined with checks in this function,
1815	 * will handle CPUs that are currently going offline or that will
1816	 * go offline later.  Please also refer to "Hotplug CPU" section
1817	 * of RCU's Requirements documentation.
1818	 */
1819	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1820	rcu_for_each_leaf_node(rnp) {
1821		smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1822		firstseq = READ_ONCE(rnp->ofl_seq);
1823		if (firstseq & 0x1)
1824			while (firstseq == READ_ONCE(rnp->ofl_seq))
1825				schedule_timeout_idle(1);  // Can't wake unless RCU is watching.
1826		smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1827		raw_spin_lock(&rcu_state.ofl_lock);
1828		raw_spin_lock_irq_rcu_node(rnp);
1829		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1830		    !rnp->wait_blkd_tasks) {
1831			/* Nothing to do on this leaf rcu_node structure. */
1832			raw_spin_unlock_irq_rcu_node(rnp);
1833			raw_spin_unlock(&rcu_state.ofl_lock);
1834			continue;
1835		}
1836
1837		/* Record old state, apply changes to ->qsmaskinit field. */
1838		oldmask = rnp->qsmaskinit;
1839		rnp->qsmaskinit = rnp->qsmaskinitnext;
1840
1841		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1842		if (!oldmask != !rnp->qsmaskinit) {
1843			if (!oldmask) { /* First online CPU for rcu_node. */
1844				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1845					rcu_init_new_rnp(rnp);
1846			} else if (rcu_preempt_has_tasks(rnp)) {
1847				rnp->wait_blkd_tasks = true; /* blocked tasks */
1848			} else { /* Last offline CPU and can propagate. */
1849				rcu_cleanup_dead_rnp(rnp);
1850			}
1851		}
1852
1853		/*
1854		 * If all waited-on tasks from prior grace period are
1855		 * done, and if all this rcu_node structure's CPUs are
1856		 * still offline, propagate up the rcu_node tree and
1857		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1858		 * rcu_node structure's CPUs has since come back online,
1859		 * simply clear ->wait_blkd_tasks.
 
1860		 */
1861		if (rnp->wait_blkd_tasks &&
1862		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
 
1863			rnp->wait_blkd_tasks = false;
1864			if (!rnp->qsmaskinit)
1865				rcu_cleanup_dead_rnp(rnp);
1866		}
1867
1868		raw_spin_unlock_irq_rcu_node(rnp);
1869		raw_spin_unlock(&rcu_state.ofl_lock);
1870	}
1871	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1872
1873	/*
1874	 * Set the quiescent-state-needed bits in all the rcu_node
1875	 * structures for all currently online CPUs in breadth-first
1876	 * order, starting from the root rcu_node structure, relying on the
1877	 * layout of the tree within the rcu_state.node[] array.  Note that
1878	 * other CPUs will access only the leaves of the hierarchy, thus
1879	 * seeing that no grace period is in progress, at least until the
1880	 * corresponding leaf node has been initialized.
1881	 *
1882	 * The grace period cannot complete until the initialization
1883	 * process finishes, because this kthread handles both.
1884	 */
1885	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1886	rcu_for_each_node_breadth_first(rnp) {
1887		rcu_gp_slow(gp_init_delay);
1888		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1889		rdp = this_cpu_ptr(&rcu_data);
1890		rcu_preempt_check_blocked_tasks(rnp);
1891		rnp->qsmask = rnp->qsmaskinit;
1892		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
 
 
1893		if (rnp == rdp->mynode)
1894			(void)__note_gp_changes(rnp, rdp);
1895		rcu_preempt_boost_start_gp(rnp);
1896		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1897					    rnp->level, rnp->grplo,
1898					    rnp->grphi, rnp->qsmask);
1899		/* Quiescent states for tasks on any now-offline CPUs. */
1900		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1901		rnp->rcu_gp_init_mask = mask;
1902		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1903			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1904		else
1905			raw_spin_unlock_irq_rcu_node(rnp);
1906		cond_resched_tasks_rcu_qs();
1907		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1908	}
1909
1910	// If strict, make all CPUs aware of new grace period.
1911	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1912		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1913
1914	return true;
1915}
1916
1917/*
1918 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1919 * time.
1920 */
1921static bool rcu_gp_fqs_check_wake(int *gfp)
1922{
1923	struct rcu_node *rnp = rcu_get_root();
1924
1925	// If under overload conditions, force an immediate FQS scan.
1926	if (*gfp & RCU_GP_FLAG_OVLD)
1927		return true;
1928
1929	// Someone like call_rcu() requested a force-quiescent-state scan.
1930	*gfp = READ_ONCE(rcu_state.gp_flags);
1931	if (*gfp & RCU_GP_FLAG_FQS)
1932		return true;
1933
1934	// The current grace period has completed.
1935	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1936		return true;
1937
1938	return false;
1939}
1940
1941/*
1942 * Do one round of quiescent-state forcing.
1943 */
1944static void rcu_gp_fqs(bool first_time)
1945{
1946	struct rcu_node *rnp = rcu_get_root();
 
 
1947
1948	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1949	rcu_state.n_force_qs++;
1950	if (first_time) {
1951		/* Collect dyntick-idle snapshots. */
1952		force_qs_rnp(dyntick_save_progress_counter);
 
 
 
 
 
 
1953	} else {
1954		/* Handle dyntick-idle and offline CPUs. */
1955		force_qs_rnp(rcu_implicit_dynticks_qs);
 
1956	}
1957	/* Clear flag to prevent immediate re-entry. */
1958	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1959		raw_spin_lock_irq_rcu_node(rnp);
1960		WRITE_ONCE(rcu_state.gp_flags,
1961			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1962		raw_spin_unlock_irq_rcu_node(rnp);
1963	}
1964}
1965
1966/*
1967 * Loop doing repeated quiescent-state forcing until the grace period ends.
1968 */
1969static void rcu_gp_fqs_loop(void)
1970{
1971	bool first_gp_fqs;
1972	int gf = 0;
1973	unsigned long j;
1974	int ret;
1975	struct rcu_node *rnp = rcu_get_root();
1976
1977	first_gp_fqs = true;
1978	j = READ_ONCE(jiffies_till_first_fqs);
1979	if (rcu_state.cbovld)
1980		gf = RCU_GP_FLAG_OVLD;
1981	ret = 0;
1982	for (;;) {
1983		if (!ret) {
1984			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1985			/*
1986			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1987			 * update; required for stall checks.
1988			 */
1989			smp_wmb();
1990			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1991				   jiffies + (j ? 3 * j : 2));
1992		}
1993		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1994				       TPS("fqswait"));
1995		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1996		ret = swait_event_idle_timeout_exclusive(
1997				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1998		rcu_gp_torture_wait();
1999		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2000		/* Locking provides needed memory barriers. */
2001		/* If grace period done, leave loop. */
2002		if (!READ_ONCE(rnp->qsmask) &&
2003		    !rcu_preempt_blocked_readers_cgp(rnp))
2004			break;
2005		/* If time for quiescent-state forcing, do it. */
2006		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2007		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2008			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2009					       TPS("fqsstart"));
2010			rcu_gp_fqs(first_gp_fqs);
2011			gf = 0;
2012			if (first_gp_fqs) {
2013				first_gp_fqs = false;
2014				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2015			}
2016			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2017					       TPS("fqsend"));
2018			cond_resched_tasks_rcu_qs();
2019			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2020			ret = 0; /* Force full wait till next FQS. */
2021			j = READ_ONCE(jiffies_till_next_fqs);
2022		} else {
2023			/* Deal with stray signal. */
2024			cond_resched_tasks_rcu_qs();
2025			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2026			WARN_ON(signal_pending(current));
2027			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2028					       TPS("fqswaitsig"));
2029			ret = 1; /* Keep old FQS timing. */
2030			j = jiffies;
2031			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2032				j = 1;
2033			else
2034				j = rcu_state.jiffies_force_qs - j;
2035			gf = 0;
2036		}
2037	}
2038}
2039
2040/*
2041 * Clean up after the old grace period.
2042 */
2043static noinline void rcu_gp_cleanup(void)
2044{
2045	int cpu;
2046	bool needgp = false;
2047	unsigned long gp_duration;
2048	unsigned long new_gp_seq;
2049	bool offloaded;
2050	struct rcu_data *rdp;
2051	struct rcu_node *rnp = rcu_get_root();
2052	struct swait_queue_head *sq;
2053
2054	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2055	raw_spin_lock_irq_rcu_node(rnp);
2056	rcu_state.gp_end = jiffies;
2057	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2058	if (gp_duration > rcu_state.gp_max)
2059		rcu_state.gp_max = gp_duration;
2060
2061	/*
2062	 * We know the grace period is complete, but to everyone else
2063	 * it appears to still be ongoing.  But it is also the case
2064	 * that to everyone else it looks like there is nothing that
2065	 * they can do to advance the grace period.  It is therefore
2066	 * safe for us to drop the lock in order to mark the grace
2067	 * period as completed in all of the rcu_node structures.
2068	 */
2069	raw_spin_unlock_irq_rcu_node(rnp);
2070
2071	/*
2072	 * Propagate new ->gp_seq value to rcu_node structures so that
2073	 * other CPUs don't have to wait until the start of the next grace
2074	 * period to process their callbacks.  This also avoids some nasty
2075	 * RCU grace-period initialization races by forcing the end of
2076	 * the current grace period to be completely recorded in all of
2077	 * the rcu_node structures before the beginning of the next grace
2078	 * period is recorded in any of the rcu_node structures.
2079	 */
2080	new_gp_seq = rcu_state.gp_seq;
2081	rcu_seq_end(&new_gp_seq);
2082	rcu_for_each_node_breadth_first(rnp) {
2083		raw_spin_lock_irq_rcu_node(rnp);
2084		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2085			dump_blkd_tasks(rnp, 10);
2086		WARN_ON_ONCE(rnp->qsmask);
2087		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2088		rdp = this_cpu_ptr(&rcu_data);
2089		if (rnp == rdp->mynode)
2090			needgp = __note_gp_changes(rnp, rdp) || needgp;
2091		/* smp_mb() provided by prior unlock-lock pair. */
2092		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2093		// Reset overload indication for CPUs no longer overloaded
2094		if (rcu_is_leaf_node(rnp))
2095			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2096				rdp = per_cpu_ptr(&rcu_data, cpu);
2097				check_cb_ovld_locked(rdp, rnp);
2098			}
2099		sq = rcu_nocb_gp_get(rnp);
2100		raw_spin_unlock_irq_rcu_node(rnp);
2101		rcu_nocb_gp_cleanup(sq);
2102		cond_resched_tasks_rcu_qs();
2103		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2104		rcu_gp_slow(gp_cleanup_delay);
2105	}
2106	rnp = rcu_get_root();
2107	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2108
2109	/* Declare grace period done, trace first to use old GP number. */
2110	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2111	rcu_seq_end(&rcu_state.gp_seq);
2112	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2113	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2114	/* Check for GP requests since above loop. */
2115	rdp = this_cpu_ptr(&rcu_data);
2116	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2117		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2118				  TPS("CleanupMore"));
2119		needgp = true;
2120	}
2121	/* Advance CBs to reduce false positives below. */
2122	offloaded = rcu_rdp_is_offloaded(rdp);
2123	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2124		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2125		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2126		trace_rcu_grace_period(rcu_state.name,
2127				       rcu_state.gp_seq,
2128				       TPS("newreq"));
2129	} else {
2130		WRITE_ONCE(rcu_state.gp_flags,
2131			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2132	}
2133	raw_spin_unlock_irq_rcu_node(rnp);
2134
2135	// If strict, make all CPUs aware of the end of the old grace period.
2136	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2137		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2138}
2139
2140/*
2141 * Body of kthread that handles grace periods.
2142 */
2143static int __noreturn rcu_gp_kthread(void *unused)
2144{
 
 
 
 
 
 
 
