Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/slab.h>
 20#include <linux/blkdev.h>
 21#include <linux/writeback.h>
 22#include <linux/pagevec.h>
 
 23#include "ctree.h"
 24#include "transaction.h"
 25#include "btrfs_inode.h"
 26#include "extent_io.h"
 
 
 
 
 
 
 27
 28static u64 entry_end(struct btrfs_ordered_extent *entry)
 29{
 30	if (entry->file_offset + entry->len < entry->file_offset)
 31		return (u64)-1;
 32	return entry->file_offset + entry->len;
 33}
 34
 35/* returns NULL if the insertion worked, or it returns the node it did find
 36 * in the tree
 37 */
 38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 39				   struct rb_node *node)
 40{
 41	struct rb_node **p = &root->rb_node;
 42	struct rb_node *parent = NULL;
 43	struct btrfs_ordered_extent *entry;
 44
 45	while (*p) {
 46		parent = *p;
 47		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 48
 49		if (file_offset < entry->file_offset)
 50			p = &(*p)->rb_left;
 51		else if (file_offset >= entry_end(entry))
 52			p = &(*p)->rb_right;
 53		else
 54			return parent;
 55	}
 56
 57	rb_link_node(node, parent, p);
 58	rb_insert_color(node, root);
 59	return NULL;
 60}
 61
 62static void ordered_data_tree_panic(struct inode *inode, int errno,
 63					       u64 offset)
 64{
 65	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 66	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
 67		    "%llu\n", (unsigned long long)offset);
 68}
 69
 70/*
 71 * look for a given offset in the tree, and if it can't be found return the
 72 * first lesser offset
 73 */
 74static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 75				     struct rb_node **prev_ret)
 76{
 77	struct rb_node *n = root->rb_node;
 78	struct rb_node *prev = NULL;
 79	struct rb_node *test;
 80	struct btrfs_ordered_extent *entry;
 81	struct btrfs_ordered_extent *prev_entry = NULL;
 82
 83	while (n) {
 84		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 85		prev = n;
 86		prev_entry = entry;
 87
 88		if (file_offset < entry->file_offset)
 89			n = n->rb_left;
 90		else if (file_offset >= entry_end(entry))
 91			n = n->rb_right;
 92		else
 93			return n;
 94	}
 95	if (!prev_ret)
 96		return NULL;
 97
 98	while (prev && file_offset >= entry_end(prev_entry)) {
 99		test = rb_next(prev);
100		if (!test)
101			break;
102		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103				      rb_node);
104		if (file_offset < entry_end(prev_entry))
105			break;
106
107		prev = test;
108	}
109	if (prev)
110		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
111				      rb_node);
112	while (prev && file_offset < entry_end(prev_entry)) {
113		test = rb_prev(prev);
114		if (!test)
115			break;
116		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
117				      rb_node);
118		prev = test;
119	}
120	*prev_ret = prev;
121	return NULL;
122}
123
124/*
125 * helper to check if a given offset is inside a given entry
126 */
127static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
128{
129	if (file_offset < entry->file_offset ||
130	    entry->file_offset + entry->len <= file_offset)
131		return 0;
132	return 1;
133}
134
135static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
136			  u64 len)
137{
138	if (file_offset + len <= entry->file_offset ||
139	    entry->file_offset + entry->len <= file_offset)
140		return 0;
141	return 1;
142}
143
144/*
145 * look find the first ordered struct that has this offset, otherwise
146 * the first one less than this offset
147 */
148static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
149					  u64 file_offset)
150{
151	struct rb_root *root = &tree->tree;
152	struct rb_node *prev = NULL;
153	struct rb_node *ret;
154	struct btrfs_ordered_extent *entry;
155
156	if (tree->last) {
157		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
158				 rb_node);
159		if (offset_in_entry(entry, file_offset))
160			return tree->last;
161	}
162	ret = __tree_search(root, file_offset, &prev);
163	if (!ret)
164		ret = prev;
165	if (ret)
166		tree->last = ret;
167	return ret;
168}
169
170/* allocate and add a new ordered_extent into the per-inode tree.
171 * file_offset is the logical offset in the file
172 *
173 * start is the disk block number of an extent already reserved in the
174 * extent allocation tree
175 *
176 * len is the length of the extent
177 *
178 * The tree is given a single reference on the ordered extent that was
179 * inserted.
180 */
181static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
182				      u64 start, u64 len, u64 disk_len,
183				      int type, int dio, int compress_type)
184{
185	struct btrfs_ordered_inode_tree *tree;
 
 
 
186	struct rb_node *node;
187	struct btrfs_ordered_extent *entry;
 
188
189	tree = &BTRFS_I(inode)->ordered_tree;
190	entry = kzalloc(sizeof(*entry), GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191	if (!entry)
192		return -ENOMEM;
193
194	entry->file_offset = file_offset;
195	entry->start = start;
196	entry->len = len;
197	entry->disk_len = disk_len;
198	entry->bytes_left = len;
199	entry->inode = igrab(inode);
200	entry->compress_type = compress_type;
 
 
201	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
202		set_bit(type, &entry->flags);
203
204	if (dio)
 
 
205		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 
206
207	/* one ref for the tree */
208	atomic_set(&entry->refs, 1);
209	init_waitqueue_head(&entry->wait);
210	INIT_LIST_HEAD(&entry->list);
211	INIT_LIST_HEAD(&entry->root_extent_list);
 
 
212
213	trace_btrfs_ordered_extent_add(inode, entry);
214
215	spin_lock_irq(&tree->lock);
216	node = tree_insert(&tree->tree, file_offset,
217			   &entry->rb_node);
218	if (node)
219		ordered_data_tree_panic(inode, -EEXIST, file_offset);
 
 
220	spin_unlock_irq(&tree->lock);
221
222	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
223	list_add_tail(&entry->root_extent_list,
224		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
225	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
227	return 0;
228}
229
230int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
231			     u64 start, u64 len, u64 disk_len, int type)
 
232{
233	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234					  disk_len, type, 0,
235					  BTRFS_COMPRESS_NONE);
236}
237
238int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
239				 u64 start, u64 len, u64 disk_len, int type)
 
240{
241	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
242					  disk_len, type, 1,
243					  BTRFS_COMPRESS_NONE);
244}
245
246int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
247				      u64 start, u64 len, u64 disk_len,
248				      int type, int compress_type)
 
249{
250	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251					  disk_len, type, 0,
252					  compress_type);
253}
254
255/*
256 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
257 * when an ordered extent is finished.  If the list covers more than one
258 * ordered extent, it is split across multiples.
259 */
260void btrfs_add_ordered_sum(struct inode *inode,
261			   struct btrfs_ordered_extent *entry,
262			   struct btrfs_ordered_sum *sum)
263{
264	struct btrfs_ordered_inode_tree *tree;
265
266	tree = &BTRFS_I(inode)->ordered_tree;
267	spin_lock_irq(&tree->lock);
268	list_add_tail(&sum->list, &entry->list);
269	spin_unlock_irq(&tree->lock);
270}
271
272/*
273 * this is used to account for finished IO across a given range
274 * of the file.  The IO may span ordered extents.  If
275 * a given ordered_extent is completely done, 1 is returned, otherwise
276 * 0.
277 *
278 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
279 * to make sure this function only returns 1 once for a given ordered extent.
280 *
281 * file_offset is updated to one byte past the range that is recorded as
282 * complete.  This allows you to walk forward in the file.
283 */
284int btrfs_dec_test_first_ordered_pending(struct inode *inode,
285				   struct btrfs_ordered_extent **cached,
286				   u64 *file_offset, u64 io_size, int uptodate)
287{
288	struct btrfs_ordered_inode_tree *tree;
 
