Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/slab.h>
20#include <linux/blkdev.h>
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "extent_io.h"
27
28static u64 entry_end(struct btrfs_ordered_extent *entry)
29{
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
33}
34
35/* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
40{
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
43 struct btrfs_ordered_extent *entry;
44
45 while (*p) {
46 parent = *p;
47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
48
49 if (file_offset < entry->file_offset)
50 p = &(*p)->rb_left;
51 else if (file_offset >= entry_end(entry))
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60}
61
62static void ordered_data_tree_panic(struct inode *inode, int errno,
63 u64 offset)
64{
65 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
66 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
67 "%llu\n", (unsigned long long)offset);
68}
69
70/*
71 * look for a given offset in the tree, and if it can't be found return the
72 * first lesser offset
73 */
74static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
75 struct rb_node **prev_ret)
76{
77 struct rb_node *n = root->rb_node;
78 struct rb_node *prev = NULL;
79 struct rb_node *test;
80 struct btrfs_ordered_extent *entry;
81 struct btrfs_ordered_extent *prev_entry = NULL;
82
83 while (n) {
84 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
85 prev = n;
86 prev_entry = entry;
87
88 if (file_offset < entry->file_offset)
89 n = n->rb_left;
90 else if (file_offset >= entry_end(entry))
91 n = n->rb_right;
92 else
93 return n;
94 }
95 if (!prev_ret)
96 return NULL;
97
98 while (prev && file_offset >= entry_end(prev_entry)) {
99 test = rb_next(prev);
100 if (!test)
101 break;
102 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103 rb_node);
104 if (file_offset < entry_end(prev_entry))
105 break;
106
107 prev = test;
108 }
109 if (prev)
110 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
111 rb_node);
112 while (prev && file_offset < entry_end(prev_entry)) {
113 test = rb_prev(prev);
114 if (!test)
115 break;
116 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
117 rb_node);
118 prev = test;
119 }
120 *prev_ret = prev;
121 return NULL;
122}
123
124/*
125 * helper to check if a given offset is inside a given entry
126 */
127static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
128{
129 if (file_offset < entry->file_offset ||
130 entry->file_offset + entry->len <= file_offset)
131 return 0;
132 return 1;
133}
134
135static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
136 u64 len)
137{
138 if (file_offset + len <= entry->file_offset ||
139 entry->file_offset + entry->len <= file_offset)
140 return 0;
141 return 1;
142}
143
144/*
145 * look find the first ordered struct that has this offset, otherwise
146 * the first one less than this offset
147 */
148static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
149 u64 file_offset)
150{
151 struct rb_root *root = &tree->tree;
152 struct rb_node *prev = NULL;
153 struct rb_node *ret;
154 struct btrfs_ordered_extent *entry;
155
156 if (tree->last) {
157 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
158 rb_node);
159 if (offset_in_entry(entry, file_offset))
160 return tree->last;
161 }
162 ret = __tree_search(root, file_offset, &prev);
163 if (!ret)
164 ret = prev;
165 if (ret)
166 tree->last = ret;
167 return ret;
168}
169
170/* allocate and add a new ordered_extent into the per-inode tree.
171 * file_offset is the logical offset in the file
172 *
173 * start is the disk block number of an extent already reserved in the
174 * extent allocation tree
175 *
176 * len is the length of the extent
177 *
178 * The tree is given a single reference on the ordered extent that was
179 * inserted.
180 */
181static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
182 u64 start, u64 len, u64 disk_len,
183 int type, int dio, int compress_type)
184{
185 struct btrfs_ordered_inode_tree *tree;
186 struct rb_node *node;
187 struct btrfs_ordered_extent *entry;
188
189 tree = &BTRFS_I(inode)->ordered_tree;
190 entry = kzalloc(sizeof(*entry), GFP_NOFS);
191 if (!entry)
192 return -ENOMEM;
193
194 entry->file_offset = file_offset;
195 entry->start = start;
196 entry->len = len;
197 entry->disk_len = disk_len;
198 entry->bytes_left = len;
199 entry->inode = igrab(inode);
200 entry->compress_type = compress_type;
201 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
202 set_bit(type, &entry->flags);
203
204 if (dio)
205 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206
207 /* one ref for the tree */
208 atomic_set(&entry->refs, 1);
209 init_waitqueue_head(&entry->wait);
210 INIT_LIST_HEAD(&entry->list);
211 INIT_LIST_HEAD(&entry->root_extent_list);
212
213 trace_btrfs_ordered_extent_add(inode, entry);
214
215 spin_lock_irq(&tree->lock);
216 node = tree_insert(&tree->tree, file_offset,
217 &entry->rb_node);
218 if (node)
219 ordered_data_tree_panic(inode, -EEXIST, file_offset);
220 spin_unlock_irq(&tree->lock);
221
222 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
223 list_add_tail(&entry->root_extent_list,
224 &BTRFS_I(inode)->root->fs_info->ordered_extents);
225 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
226
227 return 0;
228}
229
230int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
231 u64 start, u64 len, u64 disk_len, int type)
232{
233 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234 disk_len, type, 0,
235 BTRFS_COMPRESS_NONE);
236}
237
238int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
239 u64 start, u64 len, u64 disk_len, int type)
240{
241 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
242 disk_len, type, 1,
243 BTRFS_COMPRESS_NONE);
244}
245
246int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
247 u64 start, u64 len, u64 disk_len,
248 int type, int compress_type)
249{
250 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 disk_len, type, 0,
252 compress_type);
253}
254
255/*
256 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
257 * when an ordered extent is finished. If the list covers more than one
258 * ordered extent, it is split across multiples.
259 */
260void btrfs_add_ordered_sum(struct inode *inode,
261 struct btrfs_ordered_extent *entry,
262 struct btrfs_ordered_sum *sum)
263{
264 struct btrfs_ordered_inode_tree *tree;
265
266 tree = &BTRFS_I(inode)->ordered_tree;
267 spin_lock_irq(&tree->lock);
268 list_add_tail(&sum->list, &entry->list);
269 spin_unlock_irq(&tree->lock);
270}
271
272/*
273 * this is used to account for finished IO across a given range
274 * of the file. The IO may span ordered extents. If
275 * a given ordered_extent is completely done, 1 is returned, otherwise
276 * 0.
277 *
278 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
279 * to make sure this function only returns 1 once for a given ordered extent.
280 *
281 * file_offset is updated to one byte past the range that is recorded as
282 * complete. This allows you to walk forward in the file.
283 */
284int btrfs_dec_test_first_ordered_pending(struct inode *inode,
285 struct btrfs_ordered_extent **cached,
286 u64 *file_offset, u64 io_size, int uptodate)
287{
288 struct btrfs_ordered_inode_tree *tree;
289 struct rb_node *node;
290 struct btrfs_ordered_extent *entry = NULL;
291 int ret;
292 unsigned long flags;
293 u64 dec_end;
294 u64 dec_start;
295 u64 to_dec;
296
297 tree = &BTRFS_I(inode)->ordered_tree;
298 spin_lock_irqsave(&tree->lock, flags);
299 node = tree_search(tree, *file_offset);
300 if (!node) {
301 ret = 1;
302 goto out;
303 }
304
305 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
306 if (!offset_in_entry(entry, *file_offset)) {
307 ret = 1;
308 goto out;
309 }
310
311 dec_start = max(*file_offset, entry->file_offset);
312 dec_end = min(*file_offset + io_size, entry->file_offset +
313 entry->len);
314 *file_offset = dec_end;
315 if (dec_start > dec_end) {
316 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
317 (unsigned long long)dec_start,
318 (unsigned long long)dec_end);
319 }
320 to_dec = dec_end - dec_start;
321 if (to_dec > entry->bytes_left) {
322 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
323 (unsigned long long)entry->bytes_left,
324 (unsigned long long)to_dec);
325 }
326 entry->bytes_left -= to_dec;
327 if (!uptodate)
328 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
329
330 if (entry->bytes_left == 0)
331 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
332 else
333 ret = 1;
334out:
335 if (!ret && cached && entry) {
336 *cached = entry;
337 atomic_inc(&entry->refs);
338 }
339 spin_unlock_irqrestore(&tree->lock, flags);
340 return ret == 0;
341}
342
343/*
344 * this is used to account for finished IO across a given range
345 * of the file. The IO should not span ordered extents. If
346 * a given ordered_extent is completely done, 1 is returned, otherwise
347 * 0.