2145	rcu_bind_gp_kthread();
2146	for (;;) {
2147
2148		/* Handle grace-period start. */
2149		for (;;) {
2150			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2151					       TPS("reqwait"));
2152			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2153			swait_event_idle_exclusive(rcu_state.gp_wq,
2154					 READ_ONCE(rcu_state.gp_flags) &
2155					 RCU_GP_FLAG_INIT);
2156			rcu_gp_torture_wait();
2157			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2158			/* Locking provides needed memory barrier. */
2159			if (rcu_gp_init())
2160				break;
2161			cond_resched_tasks_rcu_qs();
2162			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2163			WARN_ON(signal_pending(current));
2164			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2165					       TPS("reqwaitsig"));
2166		}
2167
2168		/* Handle quiescent-state forcing. */
2169		rcu_gp_fqs_loop();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2170
2171		/* Handle grace-period end. */
2172		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2173		rcu_gp_cleanup();
2174		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2175	}
2176}
2177
2178/*
2179 * Report a full set of quiescent states to the rcu_state data structure.
2180 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2181 * another grace period is required.  Whether we wake the grace-period
2182 * kthread or it awakens itself for the next round of quiescent-state
2183 * forcing, that kthread will clean up after the just-completed grace
2184 * period.  Note that the caller must hold rnp->lock, which is released
2185 * before return.
2186 */
2187static void rcu_report_qs_rsp(unsigned long flags)
2188	__releases(rcu_get_root()->lock)
2189{
2190	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2191	WARN_ON_ONCE(!rcu_gp_in_progress());
2192	WRITE_ONCE(rcu_state.gp_flags,
2193		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2194	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2195	rcu_gp_kthread_wake();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196}
2197
2198/*
2199 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2200 * Allows quiescent states for a group of CPUs to be reported at one go
2201 * to the specified rcu_node structure, though all the CPUs in the group
2202 * must be represented by the same rcu_node structure (which need not be a
2203 * leaf rcu_node structure, though it often will be).  The gps parameter
2204 * is the grace-period snapshot, which means that the quiescent states
2205 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2206 * must be held upon entry, and it is released before return.
2207 *
2208 * As a special case, if mask is zero, the bit-already-cleared check is
2209 * disabled.  This allows propagating quiescent state due to resumed tasks
2210 * during grace-period initialization.
2211 */
2212static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2213			      unsigned long gps, unsigned long flags)
 
2214	__releases(rnp->lock)
2215{
2216	unsigned long oldmask = 0;
2217	struct rcu_node *rnp_c;
2218
2219	raw_lockdep_assert_held_rcu_node(rnp);
2220
2221	/* Walk up the rcu_node hierarchy. */
2222	for (;;) {
2223		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2224
2225			/*
2226			 * Our bit has already been cleared, or the
2227			 * relevant grace period is already over, so done.
2228			 */
2229			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2230			return;
2231		}
2232		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2233		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2234			     rcu_preempt_blocked_readers_cgp(rnp));
2235		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2236		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2237						 mask, rnp->qsmask, rnp->level,
2238						 rnp->grplo, rnp->grphi,
2239						 !!rnp->gp_tasks);
2240		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2241
2242			/* Other bits still set at this level, so done. */
2243			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2244			return;
2245		}
2246		rnp->completedqs = rnp->gp_seq;
2247		mask = rnp->grpmask;
2248		if (rnp->parent == NULL) {
2249
2250			/* No more levels.  Exit loop holding root lock. */
2251
2252			break;
2253		}
2254		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2255		rnp_c = rnp;
2256		rnp = rnp->parent;
2257		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2258		oldmask = READ_ONCE(rnp_c->qsmask);
2259	}
2260
2261	/*
2262	 * Get here if we are the last CPU to pass through a quiescent
2263	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2264	 * to clean up and start the next grace period if one is needed.
2265	 */
2266	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2267}
2268
2269/*
2270 * Record a quiescent state for all tasks that were previously queued
2271 * on the specified rcu_node structure and that were blocking the current
2272 * RCU grace period.  The caller must hold the corresponding rnp->lock with
2273 * irqs disabled, and this lock is released upon return, but irqs remain
2274 * disabled.
2275 */
2276static void __maybe_unused
2277rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2278	__releases(rnp->lock)
2279{
2280	unsigned long gps;
2281	unsigned long mask;
2282	struct rcu_node *rnp_p;
2283
2284	raw_lockdep_assert_held_rcu_node(rnp);
2285	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2286	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2287	    rnp->qsmask != 0) {
2288		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2289		return;  /* Still need more quiescent states! */
2290	}
2291
2292	rnp->completedqs = rnp->gp_seq;
2293	rnp_p = rnp->parent;
2294	if (rnp_p == NULL) {
2295		/*
2296		 * Only one rcu_node structure in the tree, so don't
2297		 * try to report up to its nonexistent parent!
2298		 */
2299		rcu_report_qs_rsp(flags);
2300		return;
2301	}
2302
2303	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2304	gps = rnp->gp_seq;
2305	mask = rnp->grpmask;
2306	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2307	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2308	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2309}
2310
2311/*
2312 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2313 * structure.  This must be called from the specified CPU.
2314 */
2315static void
2316rcu_report_qs_rdp(struct rcu_data *rdp)
2317{
2318	unsigned long flags;
2319	unsigned long mask;
2320	bool needwake = false;
2321	const bool offloaded = rcu_rdp_is_offloaded(rdp);
2322	struct rcu_node *rnp;
2323
2324	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2325	rnp = rdp->mynode;
2326	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2327	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
 
 
2328	    rdp->gpwrap) {
2329
2330		/*
2331		 * The grace period in which this quiescent state was
2332		 * recorded has ended, so don't report it upwards.
2333		 * We will instead need a new quiescent state that lies
2334		 * within the current grace period.
2335		 */
2336		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
 
2337		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2338		return;
2339	}
2340	mask = rdp->grpmask;
2341	rdp->core_needs_qs = false;
2342	if ((rnp->qsmask & mask) == 0) {
2343		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2344	} else {
 
 
2345		/*
2346		 * This GP can't end until cpu checks in, so all of our
2347		 * callbacks can be processed during the next GP.
2348		 */
2349		if (!offloaded)
2350			needwake = rcu_accelerate_cbs(rnp, rdp);
2351
2352		rcu_disable_urgency_upon_qs(rdp);
2353		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2354		/* ^^^ Released rnp->lock */
2355		if (needwake)
2356			rcu_gp_kthread_wake();
2357	}
2358}
2359
2360/*
2361 * Check to see if there is a new grace period of which this CPU
2362 * is not yet aware, and if so, set up local rcu_data state for it.
2363 * Otherwise, see if this CPU has just passed through its first
2364 * quiescent state for this grace period, and record that fact if so.
2365 */
2366static void
2367rcu_check_quiescent_state(struct rcu_data *rdp)
2368{
2369	/* Check for grace-period ends and beginnings. */
2370	note_gp_changes(rdp);
2371
2372	/*
2373	 * Does this CPU still need to do its part for current grace period?
2374	 * If no, return and let the other CPUs do their part as well.
2375	 */
2376	if (!rdp->core_needs_qs)
2377		return;
2378
2379	/*
2380	 * Was there a quiescent state since the beginning of the grace
2381	 * period? If no, then exit and wait for the next call.
2382	 */
2383	if (rdp->cpu_no_qs.b.norm)
 
2384		return;
2385
2386	/*
2387	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2388	 * judge of that).
2389	 */
2390	rcu_report_qs_rdp(rdp);
2391}
2392
2393/*
2394 * Near the end of the offline process.  Trace the fact that this CPU
2395 * is going offline.
 
2396 */
2397int rcutree_dying_cpu(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2398{
2399	bool blkd;
2400	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2401	struct rcu_node *rnp = rdp->mynode;
2402
2403	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2404		return 0;
2405
2406	blkd = !!(rnp->qsmask & rdp->grpmask);
2407	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2408			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2409	return 0;
2410}
2411
2412/*
2413 * All CPUs for the specified rcu_node structure have gone offline,
2414 * and all tasks that were preempted within an RCU read-side critical
2415 * section while running on one of those CPUs have since exited their RCU
2416 * read-side critical section.  Some other CPU is reporting this fact with
2417 * the specified rcu_node structure's ->lock held and interrupts disabled.
2418 * This function therefore goes up the tree of rcu_node structures,
2419 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2420 * the leaf rcu_node structure's ->qsmaskinit field has already been
2421 * updated.
2422 *
2423 * This function does check that the specified rcu_node structure has
2424 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2425 * prematurely.  That said, invoking it after the fact will cost you
2426 * a needless lock acquisition.  So once it has done its work, don't
2427 * invoke it again.
2428 */
2429static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2430{
2431	long mask;
2432	struct rcu_node *rnp = rnp_leaf;
2433
2434	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2435	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2436	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2437	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2438		return;
2439	for (;;) {
2440		mask = rnp->grpmask;
2441		rnp = rnp->parent;
2442		if (!rnp)
2443			break;
2444		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2445		rnp->qsmaskinit &= ~mask;
2446		/* Between grace periods, so better already be zero! */
2447		WARN_ON_ONCE(rnp->qsmask);
2448		if (rnp->qsmaskinit) {
2449			raw_spin_unlock_rcu_node(rnp);
2450			/* irqs remain disabled. */
2451			return;
2452		}
2453		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2454	}
2455}
2456
2457/*
2458 * The CPU has been completely removed, and some other CPU is reporting
2459 * this fact from process context.  Do the remainder of the cleanup.
2460 * There can only be one CPU hotplug operation at a time, so no need for
2461 * explicit locking.
 
2462 */
2463int rcutree_dead_cpu(unsigned int cpu)
2464{
2465	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 
2466	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2467
2468	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2469		return 0;
2470
2471	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2472	/* Adjust any no-longer-needed kthreads. */
2473	rcu_boost_kthread_setaffinity(rnp, -1);
2474	/* Do any needed no-CB deferred wakeups from this CPU. */
2475	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2476
2477	// Stop-machine done, so allow nohz_full to disable tick.
2478	tick_dep_clear(TICK_DEP_BIT_RCU);
2479	return 0;
 
 
 
 
 
