Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/slab.h>
20#include <linux/blkdev.h>
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "extent_io.h"
27
28static u64 entry_end(struct btrfs_ordered_extent *entry)
29{
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
33}
34
35/* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
40{
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
43 struct btrfs_ordered_extent *entry;
44
45 while (*p) {
46 parent = *p;
47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
48
49 if (file_offset < entry->file_offset)
50 p = &(*p)->rb_left;
51 else if (file_offset >= entry_end(entry))
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60}
61
62static void ordered_data_tree_panic(struct inode *inode, int errno,
63 u64 offset)
64{
65 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
66 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
67 "%llu\n", (unsigned long long)offset);
68}
69
70/*
71 * look for a given offset in the tree, and if it can't be found return the
72 * first lesser offset
73 */
74static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
75 struct rb_node **prev_ret)
76{
77 struct rb_node *n = root->rb_node;
78 struct rb_node *prev = NULL;
79 struct rb_node *test;
80 struct btrfs_ordered_extent *entry;
81 struct btrfs_ordered_extent *prev_entry = NULL;
82
83 while (n) {
84 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
85 prev = n;
86 prev_entry = entry;
87
88 if (file_offset < entry->file_offset)
89 n = n->rb_left;
90 else if (file_offset >= entry_end(entry))
91 n = n->rb_right;
92 else
93 return n;
94 }
95 if (!prev_ret)
96 return NULL;
97
98 while (prev && file_offset >= entry_end(prev_entry)) {
99 test = rb_next(prev);
100 if (!test)
101 break;
102 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103 rb_node);
104 if (file_offset < entry_end(prev_entry))
105 break;
106
107 prev = test;
108 }
109 if (prev)
110 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
111 rb_node);
112 while (prev && file_offset < entry_end(prev_entry)) {
113 test = rb_prev(prev);
114 if (!test)
115 break;
116 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
117 rb_node);
118 prev = test;
119 }
120 *prev_ret = prev;
121 return NULL;
122}
123
124/*
125 * helper to check if a given offset is inside a given entry
126 */
127static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
128{
129 if (file_offset < entry->file_offset ||
130 entry->file_offset + entry->len <= file_offset)
131 return 0;
132 return 1;
133}
134
135static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
136 u64 len)
137{
138 if (file_offset + len <= entry->file_offset ||
139 entry->file_offset + entry->len <= file_offset)
140 return 0;
141 return 1;
142}
143
144/*
145 * look find the first ordered struct that has this offset, otherwise
146 * the first one less than this offset
147 */
148static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
149 u64 file_offset)
150{
151 struct rb_root *root = &tree->tree;
152 struct rb_node *prev = NULL;
153 struct rb_node *ret;
154 struct btrfs_ordered_extent *entry;
155
156 if (tree->last) {
157 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
158 rb_node);
159 if (offset_in_entry(entry, file_offset))
160 return tree->last;
161 }
162 ret = __tree_search(root, file_offset, &prev);
163 if (!ret)
164 ret = prev;
165 if (ret)
166 tree->last = ret;
167 return ret;
168}
169
170/* allocate and add a new ordered_extent into the per-inode tree.
171 * file_offset is the logical offset in the file
172 *
173 * start is the disk block number of an extent already reserved in the
174 * extent allocation tree
175 *
176 * len is the length of the extent
177 *
178 * The tree is given a single reference on the ordered extent that was
179 * inserted.
180 */
181static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
182 u64 start, u64 len, u64 disk_len,
183 int type, int dio, int compress_type)
184{
185 struct btrfs_ordered_inode_tree *tree;
186 struct rb_node *node;
187 struct btrfs_ordered_extent *entry;
188
189 tree = &BTRFS_I(inode)->ordered_tree;
190 entry = kzalloc(sizeof(*entry), GFP_NOFS);
191 if (!entry)
192 return -ENOMEM;
193
194 entry->file_offset = file_offset;
195 entry->start = start;
196 entry->len = len;
197 entry->disk_len = disk_len;
198 entry->bytes_left = len;
199 entry->inode = igrab(inode);
200 entry->compress_type = compress_type;
201 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
202 set_bit(type, &entry->flags);
203
204 if (dio)
205 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206
207 /* one ref for the tree */
208 atomic_set(&entry->refs, 1);
209 init_waitqueue_head(&entry->wait);
210 INIT_LIST_HEAD(&entry->list);
211 INIT_LIST_HEAD(&entry->root_extent_list);
212
213 trace_btrfs_ordered_extent_add(inode, entry);
214
215 spin_lock_irq(&tree->lock);
216 node = tree_insert(&tree->tree, file_offset,
217 &entry->rb_node);
218 if (node)
219 ordered_data_tree_panic(inode, -EEXIST, file_offset);
220 spin_unlock_irq(&tree->lock);
221
222 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
223 list_add_tail(&entry->root_extent_list,
224 &BTRFS_I(inode)->root->fs_info->ordered_extents);
225 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
226
227 return 0;
228}
229
230int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
231 u64 start, u64 len, u64 disk_len, int type)
232{
233 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234 disk_len, type, 0,
235 BTRFS_COMPRESS_NONE);
236}
237
238int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
239 u64 start, u64 len, u64 disk_len, int type)
240{
241 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
242 disk_len, type, 1,
243 BTRFS_COMPRESS_NONE);
244}
245
246int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
247 u64 start, u64 len, u64 disk_len,
248 int type, int compress_type)
249{
250 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 disk_len, type, 0,
252 compress_type);
253}
254
255/*
256 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
257 * when an ordered extent is finished. If the list covers more than one
258 * ordered extent, it is split across multiples.
259 */
260void btrfs_add_ordered_sum(struct inode *inode,
261 struct btrfs_ordered_extent *entry,
262 struct btrfs_ordered_sum *sum)
263{
264 struct btrfs_ordered_inode_tree *tree;
265
266 tree = &BTRFS_I(inode)->ordered_tree;
267 spin_lock_irq(&tree->lock);
268 list_add_tail(&sum->list, &entry->list);
269 spin_unlock_irq(&tree->lock);
270}
271
272/*
273 * this is used to account for finished IO across a given range
274 * of the file. The IO may span ordered extents. If
275 * a given ordered_extent is completely done, 1 is returned, otherwise
276 * 0.
277 *
278 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
279 * to make sure this function only returns 1 once for a given ordered extent.
280 *
281 * file_offset is updated to one byte past the range that is recorded as
282 * complete. This allows you to walk forward in the file.
283 */
284int btrfs_dec_test_first_ordered_pending(struct inode *inode,
285 struct btrfs_ordered_extent **cached,
286 u64 *file_offset, u64 io_size, int uptodate)
287{
288 struct btrfs_ordered_inode_tree *tree;
289 struct rb_node *node;
290 struct btrfs_ordered_extent *entry = NULL;
291 int ret;
292 unsigned long flags;
293 u64 dec_end;
294 u64 dec_start;
295 u64 to_dec;
296
297 tree = &BTRFS_I(inode)->ordered_tree;
298 spin_lock_irqsave(&tree->lock, flags);
299 node = tree_search(tree, *file_offset);
300 if (!node) {
301 ret = 1;
302 goto out;
303 }
304
305 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
306 if (!offset_in_entry(entry, *file_offset)) {
307 ret = 1;
308 goto out;
309 }
310
311 dec_start = max(*file_offset, entry->file_offset);
312 dec_end = min(*file_offset + io_size, entry->file_offset +
313 entry->len);
314 *file_offset = dec_end;
315 if (dec_start > dec_end) {
316 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
317 (unsigned long long)dec_start,
318 (unsigned long long)dec_end);
319 }
320 to_dec = dec_end - dec_start;
321 if (to_dec > entry->bytes_left) {
322 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
323 (unsigned long long)entry->bytes_left,
324 (unsigned long long)to_dec);
325 }
326 entry->bytes_left -= to_dec;
327 if (!uptodate)
328 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
329
330 if (entry->bytes_left == 0)
331 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
332 else
333 ret = 1;
334out:
335 if (!ret && cached && entry) {
336 *cached = entry;
337 atomic_inc(&entry->refs);
338 }
339 spin_unlock_irqrestore(&tree->lock, flags);
340 return ret == 0;
341}
342
343/*
344 * this is used to account for finished IO across a given range
345 * of the file. The IO should not span ordered extents. If
346 * a given ordered_extent is completely done, 1 is returned, otherwise
347 * 0.
