Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/slab.h>
20#include <linux/blkdev.h>
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "extent_io.h"
27
28static u64 entry_end(struct btrfs_ordered_extent *entry)
29{
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
33}
34
35/* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
40{
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
43 struct btrfs_ordered_extent *entry;
44
45 while (*p) {
46 parent = *p;
47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
48
49 if (file_offset < entry->file_offset)
50 p = &(*p)->rb_left;
51 else if (file_offset >= entry_end(entry))
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60}
61
62static void ordered_data_tree_panic(struct inode *inode, int errno,
63 u64 offset)
64{
65 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
66 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
67 "%llu\n", (unsigned long long)offset);
68}
69
70/*
71 * look for a given offset in the tree, and if it can't be found return the
72 * first lesser offset
73 */
74static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
75 struct rb_node **prev_ret)
76{
77 struct rb_node *n = root->rb_node;
78 struct rb_node *prev = NULL;
79 struct rb_node *test;
80 struct btrfs_ordered_extent *entry;
81 struct btrfs_ordered_extent *prev_entry = NULL;
82
83 while (n) {
84 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
85 prev = n;
86 prev_entry = entry;
87
88 if (file_offset < entry->file_offset)
89 n = n->rb_left;
90 else if (file_offset >= entry_end(entry))
91 n = n->rb_right;
92 else
93 return n;
94 }
95 if (!prev_ret)
96 return NULL;
97
98 while (prev && file_offset >= entry_end(prev_entry)) {
99 test = rb_next(prev);
100 if (!test)
101 break;
102 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103 rb_node);
104 if (file_offset < entry_end(prev_entry))
105 break;
106
107 prev = test;
108 }
109 if (prev)
110 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
111 rb_node);
112 while (prev && file_offset < entry_end(prev_entry)) {
113 test = rb_prev(prev);
114 if (!test)
115 break;
116 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
117 rb_node);
118 prev = test;
119 }
120 *prev_ret = prev;
121 return NULL;
122}
123
124/*
125 * helper to check if a given offset is inside a given entry
126 */
127static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
128{
129 if (file_offset < entry->file_offset ||
130 entry->file_offset + entry->len <= file_offset)
131 return 0;
132 return 1;
133}
134
135static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
136 u64 len)
137{
138 if (file_offset + len <= entry->file_offset ||
139 entry->file_offset + entry->len <= file_offset)
140 return 0;
141 return 1;
142}
143
144/*
145 * look find the first ordered struct that has this offset, otherwise
146 * the first one less than this offset
147 */
148static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
149 u64 file_offset)
150{
151 struct rb_root *root = &tree->tree;
152 struct rb_node *prev = NULL;
153 struct rb_node *ret;
154 struct btrfs_ordered_extent *entry;
155
156 if (tree->last) {
157 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
158 rb_node);
159 if (offset_in_entry(entry, file_offset))
160 return tree->last;
161 }
162 ret = __tree_search(root, file_offset, &prev);
163 if (!ret)
164 ret = prev;
165 if (ret)
166 tree->last = ret;
167 return ret;
168}
169
170/* allocate and add a new ordered_extent into the per-inode tree.
171 * file_offset is the logical offset in the file
172 *
173 * start is the disk block number of an extent already reserved in the
174 * extent allocation tree
175 *
176 * len is the length of the extent
177 *
178 * The tree is given a single reference on the ordered extent that was
179 * inserted.
180 */
181static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
182 u64 start, u64 len, u64 disk_len,
183 int type, int dio, int compress_type)
184{
185 struct btrfs_ordered_inode_tree *tree;
186 struct rb_node *node;
187 struct btrfs_ordered_extent *entry;
188
189 tree = &BTRFS_I(inode)->ordered_tree;
190 entry = kzalloc(sizeof(*entry), GFP_NOFS);
191 if (!entry)
192 return -ENOMEM;
193
194 entry->file_offset = file_offset;
195 entry->start = start;
196 entry->len = len;
197 entry->disk_len = disk_len;
198 entry->bytes_left = len;
199 entry->inode = igrab(inode);
200 entry->compress_type = compress_type;
201 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
202 set_bit(type, &entry->flags);
203
204 if (dio)
205 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206
207 /* one ref for the tree */
208 atomic_set(&entry->refs, 1);
209 init_waitqueue_head(&entry->wait);
210 INIT_LIST_HEAD(&entry->list);
211 INIT_LIST_HEAD(&entry->root_extent_list);
212
213 trace_btrfs_ordered_extent_add(inode, entry);
214
215 spin_lock_irq(&tree->lock);
216 node = tree_insert(&tree->tree, file_offset,
217 &entry->rb_node);
218 if (node)
219 ordered_data_tree_panic(inode, -EEXIST, file_offset);
220 spin_unlock_irq(&tree->lock);
221
222 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
223 list_add_tail(&entry->root_extent_list,
224 &BTRFS_I(inode)->root->fs_info->ordered_extents);
225 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
226
227 return 0;
228}
229
230int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
231 u64 start, u64 len, u64 disk_len, int type)
232{
233 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234 disk_len, type, 0,
235 BTRFS_COMPRESS_NONE);
236}
237
238int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
239 u64 start, u64 len, u64 disk_len, int type)
240{
241 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
242 disk_len, type, 1,
243 BTRFS_COMPRESS_NONE);
244}
245
246int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
247 u64 start, u64 len, u64 disk_len,
248 int type, int compress_type)
249{
250 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 disk_len, type, 0,
252 compress_type);
253}
254
255/*
256 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
257 * when an ordered extent is finished. If the list covers more than one
258 * ordered extent, it is split across multiples.
259 */
260void btrfs_add_ordered_sum(struct inode *inode,
261 struct btrfs_ordered_extent *entry,
262 struct btrfs_ordered_sum *sum)
263{
264 struct btrfs_ordered_inode_tree *tree;
265
266 tree = &BTRFS_I(inode)->ordered_tree;
267 spin_lock_irq(&tree->lock);
268 list_add_tail(&sum->list, &entry->list);
269 spin_unlock_irq(&tree->lock);
270}
271
272/*
273 * this is used to account for finished IO across a given range
274 * of the file. The IO may span ordered extents. If
275 * a given ordered_extent is completely done, 1 is returned, otherwise
276 * 0.
277 *
278 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
279 * to make sure this function only returns 1 once for a given ordered extent.
280 *
281 * file_offset is updated to one byte past the range that is recorded as
282 * complete. This allows you to walk forward in the file.
283 */
284int btrfs_dec_test_first_ordered_pending(struct inode *inode,
285 struct btrfs_ordered_extent **cached,
286 u64 *file_offset, u64 io_size, int uptodate)
287{
288 struct btrfs_ordered_inode_tree *tree;
289 struct rb_node *node;
290 struct btrfs_ordered_extent *entry = NULL;
291 int ret;
292 unsigned long flags;
293 u64 dec_end;
294 u64 dec_start;
295 u64 to_dec;
296
297 tree = &BTRFS_I(inode)->ordered_tree;
298 spin_lock_irqsave(&tree->lock, flags);
299 node = tree_search(tree, *file_offset);
300 if (!node) {
301 ret = 1;
302 goto out;
303 }
304
305 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
306 if (!offset_in_entry(entry, *file_offset)) {
307 ret = 1;
308 goto out;
309 }
310
311 dec_start = max(*file_offset, entry->file_offset);
312 dec_end = min(*file_offset + io_size, entry->file_offset +
313 entry->len);
314 *file_offset = dec_end;
315 if (dec_start > dec_end) {
316 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
317 (unsigned long long)dec_start,
318 (unsigned long long)dec_end);
319 }
320 to_dec = dec_end - dec_start;
321 if (to_dec > entry->bytes_left) {
322 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
323 (unsigned long long)entry->bytes_left,
324 (unsigned long long)to_dec);
325 }
326 entry->bytes_left -= to_dec;
327 if (!uptodate)
328 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
329
330 if (entry->bytes_left == 0)
331 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
332 else
333 ret = 1;
334out:
335 if (!ret && cached && entry) {
336 *cached = entry;
337 atomic_inc(&entry->refs);
338 }
339 spin_unlock_irqrestore(&tree->lock, flags);
340 return ret == 0;
341}
342
343/*
344 * this is used to account for finished IO across a given range
345 * of the file. The IO should not span ordered extents. If
346 * a given ordered_extent is completely done, 1 is returned, otherwise
347 * 0.