 
2480}
2481
2482/*
2483 * Invoke any RCU callbacks that have made it to the end of their grace
2484 * period.  Throttle as specified by rdp->blimit.
2485 */
2486static void rcu_do_batch(struct rcu_data *rdp)
2487{
2488	int div;
2489	bool __maybe_unused empty;
2490	unsigned long flags;
2491	const bool offloaded = rcu_rdp_is_offloaded(rdp);
2492	struct rcu_head *rhp;
2493	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2494	long bl, count = 0;
2495	long pending, tlimit = 0;
2496
2497	/* If no callbacks are ready, just return. */
2498	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2499		trace_rcu_batch_start(rcu_state.name,
2500				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2501		trace_rcu_batch_end(rcu_state.name, 0,
2502				    !rcu_segcblist_empty(&rdp->cblist),
2503				    need_resched(), is_idle_task(current),
2504				    rcu_is_callbacks_kthread());
2505		return;
2506	}
2507
2508	/*
2509	 * Extract the list of ready callbacks, disabling to prevent
2510	 * races with call_rcu() from interrupt handlers.  Leave the
2511	 * callback counts, as rcu_barrier() needs to be conservative.
2512	 */
2513	local_irq_save(flags);
2514	rcu_nocb_lock(rdp);
2515	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2516	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2517	div = READ_ONCE(rcu_divisor);
2518	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2519	bl = max(rdp->blimit, pending >> div);
2520	if (unlikely(bl > 100)) {
2521		long rrn = READ_ONCE(rcu_resched_ns);
2522
2523		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2524		tlimit = local_clock() + rrn;
2525	}
2526	trace_rcu_batch_start(rcu_state.name,
2527			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2528	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2529	if (offloaded)
2530		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2531
2532	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2533	rcu_nocb_unlock_irqrestore(rdp, flags);
2534
2535	/* Invoke callbacks. */
2536	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2537	rhp = rcu_cblist_dequeue(&rcl);
2538
2539	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2540		rcu_callback_t f;
2541
2542		count++;
2543		debug_rcu_head_unqueue(rhp);
2544
2545		rcu_lock_acquire(&rcu_callback_map);
2546		trace_rcu_invoke_callback(rcu_state.name, rhp);
2547
2548		f = rhp->func;
2549		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2550		f(rhp);
2551
2552		rcu_lock_release(&rcu_callback_map);
2553
2554		/*
2555		 * Stop only if limit reached and CPU has something to do.
2556		 */
2557		if (count >= bl && !offloaded &&
2558		    (need_resched() ||
2559		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2560			break;
2561		if (unlikely(tlimit)) {
2562			/* only call local_clock() every 32 callbacks */
2563			if (likely((count & 31) || local_clock() < tlimit))
2564				continue;
2565			/* Exceeded the time limit, so leave. */
2566			break;
2567		}
2568		if (!in_serving_softirq()) {
2569			local_bh_enable();
2570			lockdep_assert_irqs_enabled();
2571			cond_resched_tasks_rcu_qs();
2572			lockdep_assert_irqs_enabled();
2573			local_bh_disable();
2574		}
2575	}
2576
2577	local_irq_save(flags);
2578	rcu_nocb_lock(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2579	rdp->n_cbs_invoked += count;
2580	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2581			    is_idle_task(current), rcu_is_callbacks_kthread());
2582
2583	/* Update counts and requeue any remaining callbacks. */
2584	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2585	rcu_segcblist_add_len(&rdp->cblist, -count);
2586
2587	/* Reinstate batch limit if we have worked down the excess. */
2588	count = rcu_segcblist_n_cbs(&rdp->cblist);
2589	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2590		rdp->blimit = blimit;
2591
2592	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2593	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2594		rdp->qlen_last_fqs_check = 0;
2595		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2596	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2597		rdp->qlen_last_fqs_check = count;
2598
2599	/*
2600	 * The following usually indicates a double call_rcu().  To track
2601	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2602	 */
2603	empty = rcu_segcblist_empty(&rdp->cblist);
2604	WARN_ON_ONCE(count == 0 && !empty);
2605	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2606		     count != 0 && empty);
2607	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2608	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2609
2610	rcu_nocb_unlock_irqrestore(rdp, flags);
2611
2612	/* Re-invoke RCU core processing if there are callbacks remaining. */
2613	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2614		invoke_rcu_core();
2615	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2616}
2617
2618/*
2619 * This function is invoked from each scheduling-clock interrupt,
2620 * and checks to see if this CPU is in a non-context-switch quiescent
2621 * state, for example, user mode or idle loop.  It also schedules RCU
2622 * core processing.  If the current grace period has gone on too long,
2623 * it will ask the scheduler to manufacture a context switch for the sole
2624 * purpose of providing the needed quiescent state.
2625 */
2626void rcu_sched_clock_irq(int user)
2627{
2628	trace_rcu_utilization(TPS("Start scheduler-tick"));
2629	lockdep_assert_irqs_disabled();
2630	raw_cpu_inc(rcu_data.ticks_this_gp);
2631	/* The load-acquire pairs with the store-release setting to true. */
2632	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2633		/* Idle and userspace execution already are quiescent states. */
2634		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2635			set_tsk_need_resched(current);
2636			set_preempt_need_resched();
2637		}
2638		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2639	}
2640	rcu_flavor_sched_clock_irq(user);
2641	if (rcu_pending(user))
2642		invoke_rcu_core();
2643	lockdep_assert_irqs_disabled();
2644
2645	trace_rcu_utilization(TPS("End scheduler-tick"));
2646}
2647
2648/*
2649 * Scan the leaf rcu_node structures.  For each structure on which all
2650 * CPUs have reported a quiescent state and on which there are tasks
2651 * blocking the current grace period, initiate RCU priority boosting.
2652 * Otherwise, invoke the specified function to check dyntick state for
2653 * each CPU that has not yet reported a quiescent state.
2654 */
2655static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
 
 
 
2656{
2657	int cpu;
2658	unsigned long flags;
2659	unsigned long mask;
2660	struct rcu_data *rdp;
2661	struct rcu_node *rnp;
2662
2663	rcu_state.cbovld = rcu_state.cbovldnext;
2664	rcu_state.cbovldnext = false;
2665	rcu_for_each_leaf_node(rnp) {
2666		cond_resched_tasks_rcu_qs();
2667		mask = 0;
2668		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2669		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2670		if (rnp->qsmask == 0) {
2671			if (rcu_preempt_blocked_readers_cgp(rnp)) {
 
 
2672				/*
2673				 * No point in scanning bits because they
2674				 * are all zero.  But we might need to
2675				 * priority-boost blocked readers.
2676				 */
2677				rcu_initiate_boost(rnp, flags);
2678				/* rcu_initiate_boost() releases rnp->lock */
2679				continue;
2680			}
2681			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2682			continue;
 
 
 
 
 
 
 
 
 
2683		}
2684		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2685			rdp = per_cpu_ptr(&rcu_data, cpu);
2686			if (f(rdp)) {
2687				mask |= rdp->grpmask;
2688				rcu_disable_urgency_upon_qs(rdp);
2689			}
2690		}
2691		if (mask != 0) {
2692			/* Idle/offline CPUs, report (releases rnp->lock). */
2693			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2694		} else {
2695			/* Nothing to do here, so just drop the lock. */
2696			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2697		}
2698	}
2699}
2700
2701/*
2702 * Force quiescent states on reluctant CPUs, and also detect which
2703 * CPUs are in dyntick-idle mode.
2704 */
2705void rcu_force_quiescent_state(void)
2706{
2707	unsigned long flags;
2708	bool ret;
2709	struct rcu_node *rnp;
2710	struct rcu_node *rnp_old = NULL;
2711
2712	/* Funnel through hierarchy to reduce memory contention. */
2713	rnp = __this_cpu_read(rcu_data.mynode);
2714	for (; rnp != NULL; rnp = rnp->parent) {
2715		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2716		       !raw_spin_trylock(&rnp->fqslock);
2717		if (rnp_old != NULL)
2718			raw_spin_unlock(&rnp_old->fqslock);
2719		if (ret)
 
2720			return;
 
2721		rnp_old = rnp;
2722	}
2723	/* rnp_old == rcu_get_root(), rnp == NULL. */
2724
2725	/* Reached the root of the rcu_node tree, acquire lock. */
2726	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2727	raw_spin_unlock(&rnp_old->fqslock);
2728	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
 
2729		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2730		return;  /* Someone beat us to it. */
2731	}
2732	WRITE_ONCE(rcu_state.gp_flags,
2733		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2734	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2735	rcu_gp_kthread_wake();
2736}
2737EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2738
2739// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2740// grace periods.
2741static void strict_work_handler(struct work_struct *work)
2742{
2743	rcu_read_lock();
2744	rcu_read_unlock();
2745}
2746
2747/* Perform RCU core processing work for the current CPU.  */
2748static __latent_entropy void rcu_core(void)
2749{
2750	unsigned long flags;
2751	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2752	struct rcu_node *rnp = rdp->mynode;
2753	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2754
2755	if (cpu_is_offline(smp_processor_id()))
2756		return;
2757	trace_rcu_utilization(TPS("Start RCU core"));
2758	WARN_ON_ONCE(!rdp->beenonline);
2759
2760	/* Report any deferred quiescent states if preemption enabled. */
2761	if (!(preempt_count() & PREEMPT_MASK)) {
2762		rcu_preempt_deferred_qs(current);
2763	} else if (rcu_preempt_need_deferred_qs(current)) {
2764		set_tsk_need_resched(current);
2765		set_preempt_need_resched();
2766	}
2767
2768	/* Update RCU state based on any recent quiescent states. */
2769	rcu_check_quiescent_state(rdp);
2770
2771	/* No grace period and unregistered callbacks? */
2772	if (!rcu_gp_in_progress() &&
2773	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2774		rcu_nocb_lock_irqsave(rdp, flags);
2775		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2776			rcu_accelerate_cbs_unlocked(rnp, rdp);
2777		rcu_nocb_unlock_irqrestore(rdp, flags);
 
 
 
2778	}
2779
2780	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2781
2782	/* If there are callbacks ready, invoke them. */
2783	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2784	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2785		rcu_do_batch(rdp);
2786
2787	/* Do any needed deferred wakeups of rcuo kthreads. */
2788	do_nocb_deferred_wakeup(rdp);
2789	trace_rcu_utilization(TPS("End RCU core"));
2790
2791	// If strict GPs, schedule an RCU reader in a clean environment.
2792	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2793		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2794}
2795
2796static void rcu_core_si(struct softirq_action *h)
2797{
2798	rcu_core();
2799}
2800
2801static void rcu_wake_cond(struct task_struct *t, int status)
2802{
2803	/*
2804	 * If the thread is yielding, only wake it when this
2805	 * is invoked from idle
2806	 */
2807	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2808		wake_up_process(t);
2809}
2810
2811static void invoke_rcu_core_kthread(void)
2812{
2813	struct task_struct *t;
2814	unsigned long flags;
2815
2816	local_irq_save(flags);
2817	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2818	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2819	if (t != NULL && t != current)
2820		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2821	local_irq_restore(flags);
2822}
2823
2824/*
2825 * Wake up this CPU's rcuc kthread to do RCU core processing.
2826 */
2827static void invoke_rcu_core(void)
2828{
2829	if (!cpu_online(smp_processor_id()))
 
 
2830		return;
2831	if (use_softirq)
2832		raise_softirq(RCU_SOFTIRQ);
2833	else
2834		invoke_rcu_core_kthread();
2835}
2836
2837static void rcu_cpu_kthread_park(unsigned int cpu)
2838{
2839	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2840}
2841
2842static int rcu_cpu_kthread_should_run(unsigned int cpu)
2843{
2844	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2845}
2846
2847/*
2848 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2849 * the RCU softirq used in configurations of RCU that do not support RCU
2850 * priority boosting.
 
 
2851 */
2852static void rcu_cpu_kthread(unsigned int cpu)
2853{
2854	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2855	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2856	int spincnt;
2857
2858	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2859	for (spincnt = 0; spincnt < 10; spincnt++) {
2860		local_bh_disable();
2861		*statusp = RCU_KTHREAD_RUNNING;
2862		local_irq_disable();
2863		work = *workp;
2864		*workp = 0;
2865		local_irq_enable();
2866		if (work)
2867			rcu_core();
2868		local_bh_enable();
2869		if (*workp == 0) {
2870			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2871			*statusp = RCU_KTHREAD_WAITING;
2872			return;
2873		}
2874	}
2875	*statusp = RCU_KTHREAD_YIELDING;
2876	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2877	schedule_timeout_idle(2);
2878	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2879	*statusp = RCU_KTHREAD_WAITING;
2880}
2881
2882static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2883	.store			= &rcu_data.rcu_cpu_kthread_task,
2884	.thread_should_run	= rcu_cpu_kthread_should_run,
2885	.thread_fn		= rcu_cpu_kthread,
2886	.thread_comm		= "rcuc/%u",
2887	.setup			= rcu_cpu_kthread_setup,
2888	.park			= rcu_cpu_kthread_park,
2889};
2890
2891/*
2892 * Spawn per-CPU RCU core processing kthreads.
2893 */
2894static int __init rcu_spawn_core_kthreads(void)
2895{
2896	int cpu;
2897
2898	for_each_possible_cpu(cpu)
2899		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2900	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2901		return 0;
2902	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2903		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2904	return 0;
2905}
2906
2907/*
2908 * Handle any core-RCU processing required by a call_rcu() invocation.
2909 */
2910static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2911			    unsigned long flags)
2912{
 