348 *
349 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
350 * to make sure this function only returns 1 once for a given ordered extent.
351 */
352int btrfs_dec_test_ordered_pending(struct inode *inode,
353 struct btrfs_ordered_extent **cached,
354 u64 file_offset, u64 io_size, int uptodate)
355{
356 struct btrfs_ordered_inode_tree *tree;
357 struct rb_node *node;
358 struct btrfs_ordered_extent *entry = NULL;
359 unsigned long flags;
360 int ret;
361
362 tree = &BTRFS_I(inode)->ordered_tree;
363 spin_lock_irqsave(&tree->lock, flags);
364 if (cached && *cached) {
365 entry = *cached;
366 goto have_entry;
367 }
368
369 node = tree_search(tree, file_offset);
370 if (!node) {
371 ret = 1;
372 goto out;
373 }
374
375 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
376have_entry:
377 if (!offset_in_entry(entry, file_offset)) {
378 ret = 1;
379 goto out;
380 }
381
382 if (io_size > entry->bytes_left) {
383 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
384 (unsigned long long)entry->bytes_left,
385 (unsigned long long)io_size);
386 }
387 entry->bytes_left -= io_size;
388 if (!uptodate)
389 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
390
391 if (entry->bytes_left == 0)
392 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
393 else
394 ret = 1;
395out:
396 if (!ret && cached && entry) {
397 *cached = entry;
398 atomic_inc(&entry->refs);
399 }
400 spin_unlock_irqrestore(&tree->lock, flags);
401 return ret == 0;
402}
403
404/*
405 * used to drop a reference on an ordered extent. This will free
406 * the extent if the last reference is dropped
407 */
408void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
409{
410 struct list_head *cur;
411 struct btrfs_ordered_sum *sum;
412
413 trace_btrfs_ordered_extent_put(entry->inode, entry);
414
415 if (atomic_dec_and_test(&entry->refs)) {
416 if (entry->inode)
417 btrfs_add_delayed_iput(entry->inode);
418 while (!list_empty(&entry->list)) {
419 cur = entry->list.next;
420 sum = list_entry(cur, struct btrfs_ordered_sum, list);
421 list_del(&sum->list);
422 kfree(sum);
423 }
424 kfree(entry);
425 }
426}
427
428/*
429 * remove an ordered extent from the tree. No references are dropped
430 * and waiters are woken up.
431 */
432void btrfs_remove_ordered_extent(struct inode *inode,
433 struct btrfs_ordered_extent *entry)
434{
435 struct btrfs_ordered_inode_tree *tree;
436 struct btrfs_root *root = BTRFS_I(inode)->root;
437 struct rb_node *node;
438
439 tree = &BTRFS_I(inode)->ordered_tree;
440 spin_lock_irq(&tree->lock);
441 node = &entry->rb_node;
442 rb_erase(node, &tree->tree);
443 tree->last = NULL;
444 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
445 spin_unlock_irq(&tree->lock);
446
447 spin_lock(&root->fs_info->ordered_extent_lock);
448 list_del_init(&entry->root_extent_list);
449
450 trace_btrfs_ordered_extent_remove(inode, entry);
451
452 /*
453 * we have no more ordered extents for this inode and
454 * no dirty pages. We can safely remove it from the
455 * list of ordered extents
456 */
457 if (RB_EMPTY_ROOT(&tree->tree) &&
458 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
459 list_del_init(&BTRFS_I(inode)->ordered_operations);
460 }
461 spin_unlock(&root->fs_info->ordered_extent_lock);
462 wake_up(&entry->wait);
463}
464
465/*
466 * wait for all the ordered extents in a root. This is done when balancing
467 * space between drives.
468 */
469void btrfs_wait_ordered_extents(struct btrfs_root *root,
470 int nocow_only, int delay_iput)
471{
472 struct list_head splice;
473 struct list_head *cur;
474 struct btrfs_ordered_extent *ordered;
475 struct inode *inode;
476
477 INIT_LIST_HEAD(&splice);
478
479 spin_lock(&root->fs_info->ordered_extent_lock);
480 list_splice_init(&root->fs_info->ordered_extents, &splice);
481 while (!list_empty(&splice)) {
482 cur = splice.next;
483 ordered = list_entry(cur, struct btrfs_ordered_extent,
484 root_extent_list);
485 if (nocow_only &&
486 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
487 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
488 list_move(&ordered->root_extent_list,
489 &root->fs_info->ordered_extents);
490 cond_resched_lock(&root->fs_info->ordered_extent_lock);
491 continue;
492 }
493
494 list_del_init(&ordered->root_extent_list);
495 atomic_inc(&ordered->refs);
496
497 /*
498 * the inode may be getting freed (in sys_unlink path).
499 */
500 inode = igrab(ordered->inode);
501
502 spin_unlock(&root->fs_info->ordered_extent_lock);
503
504 if (inode) {
505 btrfs_start_ordered_extent(inode, ordered, 1);
506 btrfs_put_ordered_extent(ordered);
507 if (delay_iput)
508 btrfs_add_delayed_iput(inode);
509 else
510 iput(inode);
511 } else {
512 btrfs_put_ordered_extent(ordered);
513 }
514
515 spin_lock(&root->fs_info->ordered_extent_lock);
516 }
517 spin_unlock(&root->fs_info->ordered_extent_lock);
518}
519
520/*
521 * this is used during transaction commit to write all the inodes
522 * added to the ordered operation list. These files must be fully on
523 * disk before the transaction commits.
524 *
525 * we have two modes here, one is to just start the IO via filemap_flush
526 * and the other is to wait for all the io. When we wait, we have an
527 * extra check to make sure the ordered operation list really is empty
528 * before we return
529 */
530void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
531{
532 struct btrfs_inode *btrfs_inode;
533 struct inode *inode;
534 struct list_head splice;
535
536 INIT_LIST_HEAD(&splice);
537
538 mutex_lock(&root->fs_info->ordered_operations_mutex);
539 spin_lock(&root->fs_info->ordered_extent_lock);
540again:
541 list_splice_init(&root->fs_info->ordered_operations, &splice);
542
543 while (!list_empty(&splice)) {
544 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
545 ordered_operations);
546
547 inode = &btrfs_inode->vfs_inode;
548
549 list_del_init(&btrfs_inode->ordered_operations);
550
551 /*
552 * the inode may be getting freed (in sys_unlink path).
553 */
554 inode = igrab(inode);
555
556 if (!wait && inode) {
557 list_add_tail(&BTRFS_I(inode)->ordered_operations,
558 &root->fs_info->ordered_operations);
559 }
560 spin_unlock(&root->fs_info->ordered_extent_lock);
561
562 if (inode) {
563 if (wait)
564 btrfs_wait_ordered_range(inode, 0, (u64)-1);
565 else
566 filemap_flush(inode->i_mapping);
567 btrfs_add_delayed_iput(inode);
568 }
569
570 cond_resched();
571 spin_lock(&root->fs_info->ordered_extent_lock);
572 }
573 if (wait && !list_empty(&root->fs_info->ordered_operations))
574 goto again;
575
576 spin_unlock(&root->fs_info->ordered_extent_lock);
577 mutex_unlock(&root->fs_info->ordered_operations_mutex);
578}
579
580/*
581 * Used to start IO or wait for a given ordered extent to finish.
