Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
 
 
  10#include <linux/slab.h>
  11#include <linux/spinlock.h>
  12#include <linux/completion.h>
  13#include <linux/buffer_head.h>
  14#include <linux/fs.h>
  15#include <linux/gfs2_ondisk.h>
  16#include <linux/prefetch.h>
  17#include <linux/blkdev.h>
  18#include <linux/rbtree.h>
 
  19
  20#include "gfs2.h"
  21#include "incore.h"
  22#include "glock.h"
  23#include "glops.h"
  24#include "lops.h"
  25#include "meta_io.h"
  26#include "quota.h"
  27#include "rgrp.h"
  28#include "super.h"
  29#include "trans.h"
  30#include "util.h"
  31#include "log.h"
  32#include "inode.h"
  33#include "trace_gfs2.h"
 
  34
  35#define BFITNOENT ((u32)~0)
  36#define NO_BLOCK ((u64)~0)
  37
  38#if BITS_PER_LONG == 32
  39#define LBITMASK   (0x55555555UL)
  40#define LBITSKIP55 (0x55555555UL)
  41#define LBITSKIP00 (0x00000000UL)
  42#else
  43#define LBITMASK   (0x5555555555555555UL)
  44#define LBITSKIP55 (0x5555555555555555UL)
  45#define LBITSKIP00 (0x0000000000000000UL)
  46#endif
  47
  48/*
  49 * These routines are used by the resource group routines (rgrp.c)
  50 * to keep track of block allocation.  Each block is represented by two
  51 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  52 *
  53 * 0 = Free
  54 * 1 = Used (not metadata)
  55 * 2 = Unlinked (still in use) inode
  56 * 3 = Used (metadata)
  57 */
  58
 
 
 
 
 
  59static const char valid_change[16] = {
  60	        /* current */
  61	/* n */ 0, 1, 1, 1,
  62	/* e */ 1, 0, 0, 0,
  63	/* w */ 0, 0, 0, 1,
  64	        1, 0, 0, 0
  65};
  66
  67static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
  68			unsigned char old_state,
  69			struct gfs2_bitmap **rbi);
  70
  71/**
  72 * gfs2_setbit - Set a bit in the bitmaps
  73 * @rgd: the resource group descriptor
  74 * @buf2: the clone buffer that holds the bitmaps
  75 * @bi: the bitmap structure
  76 * @block: the block to set
  77 * @new_state: the new state of the block
  78 *
  79 */
  80
  81static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf2,
  82			       struct gfs2_bitmap *bi, u32 block,
  83			       unsigned char new_state)
  84{
  85	unsigned char *byte1, *byte2, *end, cur_state;
 
  86	unsigned int buflen = bi->bi_len;
  87	const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
  88
  89	byte1 = bi->bi_bh->b_data + bi->bi_offset + (block / GFS2_NBBY);
  90	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  91
  92	BUG_ON(byte1 >= end);
  93
  94	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  95
  96	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
  97		printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
  98		       "new_state=%d\n",
  99		       (unsigned long long)block, cur_state, new_state);
 100		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
 101		       (unsigned long long)rgd->rd_addr,
 102		       (unsigned long)bi->bi_start);
 103		printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
 104		       (unsigned long)bi->bi_offset,
 105		       (unsigned long)bi->bi_len);
 106		dump_stack();
 107		gfs2_consist_rgrpd(rgd);
 108		return;
 109	}
 110	*byte1 ^= (cur_state ^ new_state) << bit;
 111
 112	if (buf2) {
 113		byte2 = buf2 + bi->bi_offset + (block / GFS2_NBBY);
 114		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 115		*byte2 ^= (cur_state ^ new_state) << bit;
 116	}
 117}
 118
 119/**
 120 * gfs2_testbit - test a bit in the bitmaps
 121 * @rgd: the resource group descriptor
 122 * @buffer: the buffer that holds the bitmaps
 123 * @buflen: the length (in bytes) of the buffer
 124 * @block: the block to read
 125 *
 
 126 */
 127
 128static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
 129					 const unsigned char *buffer,
 130					 unsigned int buflen, u32 block)
 131{
 132	const unsigned char *byte, *end;
 133	unsigned char cur_state;
 
 134	unsigned int bit;
 135
 136	byte = buffer + (block / GFS2_NBBY);
 137	bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
 138	end = buffer + buflen;
 139
 140	gfs2_assert(rgd->rd_sbd, byte < end);
 141
 142	cur_state = (*byte >> bit) & GFS2_BIT_MASK;
 143
 144	return cur_state;
 145}
 146
 147/**
 148 * gfs2_bit_search
 149 * @ptr: Pointer to bitmap data
 150 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 151 * @state: The state we are searching for
 152 *
 153 * We xor the bitmap data with a patter which is the bitwise opposite
 154 * of what we are looking for, this gives rise to a pattern of ones
 155 * wherever there is a match. Since we have two bits per entry, we
 156 * take this pattern, shift it down by one place and then and it with
 157 * the original. All the even bit positions (0,2,4, etc) then represent
 158 * successful matches, so we mask with 0x55555..... to remove the unwanted
 159 * odd bit positions.
 160 *
 161 * This allows searching of a whole u64 at once (32 blocks) with a
 162 * single test (on 64 bit arches).
 163 */
 164
 165static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 166{
 167	u64 tmp;
 168	static const u64 search[] = {
 169		[0] = 0xffffffffffffffffULL,
 170		[1] = 0xaaaaaaaaaaaaaaaaULL,
 171		[2] = 0x5555555555555555ULL,
 172		[3] = 0x0000000000000000ULL,
 173	};
 174	tmp = le64_to_cpu(*ptr) ^ search[state];
 175	tmp &= (tmp >> 1);
 176	tmp &= mask;
 177	return tmp;
 178}
 179
 180/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 182 *       a block in a given allocation state.
 183 * @buf: the buffer that holds the bitmaps
 184 * @len: the length (in bytes) of the buffer
 185 * @goal: start search at this block's bit-pair (within @buffer)
 186 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 187 *
 188 * Scope of @goal and returned block number is only within this bitmap buffer,
 189 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 190 * beginning of a bitmap block buffer, skipping any header structures, but
 191 * headers are always a multiple of 64 bits long so that the buffer is
 192 * always aligned to a 64 bit boundary.
 193 *
 194 * The size of the buffer is in bytes, but is it assumed that it is
 195 * always ok to read a complete multiple of 64 bits at the end
 196 * of the block in case the end is no aligned to a natural boundary.
 197 *
 198 * Return: the block number (bitmap buffer scope) that was found
 199 */
 200
 201static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 202		       u32 goal, u8 state)
 203{
 204	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 205	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 206	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 207	u64 tmp;
 208	u64 mask = 0x5555555555555555ULL;
 209	u32 bit;
 210
 211	BUG_ON(state > 3);
 212
 213	/* Mask off bits we don't care about at the start of the search */
 214	mask <<= spoint;
 215	tmp = gfs2_bit_search(ptr, mask, state);
 216	ptr++;
 217	while(tmp == 0 && ptr < end) {
 218		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 219		ptr++;
 220	}
 221	/* Mask off any bits which are more than len bytes from the start */
 222	if (ptr == end && (len & (sizeof(u64) - 1)))
 223		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 224	/* Didn't find anything, so return */
 225	if (tmp == 0)
 226		return BFITNOENT;
 227	ptr--;
 228	bit = __ffs64(tmp);
 229	bit /= 2;	/* two bits per entry in the bitmap */
 230	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 231}
 232
 233/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234 * gfs2_bitcount - count the number of bits in a certain state
 235 * @rgd: the resource group descriptor
 236 * @buffer: the buffer that holds the bitmaps
 237 * @buflen: the length (in bytes) of the buffer
 238 * @state: the state of the block we're looking for
 239 *
 240 * Returns: The number of bits
 241 */
 242
 243static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 244			 unsigned int buflen, u8 state)
 245{
 246	const u8 *byte = buffer;
 247	const u8 *end = buffer + buflen;
 248	const u8 state1 = state << 2;
 249	const u8 state2 = state << 4;
 250	const u8 state3 = state << 6;
 251	u32 count = 0;
 252
 253	for (; byte < end; byte++) {
 254		if (((*byte) & 0x03) == state)
 255			count++;
 256		if (((*byte) & 0x0C) == state1)
 257			count++;
 258		if (((*byte) & 0x30) == state2)
 259			count++;
 260		if (((*byte) & 0xC0) == state3)
 261			count++;
 262	}
 263
 264	return count;
 265}
 266
 267/**
 268 * gfs2_rgrp_verify - Verify that a resource group is consistent
 269 * @rgd: the rgrp
 270 *
 271 */
 272
 273void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 274{
 275	struct gfs2_sbd *sdp = rgd->rd_sbd;
 276	struct gfs2_bitmap *bi = NULL;
 277	u32 length = rgd->rd_length;
 278	u32 count[4], tmp;
 279	int buf, x;
 280
 281	memset(count, 0, 4 * sizeof(u32));
 282
 283	/* Count # blocks in each of 4 possible allocation states */
 284	for (buf = 0; buf < length; buf++) {
 285		bi = rgd->rd_bits + buf;
 286		for (x = 0; x < 4; x++)
 287			count[x] += gfs2_bitcount(rgd,
 288						  bi->bi_bh->b_data +
 289						  bi->bi_offset,
 290						  bi->bi_len, x);
 291	}
 292
 293	if (count[0] != rgd->rd_free) {
 294		if (gfs2_consist_rgrpd(rgd))
 295			fs_err(sdp, "free data mismatch:  %u != %u\n",
 296			       count[0], rgd->rd_free);
 297		return;
 298	}
 299
 300	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 301	if (count[1] != tmp) {
 302		if (gfs2_consist_rgrpd(rgd))
 303			fs_err(sdp, "used data mismatch:  %u != %u\n",
 304			       count[1], tmp);
 305		return;
 306	}
 307
 308	if (count[2] + count[3] != rgd->rd_dinodes) {
 309		if (gfs2_consist_rgrpd(rgd))
 310			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 311			       count[2] + count[3], rgd->rd_dinodes);
 312		return;
 313	}
 314}
 315
 316static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 317{
 318	u64 first = rgd->rd_data0;
 319	u64 last = first + rgd->rd_data;
 320	return first <= block && block < last;
 321}
 322
 323/**
 324 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 325 * @sdp: The GFS2 superblock
 326 * @blk: The data block number
 327 * @exact: True if this needs to be an exact match
 328 *
 
 
 
 
 
 
 
 329 * Returns: The resource group, or NULL if not found
 330 */
 331
 332struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 333{
 334	struct rb_node *n, *next;
 335	struct gfs2_rgrpd *cur;
 336
 337	spin_lock(&sdp->sd_rindex_spin);
 338	n = sdp->sd_rindex_tree.rb_node;
 339	while (n) {
 340		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 341		next = NULL;
 342		if (blk < cur->rd_addr)
 343			next = n->rb_left;
 344		else if (blk >= cur->rd_data0 + cur->rd_data)
 345			next = n->rb_right;
 346		if (next == NULL) {
 347			spin_unlock(&sdp->sd_rindex_spin);
 348			if (exact) {
 349				if (blk < cur->rd_addr)
 350					return NULL;
 351				if (blk >= cur->rd_data0 + cur->rd_data)
 352					return NULL;
 353			}
 354			return cur;
 355		}
 356		n = next;
 357	}
 358	spin_unlock(&sdp->sd_rindex_spin);
 359
 360	return NULL;
 361}
 362
 363/**
 364 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 365 * @sdp: The GFS2 superblock
 366 *
 367 * Returns: The first rgrp in the filesystem
 368 */
 369
 370struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 371{
 372	const struct rb_node *n;
 373	struct gfs2_rgrpd *rgd;
 374
 375	spin_lock(&sdp->sd_rindex_spin);
 376	n = rb_first(&sdp->sd_rindex_tree);
 377	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 378	spin_unlock(&sdp->sd_rindex_spin);
 379
 380	return rgd;
 381}
 382
 383/**
 384 * gfs2_rgrpd_get_next - get the next RG
 385 * @rgd: the resource group descriptor
 386 *
 387 * Returns: The next rgrp
 388 */
 389
 390struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 391{
 392	struct gfs2_sbd *sdp = rgd->rd_sbd;
 393	const struct rb_node *n;
 394
 395	spin_lock(&sdp->sd_rindex_spin);
 396	n = rb_next(&rgd->rd_node);
 397	if (n == NULL)
 398		n = rb_first(&sdp->sd_rindex_tree);
 399
 400	if (unlikely(&rgd->rd_node == n)) {
 401		spin_unlock(&sdp->sd_rindex_spin);
 402		return NULL;
 403	}
 404	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 405	spin_unlock(&sdp->sd_rindex_spin);
 406	return rgd;
 407}
 408
 
 
 
 
 
 
 
 409void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 410{
 411	int x;
 412
 413	for (x = 0; x < rgd->rd_length; x++) {
 414		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 415		kfree(bi->bi_clone);
 416		bi->bi_clone = NULL;
 417	}
 418}
 419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 421{
 422	struct rb_node *n;
 423	struct gfs2_rgrpd *rgd;
 424	struct gfs2_glock *gl;
 425
 426	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 427		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 428		gl = rgd->rd_gl;
 429
 430		rb_erase(n, &sdp->sd_rindex_tree);
 431
 432		if (gl) {
 433			spin_lock(&gl->gl_spin);
 434			gl->gl_object = NULL;
 435			spin_unlock(&gl->gl_spin);
 436			gfs2_glock_add_to_lru(gl);
 437			gfs2_glock_put(gl);
 438		}
 439
 440		gfs2_free_clones(rgd);
 441		kfree(rgd->rd_bits);
 
 
 442		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 443	}
 444}
 445
 446static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 447{
 448	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 449	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
 450	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 451	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
 452	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
 453}
 454
 455/**
 456 * gfs2_compute_bitstructs - Compute the bitmap sizes
 457 * @rgd: The resource group descriptor
 458 *
 459 * Calculates bitmap descriptors, one for each block that contains bitmap data
 460 *
 461 * Returns: errno
 462 */
 463
 464static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 465{
 466	struct gfs2_sbd *sdp = rgd->rd_sbd;
 467	struct gfs2_bitmap *bi;
 468	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 469	u32 bytes_left, bytes;
 470	int x;
 471
 472	if (!length)
 473		return -EINVAL;
 474
 475	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 476	if (!rgd->rd_bits)
 477		return -ENOMEM;
 478
 479	bytes_left = rgd->rd_bitbytes;
 480
 481	for (x = 0; x < length; x++) {
 482		bi = rgd->rd_bits + x;
 483
 484		bi->bi_flags = 0;
 485		/* small rgrp; bitmap stored completely in header block */
 486		if (length == 1) {
 487			bytes = bytes_left;
 488			bi->bi_offset = sizeof(struct gfs2_rgrp);
 489			bi->bi_start = 0;
 490			bi->bi_len = bytes;
 
 491		/* header block */
 492		} else if (x == 0) {
 493			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 494			bi->bi_offset = sizeof(struct gfs2_rgrp);
 495			bi->bi_start = 0;
 496			bi->bi_len = bytes;
 
 497		/* last block */
 498		} else if (x + 1 == length) {
 499			bytes = bytes_left;
 500			bi->bi_offset = sizeof(struct gfs2_meta_header);
 501			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 502			bi->bi_len = bytes;
 
 503		/* other blocks */
 504		} else {
 505			bytes = sdp->sd_sb.sb_bsize -
 506				sizeof(struct gfs2_meta_header);
 507			bi->bi_offset = sizeof(struct gfs2_meta_header);
 508			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 509			bi->bi_len = bytes;
 
