Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/slab.h>
 20#include <linux/blkdev.h>
 21#include <linux/writeback.h>
 22#include <linux/pagevec.h>
 23#include "ctree.h"
 24#include "transaction.h"
 25#include "btrfs_inode.h"
 26#include "extent_io.h"
 27
 28static u64 entry_end(struct btrfs_ordered_extent *entry)
 29{
 30	if (entry->file_offset + entry->len < entry->file_offset)
 31		return (u64)-1;
 32	return entry->file_offset + entry->len;
 33}
 34
 35/* returns NULL if the insertion worked, or it returns the node it did find
 36 * in the tree
 37 */
 38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 39				   struct rb_node *node)
 40{
 41	struct rb_node **p = &root->rb_node;
 42	struct rb_node *parent = NULL;
 43	struct btrfs_ordered_extent *entry;
 44
 45	while (*p) {
 46		parent = *p;
 47		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 48
 49		if (file_offset < entry->file_offset)
 50			p = &(*p)->rb_left;
 51		else if (file_offset >= entry_end(entry))
 52			p = &(*p)->rb_right;
 53		else
 54			return parent;
 55	}
 56
 57	rb_link_node(node, parent, p);
 58	rb_insert_color(node, root);
 59	return NULL;
 60}
 61
 62static void ordered_data_tree_panic(struct inode *inode, int errno,
 63					       u64 offset)
 64{
 65	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 66	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
 67		    "%llu\n", (unsigned long long)offset);
 68}
 69
 70/*
 71 * look for a given offset in the tree, and if it can't be found return the
 72 * first lesser offset
 73 */
 74static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 75				     struct rb_node **prev_ret)
 76{
 77	struct rb_node *n = root->rb_node;
 78	struct rb_node *prev = NULL;
 79	struct rb_node *test;
 80	struct btrfs_ordered_extent *entry;
 81	struct btrfs_ordered_extent *prev_entry = NULL;
 82
 83	while (n) {
 84		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 85		prev = n;
 86		prev_entry = entry;
 87
 88		if (file_offset < entry->file_offset)
 89			n = n->rb_left;
 90		else if (file_offset >= entry_end(entry))
 91			n = n->rb_right;
 92		else
 93			return n;
 94	}
 95	if (!prev_ret)
 96		return NULL;
 97
 98	while (prev && file_offset >= entry_end(prev_entry)) {
 99		test = rb_next(prev);
100		if (!test)
101			break;
102		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103				      rb_node);
104		if (file_offset < entry_end(prev_entry))
105			break;
106
107		prev = test;
108	}
109	if (prev)
110		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
111				      rb_node);
112	while (prev && file_offset < entry_end(prev_entry)) {
113		test = rb_prev(prev);
114		if (!test)
115			break;
116		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
117				      rb_node);
118		prev = test;
119	}
120	*prev_ret = prev;
121	return NULL;
122}
123
124/*
125 * helper to check if a given offset is inside a given entry
126 */
127static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
128{
129	if (file_offset < entry->file_offset ||
130	    entry->file_offset + entry->len <= file_offset)
131		return 0;
132	return 1;
133}
134
135static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
136			  u64 len)
137{
138	if (file_offset + len <= entry->file_offset ||
139	    entry->file_offset + entry->len <= file_offset)
140		return 0;
141	return 1;
142}
143
144/*
145 * look find the first ordered struct that has this offset, otherwise
146 * the first one less than this offset
147 */
148static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
149					  u64 file_offset)
150{
151	struct rb_root *root = &tree->tree;
152	struct rb_node *prev = NULL;
153	struct rb_node *ret;
154	struct btrfs_ordered_extent *entry;
155
156	if (tree->last) {
157		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
158				 rb_node);
159		if (offset_in_entry(entry, file_offset))
160			return tree->last;
161	}
162	ret = __tree_search(root, file_offset, &prev);
163	if (!ret)
164		ret = prev;
165	if (ret)
166		tree->last = ret;
167	return ret;
168}
169
170/* allocate and add a new ordered_extent into the per-inode tree.
171 * file_offset is the logical offset in the file
172 *
173 * start is the disk block number of an extent already reserved in the
174 * extent allocation tree
175 *
176 * len is the length of the extent
177 *
178 * The tree is given a single reference on the ordered extent that was
179 * inserted.
180 */
181static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
182				      u64 start, u64 len, u64 disk_len,
183				      int type, int dio, int compress_type)
184{
185	struct btrfs_ordered_inode_tree *tree;
186	struct rb_node *node;
187	struct btrfs_ordered_extent *entry;
188
189	tree = &BTRFS_I(inode)->ordered_tree;
190	entry = kzalloc(sizeof(*entry), GFP_NOFS);
191	if (!entry)
192		return -ENOMEM;
193
194	entry->file_offset = file_offset;
195	entry->start = start;
196	entry->len = len;
197	entry->disk_len = disk_len;
198	entry->bytes_left = len;
199	entry->inode = igrab(inode);
200	entry->compress_type = compress_type;
201	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
202		set_bit(type, &entry->flags);
203
204	if (dio)
205		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206
207	/* one ref for the tree */
208	atomic_set(&entry->refs, 1);
209	init_waitqueue_head(&entry->wait);
210	INIT_LIST_HEAD(&entry->list);
211	INIT_LIST_HEAD(&entry->root_extent_list);
212
213	trace_btrfs_ordered_extent_add(inode, entry);
214
215	spin_lock_irq(&tree->lock);
216	node = tree_insert(&tree->tree, file_offset,
217			   &entry->rb_node);
218	if (node)
219		ordered_data_tree_panic(inode, -EEXIST, file_offset);
220	spin_unlock_irq(&tree->lock);
221
222	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
223	list_add_tail(&entry->root_extent_list,
224		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
225	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
226
227	return 0;
228}
229
230int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
231			     u64 start, u64 len, u64 disk_len, int type)
232{
233	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234					  disk_len, type, 0,
235					  BTRFS_COMPRESS_NONE);
236}
237
238int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
239				 u64 start, u64 len, u64 disk_len, int type)
240{
241	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
242					  disk_len, type, 1,
243					  BTRFS_COMPRESS_NONE);
244}
245
246int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
247				      u64 start, u64 len, u64 disk_len,
248				      int type, int compress_type)
249{
250	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251					  disk_len, type, 0,
252					  compress_type);
253}
254
255/*
256 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
257 * when an ordered extent is finished.  If the list covers more than one
258 * ordered extent, it is split across multiples.
259 */
260void btrfs_add_ordered_sum(struct inode *inode,
261			   struct btrfs_ordered_extent *entry,
262			   struct btrfs_ordered_sum *sum)
263{
264	struct btrfs_ordered_inode_tree *tree;
265
266	tree = &BTRFS_I(inode)->ordered_tree;
267	spin_lock_irq(&tree->lock);
268	list_add_tail(&sum->list, &entry->list);
269	spin_unlock_irq(&tree->lock);
270}
271
272/*
273 * this is used to account for finished IO across a given range
274 * of the file.  The IO may span ordered extents.  If
275 * a given ordered_extent is completely done, 1 is returned, otherwise
276 * 0.