348 *
349 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
350 * to make sure this function only returns 1 once for a given ordered extent.
351 */
352int btrfs_dec_test_ordered_pending(struct inode *inode,
353 struct btrfs_ordered_extent **cached,
354 u64 file_offset, u64 io_size, int uptodate)
355{
356 struct btrfs_ordered_inode_tree *tree;
357 struct rb_node *node;
358 struct btrfs_ordered_extent *entry = NULL;
359 unsigned long flags;
360 int ret;
361
362 tree = &BTRFS_I(inode)->ordered_tree;
363 spin_lock_irqsave(&tree->lock, flags);
364 if (cached && *cached) {
365 entry = *cached;
366 goto have_entry;
367 }
368
369 node = tree_search(tree, file_offset);
370 if (!node) {
371 ret = 1;
372 goto out;
373 }
374
375 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
376have_entry:
377 if (!offset_in_entry(entry, file_offset)) {
378 ret = 1;
379 goto out;
380 }
381
382 if (io_size > entry->bytes_left) {
383 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
384 (unsigned long long)entry->bytes_left,
385 (unsigned long long)io_size);
386 }
387 entry->bytes_left -= io_size;
388 if (!uptodate)
389 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
390
391 if (entry->bytes_left == 0)
392 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
393 else
394 ret = 1;
395out:
396 if (!ret && cached && entry) {
397 *cached = entry;
398 atomic_inc(&entry->refs);
399 }
400 spin_unlock_irqrestore(&tree->lock, flags);
401 return ret == 0;
402}
403
404/*
405 * used to drop a reference on an ordered extent. This will free
406 * the extent if the last reference is dropped
407 */
408void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
409{
410 struct list_head *cur;
411 struct btrfs_ordered_sum *sum;
412
413 trace_btrfs_ordered_extent_put(entry->inode, entry);
414
415 if (atomic_dec_and_test(&entry->refs)) {
416 if (entry->inode)
417 btrfs_add_delayed_iput(entry->inode);
418 while (!list_empty(&entry->list)) {
419 cur = entry->list.next;
420 sum = list_entry(cur, struct btrfs_ordered_sum, list);
421 list_del(&sum->list);
422 kfree(sum);
423 }
424 kfree(entry);
425 }
426}
427
428/*
429 * remove an ordered extent from the tree. No references are dropped
430 * and waiters are woken up.
431 */
432void btrfs_remove_ordered_extent(struct inode *inode,
433 struct btrfs_ordered_extent *entry)
434{
435 struct btrfs_ordered_inode_tree *tree;
436 struct btrfs_root *root = BTRFS_I(inode)->root;
437 struct rb_node *node;
438
439 tree = &BTRFS_I(inode)->ordered_tree;
440 spin_lock_irq(&tree->lock);
441 node = &entry->rb_node;
442 rb_erase(node, &tree->tree);
443 tree->last = NULL;
444 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
445 spin_unlock_irq(&tree->lock);
446
447 spin_lock(&root->fs_info->ordered_extent_lock);
448 list_del_init(&entry->root_extent_list);
449
450 trace_btrfs_ordered_extent_remove(inode, entry);
451
452 /*
453 * we have no more ordered extents for this inode and
454 * no dirty pages. We can safely remove it from the
455 * list of ordered extents
456 */
457 if (RB_EMPTY_ROOT(&tree->tree) &&
458 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
459 list_del_init(&BTRFS_I(inode)->ordered_operations);
460 }
461 spin_unlock(&root->fs_info->ordered_extent_lock);
462 wake_up(&entry->wait);
463}
464
465/*
466 * wait for all the ordered extents in a root. This is done when balancing
467 * space between drives.
468 */
469void btrfs_wait_ordered_extents(struct btrfs_root *root,
470 int nocow_only, int delay_iput)
471{
472 struct list_head splice;
473 struct list_head *cur;
474 struct btrfs_ordered_extent *ordered;
475 struct inode *inode;
476
477 INIT_LIST_HEAD(&splice);
478
479 spin_lock(&root->fs_info->ordered_extent_lock);
480 list_splice_init(&root->fs_info->ordered_extents, &splice);
481 while (!list_empty(&splice)) {
482 cur = splice.next;
483 ordered = list_entry(cur, struct btrfs_ordered_extent,
484 root_extent_list);
485 if (nocow_only &&
486 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
487 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
488 list_move(&ordered->root_extent_list,
489 &root->fs_info->ordered_extents);
490 cond_resched_lock(&root->fs_info->ordered_extent_lock);
491 continue;
492 }
493
494 list_del_init(&ordered->root_extent_list);
495 atomic_inc(&ordered->refs);
496
497 /*
498 * the inode may be getting freed (in sys_unlink path).
499 */
500 inode = igrab(ordered->inode);
501
502 spin_unlock(&root->fs_info->ordered_extent_lock);
503
504 if (inode) {
505 btrfs_start_ordered_extent(inode, ordered, 1);
506 btrfs_put_ordered_extent(ordered);
507 if (delay_iput)
508 btrfs_add_delayed_iput(inode);
509 else
510 iput(inode);
511 } else {
512 btrfs_put_ordered_extent(ordered);
513 }
514
515 spin_lock(&root->fs_info->ordered_extent_lock);
516 }
517 spin_unlock(&root->fs_info->ordered_extent_lock);
518}
519
520/*
521 * this is used during transaction commit to write all the inodes
522 * added to the ordered operation list. These files must be fully on
523 * disk before the transaction commits.
524 *
525 * we have two modes here, one is to just start the IO via filemap_flush
526 * and the other is to wait for all the io. When we wait, we have an
527 * extra check to make sure the ordered operation list really is empty
528 * before we return
529 */
530void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
531{
532 struct btrfs_inode *btrfs_inode;
533 struct inode *inode;
534 struct list_head splice;
535
536 INIT_LIST_HEAD(&splice);
537
538 mutex_lock(&root->fs_info->ordered_operations_mutex);
539 spin_lock(&root->fs_info->ordered_extent_lock);
540again:
541 list_splice_init(&root->fs_info->ordered_operations, &splice);
542
543 while (!list_empty(&splice)) {
544 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
545 ordered_operations);
546
547 inode = &btrfs_inode->vfs_inode;
548
549 list_del_init(&btrfs_inode->ordered_operations);
550
551 /*
552 * the inode may be getting freed (in sys_unlink path).
553 */
554 inode = igrab(inode);
555
556 if (!wait && inode) {
557 list_add_tail(&BTRFS_I(inode)->ordered_operations,
558 &root->fs_info->ordered_operations);
559 }
560 spin_unlock(&root->fs_info->ordered_extent_lock);
561
562 if (inode) {
563 if (wait)
564 btrfs_wait_ordered_range(inode, 0, (u64)-1);
565 else
566 filemap_flush(inode->i_mapping);
567 btrfs_add_delayed_iput(inode);
568 }
569
570 cond_resched();
571 spin_lock(&root->fs_info->ordered_extent_lock);
572 }
573 if (wait && !list_empty(&root->fs_info->ordered_operations))
574 goto again;
575
576 spin_unlock(&root->fs_info->ordered_extent_lock);
577 mutex_unlock(&root->fs_info->ordered_operations_mutex);
578}
579
580/*
581 * Used to start IO or wait for a given ordered extent to finish.