 510		}
 511
 512		bytes_left -= bytes;
 513	}
 514
 515	if (bytes_left) {
 516		gfs2_consist_rgrpd(rgd);
 517		return -EIO;
 518	}
 519	bi = rgd->rd_bits + (length - 1);
 520	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 521		if (gfs2_consist_rgrpd(rgd)) {
 522			gfs2_rindex_print(rgd);
 523			fs_err(sdp, "start=%u len=%u offset=%u\n",
 524			       bi->bi_start, bi->bi_len, bi->bi_offset);
 525		}
 526		return -EIO;
 527	}
 528
 529	return 0;
 530}
 531
 532/**
 533 * gfs2_ri_total - Total up the file system space, according to the rindex.
 534 * @sdp: the filesystem
 535 *
 536 */
 537u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 538{
 539	u64 total_data = 0;	
 540	struct inode *inode = sdp->sd_rindex;
 541	struct gfs2_inode *ip = GFS2_I(inode);
 542	char buf[sizeof(struct gfs2_rindex)];
 543	int error, rgrps;
 544
 545	for (rgrps = 0;; rgrps++) {
 546		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 547
 548		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 549			break;
 550		error = gfs2_internal_read(ip, buf, &pos,
 551					   sizeof(struct gfs2_rindex));
 552		if (error != sizeof(struct gfs2_rindex))
 553			break;
 554		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 555	}
 556	return total_data;
 557}
 558
 559static int rgd_insert(struct gfs2_rgrpd *rgd)
 560{
 561	struct gfs2_sbd *sdp = rgd->rd_sbd;
 562	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 563
 564	/* Figure out where to put new node */
 565	while (*newn) {
 566		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 567						  rd_node);
 568
 569		parent = *newn;
 570		if (rgd->rd_addr < cur->rd_addr)
 571			newn = &((*newn)->rb_left);
 572		else if (rgd->rd_addr > cur->rd_addr)
 573			newn = &((*newn)->rb_right);
 574		else
 575			return -EEXIST;
 576	}
 577
 578	rb_link_node(&rgd->rd_node, parent, newn);
 579	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 580	sdp->sd_rgrps++;
 581	return 0;
 582}
 583
 584/**
 585 * read_rindex_entry - Pull in a new resource index entry from the disk
 586 * @ip: Pointer to the rindex inode
 587 *
 588 * Returns: 0 on success, > 0 on EOF, error code otherwise
 589 */
 590
 591static int read_rindex_entry(struct gfs2_inode *ip)
 592{
 593	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
 594	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 595	struct gfs2_rindex buf;
 596	int error;
 597	struct gfs2_rgrpd *rgd;
 598
 599	if (pos >= i_size_read(&ip->i_inode))
 600		return 1;
 601
 602	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 603				   sizeof(struct gfs2_rindex));
 604
 605	if (error != sizeof(struct gfs2_rindex))
 606		return (error == 0) ? 1 : error;
 607
 608	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 609	error = -ENOMEM;
 610	if (!rgd)
 611		return error;
 612
 613	rgd->rd_sbd = sdp;
 614	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 615	rgd->rd_length = be32_to_cpu(buf.ri_length);
 616	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 617	rgd->rd_data = be32_to_cpu(buf.ri_data);
 618	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 
 619
 620	error = compute_bitstructs(rgd);
 621	if (error)
 622		goto fail;
 623
 624	error = gfs2_glock_get(sdp, rgd->rd_addr,
 625			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 626	if (error)
 627		goto fail;
 628
 629	rgd->rd_gl->gl_object = rgd;
 630	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
 631	if (rgd->rd_data > sdp->sd_max_rg_data)
 632		sdp->sd_max_rg_data = rgd->rd_data;
 633	spin_lock(&sdp->sd_rindex_spin);
 634	error = rgd_insert(rgd);
 635	spin_unlock(&sdp->sd_rindex_spin);
 636	if (!error)
 
 
 
 
 637		return 0;
 
 638
 639	error = 0; /* someone else read in the rgrp; free it and ignore it */
 640	gfs2_glock_put(rgd->rd_gl);
 641
 642fail:
 643	kfree(rgd->rd_bits);
 
 644	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 645	return error;
 646}
 647
 648/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649 * gfs2_ri_update - Pull in a new resource index from the disk
 650 * @ip: pointer to the rindex inode
 651 *
 652 * Returns: 0 on successful update, error code otherwise
 653 */
 654
 655static int gfs2_ri_update(struct gfs2_inode *ip)
 656{
 657	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 658	int error;
 659
 660	do {
 661		error = read_rindex_entry(ip);
 662	} while (error == 0);
 663
 664	if (error < 0)
 665		return error;
 666
 
 
 667	sdp->sd_rindex_uptodate = 1;
 668	return 0;
 669}
 670
 671/**
 672 * gfs2_rindex_update - Update the rindex if required
 673 * @sdp: The GFS2 superblock
 674 *
 675 * We grab a lock on the rindex inode to make sure that it doesn't
 676 * change whilst we are performing an operation. We keep this lock
 677 * for quite long periods of time compared to other locks. This
 678 * doesn't matter, since it is shared and it is very, very rarely
 679 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
 680 *
 681 * This makes sure that we're using the latest copy of the resource index
 682 * special file, which might have been updated if someone expanded the
 683 * filesystem (via gfs2_grow utility), which adds new resource groups.
 684 *
 685 * Returns: 0 on succeess, error code otherwise
 686 */
 687
 688int gfs2_rindex_update(struct gfs2_sbd *sdp)
 689{
 690	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
 691	struct gfs2_glock *gl = ip->i_gl;
 692	struct gfs2_holder ri_gh;
 693	int error = 0;
 694	int unlock_required = 0;
 695
 696	/* Read new copy from disk if we don't have the latest */
 697	if (!sdp->sd_rindex_uptodate) {
 698		if (!gfs2_glock_is_locked_by_me(gl)) {
 699			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
 700			if (error)
 701				return error;
 702			unlock_required = 1;
 703		}
 704		if (!sdp->sd_rindex_uptodate)
 705			error = gfs2_ri_update(ip);
 706		if (unlock_required)
 707			gfs2_glock_dq_uninit(&ri_gh);
 708	}
 709
 710	return error;
 711}
 712
 713static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
 714{
 715	const struct gfs2_rgrp *str = buf;
 716	u32 rg_flags;
 717
 718	rg_flags = be32_to_cpu(str->rg_flags);
 719	rg_flags &= ~GFS2_RDF_MASK;
 720	rgd->rd_flags &= GFS2_RDF_MASK;
 721	rgd->rd_flags |= rg_flags;
 722	rgd->rd_free = be32_to_cpu(str->rg_free);
 723	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
 724	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
 
 725}
 726
 727static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
 728{
 
 729	struct gfs2_rgrp *str = buf;
 
 730
 731	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
 732	str->rg_free = cpu_to_be32(rgd->rd_free);
 733	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
 734	str->__pad = cpu_to_be32(0);
 
 
 
 735	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
 
 
 
 
 
 
 
 736	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
 737}
 738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739/**
 740 * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps
 741 * @gh: The glock holder for the resource group
 742 *
 743 * Read in all of a Resource Group's header and bitmap blocks.
 744 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
 745 *
 746 * Returns: errno
 747 */
 748
 749int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
 750{
 751	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
 752	struct gfs2_sbd *sdp = rgd->rd_sbd;
 753	struct gfs2_glock *gl = rgd->rd_gl;
 754	unsigned int length = rgd->rd_length;
 755	struct gfs2_bitmap *bi;
 756	unsigned int x, y;
 757	int error;
 758
 
 
 
 759	for (x = 0; x < length; x++) {
 760		bi = rgd->rd_bits + x;
 761		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
 762		if (error)
 763			goto fail;
 764	}
 765
 766	for (y = length; y--;) {
 767		bi = rgd->rd_bits + y;
 768		error = gfs2_meta_wait(sdp, bi->bi_bh);
 769		if (error)
 770			goto fail;
 771		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
 772					      GFS2_METATYPE_RG)) {
 773			error = -EIO;
 774			goto fail;
 775		}
 776	}
 777
 778	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
 779		for (x = 0; x < length; x++)
 780			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
 781		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
 782		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
 783		rgd->rd_free_clone = rgd->rd_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	}
 785
 786	return 0;
 787
 788fail:
 789	while (x--) {
 790		bi = rgd->rd_bits + x;
 791		brelse(bi->bi_bh);
 792		bi->bi_bh = NULL;
 793		gfs2_assert_warn(sdp, !bi->bi_clone);
 794	}
 795
 796	return error;
 797}
 798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 799/**
 800 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
 801 * @gh: The glock holder for the resource group
 802 *
 803 */
 804
 805void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
 806{
 807	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
 808	int x, length = rgd->rd_length;
 809
 810	for (x = 0; x < length; x++) {
 811		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 812		brelse(bi->bi_bh);
 813		bi->bi_bh = NULL;
 
 
 814	}
 815
 816}
 817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
 819			     struct buffer_head *bh,
 820			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
 821{
 822	struct super_block *sb = sdp->sd_vfs;
 823	struct block_device *bdev = sb->s_bdev;
 824	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
 825					   bdev_logical_block_size(sb->s_bdev);
 826	u64 blk;
 827	sector_t start = 0;
 828	sector_t nr_sects = 0;
 829	int rv;
 830	unsigned int x;
 831	u32 trimmed = 0;
 832	u8 diff;
 833
 834	for (x = 0; x < bi->bi_len; x++) {
 835		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
 836		clone += bi->bi_offset;
 837		clone += x;
 838		if (bh) {
 839			const u8 *orig = bh->b_data + bi->bi_offset + x;
 840			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
 841		} else {
 842			diff = ~(*clone | (*clone >> 1));
 843		}
 844		diff &= 0x55;
 845		if (diff == 0)
 846			continue;
 847		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 848		blk *= sects_per_blk; /* convert to sectors */
 849		while(diff) {
 850			if (diff & 1) {
 851				if (nr_sects == 0)
 852					goto start_new_extent;
 853				if ((start + nr_sects) != blk) {
 854					if (nr_sects >= minlen) {
 855						rv = blkdev_issue_discard(bdev,
 856							start, nr_sects,
 857							GFP_NOFS, 0);
 858						if (rv)
 859							goto fail;
 860						trimmed += nr_sects;
 861					}
 862					nr_sects = 0;
 863start_new_extent:
 864					start = blk;
 865				}
 866				nr_sects += sects_per_blk;
 867			}
 868			diff >>= 2;
 869			blk += sects_per_blk;
 870		}
 871	}
 872	if (nr_sects >= minlen) {
 873		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
 874		if (rv)
 875			goto fail;
 876		trimmed += nr_sects;
 877	}
 878	if (ptrimmed)
 879		*ptrimmed = trimmed;
 880	return 0;
 881
 882fail:
 883	if (sdp->sd_args.ar_discard)
 884		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
 885	sdp->sd_args.ar_discard = 0;
 886	return -EIO;
 887}
 888
 889/**
 890 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
 891 * @filp: Any file on the filesystem
 892 * @argp: Pointer to the arguments (also used to pass result)
 893 *
 894 * Returns: 0 on success, otherwise error code
 895 */
 896
 897int gfs2_fitrim(struct file *filp, void __user *argp)
 898{
 899	struct inode *inode = filp->f_dentry->d_inode;
 900	struct gfs2_sbd *sdp = GFS2_SB(inode);
 901	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
 902	struct buffer_head *bh;
 903	struct gfs2_rgrpd *rgd;
 904	struct gfs2_rgrpd *rgd_end;
 905	struct gfs2_holder gh;
 906	struct fstrim_range r;
 907	int ret = 0;
 908	u64 amt;
 909	u64 trimmed = 0;
 
 910	unsigned int x;
 
 911
 912	if (!capable(CAP_SYS_ADMIN))
 913		return -EPERM;
 914
 915	if (!blk_queue_discard(q))
 916		return -EOPNOTSUPP;
 917
 918	if (argp == NULL) {
 919		r.start = 0;
 920		r.len = ULLONG_MAX;
 921		r.minlen = 0;
 922	} else if (copy_from_user(&r, argp, sizeof(r)))
 923		return -EFAULT;
 924
 925	ret = gfs2_rindex_update(sdp);
 926	if (ret)
 927		return ret;
 928
 929	rgd = gfs2_blk2rgrpd(sdp, r.start, 0);
 930	rgd_end = gfs2_blk2rgrpd(sdp, r.start + r.len, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 931
 932	while (1) {
 933
 934		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
 935		if (ret)
 936			goto out;
 937
 938		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
 939			/* Trim each bitmap in the rgrp */
 940			for (x = 0; x < rgd->rd_length; x++) {
 941				struct gfs2_bitmap *bi = rgd->rd_bits + x;
 942				ret = gfs2_rgrp_send_discards(sdp, rgd->rd_data0, NULL, bi, r.minlen, &amt);
 
 
 943				if (ret) {
 944					gfs2_glock_dq_uninit(&gh);
 945					goto out;
 946				}
 947				trimmed += amt;
 948			}
 949
 950			/* Mark rgrp as having been trimmed */
 951			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
 952			if (ret == 0) {
 953				bh = rgd->rd_bits[0].bi_bh;
 954				rgd->rd_flags |= GFS2_RGF_TRIMMED;
 955				gfs2_trans_add_bh(rgd->rd_gl, bh, 1);
 956				gfs2_rgrp_out(rgd, bh->b_data);
 
 957				gfs2_trans_end(sdp);
 958			}
 959		}
 960		gfs2_glock_dq_uninit(&gh);
 961
 962		if (rgd == rgd_end)
 963			break;
 964
 965		rgd = gfs2_rgrpd_get_next(rgd);
 966	}
 967
 968out:
 969	r.len = trimmed << 9;
 970	if (argp && copy_to_user(argp, &r, sizeof(r)))
 971		return -EFAULT;
 972
 973	return ret;
 974}
 975
 976/**
 977 * gfs2_qadata_get - get the struct gfs2_qadata structure for an inode
 978 * @ip: the incore GFS2 inode structure
 979 *
 980 * Returns: the struct gfs2_qadata
 981 */
 982
 983struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip)
 984{
 985	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 986	int error;
 987	BUG_ON(ip->i_qadata != NULL);
 988	ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS);
 989	error = gfs2_rindex_update(sdp);
 990	if (error)
 991		fs_warn(sdp, "rindex update returns %d\n", error);
 992	return ip->i_qadata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993}
 994
 995/**
 996 * gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode
 997 * @ip: the incore GFS2 inode structure
 
 
 998 *
 999 * Returns: the struct gfs2_qadata
1000 */
1001
1002static int gfs2_blkrsv_get(struct gfs2_inode *ip)
 
1003{
1004	BUG_ON(ip->i_res != NULL);
1005	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
1006	if (!ip->i_res)
1007		return -ENOMEM;
1008	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009}
1010
1011/**
1012 * try_rgrp_fit - See if a given reservation will fit in a given RG
1013 * @rgd: the RG data
1014 * @ip: the inode
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015 *
1016 * If there's room for the requested blocks to be allocated from the RG:
 
 
 
 
1017 *
1018 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
1019 */
1020
1021static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip)
 
 
 
1022{
1023	const struct gfs2_blkreserv *rs = ip->i_res;
 
 
 
1024
1025	if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1026		return 0;
1027	if (rgd->rd_free_clone >= rs->rs_requested)
1028		return 1;
1029	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030}
1031
1032static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033{
1034	return (bi->bi_start * GFS2_NBBY) + blk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037/**
1038 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1039 * @rgd: The rgrp
1040 * @last_unlinked: block address of the last dinode we unlinked
1041 * @skip: block address we should explicitly not unlink
1042 *
1043 * Returns: 0 if no error
1044 *          The inode, if one has been found, in inode.
1045 */
1046
1047static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1048{
1049	u32 goal = 0, block;
1050	u64 no_addr;
1051	struct gfs2_sbd *sdp = rgd->rd_sbd;
1052	struct gfs2_glock *gl;
1053	struct gfs2_inode *ip;
1054	int error;
1055	int found = 0;
1056	struct gfs2_bitmap *bi;
1057
1058	while (goal < rgd->rd_data) {
1059		down_write(&sdp->sd_log_flush_lock);
1060		block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi);
 
1061		up_write(&sdp->sd_log_flush_lock);
1062		if (block == BFITNOENT)
 