289	struct rb_node *node;
290	struct btrfs_ordered_extent *entry = NULL;
291	int ret;
292	unsigned long flags;
293	u64 dec_end;
294	u64 dec_start;
295	u64 to_dec;
296
297	tree = &BTRFS_I(inode)->ordered_tree;
298	spin_lock_irqsave(&tree->lock, flags);
299	node = tree_search(tree, *file_offset);
300	if (!node) {
301		ret = 1;
302		goto out;
303	}
304
305	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
306	if (!offset_in_entry(entry, *file_offset)) {
307		ret = 1;
308		goto out;
309	}
310
311	dec_start = max(*file_offset, entry->file_offset);
312	dec_end = min(*file_offset + io_size, entry->file_offset +
313		      entry->len);
314	*file_offset = dec_end;
315	if (dec_start > dec_end) {
316		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
317		       (unsigned long long)dec_start,
318		       (unsigned long long)dec_end);
319	}
320	to_dec = dec_end - dec_start;
321	if (to_dec > entry->bytes_left) {
322		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
323		       (unsigned long long)entry->bytes_left,
324		       (unsigned long long)to_dec);
325	}
326	entry->bytes_left -= to_dec;
327	if (!uptodate)
328		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
329
330	if (entry->bytes_left == 0)
331		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
332	else
 
 
333		ret = 1;
 
334out:
335	if (!ret && cached && entry) {
336		*cached = entry;
337		atomic_inc(&entry->refs);
338	}
339	spin_unlock_irqrestore(&tree->lock, flags);
340	return ret == 0;
341}
342
343/*
344 * this is used to account for finished IO across a given range
345 * of the file.  The IO should not span ordered extents.  If
346 * a given ordered_extent is completely done, 1 is returned, otherwise
347 * 0.
348 *
349 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
350 * to make sure this function only returns 1 once for a given ordered extent.
351 */
352int btrfs_dec_test_ordered_pending(struct inode *inode,
353				   struct btrfs_ordered_extent **cached,
354				   u64 file_offset, u64 io_size, int uptodate)
355{
356	struct btrfs_ordered_inode_tree *tree;
357	struct rb_node *node;
358	struct btrfs_ordered_extent *entry = NULL;
359	unsigned long flags;
360	int ret;
361
362	tree = &BTRFS_I(inode)->ordered_tree;
363	spin_lock_irqsave(&tree->lock, flags);
364	if (cached && *cached) {
365		entry = *cached;
366		goto have_entry;
367	}
368
369	node = tree_search(tree, file_offset);
370	if (!node) {
371		ret = 1;
372		goto out;
373	}
374
375	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
376have_entry:
377	if (!offset_in_entry(entry, file_offset)) {
378		ret = 1;
379		goto out;
380	}
381
382	if (io_size > entry->bytes_left) {
383		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
384		       (unsigned long long)entry->bytes_left,
385		       (unsigned long long)io_size);
386	}
387	entry->bytes_left -= io_size;
388	if (!uptodate)
389		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
390
391	if (entry->bytes_left == 0)
392		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
393	else
 
 
394		ret = 1;
 
395out:
396	if (!ret && cached && entry) {
397		*cached = entry;
398		atomic_inc(&entry->refs);
399	}
400	spin_unlock_irqrestore(&tree->lock, flags);
401	return ret == 0;
402}
403
404/*
405 * used to drop a reference on an ordered extent.  This will free
406 * the extent if the last reference is dropped
407 */
408void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
409{
410	struct list_head *cur;
411	struct btrfs_ordered_sum *sum;
412
413	trace_btrfs_ordered_extent_put(entry->inode, entry);
414
415	if (atomic_dec_and_test(&entry->refs)) {
 
 
416		if (entry->inode)
417			btrfs_add_delayed_iput(entry->inode);
418		while (!list_empty(&entry->list)) {
419			cur = entry->list.next;
420			sum = list_entry(cur, struct btrfs_ordered_sum, list);
421			list_del(&sum->list);
422			kfree(sum);
423		}
424		kfree(entry);
425	}
426}
427
428/*
429 * remove an ordered extent from the tree.  No references are dropped
430 * and waiters are woken up.
431 */
432void btrfs_remove_ordered_extent(struct inode *inode,
433				 struct btrfs_ordered_extent *entry)
434{
 
435	struct btrfs_ordered_inode_tree *tree;
436	struct btrfs_root *root = BTRFS_I(inode)->root;
 
437	struct rb_node *node;
438
439	tree = &BTRFS_I(inode)->ordered_tree;
 
 
 
 
 
 
 
 
 
 
 
 
440	spin_lock_irq(&tree->lock);
441	node = &entry->rb_node;
442	rb_erase(node, &tree->tree);
443	tree->last = NULL;
 
 
444	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
445	spin_unlock_irq(&tree->lock);
446
447	spin_lock(&root->fs_info->ordered_extent_lock);
448	list_del_init(&entry->root_extent_list);
 
449
450	trace_btrfs_ordered_extent_remove(inode, entry);
451
452	/*
453	 * we have no more ordered extents for this inode and
454	 * no dirty pages.  We can safely remove it from the
455	 * list of ordered extents
456	 */
457	if (RB_EMPTY_ROOT(&tree->tree) &&
458	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
459		list_del_init(&BTRFS_I(inode)->ordered_operations);
460	}
461	spin_unlock(&root->fs_info->ordered_extent_lock);
462	wake_up(&entry->wait);
463}
464
 
 
 
 
 
 
 
 
 
465/*
466 * wait for all the ordered extents in a root.  This is done when balancing
467 * space between drives.
468 */
469void btrfs_wait_ordered_extents(struct btrfs_root *root,
470				int nocow_only, int delay_iput)
471{
472	struct list_head splice;
473	struct list_head *cur;
474	struct btrfs_ordered_extent *ordered;
475	struct inode *inode;
476
477	INIT_LIST_HEAD(&splice);
478
479	spin_lock(&root->fs_info->ordered_extent_lock);
480	list_splice_init(&root->fs_info->ordered_extents, &splice);
481	while (!list_empty(&splice)) {
482		cur = splice.next;
483		ordered = list_entry(cur, struct btrfs_ordered_extent,
484				     root_extent_list);
485		if (nocow_only &&
486		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
487		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
488			list_move(&ordered->root_extent_list,
489				  &root->fs_info->ordered_extents);
490			cond_resched_lock(&root->fs_info->ordered_extent_lock);
491			continue;
492		}
493
494		list_del_init(&ordered->root_extent_list);
495		atomic_inc(&ordered->refs);
496
497		/*
498		 * the inode may be getting freed (in sys_unlink path).
499		 */
500		inode = igrab(ordered->inode);
501
502		spin_unlock(&root->fs_info->ordered_extent_lock);
503
504		if (inode) {
505			btrfs_start_ordered_extent(inode, ordered, 1);
506			btrfs_put_ordered_extent(ordered);
507			if (delay_iput)
508				btrfs_add_delayed_iput(inode);
509			else
510				iput(inode);
511		} else {
512			btrfs_put_ordered_extent(ordered);
513		}
514
515		spin_lock(&root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516	}
517	spin_unlock(&root->fs_info->ordered_extent_lock);
 