582 *
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
586 */
587void btrfs_start_ordered_extent(struct inode *inode,
588 struct btrfs_ordered_extent *entry,
589 int wait)
590{
591 u64 start = entry->file_offset;
592 u64 end = start + entry->len - 1;
593
594 trace_btrfs_ordered_extent_start(inode, entry);
595
596 /*
597 * pages in the range can be dirty, clean or writeback. We
598 * start IO on any dirty ones so the wait doesn't stall waiting
599 * for pdflush to find them
600 */
601 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602 filemap_fdatawrite_range(inode->i_mapping, start, end);
603 if (wait) {
604 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605 &entry->flags));
606 }
607}
608
609/*
610 * Used to wait on ordered extents across a large range of bytes.
611 */
612void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
613{
614 u64 end;
615 u64 orig_end;
616 struct btrfs_ordered_extent *ordered;
617 int found;
618
619 if (start + len < start) {
620 orig_end = INT_LIMIT(loff_t);
621 } else {
622 orig_end = start + len - 1;
623 if (orig_end > INT_LIMIT(loff_t))
624 orig_end = INT_LIMIT(loff_t);
625 }
626
627 /* start IO across the range first to instantiate any delalloc
628 * extents
629 */
630 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
631
632 /*
633 * So with compression we will find and lock a dirty page and clear the
634 * first one as dirty, setup an async extent, and immediately return
635 * with the entire range locked but with nobody actually marked with
636 * writeback. So we can't just filemap_write_and_wait_range() and
637 * expect it to work since it will just kick off a thread to do the
638 * actual work. So we need to call filemap_fdatawrite_range _again_
639 * since it will wait on the page lock, which won't be unlocked until
640 * after the pages have been marked as writeback and so we're good to go
641 * from there. We have to do this otherwise we'll miss the ordered
642 * extents and that results in badness. Please Josef, do not think you
643 * know better and pull this out at some point in the future, it is
644 * right and you are wrong.
645 */
646 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
647 &BTRFS_I(inode)->runtime_flags))
648 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
649
650 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
651
652 end = orig_end;
653 found = 0;
654 while (1) {
655 ordered = btrfs_lookup_first_ordered_extent(inode, end);
656 if (!ordered)
657 break;
658 if (ordered->file_offset > orig_end) {
659 btrfs_put_ordered_extent(ordered);
660 break;
661 }
662 if (ordered->file_offset + ordered->len < start) {
663 btrfs_put_ordered_extent(ordered);
664 break;
665 }
666 found++;
667 btrfs_start_ordered_extent(inode, ordered, 1);
668 end = ordered->file_offset;
669 btrfs_put_ordered_extent(ordered);
670 if (end == 0 || end == start)
671 break;
672 end--;
673 }
674}
675
676/*
677 * find an ordered extent corresponding to file_offset. return NULL if
678 * nothing is found, otherwise take a reference on the extent and return it
679 */
680struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
681 u64 file_offset)
682{
683 struct btrfs_ordered_inode_tree *tree;
684 struct rb_node *node;
685 struct btrfs_ordered_extent *entry = NULL;
686
687 tree = &BTRFS_I(inode)->ordered_tree;
688 spin_lock_irq(&tree->lock);
689 node = tree_search(tree, file_offset);
690 if (!node)
691 goto out;
692
693 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
694 if (!offset_in_entry(entry, file_offset))
695 entry = NULL;
696 if (entry)
697 atomic_inc(&entry->refs);
698out:
699 spin_unlock_irq(&tree->lock);
700 return entry;
701}
702
703/* Since the DIO code tries to lock a wide area we need to look for any ordered
704 * extents that exist in the range, rather than just the start of the range.
705 */
706struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
707 u64 file_offset,
708 u64 len)
709{
710 struct btrfs_ordered_inode_tree *tree;
711 struct rb_node *node;
712 struct btrfs_ordered_extent *entry = NULL;
713
714 tree = &BTRFS_I(inode)->ordered_tree;
715 spin_lock_irq(&tree->lock);
716 node = tree_search(tree, file_offset);
717 if (!node) {
718 node = tree_search(tree, file_offset + len);
719 if (!node)
720 goto out;
721 }
722
723 while (1) {
724 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
725 if (range_overlaps(entry, file_offset, len))
726 break;
727
728 if (entry->file_offset >= file_offset + len) {
729 entry = NULL;
730 break;
731 }
732 entry = NULL;
733 node = rb_next(node);
734 if (!node)
735 break;
736 }
737out:
738 if (entry)
739 atomic_inc(&entry->refs);
740 spin_unlock_irq(&tree->lock);
741 return entry;
742}
743
744/*
745 * lookup and return any extent before 'file_offset'. NULL is returned
746 * if none is found
747 */
748struct btrfs_ordered_extent *
749btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
750{
751 struct btrfs_ordered_inode_tree *tree;
752 struct rb_node *node;
753 struct btrfs_ordered_extent *entry = NULL;
754
755 tree = &BTRFS_I(inode)->ordered_tree;
756 spin_lock_irq(&tree->lock);
757 node = tree_search(tree, file_offset);
758 if (!node)
759 goto out;
760
761 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
762 atomic_inc(&entry->refs);
763out:
764 spin_unlock_irq(&tree->lock);
765 return entry;
766}
767
768/*
769 * After an extent is done, call this to conditionally update the on disk
770 * i_size. i_size is updated to cover any fully written part of the file.
771 */
772int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
773 struct btrfs_ordered_extent *ordered)
774{
775 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
776 u64 disk_i_size;
777 u64 new_i_size;
778 u64 i_size_test;
779 u64 i_size = i_size_read(inode);
780 struct rb_node *node;
781 struct rb_node *prev = NULL;
782 struct btrfs_ordered_extent *test;
783 int ret = 1;
784
785 if (ordered)
786 offset = entry_end(ordered);
787 else
788 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
789
790 spin_lock_irq(&tree->lock);
791 disk_i_size = BTRFS_I(inode)->disk_i_size;
792
793 /* truncate file */
794 if (disk_i_size > i_size) {
795 BTRFS_I(inode)->disk_i_size = i_size;
796 ret = 0;
797 goto out;
798 }
799
800 /*
801 * if the disk i_size is already at the inode->i_size, or
802 * this ordered extent is inside the disk i_size, we're done
803 */
804 if (disk_i_size == i_size || offset <= disk_i_size) {
805 goto out;
806 }
807
808 /*
809 * walk backward from this ordered extent to disk_i_size.
810 * if we find an ordered extent then we can't update disk i_size
811 * yet
812 */
813 if (ordered) {
814 node = rb_prev(&ordered->rb_node);
815 } else {
816 prev = tree_search(tree, offset);
817 /*
818 * we insert file extents without involving ordered struct,
819 * so there should be no ordered struct cover this offset
820 */
821 if (prev) {
822 test = rb_entry(prev, struct btrfs_ordered_extent,
823 rb_node);
824 BUG_ON(offset_in_entry(test, offset));
825 }
826 node = prev;
827 }
828 for (; node; node = rb_prev(node)) {
829 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
830
831 /* We treat this entry as if it doesnt exist */
832 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
833 continue;
834 if (test->file_offset + test->len <= disk_i_size)
835 break;
836 if (test->file_offset >= i_size)
837 break;
838 if (test->file_offset >= disk_i_size)
839 goto out;
840 }
841 new_i_size = min_t(u64, offset, i_size);
842
843 /*
844 * at this point, we know we can safely update i_size to at least
845 * the offset from this ordered extent. But, we need to
846 * walk forward and see if ios from higher up in the file have
847 * finished.