 
2913	/*
2914	 * If called from an extended quiescent state, invoke the RCU
2915	 * core in order to force a re-evaluation of RCU's idleness.
2916	 */
2917	if (!rcu_is_watching())
2918		invoke_rcu_core();
2919
2920	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2921	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2922		return;
2923
2924	/*
2925	 * Force the grace period if too many callbacks or too long waiting.
2926	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2927	 * if some other CPU has recently done so.  Also, don't bother
2928	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2929	 * is the only one waiting for a grace period to complete.
2930	 */
2931	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2932		     rdp->qlen_last_fqs_check + qhimark)) {
2933
2934		/* Are we ignoring a completed grace period? */
2935		note_gp_changes(rdp);
2936
2937		/* Start a new grace period if one not already started. */
2938		if (!rcu_gp_in_progress()) {
2939			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
 
 
 
 
 
 
2940		} else {
2941			/* Give the grace period a kick. */
2942			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2943			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2944			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2945				rcu_force_quiescent_state();
2946			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2947			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2948		}
2949	}
2950}
2951
2952/*
2953 * RCU callback function to leak a callback.
2954 */
2955static void rcu_leak_callback(struct rcu_head *rhp)
2956{
2957}
2958
2959/*
2960 * Check and if necessary update the leaf rcu_node structure's
2961 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2962 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2963 * structure's ->lock.
2964 */
2965static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2966{
2967	raw_lockdep_assert_held_rcu_node(rnp);
2968	if (qovld_calc <= 0)
2969		return; // Early boot and wildcard value set.
2970	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2971		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2972	else
2973		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2974}
2975
2976/*
2977 * Check and if necessary update the leaf rcu_node structure's
2978 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2979 * number of queued RCU callbacks.  No locks need be held, but the
2980 * caller must have disabled interrupts.
2981 *
2982 * Note that this function ignores the possibility that there are a lot
2983 * of callbacks all of which have already seen the end of their respective
2984 * grace periods.  This omission is due to the need for no-CBs CPUs to
2985 * be holding ->nocb_lock to do this check, which is too heavy for a
2986 * common-case operation.
2987 */
2988static void check_cb_ovld(struct rcu_data *rdp)
2989{
2990	struct rcu_node *const rnp = rdp->mynode;
2991
2992	if (qovld_calc <= 0 ||
2993	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2994	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2995		return; // Early boot wildcard value or already set correctly.
2996	raw_spin_lock_rcu_node(rnp);
2997	check_cb_ovld_locked(rdp, rnp);
2998	raw_spin_unlock_rcu_node(rnp);
2999}
3000
3001/* Helper function for call_rcu() and friends.  */
3002static void
3003__call_rcu(struct rcu_head *head, rcu_callback_t func)
 
3004{
3005	static atomic_t doublefrees;
3006	unsigned long flags;
3007	struct rcu_data *rdp;
3008	bool was_alldone;
3009
3010	/* Misaligned rcu_head! */
3011	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3012
3013	if (debug_rcu_head_queue(head)) {
3014		/*
3015		 * Probable double call_rcu(), so leak the callback.
3016		 * Use rcu:rcu_callback trace event to find the previous
3017		 * time callback was passed to __call_rcu().
3018		 */
3019		if (atomic_inc_return(&doublefrees) < 4) {
3020			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3021			mem_dump_obj(head);
3022		}
3023		WRITE_ONCE(head->func, rcu_leak_callback);
 
3024		return;
3025	}
3026	head->func = func;
3027	head->next = NULL;
3028	local_irq_save(flags);
3029	kasan_record_aux_stack(head);
3030	rdp = this_cpu_ptr(&rcu_data);
3031
3032	/* Add the callback to our list. */
3033	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3034		// This can trigger due to call_rcu() from offline CPU:
3035		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3036		WARN_ON_ONCE(!rcu_is_watching());
3037		// Very early boot, before rcu_init().  Initialize if needed
3038		// and then drop through to queue the callback.
3039		if (rcu_segcblist_empty(&rdp->cblist))
3040			rcu_segcblist_init(&rdp->cblist);
3041	}
3042
3043	check_cb_ovld(rdp);
3044	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3045		return; // Enqueued onto ->nocb_bypass, so just leave.
3046	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3047	rcu_segcblist_enqueue(&rdp->cblist, head);
3048	if (__is_kvfree_rcu_offset((unsigned long)func))
3049		trace_rcu_kvfree_callback(rcu_state.name, head,
3050					 (unsigned long)func,
3051					 rcu_segcblist_n_cbs(&rdp->cblist));
 
 
3052	else
3053		trace_rcu_callback(rcu_state.name, head,
3054				   rcu_segcblist_n_cbs(&rdp->cblist));
3055
3056	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3057
3058	/* Go handle any RCU core processing required. */
3059	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
3060		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3061	} else {
3062		__call_rcu_core(rdp, head, flags);
3063		local_irq_restore(flags);
3064	}
3065}
3066
3067/**
3068 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3069 * @head: structure to be used for queueing the RCU updates.
3070 * @func: actual callback function to be invoked after the grace period
3071 *
3072 * The callback function will be invoked some time after a full grace
3073 * period elapses, in other words after all pre-existing RCU read-side
3074 * critical sections have completed.  However, the callback function
3075 * might well execute concurrently with RCU read-side critical sections
3076 * that started after call_rcu() was invoked.
3077 *
3078 * RCU read-side critical sections are delimited by rcu_read_lock()
3079 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3080 * v5.0 and later, regions of code across which interrupts, preemption,
3081 * or softirqs have been disabled also serve as RCU read-side critical
3082 * sections.  This includes hardware interrupt handlers, softirq handlers,
3083 * and NMI handlers.
3084 *
3085 * Note that all CPUs must agree that the grace period extended beyond
3086 * all pre-existing RCU read-side critical section.  On systems with more
3087 * than one CPU, this means that when "func()" is invoked, each CPU is
3088 * guaranteed to have executed a full memory barrier since the end of its
3089 * last RCU read-side critical section whose beginning preceded the call
3090 * to call_rcu().  It also means that each CPU executing an RCU read-side
3091 * critical section that continues beyond the start of "func()" must have
3092 * executed a memory barrier after the call_rcu() but before the beginning
3093 * of that RCU read-side critical section.  Note that these guarantees
3094 * include CPUs that are offline, idle, or executing in user mode, as
3095 * well as CPUs that are executing in the kernel.
3096 *
3097 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3098 * resulting RCU callback function "func()", then both CPU A and CPU B are
3099 * guaranteed to execute a full memory barrier during the time interval
3100 * between the call to call_rcu() and the invocation of "func()" -- even
3101 * if CPU A and CPU B are the same CPU (but again only if the system has
3102 * more than one CPU).
3103 *
3104 * Implementation of these memory-ordering guarantees is described here:
3105 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3106 */
3107void call_rcu(struct rcu_head *head, rcu_callback_t func)
3108{
3109	__call_rcu(head, func);
3110}
3111EXPORT_SYMBOL_GPL(call_rcu);
3112
3113
3114/* Maximum number of jiffies to wait before draining a batch. */
3115#define KFREE_DRAIN_JIFFIES (HZ / 50)
3116#define KFREE_N_BATCHES 2
3117#define FREE_N_CHANNELS 2
3118
3119/**
3120 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3121 * @nr_records: Number of active pointers in the array
3122 * @next: Next bulk object in the block chain
3123 * @records: Array of the kvfree_rcu() pointers
3124 */
3125struct kvfree_rcu_bulk_data {
3126	unsigned long nr_records;
3127	struct kvfree_rcu_bulk_data *next;
3128	void *records[];
3129};
3130
3131/*
3132 * This macro defines how many entries the "records" array
3133 * will contain. It is based on the fact that the size of
3134 * kvfree_rcu_bulk_data structure becomes exactly one page.
3135 */
3136#define KVFREE_BULK_MAX_ENTR \
3137	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3138
3139/**
3140 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3141 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3142 * @head_free: List of kfree_rcu() objects waiting for a grace period
3143 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3144 * @krcp: Pointer to @kfree_rcu_cpu structure
3145 */
3146
3147struct kfree_rcu_cpu_work {
3148	struct rcu_work rcu_work;
3149	struct rcu_head *head_free;
3150	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3151	struct kfree_rcu_cpu *krcp;
3152};
3153
3154/**
3155 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3156 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3157 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3158 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3159 * @lock: Synchronize access to this structure
3160 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3161 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3162 * @initialized: The @rcu_work fields have been initialized
3163 * @count: Number of objects for which GP not started
3164 * @bkvcache:
3165 *	A simple cache list that contains objects for reuse purpose.
3166 *	In order to save some per-cpu space the list is singular.
3167 *	Even though it is lockless an access has to be protected by the
3168 *	per-cpu lock.
3169 * @page_cache_work: A work to refill the cache when it is empty
3170 * @backoff_page_cache_fill: Delay cache refills
3171 * @work_in_progress: Indicates that page_cache_work is running
3172 * @hrtimer: A hrtimer for scheduling a page_cache_work
3173 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3174 *
3175 * This is a per-CPU structure.  The reason that it is not included in
3176 * the rcu_data structure is to permit this code to be extracted from
3177 * the RCU files.  Such extraction could allow further optimization of
3178 * the interactions with the slab allocators.
3179 */
3180struct kfree_rcu_cpu {
3181	struct rcu_head *head;
3182	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3183	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3184	raw_spinlock_t lock;
3185	struct delayed_work monitor_work;
3186	bool monitor_todo;
3187	bool initialized;
3188	int count;
3189
3190	struct delayed_work page_cache_work;
3191	atomic_t backoff_page_cache_fill;
3192	atomic_t work_in_progress;
3193	struct hrtimer hrtimer;
3194
3195	struct llist_head bkvcache;
3196	int nr_bkv_objs;
3197};
3198
3199static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3200	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3201};
3202
3203static __always_inline void
3204debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3205{
3206#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3207	int i;
3208
3209	for (i = 0; i < bhead->nr_records; i++)
3210		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3211#endif
3212}
3213
3214static inline struct kfree_rcu_cpu *
3215krc_this_cpu_lock(unsigned long *flags)
3216{
3217	struct kfree_rcu_cpu *krcp;
3218
3219	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3220	krcp = this_cpu_ptr(&krc);
3221	raw_spin_lock(&krcp->lock);
3222
3223	return krcp;
3224}
3225
3226static inline void
3227krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3228{
3229	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3230}
3231
3232static inline struct kvfree_rcu_bulk_data *
3233get_cached_bnode(struct kfree_rcu_cpu *krcp)
3234{
3235	if (!krcp->nr_bkv_objs)
3236		return NULL;
3237
3238	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3239	return (struct kvfree_rcu_bulk_data *)
3240		llist_del_first(&krcp->bkvcache);
3241}
3242
3243static inline bool
3244put_cached_bnode(struct kfree_rcu_cpu *krcp,
3245	struct kvfree_rcu_bulk_data *bnode)
3246{
3247	// Check the limit.
3248	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3249		return false;
3250
3251	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3252	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3253	return true;
3254}
3255
3256static int
3257drain_page_cache(struct kfree_rcu_cpu *krcp)
3258{
3259	unsigned long flags;
3260	struct llist_node *page_list, *pos, *n;
3261	int freed = 0;
3262
3263	raw_spin_lock_irqsave(&krcp->lock, flags);
3264	page_list = llist_del_all(&krcp->bkvcache);
3265	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3266	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3267
3268	llist_for_each_safe(pos, n, page_list) {
3269		free_page((unsigned long)pos);
3270		freed++;
3271	}
3272
3273	return freed;
3274}
3275
3276/*
3277 * This function is invoked in workqueue context after a grace period.
3278 * It frees all the objects queued on ->bkvhead_free or ->head_free.
3279 */
3280static void kfree_rcu_work(struct work_struct *work)
3281{
3282	unsigned long flags;
3283	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3284	struct rcu_head *head, *next;
3285	struct kfree_rcu_cpu *krcp;
3286	struct kfree_rcu_cpu_work *krwp;
3287	int i, j;
3288
3289	krwp = container_of(to_rcu_work(work),
3290			    struct kfree_rcu_cpu_work, rcu_work);
3291	krcp = krwp->krcp;
3292
3293	raw_spin_lock_irqsave(&krcp->lock, flags);
3294	// Channels 1 and 2.
3295	for (i = 0; i < FREE_N_CHANNELS; i++) {
3296		bkvhead[i] = krwp->bkvhead_free[i];
3297		krwp->bkvhead_free[i] = NULL;
3298	}
3299
3300	// Channel 3.
3301	head = krwp->head_free;
3302	krwp->head_free = NULL;
3303	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3304
3305	// Handle the first two channels.
3306	for (i = 0; i < FREE_N_CHANNELS; i++) {
3307		for (; bkvhead[i]; bkvhead[i] = bnext) {
3308			bnext = bkvhead[i]->next;
3309			debug_rcu_bhead_unqueue(bkvhead[i]);
3310
3311			rcu_lock_acquire(&rcu_callback_map);
3312			if (i == 0) { // kmalloc() / kfree().
3313				trace_rcu_invoke_kfree_bulk_callback(
3314					rcu_state.name, bkvhead[i]->nr_records,
3315					bkvhead[i]->records);
3316
3317				kfree_bulk(bkvhead[i]->nr_records,
3318					bkvhead[i]->records);
3319			} else { // vmalloc() / vfree().
3320				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3321					trace_rcu_invoke_kvfree_callback(
3322						rcu_state.name,
3323						bkvhead[i]->records[j], 0);
3324
3325					vfree(bkvhead[i]->records[j]);
3326				}
3327			}
3328			rcu_lock_release(&rcu_callback_map);
3329
3330			raw_spin_lock_irqsave(&krcp->lock, flags);
3331			if (put_cached_bnode(krcp, bkvhead[i]))
3332				bkvhead[i] = NULL;
3333			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3334
3335			if (bkvhead[i])
3336				free_page((unsigned long) bkvhead[i]);
3337
3338			cond_resched_tasks_rcu_qs();
3339		}
3340	}
3341
3342	/*
3343	 * This is used when the "bulk" path can not be used for the
3344	 * double-argument of kvfree_rcu().  This happens when the
3345	 * page-cache is empty, which means that objects are instead
3346	 * queued on a linked list through their rcu_head structures.
3347	 * This list is named "Channel 3".
3348	 */
3349	for (; head; head = next) {
3350		unsigned long offset = (unsigned long)head->func;
3351		void *ptr = (void *)head - offset;
3352
3353		next = head->next;
3354		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3355		rcu_lock_acquire(&rcu_callback_map);
3356		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3357
3358		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3359			kvfree(ptr);
3360
3361		rcu_lock_release(&rcu_callback_map);
3362		cond_resched_tasks_rcu_qs();
3363	}
3364}
 