277 *
278 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
279 * to make sure this function only returns 1 once for a given ordered extent.
280 *
281 * file_offset is updated to one byte past the range that is recorded as
282 * complete.  This allows you to walk forward in the file.
283 */
284int btrfs_dec_test_first_ordered_pending(struct inode *inode,
285				   struct btrfs_ordered_extent **cached,
286				   u64 *file_offset, u64 io_size, int uptodate)
287{
288	struct btrfs_ordered_inode_tree *tree;
289	struct rb_node *node;
290	struct btrfs_ordered_extent *entry = NULL;
291	int ret;
292	unsigned long flags;
293	u64 dec_end;
294	u64 dec_start;
295	u64 to_dec;
296
297	tree = &BTRFS_I(inode)->ordered_tree;
298	spin_lock_irqsave(&tree->lock, flags);
299	node = tree_search(tree, *file_offset);
300	if (!node) {
301		ret = 1;
302		goto out;
303	}
304
305	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
306	if (!offset_in_entry(entry, *file_offset)) {
307		ret = 1;
308		goto out;
309	}
310
311	dec_start = max(*file_offset, entry->file_offset);
312	dec_end = min(*file_offset + io_size, entry->file_offset +
313		      entry->len);
314	*file_offset = dec_end;
315	if (dec_start > dec_end) {
316		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
317		       (unsigned long long)dec_start,
318		       (unsigned long long)dec_end);
319	}
320	to_dec = dec_end - dec_start;
321	if (to_dec > entry->bytes_left) {
322		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
323		       (unsigned long long)entry->bytes_left,
324		       (unsigned long long)to_dec);
325	}
326	entry->bytes_left -= to_dec;
327	if (!uptodate)
328		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
329
330	if (entry->bytes_left == 0)
331		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
332	else
333		ret = 1;
334out:
335	if (!ret && cached && entry) {
336		*cached = entry;
337		atomic_inc(&entry->refs);
338	}
339	spin_unlock_irqrestore(&tree->lock, flags);
340	return ret == 0;
341}
342
343/*
344 * this is used to account for finished IO across a given range
345 * of the file.  The IO should not span ordered extents.  If
346 * a given ordered_extent is completely done, 1 is returned, otherwise
347 * 0.
348 *
349 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
350 * to make sure this function only returns 1 once for a given ordered extent.
351 */
352int btrfs_dec_test_ordered_pending(struct inode *inode,
353				   struct btrfs_ordered_extent **cached,
354				   u64 file_offset, u64 io_size, int uptodate)
355{
356	struct btrfs_ordered_inode_tree *tree;
357	struct rb_node *node;
358	struct btrfs_ordered_extent *entry = NULL;
359	unsigned long flags;
360	int ret;
361
362	tree = &BTRFS_I(inode)->ordered_tree;
363	spin_lock_irqsave(&tree->lock, flags);
364	if (cached && *cached) {
365		entry = *cached;
366		goto have_entry;
367	}
368
369	node = tree_search(tree, file_offset);
370	if (!node) {
371		ret = 1;
372		goto out;
373	}
374
375	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
376have_entry:
377	if (!offset_in_entry(entry, file_offset)) {
378		ret = 1;
379		goto out;
380	}
381
382	if (io_size > entry->bytes_left) {
383		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
384		       (unsigned long long)entry->bytes_left,
385		       (unsigned long long)io_size);
386	}
387	entry->bytes_left -= io_size;
388	if (!uptodate)
389		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
390
391	if (entry->bytes_left == 0)
392		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
393	else
394		ret = 1;
395out:
396	if (!ret && cached && entry) {
397		*cached = entry;
398		atomic_inc(&entry->refs);
399	}
400	spin_unlock_irqrestore(&tree->lock, flags);
401	return ret == 0;
402}
403
404/*
405 * used to drop a reference on an ordered extent.  This will free
406 * the extent if the last reference is dropped
407 */
408void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
409{
410	struct list_head *cur;
411	struct btrfs_ordered_sum *sum;
412
413	trace_btrfs_ordered_extent_put(entry->inode, entry);
414
415	if (atomic_dec_and_test(&entry->refs)) {
416		if (entry->inode)
417			btrfs_add_delayed_iput(entry->inode);
418		while (!list_empty(&entry->list)) {
419			cur = entry->list.next;
420			sum = list_entry(cur, struct btrfs_ordered_sum, list);
421			list_del(&sum->list);
422			kfree(sum);
423		}
424		kfree(entry);
425	}
426}
427
428/*
429 * remove an ordered extent from the tree.  No references are dropped
430 * and waiters are woken up.
431 */
432void btrfs_remove_ordered_extent(struct inode *inode,
433				 struct btrfs_ordered_extent *entry)
434{
435	struct btrfs_ordered_inode_tree *tree;
436	struct btrfs_root *root = BTRFS_I(inode)->root;
437	struct rb_node *node;
438
439	tree = &BTRFS_I(inode)->ordered_tree;
440	spin_lock_irq(&tree->lock);
441	node = &entry->rb_node;
442	rb_erase(node, &tree->tree);
443	tree->last = NULL;
444	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
445	spin_unlock_irq(&tree->lock);
446
447	spin_lock(&root->fs_info->ordered_extent_lock);
448	list_del_init(&entry->root_extent_list);
449
450	trace_btrfs_ordered_extent_remove(inode, entry);
451
452	/*
453	 * we have no more ordered extents for this inode and
454	 * no dirty pages.  We can safely remove it from the
455	 * list of ordered extents
456	 */
457	if (RB_EMPTY_ROOT(&tree->tree) &&
458	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
459		list_del_init(&BTRFS_I(inode)->ordered_operations);
460	}
461	spin_unlock(&root->fs_info->ordered_extent_lock);
462	wake_up(&entry->wait);
463}
464
465/*
466 * wait for all the ordered extents in a root.  This is done when balancing
467 * space between drives.
468 */
469void btrfs_wait_ordered_extents(struct btrfs_root *root,
470				int nocow_only, int delay_iput)
471{
472	struct list_head splice;
473	struct list_head *cur;
474	struct btrfs_ordered_extent *ordered;
475	struct inode *inode;
476
477	INIT_LIST_HEAD(&splice);
478
479	spin_lock(&root->fs_info->ordered_extent_lock);
480	list_splice_init(&root->fs_info->ordered_extents, &splice);
481	while (!list_empty(&splice)) {
482		cur = splice.next;
483		ordered = list_entry(cur, struct btrfs_ordered_extent,
484				     root_extent_list);
485		if (nocow_only &&
486		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
487		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
488			list_move(&ordered->root_extent_list,
489				  &root->fs_info->ordered_extents);
490			cond_resched_lock(&root->fs_info->ordered_extent_lock);
491			continue;
492		}
493
494		list_del_init(&ordered->root_extent_list);
495		atomic_inc(&ordered->refs);
496
497		/*
498		 * the inode may be getting freed (in sys_unlink path).