582 *
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
586 */
587void btrfs_start_ordered_extent(struct inode *inode,
588 struct btrfs_ordered_extent *entry,
589 int wait)
590{
591 u64 start = entry->file_offset;
592 u64 end = start + entry->len - 1;
593
594 trace_btrfs_ordered_extent_start(inode, entry);
595
596 /*
597 * pages in the range can be dirty, clean or writeback. We
598 * start IO on any dirty ones so the wait doesn't stall waiting
599 * for pdflush to find them
600 */
601 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602 filemap_fdatawrite_range(inode->i_mapping, start, end);
603 if (wait) {
604 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605 &entry->flags));
606 }
607}
608
609/*
610 * Used to wait on ordered extents across a large range of bytes.
611 */
612void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
613{
614 u64 end;
615 u64 orig_end;
616 struct btrfs_ordered_extent *ordered;
617 int found;
618
619 if (start + len < start) {
620 orig_end = INT_LIMIT(loff_t);
621 } else {
622 orig_end = start + len - 1;
623 if (orig_end > INT_LIMIT(loff_t))
624 orig_end = INT_LIMIT(loff_t);
625 }
626
627 /* start IO across the range first to instantiate any delalloc
628 * extents
629 */
630 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
631
632 /*
633 * So with compression we will find and lock a dirty page and clear the
634 * first one as dirty, setup an async extent, and immediately return
635 * with the entire range locked but with nobody actually marked with
636 * writeback. So we can't just filemap_write_and_wait_range() and
637 * expect it to work since it will just kick off a thread to do the
638 * actual work. So we need to call filemap_fdatawrite_range _again_
639 * since it will wait on the page lock, which won't be unlocked until
640 * after the pages have been marked as writeback and so we're good to go
641 * from there. We have to do this otherwise we'll miss the ordered
642 * extents and that results in badness. Please Josef, do not think you
643 * know better and pull this out at some point in the future, it is
644 * right and you are wrong.
645 */
646 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
647 &BTRFS_I(inode)->runtime_flags))
648 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
649
650 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
651
652 end = orig_end;
653 found = 0;
654 while (1) {
655 ordered = btrfs_lookup_first_ordered_extent(inode, end);
656 if (!ordered)
657 break;
658 if (ordered->file_offset > orig_end) {
659 btrfs_put_ordered_extent(ordered);
660 break;
661 }
662 if (ordered->file_offset + ordered->len < start) {
663 btrfs_put_ordered_extent(ordered);
664 break;
665 }
666 found++;
667 btrfs_start_ordered_extent(inode, ordered, 1);
668 end = ordered->file_offset;
669 btrfs_put_ordered_extent(ordered);
670 if (end == 0 || end == start)
671 break;
672 end--;
673 }
674}
675
676/*
677 * find an ordered extent corresponding to file_offset. return NULL if
678 * nothing is found, otherwise take a reference on the extent and return it
679 */
680struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
681 u64 file_offset)
682{
683 struct btrfs_ordered_inode_tree *tree;
684 struct rb_node *node;
685 struct btrfs_ordered_extent *entry = NULL;
686
687 tree = &BTRFS_I(inode)->ordered_tree;
688 spin_lock_irq(&tree->lock);
689 node = tree_search(tree, file_offset);
690 if (!node)
691 goto out;
692
693 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
694 if (!offset_in_entry(entry, file_offset))
695 entry = NULL;
696 if (entry)
697 atomic_inc(&entry->refs);
698out:
699 spin_unlock_irq(&tree->lock);
700 return entry;
701}
702
703/* Since the DIO code tries to lock a wide area we need to look for any ordered
704 * extents that exist in the range, rather than just the start of the range.
705 */
706struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
707 u64 file_offset,
708 u64 len)
709{
710 struct btrfs_ordered_inode_tree *tree;
711 struct rb_node *node;
712 struct btrfs_ordered_extent *entry = NULL;
713
714 tree = &BTRFS_I(inode)->ordered_tree;
715 spin_lock_irq(&tree->lock);
716 node = tree_search(tree, file_offset);
717 if (!node) {
718 node = tree_search(tree, file_offset + len);
719 if (!node)
720 goto out;
721 }
722
723 while (1) {
724 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
725 if (range_overlaps(entry, file_offset, len))
726 break;
727
728 if (entry->file_offset >= file_offset + len) {
729 entry = NULL;
730 break;
731 }
732 entry = NULL;
733 node = rb_next(node);
734 if (!node)
735 break;
736 }
737out:
738 if (entry)
739 atomic_inc(&entry->refs);
740 spin_unlock_irq(&tree->lock);
741 return entry;
742}
743
744/*
745 * lookup and return any extent before 'file_offset'. NULL is returned
746 * if none is found
747 */
748struct btrfs_ordered_extent *
749btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
750{
751 struct btrfs_ordered_inode_tree *tree;
752 struct rb_node *node;
753 struct btrfs_ordered_extent *entry = NULL;
754
755 tree = &BTRFS_I(inode)->ordered_tree;
756 spin_lock_irq(&tree->lock);
757 node = tree_search(tree, file_offset);
758 if (!node)
759 goto out;
760
761 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
762 atomic_inc(&entry->refs);
763out:
764 spin_unlock_irq(&tree->lock);
765 return entry;
766}
767
768/*
769 * After an extent is done, call this to conditionally update the on disk
770 * i_size. i_size is updated to cover any fully written part of the file.
771 */
772int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
773 struct btrfs_ordered_extent *ordered)
774{
775 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
776 u64 disk_i_size;
777 u64 new_i_size;
778 u64 i_size_test;
779 u64 i_size = i_size_read(inode);
780 struct rb_node *node;
781 struct rb_node *prev = NULL;
782 struct btrfs_ordered_extent *test;
783 int ret = 1;
784
785 if (ordered)
786 offset = entry_end(ordered);
787 else
788 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
789
790 spin_lock_irq(&tree->lock);
791 disk_i_size = BTRFS_I(inode)->disk_i_size;
792
793 /* truncate file */
794 if (disk_i_size > i_size) {
795 BTRFS_I(inode)->disk_i_size = i_size;
796 ret = 0;
797 goto out;
798 }
799
800 /*
801 * if the disk i_size is already at the inode->i_size, or
802 * this ordered extent is inside the disk i_size, we're done
803 */
804 if (disk_i_size == i_size || offset <= disk_i_size) {
805 goto out;
806 }
807
808 /*
809 * walk backward from this ordered extent to disk_i_size.
810 * if we find an ordered extent then we can't update disk i_size
811 * yet
812 */
813 if (ordered) {
814 node = rb_prev(&ordered->rb_node);
815 } else {
816 prev = tree_search(tree, offset);
817 /*
818 * we insert file extents without involving ordered struct,
819 * so there should be no ordered struct cover this offset
820 */
821 if (prev) {
822 test = rb_entry(prev, struct btrfs_ordered_extent,
823 rb_node);
824 BUG_ON(offset_in_entry(test, offset));
825 }
826 node = prev;
827 }
828 for (; node; node = rb_prev(node)) {
829 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
830
831 /* We treat this entry as if it doesnt exist */
832 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
833 continue;
834 if (test->file_offset + test->len <= disk_i_size)
835 break;
836 if (test->file_offset >= i_size)
837 break;
838 if (test->file_offset >= disk_i_size)
839 goto out;
840 }
841 new_i_size = min_t(u64, offset, i_size);
842
843 /*
844 * at this point, we know we can safely update i_size to at least
845 * the offset from this ordered extent. But, we need to
846 * walk forward and see if ios from higher up in the file have
847 * finished.
848 */
849 if (ordered) {
850 node = rb_next(&ordered->rb_node);
851 } else {
852 if (prev)
853 node = rb_next(prev);
854 else
855 node = rb_first(&tree->tree);
856 }
857
858 /*
859 * We are looking for an area between our current extent and the next
860 * ordered extent to update the i_size to. There are 3 cases here
861 *
862 * 1) We don't actually have anything and we can update to i_size.
863 * 2) We have stuff but they already did their i_size update so again we
864 * can just update to i_size.
865 * 3) We have an outstanding ordered extent so the most we can update
866 * our disk_i_size to is the start of the next offset.