348 *
349 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
350 * to make sure this function only returns 1 once for a given ordered extent.
351 */
352int btrfs_dec_test_ordered_pending(struct inode *inode,
353 struct btrfs_ordered_extent **cached,
354 u64 file_offset, u64 io_size, int uptodate)
355{
356 struct btrfs_ordered_inode_tree *tree;
357 struct rb_node *node;
358 struct btrfs_ordered_extent *entry = NULL;
359 unsigned long flags;
360 int ret;
361
362 tree = &BTRFS_I(inode)->ordered_tree;
363 spin_lock_irqsave(&tree->lock, flags);
364 if (cached && *cached) {
365 entry = *cached;
366 goto have_entry;
367 }
368
369 node = tree_search(tree, file_offset);
370 if (!node) {
371 ret = 1;
372 goto out;
373 }
374
375 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
376have_entry:
377 if (!offset_in_entry(entry, file_offset)) {
378 ret = 1;
379 goto out;
380 }
381
382 if (io_size > entry->bytes_left) {
383 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
384 (unsigned long long)entry->bytes_left,
385 (unsigned long long)io_size);
386 }
387 entry->bytes_left -= io_size;
388 if (!uptodate)
389 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
390
391 if (entry->bytes_left == 0)
392 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
393 else
394 ret = 1;
395out:
396 if (!ret && cached && entry) {
397 *cached = entry;
398 atomic_inc(&entry->refs);
399 }
400 spin_unlock_irqrestore(&tree->lock, flags);
401 return ret == 0;
402}
403
404/*
405 * used to drop a reference on an ordered extent. This will free
406 * the extent if the last reference is dropped
407 */
408void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
409{
410 struct list_head *cur;
411 struct btrfs_ordered_sum *sum;
412
413 trace_btrfs_ordered_extent_put(entry->inode, entry);
414
415 if (atomic_dec_and_test(&entry->refs)) {
416 if (entry->inode)
417 btrfs_add_delayed_iput(entry->inode);
418 while (!list_empty(&entry->list)) {
419 cur = entry->list.next;
420 sum = list_entry(cur, struct btrfs_ordered_sum, list);
421 list_del(&sum->list);
422 kfree(sum);
423 }
424 kfree(entry);
425 }
426}
427
428/*
429 * remove an ordered extent from the tree. No references are dropped
430 * and waiters are woken up.
431 */
432void btrfs_remove_ordered_extent(struct inode *inode,
433 struct btrfs_ordered_extent *entry)
434{
435 struct btrfs_ordered_inode_tree *tree;
436 struct btrfs_root *root = BTRFS_I(inode)->root;
437 struct rb_node *node;
438
439 tree = &BTRFS_I(inode)->ordered_tree;
440 spin_lock_irq(&tree->lock);
441 node = &entry->rb_node;
442 rb_erase(node, &tree->tree);
443 tree->last = NULL;
444 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
445 spin_unlock_irq(&tree->lock);
446
447 spin_lock(&root->fs_info->ordered_extent_lock);
448 list_del_init(&entry->root_extent_list);
449
450 trace_btrfs_ordered_extent_remove(inode, entry);
451
452 /*
453 * we have no more ordered extents for this inode and
454 * no dirty pages. We can safely remove it from the
455 * list of ordered extents
456 */
457 if (RB_EMPTY_ROOT(&tree->tree) &&
458 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
459 list_del_init(&BTRFS_I(inode)->ordered_operations);
460 }
461 spin_unlock(&root->fs_info->ordered_extent_lock);
462 wake_up(&entry->wait);
463}
464
465/*
466 * wait for all the ordered extents in a root. This is done when balancing
467 * space between drives.
468 */
469void btrfs_wait_ordered_extents(struct btrfs_root *root,
470 int nocow_only, int delay_iput)
471{
472 struct list_head splice;
473 struct list_head *cur;
474 struct btrfs_ordered_extent *ordered;
475 struct inode *inode;
476
477 INIT_LIST_HEAD(&splice);
478
479 spin_lock(&root->fs_info->ordered_extent_lock);
480 list_splice_init(&root->fs_info->ordered_extents, &splice);
481 while (!list_empty(&splice)) {
482 cur = splice.next;
483 ordered = list_entry(cur, struct btrfs_ordered_extent,
484 root_extent_list);
485 if (nocow_only &&
486 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
487 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
488 list_move(&ordered->root_extent_list,
489 &root->fs_info->ordered_extents);
490 cond_resched_lock(&root->fs_info->ordered_extent_lock);
491 continue;
492 }
493
494 list_del_init(&ordered->root_extent_list);
495 atomic_inc(&ordered->refs);
496
497 /*
498 * the inode may be getting freed (in sys_unlink path).
499 */
500 inode = igrab(ordered->inode);
501
502 spin_unlock(&root->fs_info->ordered_extent_lock);
503
504 if (inode) {
505 btrfs_start_ordered_extent(inode, ordered, 1);
506 btrfs_put_ordered_extent(ordered);
507 if (delay_iput)
508 btrfs_add_delayed_iput(inode);
509 else
510 iput(inode);
511 } else {
512 btrfs_put_ordered_extent(ordered);
513 }
514
515 spin_lock(&root->fs_info->ordered_extent_lock);
516 }
517 spin_unlock(&root->fs_info->ordered_extent_lock);
518}
519
520/*
521 * this is used during transaction commit to write all the inodes
522 * added to the ordered operation list. These files must be fully on
523 * disk before the transaction commits.
524 *
525 * we have two modes here, one is to just start the IO via filemap_flush
526 * and the other is to wait for all the io. When we wait, we have an
527 * extra check to make sure the ordered operation list really is empty
528 * before we return
529 */
530void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
531{
532 struct btrfs_inode *btrfs_inode;
533 struct inode *inode;
534 struct list_head splice;
535
536 INIT_LIST_HEAD(&splice);
537
538 mutex_lock(&root->fs_info->ordered_operations_mutex);
539 spin_lock(&root->fs_info->ordered_extent_lock);
540again:
541 list_splice_init(&root->fs_info->ordered_operations, &splice);
542
543 while (!list_empty(&splice)) {
544 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
545 ordered_operations);
546
547 inode = &btrfs_inode->vfs_inode;
548
549 list_del_init(&btrfs_inode->ordered_operations);
550
551 /*
552 * the inode may be getting freed (in sys_unlink path).
553 */
554 inode = igrab(inode);
555
556 if (!wait && inode) {
557 list_add_tail(&BTRFS_I(inode)->ordered_operations,
558 &root->fs_info->ordered_operations);
559 }
560 spin_unlock(&root->fs_info->ordered_extent_lock);
561
562 if (inode) {
563 if (wait)
564 btrfs_wait_ordered_range(inode, 0, (u64)-1);
565 else
566 filemap_flush(inode->i_mapping);
567 btrfs_add_delayed_iput(inode);
568 }
569
570 cond_resched();
571 spin_lock(&root->fs_info->ordered_extent_lock);
572 }
573 if (wait && !list_empty(&root->fs_info->ordered_operations))
574 goto again;
575
576 spin_unlock(&root->fs_info->ordered_extent_lock);
577 mutex_unlock(&root->fs_info->ordered_operations_mutex);
578}
579
580/*
581 * Used to start IO or wait for a given ordered extent to finish.