499		 */
500		inode = igrab(ordered->inode);
501
502		spin_unlock(&root->fs_info->ordered_extent_lock);
503
504		if (inode) {
505			btrfs_start_ordered_extent(inode, ordered, 1);
506			btrfs_put_ordered_extent(ordered);
507			if (delay_iput)
508				btrfs_add_delayed_iput(inode);
509			else
510				iput(inode);
511		} else {
512			btrfs_put_ordered_extent(ordered);
513		}
514
515		spin_lock(&root->fs_info->ordered_extent_lock);
516	}
517	spin_unlock(&root->fs_info->ordered_extent_lock);
518}
519
520/*
521 * this is used during transaction commit to write all the inodes
522 * added to the ordered operation list.  These files must be fully on
523 * disk before the transaction commits.
524 *
525 * we have two modes here, one is to just start the IO via filemap_flush
526 * and the other is to wait for all the io.  When we wait, we have an
527 * extra check to make sure the ordered operation list really is empty
528 * before we return
529 */
530void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
531{
532	struct btrfs_inode *btrfs_inode;
533	struct inode *inode;
534	struct list_head splice;
535
536	INIT_LIST_HEAD(&splice);
537
538	mutex_lock(&root->fs_info->ordered_operations_mutex);
539	spin_lock(&root->fs_info->ordered_extent_lock);
540again:
541	list_splice_init(&root->fs_info->ordered_operations, &splice);
542
543	while (!list_empty(&splice)) {
544		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
545				   ordered_operations);
546
547		inode = &btrfs_inode->vfs_inode;
548
549		list_del_init(&btrfs_inode->ordered_operations);
550
551		/*
552		 * the inode may be getting freed (in sys_unlink path).
553		 */
554		inode = igrab(inode);
555
556		if (!wait && inode) {
557			list_add_tail(&BTRFS_I(inode)->ordered_operations,
558			      &root->fs_info->ordered_operations);
559		}
560		spin_unlock(&root->fs_info->ordered_extent_lock);
561
562		if (inode) {
563			if (wait)
564				btrfs_wait_ordered_range(inode, 0, (u64)-1);
565			else
566				filemap_flush(inode->i_mapping);
567			btrfs_add_delayed_iput(inode);
568		}
569
570		cond_resched();
571		spin_lock(&root->fs_info->ordered_extent_lock);
572	}
573	if (wait && !list_empty(&root->fs_info->ordered_operations))
574		goto again;
575
576	spin_unlock(&root->fs_info->ordered_extent_lock);
577	mutex_unlock(&root->fs_info->ordered_operations_mutex);
578}
579
580/*
581 * Used to start IO or wait for a given ordered extent to finish.
582 *
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
586 */
587void btrfs_start_ordered_extent(struct inode *inode,
588				       struct btrfs_ordered_extent *entry,
589				       int wait)
590{
591	u64 start = entry->file_offset;
592	u64 end = start + entry->len - 1;
593
594	trace_btrfs_ordered_extent_start(inode, entry);
595
596	/*
597	 * pages in the range can be dirty, clean or writeback.  We
598	 * start IO on any dirty ones so the wait doesn't stall waiting
599	 * for pdflush to find them
600	 */
601	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602		filemap_fdatawrite_range(inode->i_mapping, start, end);
603	if (wait) {
604		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605						 &entry->flags));
606	}
607}
608
609/*
610 * Used to wait on ordered extents across a large range of bytes.
611 */
612void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
613{
614	u64 end;
615	u64 orig_end;
616	struct btrfs_ordered_extent *ordered;
617	int found;
618
619	if (start + len < start) {
620		orig_end = INT_LIMIT(loff_t);
621	} else {
622		orig_end = start + len - 1;
623		if (orig_end > INT_LIMIT(loff_t))
624			orig_end = INT_LIMIT(loff_t);
625	}
626
627	/* start IO across the range first to instantiate any delalloc
628	 * extents
629	 */
630	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
631
632	/*
633	 * So with compression we will find and lock a dirty page and clear the
634	 * first one as dirty, setup an async extent, and immediately return
635	 * with the entire range locked but with nobody actually marked with
636	 * writeback.  So we can't just filemap_write_and_wait_range() and
637	 * expect it to work since it will just kick off a thread to do the
638	 * actual work.  So we need to call filemap_fdatawrite_range _again_
639	 * since it will wait on the page lock, which won't be unlocked until
640	 * after the pages have been marked as writeback and so we're good to go
641	 * from there.  We have to do this otherwise we'll miss the ordered
642	 * extents and that results in badness.  Please Josef, do not think you
643	 * know better and pull this out at some point in the future, it is
644	 * right and you are wrong.
645	 */
646	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
647		     &BTRFS_I(inode)->runtime_flags))
648		filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
649
650	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
651
652	end = orig_end;
653	found = 0;
654	while (1) {
655		ordered = btrfs_lookup_first_ordered_extent(inode, end);
656		if (!ordered)
657			break;
658		if (ordered->file_offset > orig_end) {
659			btrfs_put_ordered_extent(ordered);
660			break;
661		}
662		if (ordered->file_offset + ordered->len < start) {
663			btrfs_put_ordered_extent(ordered);
664			break;
665		}
666		found++;
667		btrfs_start_ordered_extent(inode, ordered, 1);
668		end = ordered->file_offset;
669		btrfs_put_ordered_extent(ordered);
670		if (end == 0 || end == start)
671			break;
672		end--;
673	}
674}
675
676/*
677 * find an ordered extent corresponding to file_offset.  return NULL if
678 * nothing is found, otherwise take a reference on the extent and return it
679 */
680struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
681							 u64 file_offset)
682{
683	struct btrfs_ordered_inode_tree *tree;
684	struct rb_node *node;
685	struct btrfs_ordered_extent *entry = NULL;
686
687	tree = &BTRFS_I(inode)->ordered_tree;
688	spin_lock_irq(&tree->lock);
689	node = tree_search(tree, file_offset);
690	if (!node)
691		goto out;
692
693	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
694	if (!offset_in_entry(entry, file_offset))
695		entry = NULL;
696	if (entry)
697		atomic_inc(&entry->refs);
698out:
699	spin_unlock_irq(&tree->lock);
700	return entry;
701}
702
703/* Since the DIO code tries to lock a wide area we need to look for any ordered
704 * extents that exist in the range, rather than just the start of the range.
705 */
706struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
707							u64 file_offset,
708							u64 len)
709{
710	struct btrfs_ordered_inode_tree *tree;
711	struct rb_node *node;
712	struct btrfs_ordered_extent *entry = NULL;
713
714	tree = &BTRFS_I(inode)->ordered_tree;
715	spin_lock_irq(&tree->lock);
716	node = tree_search(tree, file_offset);
717	if (!node) {
718		node = tree_search(tree, file_offset + len);
719		if (!node)
720			goto out;
721	}
722
723	while (1) {
724		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
725		if (range_overlaps(entry, file_offset, len))
726			break;
727
728		if (entry->file_offset >= file_offset + len) {
729			entry = NULL;
730			break;
731		}
732		entry = NULL;
733		node = rb_next(node);
734		if (!node)
735			break;
736	}
737out:
738	if (entry)
739		atomic_inc(&entry->refs);
740	spin_unlock_irq(&tree->lock);
741	return entry;
742}
743
744/*
745 * lookup and return any extent before 'file_offset'.  NULL is returned
746 * if none is found
747 */
748struct btrfs_ordered_extent *
749btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
750{
751	struct btrfs_ordered_inode_tree *tree;
752	struct rb_node *node;
753	struct btrfs_ordered_extent *entry = NULL;
754
755	tree = &BTRFS_I(inode)->ordered_tree;
756	spin_lock_irq(&tree->lock);
757	node = tree_search(tree, file_offset);
758	if (!node)
759		goto out;
760
761	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
762	atomic_inc(&entry->refs);
763out:
764	spin_unlock_irq(&tree->lock);
765	return entry;
766}
767
768/*
769 * After an extent is done, call this to conditionally update the on disk
770 * i_size.  i_size is updated to cover any fully written part of the file.