867 */
868 i_size_test = i_size;
869 for (; node; node = rb_next(node)) {
870 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871
872 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
873 continue;
874 if (test->file_offset > offset) {
875 i_size_test = test->file_offset;
876 break;
877 }
878 }
879
880 /*
881 * i_size_test is the end of a region after this ordered
882 * extent where there are no ordered extents, we can safely set
883 * disk_i_size to this.
884 */
885 if (i_size_test > offset)
886 new_i_size = min_t(u64, i_size_test, i_size);
887 BTRFS_I(inode)->disk_i_size = new_i_size;
888 ret = 0;
889out:
890 /*
891 * We need to do this because we can't remove ordered extents until
892 * after the i_disk_size has been updated and then the inode has been
893 * updated to reflect the change, so we need to tell anybody who finds
894 * this ordered extent that we've already done all the real work, we
895 * just haven't completed all the other work.
896 */
897 if (ordered)
898 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
899 spin_unlock_irq(&tree->lock);
900 return ret;
901}
902
903/*
904 * search the ordered extents for one corresponding to 'offset' and
905 * try to find a checksum. This is used because we allow pages to
906 * be reclaimed before their checksum is actually put into the btree
907 */
908int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
909 u32 *sum)
910{
911 struct btrfs_ordered_sum *ordered_sum;
912 struct btrfs_sector_sum *sector_sums;
913 struct btrfs_ordered_extent *ordered;
914 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
915 unsigned long num_sectors;
916 unsigned long i;
917 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
918 int ret = 1;
919
920 ordered = btrfs_lookup_ordered_extent(inode, offset);
921 if (!ordered)
922 return 1;
923
924 spin_lock_irq(&tree->lock);
925 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
926 if (disk_bytenr >= ordered_sum->bytenr) {
927 num_sectors = ordered_sum->len / sectorsize;
928 sector_sums = ordered_sum->sums;
929 for (i = 0; i < num_sectors; i++) {
930 if (sector_sums[i].bytenr == disk_bytenr) {
931 *sum = sector_sums[i].sum;
932 ret = 0;
933 goto out;
934 }
935 }
936 }
937 }
938out:
939 spin_unlock_irq(&tree->lock);
940 btrfs_put_ordered_extent(ordered);
941 return ret;
942}
943
944
945/*
946 * add a given inode to the list of inodes that must be fully on
947 * disk before a transaction commit finishes.
948 *
949 * This basically gives us the ext3 style data=ordered mode, and it is mostly
950 * used to make sure renamed files are fully on disk.
951 *
952 * It is a noop if the inode is already fully on disk.
953 *
954 * If trans is not null, we'll do a friendly check for a transaction that
955 * is already flushing things and force the IO down ourselves.
956 */
957void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
958 struct btrfs_root *root, struct inode *inode)
959{
960 u64 last_mod;
961
962 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
963
964 /*
965 * if this file hasn't been changed since the last transaction
966 * commit, we can safely return without doing anything
967 */
968 if (last_mod < root->fs_info->last_trans_committed)
969 return;
970
971 /*
972 * the transaction is already committing. Just start the IO and
973 * don't bother with all of this list nonsense
974 */
975 if (trans && root->fs_info->running_transaction->blocked) {
976 btrfs_wait_ordered_range(inode, 0, (u64)-1);
977 return;
978 }
979
980 spin_lock(&root->fs_info->ordered_extent_lock);
981 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
982 list_add_tail(&BTRFS_I(inode)->ordered_operations,
983 &root->fs_info->ordered_operations);
984 }
985 spin_unlock(&root->fs_info->ordered_extent_lock);
986}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "messages.h"
11#include "misc.h"
12#include "ctree.h"
13#include "transaction.h"
14#include "btrfs_inode.h"
15#include "extent_io.h"
16#include "disk-io.h"
17#include "compression.h"
18#include "delalloc-space.h"
19#include "qgroup.h"
20#include "subpage.h"
21#include "file.h"
22
23static struct kmem_cache *btrfs_ordered_extent_cache;
24
25static u64 entry_end(struct btrfs_ordered_extent *entry)
26{
27 if (entry->file_offset + entry->num_bytes < entry->file_offset)
28 return (u64)-1;
29 return entry->file_offset + entry->num_bytes;
30}
31
32/* returns NULL if the insertion worked, or it returns the node it did find
33 * in the tree
34 */
35static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
36 struct rb_node *node)
37{
38 struct rb_node **p = &root->rb_node;
39 struct rb_node *parent = NULL;
40 struct btrfs_ordered_extent *entry;
41
42 while (*p) {
43 parent = *p;
44 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
45
46 if (file_offset < entry->file_offset)
47 p = &(*p)->rb_left;
48 else if (file_offset >= entry_end(entry))
49 p = &(*p)->rb_right;
50 else
51 return parent;
52 }
53
54 rb_link_node(node, parent, p);
55 rb_insert_color(node, root);
56 return NULL;
57}
58
59/*
60 * look for a given offset in the tree, and if it can't be found return the
61 * first lesser offset
62 */
63static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
64 struct rb_node **prev_ret)
65{
66 struct rb_node *n = root->rb_node;
67 struct rb_node *prev = NULL;
68 struct rb_node *test;
69 struct btrfs_ordered_extent *entry;
70 struct btrfs_ordered_extent *prev_entry = NULL;
71
72 while (n) {
73 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
74 prev = n;
75 prev_entry = entry;
76
77 if (file_offset < entry->file_offset)
78 n = n->rb_left;
79 else if (file_offset >= entry_end(entry))
80 n = n->rb_right;
81 else
82 return n;
83 }
84 if (!prev_ret)
85 return NULL;
86
87 while (prev && file_offset >= entry_end(prev_entry)) {
88 test = rb_next(prev);
89 if (!test)
90 break;
91 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
92 rb_node);
93 if (file_offset < entry_end(prev_entry))
94 break;
95
96 prev = test;
97 }
98 if (prev)
99 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
100 rb_node);
101 while (prev && file_offset < entry_end(prev_entry)) {
102 test = rb_prev(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 prev = test;
108 }
109 *prev_ret = prev;
110 return NULL;
111}
112
113static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
114 u64 len)
115{
116 if (file_offset + len <= entry->file_offset ||
117 entry->file_offset + entry->num_bytes <= file_offset)
118 return 0;
119 return 1;
120}
121
122/*
123 * look find the first ordered struct that has this offset, otherwise
124 * the first one less than this offset
125 */
126static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
127 u64 file_offset)
128{
129 struct rb_node *prev = NULL;
130 struct rb_node *ret;
131 struct btrfs_ordered_extent *entry;
132
133 if (inode->ordered_tree_last) {
134 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
135 rb_node);
136 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
137 return inode->ordered_tree_last;
138 }
139 ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
140 if (!ret)
141 ret = prev;
142 if (ret)
143 inode->ordered_tree_last = ret;
144 return ret;
145}
146
147static struct btrfs_ordered_extent *alloc_ordered_extent(
148 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
149 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
150 u64 offset, unsigned long flags, int compress_type)
151{
152 struct btrfs_ordered_extent *entry;
153 int ret;
154 u64 qgroup_rsv = 0;
155
156 if (flags &
157 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
158 /* For nocow write, we can release the qgroup rsv right now */
159 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
160 if (ret < 0)
161 return ERR_PTR(ret);
162 } else {
163 /*
164 * The ordered extent has reserved qgroup space, release now
165 * and pass the reserved number for qgroup_record to free.