 
1063			break;
1064
1065		block = gfs2_bi2rgd_blk(bi, block);
1066		/* rgblk_search can return a block < goal, so we need to
1067		   keep it marching forward. */
1068		no_addr = block + rgd->rd_data0;
1069		goal = max(block + 1, goal + 1);
1070		if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
1071			continue;
1072		if (no_addr == skip)
1073			continue;
1074		*last_unlinked = no_addr;
1075
1076		error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
1077		if (error)
1078			continue;
1079
1080		/* If the inode is already in cache, we can ignore it here
1081		 * because the existing inode disposal code will deal with
1082		 * it when all refs have gone away. Accessing gl_object like
1083		 * this is not safe in general. Here it is ok because we do
1084		 * not dereference the pointer, and we only need an approx
1085		 * answer to whether it is NULL or not.
1086		 */
1087		ip = gl->gl_object;
1088
1089		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1090			gfs2_glock_put(gl);
1091		else
1092			found++;
1093
1094		/* Limit reclaim to sensible number of tasks */
1095		if (found > NR_CPUS)
1096			return;
1097	}
1098
1099	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1100	return;
1101}
1102
1103/**
1104 * get_local_rgrp - Choose and lock a rgrp for allocation
1105 * @ip: the inode to reserve space for
1106 * @last_unlinked: the last unlinked block
1107 *
1108 * Try to acquire rgrp in way which avoids contending with others.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109 *
1110 * Returns: errno
1111 */
1112
1113static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
1114{
1115	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1116	struct gfs2_rgrpd *rgd, *begin = NULL;
1117	struct gfs2_blkreserv *rs = ip->i_res;
1118	int error, rg_locked, flags = LM_FLAG_TRY;
1119	int loops = 0;
1120
1121	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal))
1122		rgd = begin = ip->i_rgd;
1123	else
1124		rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1125
1126	if (rgd == NULL)
1127		return -EBADSLT;
1128
1129	while (loops < 3) {
1130		rg_locked = 0;
 
 
1131
1132		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1133			rg_locked = 1;
1134			error = 0;
1135		} else {
1136			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1137						   flags, &rs->rs_rgd_gh);
1138		}
1139		switch (error) {
1140		case 0:
1141			if (try_rgrp_fit(rgd, ip)) {
1142				ip->i_rgd = rgd;
1143				return 0;
1144			}
1145			if (rgd->rd_flags & GFS2_RDF_CHECK)
1146				try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1147			if (!rg_locked)
1148				gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1149			/* fall through */
1150		case GLR_TRYFAILED:
1151			rgd = gfs2_rgrpd_get_next(rgd);
1152			if (rgd == begin) {
1153				flags = 0;
1154				loops++;
1155			}
1156			break;
1157		default:
1158			return error;
1159		}
1160	}
1161
1162	return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
1163}
1164
1165static void gfs2_blkrsv_put(struct gfs2_inode *ip)
 
 
 
 
 
 
1166{
1167	BUG_ON(ip->i_res == NULL);
1168	kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
1169	ip->i_res = NULL;
 
 
 
 
 
 
1170}
1171
1172/**
1173 * gfs2_inplace_reserve - Reserve space in the filesystem
1174 * @ip: the inode to reserve space for
1175 * @requested: the number of blocks to be reserved
1176 *
1177 * Returns: errno
 
 
 
 
 
 
 
 
1178 */
1179
1180int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
1181{
1182	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1183	struct gfs2_blkreserv *rs;
1184	int error;
 
1185	u64 last_unlinked = NO_BLOCK;
1186	int tries = 0;
 
1187
1188	error = gfs2_blkrsv_get(ip);
1189	if (error)
1190		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
1191
1192	rs = ip->i_res;
1193	rs->rs_requested = requested;
1194	if (gfs2_assert_warn(sdp, requested)) {
1195		error = -EINVAL;
1196		goto out;
1197	}
1198
1199	do {
1200		error = get_local_rgrp(ip, &last_unlinked);
1201		if (error != -ENOSPC)
1202			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203		/* Check that fs hasn't grown if writing to rindex */
1204		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1205			error = gfs2_ri_update(ip);
1206			if (error)
1207				break;
1208			continue;
1209		}
1210		/* Flushing the log may release space */
1211		gfs2_log_flush(sdp, NULL);
1212	} while (tries++ < 3);
 
 
1213
1214out:
1215	if (error)
1216		gfs2_blkrsv_put(ip);
1217	return error;
1218}
1219
1220/**
1221 * gfs2_inplace_release - release an inplace reservation
1222 * @ip: the inode the reservation was taken out on
1223 *
1224 * Release a reservation made by gfs2_inplace_reserve().
1225 */
1226
1227void gfs2_inplace_release(struct gfs2_inode *ip)
1228{
1229	struct gfs2_blkreserv *rs = ip->i_res;
1230
1231	if (rs->rs_rgd_gh.gh_gl)
1232		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1233	gfs2_blkrsv_put(ip);
1234}
1235
1236/**
1237 * gfs2_get_block_type - Check a block in a RG is of given type
1238 * @rgd: the resource group holding the block
1239 * @block: the block number
1240 *
1241 * Returns: The block type (GFS2_BLKST_*)
1242 */
1243
1244static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1245{
1246	struct gfs2_bitmap *bi = NULL;
1247	u32 length, rgrp_block, buf_block;
1248	unsigned int buf;
1249	unsigned char type;
1250
1251	length = rgd->rd_length;
1252	rgrp_block = block - rgd->rd_data0;
1253
1254	for (buf = 0; buf < length; buf++) {
1255		bi = rgd->rd_bits + buf;
1256		if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1257			break;
1258	}
1259
1260	gfs2_assert(rgd->rd_sbd, buf < length);
1261	buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1262
1263	type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1264			   bi->bi_len, buf_block);
1265
1266	return type;
1267}
1268
1269/**
1270 * rgblk_search - find a block in @state
1271 * @rgd: the resource group descriptor
1272 * @goal: the goal block within the RG (start here to search for avail block)
1273 * @state: GFS2_BLKST_XXX the before-allocation state to find
1274 * @rbi: address of the pointer to the bitmap containing the block found
1275 *
1276 * Walk rgrp's bitmap to find bits that represent a block in @state.
1277 *
1278 * This function never fails, because we wouldn't call it unless we
1279 * know (from reservation results, etc.) that a block is available.
1280 *
1281 * Scope of @goal is just within rgrp, not the whole filesystem.
1282 * Scope of @returned block is just within bitmap, not the whole filesystem.
1283 *
1284 * Returns: the block number found relative to the bitmap rbi
1285 */
1286
1287static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, unsigned char state,
1288			struct gfs2_bitmap **rbi)
1289{
1290	struct gfs2_bitmap *bi = NULL;
1291	const u32 length = rgd->rd_length;
1292	u32 biblk = BFITNOENT;
1293	unsigned int buf, x;
1294	const u8 *buffer = NULL;
1295
1296	*rbi = NULL;
1297	/* Find bitmap block that contains bits for goal block */
1298	for (buf = 0; buf < length; buf++) {
1299		bi = rgd->rd_bits + buf;
1300		/* Convert scope of "goal" from rgrp-wide to within found bit block */
1301		if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1302			goal -= bi->bi_start * GFS2_NBBY;
1303			goto do_search;
1304		}
1305	}
1306	buf = 0;
1307	goal = 0;
1308
1309do_search:
1310	/* Search (up to entire) bitmap in this rgrp for allocatable block.
1311	   "x <= length", instead of "x < length", because we typically start
1312	   the search in the middle of a bit block, but if we can't find an
1313	   allocatable block anywhere else, we want to be able wrap around and
1314	   search in the first part of our first-searched bit block.  */
1315	for (x = 0; x <= length; x++) {
1316		bi = rgd->rd_bits + buf;
1317
1318		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1319		    (state == GFS2_BLKST_FREE))
1320			goto skip;
1321
1322		/* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1323		   bitmaps, so we must search the originals for that. */
1324		buffer = bi->bi_bh->b_data + bi->bi_offset;
1325		WARN_ON(!buffer_uptodate(bi->bi_bh));
1326		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1327			buffer = bi->bi_clone + bi->bi_offset;
1328
1329		biblk = gfs2_bitfit(buffer, bi->bi_len, goal, state);
1330		if (biblk != BFITNOENT)
1331			break;
1332
1333		if ((goal == 0) && (state == GFS2_BLKST_FREE))
1334			set_bit(GBF_FULL, &bi->bi_flags);
1335
1336		/* Try next bitmap block (wrap back to rgrp header if at end) */
1337skip:
1338		buf++;
1339		buf %= length;
1340		goal = 0;
1341	}
1342
1343	if (biblk != BFITNOENT)
1344		*rbi = bi;
1345
1346	return biblk;
1347}
1348
1349/**
1350 * gfs2_alloc_extent - allocate an extent from a given bitmap
1351 * @rgd: the resource group descriptor
1352 * @bi: the bitmap within the rgrp
1353 * @blk: the block within the bitmap
1354 * @dinode: TRUE if the first block we allocate is for a dinode
1355 * @n: The extent length
1356 *
1357 * Add the found bitmap buffer to the transaction.
1358 * Set the found bits to @new_state to change block's allocation state.
1359 * Returns: starting block number of the extent (fs scope)
1360 */
1361static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi,
1362			     u32 blk, bool dinode, unsigned int *n)
1363{
 
1364	const unsigned int elen = *n;
1365	u32 goal;
1366	const u8 *buffer = NULL;
1367
1368	*n = 0;
1369	buffer = bi->bi_bh->b_data + bi->bi_offset;
1370	gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1371	gfs2_setbit(rgd, bi->bi_clone, bi, blk,
1372		    dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1373	(*n)++;
1374	goal = blk;
1375	while (*n < elen) {
1376		goal++;
1377		if (goal >= (bi->bi_len * GFS2_NBBY))
1378			break;
1379		if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1380		    GFS2_BLKST_FREE)
1381			break;
1382		gfs2_setbit(rgd, bi->bi_clone, bi, goal, GFS2_BLKST_USED);
1383		(*n)++;
 
1384	}
1385	blk = gfs2_bi2rgd_blk(bi, blk);
1386	rgd->rd_last_alloc = blk + *n - 1;
1387	return rgd->rd_data0 + blk;
1388}
1389
1390/**
1391 * rgblk_free - Change alloc state of given block(s)
1392 * @sdp: the filesystem
1393 * @bstart: the start of a run of blocks to free
1394 * @blen: the length of the block run (all must lie within ONE RG!)
1395 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1396 *
1397 * Returns:  Resource group containing the block(s)
1398 */
1399
1400static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1401				     u32 blen, unsigned char new_state)
1402{
1403	struct gfs2_rgrpd *rgd;
1404	struct gfs2_bitmap *bi = NULL;
1405	u32 length, rgrp_blk, buf_blk;
1406	unsigned int buf;
1407
1408	rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1409	if (!rgd) {
1410		if (gfs2_consist(sdp))
1411			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1412		return NULL;
1413	}
1414
1415	length = rgd->rd_length;
1416
1417	rgrp_blk = bstart - rgd->rd_data0;
1418
1419	while (blen--) {
1420		for (buf = 0; buf < length; buf++) {
1421			bi = rgd->rd_bits + buf;
1422			if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1423				break;
1424		}
1425
1426		gfs2_assert(rgd->rd_sbd, buf < length);
1427
1428		buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1429		rgrp_blk++;
1430
1431		if (!bi->bi_clone) {
1432			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1433					       GFP_NOFS | __GFP_NOFAIL);
1434			memcpy(bi->bi_clone + bi->bi_offset,
1435			       bi->bi_bh->b_data + bi->bi_offset,
1436			       bi->bi_len);
1437		}
1438		gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1439		gfs2_setbit(rgd, NULL, bi, buf_blk, new_state);
1440	}
1441
1442	return rgd;
1443}
1444
1445/**
1446 * gfs2_rgrp_dump - print out an rgrp
1447 * @seq: The iterator
1448 * @gl: The glock in question
1449 *
1450 */
1451
1452int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
1453{
1454	const struct gfs2_rgrpd *rgd = gl->gl_object;
 
 
 
1455	if (rgd == NULL)
1456		return 0;
1457	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
1458		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1459		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1460	return 0;
 
 
 
 
 
 
1461}
1462
1463static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1464{
1465	struct gfs2_sbd *sdp = rgd->rd_sbd;
1466	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1467		(unsigned long long)rgd->rd_addr);
1468	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1469	gfs2_rgrp_dump(NULL, rgd->rd_gl);
1470	rgd->rd_flags |= GFS2_RDF_ERROR;
1471}
1472
1473/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
1475 * @ip: the inode to allocate the block for
1476 * @bn: Used to return the starting block number
1477 * @ndata: requested number of blocks/extent length (value/result)
1478 * @dinode: 1 if we're allocating a dinode block, else 0
1479 * @generation: the generation number of the inode
1480 *
1481 * Returns: 0 or error
1482 */
1483
1484int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
1485		      bool dinode, u64 *generation)
1486{
1487	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1488	struct buffer_head *dibh;
1489	struct gfs2_rgrpd *rgd;
1490	unsigned int ndata;
1491	u32 goal, blk; /* block, within the rgrp scope */
1492	u64 block; /* block, within the file system scope */
1493	int error;
1494	struct gfs2_bitmap *bi;
1495
1496	/* Only happens if there is a bug in gfs2, return something distinctive
1497	 * to ensure that it is noticed.
1498	 */
1499	if (ip->i_res == NULL)
1500		return -ECANCELED;
1501
1502	rgd = ip->i_rgd;
 
1503
1504	if (!dinode && rgrp_contains_block(rgd, ip->i_goal))
1505		goal = ip->i_goal - rgd->rd_data0;
1506	else
1507		goal = rgd->rd_last_alloc;
1508
1509	blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi);
1510
1511	/* Since all blocks are reserved in advance, this shouldn't happen */
1512	if (blk == BFITNOENT)
 
 
 
 
1513		goto rgrp_error;
 
1514
1515	block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks);
 
 
 
 
1516	ndata = *nblocks;
1517	if (dinode)
1518		ndata--;
1519
1520	if (!dinode) {
1521		ip->i_goal = block + ndata - 1;
1522		error = gfs2_meta_inode_buffer(ip, &dibh);
1523		if (error == 0) {
1524			struct gfs2_dinode *di =
1525				(struct gfs2_dinode *)dibh->b_data;
1526			gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1527			di->di_goal_meta = di->di_goal_data =
1528				cpu_to_be64(ip->i_goal);
1529			brelse(dibh);
1530		}
1531	}
1532	if (rgd->rd_free < *nblocks)
 
1533		goto rgrp_error;
 
1534
1535	rgd->rd_free -= *nblocks;
1536	if (dinode) {
1537		rgd->rd_dinodes++;
1538		*generation = rgd->rd_igeneration++;
1539		if (*generation == 0)
1540			*generation = rgd->rd_igeneration++;
1541	}
1542
1543	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1544	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1545
1546	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
1547	if (dinode)
1548		gfs2_trans_add_unrevoke(sdp, block, 1);
1549
1550	/*
1551	 * This needs reviewing to see why we cannot do the quota change
1552	 * at this point in the dinode case.
1553	 */
1554	if (ndata)
1555		gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
1556				  ip->i_inode.i_gid);
1557
1558	rgd->rd_free_clone -= *nblocks;
1559	trace_gfs2_block_alloc(ip, rgd, block, *nblocks,
1560			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1561	*bn = block;
1562	return 0;
1563
1564rgrp_error:
1565	gfs2_rgrp_error(rgd);
1566	return -EIO;
1567}
1568
1569/**
1570 * __gfs2_free_blocks - free a contiguous run of block(s)
1571 * @ip: the inode these blocks are being freed from
1572 * @bstart: first block of a run of contiguous blocks
1573 * @blen: the length of the block run
1574 * @meta: 1 if the blocks represent metadata
1575 *
1576 */
1577
1578void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
1579{
1580	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1581	struct gfs2_rgrpd *rgd;
1582
1583	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1584	if (!rgd)
1585		return;
1586	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
1587	rgd->rd_free += blen;
1588	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
1589	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1590	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1591
1592	/* Directories keep their data in the metadata address space */
1593	if (meta || ip->i_depth)
1594		gfs2_meta_wipe(ip, bstart, blen);
1595}
1596
1597/**
1598 * gfs2_free_meta - free a contiguous run of data block(s)
1599 * @ip: the inode these blocks are being freed from
1600 * @bstart: first block of a run of contiguous blocks
1601 * @blen: the length of the block run
1602 *
1603 */
1604
1605void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
1606{
1607	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1608
1609	__gfs2_free_blocks(ip, bstart, blen, 1);
1610	gfs2_statfs_change(sdp, 0, +blen, 0);
1611	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1612}
1613
1614void gfs2_unlink_di(struct inode *inode)
1615{
1616	struct gfs2_inode *ip = GFS2_I(inode);
1617	struct gfs2_sbd *sdp = GFS2_SB(inode);
1618	struct gfs2_rgrpd *rgd;
1619	u64 blkno = ip->i_no_addr;
1620
1621	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1622	if (!rgd)
1623		return;
1624	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
1625	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1626	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
 