 
518}
519
520/*
521 * this is used during transaction commit to write all the inodes
522 * added to the ordered operation list.  These files must be fully on
523 * disk before the transaction commits.
524 *
525 * we have two modes here, one is to just start the IO via filemap_flush
526 * and the other is to wait for all the io.  When we wait, we have an
527 * extra check to make sure the ordered operation list really is empty
528 * before we return
529 */
530void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
531{
532	struct btrfs_inode *btrfs_inode;
533	struct inode *inode;
534	struct list_head splice;
 
535
536	INIT_LIST_HEAD(&splice);
537
538	mutex_lock(&root->fs_info->ordered_operations_mutex);
539	spin_lock(&root->fs_info->ordered_extent_lock);
540again:
541	list_splice_init(&root->fs_info->ordered_operations, &splice);
542
543	while (!list_empty(&splice)) {
544		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
545				   ordered_operations);
546
547		inode = &btrfs_inode->vfs_inode;
548
549		list_del_init(&btrfs_inode->ordered_operations);
550
551		/*
552		 * the inode may be getting freed (in sys_unlink path).
553		 */
554		inode = igrab(inode);
555
556		if (!wait && inode) {
557			list_add_tail(&BTRFS_I(inode)->ordered_operations,
558			      &root->fs_info->ordered_operations);
559		}
560		spin_unlock(&root->fs_info->ordered_extent_lock);
561
562		if (inode) {
563			if (wait)
564				btrfs_wait_ordered_range(inode, 0, (u64)-1);
565			else
566				filemap_flush(inode->i_mapping);
567			btrfs_add_delayed_iput(inode);
568		}
569
570		cond_resched();
571		spin_lock(&root->fs_info->ordered_extent_lock);
572	}
573	if (wait && !list_empty(&root->fs_info->ordered_operations))
574		goto again;
575
576	spin_unlock(&root->fs_info->ordered_extent_lock);
577	mutex_unlock(&root->fs_info->ordered_operations_mutex);
578}
579
580/*
581 * Used to start IO or wait for a given ordered extent to finish.
582 *
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
586 */
587void btrfs_start_ordered_extent(struct inode *inode,
588				       struct btrfs_ordered_extent *entry,
589				       int wait)
590{
591	u64 start = entry->file_offset;
592	u64 end = start + entry->len - 1;
593
594	trace_btrfs_ordered_extent_start(inode, entry);
595
596	/*
597	 * pages in the range can be dirty, clean or writeback.  We
598	 * start IO on any dirty ones so the wait doesn't stall waiting
599	 * for pdflush to find them
600	 */
601	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602		filemap_fdatawrite_range(inode->i_mapping, start, end);
603	if (wait) {
604		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605						 &entry->flags));
606	}
607}
608
609/*
610 * Used to wait on ordered extents across a large range of bytes.
611 */
612void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
613{
 
 
614	u64 end;
615	u64 orig_end;
616	struct btrfs_ordered_extent *ordered;
617	int found;
618
619	if (start + len < start) {
620		orig_end = INT_LIMIT(loff_t);
621	} else {
622		orig_end = start + len - 1;
623		if (orig_end > INT_LIMIT(loff_t))
624			orig_end = INT_LIMIT(loff_t);
625	}
626
627	/* start IO across the range first to instantiate any delalloc
628	 * extents
629	 */
630	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 
 
631
632	/*
633	 * So with compression we will find and lock a dirty page and clear the
634	 * first one as dirty, setup an async extent, and immediately return
635	 * with the entire range locked but with nobody actually marked with
636	 * writeback.  So we can't just filemap_write_and_wait_range() and
637	 * expect it to work since it will just kick off a thread to do the
638	 * actual work.  So we need to call filemap_fdatawrite_range _again_
639	 * since it will wait on the page lock, which won't be unlocked until
640	 * after the pages have been marked as writeback and so we're good to go
641	 * from there.  We have to do this otherwise we'll miss the ordered
642	 * extents and that results in badness.  Please Josef, do not think you
643	 * know better and pull this out at some point in the future, it is
644	 * right and you are wrong.
645	 */
646	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
647		     &BTRFS_I(inode)->runtime_flags))
648		filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
649
650	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
651
652	end = orig_end;
653	found = 0;
654	while (1) {
655		ordered = btrfs_lookup_first_ordered_extent(inode, end);
656		if (!ordered)
657			break;
658		if (ordered->file_offset > orig_end) {
659			btrfs_put_ordered_extent(ordered);
660			break;
661		}
662		if (ordered->file_offset + ordered->len < start) {
663			btrfs_put_ordered_extent(ordered);
664			break;
665		}
666		found++;
667		btrfs_start_ordered_extent(inode, ordered, 1);
668		end = ordered->file_offset;
 
 
 
 
 
 
 
669		btrfs_put_ordered_extent(ordered);
670		if (end == 0 || end == start)
671			break;
672		end--;
673	}
 