582 *
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
586 */
587void btrfs_start_ordered_extent(struct inode *inode,
588 struct btrfs_ordered_extent *entry,
589 int wait)
590{
591 u64 start = entry->file_offset;
592 u64 end = start + entry->len - 1;
593
594 trace_btrfs_ordered_extent_start(inode, entry);
595
596 /*
597 * pages in the range can be dirty, clean or writeback. We
598 * start IO on any dirty ones so the wait doesn't stall waiting
599 * for pdflush to find them
600 */
601 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602 filemap_fdatawrite_range(inode->i_mapping, start, end);
603 if (wait) {
604 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605 &entry->flags));
606 }
607}
608
609/*
610 * Used to wait on ordered extents across a large range of bytes.
611 */
612void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
613{
614 u64 end;
615 u64 orig_end;
616 struct btrfs_ordered_extent *ordered;
617 int found;
618
619 if (start + len < start) {
620 orig_end = INT_LIMIT(loff_t);
621 } else {
622 orig_end = start + len - 1;
623 if (orig_end > INT_LIMIT(loff_t))
624 orig_end = INT_LIMIT(loff_t);
625 }
626
627 /* start IO across the range first to instantiate any delalloc
628 * extents
629 */
630 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
631
632 /*
633 * So with compression we will find and lock a dirty page and clear the
634 * first one as dirty, setup an async extent, and immediately return
635 * with the entire range locked but with nobody actually marked with
636 * writeback. So we can't just filemap_write_and_wait_range() and
637 * expect it to work since it will just kick off a thread to do the
638 * actual work. So we need to call filemap_fdatawrite_range _again_
639 * since it will wait on the page lock, which won't be unlocked until
640 * after the pages have been marked as writeback and so we're good to go
641 * from there. We have to do this otherwise we'll miss the ordered
642 * extents and that results in badness. Please Josef, do not think you
643 * know better and pull this out at some point in the future, it is
644 * right and you are wrong.
645 */
646 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
647 &BTRFS_I(inode)->runtime_flags))
648 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
649
650 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
651
652 end = orig_end;
653 found = 0;
654 while (1) {
655 ordered = btrfs_lookup_first_ordered_extent(inode, end);
656 if (!ordered)
657 break;
658 if (ordered->file_offset > orig_end) {
659 btrfs_put_ordered_extent(ordered);
660 break;
661 }
662 if (ordered->file_offset + ordered->len < start) {
663 btrfs_put_ordered_extent(ordered);
664 break;
665 }
666 found++;
667 btrfs_start_ordered_extent(inode, ordered, 1);
668 end = ordered->file_offset;
669 btrfs_put_ordered_extent(ordered);
670 if (end == 0 || end == start)
671 break;
672 end--;
673 }
674}
675
676/*
677 * find an ordered extent corresponding to file_offset. return NULL if
678 * nothing is found, otherwise take a reference on the extent and return it
679 */
680struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
681 u64 file_offset)
682{
683 struct btrfs_ordered_inode_tree *tree;
684 struct rb_node *node;
685 struct btrfs_ordered_extent *entry = NULL;
686
687 tree = &BTRFS_I(inode)->ordered_tree;
688 spin_lock_irq(&tree->lock);
689 node = tree_search(tree, file_offset);
690 if (!node)
691 goto out;
692
693 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
694 if (!offset_in_entry(entry, file_offset))
695 entry = NULL;
696 if (entry)
697 atomic_inc(&entry->refs);
698out:
699 spin_unlock_irq(&tree->lock);
700 return entry;
701}
702
703/* Since the DIO code tries to lock a wide area we need to look for any ordered
704 * extents that exist in the range, rather than just the start of the range.
705 */
706struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
707 u64 file_offset,
708 u64 len)
709{
710 struct btrfs_ordered_inode_tree *tree;
711 struct rb_node *node;
712 struct btrfs_ordered_extent *entry = NULL;
713
714 tree = &BTRFS_I(inode)->ordered_tree;
715 spin_lock_irq(&tree->lock);
716 node = tree_search(tree, file_offset);
717 if (!node) {
718 node = tree_search(tree, file_offset + len);
719 if (!node)
720 goto out;
721 }
722
723 while (1) {
724 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
725 if (range_overlaps(entry, file_offset, len))
726 break;
727
728 if (entry->file_offset >= file_offset + len) {
729 entry = NULL;
730 break;
731 }
732 entry = NULL;
733 node = rb_next(node);
734 if (!node)
735 break;
736 }
737out:
738 if (entry)
739 atomic_inc(&entry->refs);
740 spin_unlock_irq(&tree->lock);
741 return entry;
742}
743
744/*
745 * lookup and return any extent before 'file_offset'. NULL is returned
746 * if none is found
747 */
748struct btrfs_ordered_extent *
749btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
750{
751 struct btrfs_ordered_inode_tree *tree;
752 struct rb_node *node;
753 struct btrfs_ordered_extent *entry = NULL;
754
755 tree = &BTRFS_I(inode)->ordered_tree;
756 spin_lock_irq(&tree->lock);
757 node = tree_search(tree, file_offset);
758 if (!node)
759 goto out;
760
761 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
762 atomic_inc(&entry->refs);
763out:
764 spin_unlock_irq(&tree->lock);
765 return entry;
766}
767
768/*
769 * After an extent is done, call this to conditionally update the on disk
770 * i_size. i_size is updated to cover any fully written part of the file.
771 */
772int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
773 struct btrfs_ordered_extent *ordered)
774{
775 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
776 u64 disk_i_size;
777 u64 new_i_size;
778 u64 i_size_test;
779 u64 i_size = i_size_read(inode);
780 struct rb_node *node;
781 struct rb_node *prev = NULL;
782 struct btrfs_ordered_extent *test;
783 int ret = 1;
784
785 if (ordered)
786 offset = entry_end(ordered);
787 else
788 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
789
790 spin_lock_irq(&tree->lock);
791 disk_i_size = BTRFS_I(inode)->disk_i_size;
792
793 /* truncate file */
794 if (disk_i_size > i_size) {
795 BTRFS_I(inode)->disk_i_size = i_size;
796 ret = 0;
797 goto out;
798 }
799
800 /*
801 * if the disk i_size is already at the inode->i_size, or
802 * this ordered extent is inside the disk i_size, we're done
803 */
804 if (disk_i_size == i_size || offset <= disk_i_size) {
805 goto out;
806 }
807
808 /*
809 * walk backward from this ordered extent to disk_i_size.
810 * if we find an ordered extent then we can't update disk i_size
811 * yet
812 */
813 if (ordered) {
814 node = rb_prev(&ordered->rb_node);
815 } else {
816 prev = tree_search(tree, offset);
817 /*
818 * we insert file extents without involving ordered struct,
819 * so there should be no ordered struct cover this offset
820 */
821 if (prev) {
822 test = rb_entry(prev, struct btrfs_ordered_extent,
823 rb_node);
824 BUG_ON(offset_in_entry(test, offset));
825 }
826 node = prev;
827 }
828 for (; node; node = rb_prev(node)) {
829 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
830
831 /* We treat this entry as if it doesnt exist */
832 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
833 continue;
834 if (test->file_offset + test->len <= disk_i_size)
835 break;
836 if (test->file_offset >= i_size)
837 break;
838 if (test->file_offset >= disk_i_size)
839 goto out;
840 }
841 new_i_size = min_t(u64, offset, i_size);
842
843 /*
844 * at this point, we know we can safely update i_size to at least
845 * the offset from this ordered extent. But, we need to
846 * walk forward and see if ios from higher up in the file have
847 * finished.