3365
3366/*
3367 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3368 */
3369static void kfree_rcu_monitor(struct work_struct *work)
3370{
3371	struct kfree_rcu_cpu *krcp = container_of(work,
3372		struct kfree_rcu_cpu, monitor_work.work);
3373	unsigned long flags;
3374	int i, j;
3375
3376	raw_spin_lock_irqsave(&krcp->lock, flags);
3377
3378	// Attempt to start a new batch.
3379	for (i = 0; i < KFREE_N_BATCHES; i++) {
3380		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3381
3382		// Try to detach bkvhead or head and attach it over any
3383		// available corresponding free channel. It can be that
3384		// a previous RCU batch is in progress, it means that
3385		// immediately to queue another one is not possible so
3386		// in that case the monitor work is rearmed.
3387		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3388			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3389				(krcp->head && !krwp->head_free)) {
3390			// Channel 1 corresponds to the SLAB-pointer bulk path.
3391			// Channel 2 corresponds to vmalloc-pointer bulk path.
3392			for (j = 0; j < FREE_N_CHANNELS; j++) {
3393				if (!krwp->bkvhead_free[j]) {
3394					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3395					krcp->bkvhead[j] = NULL;
3396				}
3397			}
3398
3399			// Channel 3 corresponds to both SLAB and vmalloc
3400			// objects queued on the linked list.
3401			if (!krwp->head_free) {
3402				krwp->head_free = krcp->head;
3403				krcp->head = NULL;
3404			}
3405
3406			WRITE_ONCE(krcp->count, 0);
3407
3408			// One work is per one batch, so there are three
3409			// "free channels", the batch can handle. It can
3410			// be that the work is in the pending state when
3411			// channels have been detached following by each
3412			// other.
3413			queue_rcu_work(system_wq, &krwp->rcu_work);
3414		}
3415	}
3416
3417	// If there is nothing to detach, it means that our job is
3418	// successfully done here. In case of having at least one
3419	// of the channels that is still busy we should rearm the
3420	// work to repeat an attempt. Because previous batches are
3421	// still in progress.
3422	if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head)
3423		krcp->monitor_todo = false;
3424	else
3425		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3426
3427	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3428}
3429
3430static enum hrtimer_restart
3431schedule_page_work_fn(struct hrtimer *t)
3432{
3433	struct kfree_rcu_cpu *krcp =
3434		container_of(t, struct kfree_rcu_cpu, hrtimer);
3435
3436	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3437	return HRTIMER_NORESTART;
3438}
3439
3440static void fill_page_cache_func(struct work_struct *work)
3441{
3442	struct kvfree_rcu_bulk_data *bnode;
3443	struct kfree_rcu_cpu *krcp =
3444		container_of(work, struct kfree_rcu_cpu,
3445			page_cache_work.work);
3446	unsigned long flags;
3447	int nr_pages;
3448	bool pushed;
3449	int i;
3450
3451	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3452		1 : rcu_min_cached_objs;
3453
3454	for (i = 0; i < nr_pages; i++) {
3455		bnode = (struct kvfree_rcu_bulk_data *)
3456			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3457
3458		if (bnode) {
3459			raw_spin_lock_irqsave(&krcp->lock, flags);
3460			pushed = put_cached_bnode(krcp, bnode);
3461			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3462
3463			if (!pushed) {
3464				free_page((unsigned long) bnode);
3465				break;
3466			}
3467		}
3468	}
3469
3470	atomic_set(&krcp->work_in_progress, 0);
3471	atomic_set(&krcp->backoff_page_cache_fill, 0);
3472}
3473
3474static void
3475run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3476{
3477	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3478			!atomic_xchg(&krcp->work_in_progress, 1)) {
3479		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3480			queue_delayed_work(system_wq,
3481				&krcp->page_cache_work,
3482					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3483		} else {
3484			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3485			krcp->hrtimer.function = schedule_page_work_fn;
3486			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3487		}
3488	}
3489}
3490
3491// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3492// state specified by flags.  If can_alloc is true, the caller must
3493// be schedulable and not be holding any locks or mutexes that might be
3494// acquired by the memory allocator or anything that it might invoke.
3495// Returns true if ptr was successfully recorded, else the caller must
3496// use a fallback.
3497static inline bool
3498add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3499	unsigned long *flags, void *ptr, bool can_alloc)
3500{
3501	struct kvfree_rcu_bulk_data *bnode;
3502	int idx;
3503
3504	*krcp = krc_this_cpu_lock(flags);
3505	if (unlikely(!(*krcp)->initialized))
3506		return false;
3507
3508	idx = !!is_vmalloc_addr(ptr);
3509
3510	/* Check if a new block is required. */
3511	if (!(*krcp)->bkvhead[idx] ||
3512			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3513		bnode = get_cached_bnode(*krcp);
3514		if (!bnode && can_alloc) {
3515			krc_this_cpu_unlock(*krcp, *flags);
3516
3517			// __GFP_NORETRY - allows a light-weight direct reclaim
3518			// what is OK from minimizing of fallback hitting point of
3519			// view. Apart of that it forbids any OOM invoking what is
3520			// also beneficial since we are about to release memory soon.
3521			//
3522			// __GFP_NOMEMALLOC - prevents from consuming of all the
3523			// memory reserves. Please note we have a fallback path.
3524			//
3525			// __GFP_NOWARN - it is supposed that an allocation can
3526			// be failed under low memory or high memory pressure
3527			// scenarios.
3528			bnode = (struct kvfree_rcu_bulk_data *)
3529				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3530			*krcp = krc_this_cpu_lock(flags);
3531		}
3532
3533		if (!bnode)
3534			return false;
3535
3536		/* Initialize the new block. */
3537		bnode->nr_records = 0;
3538		bnode->next = (*krcp)->bkvhead[idx];
3539
3540		/* Attach it to the head. */
3541		(*krcp)->bkvhead[idx] = bnode;
3542	}
3543
3544	/* Finally insert. */
3545	(*krcp)->bkvhead[idx]->records
3546		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3547
3548	return true;
3549}
 
3550
3551/*
3552 * Queue a request for lazy invocation of the appropriate free routine
3553 * after a grace period.  Please note that three paths are maintained,
3554 * two for the common case using arrays of pointers and a third one that
3555 * is used only when the main paths cannot be used, for example, due to
3556 * memory pressure.
3557 *
3558 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3559 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3560 * be free'd in workqueue context. This allows us to: batch requests together to
3561 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3562 */
3563void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3564{
3565	unsigned long flags;
3566	struct kfree_rcu_cpu *krcp;
3567	bool success;
3568	void *ptr;
3569
3570	if (head) {
3571		ptr = (void *) head - (unsigned long) func;
3572	} else {
3573		/*
3574		 * Please note there is a limitation for the head-less
3575		 * variant, that is why there is a clear rule for such
3576		 * objects: it can be used from might_sleep() context
3577		 * only. For other places please embed an rcu_head to
3578		 * your data.
3579		 */
3580		might_sleep();
3581		ptr = (unsigned long *) func;
3582	}
3583
3584	// Queue the object but don't yet schedule the batch.
3585	if (debug_rcu_head_queue(ptr)) {
3586		// Probable double kfree_rcu(), just leak.
3587		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3588			  __func__, head);
3589
3590		// Mark as success and leave.
3591		return;
3592	}
3593
3594	kasan_record_aux_stack(ptr);
3595	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3596	if (!success) {
3597		run_page_cache_worker(krcp);
3598
3599		if (head == NULL)
3600			// Inline if kvfree_rcu(one_arg) call.
3601			goto unlock_return;
3602
3603		head->func = func;
3604		head->next = krcp->head;
3605		krcp->head = head;
3606		success = true;
3607	}
3608
3609	WRITE_ONCE(krcp->count, krcp->count + 1);
3610
3611	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3612	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3613	    !krcp->monitor_todo) {
3614		krcp->monitor_todo = true;
3615		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3616	}
3617
3618unlock_return:
3619	krc_this_cpu_unlock(krcp, flags);
3620
3621	/*
3622	 * Inline kvfree() after synchronize_rcu(). We can do
3623	 * it from might_sleep() context only, so the current
3624	 * CPU can pass the QS state.
3625	 */
3626	if (!success) {
3627		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3628		synchronize_rcu();
3629		kvfree(ptr);
3630	}
3631}
3632EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3633
3634static unsigned long
3635kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3636{
3637	int cpu;
3638	unsigned long count = 0;
3639
3640	/* Snapshot count of all CPUs */
3641	for_each_possible_cpu(cpu) {
3642		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3643
3644		count += READ_ONCE(krcp->count);
3645		count += READ_ONCE(krcp->nr_bkv_objs);
3646		atomic_set(&krcp->backoff_page_cache_fill, 1);
3647	}
3648
3649	return count;
3650}
3651
3652static unsigned long
3653kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3654{
3655	int cpu, freed = 0;
3656
3657	for_each_possible_cpu(cpu) {
3658		int count;
3659		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3660
3661		count = krcp->count;
3662		count += drain_page_cache(krcp);
3663		kfree_rcu_monitor(&krcp->monitor_work.work);
3664
3665		sc->nr_to_scan -= count;
3666		freed += count;
3667
3668		if (sc->nr_to_scan <= 0)
3669			break;
3670	}
3671
3672	return freed == 0 ? SHRINK_STOP : freed;
3673}
3674
3675static struct shrinker kfree_rcu_shrinker = {
3676	.count_objects = kfree_rcu_shrink_count,
3677	.scan_objects = kfree_rcu_shrink_scan,
3678	.batch = 0,
3679	.seeks = DEFAULT_SEEKS,
3680};
3681
3682void __init kfree_rcu_scheduler_running(void)
3683{
3684	int cpu;
3685	unsigned long flags;
3686
3687	for_each_possible_cpu(cpu) {
3688		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3689
3690		raw_spin_lock_irqsave(&krcp->lock, flags);
3691		if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) ||
3692				krcp->monitor_todo) {
3693			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3694			continue;
3695		}
3696		krcp->monitor_todo = true;
3697		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3698					 KFREE_DRAIN_JIFFIES);
3699		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3700	}
3701}
 