674}
675
676/*
677 * find an ordered extent corresponding to file_offset.  return NULL if
678 * nothing is found, otherwise take a reference on the extent and return it
679 */
680struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
681							 u64 file_offset)
682{
683	struct btrfs_ordered_inode_tree *tree;
684	struct rb_node *node;
685	struct btrfs_ordered_extent *entry = NULL;
686
687	tree = &BTRFS_I(inode)->ordered_tree;
688	spin_lock_irq(&tree->lock);
689	node = tree_search(tree, file_offset);
690	if (!node)
691		goto out;
692
693	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
694	if (!offset_in_entry(entry, file_offset))
695		entry = NULL;
696	if (entry)
697		atomic_inc(&entry->refs);
698out:
699	spin_unlock_irq(&tree->lock);
700	return entry;
701}
702
703/* Since the DIO code tries to lock a wide area we need to look for any ordered
704 * extents that exist in the range, rather than just the start of the range.
705 */
706struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
707							u64 file_offset,
708							u64 len)
709{
710	struct btrfs_ordered_inode_tree *tree;
711	struct rb_node *node;
712	struct btrfs_ordered_extent *entry = NULL;
713
714	tree = &BTRFS_I(inode)->ordered_tree;
715	spin_lock_irq(&tree->lock);
716	node = tree_search(tree, file_offset);
717	if (!node) {
718		node = tree_search(tree, file_offset + len);
719		if (!node)
720			goto out;
721	}
722
723	while (1) {
724		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
725		if (range_overlaps(entry, file_offset, len))
726			break;
727
728		if (entry->file_offset >= file_offset + len) {
729			entry = NULL;
730			break;
731		}
732		entry = NULL;
733		node = rb_next(node);
734		if (!node)
735			break;
736	}
737out:
738	if (entry)
739		atomic_inc(&entry->refs);
740	spin_unlock_irq(&tree->lock);
741	return entry;
742}
743
744/*
745 * lookup and return any extent before 'file_offset'.  NULL is returned
746 * if none is found
747 */
748struct btrfs_ordered_extent *
749btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
750{
751	struct btrfs_ordered_inode_tree *tree;
752	struct rb_node *node;
753	struct btrfs_ordered_extent *entry = NULL;
754
755	tree = &BTRFS_I(inode)->ordered_tree;
756	spin_lock_irq(&tree->lock);
757	node = tree_search(tree, file_offset);
758	if (!node)
759		goto out;
760
761	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
762	atomic_inc(&entry->refs);
763out:
764	spin_unlock_irq(&tree->lock);
765	return entry;
766}
767
768/*
769 * After an extent is done, call this to conditionally update the on disk
770 * i_size.  i_size is updated to cover any fully written part of the file.
771 */
772int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
773				struct btrfs_ordered_extent *ordered)
774{
775	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
776	u64 disk_i_size;
777	u64 new_i_size;
778	u64 i_size_test;
779	u64 i_size = i_size_read(inode);
780	struct rb_node *node;
781	struct rb_node *prev = NULL;
782	struct btrfs_ordered_extent *test;
783	int ret = 1;
784
785	if (ordered)
786		offset = entry_end(ordered);
787	else
788		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
789
790	spin_lock_irq(&tree->lock);
791	disk_i_size = BTRFS_I(inode)->disk_i_size;
792
793	/* truncate file */
794	if (disk_i_size > i_size) {
795		BTRFS_I(inode)->disk_i_size = i_size;
796		ret = 0;
797		goto out;
798	}
799
800	/*
801	 * if the disk i_size is already at the inode->i_size, or
802	 * this ordered extent is inside the disk i_size, we're done
803	 */
804	if (disk_i_size == i_size || offset <= disk_i_size) {
805		goto out;
806	}
807
808	/*
809	 * walk backward from this ordered extent to disk_i_size.
810	 * if we find an ordered extent then we can't update disk i_size
811	 * yet
812	 */
813	if (ordered) {
814		node = rb_prev(&ordered->rb_node);
815	} else {
816		prev = tree_search(tree, offset);
817		/*
818		 * we insert file extents without involving ordered struct,
819		 * so there should be no ordered struct cover this offset
820		 */
821		if (prev) {
822			test = rb_entry(prev, struct btrfs_ordered_extent,
823					rb_node);
824			BUG_ON(offset_in_entry(test, offset));
825		}
826		node = prev;
827	}
828	for (; node; node = rb_prev(node)) {
829		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
830
831		/* We treat this entry as if it doesnt exist */
832		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
833			continue;
834		if (test->file_offset + test->len <= disk_i_size)
835			break;
836		if (test->file_offset >= i_size)
837			break;
838		if (test->file_offset >= disk_i_size)
839			goto out;
840	}
841	new_i_size = min_t(u64, offset, i_size);
842
843	/*
844	 * at this point, we know we can safely update i_size to at least
845	 * the offset from this ordered extent.  But, we need to
846	 * walk forward and see if ios from higher up in the file have
847	 * finished.
848	 */
849	if (ordered) {
850		node = rb_next(&ordered->rb_node);
851	} else {
852		if (prev)
853			node = rb_next(prev);
854		else
855			node = rb_first(&tree->tree);
856	}
857
858	/*
859	 * We are looking for an area between our current extent and the next
860	 * ordered extent to update the i_size to.  There are 3 cases here
861	 *
862	 * 1) We don't actually have anything and we can update to i_size.
863	 * 2) We have stuff but they already did their i_size update so again we
864	 * can just update to i_size.
865	 * 3) We have an outstanding ordered extent so the most we can update
866	 * our disk_i_size to is the start of the next offset.
867	 */
868	i_size_test = i_size;
869	for (; node; node = rb_next(node)) {
870		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871
872		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
873			continue;
874		if (test->file_offset > offset) {
875			i_size_test = test->file_offset;
876			break;
877		}
878	}
879
880	/*
881	 * i_size_test is the end of a region after this ordered
882	 * extent where there are no ordered extents, we can safely set
883	 * disk_i_size to this.
884	 */
885	if (i_size_test > offset)
886		new_i_size = min_t(u64, i_size_test, i_size);
887	BTRFS_I(inode)->disk_i_size = new_i_size;
888	ret = 0;
889out:
890	/*
891	 * We need to do this because we can't remove ordered extents until
892	 * after the i_disk_size has been updated and then the inode has been
893	 * updated to reflect the change, so we need to tell anybody who finds
894	 * this ordered extent that we've already done all the real work, we
895	 * just haven't completed all the other work.
896	 */
897	if (ordered)
898		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
899	spin_unlock_irq(&tree->lock);
900	return ret;
901}
902
903/*
904 * search the ordered extents for one corresponding to 'offset' and
905 * try to find a checksum.  This is used because we allow pages to
906 * be reclaimed before their checksum is actually put into the btree
907 */
908int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
909			   u32 *sum)
910{
 
911	struct btrfs_ordered_sum *ordered_sum;
912	struct btrfs_sector_sum *sector_sums;
913	struct btrfs_ordered_extent *ordered;
914	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
915	unsigned long num_sectors;
916	unsigned long i;
917	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
918	int ret = 1;
 
919
920	ordered = btrfs_lookup_ordered_extent(inode, offset);
921	if (!ordered)
922		return 1;
923
924	spin_lock_irq(&tree->lock);
925	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
926		if (disk_bytenr >= ordered_sum->bytenr) {
927			num_sectors = ordered_sum->len / sectorsize;
928			sector_sums = ordered_sum->sums;
929			for (i = 0; i < num_sectors; i++) {
930				if (sector_sums[i].bytenr == disk_bytenr) {
931					*sum = sector_sums[i].sum;
932					ret = 0;
933					goto out;
934				}
935			}
 
 
 
 
936		}
937	}
938out:
939	spin_unlock_irq(&tree->lock);
940	btrfs_put_ordered_extent(ordered);
941	return ret;
942}
943
944
945/*
946 * add a given inode to the list of inodes that must be fully on
947 * disk before a transaction commit finishes.
948 *
949 * This basically gives us the ext3 style data=ordered mode, and it is mostly
950 * used to make sure renamed files are fully on disk.
951 *
952 * It is a noop if the inode is already fully on disk.
 