848 */
849 if (ordered) {
850 node = rb_next(&ordered->rb_node);
851 } else {
852 if (prev)
853 node = rb_next(prev);
854 else
855 node = rb_first(&tree->tree);
856 }
857
858 /*
859 * We are looking for an area between our current extent and the next
860 * ordered extent to update the i_size to. There are 3 cases here
861 *
862 * 1) We don't actually have anything and we can update to i_size.
863 * 2) We have stuff but they already did their i_size update so again we
864 * can just update to i_size.
865 * 3) We have an outstanding ordered extent so the most we can update
866 * our disk_i_size to is the start of the next offset.
867 */
868 i_size_test = i_size;
869 for (; node; node = rb_next(node)) {
870 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871
872 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
873 continue;
874 if (test->file_offset > offset) {
875 i_size_test = test->file_offset;
876 break;
877 }
878 }
879
880 /*
881 * i_size_test is the end of a region after this ordered
882 * extent where there are no ordered extents, we can safely set
883 * disk_i_size to this.
884 */
885 if (i_size_test > offset)
886 new_i_size = min_t(u64, i_size_test, i_size);
887 BTRFS_I(inode)->disk_i_size = new_i_size;
888 ret = 0;
889out:
890 /*
891 * We need to do this because we can't remove ordered extents until
892 * after the i_disk_size has been updated and then the inode has been
893 * updated to reflect the change, so we need to tell anybody who finds
894 * this ordered extent that we've already done all the real work, we
895 * just haven't completed all the other work.
896 */
897 if (ordered)
898 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
899 spin_unlock_irq(&tree->lock);
900 return ret;
901}
902
903/*
904 * search the ordered extents for one corresponding to 'offset' and
905 * try to find a checksum. This is used because we allow pages to
906 * be reclaimed before their checksum is actually put into the btree
907 */
908int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
909 u32 *sum)
910{
911 struct btrfs_ordered_sum *ordered_sum;
912 struct btrfs_sector_sum *sector_sums;
913 struct btrfs_ordered_extent *ordered;
914 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
915 unsigned long num_sectors;
916 unsigned long i;
917 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
918 int ret = 1;
919
920 ordered = btrfs_lookup_ordered_extent(inode, offset);
921 if (!ordered)
922 return 1;
923
924 spin_lock_irq(&tree->lock);
925 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
926 if (disk_bytenr >= ordered_sum->bytenr) {
927 num_sectors = ordered_sum->len / sectorsize;
928 sector_sums = ordered_sum->sums;
929 for (i = 0; i < num_sectors; i++) {
930 if (sector_sums[i].bytenr == disk_bytenr) {
931 *sum = sector_sums[i].sum;
932 ret = 0;
933 goto out;
934 }
935 }
936 }
937 }
938out:
939 spin_unlock_irq(&tree->lock);
940 btrfs_put_ordered_extent(ordered);
941 return ret;
942}
943
944
945/*
946 * add a given inode to the list of inodes that must be fully on
947 * disk before a transaction commit finishes.
948 *
949 * This basically gives us the ext3 style data=ordered mode, and it is mostly
950 * used to make sure renamed files are fully on disk.
951 *
952 * It is a noop if the inode is already fully on disk.
953 *
954 * If trans is not null, we'll do a friendly check for a transaction that
955 * is already flushing things and force the IO down ourselves.
956 */
957void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
958 struct btrfs_root *root, struct inode *inode)
959{
960 u64 last_mod;
961
962 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
963
964 /*
965 * if this file hasn't been changed since the last transaction
966 * commit, we can safely return without doing anything
967 */
968 if (last_mod < root->fs_info->last_trans_committed)
969 return;
970
971 /*
972 * the transaction is already committing. Just start the IO and
973 * don't bother with all of this list nonsense
974 */
975 if (trans && root->fs_info->running_transaction->blocked) {
976 btrfs_wait_ordered_range(inode, 0, (u64)-1);
977 return;
978 }
979
980 spin_lock(&root->fs_info->ordered_extent_lock);
981 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
982 list_add_tail(&BTRFS_I(inode)->ordered_operations,
983 &root->fs_info->ordered_operations);
984 }
985 spin_unlock(&root->fs_info->ordered_extent_lock);
986}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/pagevec.h>
10#include "ctree.h"
11#include "transaction.h"
12#include "btrfs_inode.h"
13#include "extent_io.h"
14#include "disk-io.h"
15#include "compression.h"
16
17static struct kmem_cache *btrfs_ordered_extent_cache;
18
19static u64 entry_end(struct btrfs_ordered_extent *entry)
20{
21 if (entry->file_offset + entry->len < entry->file_offset)
22 return (u64)-1;
23 return entry->file_offset + entry->len;
24}
25
26/* returns NULL if the insertion worked, or it returns the node it did find
27 * in the tree
28 */
29static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
30 struct rb_node *node)
31{
32 struct rb_node **p = &root->rb_node;
33 struct rb_node *parent = NULL;
34 struct btrfs_ordered_extent *entry;
35
36 while (*p) {
37 parent = *p;
38 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
39
40 if (file_offset < entry->file_offset)
41 p = &(*p)->rb_left;
42 else if (file_offset >= entry_end(entry))
43 p = &(*p)->rb_right;
44 else
45 return parent;
46 }
47
48 rb_link_node(node, parent, p);
49 rb_insert_color(node, root);
50 return NULL;
51}
52
53static void ordered_data_tree_panic(struct inode *inode, int errno,
54 u64 offset)
55{
56 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
57 btrfs_panic(fs_info, errno,
58 "Inconsistency in ordered tree at offset %llu", offset);
59}
60
61/*
62 * look for a given offset in the tree, and if it can't be found return the
63 * first lesser offset
64 */
65static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
66 struct rb_node **prev_ret)
67{
68 struct rb_node *n = root->rb_node;
69 struct rb_node *prev = NULL;
70 struct rb_node *test;
71 struct btrfs_ordered_extent *entry;
72 struct btrfs_ordered_extent *prev_entry = NULL;
73
74 while (n) {
75 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
76 prev = n;
77 prev_entry = entry;
78
79 if (file_offset < entry->file_offset)
80 n = n->rb_left;
81 else if (file_offset >= entry_end(entry))
82 n = n->rb_right;
83 else
84 return n;
85 }
86 if (!prev_ret)
87 return NULL;
88
89 while (prev && file_offset >= entry_end(prev_entry)) {
90 test = rb_next(prev);
91 if (!test)
92 break;
93 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
94 rb_node);
95 if (file_offset < entry_end(prev_entry))
96 break;
97
98 prev = test;
99 }
100 if (prev)
101 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
102 rb_node);
103 while (prev && file_offset < entry_end(prev_entry)) {
104 test = rb_prev(prev);
105 if (!test)
106 break;
107 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
108 rb_node);
109 prev = test;
110 }
111 *prev_ret = prev;
112 return NULL;
113}
114
115/*
116 * helper to check if a given offset is inside a given entry
117 */
118static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
119{
120 if (file_offset < entry->file_offset ||
121 entry->file_offset + entry->len <= file_offset)
122 return 0;
123 return 1;
124}
125
126static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
127 u64 len)
128{
129 if (file_offset + len <= entry->file_offset ||
130 entry->file_offset + entry->len <= file_offset)
131 return 0;
132 return 1;
133}
134
135/*
136 * look find the first ordered struct that has this offset, otherwise
137 * the first one less than this offset
138 */
139static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
140 u64 file_offset)
141{
142 struct rb_root *root = &tree->tree;
143 struct rb_node *prev = NULL;
144 struct rb_node *ret;
145 struct btrfs_ordered_extent *entry;
146
147 if (tree->last) {
148 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
149 rb_node);
150 if (offset_in_entry(entry, file_offset))
151 return tree->last;
152 }
153 ret = __tree_search(root, file_offset, &prev);
154 if (!ret)
155 ret = prev;
156 if (ret)
157 tree->last = ret;
158 return ret;
159}
160
161/* allocate and add a new ordered_extent into the per-inode tree.