1627}
1628
1629static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1630{
1631	struct gfs2_sbd *sdp = rgd->rd_sbd;
1632	struct gfs2_rgrpd *tmp_rgd;
1633
1634	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1635	if (!tmp_rgd)
1636		return;
1637	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1638
1639	if (!rgd->rd_dinodes)
1640		gfs2_consist_rgrpd(rgd);
1641	rgd->rd_dinodes--;
1642	rgd->rd_free++;
1643
1644	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1645	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
 
1646
1647	gfs2_statfs_change(sdp, 0, +1, -1);
1648}
1649
1650
1651void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1652{
1653	gfs2_free_uninit_di(rgd, ip->i_no_addr);
1654	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1655	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1656	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1657}
1658
1659/**
1660 * gfs2_check_blk_type - Check the type of a block
1661 * @sdp: The superblock
1662 * @no_addr: The block number to check
1663 * @type: The block type we are looking for
1664 *
1665 * Returns: 0 if the block type matches the expected type
1666 *          -ESTALE if it doesn't match
1667 *          or -ve errno if something went wrong while checking
1668 */
1669
1670int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1671{
1672	struct gfs2_rgrpd *rgd;
1673	struct gfs2_holder rgd_gh;
1674	int error = -EINVAL;
1675
1676	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
1677	if (!rgd)
1678		goto fail;
1679
1680	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1681	if (error)
1682		goto fail;
1683
1684	if (gfs2_get_block_type(rgd, no_addr) != type)
1685		error = -ESTALE;
1686
1687	gfs2_glock_dq_uninit(&rgd_gh);
1688fail:
1689	return error;
1690}
1691
1692/**
1693 * gfs2_rlist_add - add a RG to a list of RGs
1694 * @ip: the inode
1695 * @rlist: the list of resource groups
1696 * @block: the block
1697 *
1698 * Figure out what RG a block belongs to and add that RG to the list
1699 *
1700 * FIXME: Don't use NOFAIL
1701 *
1702 */
1703
1704void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
1705		    u64 block)
1706{
1707	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1708	struct gfs2_rgrpd *rgd;
1709	struct gfs2_rgrpd **tmp;
1710	unsigned int new_space;
1711	unsigned int x;
1712
1713	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1714		return;
1715
1716	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
1717		rgd = ip->i_rgd;
1718	else
1719		rgd = gfs2_blk2rgrpd(sdp, block, 1);
1720	if (!rgd) {
1721		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
1722		return;
1723	}
1724	ip->i_rgd = rgd;
1725
1726	for (x = 0; x < rlist->rl_rgrps; x++)
1727		if (rlist->rl_rgd[x] == rgd)
1728			return;
1729
1730	if (rlist->rl_rgrps == rlist->rl_space) {
1731		new_space = rlist->rl_space + 10;
1732
1733		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1734			      GFP_NOFS | __GFP_NOFAIL);
1735
1736		if (rlist->rl_rgd) {
1737			memcpy(tmp, rlist->rl_rgd,
1738			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1739			kfree(rlist->rl_rgd);
1740		}
1741
1742		rlist->rl_space = new_space;
1743		rlist->rl_rgd = tmp;
1744	}
1745
1746	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1747}
1748
1749/**
1750 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1751 *      and initialize an array of glock holders for them
1752 * @rlist: the list of resource groups
1753 * @state: the lock state to acquire the RG lock in
1754 *
1755 * FIXME: Don't use NOFAIL
1756 *
1757 */
1758
1759void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1760{
1761	unsigned int x;
1762
1763	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1764				GFP_NOFS | __GFP_NOFAIL);
1765	for (x = 0; x < rlist->rl_rgrps; x++)
1766		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1767				state, 0,
1768				&rlist->rl_ghs[x]);
1769}
1770
1771/**
1772 * gfs2_rlist_free - free a resource group list
1773 * @list: the list of resource groups
1774 *
1775 */
1776
1777void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1778{
1779	unsigned int x;
1780
1781	kfree(rlist->rl_rgd);
1782
1783	if (rlist->rl_ghs) {
1784		for (x = 0; x < rlist->rl_rgrps; x++)
1785			gfs2_holder_uninit(&rlist->rl_ghs[x]);
1786		kfree(rlist->rl_ghs);
 
1787	}
1788}
1789
v4.17
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/slab.h>
  13#include <linux/spinlock.h>
  14#include <linux/completion.h>
  15#include <linux/buffer_head.h>
  16#include <linux/fs.h>
  17#include <linux/gfs2_ondisk.h>
  18#include <linux/prefetch.h>
  19#include <linux/blkdev.h>
  20#include <linux/rbtree.h>
  21#include <linux/random.h>
  22
  23#include "gfs2.h"
  24#include "incore.h"
  25#include "glock.h"
  26#include "glops.h"
  27#include "lops.h"
  28#include "meta_io.h"
  29#include "quota.h"
  30#include "rgrp.h"
  31#include "super.h"
  32#include "trans.h"
  33#include "util.h"
  34#include "log.h"
  35#include "inode.h"
  36#include "trace_gfs2.h"
  37#include "dir.h"
  38
  39#define BFITNOENT ((u32)~0)
  40#define NO_BLOCK ((u64)~0)
  41
  42#if BITS_PER_LONG == 32
  43#define LBITMASK   (0x55555555UL)
  44#define LBITSKIP55 (0x55555555UL)
  45#define LBITSKIP00 (0x00000000UL)
  46#else
  47#define LBITMASK   (0x5555555555555555UL)
  48#define LBITSKIP55 (0x5555555555555555UL)
  49#define LBITSKIP00 (0x0000000000000000UL)
  50#endif
  51
  52/*
  53 * These routines are used by the resource group routines (rgrp.c)
  54 * to keep track of block allocation.  Each block is represented by two
  55 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  56 *
  57 * 0 = Free
  58 * 1 = Used (not metadata)
  59 * 2 = Unlinked (still in use) inode
  60 * 3 = Used (metadata)
  61 */
  62
  63struct gfs2_extent {
  64	struct gfs2_rbm rbm;
  65	u32 len;
  66};
  67
  68static const char valid_change[16] = {
  69	        /* current */
  70	/* n */ 0, 1, 1, 1,
  71	/* e */ 1, 0, 0, 0,
  72	/* w */ 0, 0, 0, 1,
  73	        1, 0, 0, 0
  74};
  75
  76static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  77			 const struct gfs2_inode *ip, bool nowrap);
  78
  79
  80/**
  81 * gfs2_setbit - Set a bit in the bitmaps
  82 * @rbm: The position of the bit to set
  83 * @do_clone: Also set the clone bitmap, if it exists
 
 
  84 * @new_state: the new state of the block
  85 *
  86 */
  87
  88static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
 
  89			       unsigned char new_state)
  90{
  91	unsigned char *byte1, *byte2, *end, cur_state;
  92	struct gfs2_bitmap *bi = rbm_bi(rbm);
  93	unsigned int buflen = bi->bi_len;
  94	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  95
  96	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
  97	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  98
  99	BUG_ON(byte1 >= end);
 100
 101	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
 102
 103	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 104		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
 105			rbm->offset, cur_state, new_state);
 106		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
 107			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
 108		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
 109			bi->bi_offset, bi->bi_len);
 
 
 
 110		dump_stack();
 111		gfs2_consist_rgrpd(rbm->rgd);
 112		return;
 113	}
 114	*byte1 ^= (cur_state ^ new_state) << bit;
 115
 116	if (do_clone && bi->bi_clone) {
 117		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 118		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 119		*byte2 ^= (cur_state ^ new_state) << bit;
 120	}
 121}
 122
 123/**
 124 * gfs2_testbit - test a bit in the bitmaps
 125 * @rbm: The bit to test
 
 
 
 126 *
 127 * Returns: The two bit block state of the requested bit
 128 */
 129
 130static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
 
 
 131{
 132	struct gfs2_bitmap *bi = rbm_bi(rbm);
 133	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
 134	const u8 *byte;
 135	unsigned int bit;
 136
 137	byte = buffer + (rbm->offset / GFS2_NBBY);
 138	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 
 
 
 139
 140	return (*byte >> bit) & GFS2_BIT_MASK;
 
 
 141}
 142
 143/**
 144 * gfs2_bit_search
 145 * @ptr: Pointer to bitmap data
 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 147 * @state: The state we are searching for
 148 *
 149 * We xor the bitmap data with a patter which is the bitwise opposite
 150 * of what we are looking for, this gives rise to a pattern of ones
 151 * wherever there is a match. Since we have two bits per entry, we
 152 * take this pattern, shift it down by one place and then and it with
 153 * the original. All the even bit positions (0,2,4, etc) then represent
 154 * successful matches, so we mask with 0x55555..... to remove the unwanted
 155 * odd bit positions.
 156 *
 157 * This allows searching of a whole u64 at once (32 blocks) with a
 158 * single test (on 64 bit arches).
 159 */
 160
 161static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 162{
 163	u64 tmp;
 164	static const u64 search[] = {
 165		[0] = 0xffffffffffffffffULL,
 166		[1] = 0xaaaaaaaaaaaaaaaaULL,
 167		[2] = 0x5555555555555555ULL,
 168		[3] = 0x0000000000000000ULL,
 169	};
 170	tmp = le64_to_cpu(*ptr) ^ search[state];
 171	tmp &= (tmp >> 1);
 172	tmp &= mask;
 173	return tmp;
 174}
 175
 176/**
 177 * rs_cmp - multi-block reservation range compare
 178 * @blk: absolute file system block number of the new reservation
 179 * @len: number of blocks in the new reservation
 180 * @rs: existing reservation to compare against
 181 *
 182 * returns: 1 if the block range is beyond the reach of the reservation
 183 *         -1 if the block range is before the start of the reservation
 184 *          0 if the block range overlaps with the reservation
 185 */
 186static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 187{
 188	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 189
 190	if (blk >= startblk + rs->rs_free)
 191		return 1;
 192	if (blk + len - 1 < startblk)
 193		return -1;
 194	return 0;
 195}
 196
 197/**
 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 199 *       a block in a given allocation state.
 200 * @buf: the buffer that holds the bitmaps
 201 * @len: the length (in bytes) of the buffer
 202 * @goal: start search at this block's bit-pair (within @buffer)
 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 204 *
 205 * Scope of @goal and returned block number is only within this bitmap buffer,
 206 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 207 * beginning of a bitmap block buffer, skipping any header structures, but
 208 * headers are always a multiple of 64 bits long so that the buffer is
 209 * always aligned to a 64 bit boundary.
 210 *
 211 * The size of the buffer is in bytes, but is it assumed that it is
 212 * always ok to read a complete multiple of 64 bits at the end
 213 * of the block in case the end is no aligned to a natural boundary.
 214 *
 215 * Return: the block number (bitmap buffer scope) that was found
 216 */
 217
 218static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 219		       u32 goal, u8 state)
 220{
 221	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 222	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 223	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 224	u64 tmp;
 225	u64 mask = 0x5555555555555555ULL;
 226	u32 bit;
 227
 
 
 228	/* Mask off bits we don't care about at the start of the search */
 229	mask <<= spoint;
 230	tmp = gfs2_bit_search(ptr, mask, state);
 231	ptr++;
 232	while(tmp == 0 && ptr < end) {
 233		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 234		ptr++;
 235	}
 236	/* Mask off any bits which are more than len bytes from the start */
 237	if (ptr == end && (len & (sizeof(u64) - 1)))
 238		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 239	/* Didn't find anything, so return */
 240	if (tmp == 0)
 241		return BFITNOENT;
 242	ptr--;
 243	bit = __ffs64(tmp);
 244	bit /= 2;	/* two bits per entry in the bitmap */
 245	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 246}
 247
 248/**
 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 250 * @rbm: The rbm with rgd already set correctly
 251 * @block: The block number (filesystem relative)
 252 *
 253 * This sets the bi and offset members of an rbm based on a
 254 * resource group and a filesystem relative block number. The
 255 * resource group must be set in the rbm on entry, the bi and
 256 * offset members will be set by this function.
 257 *
 258 * Returns: 0 on success, or an error code
 259 */
 260
 261static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 262{
 263	u64 rblock = block - rbm->rgd->rd_data0;
 264
 265	if (WARN_ON_ONCE(rblock > UINT_MAX))
 266		return -EINVAL;
 267	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
 268		return -E2BIG;
 269
 270	rbm->bii = 0;
 271	rbm->offset = (u32)(rblock);
 272	/* Check if the block is within the first block */
 273	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 274		return 0;
 275
 276	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 277	rbm->offset += (sizeof(struct gfs2_rgrp) -
 278			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 279	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 280	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 281	return 0;
 282}
 283
 284/**
 285 * gfs2_rbm_incr - increment an rbm structure
 286 * @rbm: The rbm with rgd already set correctly
 287 *
 288 * This function takes an existing rbm structure and increments it to the next
 289 * viable block offset.
 290 *
 291 * Returns: If incrementing the offset would cause the rbm to go past the
 292 *          end of the rgrp, true is returned, otherwise false.
 293 *
 294 */
 295
 296static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
 297{
 298	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
 299		rbm->offset++;
 300		return false;
 301	}
 302	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
 303		return true;
 304
 305	rbm->offset = 0;
 306	rbm->bii++;
 307	return false;
 308}
 309
 310/**
 311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 312 * @rbm: Position to search (value/result)
 313 * @n_unaligned: Number of unaligned blocks to check
 314 * @len: Decremented for each block found (terminate on zero)
 315 *
 316 * Returns: true if a non-free block is encountered
 317 */
 318
 319static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 320{
 321	u32 n;
 322	u8 res;
 323
 324	for (n = 0; n < n_unaligned; n++) {
 325		res = gfs2_testbit(rbm);
 326		if (res != GFS2_BLKST_FREE)
 327			return true;
 328		(*len)--;
 329		if (*len == 0)
 330			return true;
 331		if (gfs2_rbm_incr(rbm))
 332			return true;
 333	}
 334
 335	return false;
 336}
 337
 338/**
 339 * gfs2_free_extlen - Return extent length of free blocks
 340 * @rrbm: Starting position
 341 * @len: Max length to check
 342 *
 343 * Starting at the block specified by the rbm, see how many free blocks
 344 * there are, not reading more than len blocks ahead. This can be done
 345 * using memchr_inv when the blocks are byte aligned, but has to be done
 346 * on a block by block basis in case of unaligned blocks. Also this
 347 * function can cope with bitmap boundaries (although it must stop on
 348 * a resource group boundary)
 349 *
 350 * Returns: Number of free blocks in the extent
 351 */
 352
 353static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 354{
 355	struct gfs2_rbm rbm = *rrbm;
 356	u32 n_unaligned = rbm.offset & 3;
 357	u32 size = len;
 358	u32 bytes;
 359	u32 chunk_size;
 360	u8 *ptr, *start, *end;
 361	u64 block;
 362	struct gfs2_bitmap *bi;
 363
 364	if (n_unaligned &&
 365	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 366		goto out;
 367
 368	n_unaligned = len & 3;
 369	/* Start is now byte aligned */
 370	while (len > 3) {
 371		bi = rbm_bi(&rbm);
 372		start = bi->bi_bh->b_data;
 373		if (bi->bi_clone)
 374			start = bi->bi_clone;
 375		end = start + bi->bi_bh->b_size;
 376		start += bi->bi_offset;
 377		BUG_ON(rbm.offset & 3);
 378		start += (rbm.offset / GFS2_NBBY);
 379		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 380		ptr = memchr_inv(start, 0, bytes);
 381		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 382		chunk_size *= GFS2_NBBY;
 383		BUG_ON(len < chunk_size);
 384		len -= chunk_size;
 385		block = gfs2_rbm_to_block(&rbm);
 386		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 387			n_unaligned = 0;
 388			break;
 389		}
 390		if (ptr) {
 391			n_unaligned = 3;
 392			break;
 393		}
 394		n_unaligned = len & 3;
 395	}
 396
 397	/* Deal with any bits left over at the end */
 398	if (n_unaligned)
 399		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 400out:
 401	return size - len;
 402}
 403
 404/**
 405 * gfs2_bitcount - count the number of bits in a certain state
 406 * @rgd: the resource group descriptor
 407 * @buffer: the buffer that holds the bitmaps
 408 * @buflen: the length (in bytes) of the buffer
 409 * @state: the state of the block we're looking for
 410 *
 411 * Returns: The number of bits
 412 */
 413
 414static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 415			 unsigned int buflen, u8 state)
 416{
 417	const u8 *byte = buffer;
 418	const u8 *end = buffer + buflen;
 419	const u8 state1 = state << 2;
 420	const u8 state2 = state << 4;
 421	const u8 state3 = state << 6;
 422	u32 count = 0;
 423
 424	for (; byte < end; byte++) {
 425		if (((*byte) & 0x03) == state)
 426			count++;
 427		if (((*byte) & 0x0C) == state1)
 428			count++;
 429		if (((*byte) & 0x30) == state2)
 430			count++;
 431		if (((*byte) & 0xC0) == state3)
 432			count++;
 433	}
 434
 435	return count;
 436}
 437
 438/**
 439 * gfs2_rgrp_verify - Verify that a resource group is consistent
 440 * @rgd: the rgrp
 441 *
 442 */
 443
 444void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 445{
 446	struct gfs2_sbd *sdp = rgd->rd_sbd;
 447	struct gfs2_bitmap *bi = NULL;
 448	u32 length = rgd->rd_length;
 449	u32 count[4], tmp;
 450	int buf, x;
 451
 452	memset(count, 0, 4 * sizeof(u32));
 453
 454	/* Count # blocks in each of 4 possible allocation states */
 455	for (buf = 0; buf < length; buf++) {
 456		bi = rgd->rd_bits + buf;
 457		for (x = 0; x < 4; x++)
 458			count[x] += gfs2_bitcount(rgd,
 459						  bi->bi_bh->b_data +
 460						  bi->bi_offset,
 461						  bi->bi_len, x);
 462	}
 463
 464	if (count[0] != rgd->rd_free) {
 465		if (gfs2_consist_rgrpd(rgd))
 466			fs_err(sdp, "free data mismatch:  %u != %u\n",
 467			       count[0], rgd->rd_free);
 468		return;
 469	}
 470
 471	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 472	if (count[1] != tmp) {
 473		if (gfs2_consist_rgrpd(rgd))
 474			fs_err(sdp, "used data mismatch:  %u != %u\n",
 475			       count[1], tmp);
 476		return;
 477	}
 478
 479	if (count[2] + count[3] != rgd->rd_dinodes) {
 480		if (gfs2_consist_rgrpd(rgd))
 481			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 482			       count[2] + count[3], rgd->rd_dinodes);
 483		return;
 484	}
 485}
 486
 