 
 
 
953 *
954 * If trans is not null, we'll do a friendly check for a transaction that
955 * is already flushing things and force the IO down ourselves.
956 */
957void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
958				 struct btrfs_root *root, struct inode *inode)
 
959{
960	u64 last_mod;
 
 
961
962	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
 
963
964	/*
965	 * if this file hasn't been changed since the last transaction
966	 * commit, we can safely return without doing anything
967	 */
968	if (last_mod < root->fs_info->last_trans_committed)
969		return;
970
971	/*
972	 * the transaction is already committing.  Just start the IO and
973	 * don't bother with all of this list nonsense
974	 */
975	if (trans && root->fs_info->running_transaction->blocked) {
976		btrfs_wait_ordered_range(inode, 0, (u64)-1);
977		return;
 
 
 
978	}
 
979
980	spin_lock(&root->fs_info->ordered_extent_lock);
981	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
982		list_add_tail(&BTRFS_I(inode)->ordered_operations,
983			      &root->fs_info->ordered_operations);
984	}
985	spin_unlock(&root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
 
 
 
986}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/slab.h>
  7#include <linux/blkdev.h>
  8#include <linux/writeback.h>
  9#include <linux/sched/mm.h>
 10#include "misc.h"
 11#include "ctree.h"
 12#include "transaction.h"
 13#include "btrfs_inode.h"
 14#include "extent_io.h"
 15#include "disk-io.h"
 16#include "compression.h"
 17#include "delalloc-space.h"
 18#include "qgroup.h"
 19
 20static struct kmem_cache *btrfs_ordered_extent_cache;
 21
 22static u64 entry_end(struct btrfs_ordered_extent *entry)
 23{
 24	if (entry->file_offset + entry->num_bytes < entry->file_offset)
 25		return (u64)-1;
 26	return entry->file_offset + entry->num_bytes;
 27}
 28
 29/* returns NULL if the insertion worked, or it returns the node it did find
 30 * in the tree
 31 */
 32static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 33				   struct rb_node *node)
 34{
 35	struct rb_node **p = &root->rb_node;
 36	struct rb_node *parent = NULL;
 37	struct btrfs_ordered_extent *entry;
 38
 39	while (*p) {
 40		parent = *p;
 41		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 42
 43		if (file_offset < entry->file_offset)
 44			p = &(*p)->rb_left;
 45		else if (file_offset >= entry_end(entry))
 46			p = &(*p)->rb_right;
 47		else
 48			return parent;
 49	}
 50
 51	rb_link_node(node, parent, p);
 52	rb_insert_color(node, root);
 53	return NULL;
 54}
 55
 
 
 
 
 
 
 
 
 56/*
 57 * look for a given offset in the tree, and if it can't be found return the
 58 * first lesser offset
 59 */
 60static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 61				     struct rb_node **prev_ret)
 62{
 63	struct rb_node *n = root->rb_node;
 64	struct rb_node *prev = NULL;
 65	struct rb_node *test;
 66	struct btrfs_ordered_extent *entry;
 67	struct btrfs_ordered_extent *prev_entry = NULL;
 68
 69	while (n) {
 70		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 71		prev = n;
 72		prev_entry = entry;
 73
 74		if (file_offset < entry->file_offset)
 75			n = n->rb_left;
 76		else if (file_offset >= entry_end(entry))
 77			n = n->rb_right;
 78		else
 79			return n;
 80	}
 81	if (!prev_ret)
 82		return NULL;
 83
 84	while (prev && file_offset >= entry_end(prev_entry)) {
 85		test = rb_next(prev);
 86		if (!test)
 87			break;
 88		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 89				      rb_node);
 90		if (file_offset < entry_end(prev_entry))
 91			break;
 92
 93		prev = test;
 94	}
 95	if (prev)
 96		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 97				      rb_node);
 98	while (prev && file_offset < entry_end(prev_entry)) {
 99		test = rb_prev(prev);
100		if (!test)
101			break;
102		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103				      rb_node);
104		prev = test;
105	}
106	*prev_ret = prev;
107	return NULL;
108}
109
110/*
111 * helper to check if a given offset is inside a given entry
112 */
113static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
114{
115	if (file_offset < entry->file_offset ||
116	    entry->file_offset + entry->num_bytes <= file_offset)
117		return 0;
118	return 1;
119}
120
121static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
122			  u64 len)
123{
124	if (file_offset + len <= entry->file_offset ||
125	    entry->file_offset + entry->num_bytes <= file_offset)
126		return 0;
127	return 1;
128}
129
130/*
131 * look find the first ordered struct that has this offset, otherwise
132 * the first one less than this offset
133 */
134static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
135					  u64 file_offset)
136{
137	struct rb_root *root = &tree->tree;
138	struct rb_node *prev = NULL;
139	struct rb_node *ret;
140	struct btrfs_ordered_extent *entry;
141
142	if (tree->last) {
143		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
144				 rb_node);
145		if (offset_in_entry(entry, file_offset))
146			return tree->last;
147	}
148	ret = __tree_search(root, file_offset, &prev);
149	if (!ret)
150		ret = prev;
151	if (ret)
152		tree->last = ret;
153	return ret;
154}
155
156/*
157 * Allocate and add a new ordered_extent into the per-inode tree.
 
 
 
 
 