3702
3703/*
3704 * During early boot, any blocking grace-period wait automatically
3705 * implies a grace period.  Later on, this is never the case for PREEMPTION.
3706 *
3707 * However, because a context switch is a grace period for !PREEMPTION, any
3708 * blocking grace-period wait automatically implies a grace period if
3709 * there is only one CPU online at any point time during execution of
3710 * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3711 * occasionally incorrectly indicate that there are multiple CPUs online
3712 * when there was in fact only one the whole time, as this just adds some
3713 * overhead: RCU still operates correctly.
3714 */
3715static int rcu_blocking_is_gp(void)
3716{
3717	int ret;
3718
3719	if (IS_ENABLED(CONFIG_PREEMPTION))
3720		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3721	might_sleep();  /* Check for RCU read-side critical section. */
3722	preempt_disable();
3723	/*
3724	 * If the rcu_state.n_online_cpus counter is equal to one,
3725	 * there is only one CPU, and that CPU sees all prior accesses
3726	 * made by any CPU that was online at the time of its access.
3727	 * Furthermore, if this counter is equal to one, its value cannot
3728	 * change until after the preempt_enable() below.
3729	 *
3730	 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3731	 * all later CPUs (both this one and any that come online later
3732	 * on) are guaranteed to see all accesses prior to this point
3733	 * in the code, without the need for additional memory barriers.
3734	 * Those memory barriers are provided by CPU-hotplug code.
3735	 */
3736	ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3737	preempt_enable();
3738	return ret;
3739}
3740
3741/**
3742 * synchronize_rcu - wait until a grace period has elapsed.
3743 *
3744 * Control will return to the caller some time after a full grace
3745 * period has elapsed, in other words after all currently executing RCU
3746 * read-side critical sections have completed.  Note, however, that
3747 * upon return from synchronize_rcu(), the caller might well be executing
3748 * concurrently with new RCU read-side critical sections that began while
3749 * synchronize_rcu() was waiting.
3750 *
3751 * RCU read-side critical sections are delimited by rcu_read_lock()
3752 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3753 * v5.0 and later, regions of code across which interrupts, preemption,
3754 * or softirqs have been disabled also serve as RCU read-side critical
3755 * sections.  This includes hardware interrupt handlers, softirq handlers,
3756 * and NMI handlers.
3757 *
3758 * Note that this guarantee implies further memory-ordering guarantees.
3759 * On systems with more than one CPU, when synchronize_rcu() returns,
3760 * each CPU is guaranteed to have executed a full memory barrier since
3761 * the end of its last RCU read-side critical section whose beginning
3762 * preceded the call to synchronize_rcu().  In addition, each CPU having
3763 * an RCU read-side critical section that extends beyond the return from
3764 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3765 * after the beginning of synchronize_rcu() and before the beginning of
3766 * that RCU read-side critical section.  Note that these guarantees include
3767 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3768 * that are executing in the kernel.
3769 *
3770 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3771 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3772 * to have executed a full memory barrier during the execution of
3773 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3774 * again only if the system has more than one CPU).
3775 *
3776 * Implementation of these memory-ordering guarantees is described here:
3777 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3778 */
3779void synchronize_rcu(void)
3780{
3781	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3782			 lock_is_held(&rcu_lock_map) ||
3783			 lock_is_held(&rcu_sched_lock_map),
3784			 "Illegal synchronize_rcu() in RCU read-side critical section");
3785	if (rcu_blocking_is_gp())
3786		return;  // Context allows vacuous grace periods.
3787	if (rcu_gp_is_expedited())
3788		synchronize_rcu_expedited();
3789	else
3790		wait_rcu_gp(call_rcu);
3791}
3792EXPORT_SYMBOL_GPL(synchronize_rcu);
3793
3794/**
3795 * get_state_synchronize_rcu - Snapshot current RCU state
3796 *
3797 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3798 * or poll_state_synchronize_rcu() to determine whether or not a full
3799 * grace period has elapsed in the meantime.
3800 */
3801unsigned long get_state_synchronize_rcu(void)
3802{
3803	/*
3804	 * Any prior manipulation of RCU-protected data must happen
3805	 * before the load from ->gp_seq.
3806	 */
3807	smp_mb();  /* ^^^ */
3808	return rcu_seq_snap(&rcu_state.gp_seq);
 
 
 
 
 
 
3809}
3810EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3811
3812/**
3813 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3814 *
3815 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3816 * or poll_state_synchronize_rcu() to determine whether or not a full
3817 * grace period has elapsed in the meantime.  If the needed grace period
3818 * is not already slated to start, notifies RCU core of the need for that
3819 * grace period.
3820 *
3821 * Interrupts must be enabled for the case where it is necessary to awaken
3822 * the grace-period kthread.
 
 
3823 */
3824unsigned long start_poll_synchronize_rcu(void)
3825{
3826	unsigned long flags;
3827	unsigned long gp_seq = get_state_synchronize_rcu();
3828	bool needwake;
3829	struct rcu_data *rdp;
3830	struct rcu_node *rnp;
3831
3832	lockdep_assert_irqs_enabled();
3833	local_irq_save(flags);
3834	rdp = this_cpu_ptr(&rcu_data);
3835	rnp = rdp->mynode;
3836	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3837	needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3838	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3839	if (needwake)
3840		rcu_gp_kthread_wake();
3841	return gp_seq;
3842}
3843EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3844
3845/**
3846 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3847 *
3848 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3849 *
3850 * If a full RCU grace period has elapsed since the earlier call from
3851 * which oldstate was obtained, return @true, otherwise return @false.
3852 * If @false is returned, it is the caller's responsibility to invoke this
3853 * function later on until it does return @true.  Alternatively, the caller
3854 * can explicitly wait for a grace period, for example, by passing @oldstate
3855 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3856 *
3857 * Yes, this function does not take counter wrap into account.
3858 * But counter wrap is harmless.  If the counter wraps, we have waited for
3859 * more than 2 billion grace periods (and way more on a 64-bit system!).
3860 * Those needing to keep oldstate values for very long time periods
3861 * (many hours even on 32-bit systems) should check them occasionally
3862 * and either refresh them or set a flag indicating that the grace period
3863 * has completed.
3864 *
3865 * This function provides the same memory-ordering guarantees that
3866 * would be provided by a synchronize_rcu() that was invoked at the call
3867 * to the function that provided @oldstate, and that returned at the end
3868 * of this function.
3869 */
3870bool poll_state_synchronize_rcu(unsigned long oldstate)
3871{
3872	if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3873		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3874		return true;
3875	}
3876	return false;
 
 
 
 
 
 
 
3877}
3878EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3879
3880/**
3881 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3882 *
3883 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3884 *
3885 * If a full RCU grace period has elapsed since the earlier call to
3886 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3887 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3888 *
3889 * Yes, this function does not take counter wrap into account.  But
3890 * counter wrap is harmless.  If the counter wraps, we have waited for
3891 * more than 2 billion grace periods (and way more on a 64-bit system!),
3892 * so waiting for one additional grace period should be just fine.
3893 *
3894 * This function provides the same memory-ordering guarantees that
3895 * would be provided by a synchronize_rcu() that was invoked at the call
3896 * to the function that provided @oldstate, and that returned at the end
3897 * of this function.
3898 */
3899void cond_synchronize_rcu(unsigned long oldstate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3900{
3901	if (!poll_state_synchronize_rcu(oldstate))
3902		synchronize_rcu();
3903}
3904EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3905
3906/*
3907 * Check to see if there is any immediate RCU-related work to be done by
3908 * the current CPU, returning 1 if so and zero otherwise.  The checks are
3909 * in order of increasing expense: checks that can be carried out against
3910 * CPU-local state are performed first.  However, we must check for CPU
3911 * stalls first, else we might not get a chance.
3912 */
3913static int rcu_pending(int user)
3914{
3915	bool gp_in_progress;
3916	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3917	struct rcu_node *rnp = rdp->mynode;
3918
3919	lockdep_assert_irqs_disabled();
3920
3921	/* Check for CPU stalls, if enabled. */
3922	check_cpu_stall(rdp);
3923
3924	/* Does this CPU need a deferred NOCB wakeup? */
3925	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3926		return 1;
3927
3928	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3929	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3930		return 0;
3931
3932	/* Is the RCU core waiting for a quiescent state from this CPU? */
3933	gp_in_progress = rcu_gp_in_progress();
3934	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
 
 
 
 
 
 
3935		return 1;
 
3936
3937	/* Does this CPU have callbacks ready to invoke? */
3938	if (!rcu_rdp_is_offloaded(rdp) &&
3939	    rcu_segcblist_ready_cbs(&rdp->cblist))
3940		return 1;
 
3941
3942	/* Has RCU gone idle with this CPU needing another grace period? */
3943	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3944	    !rcu_rdp_is_offloaded(rdp) &&
3945	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3946		return 1;
 
3947
3948	/* Have RCU grace period completed or started?  */
3949	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3950	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3951		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3952
3953	/* nothing to do */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3954	return 0;
3955}
3956
3957/*
3958 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3959 * the compiler is expected to optimize this away.
3960 */
3961static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
 
3962{
3963	trace_rcu_barrier(rcu_state.name, s, cpu,
3964			  atomic_read(&rcu_state.barrier_cpu_count), done);
3965}
3966
3967/*
3968 * RCU callback function for rcu_barrier().  If we are last, wake
3969 * up the task executing rcu_barrier().
3970 *
3971 * Note that the value of rcu_state.barrier_sequence must be captured
3972 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3973 * other CPUs might count the value down to zero before this CPU gets
3974 * around to invoking rcu_barrier_trace(), which might result in bogus
3975 * data from the next instance of rcu_barrier().
3976 */
3977static void rcu_barrier_callback(struct rcu_head *rhp)
3978{
3979	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
 