 
 
 
 
 
 
 487/**
 488 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 489 * @sdp: The GFS2 superblock
 490 * @blk: The data block number
 491 * @exact: True if this needs to be an exact match
 492 *
 493 * The @exact argument should be set to true by most callers. The exception
 494 * is when we need to match blocks which are not represented by the rgrp
 495 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
 496 * there for alignment purposes. Another way of looking at it is that @exact
 497 * matches only valid data/metadata blocks, but with @exact false, it will
 498 * match any block within the extent of the rgrp.
 499 *
 500 * Returns: The resource group, or NULL if not found
 501 */
 502
 503struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 504{
 505	struct rb_node *n, *next;
 506	struct gfs2_rgrpd *cur;
 507
 508	spin_lock(&sdp->sd_rindex_spin);
 509	n = sdp->sd_rindex_tree.rb_node;
 510	while (n) {
 511		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 512		next = NULL;
 513		if (blk < cur->rd_addr)
 514			next = n->rb_left;
 515		else if (blk >= cur->rd_data0 + cur->rd_data)
 516			next = n->rb_right;
 517		if (next == NULL) {
 518			spin_unlock(&sdp->sd_rindex_spin);
 519			if (exact) {
 520				if (blk < cur->rd_addr)
 521					return NULL;
 522				if (blk >= cur->rd_data0 + cur->rd_data)
 523					return NULL;
 524			}
 525			return cur;
 526		}
 527		n = next;
 528	}
 529	spin_unlock(&sdp->sd_rindex_spin);
 530
 531	return NULL;
 532}
 533
 534/**
 535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 536 * @sdp: The GFS2 superblock
 537 *
 538 * Returns: The first rgrp in the filesystem
 539 */
 540
 541struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 542{
 543	const struct rb_node *n;
 544	struct gfs2_rgrpd *rgd;
 545
 546	spin_lock(&sdp->sd_rindex_spin);
 547	n = rb_first(&sdp->sd_rindex_tree);
 548	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 549	spin_unlock(&sdp->sd_rindex_spin);
 550
 551	return rgd;
 552}
 553
 554/**
 555 * gfs2_rgrpd_get_next - get the next RG
 556 * @rgd: the resource group descriptor
 557 *
 558 * Returns: The next rgrp
 559 */
 560
 561struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 562{
 563	struct gfs2_sbd *sdp = rgd->rd_sbd;
 564	const struct rb_node *n;
 565
 566	spin_lock(&sdp->sd_rindex_spin);
 567	n = rb_next(&rgd->rd_node);
 568	if (n == NULL)
 569		n = rb_first(&sdp->sd_rindex_tree);
 570
 571	if (unlikely(&rgd->rd_node == n)) {
 572		spin_unlock(&sdp->sd_rindex_spin);
 573		return NULL;
 574	}
 575	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 576	spin_unlock(&sdp->sd_rindex_spin);
 577	return rgd;
 578}
 579
 580void check_and_update_goal(struct gfs2_inode *ip)
 581{
 582	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 583	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 584		ip->i_goal = ip->i_no_addr;
 585}
 586
 587void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 588{
 589	int x;
 590
 591	for (x = 0; x < rgd->rd_length; x++) {
 592		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 593		kfree(bi->bi_clone);
 594		bi->bi_clone = NULL;
 595	}
 596}
 597
 598/**
 599 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
 600 *                 plus a quota allocations data structure, if necessary
 601 * @ip: the inode for this reservation
 602 */
 603int gfs2_rsqa_alloc(struct gfs2_inode *ip)
 604{
 605	return gfs2_qa_alloc(ip);
 606}
 607
 608static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
 609{
 610	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
 611		       (unsigned long long)rs->rs_inum,
 612		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 613		       rs->rs_rbm.offset, rs->rs_free);
 614}
 615
 616/**
 617 * __rs_deltree - remove a multi-block reservation from the rgd tree
 618 * @rs: The reservation to remove
 619 *
 620 */
 621static void __rs_deltree(struct gfs2_blkreserv *rs)
 622{
 623	struct gfs2_rgrpd *rgd;
 624
 625	if (!gfs2_rs_active(rs))
 626		return;
 627
 628	rgd = rs->rs_rbm.rgd;
 629	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 630	rb_erase(&rs->rs_node, &rgd->rd_rstree);
 631	RB_CLEAR_NODE(&rs->rs_node);
 632
 633	if (rs->rs_free) {
 634		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
 635
 636		/* return reserved blocks to the rgrp */
 637		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 638		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 639		/* The rgrp extent failure point is likely not to increase;
 640		   it will only do so if the freed blocks are somehow
 641		   contiguous with a span of free blocks that follows. Still,
 642		   it will force the number to be recalculated later. */
 643		rgd->rd_extfail_pt += rs->rs_free;
 644		rs->rs_free = 0;
 645		clear_bit(GBF_FULL, &bi->bi_flags);
 646	}
 647}
 648
 649/**
 650 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 651 * @rs: The reservation to remove
 652 *
 653 */
 654void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 655{
 656	struct gfs2_rgrpd *rgd;
 657
 658	rgd = rs->rs_rbm.rgd;
 659	if (rgd) {
 660		spin_lock(&rgd->rd_rsspin);
 661		__rs_deltree(rs);
 662		BUG_ON(rs->rs_free);
 663		spin_unlock(&rgd->rd_rsspin);
 664	}
 665}
 666
 667/**
 668 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
 669 * @ip: The inode for this reservation
 670 * @wcount: The inode's write count, or NULL
 671 *
 672 */
 673void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
 674{
 675	down_write(&ip->i_rw_mutex);
 676	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
 677		gfs2_rs_deltree(&ip->i_res);
 678	up_write(&ip->i_rw_mutex);
 679	gfs2_qa_delete(ip, wcount);
 680}
 681
 682/**
 683 * return_all_reservations - return all reserved blocks back to the rgrp.
 684 * @rgd: the rgrp that needs its space back
 685 *
 686 * We previously reserved a bunch of blocks for allocation. Now we need to
 687 * give them back. This leave the reservation structures in tact, but removes
 688 * all of their corresponding "no-fly zones".
 689 */
 690static void return_all_reservations(struct gfs2_rgrpd *rgd)
 691{
 692	struct rb_node *n;
 693	struct gfs2_blkreserv *rs;
 694
 695	spin_lock(&rgd->rd_rsspin);
 696	while ((n = rb_first(&rgd->rd_rstree))) {
 697		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 698		__rs_deltree(rs);
 699	}
 700	spin_unlock(&rgd->rd_rsspin);
 701}
 702
 703void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 704{
 705	struct rb_node *n;
 706	struct gfs2_rgrpd *rgd;
 707	struct gfs2_glock *gl;
 708
 709	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 710		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 711		gl = rgd->rd_gl;
 712
 713		rb_erase(n, &sdp->sd_rindex_tree);
 714
 715		if (gl) {
 716			glock_clear_object(gl, rgd);
 
 
 
 717			gfs2_glock_put(gl);
 718		}
 719
 720		gfs2_free_clones(rgd);
 721		kfree(rgd->rd_bits);
 722		rgd->rd_bits = NULL;
 723		return_all_reservations(rgd);
 724		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 725	}
 726}
 727
 728static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 729{
 730	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 731	pr_info("ri_length = %u\n", rgd->rd_length);
 732	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 733	pr_info("ri_data = %u\n", rgd->rd_data);
 734	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
 735}
 736
 737/**
 738 * gfs2_compute_bitstructs - Compute the bitmap sizes
 739 * @rgd: The resource group descriptor
 740 *
 741 * Calculates bitmap descriptors, one for each block that contains bitmap data
 742 *
 743 * Returns: errno
 744 */
 745
 746static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 747{
 748	struct gfs2_sbd *sdp = rgd->rd_sbd;
 749	struct gfs2_bitmap *bi;
 750	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 751	u32 bytes_left, bytes;
 752	int x;
 753
 754	if (!length)
 755		return -EINVAL;
 756
 757	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 758	if (!rgd->rd_bits)
 759		return -ENOMEM;
 760
 761	bytes_left = rgd->rd_bitbytes;
 762
 763	for (x = 0; x < length; x++) {
 764		bi = rgd->rd_bits + x;
 765
 766		bi->bi_flags = 0;
 767		/* small rgrp; bitmap stored completely in header block */
 768		if (length == 1) {
 769			bytes = bytes_left;
 770			bi->bi_offset = sizeof(struct gfs2_rgrp);
 771			bi->bi_start = 0;
 772			bi->bi_len = bytes;
 773			bi->bi_blocks = bytes * GFS2_NBBY;
 774		/* header block */
 775		} else if (x == 0) {
 776			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 777			bi->bi_offset = sizeof(struct gfs2_rgrp);
 778			bi->bi_start = 0;
 779			bi->bi_len = bytes;
 780			bi->bi_blocks = bytes * GFS2_NBBY;
 781		/* last block */
 782		} else if (x + 1 == length) {
 783			bytes = bytes_left;
 784			bi->bi_offset = sizeof(struct gfs2_meta_header);
 785			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 786			bi->bi_len = bytes;
 787			bi->bi_blocks = bytes * GFS2_NBBY;
 788		/* other blocks */
 789		} else {
 790			bytes = sdp->sd_sb.sb_bsize -
 791				sizeof(struct gfs2_meta_header);
 792			bi->bi_offset = sizeof(struct gfs2_meta_header);
 793			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 794			bi->bi_len = bytes;
 795			bi->bi_blocks = bytes * GFS2_NBBY;
 796		}
 797
 798		bytes_left -= bytes;
 799	}
 800
 801	if (bytes_left) {
 802		gfs2_consist_rgrpd(rgd);
 803		return -EIO;
 804	}
 805	bi = rgd->rd_bits + (length - 1);
 806	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 807		if (gfs2_consist_rgrpd(rgd)) {
 808			gfs2_rindex_print(rgd);
 809			fs_err(sdp, "start=%u len=%u offset=%u\n",
 810			       bi->bi_start, bi->bi_len, bi->bi_offset);
 811		}
 812		return -EIO;
 813	}
 814
 815	return 0;
 816}
 817
 818/**
 819 * gfs2_ri_total - Total up the file system space, according to the rindex.
 820 * @sdp: the filesystem
 821 *
 822 */
 823u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 824{
 825	u64 total_data = 0;	
 826	struct inode *inode = sdp->sd_rindex;
 827	struct gfs2_inode *ip = GFS2_I(inode);
 828	char buf[sizeof(struct gfs2_rindex)];
 829	int error, rgrps;
 830
 831	for (rgrps = 0;; rgrps++) {
 832		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 833
 834		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 835			break;
 836		error = gfs2_internal_read(ip, buf, &pos,
 837					   sizeof(struct gfs2_rindex));
 838		if (error != sizeof(struct gfs2_rindex))
 839			break;
 840		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 841	}
 842	return total_data;
 843}
 844
 845static int rgd_insert(struct gfs2_rgrpd *rgd)
 846{
 847	struct gfs2_sbd *sdp = rgd->rd_sbd;
 848	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 849
 850	/* Figure out where to put new node */
 851	while (*newn) {
 852		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 853						  rd_node);
 854
 855		parent = *newn;
 856		if (rgd->rd_addr < cur->rd_addr)
 857			newn = &((*newn)->rb_left);
 858		else if (rgd->rd_addr > cur->rd_addr)
 859			newn = &((*newn)->rb_right);
 860		else
 861			return -EEXIST;
 862	}
 863
 864	rb_link_node(&rgd->rd_node, parent, newn);
 865	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 866	sdp->sd_rgrps++;
 867	return 0;
 868}
 869
 870/**
 871 * read_rindex_entry - Pull in a new resource index entry from the disk
 872 * @ip: Pointer to the rindex inode
 873 *
 874 * Returns: 0 on success, > 0 on EOF, error code otherwise
 875 */
 876
 877static int read_rindex_entry(struct gfs2_inode *ip)
 878{
 879	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 880	const unsigned bsize = sdp->sd_sb.sb_bsize;
 881	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 882	struct gfs2_rindex buf;
 883	int error;
 884	struct gfs2_rgrpd *rgd;
 885
 886	if (pos >= i_size_read(&ip->i_inode))
 887		return 1;
 888
 889	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 890				   sizeof(struct gfs2_rindex));
 891
 892	if (error != sizeof(struct gfs2_rindex))
 893		return (error == 0) ? 1 : error;
 894
 895	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 896	error = -ENOMEM;
 897	if (!rgd)
 898		return error;
 899
 900	rgd->rd_sbd = sdp;
 901	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 902	rgd->rd_length = be32_to_cpu(buf.ri_length);
 903	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 904	rgd->rd_data = be32_to_cpu(buf.ri_data);
 905	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 906	spin_lock_init(&rgd->rd_rsspin);
 907
 908	error = compute_bitstructs(rgd);
 909	if (error)
 910		goto fail;
 911
 912	error = gfs2_glock_get(sdp, rgd->rd_addr,
 913			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 914	if (error)
 915		goto fail;
 916
 917	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 918	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
 919	if (rgd->rd_data > sdp->sd_max_rg_data)
 920		sdp->sd_max_rg_data = rgd->rd_data;
 921	spin_lock(&sdp->sd_rindex_spin);
 922	error = rgd_insert(rgd);
 923	spin_unlock(&sdp->sd_rindex_spin);
 924	if (!error) {
 925		glock_set_object(rgd->rd_gl, rgd);
 926		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
 927		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
 928						    rgd->rd_length) * bsize) - 1;
 929		return 0;
 930	}
 931
 932	error = 0; /* someone else read in the rgrp; free it and ignore it */
 933	gfs2_glock_put(rgd->rd_gl);
 934
 935fail:
 936	kfree(rgd->rd_bits);
 937	rgd->rd_bits = NULL;
 938	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 939	return error;
 940}
 941
 942/**
 943 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 944 * @sdp: the GFS2 superblock
 945 *
 946 * The purpose of this function is to select a subset of the resource groups
 947 * and mark them as PREFERRED. We do it in such a way that each node prefers
 948 * to use a unique set of rgrps to minimize glock contention.
 949 */
 950static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 951{
 952	struct gfs2_rgrpd *rgd, *first;
 953	int i;
 954
 955	/* Skip an initial number of rgrps, based on this node's journal ID.
 956	   That should start each node out on its own set. */
 957	rgd = gfs2_rgrpd_get_first(sdp);
 958	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 959		rgd = gfs2_rgrpd_get_next(rgd);
 960	first = rgd;
 961
 962	do {
 963		rgd->rd_flags |= GFS2_RDF_PREFERRED;
 964		for (i = 0; i < sdp->sd_journals; i++) {
 965			rgd = gfs2_rgrpd_get_next(rgd);
 966			if (!rgd || rgd == first)
 967				break;
 968		}
 969	} while (rgd && rgd != first);
 970}
 971
 972/**
 973 * gfs2_ri_update - Pull in a new resource index from the disk
 974 * @ip: pointer to the rindex inode
 975 *
 976 * Returns: 0 on successful update, error code otherwise
 977 */
 978
 979static int gfs2_ri_update(struct gfs2_inode *ip)
 980{
 981	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 982	int error;
 983
 984	do {
 985		error = read_rindex_entry(ip);
 986	} while (error == 0);
 987
 988	if (error < 0)
 989		return error;
 990
 991	set_rgrp_preferences(sdp);
 992
 993	sdp->sd_rindex_uptodate = 1;
 994	return 0;
 995}
 996
 997/**
 998 * gfs2_rindex_update - Update the rindex if required
 999 * @sdp: The GFS2 superblock
1000 *
1001 * We grab a lock on the rindex inode to make sure that it doesn't
1002 * change whilst we are performing an operation. We keep this lock
1003 * for quite long periods of time compared to other locks. This
1004 * doesn't matter, since it is shared and it is very, very rarely
1005 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1006 *
1007 * This makes sure that we're using the latest copy of the resource index
1008 * special file, which might have been updated if someone expanded the
1009 * filesystem (via gfs2_grow utility), which adds new resource groups.
1010 *
1011 * Returns: 0 on succeess, error code otherwise
1012 */
1013
1014int gfs2_rindex_update(struct gfs2_sbd *sdp)
1015{
1016	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1017	struct gfs2_glock *gl = ip->i_gl;
1018	struct gfs2_holder ri_gh;
1019	int error = 0;
1020	int unlock_required = 0;
1021
1022	/* Read new copy from disk if we don't have the latest */
1023	if (!sdp->sd_rindex_uptodate) {
1024		if (!gfs2_glock_is_locked_by_me(gl)) {
1025			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1026			if (error)
1027				return error;
1028			unlock_required = 1;
1029		}
1030		if (!sdp->sd_rindex_uptodate)
1031			error = gfs2_ri_update(ip);
1032		if (unlock_required)
1033			gfs2_glock_dq_uninit(&ri_gh);
1034	}
1035
1036	return error;
1037}
1038
1039static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1040{
1041	const struct gfs2_rgrp *str = buf;
1042	u32 rg_flags;
1043
1044	rg_flags = be32_to_cpu(str->rg_flags);
1045	rg_flags &= ~GFS2_RDF_MASK;
1046	rgd->rd_flags &= GFS2_RDF_MASK;
1047	rgd->rd_flags |= rg_flags;
1048	rgd->rd_free = be32_to_cpu(str->rg_free);
1049	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1050	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1051	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1052}
1053
1054static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1055{
1056	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1057	struct gfs2_rgrp *str = buf;
1058	u32 crc;
1059
1060	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1061	str->rg_free = cpu_to_be32(rgd->rd_free);
1062	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1063	if (next == NULL)
1064		str->rg_skip = 0;
1065	else if (next->rd_addr > rgd->rd_addr)
1066		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1067	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1068	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1069	str->rg_data = cpu_to_be32(rgd->rd_data);
1070	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1071	str->rg_crc = 0;
1072	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1073	str->rg_crc = cpu_to_be32(crc);
1074
1075	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1076}
1077
1078static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1079{
1080	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1081	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1082
1083	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1084	    rgl->rl_dinodes != str->rg_dinodes ||
1085	    rgl->rl_igeneration != str->rg_igeneration)
1086		return 0;
1087	return 1;
1088}
1089
1090static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1091{
1092	const struct gfs2_rgrp *str = buf;
1093
1094	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1095	rgl->rl_flags = str->rg_flags;
1096	rgl->rl_free = str->rg_free;
1097	rgl->rl_dinodes = str->rg_dinodes;
1098	rgl->rl_igeneration = str->rg_igeneration;
1099	rgl->__pad = 0UL;
1100}
1101
1102static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1103{
1104	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1105	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1106	rgl->rl_unlinked = cpu_to_be32(unlinked);
1107}
1108
1109static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1110{
1111	struct gfs2_bitmap *bi;
1112	const u32 length = rgd->rd_length;
1113	const u8 *buffer = NULL;
1114	u32 i, goal, count = 0;
1115
1116	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1117		goal = 0;
1118		buffer = bi->bi_bh->b_data + bi->bi_offset;
1119		WARN_ON(!buffer_uptodate(bi->bi_bh));
1120		while (goal < bi->bi_len * GFS2_NBBY) {
1121			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1122					   GFS2_BLKST_UNLINKED);
1123			if (goal == BFITNOENT)
1124				break;
1125			count++;
1126			goal++;
1127		}
1128	}
1129
1130	return count;
1131}
1132
1133
1134/**
1135 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1136 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1137 *
1138 * Read in all of a Resource Group's header and bitmap blocks.
1139 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1140 *
1141 * Returns: errno
1142 */
1143
1144static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1145{
 
