Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
 
 
  10#include <linux/slab.h>
  11#include <linux/spinlock.h>
  12#include <linux/completion.h>
  13#include <linux/buffer_head.h>
  14#include <linux/fs.h>
  15#include <linux/gfs2_ondisk.h>
  16#include <linux/prefetch.h>
  17#include <linux/blkdev.h>
  18#include <linux/rbtree.h>
 
  19
  20#include "gfs2.h"
  21#include "incore.h"
  22#include "glock.h"
  23#include "glops.h"
  24#include "lops.h"
  25#include "meta_io.h"
  26#include "quota.h"
  27#include "rgrp.h"
  28#include "super.h"
  29#include "trans.h"
  30#include "util.h"
  31#include "log.h"
  32#include "inode.h"
  33#include "trace_gfs2.h"
 
  34
  35#define BFITNOENT ((u32)~0)
  36#define NO_BLOCK ((u64)~0)
  37
  38#if BITS_PER_LONG == 32
  39#define LBITMASK   (0x55555555UL)
  40#define LBITSKIP55 (0x55555555UL)
  41#define LBITSKIP00 (0x00000000UL)
  42#else
  43#define LBITMASK   (0x5555555555555555UL)
  44#define LBITSKIP55 (0x5555555555555555UL)
  45#define LBITSKIP00 (0x0000000000000000UL)
  46#endif
 
 
 
 
 
 
 
 
  47
  48/*
  49 * These routines are used by the resource group routines (rgrp.c)
  50 * to keep track of block allocation.  Each block is represented by two
  51 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  52 *
  53 * 0 = Free
  54 * 1 = Used (not metadata)
  55 * 2 = Unlinked (still in use) inode
  56 * 3 = Used (metadata)
  57 */
  58
 
 
 
 
 
  59static const char valid_change[16] = {
  60	        /* current */
  61	/* n */ 0, 1, 1, 1,
  62	/* e */ 1, 0, 0, 0,
  63	/* w */ 0, 0, 0, 1,
  64	        1, 0, 0, 0
  65};
  66
  67static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
  68			unsigned char old_state,
  69			struct gfs2_bitmap **rbi);
  70
  71/**
  72 * gfs2_setbit - Set a bit in the bitmaps
  73 * @rgd: the resource group descriptor
  74 * @buf2: the clone buffer that holds the bitmaps
  75 * @bi: the bitmap structure
  76 * @block: the block to set
  77 * @new_state: the new state of the block
  78 *
  79 */
  80
  81static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf2,
  82			       struct gfs2_bitmap *bi, u32 block,
  83			       unsigned char new_state)
  84{
  85	unsigned char *byte1, *byte2, *end, cur_state;
  86	unsigned int buflen = bi->bi_len;
  87	const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
 
  88
  89	byte1 = bi->bi_bh->b_data + bi->bi_offset + (block / GFS2_NBBY);
  90	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  91
  92	BUG_ON(byte1 >= end);
  93
  94	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  95
  96	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
  97		printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
  98		       "new_state=%d\n",
  99		       (unsigned long long)block, cur_state, new_state);
 100		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
 101		       (unsigned long long)rgd->rd_addr,
 102		       (unsigned long)bi->bi_start);
 103		printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
 104		       (unsigned long)bi->bi_offset,
 105		       (unsigned long)bi->bi_len);
 
 106		dump_stack();
 107		gfs2_consist_rgrpd(rgd);
 108		return;
 109	}
 110	*byte1 ^= (cur_state ^ new_state) << bit;
 111
 112	if (buf2) {
 113		byte2 = buf2 + bi->bi_offset + (block / GFS2_NBBY);
 114		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 115		*byte2 ^= (cur_state ^ new_state) << bit;
 116	}
 117}
 118
 119/**
 120 * gfs2_testbit - test a bit in the bitmaps
 121 * @rgd: the resource group descriptor
 122 * @buffer: the buffer that holds the bitmaps
 123 * @buflen: the length (in bytes) of the buffer
 124 * @block: the block to read
 
 125 *
 
 126 */
 127
 128static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
 129					 const unsigned char *buffer,
 130					 unsigned int buflen, u32 block)
 131{
 132	const unsigned char *byte, *end;
 133	unsigned char cur_state;
 