162 * file_offset is the logical offset in the file
163 *
164 * start is the disk block number of an extent already reserved in the
165 * extent allocation tree
166 *
167 * len is the length of the extent
168 *
169 * The tree is given a single reference on the ordered extent that was
170 * inserted.
171 */
172static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
173 u64 start, u64 len, u64 disk_len,
174 int type, int dio, int compress_type)
175{
176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
177 struct btrfs_root *root = BTRFS_I(inode)->root;
178 struct btrfs_ordered_inode_tree *tree;
179 struct rb_node *node;
180 struct btrfs_ordered_extent *entry;
181
182 tree = &BTRFS_I(inode)->ordered_tree;
183 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
184 if (!entry)
185 return -ENOMEM;
186
187 entry->file_offset = file_offset;
188 entry->start = start;
189 entry->len = len;
190 entry->disk_len = disk_len;
191 entry->bytes_left = len;
192 entry->inode = igrab(inode);
193 entry->compress_type = compress_type;
194 entry->truncated_len = (u64)-1;
195 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
196 set_bit(type, &entry->flags);
197
198 if (dio)
199 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
200
201 /* one ref for the tree */
202 refcount_set(&entry->refs, 1);
203 init_waitqueue_head(&entry->wait);
204 INIT_LIST_HEAD(&entry->list);
205 INIT_LIST_HEAD(&entry->root_extent_list);
206 INIT_LIST_HEAD(&entry->work_list);
207 init_completion(&entry->completion);
208 INIT_LIST_HEAD(&entry->log_list);
209 INIT_LIST_HEAD(&entry->trans_list);
210
211 trace_btrfs_ordered_extent_add(inode, entry);
212
213 spin_lock_irq(&tree->lock);
214 node = tree_insert(&tree->tree, file_offset,
215 &entry->rb_node);
216 if (node)
217 ordered_data_tree_panic(inode, -EEXIST, file_offset);
218 spin_unlock_irq(&tree->lock);
219
220 spin_lock(&root->ordered_extent_lock);
221 list_add_tail(&entry->root_extent_list,
222 &root->ordered_extents);
223 root->nr_ordered_extents++;
224 if (root->nr_ordered_extents == 1) {
225 spin_lock(&fs_info->ordered_root_lock);
226 BUG_ON(!list_empty(&root->ordered_root));
227 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
228 spin_unlock(&fs_info->ordered_root_lock);
229 }
230 spin_unlock(&root->ordered_extent_lock);
231
232 /*
233 * We don't need the count_max_extents here, we can assume that all of
234 * that work has been done at higher layers, so this is truly the
235 * smallest the extent is going to get.
236 */
237 spin_lock(&BTRFS_I(inode)->lock);
238 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
239 spin_unlock(&BTRFS_I(inode)->lock);
240
241 return 0;
242}
243
244int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
245 u64 start, u64 len, u64 disk_len, int type)
246{
247 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
248 disk_len, type, 0,
249 BTRFS_COMPRESS_NONE);
250}
251
252int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
253 u64 start, u64 len, u64 disk_len, int type)
254{
255 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
256 disk_len, type, 1,
257 BTRFS_COMPRESS_NONE);
258}
259
260int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
261 u64 start, u64 len, u64 disk_len,
262 int type, int compress_type)
263{
264 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
265 disk_len, type, 0,
266 compress_type);
267}
268
269/*
270 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
271 * when an ordered extent is finished. If the list covers more than one
272 * ordered extent, it is split across multiples.
273 */
274void btrfs_add_ordered_sum(struct inode *inode,
275 struct btrfs_ordered_extent *entry,
276 struct btrfs_ordered_sum *sum)
277{
278 struct btrfs_ordered_inode_tree *tree;
279
280 tree = &BTRFS_I(inode)->ordered_tree;
281 spin_lock_irq(&tree->lock);
282 list_add_tail(&sum->list, &entry->list);
283 spin_unlock_irq(&tree->lock);
284}
285
286/*
287 * this is used to account for finished IO across a given range
288 * of the file. The IO may span ordered extents. If
289 * a given ordered_extent is completely done, 1 is returned, otherwise
290 * 0.
291 *
292 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
293 * to make sure this function only returns 1 once for a given ordered extent.
294 *
295 * file_offset is updated to one byte past the range that is recorded as
296 * complete. This allows you to walk forward in the file.
297 */
298int btrfs_dec_test_first_ordered_pending(struct inode *inode,
299 struct btrfs_ordered_extent **cached,
300 u64 *file_offset, u64 io_size, int uptodate)
301{
302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
303 struct btrfs_ordered_inode_tree *tree;
304 struct rb_node *node;
305 struct btrfs_ordered_extent *entry = NULL;
306 int ret;
307 unsigned long flags;
308 u64 dec_end;
309 u64 dec_start;
310 u64 to_dec;
311
312 tree = &BTRFS_I(inode)->ordered_tree;
313 spin_lock_irqsave(&tree->lock, flags);
314 node = tree_search(tree, *file_offset);
315 if (!node) {
316 ret = 1;
317 goto out;
318 }
319
320 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
321 if (!offset_in_entry(entry, *file_offset)) {
322 ret = 1;
323 goto out;
324 }
325
326 dec_start = max(*file_offset, entry->file_offset);
327 dec_end = min(*file_offset + io_size, entry->file_offset +
328 entry->len);
329 *file_offset = dec_end;
330 if (dec_start > dec_end) {
331 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
332 dec_start, dec_end);
333 }
334 to_dec = dec_end - dec_start;
335 if (to_dec > entry->bytes_left) {
336 btrfs_crit(fs_info,
337 "bad ordered accounting left %llu size %llu",
338 entry->bytes_left, to_dec);
339 }
340 entry->bytes_left -= to_dec;
341 if (!uptodate)
342 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
343
344 if (entry->bytes_left == 0) {
345 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
346 /*
347 * Implicit memory barrier after test_and_set_bit
348 */
349 if (waitqueue_active(&entry->wait))
350 wake_up(&entry->wait);
351 } else {
352 ret = 1;
353 }
354out:
355 if (!ret && cached && entry) {
356 *cached = entry;
357 refcount_inc(&entry->refs);
358 }
359 spin_unlock_irqrestore(&tree->lock, flags);
360 return ret == 0;
361}
362
363/*
364 * this is used to account for finished IO across a given range
365 * of the file. The IO should not span ordered extents. If
366 * a given ordered_extent is completely done, 1 is returned, otherwise
367 * 0.
368 *
369 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
370 * to make sure this function only returns 1 once for a given ordered extent.