1146	struct gfs2_sbd *sdp = rgd->rd_sbd;
1147	struct gfs2_glock *gl = rgd->rd_gl;
1148	unsigned int length = rgd->rd_length;
1149	struct gfs2_bitmap *bi;
1150	unsigned int x, y;
1151	int error;
1152
1153	if (rgd->rd_bits[0].bi_bh != NULL)
1154		return 0;
1155
1156	for (x = 0; x < length; x++) {
1157		bi = rgd->rd_bits + x;
1158		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1159		if (error)
1160			goto fail;
1161	}
1162
1163	for (y = length; y--;) {
1164		bi = rgd->rd_bits + y;
1165		error = gfs2_meta_wait(sdp, bi->bi_bh);
1166		if (error)
1167			goto fail;
1168		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1169					      GFS2_METATYPE_RG)) {
1170			error = -EIO;
1171			goto fail;
1172		}
1173	}
1174
1175	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1176		for (x = 0; x < length; x++)
1177			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1178		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1179		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1180		rgd->rd_free_clone = rgd->rd_free;
1181		/* max out the rgrp allocation failure point */
1182		rgd->rd_extfail_pt = rgd->rd_free;
1183	}
1184	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1185		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1186		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1187				     rgd->rd_bits[0].bi_bh->b_data);
1188	}
1189	else if (sdp->sd_args.ar_rgrplvb) {
1190		if (!gfs2_rgrp_lvb_valid(rgd)){
1191			gfs2_consist_rgrpd(rgd);
1192			error = -EIO;
1193			goto fail;
1194		}
1195		if (rgd->rd_rgl->rl_unlinked == 0)
1196			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1197	}
 
1198	return 0;
1199
1200fail:
1201	while (x--) {
1202		bi = rgd->rd_bits + x;
1203		brelse(bi->bi_bh);
1204		bi->bi_bh = NULL;
1205		gfs2_assert_warn(sdp, !bi->bi_clone);
1206	}
1207
1208	return error;
1209}
1210
1211static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1212{
1213	u32 rl_flags;
1214
1215	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1216		return 0;
1217
1218	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1219		return gfs2_rgrp_bh_get(rgd);
1220
1221	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1222	rl_flags &= ~GFS2_RDF_MASK;
1223	rgd->rd_flags &= GFS2_RDF_MASK;
1224	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1225	if (rgd->rd_rgl->rl_unlinked == 0)
1226		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1227	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1228	rgd->rd_free_clone = rgd->rd_free;
1229	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1230	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1231	return 0;
1232}
1233
1234int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1235{
1236	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1237	struct gfs2_sbd *sdp = rgd->rd_sbd;
1238
1239	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1240		return 0;
1241	return gfs2_rgrp_bh_get(rgd);
1242}
1243
1244/**
1245 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1246 * @rgd: The resource group
1247 *
1248 */
1249
1250void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1251{
 
1252	int x, length = rgd->rd_length;
1253
1254	for (x = 0; x < length; x++) {
1255		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1256		if (bi->bi_bh) {
1257			brelse(bi->bi_bh);
1258			bi->bi_bh = NULL;
1259		}
1260	}
1261
1262}
1263
1264/**
1265 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1266 * @gh: The glock holder for the resource group
1267 *
1268 */
1269
1270void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1271{
1272	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1273	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1274		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1275
1276	if (rgd && demote_requested)
1277		gfs2_rgrp_brelse(rgd);
1278}
1279
1280int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1281			     struct buffer_head *bh,
1282			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1283{
1284	struct super_block *sb = sdp->sd_vfs;
 
 
 
1285	u64 blk;
1286	sector_t start = 0;
1287	sector_t nr_blks = 0;
1288	int rv;
1289	unsigned int x;
1290	u32 trimmed = 0;
1291	u8 diff;
1292
1293	for (x = 0; x < bi->bi_len; x++) {
1294		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1295		clone += bi->bi_offset;
1296		clone += x;
1297		if (bh) {
1298			const u8 *orig = bh->b_data + bi->bi_offset + x;
1299			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1300		} else {
1301			diff = ~(*clone | (*clone >> 1));
1302		}
1303		diff &= 0x55;
1304		if (diff == 0)
1305			continue;
1306		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 
1307		while(diff) {
1308			if (diff & 1) {
1309				if (nr_blks == 0)
1310					goto start_new_extent;
1311				if ((start + nr_blks) != blk) {
1312					if (nr_blks >= minlen) {
1313						rv = sb_issue_discard(sb,
1314							start, nr_blks,
1315							GFP_NOFS, 0);
1316						if (rv)
1317							goto fail;
1318						trimmed += nr_blks;
1319					}
1320					nr_blks = 0;
1321start_new_extent:
1322					start = blk;
1323				}
1324				nr_blks++;
1325			}
1326			diff >>= 2;
1327			blk++;
1328		}
1329	}
1330	if (nr_blks >= minlen) {
1331		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1332		if (rv)
1333			goto fail;
1334		trimmed += nr_blks;
1335	}
1336	if (ptrimmed)
1337		*ptrimmed = trimmed;
1338	return 0;
1339
1340fail:
1341	if (sdp->sd_args.ar_discard)
1342		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1343	sdp->sd_args.ar_discard = 0;
1344	return -EIO;
1345}
1346
1347/**
1348 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1349 * @filp: Any file on the filesystem
1350 * @argp: Pointer to the arguments (also used to pass result)
1351 *
1352 * Returns: 0 on success, otherwise error code
1353 */
1354
1355int gfs2_fitrim(struct file *filp, void __user *argp)
1356{
1357	struct inode *inode = file_inode(filp);
1358	struct gfs2_sbd *sdp = GFS2_SB(inode);
1359	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1360	struct buffer_head *bh;
1361	struct gfs2_rgrpd *rgd;
1362	struct gfs2_rgrpd *rgd_end;
1363	struct gfs2_holder gh;
1364	struct fstrim_range r;
1365	int ret = 0;
1366	u64 amt;
1367	u64 trimmed = 0;
1368	u64 start, end, minlen;
1369	unsigned int x;
1370	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1371
1372	if (!capable(CAP_SYS_ADMIN))
1373		return -EPERM;
1374
1375	if (!blk_queue_discard(q))
1376		return -EOPNOTSUPP;
1377
1378	if (copy_from_user(&r, argp, sizeof(r)))
 
 
 
 
1379		return -EFAULT;
1380
1381	ret = gfs2_rindex_update(sdp);
1382	if (ret)
1383		return ret;
1384
1385	start = r.start >> bs_shift;
1386	end = start + (r.len >> bs_shift);
1387	minlen = max_t(u64, r.minlen,
1388		       q->limits.discard_granularity) >> bs_shift;
1389
1390	if (end <= start || minlen > sdp->sd_max_rg_data)
1391		return -EINVAL;
1392
1393	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1394	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1395
1396	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1397	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1398		return -EINVAL; /* start is beyond the end of the fs */
1399
1400	while (1) {
1401
1402		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1403		if (ret)
1404			goto out;
1405
1406		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1407			/* Trim each bitmap in the rgrp */
1408			for (x = 0; x < rgd->rd_length; x++) {
1409				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1410				ret = gfs2_rgrp_send_discards(sdp,
1411						rgd->rd_data0, NULL, bi, minlen,
1412						&amt);
1413				if (ret) {
1414					gfs2_glock_dq_uninit(&gh);
1415					goto out;
1416				}
1417				trimmed += amt;
1418			}
1419
1420			/* Mark rgrp as having been trimmed */
1421			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1422			if (ret == 0) {
1423				bh = rgd->rd_bits[0].bi_bh;
1424				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1425				gfs2_trans_add_meta(rgd->rd_gl, bh);
1426				gfs2_rgrp_out(rgd, bh->b_data);
1427				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1428				gfs2_trans_end(sdp);
1429			}
1430		}
1431		gfs2_glock_dq_uninit(&gh);
1432
1433		if (rgd == rgd_end)
1434			break;
1435
1436		rgd = gfs2_rgrpd_get_next(rgd);
1437	}
1438
1439out:
1440	r.len = trimmed << bs_shift;
1441	if (copy_to_user(argp, &r, sizeof(r)))
1442		return -EFAULT;
1443
1444	return ret;
1445}
1446
1447/**
1448 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1449 * @ip: the inode structure
1450 *
 
1451 */
1452static void rs_insert(struct gfs2_inode *ip)
 
1453{
1454	struct rb_node **newn, *parent = NULL;
1455	int rc;
1456	struct gfs2_blkreserv *rs = &ip->i_res;
1457	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1458	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1459
1460	BUG_ON(gfs2_rs_active(rs));
1461
1462	spin_lock(&rgd->rd_rsspin);
1463	newn = &rgd->rd_rstree.rb_node;
1464	while (*newn) {
1465		struct gfs2_blkreserv *cur =
1466			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1467
1468		parent = *newn;
1469		rc = rs_cmp(fsblock, rs->rs_free, cur);
1470		if (rc > 0)
1471			newn = &((*newn)->rb_right);
1472		else if (rc < 0)
1473			newn = &((*newn)->rb_left);
1474		else {
1475			spin_unlock(&rgd->rd_rsspin);
1476			WARN_ON(1);
1477			return;
1478		}
1479	}
1480
1481	rb_link_node(&rs->rs_node, parent, newn);
1482	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1483
1484	/* Do our rgrp accounting for the reservation */
1485	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1486	spin_unlock(&rgd->rd_rsspin);
1487	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1488}
1489
1490/**
1491 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1492 * @rgd: the resource group descriptor
1493 * @ip: pointer to the inode for which we're reserving blocks
1494 * @ap: the allocation parameters
1495 *
 