848 */
849 if (ordered) {
850 node = rb_next(&ordered->rb_node);
851 } else {
852 if (prev)
853 node = rb_next(prev);
854 else
855 node = rb_first(&tree->tree);
856 }
857
858 /*
859 * We are looking for an area between our current extent and the next
860 * ordered extent to update the i_size to. There are 3 cases here
861 *
862 * 1) We don't actually have anything and we can update to i_size.
863 * 2) We have stuff but they already did their i_size update so again we
864 * can just update to i_size.
865 * 3) We have an outstanding ordered extent so the most we can update
866 * our disk_i_size to is the start of the next offset.
867 */
868 i_size_test = i_size;
869 for (; node; node = rb_next(node)) {
870 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871
872 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
873 continue;
874 if (test->file_offset > offset) {
875 i_size_test = test->file_offset;
876 break;
877 }
878 }
879
880 /*
881 * i_size_test is the end of a region after this ordered
882 * extent where there are no ordered extents, we can safely set
883 * disk_i_size to this.
884 */
885 if (i_size_test > offset)
886 new_i_size = min_t(u64, i_size_test, i_size);
887 BTRFS_I(inode)->disk_i_size = new_i_size;
888 ret = 0;
889out:
890 /*
891 * We need to do this because we can't remove ordered extents until
892 * after the i_disk_size has been updated and then the inode has been
893 * updated to reflect the change, so we need to tell anybody who finds
894 * this ordered extent that we've already done all the real work, we
895 * just haven't completed all the other work.
896 */
897 if (ordered)
898 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
899 spin_unlock_irq(&tree->lock);
900 return ret;
901}
902
903/*
904 * search the ordered extents for one corresponding to 'offset' and
905 * try to find a checksum. This is used because we allow pages to
906 * be reclaimed before their checksum is actually put into the btree
907 */
908int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
909 u32 *sum)
910{
911 struct btrfs_ordered_sum *ordered_sum;
912 struct btrfs_sector_sum *sector_sums;
913 struct btrfs_ordered_extent *ordered;
914 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
915 unsigned long num_sectors;
916 unsigned long i;
917 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
918 int ret = 1;
919
920 ordered = btrfs_lookup_ordered_extent(inode, offset);
921 if (!ordered)
922 return 1;
923
924 spin_lock_irq(&tree->lock);
925 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
926 if (disk_bytenr >= ordered_sum->bytenr) {
927 num_sectors = ordered_sum->len / sectorsize;
928 sector_sums = ordered_sum->sums;
929 for (i = 0; i < num_sectors; i++) {
930 if (sector_sums[i].bytenr == disk_bytenr) {
931 *sum = sector_sums[i].sum;
932 ret = 0;
933 goto out;
934 }
935 }
936 }
937 }
938out:
939 spin_unlock_irq(&tree->lock);
940 btrfs_put_ordered_extent(ordered);
941 return ret;
942}
943
944
945/*
946 * add a given inode to the list of inodes that must be fully on
947 * disk before a transaction commit finishes.
948 *
949 * This basically gives us the ext3 style data=ordered mode, and it is mostly
950 * used to make sure renamed files are fully on disk.
951 *
952 * It is a noop if the inode is already fully on disk.
953 *
954 * If trans is not null, we'll do a friendly check for a transaction that
955 * is already flushing things and force the IO down ourselves.
956 */
957void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
958 struct btrfs_root *root, struct inode *inode)
959{
960 u64 last_mod;
961
962 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
963
964 /*
965 * if this file hasn't been changed since the last transaction
966 * commit, we can safely return without doing anything
967 */
968 if (last_mod < root->fs_info->last_trans_committed)
969 return;
970
971 /*
972 * the transaction is already committing. Just start the IO and
973 * don't bother with all of this list nonsense
974 */
975 if (trans && root->fs_info->running_transaction->blocked) {
976 btrfs_wait_ordered_range(inode, 0, (u64)-1);
977 return;
978 }
979
980 spin_lock(&root->fs_info->ordered_extent_lock);
981 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
982 list_add_tail(&BTRFS_I(inode)->ordered_operations,
983 &root->fs_info->ordered_operations);
984 }
985 spin_unlock(&root->fs_info->ordered_extent_lock);
986}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/slab.h>
20#include <linux/blkdev.h>
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "extent_io.h"
27#include "disk-io.h"
28#include "compression.h"
29
30static struct kmem_cache *btrfs_ordered_extent_cache;
31
32static u64 entry_end(struct btrfs_ordered_extent *entry)
33{
34 if (entry->file_offset + entry->len < entry->file_offset)
35 return (u64)-1;
36 return entry->file_offset + entry->len;
37}
38
39/* returns NULL if the insertion worked, or it returns the node it did find
40 * in the tree
41 */
42static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
43 struct rb_node *node)
44{
45 struct rb_node **p = &root->rb_node;
46 struct rb_node *parent = NULL;
47 struct btrfs_ordered_extent *entry;
48
49 while (*p) {
50 parent = *p;
51 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
52
53 if (file_offset < entry->file_offset)
54 p = &(*p)->rb_left;
55 else if (file_offset >= entry_end(entry))
56 p = &(*p)->rb_right;
57 else
58 return parent;
59 }
60
61 rb_link_node(node, parent, p);
62 rb_insert_color(node, root);
63 return NULL;
64}
65
66static void ordered_data_tree_panic(struct inode *inode, int errno,
67 u64 offset)
68{
69 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
70 btrfs_panic(fs_info, errno,
71 "Inconsistency in ordered tree at offset %llu", offset);
72}
73
74/*
75 * look for a given offset in the tree, and if it can't be found return the
76 * first lesser offset
77 */
78static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
79 struct rb_node **prev_ret)
80{
81 struct rb_node *n = root->rb_node;
82 struct rb_node *prev = NULL;
83 struct rb_node *test;
84 struct btrfs_ordered_extent *entry;
85 struct btrfs_ordered_extent *prev_entry = NULL;
86
87 while (n) {
88 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
89 prev = n;
90 prev_entry = entry;
91
92 if (file_offset < entry->file_offset)
93 n = n->rb_left;
94 else if (file_offset >= entry_end(entry))
95 n = n->rb_right;
96 else
97 return n;
98 }
99 if (!prev_ret)
100 return NULL;
101
102 while (prev && file_offset >= entry_end(prev_entry)) {
103 test = rb_next(prev);
104 if (!test)
105 break;
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 rb_node);
108 if (file_offset < entry_end(prev_entry))
109 break;
110
111 prev = test;
112 }
113 if (prev)
114 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
115 rb_node);
116 while (prev && file_offset < entry_end(prev_entry)) {
117 test = rb_prev(prev);
118 if (!test)
119 break;
120 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
121 rb_node);
122 prev = test;
123 }
124 *prev_ret = prev;
125 return NULL;
126}
127
128/*
129 * helper to check if a given offset is inside a given entry
130 */
131static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
132{
133 if (file_offset < entry->file_offset ||
134 entry->file_offset + entry->len <= file_offset)
135 return 0;
136 return 1;
137}
138
139static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
140 u64 len)
141{
142 if (file_offset + len <= entry->file_offset ||
143 entry->file_offset + entry->len <= file_offset)
144 return 0;
145 return 1;
146}
147
148/*
149 * look find the first ordered struct that has this offset, otherwise
150 * the first one less than this offset
151 */
152static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
153 u64 file_offset)
154{
155 struct rb_root *root = &tree->tree;
156 struct rb_node *prev = NULL;
157 struct rb_node *ret;
158 struct btrfs_ordered_extent *entry;
159
160 if (tree->last) {
161 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
162 rb_node);
163 if (offset_in_entry(entry, file_offset))
164 return tree->last;
165 }
166 ret = __tree_search(root, file_offset, &prev);
167 if (!ret)
168 ret = prev;
169 if (ret)
170 tree->last = ret;
171 return ret;
172}
173
174/* allocate and add a new ordered_extent into the per-inode tree.