371 */
372int btrfs_dec_test_ordered_pending(struct inode *inode,
373 struct btrfs_ordered_extent **cached,
374 u64 file_offset, u64 io_size, int uptodate)
375{
376 struct btrfs_ordered_inode_tree *tree;
377 struct rb_node *node;
378 struct btrfs_ordered_extent *entry = NULL;
379 unsigned long flags;
380 int ret;
381
382 tree = &BTRFS_I(inode)->ordered_tree;
383 spin_lock_irqsave(&tree->lock, flags);
384 if (cached && *cached) {
385 entry = *cached;
386 goto have_entry;
387 }
388
389 node = tree_search(tree, file_offset);
390 if (!node) {
391 ret = 1;
392 goto out;
393 }
394
395 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
396have_entry:
397 if (!offset_in_entry(entry, file_offset)) {
398 ret = 1;
399 goto out;
400 }
401
402 if (io_size > entry->bytes_left) {
403 btrfs_crit(BTRFS_I(inode)->root->fs_info,
404 "bad ordered accounting left %llu size %llu",
405 entry->bytes_left, io_size);
406 }
407 entry->bytes_left -= io_size;
408 if (!uptodate)
409 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
410
411 if (entry->bytes_left == 0) {
412 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
413 /*
414 * Implicit memory barrier after test_and_set_bit
415 */
416 if (waitqueue_active(&entry->wait))
417 wake_up(&entry->wait);
418 } else {
419 ret = 1;
420 }
421out:
422 if (!ret && cached && entry) {
423 *cached = entry;
424 refcount_inc(&entry->refs);
425 }
426 spin_unlock_irqrestore(&tree->lock, flags);
427 return ret == 0;
428}
429
430/* Needs to either be called under a log transaction or the log_mutex */
431void btrfs_get_logged_extents(struct btrfs_inode *inode,
432 struct list_head *logged_list,
433 const loff_t start,
434 const loff_t end)
435{
436 struct btrfs_ordered_inode_tree *tree;
437 struct btrfs_ordered_extent *ordered;
438 struct rb_node *n;
439 struct rb_node *prev;
440
441 tree = &inode->ordered_tree;
442 spin_lock_irq(&tree->lock);
443 n = __tree_search(&tree->tree, end, &prev);
444 if (!n)
445 n = prev;
446 for (; n; n = rb_prev(n)) {
447 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
448 if (ordered->file_offset > end)
449 continue;
450 if (entry_end(ordered) <= start)
451 break;
452 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
453 continue;
454 list_add(&ordered->log_list, logged_list);
455 refcount_inc(&ordered->refs);
456 }
457 spin_unlock_irq(&tree->lock);
458}
459
460void btrfs_put_logged_extents(struct list_head *logged_list)
461{
462 struct btrfs_ordered_extent *ordered;
463
464 while (!list_empty(logged_list)) {
465 ordered = list_first_entry(logged_list,
466 struct btrfs_ordered_extent,
467 log_list);
468 list_del_init(&ordered->log_list);
469 btrfs_put_ordered_extent(ordered);
470 }
471}
472
473void btrfs_submit_logged_extents(struct list_head *logged_list,
474 struct btrfs_root *log)
475{
476 int index = log->log_transid % 2;
477
478 spin_lock_irq(&log->log_extents_lock[index]);
479 list_splice_tail(logged_list, &log->logged_list[index]);
480 spin_unlock_irq(&log->log_extents_lock[index]);
481}
482
483void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
484 struct btrfs_root *log, u64 transid)
485{
486 struct btrfs_ordered_extent *ordered;
487 int index = transid % 2;
488
489 spin_lock_irq(&log->log_extents_lock[index]);
490 while (!list_empty(&log->logged_list[index])) {
491 struct inode *inode;
492 ordered = list_first_entry(&log->logged_list[index],
493 struct btrfs_ordered_extent,
494 log_list);
495 list_del_init(&ordered->log_list);
496 inode = ordered->inode;
497 spin_unlock_irq(&log->log_extents_lock[index]);
498
499 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
500 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
501 u64 start = ordered->file_offset;
502 u64 end = ordered->file_offset + ordered->len - 1;
503
504 WARN_ON(!inode);
505 filemap_fdatawrite_range(inode->i_mapping, start, end);
506 }
507 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
508 &ordered->flags));
509
510 /*
511 * In order to keep us from losing our ordered extent
512 * information when committing the transaction we have to make
513 * sure that any logged extents are completed when we go to
514 * commit the transaction. To do this we simply increase the
515 * current transactions pending_ordered counter and decrement it
516 * when the ordered extent completes.
517 */
518 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
519 struct btrfs_ordered_inode_tree *tree;
520
521 tree = &BTRFS_I(inode)->ordered_tree;
522 spin_lock_irq(&tree->lock);
523 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
524 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
525 atomic_inc(&trans->transaction->pending_ordered);
526 }
527 spin_unlock_irq(&tree->lock);
528 }
529 btrfs_put_ordered_extent(ordered);
530 spin_lock_irq(&log->log_extents_lock[index]);
531 }
532 spin_unlock_irq(&log->log_extents_lock[index]);
533}
534
535void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
536{
537 struct btrfs_ordered_extent *ordered;
538 int index = transid % 2;
539
540 spin_lock_irq(&log->log_extents_lock[index]);
541 while (!list_empty(&log->logged_list[index])) {
542 ordered = list_first_entry(&log->logged_list[index],
543 struct btrfs_ordered_extent,
544 log_list);
545 list_del_init(&ordered->log_list);
546 spin_unlock_irq(&log->log_extents_lock[index]);
547 btrfs_put_ordered_extent(ordered);
548 spin_lock_irq(&log->log_extents_lock[index]);
549 }
550 spin_unlock_irq(&log->log_extents_lock[index]);
551}
552
553/*
554 * used to drop a reference on an ordered extent. This will free
555 * the extent if the last reference is dropped
556 */
557void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
558{
559 struct list_head *cur;
560 struct btrfs_ordered_sum *sum;
561
562 trace_btrfs_ordered_extent_put(entry->inode, entry);
563
564 if (refcount_dec_and_test(&entry->refs)) {
565 ASSERT(list_empty(&entry->log_list));
566 ASSERT(list_empty(&entry->trans_list));
567 ASSERT(list_empty(&entry->root_extent_list));
568 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
569 if (entry->inode)
570 btrfs_add_delayed_iput(entry->inode);
571 while (!list_empty(&entry->list)) {
572 cur = entry->list.next;
573 sum = list_entry(cur, struct btrfs_ordered_sum, list);
574 list_del(&sum->list);
575 kfree(sum);
576 }
577 kmem_cache_free(btrfs_ordered_extent_cache, entry);
578 }
579}
580
581/*
582 * remove an ordered extent from the tree. No references are dropped
583 * and waiters are woken up.
584 */
585void btrfs_remove_ordered_extent(struct inode *inode,
586 struct btrfs_ordered_extent *entry)
587{
588 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
589 struct btrfs_ordered_inode_tree *tree;
590 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
591 struct btrfs_root *root = btrfs_inode->root;
592 struct rb_node *node;
593 bool dec_pending_ordered = false;
594
595 /* This is paired with btrfs_add_ordered_extent. */
596 spin_lock(&btrfs_inode->lock);
597 btrfs_mod_outstanding_extents(btrfs_inode, -1);
598 spin_unlock(&btrfs_inode->lock);
599 if (root != fs_info->tree_root)
600 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
601
602 tree = &btrfs_inode->ordered_tree;
603 spin_lock_irq(&tree->lock);
604 node = &entry->rb_node;
605 rb_erase(node, &tree->tree);
606 RB_CLEAR_NODE(node);
607 if (tree->last == node)
608 tree->last = NULL;
609 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
610 if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
611 dec_pending_ordered = true;
612 spin_unlock_irq(&tree->lock);
613
614 /*
615 * The current running transaction is waiting on us, we need to let it
616 * know that we're complete and wake it up.
617 */
618 if (dec_pending_ordered) {
619 struct btrfs_transaction *trans;
620
621 /*
622 * The checks for trans are just a formality, it should be set,
623 * but if it isn't we don't want to deref/assert under the spin
624 * lock, so be nice and check if trans is set, but ASSERT() so
625 * if it isn't set a developer will notice.
626 */
627 spin_lock(&fs_info->trans_lock);
628 trans = fs_info->running_transaction;
629 if (trans)
630 refcount_inc(&trans->use_count);
631 spin_unlock(&fs_info->trans_lock);
632
633 ASSERT(trans);
634 if (trans) {
635 if (atomic_dec_and_test(&trans->pending_ordered))
636 wake_up(&trans->pending_wait);
637 btrfs_put_transaction(trans);
638 }
639 }
640
641 spin_lock(&root->ordered_extent_lock);
642 list_del_init(&entry->root_extent_list);
643 root->nr_ordered_extents--;
644
645 trace_btrfs_ordered_extent_remove(inode, entry);
646
647 if (!root->nr_ordered_extents) {
648 spin_lock(&fs_info->ordered_root_lock);
649 BUG_ON(list_empty(&root->ordered_root));
650 list_del_init(&root->ordered_root);
651 spin_unlock(&fs_info->ordered_root_lock);
652 }
653 spin_unlock(&root->ordered_extent_lock);
654 wake_up(&entry->wait);
655}
656
657static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
658{
659 struct btrfs_ordered_extent *ordered;
660
661 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
662 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
663 complete(&ordered->completion);
664}
665
666/*
667 * wait for all the ordered extents in a root. This is done when balancing
668 * space between drives.