1496 */
1497
1498static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1499			   const struct gfs2_alloc_parms *ap)
1500{
1501	struct gfs2_rbm rbm = { .rgd = rgd, };
1502	u64 goal;
1503	struct gfs2_blkreserv *rs = &ip->i_res;
1504	u32 extlen;
1505	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1506	int ret;
1507	struct inode *inode = &ip->i_inode;
1508
1509	if (S_ISDIR(inode->i_mode))
1510		extlen = 1;
1511	else {
1512		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1513		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1514	}
1515	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1516		return;
1517
1518	/* Find bitmap block that contains bits for goal block */
1519	if (rgrp_contains_block(rgd, ip->i_goal))
1520		goal = ip->i_goal;
1521	else
1522		goal = rgd->rd_last_alloc + rgd->rd_data0;
1523
1524	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1525		return;
1526
1527	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1528	if (ret == 0) {
1529		rs->rs_rbm = rbm;
1530		rs->rs_free = extlen;
1531		rs->rs_inum = ip->i_no_addr;
1532		rs_insert(ip);
1533	} else {
1534		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1535			rgd->rd_last_alloc = 0;
1536	}
1537}
1538
1539/**
1540 * gfs2_next_unreserved_block - Return next block that is not reserved
1541 * @rgd: The resource group
1542 * @block: The starting block
1543 * @length: The required length
1544 * @ip: Ignore any reservations for this inode
1545 *
1546 * If the block does not appear in any reservation, then return the
1547 * block number unchanged. If it does appear in the reservation, then
1548 * keep looking through the tree of reservations in order to find the
1549 * first block number which is not reserved.
1550 */
1551
1552static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1553				      u32 length,
1554				      const struct gfs2_inode *ip)
1555{
1556	struct gfs2_blkreserv *rs;
1557	struct rb_node *n;
1558	int rc;
1559
1560	spin_lock(&rgd->rd_rsspin);
1561	n = rgd->rd_rstree.rb_node;
1562	while (n) {
1563		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1564		rc = rs_cmp(block, length, rs);
1565		if (rc < 0)
1566			n = n->rb_left;
1567		else if (rc > 0)
1568			n = n->rb_right;
1569		else
1570			break;
1571	}
1572
1573	if (n) {
1574		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1575			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1576			n = n->rb_right;
1577			if (n == NULL)
1578				break;
1579			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1580		}
1581	}
1582
1583	spin_unlock(&rgd->rd_rsspin);
1584	return block;
1585}
1586
1587/**
1588 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1589 * @rbm: The current position in the resource group
1590 * @ip: The inode for which we are searching for blocks
1591 * @minext: The minimum extent length
1592 * @maxext: A pointer to the maximum extent structure
1593 *
1594 * This checks the current position in the rgrp to see whether there is
1595 * a reservation covering this block. If not then this function is a
1596 * no-op. If there is, then the position is moved to the end of the
1597 * contiguous reservation(s) so that we are pointing at the first
1598 * non-reserved block.
1599 *
1600 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1601 */
1602
1603static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1604					     const struct gfs2_inode *ip,
1605					     u32 minext,
1606					     struct gfs2_extent *maxext)
1607{
1608	u64 block = gfs2_rbm_to_block(rbm);
1609	u32 extlen = 1;
1610	u64 nblock;
1611	int ret;
1612
1613	/*
1614	 * If we have a minimum extent length, then skip over any extent
1615	 * which is less than the min extent length in size.
1616	 */
1617	if (minext) {
1618		extlen = gfs2_free_extlen(rbm, minext);
1619		if (extlen <= maxext->len)
1620			goto fail;
1621	}
1622
1623	/*
1624	 * Check the extent which has been found against the reservations
1625	 * and skip if parts of it are already reserved
1626	 */
1627	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1628	if (nblock == block) {
1629		if (!minext || extlen >= minext)
1630			return 0;
1631
1632		if (extlen > maxext->len) {
1633			maxext->len = extlen;
1634			maxext->rbm = *rbm;
1635		}
1636fail:
1637		nblock = block + extlen;
1638	}
1639	ret = gfs2_rbm_from_block(rbm, nblock);
1640	if (ret < 0)
1641		return ret;
1642	return 1;
1643}
1644
1645/**
1646 * gfs2_rbm_find - Look for blocks of a particular state
1647 * @rbm: Value/result starting position and final position
1648 * @state: The state which we want to find
1649 * @minext: Pointer to the requested extent length (NULL for a single block)
1650 *          This is updated to be the actual reservation size.
1651 * @ip: If set, check for reservations
1652 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1653 *          around until we've reached the starting point.
1654 *
1655 * Side effects:
1656 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1657 *   has no free blocks in it.
1658 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1659 *   has come up short on a free block search.
1660 *
1661 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1662 */
1663
1664static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1665			 const struct gfs2_inode *ip, bool nowrap)
1666{
1667	struct buffer_head *bh;
1668	int initial_bii;
1669	u32 initial_offset;
1670	int first_bii = rbm->bii;
1671	u32 first_offset = rbm->offset;
1672	u32 offset;
1673	u8 *buffer;
1674	int n = 0;
1675	int iters = rbm->rgd->rd_length;
1676	int ret;
1677	struct gfs2_bitmap *bi;
1678	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1679
1680	/* If we are not starting at the beginning of a bitmap, then we
1681	 * need to add one to the bitmap count to ensure that we search
1682	 * the starting bitmap twice.
1683	 */
1684	if (rbm->offset != 0)
1685		iters++;
1686
1687	while(1) {
1688		bi = rbm_bi(rbm);
1689		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1690		    (state == GFS2_BLKST_FREE))
1691			goto next_bitmap;
1692
1693		bh = bi->bi_bh;
1694		buffer = bh->b_data + bi->bi_offset;
1695		WARN_ON(!buffer_uptodate(bh));
1696		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1697			buffer = bi->bi_clone + bi->bi_offset;
1698		initial_offset = rbm->offset;
1699		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1700		if (offset == BFITNOENT)
1701			goto bitmap_full;
1702		rbm->offset = offset;
1703		if (ip == NULL)
1704			return 0;
1705
1706		initial_bii = rbm->bii;
1707		ret = gfs2_reservation_check_and_update(rbm, ip,
1708							minext ? *minext : 0,
1709							&maxext);
1710		if (ret == 0)
1711			return 0;
1712		if (ret > 0) {
1713			n += (rbm->bii - initial_bii);
1714			goto next_iter;
1715		}
1716		if (ret == -E2BIG) {
1717			rbm->bii = 0;
1718			rbm->offset = 0;
1719			n += (rbm->bii - initial_bii);
1720			goto res_covered_end_of_rgrp;
1721		}
1722		return ret;
1723
1724bitmap_full:	/* Mark bitmap as full and fall through */
1725		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1726			set_bit(GBF_FULL, &bi->bi_flags);
1727
1728next_bitmap:	/* Find next bitmap in the rgrp */
1729		rbm->offset = 0;
1730		rbm->bii++;
1731		if (rbm->bii == rbm->rgd->rd_length)
1732			rbm->bii = 0;
1733res_covered_end_of_rgrp:
1734		if ((rbm->bii == 0) && nowrap)
1735			break;
1736		n++;
1737next_iter:
1738		if (n >= iters)
1739			break;
1740	}
1741
1742	if (minext == NULL || state != GFS2_BLKST_FREE)
1743		return -ENOSPC;
1744
1745	/* If the extent was too small, and it's smaller than the smallest
1746	   to have failed before, remember for future reference that it's
1747	   useless to search this rgrp again for this amount or more. */
1748	if ((first_offset == 0) && (first_bii == 0) &&
1749	    (*minext < rbm->rgd->rd_extfail_pt))
1750		rbm->rgd->rd_extfail_pt = *minext;
1751
1752	/* If the maximum extent we found is big enough to fulfill the
1753	   minimum requirements, use it anyway. */
1754	if (maxext.len) {
1755		*rbm = maxext.rbm;
1756		*minext = maxext.len;
1757		return 0;
1758	}
1759
1760	return -ENOSPC;
1761}
1762
1763/**
1764 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1765 * @rgd: The rgrp
1766 * @last_unlinked: block address of the last dinode we unlinked
1767 * @skip: block address we should explicitly not unlink
1768 *
1769 * Returns: 0 if no error
1770 *          The inode, if one has been found, in inode.
1771 */
1772
1773static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1774{
1775	u64 block;
 
1776	struct gfs2_sbd *sdp = rgd->rd_sbd;
1777	struct gfs2_glock *gl;
1778	struct gfs2_inode *ip;
1779	int error;
1780	int found = 0;
1781	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1782
1783	while (1) {
1784		down_write(&sdp->sd_log_flush_lock);
1785		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1786				      true);
1787		up_write(&sdp->sd_log_flush_lock);
1788		if (error == -ENOSPC)
1789			break;
1790		if (WARN_ON_ONCE(error))
1791			break;
1792
1793		block = gfs2_rbm_to_block(&rbm);
1794		if (gfs2_rbm_from_block(&rbm, block + 1))
1795			break;
1796		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
 
 
1797			continue;
1798		if (block == skip)
1799			continue;
1800		*last_unlinked = block;
1801
1802		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1803		if (error)
1804			continue;
1805
1806		/* If the inode is already in cache, we can ignore it here
1807		 * because the existing inode disposal code will deal with
1808		 * it when all refs have gone away. Accessing gl_object like
1809		 * this is not safe in general. Here it is ok because we do
1810		 * not dereference the pointer, and we only need an approx
1811		 * answer to whether it is NULL or not.
1812		 */
1813		ip = gl->gl_object;
1814
1815		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1816			gfs2_glock_put(gl);
1817		else
1818			found++;
1819
1820		/* Limit reclaim to sensible number of tasks */
1821		if (found > NR_CPUS)
1822			return;
1823	}
1824
1825	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1826	return;
1827}
1828
1829/**
1830 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1831 * @rgd: The rgrp in question
1832 * @loops: An indication of how picky we can be (0=very, 1=less so)
1833 *
1834 * This function uses the recently added glock statistics in order to
1835 * figure out whether a parciular resource group is suffering from
1836 * contention from multiple nodes. This is done purely on the basis
1837 * of timings, since this is the only data we have to work with and
1838 * our aim here is to reject a resource group which is highly contended
1839 * but (very important) not to do this too often in order to ensure that
1840 * we do not land up introducing fragmentation by changing resource
1841 * groups when not actually required.
1842 *
1843 * The calculation is fairly simple, we want to know whether the SRTTB
1844 * (i.e. smoothed round trip time for blocking operations) to acquire
1845 * the lock for this rgrp's glock is significantly greater than the
1846 * time taken for resource groups on average. We introduce a margin in
1847 * the form of the variable @var which is computed as the sum of the two
1848 * respective variences, and multiplied by a factor depending on @loops
1849 * and whether we have a lot of data to base the decision on. This is
1850 * then tested against the square difference of the means in order to
1851 * decide whether the result is statistically significant or not.
1852 *
1853 * Returns: A boolean verdict on the congestion status
1854 */
1855
1856static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1857{
1858	const struct gfs2_glock *gl = rgd->rd_gl;
1859	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1860	struct gfs2_lkstats *st;
1861	u64 r_dcount, l_dcount;
1862	u64 l_srttb, a_srttb = 0;
1863	s64 srttb_diff;
1864	u64 sqr_diff;
1865	u64 var;
1866	int cpu, nonzero = 0;
1867
1868	preempt_disable();
1869	for_each_present_cpu(cpu) {
1870		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1871		if (st->stats[GFS2_LKS_SRTTB]) {
1872			a_srttb += st->stats[GFS2_LKS_SRTTB];
1873			nonzero++;
1874		}
1875	}
1876	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1877	if (nonzero)
1878		do_div(a_srttb, nonzero);
1879	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1880	var = st->stats[GFS2_LKS_SRTTVARB] +
1881	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1882	preempt_enable();
1883
1884	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1885	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1886
1887	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1888		return false;
1889
1890	srttb_diff = a_srttb - l_srttb;
1891	sqr_diff = srttb_diff * srttb_diff;
1892
1893	var *= 2;
1894	if (l_dcount < 8 || r_dcount < 8)
1895		var *= 2;
1896	if (loops == 1)
1897		var *= 2;
1898
1899	return ((srttb_diff < 0) && (sqr_diff > var));
1900}
1901
1902/**
1903 * gfs2_rgrp_used_recently
1904 * @rs: The block reservation with the rgrp to test
1905 * @msecs: The time limit in milliseconds
1906 *
1907 * Returns: True if the rgrp glock has been used within the time limit
1908 */
1909static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1910				    u64 msecs)
1911{
1912	u64 tdiff;
 
 
 
 
1913
1914	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1915                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
 
 
1916
1917	return tdiff > (msecs * 1000 * 1000);
1918}
1919
1920static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1921{
1922	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1923	u32 skip;
1924
1925	get_random_bytes(&skip, sizeof(skip));
1926	return skip % sdp->sd_rgrps;
1927}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1928
1929static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1930{
1931	struct gfs2_rgrpd *rgd = *pos;
1932	struct gfs2_sbd *sdp = rgd->rd_sbd;
1933
1934	rgd = gfs2_rgrpd_get_next(rgd);
1935	if (rgd == NULL)
1936		rgd = gfs2_rgrpd_get_first(sdp);
1937	*pos = rgd;
1938	if (rgd != begin) /* If we didn't wrap */
1939		return true;
1940	return false;
1941}
1942
1943/**
1944 * fast_to_acquire - determine if a resource group will be fast to acquire
1945 *
1946 * If this is one of our preferred rgrps, it should be quicker to acquire,
1947 * because we tried to set ourselves up as dlm lock master.
1948 */
1949static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1950{
1951	struct gfs2_glock *gl = rgd->rd_gl;
1952
1953	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1954	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1955	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1956		return 1;
1957	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1958		return 1;
1959	return 0;
1960}
1961
1962/**
1963 * gfs2_inplace_reserve - Reserve space in the filesystem
1964 * @ip: the inode to reserve space for
1965 * @ap: the allocation parameters
1966 *
1967 * We try our best to find an rgrp that has at least ap->target blocks
1968 * available. After a couple of passes (loops == 2), the prospects of finding
1969 * such an rgrp diminish. At this stage, we return the first rgrp that has
1970 * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1971 * the number of blocks available in the chosen rgrp.
1972 *
1973 * Returns: 0 on success,
1974 *          -ENOMEM if a suitable rgrp can't be found
1975 *          errno otherwise
1976 */
1977
1978int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1979{
1980	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1981	struct gfs2_rgrpd *begin = NULL;
1982	struct gfs2_blkreserv *rs = &ip->i_res;
1983	int error = 0, rg_locked, flags = 0;
1984	u64 last_unlinked = NO_BLOCK;
1985	int loops = 0;
1986	u32 skip = 0;
1987
1988	if (sdp->sd_args.ar_rgrplvb)
1989		flags |= GL_SKIP;
1990	if (gfs2_assert_warn(sdp, ap->target))
1991		return -EINVAL;
1992	if (gfs2_rs_active(rs)) {
1993		begin = rs->rs_rbm.rgd;
1994	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1995		rs->rs_rbm.rgd = begin = ip->i_rgd;
1996	} else {
1997		check_and_update_goal(ip);
1998		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1999	}
2000	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2001		skip = gfs2_orlov_skip(ip);
2002	if (rs->rs_rbm.rgd == NULL)
2003		return -EBADSLT;
2004
2005	while (loops < 3) {
2006		rg_locked = 1;
 
 
 
 
2007
2008		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2009			rg_locked = 0;
2010			if (skip && skip--)
2011				goto next_rgrp;
2012			if (!gfs2_rs_active(rs)) {
2013				if (loops == 0 &&
2014				    !fast_to_acquire(rs->rs_rbm.rgd))
2015					goto next_rgrp;
2016				if ((loops < 2) &&
2017				    gfs2_rgrp_used_recently(rs, 1000) &&
2018				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2019					goto next_rgrp;
2020			}
2021			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2022						   LM_ST_EXCLUSIVE, flags,
2023						   &rs->rs_rgd_gh);
2024			if (unlikely(error))
2025				return error;
2026			if (!gfs2_rs_active(rs) && (loops < 2) &&
2027			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2028				goto skip_rgrp;
2029			if (sdp->sd_args.ar_rgrplvb) {
2030				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2031				if (unlikely(error)) {
2032					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2033					return error;
2034				}
2035			}
2036		}
2037
2038		/* Skip unuseable resource groups */
2039		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2040						 GFS2_RDF_ERROR)) ||
2041		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2042			goto skip_rgrp;
2043
2044		if (sdp->sd_args.ar_rgrplvb)
2045			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2046
2047		/* Get a reservation if we don't already have one */
2048		if (!gfs2_rs_active(rs))
2049			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2050
2051		/* Skip rgrps when we can't get a reservation on first pass */
2052		if (!gfs2_rs_active(rs) && (loops < 1))
2053			goto check_rgrp;
2054
2055		/* If rgrp has enough free space, use it */
2056		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2057		    (loops == 2 && ap->min_target &&
2058		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2059			ip->i_rgd = rs->rs_rbm.rgd;
2060			ap->allowed = ip->i_rgd->rd_free_clone;
2061			return 0;
2062		}
2063check_rgrp:
2064		/* Check for unlinked inodes which can be reclaimed */
2065		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2066			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2067					ip->i_no_addr);
2068skip_rgrp:
2069		/* Drop reservation, if we couldn't use reserved rgrp */
2070		if (gfs2_rs_active(rs))
2071			gfs2_rs_deltree(rs);
2072
2073		/* Unlock rgrp if required */
2074		if (!rg_locked)
2075			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2076next_rgrp:
2077		/* Find the next rgrp, and continue looking */
2078		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2079			continue;
2080		if (skip)
2081			continue;
2082
2083		/* If we've scanned all the rgrps, but found no free blocks
2084		 * then this checks for some less likely conditions before
2085		 * trying again.
2086		 */
2087		loops++;
2088		/* Check that fs hasn't grown if writing to rindex */
2089		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2090			error = gfs2_ri_update(ip);
2091			if (error)
2092				return error;
 