175 * file_offset is the logical offset in the file
176 *
177 * start is the disk block number of an extent already reserved in the
178 * extent allocation tree
179 *
180 * len is the length of the extent
181 *
182 * The tree is given a single reference on the ordered extent that was
183 * inserted.
184 */
185static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
186 u64 start, u64 len, u64 disk_len,
187 int type, int dio, int compress_type)
188{
189 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
190 struct btrfs_root *root = BTRFS_I(inode)->root;
191 struct btrfs_ordered_inode_tree *tree;
192 struct rb_node *node;
193 struct btrfs_ordered_extent *entry;
194
195 tree = &BTRFS_I(inode)->ordered_tree;
196 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
197 if (!entry)
198 return -ENOMEM;
199
200 entry->file_offset = file_offset;
201 entry->start = start;
202 entry->len = len;
203 entry->disk_len = disk_len;
204 entry->bytes_left = len;
205 entry->inode = igrab(inode);
206 entry->compress_type = compress_type;
207 entry->truncated_len = (u64)-1;
208 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
209 set_bit(type, &entry->flags);
210
211 if (dio)
212 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
213
214 /* one ref for the tree */
215 atomic_set(&entry->refs, 1);
216 init_waitqueue_head(&entry->wait);
217 INIT_LIST_HEAD(&entry->list);
218 INIT_LIST_HEAD(&entry->root_extent_list);
219 INIT_LIST_HEAD(&entry->work_list);
220 init_completion(&entry->completion);
221 INIT_LIST_HEAD(&entry->log_list);
222 INIT_LIST_HEAD(&entry->trans_list);
223
224 trace_btrfs_ordered_extent_add(inode, entry);
225
226 spin_lock_irq(&tree->lock);
227 node = tree_insert(&tree->tree, file_offset,
228 &entry->rb_node);
229 if (node)
230 ordered_data_tree_panic(inode, -EEXIST, file_offset);
231 spin_unlock_irq(&tree->lock);
232
233 spin_lock(&root->ordered_extent_lock);
234 list_add_tail(&entry->root_extent_list,
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241 spin_unlock(&fs_info->ordered_root_lock);
242 }
243 spin_unlock(&root->ordered_extent_lock);
244
245 return 0;
246}
247
248int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
249 u64 start, u64 len, u64 disk_len, int type)
250{
251 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
252 disk_len, type, 0,
253 BTRFS_COMPRESS_NONE);
254}
255
256int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
257 u64 start, u64 len, u64 disk_len, int type)
258{
259 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
260 disk_len, type, 1,
261 BTRFS_COMPRESS_NONE);
262}
263
264int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
265 u64 start, u64 len, u64 disk_len,
266 int type, int compress_type)
267{
268 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
269 disk_len, type, 0,
270 compress_type);
271}
272
273/*
274 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
275 * when an ordered extent is finished. If the list covers more than one
276 * ordered extent, it is split across multiples.
277 */
278void btrfs_add_ordered_sum(struct inode *inode,
279 struct btrfs_ordered_extent *entry,
280 struct btrfs_ordered_sum *sum)
281{
282 struct btrfs_ordered_inode_tree *tree;
283
284 tree = &BTRFS_I(inode)->ordered_tree;
285 spin_lock_irq(&tree->lock);
286 list_add_tail(&sum->list, &entry->list);
287 spin_unlock_irq(&tree->lock);
288}
289
290/*
291 * this is used to account for finished IO across a given range
292 * of the file. The IO may span ordered extents. If
293 * a given ordered_extent is completely done, 1 is returned, otherwise
294 * 0.
295 *
296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
297 * to make sure this function only returns 1 once for a given ordered extent.
298 *
299 * file_offset is updated to one byte past the range that is recorded as
300 * complete. This allows you to walk forward in the file.
301 */
302int btrfs_dec_test_first_ordered_pending(struct inode *inode,
303 struct btrfs_ordered_extent **cached,
304 u64 *file_offset, u64 io_size, int uptodate)
305{
306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
307 struct btrfs_ordered_inode_tree *tree;
308 struct rb_node *node;
309 struct btrfs_ordered_extent *entry = NULL;
310 int ret;
311 unsigned long flags;
312 u64 dec_end;
313 u64 dec_start;
314 u64 to_dec;
315
316 tree = &BTRFS_I(inode)->ordered_tree;
317 spin_lock_irqsave(&tree->lock, flags);
318 node = tree_search(tree, *file_offset);
319 if (!node) {
320 ret = 1;
321 goto out;
322 }
323
324 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
325 if (!offset_in_entry(entry, *file_offset)) {
326 ret = 1;
327 goto out;
328 }
329
330 dec_start = max(*file_offset, entry->file_offset);
331 dec_end = min(*file_offset + io_size, entry->file_offset +
332 entry->len);
333 *file_offset = dec_end;
334 if (dec_start > dec_end) {
335 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
336 dec_start, dec_end);
337 }
338 to_dec = dec_end - dec_start;
339 if (to_dec > entry->bytes_left) {
340 btrfs_crit(fs_info,
341 "bad ordered accounting left %llu size %llu",
342 entry->bytes_left, to_dec);
343 }
344 entry->bytes_left -= to_dec;
345 if (!uptodate)
346 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
347
348 if (entry->bytes_left == 0) {
349 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
350 /*
351 * Implicit memory barrier after test_and_set_bit
352 */
353 if (waitqueue_active(&entry->wait))
354 wake_up(&entry->wait);
355 } else {
356 ret = 1;
357 }
358out:
359 if (!ret && cached && entry) {
360 *cached = entry;
361 atomic_inc(&entry->refs);
362 }
363 spin_unlock_irqrestore(&tree->lock, flags);
364 return ret == 0;
365}
366
367/*
368 * this is used to account for finished IO across a given range
369 * of the file. The IO should not span ordered extents. If
370 * a given ordered_extent is completely done, 1 is returned, otherwise
371 * 0.
372 *
373 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
374 * to make sure this function only returns 1 once for a given ordered extent.