158 *
159 * The tree is given a single reference on the ordered extent that was
160 * inserted.
161 */
162static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
163				      u64 disk_bytenr, u64 num_bytes,
164				      u64 disk_num_bytes, int type, int dio,
165				      int compress_type)
166{
167	struct btrfs_root *root = inode->root;
168	struct btrfs_fs_info *fs_info = root->fs_info;
169	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
170	struct rb_node *node;
171	struct btrfs_ordered_extent *entry;
172	int ret;
173
174	if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
175		/* For nocow write, we can release the qgroup rsv right now */
176		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
177		if (ret < 0)
178			return ret;
179		ret = 0;
180	} else {
181		/*
182		 * The ordered extent has reserved qgroup space, release now
183		 * and pass the reserved number for qgroup_record to free.
184		 */
185		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
186		if (ret < 0)
187			return ret;
188	}
189	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
190	if (!entry)
191		return -ENOMEM;
192
193	entry->file_offset = file_offset;
194	entry->disk_bytenr = disk_bytenr;
195	entry->num_bytes = num_bytes;
196	entry->disk_num_bytes = disk_num_bytes;
197	entry->bytes_left = num_bytes;
198	entry->inode = igrab(&inode->vfs_inode);
199	entry->compress_type = compress_type;
200	entry->truncated_len = (u64)-1;
201	entry->qgroup_rsv = ret;
202	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
203		set_bit(type, &entry->flags);
204
205	if (dio) {
206		percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
207					 fs_info->delalloc_batch);
208		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
209	}
210
211	/* one ref for the tree */
212	refcount_set(&entry->refs, 1);
213	init_waitqueue_head(&entry->wait);
214	INIT_LIST_HEAD(&entry->list);
215	INIT_LIST_HEAD(&entry->root_extent_list);
216	INIT_LIST_HEAD(&entry->work_list);
217	init_completion(&entry->completion);
218
219	trace_btrfs_ordered_extent_add(&inode->vfs_inode, entry);
220
221	spin_lock_irq(&tree->lock);
222	node = tree_insert(&tree->tree, file_offset,
223			   &entry->rb_node);
224	if (node)
225		btrfs_panic(fs_info, -EEXIST,
226				"inconsistency in ordered tree at offset %llu",
227				file_offset);
228	spin_unlock_irq(&tree->lock);
229
230	spin_lock(&root->ordered_extent_lock);
231	list_add_tail(&entry->root_extent_list,
232		      &root->ordered_extents);
233	root->nr_ordered_extents++;
234	if (root->nr_ordered_extents == 1) {
235		spin_lock(&fs_info->ordered_root_lock);
236		BUG_ON(!list_empty(&root->ordered_root));
237		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
238		spin_unlock(&fs_info->ordered_root_lock);
239	}
240	spin_unlock(&root->ordered_extent_lock);
241
242	/*
243	 * We don't need the count_max_extents here, we can assume that all of
244	 * that work has been done at higher layers, so this is truly the
245	 * smallest the extent is going to get.
246	 */
247	spin_lock(&inode->lock);
248	btrfs_mod_outstanding_extents(inode, 1);
249	spin_unlock(&inode->lock);
250
251	return 0;
252}
253
254int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
255			     u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
256			     int type)
257{
258	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
259					  num_bytes, disk_num_bytes, type, 0,
260					  BTRFS_COMPRESS_NONE);
261}
262
263int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
264				 u64 disk_bytenr, u64 num_bytes,
265				 u64 disk_num_bytes, int type)
266{
267	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
268					  num_bytes, disk_num_bytes, type, 1,
269					  BTRFS_COMPRESS_NONE);
270}
271
272int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
273				      u64 disk_bytenr, u64 num_bytes,
274				      u64 disk_num_bytes, int type,
275				      int compress_type)
276{
277	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
278					  num_bytes, disk_num_bytes, type, 0,
279					  compress_type);
280}
281
282/*
283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284 * when an ordered extent is finished.  If the list covers more than one
285 * ordered extent, it is split across multiples.
286 */
287void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 
288			   struct btrfs_ordered_sum *sum)
289{
290	struct btrfs_ordered_inode_tree *tree;
291
292	tree = &BTRFS_I(entry->inode)->ordered_tree;
293	spin_lock_irq(&tree->lock);
294	list_add_tail(&sum->list, &entry->list);
295	spin_unlock_irq(&tree->lock);
296}
297
298/*
299 * this is used to account for finished IO across a given range
300 * of the file.  The IO may span ordered extents.  If
301 * a given ordered_extent is completely done, 1 is returned, otherwise
302 * 0.
303 *
304 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
305 * to make sure this function only returns 1 once for a given ordered extent.
306 *
307 * file_offset is updated to one byte past the range that is recorded as
308 * complete.  This allows you to walk forward in the file.
309 */
310int btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
311				   struct btrfs_ordered_extent **cached,
312				   u64 *file_offset, u64 io_size, int uptodate)
313{
314	struct btrfs_fs_info *fs_info = inode->root->fs_info;
315	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
316	struct rb_node *node;
317	struct btrfs_ordered_extent *entry = NULL;
318	int ret;
319	unsigned long flags;
320	u64 dec_end;
321	u64 dec_start;
322	u64 to_dec;
323
 
324	spin_lock_irqsave(&tree->lock, flags);
325	node = tree_search(tree, *file_offset);
326	if (!node) {
327		ret = 1;
328		goto out;
329	}
330
331	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
332	if (!offset_in_entry(entry, *file_offset)) {
333		ret = 1;
334		goto out;
335	}
336
337	dec_start = max(*file_offset, entry->file_offset);
338	dec_end = min(*file_offset + io_size,
339		      entry->file_offset + entry->num_bytes);
340	*file_offset = dec_end;
341	if (dec_start > dec_end) {
342		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
343			   dec_start, dec_end);
 
344	}
345	to_dec = dec_end - dec_start;
346	if (to_dec > entry->bytes_left) {
347		btrfs_crit(fs_info,
348			   "bad ordered accounting left %llu size %llu",
349			   entry->bytes_left, to_dec);
350	}
351	entry->bytes_left -= to_dec;
352	if (!uptodate)
353		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
354
355	if (entry->bytes_left == 0) {
356		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
357		/* test_and_set_bit implies a barrier */
358		cond_wake_up_nomb(&entry->wait);
359	} else {
360		ret = 1;
361	}
362out:
363	if (!ret && cached && entry) {
364		*cached = entry;
365		refcount_inc(&entry->refs);
366	}
367	spin_unlock_irqrestore(&tree->lock, flags);
368	return ret == 0;
369}
370
371/*
372 * this is used to account for finished IO across a given range
373 * of the file.  The IO should not span ordered extents.  If
374 * a given ordered_extent is completely done, 1 is returned, otherwise
375 * 0.
376 *
377 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
378 * to make sure this function only returns 1 once for a given ordered extent.
379 */
380int btrfs_dec_test_ordered_pending(struct inode *inode,
381				   struct btrfs_ordered_extent **cached,
382				   u64 file_offset, u64 io_size, int uptodate)
383{
384	struct btrfs_ordered_inode_tree *tree;
385	struct rb_node *node;
386	struct btrfs_ordered_extent *entry = NULL;
387	unsigned long flags;
388	int ret;
389
390	tree = &BTRFS_I(inode)->ordered_tree;
391	spin_lock_irqsave(&tree->lock, flags);
392	if (cached && *cached) {
393		entry = *cached;
394		goto have_entry;
395	}
396
397	node = tree_search(tree, file_offset);
398	if (!node) {
399		ret = 1;
400		goto out;
401	}
402
403	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
404have_entry:
405	if (!offset_in_entry(entry, file_offset)) {
406		ret = 1;
407		goto out;
408	}
409
410	if (io_size > entry->bytes_left) {
411		btrfs_crit(BTRFS_I(inode)->root->fs_info,
412			   "bad ordered accounting left %llu size %llu",
413		       entry->bytes_left, io_size);
414	}
415	entry->bytes_left -= io_size;
416	if (!uptodate)
417		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
418
419	if (entry->bytes_left == 0) {
420		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
421		/* test_and_set_bit implies a barrier */
422		cond_wake_up_nomb(&entry->wait);
423	} else {
424		ret = 1;
425	}
426out:
427	if (!ret && cached && entry) {
428		*cached = entry;
429		refcount_inc(&entry->refs);
430	}
431	spin_unlock_irqrestore(&tree->lock, flags);
432	return ret == 0;
433}
434
435/*
436 * used to drop a reference on an ordered extent.  This will free
437 * the extent if the last reference is dropped
438 */
439void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
440{
441	struct list_head *cur;
442	struct btrfs_ordered_sum *sum;
443
444	trace_btrfs_ordered_extent_put(entry->inode, entry);
445
446	if (refcount_dec_and_test(&entry->refs)) {
447		ASSERT(list_empty(&entry->root_extent_list));
448		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
449		if (entry->inode)
450			btrfs_add_delayed_iput(entry->inode);
451		while (!list_empty(&entry->list)) {
452			cur = entry->list.next;
453			sum = list_entry(cur, struct btrfs_ordered_sum, list);
454			list_del(&sum->list);
455			kvfree(sum);
456		}
457		kmem_cache_free(btrfs_ordered_extent_cache, entry);
458	}
459}
460
461/*
462 * remove an ordered extent from the tree.  No references are dropped
463 * and waiters are woken up.
464 */
465void btrfs_remove_ordered_extent(struct inode *inode,
466				 struct btrfs_ordered_extent *entry)
467{
468	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
469	struct btrfs_ordered_inode_tree *tree;
470	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
471	struct btrfs_root *root = btrfs_inode->root;
472	struct rb_node *node;
473
474	/* This is paired with btrfs_add_ordered_extent. */
475	spin_lock(&btrfs_inode->lock);
476	btrfs_mod_outstanding_extents(btrfs_inode, -1);
477	spin_unlock(&btrfs_inode->lock);
478	if (root != fs_info->tree_root)
479		btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
480						false);
481
482	if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
483		percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
484					 fs_info->delalloc_batch);
485
486	tree = &btrfs_inode->ordered_tree;
487	spin_lock_irq(&tree->lock);
488	node = &entry->rb_node;
489	rb_erase(node, &tree->tree);
490	RB_CLEAR_NODE(node);
491	if (tree->last == node)
492		tree->last = NULL;
493	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
494	spin_unlock_irq(&tree->lock);
495
496	spin_lock(&root->ordered_extent_lock);
497	list_del_init(&entry->root_extent_list);
498	root->nr_ordered_extents--;
499
500	trace_btrfs_ordered_extent_remove(inode, entry);
501
502	if (!root->nr_ordered_extents) {
503		spin_lock(&fs_info->ordered_root_lock);
504		BUG_ON(list_empty(&root->ordered_root));
505		list_del_init(&root->ordered_root);
506		spin_unlock(&fs_info->ordered_root_lock);
 