2093		}
2094		/* Flushing the log may release space */
2095		if (loops == 2)
2096			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2097				       GFS2_LFC_INPLACE_RESERVE);
2098	}
2099
2100	return -ENOSPC;
 
 
 
2101}
2102
2103/**
2104 * gfs2_inplace_release - release an inplace reservation
2105 * @ip: the inode the reservation was taken out on
2106 *
2107 * Release a reservation made by gfs2_inplace_reserve().
2108 */
2109
2110void gfs2_inplace_release(struct gfs2_inode *ip)
2111{
2112	struct gfs2_blkreserv *rs = &ip->i_res;
2113
2114	if (gfs2_holder_initialized(&rs->rs_rgd_gh))
2115		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
 
2116}
2117
2118/**
2119 * gfs2_get_block_type - Check a block in a RG is of given type
2120 * @rgd: the resource group holding the block
2121 * @block: the block number
2122 *
2123 * Returns: The block type (GFS2_BLKST_*)
2124 */
2125
2126static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2127{
2128	struct gfs2_rbm rbm = { .rgd = rgd, };
2129	int ret;
 
 
2130
2131	ret = gfs2_rbm_from_block(&rbm, block);
2132	WARN_ON_ONCE(ret != 0);
2133
2134	return gfs2_testbit(&rbm);
 
 
 
 
 
 
 
 
 
 
 
 
2135}
2136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2137
2138/**
2139 * gfs2_alloc_extent - allocate an extent from a given bitmap
2140 * @rbm: the resource group information
 
 
2141 * @dinode: TRUE if the first block we allocate is for a dinode
2142 * @n: The extent length (value/result)
2143 *
2144 * Add the bitmap buffer to the transaction.
2145 * Set the found bits to @new_state to change block's allocation state.
 
2146 */
2147static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2148			     unsigned int *n)
2149{
2150	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2151	const unsigned int elen = *n;
2152	u64 block;
2153	int ret;
2154
2155	*n = 1;
2156	block = gfs2_rbm_to_block(rbm);
2157	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2158	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2159	block++;
 
 
2160	while (*n < elen) {
2161		ret = gfs2_rbm_from_block(&pos, block);
2162		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2163			break;
2164		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2165		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
 
 
2166		(*n)++;
2167		block++;
2168	}
 
 
 
2169}
2170
2171/**
2172 * rgblk_free - Change alloc state of given block(s)
2173 * @sdp: the filesystem
2174 * @bstart: the start of a run of blocks to free
2175 * @blen: the length of the block run (all must lie within ONE RG!)
2176 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2177 *
2178 * Returns:  Resource group containing the block(s)
2179 */
2180
2181static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2182				     u32 blen, unsigned char new_state)
2183{
2184	struct gfs2_rbm rbm;
2185	struct gfs2_bitmap *bi, *bi_prev = NULL;
 
 
2186
2187	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2188	if (!rbm.rgd) {
2189		if (gfs2_consist(sdp))
2190			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2191		return NULL;
2192	}
2193
2194	gfs2_rbm_from_block(&rbm, bstart);
 
 
 
2195	while (blen--) {
2196		bi = rbm_bi(&rbm);
2197		if (bi != bi_prev) {
2198			if (!bi->bi_clone) {
2199				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2200						      GFP_NOFS | __GFP_NOFAIL);
2201				memcpy(bi->bi_clone + bi->bi_offset,
2202				       bi->bi_bh->b_data + bi->bi_offset,
2203				       bi->bi_len);
2204			}
2205			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2206			bi_prev = bi;
 
 
 
 
 
 
2207		}
2208		gfs2_setbit(&rbm, false, new_state);
2209		gfs2_rbm_incr(&rbm);
2210	}
2211
2212	return rbm.rgd;
2213}
2214
2215/**
2216 * gfs2_rgrp_dump - print out an rgrp
2217 * @seq: The iterator
2218 * @gl: The glock in question
2219 *
2220 */
2221
2222void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2223{
2224	struct gfs2_rgrpd *rgd = gl->gl_object;
2225	struct gfs2_blkreserv *trs;
2226	const struct rb_node *n;
2227
2228	if (rgd == NULL)
2229		return;
2230	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2231		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2232		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2233		       rgd->rd_reserved, rgd->rd_extfail_pt);
2234	spin_lock(&rgd->rd_rsspin);
2235	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2236		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2237		dump_rs(seq, trs);
2238	}
2239	spin_unlock(&rgd->rd_rsspin);
2240}
2241
2242static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2243{
2244	struct gfs2_sbd *sdp = rgd->rd_sbd;
2245	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2246		(unsigned long long)rgd->rd_addr);
2247	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2248	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2249	rgd->rd_flags |= GFS2_RDF_ERROR;
2250}
2251
2252/**
2253 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2254 * @ip: The inode we have just allocated blocks for
2255 * @rbm: The start of the allocated blocks
2256 * @len: The extent length
2257 *
2258 * Adjusts a reservation after an allocation has taken place. If the
2259 * reservation does not match the allocation, or if it is now empty
2260 * then it is removed.
2261 */
2262
2263static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2264				    const struct gfs2_rbm *rbm, unsigned len)
2265{
2266	struct gfs2_blkreserv *rs = &ip->i_res;
2267	struct gfs2_rgrpd *rgd = rbm->rgd;
2268	unsigned rlen;
2269	u64 block;
2270	int ret;
2271
2272	spin_lock(&rgd->rd_rsspin);
2273	if (gfs2_rs_active(rs)) {
2274		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2275			block = gfs2_rbm_to_block(rbm);
2276			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2277			rlen = min(rs->rs_free, len);
2278			rs->rs_free -= rlen;
2279			rgd->rd_reserved -= rlen;
2280			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2281			if (rs->rs_free && !ret)
2282				goto out;
2283			/* We used up our block reservation, so we should
2284			   reserve more blocks next time. */
2285			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2286		}
2287		__rs_deltree(rs);
2288	}
2289out:
2290	spin_unlock(&rgd->rd_rsspin);
2291}
2292
2293/**
2294 * gfs2_set_alloc_start - Set starting point for block allocation
2295 * @rbm: The rbm which will be set to the required location
2296 * @ip: The gfs2 inode
2297 * @dinode: Flag to say if allocation includes a new inode
2298 *
2299 * This sets the starting point from the reservation if one is active
2300 * otherwise it falls back to guessing a start point based on the
2301 * inode's goal block or the last allocation point in the rgrp.
2302 */
2303
2304static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2305				 const struct gfs2_inode *ip, bool dinode)
2306{
2307	u64 goal;
2308
2309	if (gfs2_rs_active(&ip->i_res)) {
2310		*rbm = ip->i_res.rs_rbm;
2311		return;
2312	}
2313
2314	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2315		goal = ip->i_goal;
2316	else
2317		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2318
2319	gfs2_rbm_from_block(rbm, goal);
2320}
2321
2322/**
2323 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2324 * @ip: the inode to allocate the block for
2325 * @bn: Used to return the starting block number
2326 * @nblocks: requested number of blocks/extent length (value/result)
2327 * @dinode: 1 if we're allocating a dinode block, else 0
2328 * @generation: the generation number of the inode
2329 *
2330 * Returns: 0 or error
2331 */
2332
2333int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2334		      bool dinode, u64 *generation)
2335{
2336	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2337	struct buffer_head *dibh;
2338	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2339	unsigned int ndata;
 
2340	u64 block; /* block, within the file system scope */
2341	int error;
 
 
 
 
 
 
 
2342
2343	gfs2_set_alloc_start(&rbm, ip, dinode);
2344	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2345
2346	if (error == -ENOSPC) {
2347		gfs2_set_alloc_start(&rbm, ip, dinode);
2348		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2349	}
 
 
2350
2351	/* Since all blocks are reserved in advance, this shouldn't happen */
2352	if (error) {
2353		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2354			(unsigned long long)ip->i_no_addr, error, *nblocks,
2355			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2356			rbm.rgd->rd_extfail_pt);
2357		goto rgrp_error;
2358	}
2359
2360	gfs2_alloc_extent(&rbm, dinode, nblocks);
2361	block = gfs2_rbm_to_block(&rbm);
2362	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2363	if (gfs2_rs_active(&ip->i_res))
2364		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2365	ndata = *nblocks;
2366	if (dinode)
2367		ndata--;
2368
2369	if (!dinode) {
2370		ip->i_goal = block + ndata - 1;
2371		error = gfs2_meta_inode_buffer(ip, &dibh);
2372		if (error == 0) {
2373			struct gfs2_dinode *di =
2374				(struct gfs2_dinode *)dibh->b_data;
2375			gfs2_trans_add_meta(ip->i_gl, dibh);
2376			di->di_goal_meta = di->di_goal_data =
2377				cpu_to_be64(ip->i_goal);
2378			brelse(dibh);
2379		}
2380	}
2381	if (rbm.rgd->rd_free < *nblocks) {
2382		pr_warn("nblocks=%u\n", *nblocks);
2383		goto rgrp_error;
2384	}
2385
2386	rbm.rgd->rd_free -= *nblocks;
2387	if (dinode) {
2388		rbm.rgd->rd_dinodes++;
2389		*generation = rbm.rgd->rd_igeneration++;
2390		if (*generation == 0)
2391			*generation = rbm.rgd->rd_igeneration++;
2392	}
2393
2394	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2395	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2396	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2397
2398	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2399	if (dinode)
2400		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2401
2402	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
 
 
 
 
 
 
2403
2404	rbm.rgd->rd_free_clone -= *nblocks;
2405	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2406			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2407	*bn = block;
2408	return 0;
2409
2410rgrp_error:
2411	gfs2_rgrp_error(rbm.rgd);
2412	return -EIO;
2413}
2414
2415/**
2416 * __gfs2_free_blocks - free a contiguous run of block(s)
2417 * @ip: the inode these blocks are being freed from
2418 * @bstart: first block of a run of contiguous blocks
2419 * @blen: the length of the block run
2420 * @meta: 1 if the blocks represent metadata
2421 *
2422 */
2423
2424void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2425{
2426	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2427	struct gfs2_rgrpd *rgd;
2428
2429	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2430	if (!rgd)
2431		return;
2432	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2433	rgd->rd_free += blen;
2434	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2435	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2436	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2437	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2438
2439	/* Directories keep their data in the metadata address space */
2440	if (meta || ip->i_depth)
2441		gfs2_meta_wipe(ip, bstart, blen);
2442}
2443
2444/**
2445 * gfs2_free_meta - free a contiguous run of data block(s)
2446 * @ip: the inode these blocks are being freed from
2447 * @bstart: first block of a run of contiguous blocks
2448 * @blen: the length of the block run
2449 *
2450 */
2451
2452void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2453{
2454	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2455
2456	__gfs2_free_blocks(ip, bstart, blen, 1);
2457	gfs2_statfs_change(sdp, 0, +blen, 0);
2458	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2459}
2460
2461void gfs2_unlink_di(struct inode *inode)
2462{
2463	struct gfs2_inode *ip = GFS2_I(inode);
2464	struct gfs2_sbd *sdp = GFS2_SB(inode);
2465	struct gfs2_rgrpd *rgd;
2466	u64 blkno = ip->i_no_addr;
2467
2468	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2469	if (!rgd)
2470		return;
2471	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2472	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2473	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2474	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2475	update_rgrp_lvb_unlinked(rgd, 1);
2476}
2477
2478void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2479{
2480	struct gfs2_sbd *sdp = rgd->rd_sbd;
2481	struct gfs2_rgrpd *tmp_rgd;
2482
2483	tmp_rgd = rgblk_free(sdp, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2484	if (!tmp_rgd)
2485		return;
2486	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2487
2488	if (!rgd->rd_dinodes)
2489		gfs2_consist_rgrpd(rgd);
2490	rgd->rd_dinodes--;
2491	rgd->rd_free++;
2492
2493	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2494	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2495	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2496	update_rgrp_lvb_unlinked(rgd, -1);
2497
2498	gfs2_statfs_change(sdp, 0, +1, -1);
 
 
 
 
 
 
2499	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2500	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2501	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2502}
2503
2504/**
2505 * gfs2_check_blk_type - Check the type of a block
2506 * @sdp: The superblock
2507 * @no_addr: The block number to check
2508 * @type: The block type we are looking for
2509 *
2510 * Returns: 0 if the block type matches the expected type
2511 *          -ESTALE if it doesn't match
2512 *          or -ve errno if something went wrong while checking
2513 */
2514
2515int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2516{
2517	struct gfs2_rgrpd *rgd;
2518	struct gfs2_holder rgd_gh;
2519	int error = -EINVAL;
2520
2521	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2522	if (!rgd)
2523		goto fail;
2524
2525	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2526	if (error)
2527		goto fail;
2528
2529	if (gfs2_get_block_type(rgd, no_addr) != type)
2530		error = -ESTALE;
2531
2532	gfs2_glock_dq_uninit(&rgd_gh);
2533fail:
2534	return error;
2535}
2536
2537/**
2538 * gfs2_rlist_add - add a RG to a list of RGs
2539 * @ip: the inode
2540 * @rlist: the list of resource groups
2541 * @block: the block
2542 *
2543 * Figure out what RG a block belongs to and add that RG to the list
2544 *
2545 * FIXME: Don't use NOFAIL
2546 *
2547 */
2548
2549void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2550		    u64 block)
2551{
2552	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2553	struct gfs2_rgrpd *rgd;
2554	struct gfs2_rgrpd **tmp;
2555	unsigned int new_space;
2556	unsigned int x;
2557
2558	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2559		return;
2560
2561	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2562		rgd = ip->i_rgd;
2563	else
2564		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2565	if (!rgd) {
2566		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2567		return;
2568	}
2569	ip->i_rgd = rgd;
2570
2571	for (x = 0; x < rlist->rl_rgrps; x++)
2572		if (rlist->rl_rgd[x] == rgd)
2573			return;
2574
2575	if (rlist->rl_rgrps == rlist->rl_space) {
2576		new_space = rlist->rl_space + 10;
2577
2578		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2579			      GFP_NOFS | __GFP_NOFAIL);
2580
2581		if (rlist->rl_rgd) {
2582			memcpy(tmp, rlist->rl_rgd,
2583			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2584			kfree(rlist->rl_rgd);
2585		}
2586
2587		rlist->rl_space = new_space;
2588		rlist->rl_rgd = tmp;
2589	}
2590
2591	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2592}
2593
2594/**
2595 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2596 *      and initialize an array of glock holders for them
2597 * @rlist: the list of resource groups
2598 * @state: the lock state to acquire the RG lock in
2599 *
2600 * FIXME: Don't use NOFAIL
2601 *
2602 */
2603
2604void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2605{
2606	unsigned int x;
2607
2608	rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder),
2609				GFP_NOFS | __GFP_NOFAIL);
2610	for (x = 0; x < rlist->rl_rgrps; x++)
2611		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2612				state, 0,
2613				&rlist->rl_ghs[x]);
2614}
2615
2616/**
2617 * gfs2_rlist_free - free a resource group list
2618 * @rlist: the list of resource groups
2619 *
2620 */
2621
2622void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2623{
2624	unsigned int x;
2625
2626	kfree(rlist->rl_rgd);
2627
2628	if (rlist->rl_ghs) {
2629		for (x = 0; x < rlist->rl_rgrps; x++)
2630			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2631		kfree(rlist->rl_ghs);
2632		rlist->rl_ghs = NULL;
2633	}
2634}
2635