375 */
376int btrfs_dec_test_ordered_pending(struct inode *inode,
377 struct btrfs_ordered_extent **cached,
378 u64 file_offset, u64 io_size, int uptodate)
379{
380 struct btrfs_ordered_inode_tree *tree;
381 struct rb_node *node;
382 struct btrfs_ordered_extent *entry = NULL;
383 unsigned long flags;
384 int ret;
385
386 tree = &BTRFS_I(inode)->ordered_tree;
387 spin_lock_irqsave(&tree->lock, flags);
388 if (cached && *cached) {
389 entry = *cached;
390 goto have_entry;
391 }
392
393 node = tree_search(tree, file_offset);
394 if (!node) {
395 ret = 1;
396 goto out;
397 }
398
399 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
400have_entry:
401 if (!offset_in_entry(entry, file_offset)) {
402 ret = 1;
403 goto out;
404 }
405
406 if (io_size > entry->bytes_left) {
407 btrfs_crit(BTRFS_I(inode)->root->fs_info,
408 "bad ordered accounting left %llu size %llu",
409 entry->bytes_left, io_size);
410 }
411 entry->bytes_left -= io_size;
412 if (!uptodate)
413 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
414
415 if (entry->bytes_left == 0) {
416 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
417 /*
418 * Implicit memory barrier after test_and_set_bit
419 */
420 if (waitqueue_active(&entry->wait))
421 wake_up(&entry->wait);
422 } else {
423 ret = 1;
424 }
425out:
426 if (!ret && cached && entry) {
427 *cached = entry;
428 atomic_inc(&entry->refs);
429 }
430 spin_unlock_irqrestore(&tree->lock, flags);
431 return ret == 0;
432}
433
434/* Needs to either be called under a log transaction or the log_mutex */
435void btrfs_get_logged_extents(struct inode *inode,
436 struct list_head *logged_list,
437 const loff_t start,
438 const loff_t end)
439{
440 struct btrfs_ordered_inode_tree *tree;
441 struct btrfs_ordered_extent *ordered;
442 struct rb_node *n;
443 struct rb_node *prev;
444
445 tree = &BTRFS_I(inode)->ordered_tree;
446 spin_lock_irq(&tree->lock);
447 n = __tree_search(&tree->tree, end, &prev);
448 if (!n)
449 n = prev;
450 for (; n; n = rb_prev(n)) {
451 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
452 if (ordered->file_offset > end)
453 continue;
454 if (entry_end(ordered) <= start)
455 break;
456 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
457 continue;
458 list_add(&ordered->log_list, logged_list);
459 atomic_inc(&ordered->refs);
460 }
461 spin_unlock_irq(&tree->lock);
462}
463
464void btrfs_put_logged_extents(struct list_head *logged_list)
465{
466 struct btrfs_ordered_extent *ordered;
467
468 while (!list_empty(logged_list)) {
469 ordered = list_first_entry(logged_list,
470 struct btrfs_ordered_extent,
471 log_list);
472 list_del_init(&ordered->log_list);
473 btrfs_put_ordered_extent(ordered);
474 }
475}
476
477void btrfs_submit_logged_extents(struct list_head *logged_list,
478 struct btrfs_root *log)
479{
480 int index = log->log_transid % 2;
481
482 spin_lock_irq(&log->log_extents_lock[index]);
483 list_splice_tail(logged_list, &log->logged_list[index]);
484 spin_unlock_irq(&log->log_extents_lock[index]);
485}
486
487void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
488 struct btrfs_root *log, u64 transid)
489{
490 struct btrfs_ordered_extent *ordered;
491 int index = transid % 2;
492
493 spin_lock_irq(&log->log_extents_lock[index]);
494 while (!list_empty(&log->logged_list[index])) {
495 struct inode *inode;
496 ordered = list_first_entry(&log->logged_list[index],
497 struct btrfs_ordered_extent,
498 log_list);
499 list_del_init(&ordered->log_list);
500 inode = ordered->inode;
501 spin_unlock_irq(&log->log_extents_lock[index]);
502
503 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
504 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
505 u64 start = ordered->file_offset;
506 u64 end = ordered->file_offset + ordered->len - 1;
507
508 WARN_ON(!inode);
509 filemap_fdatawrite_range(inode->i_mapping, start, end);
510 }
511 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
512 &ordered->flags));
513
514 /*
515 * In order to keep us from losing our ordered extent
516 * information when committing the transaction we have to make
517 * sure that any logged extents are completed when we go to
518 * commit the transaction. To do this we simply increase the
519 * current transactions pending_ordered counter and decrement it
520 * when the ordered extent completes.
521 */
522 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
523 struct btrfs_ordered_inode_tree *tree;
524
525 tree = &BTRFS_I(inode)->ordered_tree;
526 spin_lock_irq(&tree->lock);
527 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
528 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
529 atomic_inc(&trans->transaction->pending_ordered);
530 }
531 spin_unlock_irq(&tree->lock);
532 }
533 btrfs_put_ordered_extent(ordered);
534 spin_lock_irq(&log->log_extents_lock[index]);
535 }
536 spin_unlock_irq(&log->log_extents_lock[index]);
537}
538
539void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
540{
541 struct btrfs_ordered_extent *ordered;
542 int index = transid % 2;
543
544 spin_lock_irq(&log->log_extents_lock[index]);
545 while (!list_empty(&log->logged_list[index])) {
546 ordered = list_first_entry(&log->logged_list[index],
547 struct btrfs_ordered_extent,
548 log_list);
549 list_del_init(&ordered->log_list);
550 spin_unlock_irq(&log->log_extents_lock[index]);
551 btrfs_put_ordered_extent(ordered);
552 spin_lock_irq(&log->log_extents_lock[index]);
553 }
554 spin_unlock_irq(&log->log_extents_lock[index]);
555}
556
557/*
558 * used to drop a reference on an ordered extent. This will free
559 * the extent if the last reference is dropped
560 */
561void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
562{
563 struct list_head *cur;
564 struct btrfs_ordered_sum *sum;
565
566 trace_btrfs_ordered_extent_put(entry->inode, entry);
567
568 if (atomic_dec_and_test(&entry->refs)) {
569 ASSERT(list_empty(&entry->log_list));
570 ASSERT(list_empty(&entry->trans_list));
571 ASSERT(list_empty(&entry->root_extent_list));
572 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
573 if (entry->inode)
574 btrfs_add_delayed_iput(entry->inode);
575 while (!list_empty(&entry->list)) {
576 cur = entry->list.next;
577 sum = list_entry(cur, struct btrfs_ordered_sum, list);
578 list_del(&sum->list);
579 kfree(sum);
580 }
581 kmem_cache_free(btrfs_ordered_extent_cache, entry);
582 }
583}
584
585/*
586 * remove an ordered extent from the tree. No references are dropped
587 * and waiters are woken up.
588 */
589void btrfs_remove_ordered_extent(struct inode *inode,
590 struct btrfs_ordered_extent *entry)
591{
592 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
593 struct btrfs_ordered_inode_tree *tree;
594 struct btrfs_root *root = BTRFS_I(inode)->root;
595 struct rb_node *node;
596 bool dec_pending_ordered = false;
597
598 tree = &BTRFS_I(inode)->ordered_tree;
599 spin_lock_irq(&tree->lock);
600 node = &entry->rb_node;
601 rb_erase(node, &tree->tree);
602 RB_CLEAR_NODE(node);
603 if (tree->last == node)
604 tree->last = NULL;
605 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
606 if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
607 dec_pending_ordered = true;
608 spin_unlock_irq(&tree->lock);
609
610 /*
611 * The current running transaction is waiting on us, we need to let it
612 * know that we're complete and wake it up.
613 */
614 if (dec_pending_ordered) {
615 struct btrfs_transaction *trans;
616
617 /*
618 * The checks for trans are just a formality, it should be set,
619 * but if it isn't we don't want to deref/assert under the spin
620 * lock, so be nice and check if trans is set, but ASSERT() so
621 * if it isn't set a developer will notice.
622 */
623 spin_lock(&fs_info->trans_lock);
624 trans = fs_info->running_transaction;
625 if (trans)
626 atomic_inc(&trans->use_count);
627 spin_unlock(&fs_info->trans_lock);
628
629 ASSERT(trans);
630 if (trans) {
631 if (atomic_dec_and_test(&trans->pending_ordered))
632 wake_up(&trans->pending_wait);
633 btrfs_put_transaction(trans);
634 }
635 }
636
637 spin_lock(&root->ordered_extent_lock);
638 list_del_init(&entry->root_extent_list);
639 root->nr_ordered_extents--;
640
641 trace_btrfs_ordered_extent_remove(inode, entry);
642
643 if (!root->nr_ordered_extents) {
644 spin_lock(&fs_info->ordered_root_lock);
645 BUG_ON(list_empty(&root->ordered_root));
646 list_del_init(&root->ordered_root);
647 spin_unlock(&fs_info->ordered_root_lock);
648 }
649 spin_unlock(&root->ordered_extent_lock);
650 wake_up(&entry->wait);
651}
652
653static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
654{
655 struct btrfs_ordered_extent *ordered;
656
657 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
658 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
659 complete(&ordered->completion);
660}
661
662/*
663 * wait for all the ordered extents in a root. This is done when balancing
664 * space between drives.