166 */
167 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
168 if (ret < 0)
169 return ERR_PTR(ret);
170 }
171 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
172 if (!entry)
173 return ERR_PTR(-ENOMEM);
174
175 entry->file_offset = file_offset;
176 entry->num_bytes = num_bytes;
177 entry->ram_bytes = ram_bytes;
178 entry->disk_bytenr = disk_bytenr;
179 entry->disk_num_bytes = disk_num_bytes;
180 entry->offset = offset;
181 entry->bytes_left = num_bytes;
182 entry->inode = igrab(&inode->vfs_inode);
183 entry->compress_type = compress_type;
184 entry->truncated_len = (u64)-1;
185 entry->qgroup_rsv = qgroup_rsv;
186 entry->flags = flags;
187 refcount_set(&entry->refs, 1);
188 init_waitqueue_head(&entry->wait);
189 INIT_LIST_HEAD(&entry->list);
190 INIT_LIST_HEAD(&entry->log_list);
191 INIT_LIST_HEAD(&entry->root_extent_list);
192 INIT_LIST_HEAD(&entry->work_list);
193 INIT_LIST_HEAD(&entry->bioc_list);
194 init_completion(&entry->completion);
195
196 /*
197 * We don't need the count_max_extents here, we can assume that all of
198 * that work has been done at higher layers, so this is truly the
199 * smallest the extent is going to get.
200 */
201 spin_lock(&inode->lock);
202 btrfs_mod_outstanding_extents(inode, 1);
203 spin_unlock(&inode->lock);
204
205 return entry;
206}
207
208static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209{
210 struct btrfs_inode *inode = BTRFS_I(entry->inode);
211 struct btrfs_root *root = inode->root;
212 struct btrfs_fs_info *fs_info = root->fs_info;
213 struct rb_node *node;
214
215 trace_btrfs_ordered_extent_add(inode, entry);
216
217 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
218 fs_info->delalloc_batch);
219
220 /* One ref for the tree. */
221 refcount_inc(&entry->refs);
222
223 spin_lock_irq(&inode->ordered_tree_lock);
224 node = tree_insert(&inode->ordered_tree, entry->file_offset,
225 &entry->rb_node);
226 if (node)
227 btrfs_panic(fs_info, -EEXIST,
228 "inconsistency in ordered tree at offset %llu",
229 entry->file_offset);
230 spin_unlock_irq(&inode->ordered_tree_lock);
231
232 spin_lock(&root->ordered_extent_lock);
233 list_add_tail(&entry->root_extent_list,
234 &root->ordered_extents);
235 root->nr_ordered_extents++;
236 if (root->nr_ordered_extents == 1) {
237 spin_lock(&fs_info->ordered_root_lock);
238 BUG_ON(!list_empty(&root->ordered_root));
239 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240 spin_unlock(&fs_info->ordered_root_lock);
241 }
242 spin_unlock(&root->ordered_extent_lock);
243}
244
245/*
246 * Add an ordered extent to the per-inode tree.
247 *
248 * @inode: Inode that this extent is for.
249 * @file_offset: Logical offset in file where the extent starts.
250 * @num_bytes: Logical length of extent in file.
251 * @ram_bytes: Full length of unencoded data.
252 * @disk_bytenr: Offset of extent on disk.
253 * @disk_num_bytes: Size of extent on disk.
254 * @offset: Offset into unencoded data where file data starts.
255 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256 * @compress_type: Compression algorithm used for data.
257 *
258 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259 * tree is given a single reference on the ordered extent that was inserted, and
260 * the returned pointer is given a second reference.
261 *
262 * Return: the new ordered extent or error pointer.
263 */
264struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265 struct btrfs_inode *inode, u64 file_offset,
266 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267 u64 disk_num_bytes, u64 offset, unsigned long flags,
268 int compress_type)
269{
270 struct btrfs_ordered_extent *entry;
271
272 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273
274 entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275 disk_bytenr, disk_num_bytes, offset, flags,
276 compress_type);
277 if (!IS_ERR(entry))
278 insert_ordered_extent(entry);
279 return entry;
280}
281
282/*
283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284 * when an ordered extent is finished. If the list covers more than one
285 * ordered extent, it is split across multiples.
286 */
287void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288 struct btrfs_ordered_sum *sum)
289{
290 struct btrfs_inode *inode = BTRFS_I(entry->inode);
291
292 spin_lock_irq(&inode->ordered_tree_lock);
293 list_add_tail(&sum->list, &entry->list);
294 spin_unlock_irq(&inode->ordered_tree_lock);
295}
296
297static void finish_ordered_fn(struct btrfs_work *work)
298{
299 struct btrfs_ordered_extent *ordered_extent;
300
301 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
302 btrfs_finish_ordered_io(ordered_extent);
303}
304
305static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
306 struct page *page, u64 file_offset,
307 u64 len, bool uptodate)
308{
309 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
310 struct btrfs_fs_info *fs_info = inode->root->fs_info;
311
312 lockdep_assert_held(&inode->ordered_tree_lock);
313
314 if (page) {
315 ASSERT(page->mapping);
316 ASSERT(page_offset(page) <= file_offset);
317 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
318
319 /*
320 * Ordered (Private2) bit indicates whether we still have
321 * pending io unfinished for the ordered extent.
322 *
323 * If there's no such bit, we need to skip to next range.
324 */
325 if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
326 file_offset, len))
327 return false;
328 btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
329 }
330
331 /* Now we're fine to update the accounting. */
332 if (WARN_ON_ONCE(len > ordered->bytes_left)) {
333 btrfs_crit(fs_info,
334"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
335 inode->root->root_key.objectid, btrfs_ino(inode),
336 ordered->file_offset, ordered->num_bytes,
337 len, ordered->bytes_left);
338 ordered->bytes_left = 0;
339 } else {
340 ordered->bytes_left -= len;
341 }
342
343 if (!uptodate)
344 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
345
346 if (ordered->bytes_left)
347 return false;
348
349 /*
350 * All the IO of the ordered extent is finished, we need to queue
351 * the finish_func to be executed.
352 */
353 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
354 cond_wake_up(&ordered->wait);
355 refcount_inc(&ordered->refs);
356 trace_btrfs_ordered_extent_mark_finished(inode, ordered);
357 return true;
358}
359
360static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
361{
362 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
363 struct btrfs_fs_info *fs_info = inode->root->fs_info;
364 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
365 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
366
367 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
368 btrfs_queue_work(wq, &ordered->work);
369}
370
371bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
372 struct page *page, u64 file_offset, u64 len,
373 bool uptodate)
374{
375 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
376 unsigned long flags;
377 bool ret;
378
379 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
380
381 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
382 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
383 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
384
385 if (ret)
386 btrfs_queue_ordered_fn(ordered);
387 return ret;
388}
389
390/*
391 * Mark all ordered extents io inside the specified range finished.
392 *
393 * @page: The involved page for the operation.
394 * For uncompressed buffered IO, the page status also needs to be
395 * updated to indicate whether the pending ordered io is finished.
396 * Can be NULL for direct IO and compressed write.
397 * For these cases, callers are ensured they won't execute the
398 * endio function twice.
399 *
400 * This function is called for endio, thus the range must have ordered
401 * extent(s) covering it.
402 */
403void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
404 struct page *page, u64 file_offset,
405 u64 num_bytes, bool uptodate)
406{
407 struct rb_node *node;
408 struct btrfs_ordered_extent *entry = NULL;
409 unsigned long flags;
410 u64 cur = file_offset;
411
412 trace_btrfs_writepage_end_io_hook(inode, file_offset,
413 file_offset + num_bytes - 1,
414 uptodate);
415
416 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
417 while (cur < file_offset + num_bytes) {
418 u64 entry_end;
419 u64 end;
420 u32 len;
421
422 node = ordered_tree_search(inode, cur);
423 /* No ordered extents at all */
424 if (!node)
425 break;
426
427 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
428 entry_end = entry->file_offset + entry->num_bytes;
429 /*
430 * |<-- OE --->| |
431 * cur
432 * Go to next OE.
433 */
434 if (cur >= entry_end) {
435 node = rb_next(node);
436 /* No more ordered extents, exit */
437 if (!node)
438 break;
439 entry = rb_entry(node, struct btrfs_ordered_extent,
440 rb_node);
441
442 /* Go to next ordered extent and continue */
443 cur = entry->file_offset;
444 continue;
445 }
446 /*
447 * | |<--- OE --->|
448 * cur
449 * Go to the start of OE.