669 */
670u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
671 const u64 range_start, const u64 range_len)
672{
673 struct btrfs_fs_info *fs_info = root->fs_info;
674 LIST_HEAD(splice);
675 LIST_HEAD(skipped);
676 LIST_HEAD(works);
677 struct btrfs_ordered_extent *ordered, *next;
678 u64 count = 0;
679 const u64 range_end = range_start + range_len;
680
681 mutex_lock(&root->ordered_extent_mutex);
682 spin_lock(&root->ordered_extent_lock);
683 list_splice_init(&root->ordered_extents, &splice);
684 while (!list_empty(&splice) && nr) {
685 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
686 root_extent_list);
687
688 if (range_end <= ordered->start ||
689 ordered->start + ordered->disk_len <= range_start) {
690 list_move_tail(&ordered->root_extent_list, &skipped);
691 cond_resched_lock(&root->ordered_extent_lock);
692 continue;
693 }
694
695 list_move_tail(&ordered->root_extent_list,
696 &root->ordered_extents);
697 refcount_inc(&ordered->refs);
698 spin_unlock(&root->ordered_extent_lock);
699
700 btrfs_init_work(&ordered->flush_work,
701 btrfs_flush_delalloc_helper,
702 btrfs_run_ordered_extent_work, NULL, NULL);
703 list_add_tail(&ordered->work_list, &works);
704 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
705
706 cond_resched();
707 spin_lock(&root->ordered_extent_lock);
708 if (nr != U64_MAX)
709 nr--;
710 count++;
711 }
712 list_splice_tail(&skipped, &root->ordered_extents);
713 list_splice_tail(&splice, &root->ordered_extents);
714 spin_unlock(&root->ordered_extent_lock);
715
716 list_for_each_entry_safe(ordered, next, &works, work_list) {
717 list_del_init(&ordered->work_list);
718 wait_for_completion(&ordered->completion);
719 btrfs_put_ordered_extent(ordered);
720 cond_resched();
721 }
722 mutex_unlock(&root->ordered_extent_mutex);
723
724 return count;
725}
726
727u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
728 const u64 range_start, const u64 range_len)
729{
730 struct btrfs_root *root;
731 struct list_head splice;
732 u64 total_done = 0;
733 u64 done;
734
735 INIT_LIST_HEAD(&splice);
736
737 mutex_lock(&fs_info->ordered_operations_mutex);
738 spin_lock(&fs_info->ordered_root_lock);
739 list_splice_init(&fs_info->ordered_roots, &splice);
740 while (!list_empty(&splice) && nr) {
741 root = list_first_entry(&splice, struct btrfs_root,
742 ordered_root);
743 root = btrfs_grab_fs_root(root);
744 BUG_ON(!root);
745 list_move_tail(&root->ordered_root,
746 &fs_info->ordered_roots);
747 spin_unlock(&fs_info->ordered_root_lock);
748
749 done = btrfs_wait_ordered_extents(root, nr,
750 range_start, range_len);
751 btrfs_put_fs_root(root);
752 total_done += done;
753
754 spin_lock(&fs_info->ordered_root_lock);
755 if (nr != U64_MAX) {
756 nr -= done;
757 }
758 }
759 list_splice_tail(&splice, &fs_info->ordered_roots);
760 spin_unlock(&fs_info->ordered_root_lock);
761 mutex_unlock(&fs_info->ordered_operations_mutex);
762
763 return total_done;
764}
765
766/*
767 * Used to start IO or wait for a given ordered extent to finish.
768 *
769 * If wait is one, this effectively waits on page writeback for all the pages
770 * in the extent, and it waits on the io completion code to insert
771 * metadata into the btree corresponding to the extent
772 */
773void btrfs_start_ordered_extent(struct inode *inode,
774 struct btrfs_ordered_extent *entry,
775 int wait)
776{
777 u64 start = entry->file_offset;
778 u64 end = start + entry->len - 1;
779
780 trace_btrfs_ordered_extent_start(inode, entry);
781
782 /*
783 * pages in the range can be dirty, clean or writeback. We
784 * start IO on any dirty ones so the wait doesn't stall waiting
785 * for the flusher thread to find them
786 */
787 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
788 filemap_fdatawrite_range(inode->i_mapping, start, end);
789 if (wait) {
790 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
791 &entry->flags));
792 }
793}
794
795/*
796 * Used to wait on ordered extents across a large range of bytes.
797 */
798int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
799{
800 int ret = 0;
801 int ret_wb = 0;
802 u64 end;
803 u64 orig_end;
804 struct btrfs_ordered_extent *ordered;
805
806 if (start + len < start) {
807 orig_end = INT_LIMIT(loff_t);
808 } else {
809 orig_end = start + len - 1;
810 if (orig_end > INT_LIMIT(loff_t))
811 orig_end = INT_LIMIT(loff_t);
812 }
813
814 /* start IO across the range first to instantiate any delalloc
815 * extents
816 */
817 ret = btrfs_fdatawrite_range(inode, start, orig_end);
818 if (ret)
819 return ret;
820
821 /*
822 * If we have a writeback error don't return immediately. Wait first
823 * for any ordered extents that haven't completed yet. This is to make
824 * sure no one can dirty the same page ranges and call writepages()
825 * before the ordered extents complete - to avoid failures (-EEXIST)
826 * when adding the new ordered extents to the ordered tree.
827 */
828 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
829
830 end = orig_end;
831 while (1) {
832 ordered = btrfs_lookup_first_ordered_extent(inode, end);
833 if (!ordered)
834 break;
835 if (ordered->file_offset > orig_end) {
836 btrfs_put_ordered_extent(ordered);
837 break;
838 }
839 if (ordered->file_offset + ordered->len <= start) {
840 btrfs_put_ordered_extent(ordered);
841 break;
842 }
843 btrfs_start_ordered_extent(inode, ordered, 1);
844 end = ordered->file_offset;
845 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
846 ret = -EIO;
847 btrfs_put_ordered_extent(ordered);
848 if (ret || end == 0 || end == start)
849 break;
850 end--;
851 }
852 return ret_wb ? ret_wb : ret;
853}
854
855/*
856 * find an ordered extent corresponding to file_offset. return NULL if
857 * nothing is found, otherwise take a reference on the extent and return it
858 */
859struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
860 u64 file_offset)
861{
862 struct btrfs_ordered_inode_tree *tree;
863 struct rb_node *node;
864 struct btrfs_ordered_extent *entry = NULL;
865
866 tree = &BTRFS_I(inode)->ordered_tree;
867 spin_lock_irq(&tree->lock);
868 node = tree_search(tree, file_offset);
869 if (!node)
870 goto out;
871
872 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
873 if (!offset_in_entry(entry, file_offset))
874 entry = NULL;
875 if (entry)
876 refcount_inc(&entry->refs);
877out:
878 spin_unlock_irq(&tree->lock);
879 return entry;
880}
881
882/* Since the DIO code tries to lock a wide area we need to look for any ordered
883 * extents that exist in the range, rather than just the start of the range.