771 */
772int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
773				struct btrfs_ordered_extent *ordered)
774{
775	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
776	u64 disk_i_size;
777	u64 new_i_size;
778	u64 i_size_test;
779	u64 i_size = i_size_read(inode);
780	struct rb_node *node;
781	struct rb_node *prev = NULL;
782	struct btrfs_ordered_extent *test;
783	int ret = 1;
784
785	if (ordered)
786		offset = entry_end(ordered);
787	else
788		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
789
790	spin_lock_irq(&tree->lock);
791	disk_i_size = BTRFS_I(inode)->disk_i_size;
792
793	/* truncate file */
794	if (disk_i_size > i_size) {
795		BTRFS_I(inode)->disk_i_size = i_size;
796		ret = 0;
797		goto out;
798	}
799
800	/*
801	 * if the disk i_size is already at the inode->i_size, or
802	 * this ordered extent is inside the disk i_size, we're done
803	 */
804	if (disk_i_size == i_size || offset <= disk_i_size) {
805		goto out;
806	}
807
808	/*
809	 * walk backward from this ordered extent to disk_i_size.
810	 * if we find an ordered extent then we can't update disk i_size
811	 * yet
812	 */
813	if (ordered) {
814		node = rb_prev(&ordered->rb_node);
815	} else {
816		prev = tree_search(tree, offset);
817		/*
818		 * we insert file extents without involving ordered struct,
819		 * so there should be no ordered struct cover this offset
820		 */
821		if (prev) {
822			test = rb_entry(prev, struct btrfs_ordered_extent,
823					rb_node);
824			BUG_ON(offset_in_entry(test, offset));
825		}
826		node = prev;
827	}
828	for (; node; node = rb_prev(node)) {
829		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
830
831		/* We treat this entry as if it doesnt exist */
832		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
833			continue;
834		if (test->file_offset + test->len <= disk_i_size)
835			break;
836		if (test->file_offset >= i_size)
837			break;
838		if (test->file_offset >= disk_i_size)
839			goto out;
840	}
841	new_i_size = min_t(u64, offset, i_size);
842
843	/*
844	 * at this point, we know we can safely update i_size to at least
845	 * the offset from this ordered extent.  But, we need to
846	 * walk forward and see if ios from higher up in the file have
847	 * finished.
848	 */
849	if (ordered) {
850		node = rb_next(&ordered->rb_node);
851	} else {
852		if (prev)
853			node = rb_next(prev);
854		else
855			node = rb_first(&tree->tree);
856	}
857
858	/*
859	 * We are looking for an area between our current extent and the next
860	 * ordered extent to update the i_size to.  There are 3 cases here
861	 *
862	 * 1) We don't actually have anything and we can update to i_size.
863	 * 2) We have stuff but they already did their i_size update so again we
864	 * can just update to i_size.
865	 * 3) We have an outstanding ordered extent so the most we can update
866	 * our disk_i_size to is the start of the next offset.
867	 */
868	i_size_test = i_size;
869	for (; node; node = rb_next(node)) {
870		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871
872		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
873			continue;
874		if (test->file_offset > offset) {
875			i_size_test = test->file_offset;
876			break;
877		}
878	}
879
880	/*
881	 * i_size_test is the end of a region after this ordered
882	 * extent where there are no ordered extents, we can safely set
883	 * disk_i_size to this.
884	 */
885	if (i_size_test > offset)
886		new_i_size = min_t(u64, i_size_test, i_size);
887	BTRFS_I(inode)->disk_i_size = new_i_size;
888	ret = 0;
889out:
890	/*
891	 * We need to do this because we can't remove ordered extents until
892	 * after the i_disk_size has been updated and then the inode has been
893	 * updated to reflect the change, so we need to tell anybody who finds
894	 * this ordered extent that we've already done all the real work, we
895	 * just haven't completed all the other work.
896	 */
897	if (ordered)
898		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
899	spin_unlock_irq(&tree->lock);
900	return ret;
901}
902
903/*
904 * search the ordered extents for one corresponding to 'offset' and
905 * try to find a checksum.  This is used because we allow pages to
906 * be reclaimed before their checksum is actually put into the btree
907 */
908int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
909			   u32 *sum)
910{
911	struct btrfs_ordered_sum *ordered_sum;
912	struct btrfs_sector_sum *sector_sums;
913	struct btrfs_ordered_extent *ordered;
914	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
915	unsigned long num_sectors;
916	unsigned long i;
917	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
918	int ret = 1;
919
920	ordered = btrfs_lookup_ordered_extent(inode, offset);
921	if (!ordered)
922		return 1;
923
924	spin_lock_irq(&tree->lock);
925	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
926		if (disk_bytenr >= ordered_sum->bytenr) {
927			num_sectors = ordered_sum->len / sectorsize;
928			sector_sums = ordered_sum->sums;
929			for (i = 0; i < num_sectors; i++) {
930				if (sector_sums[i].bytenr == disk_bytenr) {
931					*sum = sector_sums[i].sum;
932					ret = 0;
933					goto out;
934				}
935			}
936		}
937	}
938out:
939	spin_unlock_irq(&tree->lock);
940	btrfs_put_ordered_extent(ordered);
941	return ret;
942}
943
944
945/*
946 * add a given inode to the list of inodes that must be fully on
947 * disk before a transaction commit finishes.
948 *
949 * This basically gives us the ext3 style data=ordered mode, and it is mostly
950 * used to make sure renamed files are fully on disk.
951 *
952 * It is a noop if the inode is already fully on disk.
953 *
954 * If trans is not null, we'll do a friendly check for a transaction that
955 * is already flushing things and force the IO down ourselves.