450 */
451 if (cur < entry->file_offset) {
452 cur = entry->file_offset;
453 continue;
454 }
455
456 /*
457 * Now we are definitely inside one ordered extent.
458 *
459 * |<--- OE --->|
460 * |
461 * cur
462 */
463 end = min(entry->file_offset + entry->num_bytes,
464 file_offset + num_bytes) - 1;
465 ASSERT(end + 1 - cur < U32_MAX);
466 len = end + 1 - cur;
467
468 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
469 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
470 btrfs_queue_ordered_fn(entry);
471 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
472 }
473 cur += len;
474 }
475 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
476}
477
478/*
479 * Finish IO for one ordered extent across a given range. The range can only
480 * contain one ordered extent.
481 *
482 * @cached: The cached ordered extent. If not NULL, we can skip the tree
483 * search and use the ordered extent directly.
484 * Will be also used to store the finished ordered extent.
485 * @file_offset: File offset for the finished IO
486 * @io_size: Length of the finish IO range
487 *
488 * Return true if the ordered extent is finished in the range, and update
489 * @cached.
490 * Return false otherwise.
491 *
492 * NOTE: The range can NOT cross multiple ordered extents.
493 * Thus caller should ensure the range doesn't cross ordered extents.
494 */
495bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
496 struct btrfs_ordered_extent **cached,
497 u64 file_offset, u64 io_size)
498{
499 struct rb_node *node;
500 struct btrfs_ordered_extent *entry = NULL;
501 unsigned long flags;
502 bool finished = false;
503
504 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
505 if (cached && *cached) {
506 entry = *cached;
507 goto have_entry;
508 }
509
510 node = ordered_tree_search(inode, file_offset);
511 if (!node)
512 goto out;
513
514 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
515have_entry:
516 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
517 goto out;
518
519 if (io_size > entry->bytes_left)
520 btrfs_crit(inode->root->fs_info,
521 "bad ordered accounting left %llu size %llu",
522 entry->bytes_left, io_size);
523
524 entry->bytes_left -= io_size;
525
526 if (entry->bytes_left == 0) {
527 /*
528 * Ensure only one caller can set the flag and finished_ret
529 * accordingly
530 */
531 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
532 /* test_and_set_bit implies a barrier */
533 cond_wake_up_nomb(&entry->wait);
534 }
535out:
536 if (finished && cached && entry) {
537 *cached = entry;
538 refcount_inc(&entry->refs);
539 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
540 }
541 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
542 return finished;
543}
544
545/*
546 * used to drop a reference on an ordered extent. This will free
547 * the extent if the last reference is dropped
548 */
549void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
550{
551 struct list_head *cur;
552 struct btrfs_ordered_sum *sum;
553
554 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
555
556 if (refcount_dec_and_test(&entry->refs)) {
557 ASSERT(list_empty(&entry->root_extent_list));
558 ASSERT(list_empty(&entry->log_list));
559 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
560 if (entry->inode)
561 btrfs_add_delayed_iput(BTRFS_I(entry->inode));
562 while (!list_empty(&entry->list)) {
563 cur = entry->list.next;
564 sum = list_entry(cur, struct btrfs_ordered_sum, list);
565 list_del(&sum->list);
566 kvfree(sum);
567 }
568 kmem_cache_free(btrfs_ordered_extent_cache, entry);
569 }
570}
571
572/*
573 * remove an ordered extent from the tree. No references are dropped
574 * and waiters are woken up.
575 */
576void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
577 struct btrfs_ordered_extent *entry)
578{
579 struct btrfs_root *root = btrfs_inode->root;
580 struct btrfs_fs_info *fs_info = root->fs_info;
581 struct rb_node *node;
582 bool pending;
583 bool freespace_inode;
584
585 /*
586 * If this is a free space inode the thread has not acquired the ordered
587 * extents lockdep map.
588 */
589 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
590
591 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
592 /* This is paired with btrfs_alloc_ordered_extent. */
593 spin_lock(&btrfs_inode->lock);
594 btrfs_mod_outstanding_extents(btrfs_inode, -1);
595 spin_unlock(&btrfs_inode->lock);
596 if (root != fs_info->tree_root) {
597 u64 release;
598
599 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
600 release = entry->disk_num_bytes;
601 else
602 release = entry->num_bytes;
603 btrfs_delalloc_release_metadata(btrfs_inode, release,
604 test_bit(BTRFS_ORDERED_IOERR,
605 &entry->flags));
606 }
607
608 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
609 fs_info->delalloc_batch);
610
611 spin_lock_irq(&btrfs_inode->ordered_tree_lock);
612 node = &entry->rb_node;
613 rb_erase(node, &btrfs_inode->ordered_tree);
614 RB_CLEAR_NODE(node);
615 if (btrfs_inode->ordered_tree_last == node)
616 btrfs_inode->ordered_tree_last = NULL;
617 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
618 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
619 spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
620
621 /*
622 * The current running transaction is waiting on us, we need to let it
623 * know that we're complete and wake it up.
624 */
625 if (pending) {
626 struct btrfs_transaction *trans;
627
628 /*
629 * The checks for trans are just a formality, it should be set,
630 * but if it isn't we don't want to deref/assert under the spin
631 * lock, so be nice and check if trans is set, but ASSERT() so
632 * if it isn't set a developer will notice.
633 */
634 spin_lock(&fs_info->trans_lock);
635 trans = fs_info->running_transaction;
636 if (trans)
637 refcount_inc(&trans->use_count);
638 spin_unlock(&fs_info->trans_lock);
639
640 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
641 if (trans) {
642 if (atomic_dec_and_test(&trans->pending_ordered))
643 wake_up(&trans->pending_wait);
644 btrfs_put_transaction(trans);
645 }
646 }
647
648 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
649
650 spin_lock(&root->ordered_extent_lock);
651 list_del_init(&entry->root_extent_list);
652 root->nr_ordered_extents--;
653
654 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
655
656 if (!root->nr_ordered_extents) {
657 spin_lock(&fs_info->ordered_root_lock);
658 BUG_ON(list_empty(&root->ordered_root));
659 list_del_init(&root->ordered_root);
660 spin_unlock(&fs_info->ordered_root_lock);
661 }
662 spin_unlock(&root->ordered_extent_lock);
663 wake_up(&entry->wait);
664 if (!freespace_inode)
665 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
666}
667
668static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
669{
670 struct btrfs_ordered_extent *ordered;
671
672 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
673 btrfs_start_ordered_extent(ordered);
674 complete(&ordered->completion);
675}
676
677/*
678 * wait for all the ordered extents in a root. This is done when balancing
679 * space between drives.