665 */
666int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr,
667 const u64 range_start, const u64 range_len)
668{
669 struct btrfs_fs_info *fs_info = root->fs_info;
670 LIST_HEAD(splice);
671 LIST_HEAD(skipped);
672 LIST_HEAD(works);
673 struct btrfs_ordered_extent *ordered, *next;
674 int count = 0;
675 const u64 range_end = range_start + range_len;
676
677 mutex_lock(&root->ordered_extent_mutex);
678 spin_lock(&root->ordered_extent_lock);
679 list_splice_init(&root->ordered_extents, &splice);
680 while (!list_empty(&splice) && nr) {
681 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
682 root_extent_list);
683
684 if (range_end <= ordered->start ||
685 ordered->start + ordered->disk_len <= range_start) {
686 list_move_tail(&ordered->root_extent_list, &skipped);
687 cond_resched_lock(&root->ordered_extent_lock);
688 continue;
689 }
690
691 list_move_tail(&ordered->root_extent_list,
692 &root->ordered_extents);
693 atomic_inc(&ordered->refs);
694 spin_unlock(&root->ordered_extent_lock);
695
696 btrfs_init_work(&ordered->flush_work,
697 btrfs_flush_delalloc_helper,
698 btrfs_run_ordered_extent_work, NULL, NULL);
699 list_add_tail(&ordered->work_list, &works);
700 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
701
702 cond_resched();
703 spin_lock(&root->ordered_extent_lock);
704 if (nr != -1)
705 nr--;
706 count++;
707 }
708 list_splice_tail(&skipped, &root->ordered_extents);
709 list_splice_tail(&splice, &root->ordered_extents);
710 spin_unlock(&root->ordered_extent_lock);
711
712 list_for_each_entry_safe(ordered, next, &works, work_list) {
713 list_del_init(&ordered->work_list);
714 wait_for_completion(&ordered->completion);
715 btrfs_put_ordered_extent(ordered);
716 cond_resched();
717 }
718 mutex_unlock(&root->ordered_extent_mutex);
719
720 return count;
721}
722
723int btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr,
724 const u64 range_start, const u64 range_len)
725{
726 struct btrfs_root *root;
727 struct list_head splice;
728 int done;
729 int total_done = 0;
730
731 INIT_LIST_HEAD(&splice);
732
733 mutex_lock(&fs_info->ordered_operations_mutex);
734 spin_lock(&fs_info->ordered_root_lock);
735 list_splice_init(&fs_info->ordered_roots, &splice);
736 while (!list_empty(&splice) && nr) {
737 root = list_first_entry(&splice, struct btrfs_root,
738 ordered_root);
739 root = btrfs_grab_fs_root(root);
740 BUG_ON(!root);
741 list_move_tail(&root->ordered_root,
742 &fs_info->ordered_roots);
743 spin_unlock(&fs_info->ordered_root_lock);
744
745 done = btrfs_wait_ordered_extents(root, nr,
746 range_start, range_len);
747 btrfs_put_fs_root(root);
748 total_done += done;
749
750 spin_lock(&fs_info->ordered_root_lock);
751 if (nr != -1) {
752 nr -= done;
753 WARN_ON(nr < 0);
754 }
755 }
756 list_splice_tail(&splice, &fs_info->ordered_roots);
757 spin_unlock(&fs_info->ordered_root_lock);
758 mutex_unlock(&fs_info->ordered_operations_mutex);
759
760 return total_done;
761}
762
763/*
764 * Used to start IO or wait for a given ordered extent to finish.
765 *
766 * If wait is one, this effectively waits on page writeback for all the pages
767 * in the extent, and it waits on the io completion code to insert
768 * metadata into the btree corresponding to the extent
769 */
770void btrfs_start_ordered_extent(struct inode *inode,
771 struct btrfs_ordered_extent *entry,
772 int wait)
773{
774 u64 start = entry->file_offset;
775 u64 end = start + entry->len - 1;
776
777 trace_btrfs_ordered_extent_start(inode, entry);
778
779 /*
780 * pages in the range can be dirty, clean or writeback. We
781 * start IO on any dirty ones so the wait doesn't stall waiting
782 * for the flusher thread to find them
783 */
784 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
785 filemap_fdatawrite_range(inode->i_mapping, start, end);
786 if (wait) {
787 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
788 &entry->flags));
789 }
790}
791
792/*
793 * Used to wait on ordered extents across a large range of bytes.
794 */
795int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
796{
797 int ret = 0;
798 int ret_wb = 0;
799 u64 end;
800 u64 orig_end;
801 struct btrfs_ordered_extent *ordered;
802
803 if (start + len < start) {
804 orig_end = INT_LIMIT(loff_t);
805 } else {
806 orig_end = start + len - 1;
807 if (orig_end > INT_LIMIT(loff_t))
808 orig_end = INT_LIMIT(loff_t);
809 }
810
811 /* start IO across the range first to instantiate any delalloc
812 * extents
813 */
814 ret = btrfs_fdatawrite_range(inode, start, orig_end);
815 if (ret)
816 return ret;
817
818 /*
819 * If we have a writeback error don't return immediately. Wait first
820 * for any ordered extents that haven't completed yet. This is to make
821 * sure no one can dirty the same page ranges and call writepages()
822 * before the ordered extents complete - to avoid failures (-EEXIST)
823 * when adding the new ordered extents to the ordered tree.
824 */
825 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
826
827 end = orig_end;
828 while (1) {
829 ordered = btrfs_lookup_first_ordered_extent(inode, end);
830 if (!ordered)
831 break;
832 if (ordered->file_offset > orig_end) {
833 btrfs_put_ordered_extent(ordered);
834 break;
835 }
836 if (ordered->file_offset + ordered->len <= start) {
837 btrfs_put_ordered_extent(ordered);
838 break;
839 }
840 btrfs_start_ordered_extent(inode, ordered, 1);
841 end = ordered->file_offset;
842 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
843 ret = -EIO;
844 btrfs_put_ordered_extent(ordered);
845 if (ret || end == 0 || end == start)
846 break;
847 end--;
848 }
849 return ret_wb ? ret_wb : ret;
850}
851
852/*
853 * find an ordered extent corresponding to file_offset. return NULL if
854 * nothing is found, otherwise take a reference on the extent and return it
855 */
856struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
857 u64 file_offset)
858{
859 struct btrfs_ordered_inode_tree *tree;
860 struct rb_node *node;
861 struct btrfs_ordered_extent *entry = NULL;
862
863 tree = &BTRFS_I(inode)->ordered_tree;
864 spin_lock_irq(&tree->lock);
865 node = tree_search(tree, file_offset);
866 if (!node)
867 goto out;
868
869 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
870 if (!offset_in_entry(entry, file_offset))
871 entry = NULL;
872 if (entry)
873 atomic_inc(&entry->refs);
874out:
875 spin_unlock_irq(&tree->lock);
876 return entry;
877}
878
879/* Since the DIO code tries to lock a wide area we need to look for any ordered
880 * extents that exist in the range, rather than just the start of the range.