 
 
507	}
508	spin_unlock(&root->ordered_extent_lock);
509	wake_up(&entry->wait);
510}
511
512static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
513{
514	struct btrfs_ordered_extent *ordered;
515
516	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
517	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
518	complete(&ordered->completion);
519}
520
521/*
522 * wait for all the ordered extents in a root.  This is done when balancing
523 * space between drives.
524 */
525u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
526			       const u64 range_start, const u64 range_len)
527{
528	struct btrfs_fs_info *fs_info = root->fs_info;
529	LIST_HEAD(splice);
530	LIST_HEAD(skipped);
531	LIST_HEAD(works);
532	struct btrfs_ordered_extent *ordered, *next;
533	u64 count = 0;
534	const u64 range_end = range_start + range_len;
535
536	mutex_lock(&root->ordered_extent_mutex);
537	spin_lock(&root->ordered_extent_lock);
538	list_splice_init(&root->ordered_extents, &splice);
539	while (!list_empty(&splice) && nr) {
540		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
541					   root_extent_list);
542
543		if (range_end <= ordered->disk_bytenr ||
544		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
545			list_move_tail(&ordered->root_extent_list, &skipped);
546			cond_resched_lock(&root->ordered_extent_lock);
547			continue;
548		}
549
550		list_move_tail(&ordered->root_extent_list,
551			       &root->ordered_extents);
552		refcount_inc(&ordered->refs);
553		spin_unlock(&root->ordered_extent_lock);
554
555		btrfs_init_work(&ordered->flush_work,
556				btrfs_run_ordered_extent_work, NULL, NULL);
557		list_add_tail(&ordered->work_list, &works);
558		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 
 
 
 
 
 
 
 
 
 
 
559
560		cond_resched();
561		spin_lock(&root->ordered_extent_lock);
562		if (nr != U64_MAX)
563			nr--;
564		count++;
565	}
566	list_splice_tail(&skipped, &root->ordered_extents);
567	list_splice_tail(&splice, &root->ordered_extents);
568	spin_unlock(&root->ordered_extent_lock);
569
570	list_for_each_entry_safe(ordered, next, &works, work_list) {
571		list_del_init(&ordered->work_list);
572		wait_for_completion(&ordered->completion);
573		btrfs_put_ordered_extent(ordered);
574		cond_resched();
575	}
576	mutex_unlock(&root->ordered_extent_mutex);
577
578	return count;
579}
580
581void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
582			     const u64 range_start, const u64 range_len)
 
 
 
 
 
 
 
 
 
583{
584	struct btrfs_root *root;
 
585	struct list_head splice;
586	u64 done;
587
588	INIT_LIST_HEAD(&splice);
589
590	mutex_lock(&fs_info->ordered_operations_mutex);
591	spin_lock(&fs_info->ordered_root_lock);
592	list_splice_init(&fs_info->ordered_roots, &splice);
593	while (!list_empty(&splice) && nr) {
594		root = list_first_entry(&splice, struct btrfs_root,
595					ordered_root);
596		root = btrfs_grab_root(root);
597		BUG_ON(!root);
598		list_move_tail(&root->ordered_root,
599			       &fs_info->ordered_roots);
600		spin_unlock(&fs_info->ordered_root_lock);
601
602		done = btrfs_wait_ordered_extents(root, nr,
603						  range_start, range_len);
604		btrfs_put_root(root);
605
606		spin_lock(&fs_info->ordered_root_lock);
607		if (nr != U64_MAX) {
608			nr -= done;
609		}
610	}
611	list_splice_tail(&splice, &fs_info->ordered_roots);
612	spin_unlock(&fs_info->ordered_root_lock);
613	mutex_unlock(&fs_info->ordered_operations_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
614}
615
616/*
617 * Used to start IO or wait for a given ordered extent to finish.
618 *
619 * If wait is one, this effectively waits on page writeback for all the pages
620 * in the extent, and it waits on the io completion code to insert
621 * metadata into the btree corresponding to the extent
622 */
623void btrfs_start_ordered_extent(struct inode *inode,
624				       struct btrfs_ordered_extent *entry,
625				       int wait)
626{
627	u64 start = entry->file_offset;
628	u64 end = start + entry->num_bytes - 1;
629
630	trace_btrfs_ordered_extent_start(inode, entry);
631
632	/*
633	 * pages in the range can be dirty, clean or writeback.  We
634	 * start IO on any dirty ones so the wait doesn't stall waiting
635	 * for the flusher thread to find them
636	 */
637	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
638		filemap_fdatawrite_range(inode->i_mapping, start, end);
639	if (wait) {
640		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
641						 &entry->flags));
642	}
643}
644
645/*
646 * Used to wait on ordered extents across a large range of bytes.
647 */
648int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
649{
650	int ret = 0;
651	int ret_wb = 0;
652	u64 end;
653	u64 orig_end;
654	struct btrfs_ordered_extent *ordered;
 
655
656	if (start + len < start) {
657		orig_end = INT_LIMIT(loff_t);
658	} else {
659		orig_end = start + len - 1;
660		if (orig_end > INT_LIMIT(loff_t))
661			orig_end = INT_LIMIT(loff_t);
662	}
663
664	/* start IO across the range first to instantiate any delalloc
665	 * extents
666	 */
667	ret = btrfs_fdatawrite_range(inode, start, orig_end);
668	if (ret)
669		return ret;
670
671	/*
672	 * If we have a writeback error don't return immediately. Wait first
673	 * for any ordered extents that haven't completed yet. This is to make
674	 * sure no one can dirty the same page ranges and call writepages()
675	 * before the ordered extents complete - to avoid failures (-EEXIST)
676	 * when adding the new ordered extents to the ordered tree.
 