956 */
957void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
958				 struct btrfs_root *root, struct inode *inode)
959{
960	u64 last_mod;
961
962	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
963
964	/*
965	 * if this file hasn't been changed since the last transaction
966	 * commit, we can safely return without doing anything
967	 */
968	if (last_mod < root->fs_info->last_trans_committed)
969		return;
970
971	/*
972	 * the transaction is already committing.  Just start the IO and
973	 * don't bother with all of this list nonsense
974	 */
975	if (trans && root->fs_info->running_transaction->blocked) {
976		btrfs_wait_ordered_range(inode, 0, (u64)-1);
977		return;
978	}
979
980	spin_lock(&root->fs_info->ordered_extent_lock);
981	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
982		list_add_tail(&BTRFS_I(inode)->ordered_operations,
983			      &root->fs_info->ordered_operations);
984	}
985	spin_unlock(&root->fs_info->ordered_extent_lock);
986}
v3.5.6
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/slab.h>
 20#include <linux/blkdev.h>
 21#include <linux/writeback.h>
 22#include <linux/pagevec.h>
 23#include "ctree.h"
 24#include "transaction.h"
 25#include "btrfs_inode.h"
 26#include "extent_io.h"
 27
 28static u64 entry_end(struct btrfs_ordered_extent *entry)
 29{
 30	if (entry->file_offset + entry->len < entry->file_offset)
 31		return (u64)-1;
 32	return entry->file_offset + entry->len;
 33}
 34
 35/* returns NULL if the insertion worked, or it returns the node it did find
 36 * in the tree
 37 */
 38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 39				   struct rb_node *node)
 40{
 41	struct rb_node **p = &root->rb_node;
 42	struct rb_node *parent = NULL;
 43	struct btrfs_ordered_extent *entry;
 44
 45	while (*p) {
 46		parent = *p;
 47		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 48
 49		if (file_offset < entry->file_offset)
 50			p = &(*p)->rb_left;
 51		else if (file_offset >= entry_end(entry))
 52			p = &(*p)->rb_right;
 53		else
 54			return parent;
 55	}
 56
 57	rb_link_node(node, parent, p);
 58	rb_insert_color(node, root);
 59	return NULL;
 60}
 61
 62static void ordered_data_tree_panic(struct inode *inode, int errno,
 63					       u64 offset)
 64{
 65	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 66	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
 67		    "%llu\n", (unsigned long long)offset);
 68}
 69
 70/*
 71 * look for a given offset in the tree, and if it can't be found return the
 72 * first lesser offset
 73 */
 74static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 75				     struct rb_node **prev_ret)
 76{
 77	struct rb_node *n = root->rb_node;
 78	struct rb_node *prev = NULL;
 79	struct rb_node *test;
 80	struct btrfs_ordered_extent *entry;
 81	struct btrfs_ordered_extent *prev_entry = NULL;
 82
 83	while (n) {
 84		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 85		prev = n;
 86		prev_entry = entry;
 87
 88		if (file_offset < entry->file_offset)
 89			n = n->rb_left;
 90		else if (file_offset >= entry_end(entry))
 91			n = n->rb_right;
 92		else
 93			return n;
 94	}
 95	if (!prev_ret)
 96		return NULL;
 97
 98	while (prev && file_offset >= entry_end(prev_entry)) {
 99		test = rb_next(prev);
100		if (!test)
101			break;
102		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103				      rb_node);
104		if (file_offset < entry_end(prev_entry))
105			break;
106
107		prev = test;
108	}
109	if (prev)
110		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
111				      rb_node);
112	while (prev && file_offset < entry_end(prev_entry)) {
113		test = rb_prev(prev);
114		if (!test)
115			break;
116		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
117				      rb_node);
118		prev = test;
119	}
120	*prev_ret = prev;
121	return NULL;
122}
123
124/*
125 * helper to check if a given offset is inside a given entry
126 */
127static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
128{
129	if (file_offset < entry->file_offset ||
130	    entry->file_offset + entry->len <= file_offset)
131		return 0;
132	return 1;
133}
134
135static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
136			  u64 len)
137{
138	if (file_offset + len <= entry->file_offset ||
139	    entry->file_offset + entry->len <= file_offset)
140		return 0;
141	return 1;
142}
143
144/*
145 * look find the first ordered struct that has this offset, otherwise
146 * the first one less than this offset
147 */
148static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
149					  u64 file_offset)
150{
151	struct rb_root *root = &tree->tree;
152	struct rb_node *prev = NULL;
153	struct rb_node *ret;
154	struct btrfs_ordered_extent *entry;
155
156	if (tree->last) {
157		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
158				 rb_node);
159		if (offset_in_entry(entry, file_offset))
160			return tree->last;
161	}
162	ret = __tree_search(root, file_offset, &prev);
163	if (!ret)
164		ret = prev;
165	if (ret)
166		tree->last = ret;
167	return ret;
168}
169
170/* allocate and add a new ordered_extent into the per-inode tree.
171 * file_offset is the logical offset in the file
172 *
173 * start is the disk block number of an extent already reserved in the
174 * extent allocation tree
175 *
176 * len is the length of the extent
177 *
178 * The tree is given a single reference on the ordered extent that was
179 * inserted.
180 */
181static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
182				      u64 start, u64 len, u64 disk_len,
183				      int type, int dio, int compress_type)
184{
185	struct btrfs_ordered_inode_tree *tree;
186	struct rb_node *node;
187	struct btrfs_ordered_extent *entry;
188
189	tree = &BTRFS_I(inode)->ordered_tree;
190	entry = kzalloc(sizeof(*entry), GFP_NOFS);
191	if (!entry)
192		return -ENOMEM;
193
194	entry->file_offset = file_offset;
195	entry->start = start;
196	entry->len = len;
197	entry->disk_len = disk_len;
198	entry->bytes_left = len;
199	entry->inode = igrab(inode);
200	entry->compress_type = compress_type;
201	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
202		set_bit(type, &entry->flags);
203
204	if (dio)
205		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206
207	/* one ref for the tree */
208	atomic_set(&entry->refs, 1);
209	init_waitqueue_head(&entry->wait);
210	INIT_LIST_HEAD(&entry->list);
211	INIT_LIST_HEAD(&entry->root_extent_list);
212
213	trace_btrfs_ordered_extent_add(inode, entry);
214
215	spin_lock_irq(&tree->lock);
216	node = tree_insert(&tree->tree, file_offset,
217			   &entry->rb_node);
218	if (node)
219		ordered_data_tree_panic(inode, -EEXIST, file_offset);
220	spin_unlock_irq(&tree->lock);
221
222	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
223	list_add_tail(&entry->root_extent_list,
224		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
225	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
226
227	return 0;
228}
229
230int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
231			     u64 start, u64 len, u64 disk_len, int type)
232{
233	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234					  disk_len, type, 0,
235					  BTRFS_COMPRESS_NONE);
236}
237
238int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
239				 u64 start, u64 len, u64 disk_len, int type)
240{
241	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
242					  disk_len, type, 1,
243					  BTRFS_COMPRESS_NONE);
244}
245
246int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
247				      u64 start, u64 len, u64 disk_len,
248				      int type, int compress_type)
249{
250	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251					  disk_len, type, 0,
252					  compress_type);
253}
254
255/*
256 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
257 * when an ordered extent is finished.  If the list covers more than one
258 * ordered extent, it is split across multiples.
259 */
260void btrfs_add_ordered_sum(struct inode *inode,
261			   struct btrfs_ordered_extent *entry,
262			   struct btrfs_ordered_sum *sum)
263{
264	struct btrfs_ordered_inode_tree *tree;
265
266	tree = &BTRFS_I(inode)->ordered_tree;
267	spin_lock_irq(&tree->lock);
268	list_add_tail(&sum->list, &entry->list);
269	spin_unlock_irq(&tree->lock);
270}
271
272/*
273 * this is used to account for finished IO across a given range
274 * of the file.  The IO may span ordered extents.  If
275 * a given ordered_extent is completely done, 1 is returned, otherwise
276 * 0.