881 */
882struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
883 u64 file_offset,
884 u64 len)
885{
886 struct btrfs_ordered_inode_tree *tree;
887 struct rb_node *node;
888 struct btrfs_ordered_extent *entry = NULL;
889
890 tree = &BTRFS_I(inode)->ordered_tree;
891 spin_lock_irq(&tree->lock);
892 node = tree_search(tree, file_offset);
893 if (!node) {
894 node = tree_search(tree, file_offset + len);
895 if (!node)
896 goto out;
897 }
898
899 while (1) {
900 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
901 if (range_overlaps(entry, file_offset, len))
902 break;
903
904 if (entry->file_offset >= file_offset + len) {
905 entry = NULL;
906 break;
907 }
908 entry = NULL;
909 node = rb_next(node);
910 if (!node)
911 break;
912 }
913out:
914 if (entry)
915 atomic_inc(&entry->refs);
916 spin_unlock_irq(&tree->lock);
917 return entry;
918}
919
920bool btrfs_have_ordered_extents_in_range(struct inode *inode,
921 u64 file_offset,
922 u64 len)
923{
924 struct btrfs_ordered_extent *oe;
925
926 oe = btrfs_lookup_ordered_range(inode, file_offset, len);
927 if (oe) {
928 btrfs_put_ordered_extent(oe);
929 return true;
930 }
931 return false;
932}
933
934/*
935 * lookup and return any extent before 'file_offset'. NULL is returned
936 * if none is found
937 */
938struct btrfs_ordered_extent *
939btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
940{
941 struct btrfs_ordered_inode_tree *tree;
942 struct rb_node *node;
943 struct btrfs_ordered_extent *entry = NULL;
944
945 tree = &BTRFS_I(inode)->ordered_tree;
946 spin_lock_irq(&tree->lock);
947 node = tree_search(tree, file_offset);
948 if (!node)
949 goto out;
950
951 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
952 atomic_inc(&entry->refs);
953out:
954 spin_unlock_irq(&tree->lock);
955 return entry;
956}
957
958/*
959 * After an extent is done, call this to conditionally update the on disk
960 * i_size. i_size is updated to cover any fully written part of the file.
961 */
962int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
963 struct btrfs_ordered_extent *ordered)
964{
965 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
966 u64 disk_i_size;
967 u64 new_i_size;
968 u64 i_size = i_size_read(inode);
969 struct rb_node *node;
970 struct rb_node *prev = NULL;
971 struct btrfs_ordered_extent *test;
972 int ret = 1;
973 u64 orig_offset = offset;
974
975 spin_lock_irq(&tree->lock);
976 if (ordered) {
977 offset = entry_end(ordered);
978 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
979 offset = min(offset,
980 ordered->file_offset +
981 ordered->truncated_len);
982 } else {
983 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
984 }
985 disk_i_size = BTRFS_I(inode)->disk_i_size;
986
987 /* truncate file */
988 if (disk_i_size > i_size) {
989 BTRFS_I(inode)->disk_i_size = orig_offset;
990 ret = 0;
991 goto out;
992 }
993
994 /*
995 * if the disk i_size is already at the inode->i_size, or
996 * this ordered extent is inside the disk i_size, we're done
997 */
998 if (disk_i_size == i_size)
999 goto out;
1000
1001 /*
1002 * We still need to update disk_i_size if outstanding_isize is greater
1003 * than disk_i_size.
1004 */
1005 if (offset <= disk_i_size &&
1006 (!ordered || ordered->outstanding_isize <= disk_i_size))
1007 goto out;
1008
1009 /*
1010 * walk backward from this ordered extent to disk_i_size.
1011 * if we find an ordered extent then we can't update disk i_size
1012 * yet
1013 */
1014 if (ordered) {
1015 node = rb_prev(&ordered->rb_node);
1016 } else {
1017 prev = tree_search(tree, offset);
1018 /*
1019 * we insert file extents without involving ordered struct,
1020 * so there should be no ordered struct cover this offset
1021 */
1022 if (prev) {
1023 test = rb_entry(prev, struct btrfs_ordered_extent,
1024 rb_node);
1025 BUG_ON(offset_in_entry(test, offset));
1026 }
1027 node = prev;
1028 }
1029 for (; node; node = rb_prev(node)) {
1030 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1031
1032 /* We treat this entry as if it doesn't exist */
1033 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1034 continue;
1035 if (test->file_offset + test->len <= disk_i_size)
1036 break;
1037 if (test->file_offset >= i_size)
1038 break;
1039 if (entry_end(test) > disk_i_size) {
1040 /*
1041 * we don't update disk_i_size now, so record this
1042 * undealt i_size. Or we will not know the real
1043 * i_size.
1044 */
1045 if (test->outstanding_isize < offset)
1046 test->outstanding_isize = offset;
1047 if (ordered &&
1048 ordered->outstanding_isize >
1049 test->outstanding_isize)
1050 test->outstanding_isize =
1051 ordered->outstanding_isize;
1052 goto out;
1053 }
1054 }
1055 new_i_size = min_t(u64, offset, i_size);
1056
1057 /*
1058 * Some ordered extents may completed before the current one, and
1059 * we hold the real i_size in ->outstanding_isize.
1060 */
1061 if (ordered && ordered->outstanding_isize > new_i_size)
1062 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1063 BTRFS_I(inode)->disk_i_size = new_i_size;
1064 ret = 0;
1065out:
1066 /*
1067 * We need to do this because we can't remove ordered extents until
1068 * after the i_disk_size has been updated and then the inode has been
1069 * updated to reflect the change, so we need to tell anybody who finds
1070 * this ordered extent that we've already done all the real work, we
1071 * just haven't completed all the other work.
1072 */
1073 if (ordered)
1074 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1075 spin_unlock_irq(&tree->lock);
1076 return ret;
1077}
1078
1079/*
1080 * search the ordered extents for one corresponding to 'offset' and
1081 * try to find a checksum. This is used because we allow pages to
1082 * be reclaimed before their checksum is actually put into the btree
1083 */
1084int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1085 u32 *sum, int len)
1086{
1087 struct btrfs_ordered_sum *ordered_sum;
1088 struct btrfs_ordered_extent *ordered;
1089 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1090 unsigned long num_sectors;
1091 unsigned long i;
1092 u32 sectorsize = btrfs_inode_sectorsize(inode);
1093 int index = 0;
1094
1095 ordered = btrfs_lookup_ordered_extent(inode, offset);
1096 if (!ordered)
1097 return 0;
1098
1099 spin_lock_irq(&tree->lock);
1100 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1101 if (disk_bytenr >= ordered_sum->bytenr &&
1102 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1103 i = (disk_bytenr - ordered_sum->bytenr) >>
1104 inode->i_sb->s_blocksize_bits;
1105 num_sectors = ordered_sum->len >>
1106 inode->i_sb->s_blocksize_bits;
1107 num_sectors = min_t(int, len - index, num_sectors - i);
1108 memcpy(sum + index, ordered_sum->sums + i,
1109 num_sectors);
1110
1111 index += (int)num_sectors;
1112 if (index == len)
1113 goto out;
1114 disk_bytenr += num_sectors * sectorsize;
1115 }
1116 }
1117out:
1118 spin_unlock_irq(&tree->lock);
1119 btrfs_put_ordered_extent(ordered);
1120 return index;
1121}
1122
1123int __init ordered_data_init(void)
1124{
1125 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1126 sizeof(struct btrfs_ordered_extent), 0,
1127 SLAB_MEM_SPREAD,
1128 NULL);
1129 if (!btrfs_ordered_extent_cache)
1130 return -ENOMEM;
1131
1132 return 0;
1133}
1134
1135void ordered_data_exit(void)
1136{
1137 kmem_cache_destroy(btrfs_ordered_extent_cache);
1138}