3980
3981	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3982		rcu_barrier_trace(TPS("LastCB"), -1, s);
3983		complete(&rcu_state.barrier_completion);
3984	} else {
3985		rcu_barrier_trace(TPS("CB"), -1, s);
3986	}
3987}
3988
3989/*
3990 * Called with preemption disabled, and from cross-cpu IRQ context.
3991 */
3992static void rcu_barrier_func(void *cpu_in)
3993{
3994	uintptr_t cpu = (uintptr_t)cpu_in;
3995	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3996
3997	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3998	rdp->barrier_head.func = rcu_barrier_callback;
3999	debug_rcu_head_queue(&rdp->barrier_head);
4000	rcu_nocb_lock(rdp);
4001	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
4002	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4003		atomic_inc(&rcu_state.barrier_cpu_count);
4004	} else {
4005		debug_rcu_head_unqueue(&rdp->barrier_head);
4006		rcu_barrier_trace(TPS("IRQNQ"), -1,
4007				  rcu_state.barrier_sequence);
4008	}
4009	rcu_nocb_unlock(rdp);
4010}
4011
4012/**
4013 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4014 *
4015 * Note that this primitive does not necessarily wait for an RCU grace period
4016 * to complete.  For example, if there are no RCU callbacks queued anywhere
4017 * in the system, then rcu_barrier() is within its rights to return
4018 * immediately, without waiting for anything, much less an RCU grace period.
4019 */
4020void rcu_barrier(void)
4021{
4022	uintptr_t cpu;
4023	struct rcu_data *rdp;
4024	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4025
4026	rcu_barrier_trace(TPS("Begin"), -1, s);
4027
4028	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4029	mutex_lock(&rcu_state.barrier_mutex);
4030
4031	/* Did someone else do our work for us? */
4032	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4033		rcu_barrier_trace(TPS("EarlyExit"), -1,
4034				  rcu_state.barrier_sequence);
4035		smp_mb(); /* caller's subsequent code after above check. */
4036		mutex_unlock(&rcu_state.barrier_mutex);
4037		return;
4038	}
4039
4040	/* Mark the start of the barrier operation. */
4041	rcu_seq_start(&rcu_state.barrier_sequence);
4042	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4043
4044	/*
4045	 * Initialize the count to two rather than to zero in order
4046	 * to avoid a too-soon return to zero in case of an immediate
4047	 * invocation of the just-enqueued callback (or preemption of
4048	 * this task).  Exclude CPU-hotplug operations to ensure that no
4049	 * offline non-offloaded CPU has callbacks queued.
4050	 */
4051	init_completion(&rcu_state.barrier_completion);
4052	atomic_set(&rcu_state.barrier_cpu_count, 2);
4053	get_online_cpus();
4054
4055	/*
4056	 * Force each CPU with callbacks to register a new callback.
4057	 * When that callback is invoked, we will know that all of the
4058	 * corresponding CPU's preceding callbacks have been invoked.
4059	 */
4060	for_each_possible_cpu(cpu) {
4061		rdp = per_cpu_ptr(&rcu_data, cpu);
4062		if (cpu_is_offline(cpu) &&
4063		    !rcu_rdp_is_offloaded(rdp))
4064			continue;
4065		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
4066			rcu_barrier_trace(TPS("OnlineQ"), cpu,
4067					  rcu_state.barrier_sequence);
4068			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
4069		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
4070			   cpu_is_offline(cpu)) {
4071			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
4072					  rcu_state.barrier_sequence);
4073			local_irq_disable();
4074			rcu_barrier_func((void *)cpu);
4075			local_irq_enable();
4076		} else if (cpu_is_offline(cpu)) {
4077			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
4078					  rcu_state.barrier_sequence);
 
 
 
4079		} else {
4080			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
4081					  rcu_state.barrier_sequence);
4082		}
4083	}
4084	put_online_cpus();
4085
4086	/*
4087	 * Now that we have an rcu_barrier_callback() callback on each
4088	 * CPU, and thus each counted, remove the initial count.
4089	 */
4090	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4091		complete(&rcu_state.barrier_completion);
4092
4093	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4094	wait_for_completion(&rcu_state.barrier_completion);
4095
4096	/* Mark the end of the barrier operation. */
4097	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4098	rcu_seq_end(&rcu_state.barrier_sequence);
4099
4100	/* Other rcu_barrier() invocations can now safely proceed. */
4101	mutex_unlock(&rcu_state.barrier_mutex);
4102}
4103EXPORT_SYMBOL_GPL(rcu_barrier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4104
4105/*
4106 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4107 * first CPU in a given leaf rcu_node structure coming online.  The caller
4108 * must hold the corresponding leaf rcu_node ->lock with interrupts
4109 * disabled.
4110 */
4111static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4112{
4113	long mask;
4114	long oldmask;
4115	struct rcu_node *rnp = rnp_leaf;
4116
4117	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4118	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4119	for (;;) {
4120		mask = rnp->grpmask;
4121		rnp = rnp->parent;
4122		if (rnp == NULL)
4123			return;
4124		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4125		oldmask = rnp->qsmaskinit;
4126		rnp->qsmaskinit |= mask;
4127		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4128		if (oldmask)
4129			return;
4130	}
4131}
4132
4133/*
4134 * Do boot-time initialization of a CPU's per-CPU RCU data.
4135 */
4136static void __init
4137rcu_boot_init_percpu_data(int cpu)
4138{
4139	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 
 
4140
4141	/* Set up local state, ensuring consistent view of global state. */
 
4142	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4143	INIT_WORK(&rdp->strict_work, strict_work_handler);
4144	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4145	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4146	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4147	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4148	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4149	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4150	rdp->cpu = cpu;
 
4151	rcu_boot_init_nocb_percpu_data(rdp);
 
4152}
4153
4154/*
4155 * Invoked early in the CPU-online process, when pretty much all services
4156 * are available.  The incoming CPU is not present.
4157 *
4158 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4159 * offline event can be happening at a given time.  Note also that we can
4160 * accept some slop in the rsp->gp_seq access due to the fact that this
4161 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4162 * And any offloaded callbacks are being numbered elsewhere.
4163 */
4164int rcutree_prepare_cpu(unsigned int cpu)
 
4165{
4166	unsigned long flags;
4167	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4168	struct rcu_node *rnp = rcu_get_root();
 
4169
4170	/* Set up local state, ensuring consistent view of global state. */
4171	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4172	rdp->qlen_last_fqs_check = 0;
4173	rdp->n_force_qs_snap = rcu_state.n_force_qs;
4174	rdp->blimit = blimit;
4175	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4176	rcu_dynticks_eqs_online();
 
 
 
 
4177	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4178
4179	/*
4180	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4181	 * (re-)initialized.
4182	 */
4183	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4184		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4185
4186	/*
4187	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4188	 * propagation up the rcu_node tree will happen at the beginning
4189	 * of the next grace period.
4190	 */
4191	rnp = rdp->mynode;
 
4192	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
 
 
4193	rdp->beenonline = true;	 /* We have now been online. */
4194	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4195	rdp->gp_seq_needed = rdp->gp_seq;
4196	rdp->cpu_no_qs.b.norm = true;
 
4197	rdp->core_needs_qs = false;
4198	rdp->rcu_iw_pending = false;
4199	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4200	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4201	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4202	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4203	rcu_spawn_one_boost_kthread(rnp);
4204	rcu_spawn_cpu_nocb_kthread(cpu);
4205	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
 
 
 
 
 
 
 
 
4206
4207	return 0;
4208}
4209
4210/*
4211 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4212 */
4213static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4214{
4215	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4216
4217	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4218}
4219
4220/*
4221 * Near the end of the CPU-online process.  Pretty much all services
4222 * enabled, and the CPU is now very much alive.
4223 */
4224int rcutree_online_cpu(unsigned int cpu)
4225{
4226	unsigned long flags;
4227	struct rcu_data *rdp;
4228	struct rcu_node *rnp;
4229
4230	rdp = per_cpu_ptr(&rcu_data, cpu);
4231	rnp = rdp->mynode;
4232	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4233	rnp->ffmask |= rdp->grpmask;
4234	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4235	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4236		return 0; /* Too early in boot for scheduler work. */
4237	sync_sched_exp_online_cleanup(cpu);
4238	rcutree_affinity_setting(cpu, -1);
 
 
4239
4240	// Stop-machine done, so allow nohz_full to disable tick.
4241	tick_dep_clear(TICK_DEP_BIT_RCU);
 
4242	return 0;
4243}
4244
4245/*
4246 * Near the beginning of the process.  The CPU is still very much alive
4247 * with pretty much all services enabled.
4248 */
4249int rcutree_offline_cpu(unsigned int cpu)
4250{
4251	unsigned long flags;
4252	struct rcu_data *rdp;
4253	struct rcu_node *rnp;
4254
4255	rdp = per_cpu_ptr(&rcu_data, cpu);
4256	rnp = rdp->mynode;
4257	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4258	rnp->ffmask &= ~rdp->grpmask;
4259	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4260
4261	rcutree_affinity_setting(cpu, cpu);
 
 
4262
4263	// nohz_full CPUs need the tick for stop-machine to work quickly
4264	tick_dep_set(TICK_DEP_BIT_RCU);
 
 
4265	return 0;
4266}
4267
4268/*
4269 * Mark the specified CPU as being online so that subsequent grace periods
4270 * (both expedited and normal) will wait on it.  Note that this means that
4271 * incoming CPUs are not allowed to use RCU read-side critical sections
4272 * until this function is called.  Failing to observe this restriction
4273 * will result in lockdep splats.
4274 *
4275 * Note that this function is special in that it is invoked directly
4276 * from the incoming CPU rather than from the cpuhp_step mechanism.
4277 * This is because this function must be invoked at a precise location.
4278 */
4279void rcu_cpu_starting(unsigned int cpu)
4280{
4281	unsigned long flags;
4282	unsigned long mask;
4283	struct rcu_data *rdp;
4284	struct rcu_node *rnp;
4285	bool newcpu;
4286
4287	rdp = per_cpu_ptr(&rcu_data, cpu);
4288	if (rdp->cpu_started)
4289		return;
4290	rdp->cpu_started = true;
4291
4292	rnp = rdp->mynode;
4293	mask = rdp->grpmask;
4294	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4295	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4296	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4297	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4298	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4299	newcpu = !(rnp->expmaskinitnext & mask);
4300	rnp->expmaskinitnext |= mask;
4301	/* Allow lockless access for expedited grace periods. */
4302	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4303	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4304	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4305	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4306	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4307
4308	/* An incoming CPU should never be blocking a grace period. */
4309	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4310		rcu_disable_urgency_upon_qs(rdp);
4311		/* Report QS -after- changing ->qsmaskinitnext! */
4312		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4313	} else {
4314		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4315	}
4316	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4317	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4318	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4319	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4320}
4321
 
4322/*
4323 * The outgoing function has no further need of RCU, so remove it from
4324 * the rcu_node tree's ->qsmaskinitnext bit masks.
4325 *
4326 * Note that this function is special in that it is invoked directly
4327 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4328 * This is because this function must be invoked at a precise location.
4329 */
4330void rcu_report_dead(unsigned int cpu)
4331{
4332	unsigned long flags;
4333	unsigned long mask;
4334	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4335	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4336
4337	// Do any dangling deferred wakeups.
4338	do_nocb_deferred_wakeup(rdp);
4339
4340	/* QS for any half-done expedited grace period. */
4341	preempt_disable();
4342	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4343	preempt_enable();
4344	rcu_preempt_deferred_qs(current);
4345
4346	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4347	mask = rdp->grpmask;
4348	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4349	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4350	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4351	raw_spin_lock(&rcu_state.ofl_lock);
4352	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4353	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4354	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4355	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4356		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4357		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4358		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4359	}
4360	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4361	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4362	raw_spin_unlock(&rcu_state.ofl_lock);
4363	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4364	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4365	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4366
4367	rdp->cpu_started = false;
4368}
4369
4370#ifdef CONFIG_HOTPLUG_CPU
4371/*
4372 * The outgoing CPU has just passed through the dying-idle state, and we
4373 * are being invoked from the CPU that was IPIed to continue the offline
4374 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4375 */
4376void rcutree_migrate_callbacks(int cpu)
4377{
4378	unsigned long flags;
4379	struct rcu_data *my_rdp;
4380	struct rcu_node *my_rnp;
4381	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4382	bool needwake;
4383
4384	if (rcu_rdp_is_offloaded(rdp) ||
4385	    rcu_segcblist_empty(&rdp->cblist))
4386		return;  /* No callbacks to migrate. */
4387
4388	local_irq_save(flags);
4389	my_rdp = this_cpu_ptr(&rcu_data);
4390	my_rnp = my_rdp->mynode;
4391	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4392	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4393	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4394	/* Leverage recent GPs and set GP for new callbacks. */
4395	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4396		   rcu_advance_cbs(my_rnp, my_rdp);
4397	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4398	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4399	rcu_segcblist_disable(&rdp->cblist);
4400	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4401		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
4402	if (rcu_rdp_is_offloaded(my_rdp)) {
4403		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4404		__call_rcu_nocb_wake(my_rdp, true, flags);
4405	} else {
4406		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4407		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4408	}
4409	if (needwake)
4410		rcu_gp_kthread_wake();
4411	lockdep_assert_irqs_enabled();
4412	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4413		  !rcu_segcblist_empty(&rdp->cblist),
4414		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4415		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4416		  rcu_segcblist_first_cb(&rdp->cblist));
4417}
4418#endif
4419
4420/*
4421 * On non-huge systems, use expedited RCU grace periods to make suspend
4422 * and hibernation run faster.
4423 */
4424static int rcu_pm_notify(struct notifier_block *self,
4425			 unsigned long action, void *hcpu)
4426{
4427	switch (action) {
4428	case PM_HIBERNATION_PREPARE:
4429	case PM_SUSPEND_PREPARE:
4430		rcu_expedite_gp();
 