680 */
681u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
682 const u64 range_start, const u64 range_len)
683{
684 struct btrfs_fs_info *fs_info = root->fs_info;
685 LIST_HEAD(splice);
686 LIST_HEAD(skipped);
687 LIST_HEAD(works);
688 struct btrfs_ordered_extent *ordered, *next;
689 u64 count = 0;
690 const u64 range_end = range_start + range_len;
691
692 mutex_lock(&root->ordered_extent_mutex);
693 spin_lock(&root->ordered_extent_lock);
694 list_splice_init(&root->ordered_extents, &splice);
695 while (!list_empty(&splice) && nr) {
696 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
697 root_extent_list);
698
699 if (range_end <= ordered->disk_bytenr ||
700 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
701 list_move_tail(&ordered->root_extent_list, &skipped);
702 cond_resched_lock(&root->ordered_extent_lock);
703 continue;
704 }
705
706 list_move_tail(&ordered->root_extent_list,
707 &root->ordered_extents);
708 refcount_inc(&ordered->refs);
709 spin_unlock(&root->ordered_extent_lock);
710
711 btrfs_init_work(&ordered->flush_work,
712 btrfs_run_ordered_extent_work, NULL);
713 list_add_tail(&ordered->work_list, &works);
714 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
715
716 cond_resched();
717 spin_lock(&root->ordered_extent_lock);
718 if (nr != U64_MAX)
719 nr--;
720 count++;
721 }
722 list_splice_tail(&skipped, &root->ordered_extents);
723 list_splice_tail(&splice, &root->ordered_extents);
724 spin_unlock(&root->ordered_extent_lock);
725
726 list_for_each_entry_safe(ordered, next, &works, work_list) {
727 list_del_init(&ordered->work_list);
728 wait_for_completion(&ordered->completion);
729 btrfs_put_ordered_extent(ordered);
730 cond_resched();
731 }
732 mutex_unlock(&root->ordered_extent_mutex);
733
734 return count;
735}
736
737void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
738 const u64 range_start, const u64 range_len)
739{
740 struct btrfs_root *root;
741 LIST_HEAD(splice);
742 u64 done;
743
744 mutex_lock(&fs_info->ordered_operations_mutex);
745 spin_lock(&fs_info->ordered_root_lock);
746 list_splice_init(&fs_info->ordered_roots, &splice);
747 while (!list_empty(&splice) && nr) {
748 root = list_first_entry(&splice, struct btrfs_root,
749 ordered_root);
750 root = btrfs_grab_root(root);
751 BUG_ON(!root);
752 list_move_tail(&root->ordered_root,
753 &fs_info->ordered_roots);
754 spin_unlock(&fs_info->ordered_root_lock);
755
756 done = btrfs_wait_ordered_extents(root, nr,
757 range_start, range_len);
758 btrfs_put_root(root);
759
760 spin_lock(&fs_info->ordered_root_lock);
761 if (nr != U64_MAX) {
762 nr -= done;
763 }
764 }
765 list_splice_tail(&splice, &fs_info->ordered_roots);
766 spin_unlock(&fs_info->ordered_root_lock);
767 mutex_unlock(&fs_info->ordered_operations_mutex);
768}
769
770/*
771 * Start IO and wait for a given ordered extent to finish.
772 *
773 * Wait on page writeback for all the pages in the extent and the IO completion
774 * code to insert metadata into the btree corresponding to the extent.
775 */
776void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
777{
778 u64 start = entry->file_offset;
779 u64 end = start + entry->num_bytes - 1;
780 struct btrfs_inode *inode = BTRFS_I(entry->inode);
781 bool freespace_inode;
782
783 trace_btrfs_ordered_extent_start(inode, entry);
784
785 /*
786 * If this is a free space inode do not take the ordered extents lockdep
787 * map.
788 */
789 freespace_inode = btrfs_is_free_space_inode(inode);
790
791 /*
792 * pages in the range can be dirty, clean or writeback. We
793 * start IO on any dirty ones so the wait doesn't stall waiting
794 * for the flusher thread to find them
795 */
796 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
797 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
798
799 if (!freespace_inode)
800 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
801 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
802}
803
804/*
805 * Used to wait on ordered extents across a large range of bytes.
806 */
807int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
808{
809 int ret = 0;
810 int ret_wb = 0;
811 u64 end;
812 u64 orig_end;
813 struct btrfs_ordered_extent *ordered;
814
815 if (start + len < start) {
816 orig_end = OFFSET_MAX;
817 } else {
818 orig_end = start + len - 1;
819 if (orig_end > OFFSET_MAX)
820 orig_end = OFFSET_MAX;
821 }
822
823 /* start IO across the range first to instantiate any delalloc
824 * extents
825 */
826 ret = btrfs_fdatawrite_range(inode, start, orig_end);
827 if (ret)
828 return ret;
829
830 /*
831 * If we have a writeback error don't return immediately. Wait first
832 * for any ordered extents that haven't completed yet. This is to make
833 * sure no one can dirty the same page ranges and call writepages()
834 * before the ordered extents complete - to avoid failures (-EEXIST)
835 * when adding the new ordered extents to the ordered tree.
836 */
837 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
838
839 end = orig_end;
840 while (1) {
841 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
842 if (!ordered)
843 break;
844 if (ordered->file_offset > orig_end) {
845 btrfs_put_ordered_extent(ordered);
846 break;
847 }
848 if (ordered->file_offset + ordered->num_bytes <= start) {
849 btrfs_put_ordered_extent(ordered);
850 break;
851 }
852 btrfs_start_ordered_extent(ordered);
853 end = ordered->file_offset;
854 /*
855 * If the ordered extent had an error save the error but don't
856 * exit without waiting first for all other ordered extents in
857 * the range to complete.
858 */
859 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
860 ret = -EIO;
861 btrfs_put_ordered_extent(ordered);
862 if (end == 0 || end == start)
863 break;
864 end--;
865 }
866 return ret_wb ? ret_wb : ret;
867}
868
869/*
870 * find an ordered extent corresponding to file_offset. return NULL if
871 * nothing is found, otherwise take a reference on the extent and return it
872 */
873struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
874 u64 file_offset)
875{
876 struct rb_node *node;
877 struct btrfs_ordered_extent *entry = NULL;
878 unsigned long flags;
879
880 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
881 node = ordered_tree_search(inode, file_offset);
882 if (!node)
883 goto out;
884
885 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
886 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
887 entry = NULL;
888 if (entry) {
889 refcount_inc(&entry->refs);
890 trace_btrfs_ordered_extent_lookup(inode, entry);
891 }
892out:
893 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
894 return entry;
895}
896
897/* Since the DIO code tries to lock a wide area we need to look for any ordered
898 * extents that exist in the range, rather than just the start of the range.
899 */
900struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
901 struct btrfs_inode *inode, u64 file_offset, u64 len)
902{
903 struct rb_node *node;
904 struct btrfs_ordered_extent *entry = NULL;
905
906 spin_lock_irq(&inode->ordered_tree_lock);
907 node = ordered_tree_search(inode, file_offset);
908 if (!node) {
909 node = ordered_tree_search(inode, file_offset + len);
910 if (!node)
911 goto out;
912 }
913
914 while (1) {
915 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
916 if (range_overlaps(entry, file_offset, len))
917 break;
918
919 if (entry->file_offset >= file_offset + len) {
920 entry = NULL;
921 break;
922 }
923 entry = NULL;
924 node = rb_next(node);
925 if (!node)
926 break;
927 }
928out:
929 if (entry) {
930 refcount_inc(&entry->refs);
931 trace_btrfs_ordered_extent_lookup_range(inode, entry);
932 }
933 spin_unlock_irq(&inode->ordered_tree_lock);
934 return entry;
935}
936
937/*
938 * Adds all ordered extents to the given list. The list ends up sorted by the
939 * file_offset of the ordered extents.
940 */
941void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
942 struct list_head *list)
943{
944 struct rb_node *n;
945
946 ASSERT(inode_is_locked(&inode->vfs_inode));
947
948 spin_lock_irq(&inode->ordered_tree_lock);
949 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
950 struct btrfs_ordered_extent *ordered;
951
952 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
953
954 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
955 continue;
956
957 ASSERT(list_empty(&ordered->log_list));
958 list_add_tail(&ordered->log_list, list);
959 refcount_inc(&ordered->refs);
960 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
961 }
962 spin_unlock_irq(&inode->ordered_tree_lock);
963}
964
965/*
966 * lookup and return any extent before 'file_offset'. NULL is returned
967 * if none is found
968 */
969struct btrfs_ordered_extent *
970btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
971{
972 struct rb_node *node;
973 struct btrfs_ordered_extent *entry = NULL;
974
975 spin_lock_irq(&inode->ordered_tree_lock);
976 node = ordered_tree_search(inode, file_offset);
977 if (!node)
978 goto out;
979
980 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
981 refcount_inc(&entry->refs);
982 trace_btrfs_ordered_extent_lookup_first(inode, entry);
983out:
984 spin_unlock_irq(&inode->ordered_tree_lock);
985 return entry;
986}
987
988/*
989 * Lookup the first ordered extent that overlaps the range
990 * [@file_offset, @file_offset + @len).
991 *
992 * The difference between this and btrfs_lookup_first_ordered_extent() is
993 * that this one won't return any ordered extent that does not overlap the range.
994 * And the difference against btrfs_lookup_ordered_extent() is, this function
995 * ensures the first ordered extent gets returned.