884 */
885struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
886 struct btrfs_inode *inode, u64 file_offset, u64 len)
887{
888 struct btrfs_ordered_inode_tree *tree;
889 struct rb_node *node;
890 struct btrfs_ordered_extent *entry = NULL;
891
892 tree = &inode->ordered_tree;
893 spin_lock_irq(&tree->lock);
894 node = tree_search(tree, file_offset);
895 if (!node) {
896 node = tree_search(tree, file_offset + len);
897 if (!node)
898 goto out;
899 }
900
901 while (1) {
902 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
903 if (range_overlaps(entry, file_offset, len))
904 break;
905
906 if (entry->file_offset >= file_offset + len) {
907 entry = NULL;
908 break;
909 }
910 entry = NULL;
911 node = rb_next(node);
912 if (!node)
913 break;
914 }
915out:
916 if (entry)
917 refcount_inc(&entry->refs);
918 spin_unlock_irq(&tree->lock);
919 return entry;
920}
921
922bool btrfs_have_ordered_extents_in_range(struct inode *inode,
923 u64 file_offset,
924 u64 len)
925{
926 struct btrfs_ordered_extent *oe;
927
928 oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
929 if (oe) {
930 btrfs_put_ordered_extent(oe);
931 return true;
932 }
933 return false;
934}
935
936/*
937 * lookup and return any extent before 'file_offset'. NULL is returned
938 * if none is found
939 */
940struct btrfs_ordered_extent *
941btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
942{
943 struct btrfs_ordered_inode_tree *tree;
944 struct rb_node *node;
945 struct btrfs_ordered_extent *entry = NULL;
946
947 tree = &BTRFS_I(inode)->ordered_tree;
948 spin_lock_irq(&tree->lock);
949 node = tree_search(tree, file_offset);
950 if (!node)
951 goto out;
952
953 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
954 refcount_inc(&entry->refs);
955out:
956 spin_unlock_irq(&tree->lock);
957 return entry;
958}
959
960/*
961 * After an extent is done, call this to conditionally update the on disk
962 * i_size. i_size is updated to cover any fully written part of the file.
963 */
964int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
965 struct btrfs_ordered_extent *ordered)
966{
967 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
968 u64 disk_i_size;
969 u64 new_i_size;
970 u64 i_size = i_size_read(inode);
971 struct rb_node *node;
972 struct rb_node *prev = NULL;
973 struct btrfs_ordered_extent *test;
974 int ret = 1;
975 u64 orig_offset = offset;
976
977 spin_lock_irq(&tree->lock);
978 if (ordered) {
979 offset = entry_end(ordered);
980 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
981 offset = min(offset,
982 ordered->file_offset +
983 ordered->truncated_len);
984 } else {
985 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
986 }
987 disk_i_size = BTRFS_I(inode)->disk_i_size;
988
989 /*
990 * truncate file.
991 * If ordered is not NULL, then this is called from endio and
992 * disk_i_size will be updated by either truncate itself or any
993 * in-flight IOs which are inside the disk_i_size.
994 *
995 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
996 * fails somehow, we need to make sure we have a precise disk_i_size by
997 * updating it as usual.
998 *
999 */
1000 if (!ordered && disk_i_size > i_size) {
1001 BTRFS_I(inode)->disk_i_size = orig_offset;
1002 ret = 0;
1003 goto out;
1004 }
1005
1006 /*
1007 * if the disk i_size is already at the inode->i_size, or
1008 * this ordered extent is inside the disk i_size, we're done
1009 */
1010 if (disk_i_size == i_size)
1011 goto out;
1012
1013 /*
1014 * We still need to update disk_i_size if outstanding_isize is greater
1015 * than disk_i_size.
1016 */
1017 if (offset <= disk_i_size &&
1018 (!ordered || ordered->outstanding_isize <= disk_i_size))
1019 goto out;
1020
1021 /*
1022 * walk backward from this ordered extent to disk_i_size.
1023 * if we find an ordered extent then we can't update disk i_size
1024 * yet
1025 */
1026 if (ordered) {
1027 node = rb_prev(&ordered->rb_node);
1028 } else {
1029 prev = tree_search(tree, offset);
1030 /*
1031 * we insert file extents without involving ordered struct,
1032 * so there should be no ordered struct cover this offset
1033 */
1034 if (prev) {
1035 test = rb_entry(prev, struct btrfs_ordered_extent,
1036 rb_node);
1037 BUG_ON(offset_in_entry(test, offset));
1038 }
1039 node = prev;
1040 }
1041 for (; node; node = rb_prev(node)) {
1042 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1043
1044 /* We treat this entry as if it doesn't exist */
1045 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1046 continue;
1047
1048 if (entry_end(test) <= disk_i_size)
1049 break;
1050 if (test->file_offset >= i_size)
1051 break;
1052
1053 /*
1054 * We don't update disk_i_size now, so record this undealt
1055 * i_size. Or we will not know the real i_size.
1056 */
1057 if (test->outstanding_isize < offset)
1058 test->outstanding_isize = offset;
1059 if (ordered &&
1060 ordered->outstanding_isize > test->outstanding_isize)
1061 test->outstanding_isize = ordered->outstanding_isize;
1062 goto out;
1063 }
1064 new_i_size = min_t(u64, offset, i_size);
1065
1066 /*
1067 * Some ordered extents may completed before the current one, and
1068 * we hold the real i_size in ->outstanding_isize.
1069 */
1070 if (ordered && ordered->outstanding_isize > new_i_size)
1071 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1072 BTRFS_I(inode)->disk_i_size = new_i_size;
1073 ret = 0;
1074out:
1075 /*
1076 * We need to do this because we can't remove ordered extents until
1077 * after the i_disk_size has been updated and then the inode has been
1078 * updated to reflect the change, so we need to tell anybody who finds
1079 * this ordered extent that we've already done all the real work, we
1080 * just haven't completed all the other work.
1081 */
1082 if (ordered)
1083 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1084 spin_unlock_irq(&tree->lock);
1085 return ret;
1086}
1087
1088/*
1089 * search the ordered extents for one corresponding to 'offset' and
1090 * try to find a checksum. This is used because we allow pages to
1091 * be reclaimed before their checksum is actually put into the btree
1092 */
1093int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1094 u32 *sum, int len)
1095{
1096 struct btrfs_ordered_sum *ordered_sum;
1097 struct btrfs_ordered_extent *ordered;
1098 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1099 unsigned long num_sectors;
1100 unsigned long i;
1101 u32 sectorsize = btrfs_inode_sectorsize(inode);
1102 int index = 0;
1103
1104 ordered = btrfs_lookup_ordered_extent(inode, offset);
1105 if (!ordered)
1106 return 0;
1107
1108 spin_lock_irq(&tree->lock);
1109 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1110 if (disk_bytenr >= ordered_sum->bytenr &&
1111 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1112 i = (disk_bytenr - ordered_sum->bytenr) >>
1113 inode->i_sb->s_blocksize_bits;
1114 num_sectors = ordered_sum->len >>
1115 inode->i_sb->s_blocksize_bits;
1116 num_sectors = min_t(int, len - index, num_sectors - i);
1117 memcpy(sum + index, ordered_sum->sums + i,
1118 num_sectors);
1119
1120 index += (int)num_sectors;
1121 if (index == len)
1122 goto out;
1123 disk_bytenr += num_sectors * sectorsize;
1124 }
1125 }
1126out:
1127 spin_unlock_irq(&tree->lock);
1128 btrfs_put_ordered_extent(ordered);
1129 return index;
1130}
1131
1132int __init ordered_data_init(void)
1133{
1134 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1135 sizeof(struct btrfs_ordered_extent), 0,
1136 SLAB_MEM_SPREAD,
1137 NULL);
1138 if (!btrfs_ordered_extent_cache)
1139 return -ENOMEM;
1140
1141 return 0;
1142}
1143
1144void __cold ordered_data_exit(void)
1145{
1146 kmem_cache_destroy(btrfs_ordered_extent_cache);
1147}