277 *
278 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
279 * to make sure this function only returns 1 once for a given ordered extent.
280 *
281 * file_offset is updated to one byte past the range that is recorded as
282 * complete.  This allows you to walk forward in the file.
283 */
284int btrfs_dec_test_first_ordered_pending(struct inode *inode,
285				   struct btrfs_ordered_extent **cached,
286				   u64 *file_offset, u64 io_size, int uptodate)
287{
288	struct btrfs_ordered_inode_tree *tree;
289	struct rb_node *node;
290	struct btrfs_ordered_extent *entry = NULL;
291	int ret;
292	unsigned long flags;
293	u64 dec_end;
294	u64 dec_start;
295	u64 to_dec;
296
297	tree = &BTRFS_I(inode)->ordered_tree;
298	spin_lock_irqsave(&tree->lock, flags);
299	node = tree_search(tree, *file_offset);
300	if (!node) {
301		ret = 1;
302		goto out;
303	}
304
305	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
306	if (!offset_in_entry(entry, *file_offset)) {
307		ret = 1;
308		goto out;
309	}
310
311	dec_start = max(*file_offset, entry->file_offset);
312	dec_end = min(*file_offset + io_size, entry->file_offset +
313		      entry->len);
314	*file_offset = dec_end;
315	if (dec_start > dec_end) {
316		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
317		       (unsigned long long)dec_start,
318		       (unsigned long long)dec_end);
319	}
320	to_dec = dec_end - dec_start;
321	if (to_dec > entry->bytes_left) {
322		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
323		       (unsigned long long)entry->bytes_left,
324		       (unsigned long long)to_dec);
325	}
326	entry->bytes_left -= to_dec;
327	if (!uptodate)
328		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
329
330	if (entry->bytes_left == 0)
331		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
332	else
333		ret = 1;
334out:
335	if (!ret && cached && entry) {
336		*cached = entry;
337		atomic_inc(&entry->refs);
338	}
339	spin_unlock_irqrestore(&tree->lock, flags);
340	return ret == 0;
341}
342
343/*
344 * this is used to account for finished IO across a given range
345 * of the file.  The IO should not span ordered extents.  If
346 * a given ordered_extent is completely done, 1 is returned, otherwise
347 * 0.
348 *
349 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
350 * to make sure this function only returns 1 once for a given ordered extent.
351 */
352int btrfs_dec_test_ordered_pending(struct inode *inode,
353				   struct btrfs_ordered_extent **cached,
354				   u64 file_offset, u64 io_size, int uptodate)
355{
356	struct btrfs_ordered_inode_tree *tree;
357	struct rb_node *node;
358	struct btrfs_ordered_extent *entry = NULL;
359	unsigned long flags;
360	int ret;
361
362	tree = &BTRFS_I(inode)->ordered_tree;
363	spin_lock_irqsave(&tree->lock, flags);
364	if (cached && *cached) {
365		entry = *cached;
366		goto have_entry;
367	}
368
369	node = tree_search(tree, file_offset);
370	if (!node) {
371		ret = 1;
372		goto out;
373	}
374
375	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
376have_entry:
377	if (!offset_in_entry(entry, file_offset)) {
378		ret = 1;
379		goto out;
380	}
381
382	if (io_size > entry->bytes_left) {
383		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
384		       (unsigned long long)entry->bytes_left,
385		       (unsigned long long)io_size);
386	}
387	entry->bytes_left -= io_size;
388	if (!uptodate)
389		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
390
391	if (entry->bytes_left == 0)
392		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
393	else
394		ret = 1;
395out:
396	if (!ret && cached && entry) {
397		*cached = entry;
398		atomic_inc(&entry->refs);
399	}
400	spin_unlock_irqrestore(&tree->lock, flags);
401	return ret == 0;
402}
403
404/*
405 * used to drop a reference on an ordered extent.  This will free
406 * the extent if the last reference is dropped
407 */
408void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
409{
410	struct list_head *cur;
411	struct btrfs_ordered_sum *sum;
412
413	trace_btrfs_ordered_extent_put(entry->inode, entry);
414
415	if (atomic_dec_and_test(&entry->refs)) {
416		if (entry->inode)
417			btrfs_add_delayed_iput(entry->inode);
418		while (!list_empty(&entry->list)) {
419			cur = entry->list.next;
420			sum = list_entry(cur, struct btrfs_ordered_sum, list);
421			list_del(&sum->list);
422			kfree(sum);
423		}
424		kfree(entry);
425	}
426}
427
428/*
429 * remove an ordered extent from the tree.  No references are dropped
430 * and waiters are woken up.
431 */
432void btrfs_remove_ordered_extent(struct inode *inode,
433				 struct btrfs_ordered_extent *entry)
434{
435	struct btrfs_ordered_inode_tree *tree;
436	struct btrfs_root *root = BTRFS_I(inode)->root;
437	struct rb_node *node;
438
439	tree = &BTRFS_I(inode)->ordered_tree;
440	spin_lock_irq(&tree->lock);
441	node = &entry->rb_node;
442	rb_erase(node, &tree->tree);
443	tree->last = NULL;
444	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
445	spin_unlock_irq(&tree->lock);
446
447	spin_lock(&root->fs_info->ordered_extent_lock);
448	list_del_init(&entry->root_extent_list);
449
450	trace_btrfs_ordered_extent_remove(inode, entry);
451
452	/*
453	 * we have no more ordered extents for this inode and
454	 * no dirty pages.  We can safely remove it from the
455	 * list of ordered extents
456	 */
457	if (RB_EMPTY_ROOT(&tree->tree) &&
458	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
459		list_del_init(&BTRFS_I(inode)->ordered_operations);
460	}
461	spin_unlock(&root->fs_info->ordered_extent_lock);
462	wake_up(&entry->wait);
463}
464
465/*
466 * wait for all the ordered extents in a root.  This is done when balancing
467 * space between drives.
468 */
469void btrfs_wait_ordered_extents(struct btrfs_root *root,
470				int nocow_only, int delay_iput)
471{
472	struct list_head splice;
473	struct list_head *cur;
474	struct btrfs_ordered_extent *ordered;
475	struct inode *inode;
476
477	INIT_LIST_HEAD(&splice);
478
479	spin_lock(&root->fs_info->ordered_extent_lock);
480	list_splice_init(&root->fs_info->ordered_extents, &splice);
481	while (!list_empty(&splice)) {
482		cur = splice.next;
483		ordered = list_entry(cur, struct btrfs_ordered_extent,
484				     root_extent_list);
485		if (nocow_only &&
486		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
487		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
488			list_move(&ordered->root_extent_list,
489				  &root->fs_info->ordered_extents);
490			cond_resched_lock(&root->fs_info->ordered_extent_lock);
491			continue;
492		}
493
494		list_del_init(&ordered->root_extent_list);
495		atomic_inc(&ordered->refs);
496
497		/*
498		 * the inode may be getting freed (in sys_unlink path).