4431		break;
4432	case PM_POST_HIBERNATION:
4433	case PM_POST_SUSPEND:
4434		rcu_unexpedite_gp();
 
4435		break;
4436	default:
4437		break;
4438	}
4439	return NOTIFY_OK;
4440}
4441
4442/*
4443 * Spawn the kthreads that handle RCU's grace periods.
4444 */
4445static int __init rcu_spawn_gp_kthread(void)
4446{
4447	unsigned long flags;
4448	int kthread_prio_in = kthread_prio;
4449	struct rcu_node *rnp;
 
4450	struct sched_param sp;
4451	struct task_struct *t;
4452
4453	/* Force priority into range. */
4454	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4455	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4456		kthread_prio = 2;
4457	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4458		kthread_prio = 1;
4459	else if (kthread_prio < 0)
4460		kthread_prio = 0;
4461	else if (kthread_prio > 99)
4462		kthread_prio = 99;
4463
4464	if (kthread_prio != kthread_prio_in)
4465		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4466			 kthread_prio, kthread_prio_in);
4467
4468	rcu_scheduler_fully_active = 1;
4469	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4470	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4471		return 0;
4472	if (kthread_prio) {
4473		sp.sched_priority = kthread_prio;
4474		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 
 
 
 
 
 
4475	}
4476	rnp = rcu_get_root();
4477	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4478	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4479	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4480	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4481	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4482	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4483	wake_up_process(t);
4484	rcu_spawn_nocb_kthreads();
4485	rcu_spawn_boost_kthreads();
4486	rcu_spawn_core_kthreads();
4487	return 0;
4488}
4489early_initcall(rcu_spawn_gp_kthread);
4490
4491/*
4492 * This function is invoked towards the end of the scheduler's
4493 * initialization process.  Before this is called, the idle task might
4494 * contain synchronous grace-period primitives (during which time, this idle
4495 * task is booting the system, and such primitives are no-ops).  After this
4496 * function is called, any synchronous grace-period primitives are run as
4497 * expedited, with the requesting task driving the grace period forward.
4498 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4499 * runtime RCU functionality.
4500 */
4501void rcu_scheduler_starting(void)
4502{
4503	WARN_ON(num_online_cpus() != 1);
4504	WARN_ON(nr_context_switches() > 0);
4505	rcu_test_sync_prims();
4506	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4507	rcu_test_sync_prims();
4508}
4509
4510/*
4511 * Helper function for rcu_init() that initializes the rcu_state structure.
 
4512 */
4513static void __init rcu_init_one(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4514{
4515	static const char * const buf[] = RCU_NODE_NAME_INIT;
4516	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4517	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4518	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
 
4519
 
4520	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4521	int cpustride = 1;
4522	int i;
4523	int j;
4524	struct rcu_node *rnp;
4525
4526	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4527
4528	/* Silence gcc 4.8 false positive about array index out of range. */
4529	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4530		panic("rcu_init_one: rcu_num_lvls out of range");
4531
4532	/* Initialize the level-tracking arrays. */
4533
 
 
4534	for (i = 1; i < rcu_num_lvls; i++)
4535		rcu_state.level[i] =
4536			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4537	rcu_init_levelspread(levelspread, num_rcu_lvl);
 
4538
4539	/* Initialize the elements themselves, starting from the leaves. */
4540
4541	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4542		cpustride *= levelspread[i];
4543		rnp = rcu_state.level[i];
4544		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4545			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4546			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4547						   &rcu_node_class[i], buf[i]);
4548			raw_spin_lock_init(&rnp->fqslock);
4549			lockdep_set_class_and_name(&rnp->fqslock,
4550						   &rcu_fqs_class[i], fqs[i]);
4551			rnp->gp_seq = rcu_state.gp_seq;
4552			rnp->gp_seq_needed = rcu_state.gp_seq;
4553			rnp->completedqs = rcu_state.gp_seq;
4554			rnp->qsmask = 0;
4555			rnp->qsmaskinit = 0;
4556			rnp->grplo = j * cpustride;
4557			rnp->grphi = (j + 1) * cpustride - 1;
4558			if (rnp->grphi >= nr_cpu_ids)
4559				rnp->grphi = nr_cpu_ids - 1;
4560			if (i == 0) {
4561				rnp->grpnum = 0;
4562				rnp->grpmask = 0;
4563				rnp->parent = NULL;
4564			} else {
4565				rnp->grpnum = j % levelspread[i - 1];
4566				rnp->grpmask = BIT(rnp->grpnum);
4567				rnp->parent = rcu_state.level[i - 1] +
4568					      j / levelspread[i - 1];
4569			}
4570			rnp->level = i;
4571			INIT_LIST_HEAD(&rnp->blkd_tasks);
4572			rcu_init_one_nocb(rnp);
4573			init_waitqueue_head(&rnp->exp_wq[0]);
4574			init_waitqueue_head(&rnp->exp_wq[1]);
4575			init_waitqueue_head(&rnp->exp_wq[2]);
4576			init_waitqueue_head(&rnp->exp_wq[3]);
4577			spin_lock_init(&rnp->exp_lock);
4578		}
4579	}
4580
4581	init_swait_queue_head(&rcu_state.gp_wq);
4582	init_swait_queue_head(&rcu_state.expedited_wq);
4583	rnp = rcu_first_leaf_node();
4584	for_each_possible_cpu(i) {
4585		while (i > rnp->grphi)
4586			rnp++;
4587		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4588		rcu_boot_init_percpu_data(i);
4589	}
 
4590}
4591
4592/*
4593 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4594 * replace the definitions in tree.h because those are needed to size
4595 * the ->node array in the rcu_state structure.
4596 */
4597void rcu_init_geometry(void)
4598{
4599	ulong d;
4600	int i;
4601	static unsigned long old_nr_cpu_ids;
4602	int rcu_capacity[RCU_NUM_LVLS];
4603	static bool initialized;
4604
4605	if (initialized) {
4606		/*
4607		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4608		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4609		 */
4610		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4611		return;
4612	}
4613
4614	old_nr_cpu_ids = nr_cpu_ids;
4615	initialized = true;
4616
4617	/*
4618	 * Initialize any unspecified boot parameters.
4619	 * The default values of jiffies_till_first_fqs and
4620	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4621	 * value, which is a function of HZ, then adding one for each
4622	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4623	 */
4624	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4625	if (jiffies_till_first_fqs == ULONG_MAX)
4626		jiffies_till_first_fqs = d;
4627	if (jiffies_till_next_fqs == ULONG_MAX)
4628		jiffies_till_next_fqs = d;
4629	adjust_jiffies_till_sched_qs();
4630
4631	/* If the compile-time values are accurate, just leave. */
4632	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4633	    nr_cpu_ids == NR_CPUS)
4634		return;
4635	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4636		rcu_fanout_leaf, nr_cpu_ids);
4637
4638	/*
4639	 * The boot-time rcu_fanout_leaf parameter must be at least two
4640	 * and cannot exceed the number of bits in the rcu_node masks.
4641	 * Complain and fall back to the compile-time values if this
4642	 * limit is exceeded.
4643	 */
4644	if (rcu_fanout_leaf < 2 ||
4645	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4646		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4647		WARN_ON(1);
4648		return;
4649	}
4650
4651	/*
4652	 * Compute number of nodes that can be handled an rcu_node tree
4653	 * with the given number of levels.
4654	 */
4655	rcu_capacity[0] = rcu_fanout_leaf;
4656	for (i = 1; i < RCU_NUM_LVLS; i++)
4657		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4658
4659	/*
4660	 * The tree must be able to accommodate the configured number of CPUs.
4661	 * If this limit is exceeded, fall back to the compile-time values.
4662	 */
4663	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4664		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4665		WARN_ON(1);
4666		return;
4667	}
4668
4669	/* Calculate the number of levels in the tree. */
4670	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4671	}
4672	rcu_num_lvls = i + 1;
4673
4674	/* Calculate the number of rcu_nodes at each level of the tree. */
4675	for (i = 0; i < rcu_num_lvls; i++) {
4676		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4677		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4678	}
4679
4680	/* Calculate the total number of rcu_node structures. */
4681	rcu_num_nodes = 0;
4682	for (i = 0; i < rcu_num_lvls; i++)
4683		rcu_num_nodes += num_rcu_lvl[i];
4684}
4685
4686/*
4687 * Dump out the structure of the rcu_node combining tree associated
4688 * with the rcu_state structure.
4689 */
4690static void __init rcu_dump_rcu_node_tree(void)
4691{
4692	int level = 0;
4693	struct rcu_node *rnp;
4694
4695	pr_info("rcu_node tree layout dump\n");
4696	pr_info(" ");
4697	rcu_for_each_node_breadth_first(rnp) {
4698		if (rnp->level != level) {
4699			pr_cont("\n");
4700			pr_info(" ");
4701			level = rnp->level;
4702		}
4703		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4704	}
4705	pr_cont("\n");
4706}
4707
4708struct workqueue_struct *rcu_gp_wq;
4709struct workqueue_struct *rcu_par_gp_wq;
4710
4711static void __init kfree_rcu_batch_init(void)
4712{
4713	int cpu;
4714	int i;
4715
4716	/* Clamp it to [0:100] seconds interval. */
4717	if (rcu_delay_page_cache_fill_msec < 0 ||
4718		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4719
4720		rcu_delay_page_cache_fill_msec =
4721			clamp(rcu_delay_page_cache_fill_msec, 0,
4722				(int) (100 * MSEC_PER_SEC));
4723
4724		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4725			rcu_delay_page_cache_fill_msec);
4726	}
4727
4728	for_each_possible_cpu(cpu) {
4729		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4730
4731		for (i = 0; i < KFREE_N_BATCHES; i++) {
4732			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4733			krcp->krw_arr[i].krcp = krcp;
4734		}
4735
4736		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4737		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4738		krcp->initialized = true;
4739	}
4740	if (register_shrinker(&kfree_rcu_shrinker))
4741		pr_err("Failed to register kfree_rcu() shrinker!\n");
4742}
4743
4744void __init rcu_init(void)
4745{
4746	int cpu;
4747
4748	rcu_early_boot_tests();
4749
4750	kfree_rcu_batch_init();
4751	rcu_bootup_announce();
4752	rcu_init_geometry();
4753	rcu_init_one();
 
4754	if (dump_tree)
4755		rcu_dump_rcu_node_tree();
4756	if (use_softirq)
4757		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4758
4759	/*
4760	 * We don't need protection against CPU-hotplug here because
4761	 * this is called early in boot, before either interrupts
4762	 * or the scheduler are operational.
4763	 */
4764	pm_notifier(rcu_pm_notify, 0);
4765	for_each_online_cpu(cpu) {
4766		rcutree_prepare_cpu(cpu);
4767		rcu_cpu_starting(cpu);
4768		rcutree_online_cpu(cpu);
4769	}
4770
4771	/* Create workqueue for Tree SRCU and for expedited GPs. */
4772	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4773	WARN_ON(!rcu_gp_wq);
4774	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4775	WARN_ON(!rcu_par_gp_wq);
4776
4777	/* Fill in default value for rcutree.qovld boot parameter. */
4778	/* -After- the rcu_node ->lock fields are initialized! */
4779	if (qovld < 0)
4780		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4781	else
4782		qovld_calc = qovld;
4783}
4784
4785#include "tree_stall.h"
4786#include "tree_exp.h"
4787#include "tree_plugin.h"