 
 
 
 
 
 
677	 */
678	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 
 
 
 
679
680	end = orig_end;
 
681	while (1) {
682		ordered = btrfs_lookup_first_ordered_extent(inode, end);
683		if (!ordered)
684			break;
685		if (ordered->file_offset > orig_end) {
686			btrfs_put_ordered_extent(ordered);
687			break;
688		}
689		if (ordered->file_offset + ordered->num_bytes <= start) {
690			btrfs_put_ordered_extent(ordered);
691			break;
692		}
 
693		btrfs_start_ordered_extent(inode, ordered, 1);
694		end = ordered->file_offset;
695		/*
696		 * If the ordered extent had an error save the error but don't
697		 * exit without waiting first for all other ordered extents in
698		 * the range to complete.
699		 */
700		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
701			ret = -EIO;
702		btrfs_put_ordered_extent(ordered);
703		if (end == 0 || end == start)
704			break;
705		end--;
706	}
707	return ret_wb ? ret_wb : ret;
708}
709
710/*
711 * find an ordered extent corresponding to file_offset.  return NULL if
712 * nothing is found, otherwise take a reference on the extent and return it
713 */
714struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
715							 u64 file_offset)
716{
717	struct btrfs_ordered_inode_tree *tree;
718	struct rb_node *node;
719	struct btrfs_ordered_extent *entry = NULL;
720
721	tree = &inode->ordered_tree;
722	spin_lock_irq(&tree->lock);
723	node = tree_search(tree, file_offset);
724	if (!node)
725		goto out;
726
727	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
728	if (!offset_in_entry(entry, file_offset))
729		entry = NULL;
730	if (entry)
731		refcount_inc(&entry->refs);
732out:
733	spin_unlock_irq(&tree->lock);
734	return entry;
735}
736
737/* Since the DIO code tries to lock a wide area we need to look for any ordered
738 * extents that exist in the range, rather than just the start of the range.
739 */
740struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
741		struct btrfs_inode *inode, u64 file_offset, u64 len)
 
742{
743	struct btrfs_ordered_inode_tree *tree;
744	struct rb_node *node;
745	struct btrfs_ordered_extent *entry = NULL;
746
747	tree = &inode->ordered_tree;
748	spin_lock_irq(&tree->lock);
749	node = tree_search(tree, file_offset);
750	if (!node) {
751		node = tree_search(tree, file_offset + len);
752		if (!node)
753			goto out;
754	}
755
756	while (1) {
757		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
758		if (range_overlaps(entry, file_offset, len))
759			break;
760
761		if (entry->file_offset >= file_offset + len) {
762			entry = NULL;
763			break;
764		}
765		entry = NULL;
766		node = rb_next(node);
767		if (!node)
768			break;
769	}
770out:
771	if (entry)
772		refcount_inc(&entry->refs);
773	spin_unlock_irq(&tree->lock);
774	return entry;
775}
776
777/*
778 * lookup and return any extent before 'file_offset'.  NULL is returned
779 * if none is found
780 */
781struct btrfs_ordered_extent *
782btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
783{
784	struct btrfs_ordered_inode_tree *tree;
785	struct rb_node *node;
786	struct btrfs_ordered_extent *entry = NULL;
787
788	tree = &BTRFS_I(inode)->ordered_tree;
789	spin_lock_irq(&tree->lock);
790	node = tree_search(tree, file_offset);
791	if (!node)
792		goto out;
793
794	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
795	refcount_inc(&entry->refs);
796out:
797	spin_unlock_irq(&tree->lock);
798	return entry;
799}
800
801/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
802 * search the ordered extents for one corresponding to 'offset' and
803 * try to find a checksum.  This is used because we allow pages to
804 * be reclaimed before their checksum is actually put into the btree
805 */
806int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
807			   u8 *sum, int len)
808{
809	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
810	struct btrfs_ordered_sum *ordered_sum;
 
811	struct btrfs_ordered_extent *ordered;
812	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
813	unsigned long num_sectors;
814	unsigned long i;
815	u32 sectorsize = btrfs_inode_sectorsize(inode);
816	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
817	int index = 0;
818
819	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), offset);
820	if (!ordered)
821		return 0;
822
823	spin_lock_irq(&tree->lock);
824	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
825		if (disk_bytenr >= ordered_sum->bytenr &&
826		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
827			i = (disk_bytenr - ordered_sum->bytenr) >>
828			    inode->i_sb->s_blocksize_bits;
829			num_sectors = ordered_sum->len >>
830				      inode->i_sb->s_blocksize_bits;
831			num_sectors = min_t(int, len - index, num_sectors - i);
832			memcpy(sum + index, ordered_sum->sums + i * csum_size,
833			       num_sectors * csum_size);
834
835			index += (int)num_sectors * csum_size;
836			if (index == len)
837				goto out;
838			disk_bytenr += num_sectors * sectorsize;
839		}
840	}
841out:
842	spin_unlock_irq(&tree->lock);
843	btrfs_put_ordered_extent(ordered);
844	return index;
845}
846
 
847/*
848 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
849 * ordered extents in it are run to completion.
 
 
 
850 *
851 * @inode:        Inode whose ordered tree is to be searched
852 * @start:        Beginning of range to flush
853 * @end:          Last byte of range to lock
854 * @cached_state: If passed, will return the extent state responsible for the
855 * locked range. It's the caller's responsibility to free the cached state.
856 *
857 * This function always returns with the given range locked, ensuring after it's
858 * called no order extent can be pending.
859 */
860void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
861					u64 end,
862					struct extent_state **cached_state)
863{
864	struct btrfs_ordered_extent *ordered;
865	struct extent_state *cache = NULL;
866	struct extent_state **cachedp = &cache;
867
868	if (cached_state)
869		cachedp = cached_state;
870
871	while (1) {
872		lock_extent_bits(&inode->io_tree, start, end, cachedp);
873		ordered = btrfs_lookup_ordered_range(inode, start,
874						     end - start + 1);
875		if (!ordered) {
876			/*
877			 * If no external cached_state has been passed then
878			 * decrement the extra ref taken for cachedp since we
879			 * aren't exposing it outside of this function
880			 */
881			if (!cached_state)
882				refcount_dec(&cache->refs);
883			break;
884		}
885		unlock_extent_cached(&inode->io_tree, start, end, cachedp);
886		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
887		btrfs_put_ordered_extent(ordered);
888	}
889}
890
891int __init ordered_data_init(void)
892{
893	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
894				     sizeof(struct btrfs_ordered_extent), 0,
895				     SLAB_MEM_SPREAD,
896				     NULL);
897	if (!btrfs_ordered_extent_cache)
898		return -ENOMEM;
899
900	return 0;
901}
902
903void __cold ordered_data_exit(void)
904{
905	kmem_cache_destroy(btrfs_ordered_extent_cache);
906}