499		 */
500		inode = igrab(ordered->inode);
501
502		spin_unlock(&root->fs_info->ordered_extent_lock);
503
504		if (inode) {
505			btrfs_start_ordered_extent(inode, ordered, 1);
506			btrfs_put_ordered_extent(ordered);
507			if (delay_iput)
508				btrfs_add_delayed_iput(inode);
509			else
510				iput(inode);
511		} else {
512			btrfs_put_ordered_extent(ordered);
513		}
514
515		spin_lock(&root->fs_info->ordered_extent_lock);
516	}
517	spin_unlock(&root->fs_info->ordered_extent_lock);
518}
519
520/*
521 * this is used during transaction commit to write all the inodes
522 * added to the ordered operation list.  These files must be fully on
523 * disk before the transaction commits.
524 *
525 * we have two modes here, one is to just start the IO via filemap_flush
526 * and the other is to wait for all the io.  When we wait, we have an
527 * extra check to make sure the ordered operation list really is empty
528 * before we return
529 */
530void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
531{
532	struct btrfs_inode *btrfs_inode;
533	struct inode *inode;
534	struct list_head splice;
535
536	INIT_LIST_HEAD(&splice);
537
538	mutex_lock(&root->fs_info->ordered_operations_mutex);
539	spin_lock(&root->fs_info->ordered_extent_lock);
540again:
541	list_splice_init(&root->fs_info->ordered_operations, &splice);
542
543	while (!list_empty(&splice)) {
544		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
545				   ordered_operations);
546
547		inode = &btrfs_inode->vfs_inode;
548
549		list_del_init(&btrfs_inode->ordered_operations);
550
551		/*
552		 * the inode may be getting freed (in sys_unlink path).
553		 */
554		inode = igrab(inode);
555
556		if (!wait && inode) {
557			list_add_tail(&BTRFS_I(inode)->ordered_operations,
558			      &root->fs_info->ordered_operations);
559		}
560		spin_unlock(&root->fs_info->ordered_extent_lock);
561
562		if (inode) {
563			if (wait)
564				btrfs_wait_ordered_range(inode, 0, (u64)-1);
565			else
566				filemap_flush(inode->i_mapping);
567			btrfs_add_delayed_iput(inode);
568		}
569
570		cond_resched();
571		spin_lock(&root->fs_info->ordered_extent_lock);
572	}
573	if (wait && !list_empty(&root->fs_info->ordered_operations))
574		goto again;
575
576	spin_unlock(&root->fs_info->ordered_extent_lock);
577	mutex_unlock(&root->fs_info->ordered_operations_mutex);
578}
579
580/*
581 * Used to start IO or wait for a given ordered extent to finish.
582 *
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
586 */
587void btrfs_start_ordered_extent(struct inode *inode,
588				       struct btrfs_ordered_extent *entry,
589				       int wait)
590{
591	u64 start = entry->file_offset;
592	u64 end = start + entry->len - 1;
593
594	trace_btrfs_ordered_extent_start(inode, entry);
595
596	/*
597	 * pages in the range can be dirty, clean or writeback.  We
598	 * start IO on any dirty ones so the wait doesn't stall waiting
599	 * for pdflush to find them
600	 */
601	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602		filemap_fdatawrite_range(inode->i_mapping, start, end);
603	if (wait) {
604		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605						 &entry->flags));
606	}
607}
608
609/*
610 * Used to wait on ordered extents across a large range of bytes.
611 */
612void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
613{
614	u64 end;
615	u64 orig_end;
616	struct btrfs_ordered_extent *ordered;
617	int found;
618
619	if (start + len < start) {
620		orig_end = INT_LIMIT(loff_t);
621	} else {
622		orig_end = start + len - 1;
623		if (orig_end > INT_LIMIT(loff_t))
624			orig_end = INT_LIMIT(loff_t);
625	}
626
627	/* start IO across the range first to instantiate any delalloc
628	 * extents
629	 */
630	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
631
632	/*
633	 * So with compression we will find and lock a dirty page and clear the
634	 * first one as dirty, setup an async extent, and immediately return
635	 * with the entire range locked but with nobody actually marked with
636	 * writeback.  So we can't just filemap_write_and_wait_range() and
637	 * expect it to work since it will just kick off a thread to do the
638	 * actual work.  So we need to call filemap_fdatawrite_range _again_
639	 * since it will wait on the page lock, which won't be unlocked until
640	 * after the pages have been marked as writeback and so we're good to go
641	 * from there.  We have to do this otherwise we'll miss the ordered
642	 * extents and that results in badness.  Please Josef, do not think you
643	 * know better and pull this out at some point in the future, it is
644	 * right and you are wrong.
645	 */
646	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
647		     &BTRFS_I(inode)->runtime_flags))
648		filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
649
650	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
651
652	end = orig_end;
653	found = 0;
654	while (1) {
655		ordered = btrfs_lookup_first_ordered_extent(inode, end);
656		if (!ordered)
657			break;
658		if (ordered->file_offset > orig_end) {
659			btrfs_put_ordered_extent(ordered);
660			break;
661		}
662		if (ordered->file_offset + ordered->len < start) {
663			btrfs_put_ordered_extent(ordered);
664			break;
665		}
666		found++;
667		btrfs_start_ordered_extent(inode, ordered, 1);
668		end = ordered->file_offset;
669		btrfs_put_ordered_extent(ordered);
670		if (end == 0 || end == start)
671			break;
672		end--;
673	}
674}
675
676/*
677 * find an ordered extent corresponding to file_offset.  return NULL if
678 * nothing is found, otherwise take a reference on the extent and return it
679 */
680struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
681							 u64 file_offset)
682{
683	struct btrfs_ordered_inode_tree *tree;
684	struct rb_node *node;
685	struct btrfs_ordered_extent *entry = NULL;
686
687	tree = &BTRFS_I(inode)->ordered_tree;
688	spin_lock_irq(&tree->lock);
689	node = tree_search(tree, file_offset);
690	if (!node)
691		goto out;
692
693	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
694	if (!offset_in_entry(entry, file_offset))
695		entry = NULL;
696	if (entry)
697		atomic_inc(&entry->refs);
698out:
699	spin_unlock_irq(&tree->lock);
700	return entry;
701}
702
703/* Since the DIO code tries to lock a wide area we need to look for any ordered
704 * extents that exist in the range, rather than just the start of the range.
705 */
706struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
707							u64 file_offset,
708							u64 len)
709{
710	struct btrfs_ordered_inode_tree *tree;
711	struct rb_node *node;
712	struct btrfs_ordered_extent *entry = NULL;
713
714	tree = &BTRFS_I(inode)->ordered_tree;
715	spin_lock_irq(&tree->lock);
716	node = tree_search(tree, file_offset);
717	if (!node) {
718		node = tree_search(tree, file_offset + len);
719		if (!node)
720			goto out;
721	}
722
723	while (1) {
724		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
725		if (range_overlaps(entry, file_offset, len))
726			break;
727
728		if (entry->file_offset >= file_offset + len) {
729			entry = NULL;
730			break;
731		}
732		entry = NULL;
733		node = rb_next(node);
734		if (!node)
735			break;
736	}
737out:
738	if (entry)
739		atomic_inc(&entry->refs);
740	spin_unlock_irq(&tree->lock);
741	return entry;
742}
743
744/*
745 * lookup and return any extent before 'file_offset'.  NULL is returned
746 * if none is found
747 */
748struct btrfs_ordered_extent *
749btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
750{
751	struct btrfs_ordered_inode_tree *tree;
752	struct rb_node *node;
753	struct btrfs_ordered_extent *entry = NULL;
754
755	tree = &BTRFS_I(inode)->ordered_tree;
756	spin_lock_irq(&tree->lock);
757	node = tree_search(tree, file_offset);
758	if (!node)
759		goto out;
760
761	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
762	atomic_inc(&entry->refs);
763out:
764	spin_unlock_irq(&tree->lock);
765	return entry;
766}
767
768/*
769 * After an extent is done, call this to conditionally update the on disk
770 * i_size.  i_size is updated to cover any fully written part of the file.