996 */
997struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
998 struct btrfs_inode *inode, u64 file_offset, u64 len)
999{
1000 struct rb_node *node;
1001 struct rb_node *cur;
1002 struct rb_node *prev;
1003 struct rb_node *next;
1004 struct btrfs_ordered_extent *entry = NULL;
1005
1006 spin_lock_irq(&inode->ordered_tree_lock);
1007 node = inode->ordered_tree.rb_node;
1008 /*
1009 * Here we don't want to use tree_search() which will use tree->last
1010 * and screw up the search order.
1011 * And __tree_search() can't return the adjacent ordered extents
1012 * either, thus here we do our own search.
1013 */
1014 while (node) {
1015 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1016
1017 if (file_offset < entry->file_offset) {
1018 node = node->rb_left;
1019 } else if (file_offset >= entry_end(entry)) {
1020 node = node->rb_right;
1021 } else {
1022 /*
1023 * Direct hit, got an ordered extent that starts at
1024 * @file_offset
1025 */
1026 goto out;
1027 }
1028 }
1029 if (!entry) {
1030 /* Empty tree */
1031 goto out;
1032 }
1033
1034 cur = &entry->rb_node;
1035 /* We got an entry around @file_offset, check adjacent entries */
1036 if (entry->file_offset < file_offset) {
1037 prev = cur;
1038 next = rb_next(cur);
1039 } else {
1040 prev = rb_prev(cur);
1041 next = cur;
1042 }
1043 if (prev) {
1044 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1045 if (range_overlaps(entry, file_offset, len))
1046 goto out;
1047 }
1048 if (next) {
1049 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1050 if (range_overlaps(entry, file_offset, len))
1051 goto out;
1052 }
1053 /* No ordered extent in the range */
1054 entry = NULL;
1055out:
1056 if (entry) {
1057 refcount_inc(&entry->refs);
1058 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1059 }
1060
1061 spin_unlock_irq(&inode->ordered_tree_lock);
1062 return entry;
1063}
1064
1065/*
1066 * Lock the passed range and ensures all pending ordered extents in it are run
1067 * to completion.
1068 *
1069 * @inode: Inode whose ordered tree is to be searched
1070 * @start: Beginning of range to flush
1071 * @end: Last byte of range to lock
1072 * @cached_state: If passed, will return the extent state responsible for the
1073 * locked range. It's the caller's responsibility to free the
1074 * cached state.
1075 *
1076 * Always return with the given range locked, ensuring after it's called no
1077 * order extent can be pending.
1078 */
1079void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1080 u64 end,
1081 struct extent_state **cached_state)
1082{
1083 struct btrfs_ordered_extent *ordered;
1084 struct extent_state *cache = NULL;
1085 struct extent_state **cachedp = &cache;
1086
1087 if (cached_state)
1088 cachedp = cached_state;
1089
1090 while (1) {
1091 lock_extent(&inode->io_tree, start, end, cachedp);
1092 ordered = btrfs_lookup_ordered_range(inode, start,
1093 end - start + 1);
1094 if (!ordered) {
1095 /*
1096 * If no external cached_state has been passed then
1097 * decrement the extra ref taken for cachedp since we
1098 * aren't exposing it outside of this function
1099 */
1100 if (!cached_state)
1101 refcount_dec(&cache->refs);
1102 break;
1103 }
1104 unlock_extent(&inode->io_tree, start, end, cachedp);
1105 btrfs_start_ordered_extent(ordered);
1106 btrfs_put_ordered_extent(ordered);
1107 }
1108}
1109
1110/*
1111 * Lock the passed range and ensure all pending ordered extents in it are run
1112 * to completion in nowait mode.
1113 *
1114 * Return true if btrfs_lock_ordered_range does not return any extents,
1115 * otherwise false.
1116 */
1117bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1118 struct extent_state **cached_state)
1119{
1120 struct btrfs_ordered_extent *ordered;
1121
1122 if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1123 return false;
1124
1125 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1126 if (!ordered)
1127 return true;
1128
1129 btrfs_put_ordered_extent(ordered);
1130 unlock_extent(&inode->io_tree, start, end, cached_state);
1131
1132 return false;
1133}
1134
1135/* Split out a new ordered extent for this first @len bytes of @ordered. */
1136struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1137 struct btrfs_ordered_extent *ordered, u64 len)
1138{
1139 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1140 struct btrfs_root *root = inode->root;
1141 struct btrfs_fs_info *fs_info = root->fs_info;
1142 u64 file_offset = ordered->file_offset;
1143 u64 disk_bytenr = ordered->disk_bytenr;
1144 unsigned long flags = ordered->flags;
1145 struct btrfs_ordered_sum *sum, *tmpsum;
1146 struct btrfs_ordered_extent *new;
1147 struct rb_node *node;
1148 u64 offset = 0;
1149
1150 trace_btrfs_ordered_extent_split(inode, ordered);
1151
1152 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1153
1154 /*
1155 * The entire bio must be covered by the ordered extent, but we can't
1156 * reduce the original extent to a zero length either.
1157 */
1158 if (WARN_ON_ONCE(len >= ordered->num_bytes))
1159 return ERR_PTR(-EINVAL);
1160 /* We cannot split partially completed ordered extents. */
1161 if (ordered->bytes_left) {
1162 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1163 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1164 return ERR_PTR(-EINVAL);
1165 }
1166 /* We cannot split a compressed ordered extent. */
1167 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1168 return ERR_PTR(-EINVAL);
1169
1170 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1171 len, 0, flags, ordered->compress_type);
1172 if (IS_ERR(new))
1173 return new;
1174
1175 /* One ref for the tree. */
1176 refcount_inc(&new->refs);
1177
1178 spin_lock_irq(&root->ordered_extent_lock);
1179 spin_lock(&inode->ordered_tree_lock);
1180 /* Remove from tree once */
1181 node = &ordered->rb_node;
1182 rb_erase(node, &inode->ordered_tree);
1183 RB_CLEAR_NODE(node);
1184 if (inode->ordered_tree_last == node)
1185 inode->ordered_tree_last = NULL;
1186
1187 ordered->file_offset += len;
1188 ordered->disk_bytenr += len;
1189 ordered->num_bytes -= len;
1190 ordered->disk_num_bytes -= len;
1191 ordered->ram_bytes -= len;
1192
1193 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1194 ASSERT(ordered->bytes_left == 0);
1195 new->bytes_left = 0;
1196 } else {
1197 ordered->bytes_left -= len;
1198 }
1199
1200 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1201 if (ordered->truncated_len > len) {
1202 ordered->truncated_len -= len;
1203 } else {
1204 new->truncated_len = ordered->truncated_len;
1205 ordered->truncated_len = 0;
1206 }
1207 }
1208
1209 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1210 if (offset == len)
1211 break;
1212 list_move_tail(&sum->list, &new->list);
1213 offset += sum->len;
1214 }
1215
1216 /* Re-insert the node */
1217 node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1218 &ordered->rb_node);
1219 if (node)
1220 btrfs_panic(fs_info, -EEXIST,
1221 "zoned: inconsistency in ordered tree at offset %llu",
1222 ordered->file_offset);
1223
1224 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1225 if (node)
1226 btrfs_panic(fs_info, -EEXIST,
1227 "zoned: inconsistency in ordered tree at offset %llu",
1228 new->file_offset);
1229 spin_unlock(&inode->ordered_tree_lock);
1230
1231 list_add_tail(&new->root_extent_list, &root->ordered_extents);
1232 root->nr_ordered_extents++;
1233 spin_unlock_irq(&root->ordered_extent_lock);
1234 return new;
1235}
1236
1237int __init ordered_data_init(void)
1238{
1239 btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1240 if (!btrfs_ordered_extent_cache)
1241 return -ENOMEM;
1242
1243 return 0;
1244}
1245
1246void __cold ordered_data_exit(void)
1247{
1248 kmem_cache_destroy(btrfs_ordered_extent_cache);
1249}