771 */
772int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
773				struct btrfs_ordered_extent *ordered)
774{
775	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
776	u64 disk_i_size;
777	u64 new_i_size;
778	u64 i_size_test;
779	u64 i_size = i_size_read(inode);
780	struct rb_node *node;
781	struct rb_node *prev = NULL;
782	struct btrfs_ordered_extent *test;
783	int ret = 1;
784
785	if (ordered)
786		offset = entry_end(ordered);
787	else
788		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
789
790	spin_lock_irq(&tree->lock);
791	disk_i_size = BTRFS_I(inode)->disk_i_size;
792
793	/* truncate file */
794	if (disk_i_size > i_size) {
795		BTRFS_I(inode)->disk_i_size = i_size;
796		ret = 0;
797		goto out;
798	}
799
800	/*
801	 * if the disk i_size is already at the inode->i_size, or
802	 * this ordered extent is inside the disk i_size, we're done
803	 */
804	if (disk_i_size == i_size || offset <= disk_i_size) {
805		goto out;
806	}
807
808	/*
809	 * walk backward from this ordered extent to disk_i_size.
810	 * if we find an ordered extent then we can't update disk i_size
811	 * yet
812	 */
813	if (ordered) {
814		node = rb_prev(&ordered->rb_node);
815	} else {
816		prev = tree_search(tree, offset);
817		/*
818		 * we insert file extents without involving ordered struct,
819		 * so there should be no ordered struct cover this offset
820		 */
821		if (prev) {
822			test = rb_entry(prev, struct btrfs_ordered_extent,
823					rb_node);
824			BUG_ON(offset_in_entry(test, offset));
825		}
826		node = prev;
827	}
828	for (; node; node = rb_prev(node)) {
829		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
830
831		/* We treat this entry as if it doesnt exist */
832		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
833			continue;
834		if (test->file_offset + test->len <= disk_i_size)
835			break;
836		if (test->file_offset >= i_size)
837			break;
838		if (test->file_offset >= disk_i_size)
839			goto out;
840	}
841	new_i_size = min_t(u64, offset, i_size);
842
843	/*
844	 * at this point, we know we can safely update i_size to at least
845	 * the offset from this ordered extent.  But, we need to
846	 * walk forward and see if ios from higher up in the file have
847	 * finished.
848	 */
849	if (ordered) {
850		node = rb_next(&ordered->rb_node);
851	} else {
852		if (prev)
853			node = rb_next(prev);
854		else
855			node = rb_first(&tree->tree);
856	}
857
858	/*
859	 * We are looking for an area between our current extent and the next
860	 * ordered extent to update the i_size to.  There are 3 cases here
861	 *
862	 * 1) We don't actually have anything and we can update to i_size.
863	 * 2) We have stuff but they already did their i_size update so again we
864	 * can just update to i_size.
865	 * 3) We have an outstanding ordered extent so the most we can update
866	 * our disk_i_size to is the start of the next offset.
867	 */
868	i_size_test = i_size;
869	for (; node; node = rb_next(node)) {
870		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871
872		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
873			continue;
874		if (test->file_offset > offset) {
875			i_size_test = test->file_offset;
876			break;
877		}
878	}
879
880	/*
881	 * i_size_test is the end of a region after this ordered
882	 * extent where there are no ordered extents, we can safely set
883	 * disk_i_size to this.
884	 */
885	if (i_size_test > offset)
886		new_i_size = min_t(u64, i_size_test, i_size);
887	BTRFS_I(inode)->disk_i_size = new_i_size;
888	ret = 0;
889out:
890	/*
891	 * We need to do this because we can't remove ordered extents until
892	 * after the i_disk_size has been updated and then the inode has been
893	 * updated to reflect the change, so we need to tell anybody who finds
894	 * this ordered extent that we've already done all the real work, we
895	 * just haven't completed all the other work.
896	 */
897	if (ordered)
898		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
899	spin_unlock_irq(&tree->lock);
900	return ret;
901}
902
903/*
904 * search the ordered extents for one corresponding to 'offset' and
905 * try to find a checksum.  This is used because we allow pages to
906 * be reclaimed before their checksum is actually put into the btree
907 */
908int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
909			   u32 *sum)
910{
911	struct btrfs_ordered_sum *ordered_sum;
912	struct btrfs_sector_sum *sector_sums;
913	struct btrfs_ordered_extent *ordered;
914	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
915	unsigned long num_sectors;
916	unsigned long i;
917	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
918	int ret = 1;
919
920	ordered = btrfs_lookup_ordered_extent(inode, offset);
921	if (!ordered)
922		return 1;
923
924	spin_lock_irq(&tree->lock);
925	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
926		if (disk_bytenr >= ordered_sum->bytenr) {
927			num_sectors = ordered_sum->len / sectorsize;
928			sector_sums = ordered_sum->sums;
929			for (i = 0; i < num_sectors; i++) {
930				if (sector_sums[i].bytenr == disk_bytenr) {
931					*sum = sector_sums[i].sum;
932					ret = 0;
933					goto out;
934				}
935			}
936		}
937	}
938out:
939	spin_unlock_irq(&tree->lock);
940	btrfs_put_ordered_extent(ordered);
941	return ret;
942}
943
944
945/*
946 * add a given inode to the list of inodes that must be fully on
947 * disk before a transaction commit finishes.
948 *
949 * This basically gives us the ext3 style data=ordered mode, and it is mostly
950 * used to make sure renamed files are fully on disk.
951 *
952 * It is a noop if the inode is already fully on disk.
953 *
954 * If trans is not null, we'll do a friendly check for a transaction that
955 * is already flushing things and force the IO down ourselves.
956 */
957void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
958				 struct btrfs_root *root, struct inode *inode)
959{
960	u64 last_mod;
961
962	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
963
964	/*
965	 * if this file hasn't been changed since the last transaction
966	 * commit, we can safely return without doing anything
967	 */
968	if (last_mod < root->fs_info->last_trans_committed)
969		return;
970
971	/*
972	 * the transaction is already committing.  Just start the IO and
973	 * don't bother with all of this list nonsense
974	 */
975	if (trans && root->fs_info->running_transaction->blocked) {
976		btrfs_wait_ordered_range(inode, 0, (u64)-1);
977		return;
978	}
979
980	spin_lock(&root->fs_info->ordered_extent_lock);
981	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
982		list_add_tail(&BTRFS_I(inode)->ordered_operations,
983			      &root->fs_info->ordered_operations);
984	}
985	spin_unlock(&root->fs_info->ordered_extent_lock);
986}