 134	unsigned int bit;
 135
 136	byte = buffer + (block / GFS2_NBBY);
 137	bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
 138	end = buffer + buflen;
 139
 140	gfs2_assert(rgd->rd_sbd, byte < end);
 141
 142	cur_state = (*byte >> bit) & GFS2_BIT_MASK;
 143
 144	return cur_state;
 145}
 146
 147/**
 148 * gfs2_bit_search
 149 * @ptr: Pointer to bitmap data
 150 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 151 * @state: The state we are searching for
 152 *
 153 * We xor the bitmap data with a patter which is the bitwise opposite
 154 * of what we are looking for, this gives rise to a pattern of ones
 155 * wherever there is a match. Since we have two bits per entry, we
 156 * take this pattern, shift it down by one place and then and it with
 157 * the original. All the even bit positions (0,2,4, etc) then represent
 158 * successful matches, so we mask with 0x55555..... to remove the unwanted
 159 * odd bit positions.
 160 *
 161 * This allows searching of a whole u64 at once (32 blocks) with a
 162 * single test (on 64 bit arches).
 163 */
 164
 165static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 166{
 167	u64 tmp;
 168	static const u64 search[] = {
 169		[0] = 0xffffffffffffffffULL,
 170		[1] = 0xaaaaaaaaaaaaaaaaULL,
 171		[2] = 0x5555555555555555ULL,
 172		[3] = 0x0000000000000000ULL,
 173	};
 174	tmp = le64_to_cpu(*ptr) ^ search[state];
 175	tmp &= (tmp >> 1);
 176	tmp &= mask;
 177	return tmp;
 178}
 179
 180/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 182 *       a block in a given allocation state.
 183 * @buf: the buffer that holds the bitmaps
 184 * @len: the length (in bytes) of the buffer
 185 * @goal: start search at this block's bit-pair (within @buffer)
 186 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 187 *
 188 * Scope of @goal and returned block number is only within this bitmap buffer,
 189 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 190 * beginning of a bitmap block buffer, skipping any header structures, but
 191 * headers are always a multiple of 64 bits long so that the buffer is
 192 * always aligned to a 64 bit boundary.
 193 *
 194 * The size of the buffer is in bytes, but is it assumed that it is
 195 * always ok to read a complete multiple of 64 bits at the end
 196 * of the block in case the end is no aligned to a natural boundary.
 197 *
 198 * Return: the block number (bitmap buffer scope) that was found
 199 */
 200
 201static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 202		       u32 goal, u8 state)
 203{
 204	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 205	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 206	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 207	u64 tmp;
 208	u64 mask = 0x5555555555555555ULL;
 209	u32 bit;
 210
 211	BUG_ON(state > 3);
 212
 213	/* Mask off bits we don't care about at the start of the search */
 214	mask <<= spoint;
 215	tmp = gfs2_bit_search(ptr, mask, state);
 216	ptr++;
 217	while(tmp == 0 && ptr < end) {
 218		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 219		ptr++;
 220	}
 221	/* Mask off any bits which are more than len bytes from the start */
 222	if (ptr == end && (len & (sizeof(u64) - 1)))
 223		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 224	/* Didn't find anything, so return */
 225	if (tmp == 0)
 226		return BFITNOENT;
 227	ptr--;
 228	bit = __ffs64(tmp);
 229	bit /= 2;	/* two bits per entry in the bitmap */
 230	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 231}
 232
 233/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234 * gfs2_bitcount - count the number of bits in a certain state
 235 * @rgd: the resource group descriptor
 236 * @buffer: the buffer that holds the bitmaps
 237 * @buflen: the length (in bytes) of the buffer
 238 * @state: the state of the block we're looking for
 239 *
 240 * Returns: The number of bits
 241 */
 242
 243static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 244			 unsigned int buflen, u8 state)
 245{
 246	const u8 *byte = buffer;
 247	const u8 *end = buffer + buflen;
 248	const u8 state1 = state << 2;
 249	const u8 state2 = state << 4;
 250	const u8 state3 = state << 6;
 251	u32 count = 0;
 252
 253	for (; byte < end; byte++) {
 254		if (((*byte) & 0x03) == state)
 255			count++;
 256		if (((*byte) & 0x0C) == state1)
 257			count++;
 258		if (((*byte) & 0x30) == state2)
 259			count++;
 260		if (((*byte) & 0xC0) == state3)
 261			count++;
 262	}
 263
 264	return count;
 265}
 266
 267/**
 268 * gfs2_rgrp_verify - Verify that a resource group is consistent
 269 * @rgd: the rgrp
 270 *
 271 */
 272
 273void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 274{
 275	struct gfs2_sbd *sdp = rgd->rd_sbd;
 276	struct gfs2_bitmap *bi = NULL;
 277	u32 length = rgd->rd_length;
 278	u32 count[4], tmp;
 279	int buf, x;
 280
 281	memset(count, 0, 4 * sizeof(u32));
 282
 283	/* Count # blocks in each of 4 possible allocation states */
 284	for (buf = 0; buf < length; buf++) {
 285		bi = rgd->rd_bits + buf;
 286		for (x = 0; x < 4; x++)
 287			count[x] += gfs2_bitcount(rgd,
 288						  bi->bi_bh->b_data +
 289						  bi->bi_offset,
 290						  bi->bi_len, x);
 291	}
 292
 293	if (count[0] != rgd->rd_free) {
 294		if (gfs2_consist_rgrpd(rgd))
 295			fs_err(sdp, "free data mismatch:  %u != %u\n",
 296			       count[0], rgd->rd_free);
 297		return;
 298	}
 299
 300	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 301	if (count[1] != tmp) {
 302		if (gfs2_consist_rgrpd(rgd))
 303			fs_err(sdp, "used data mismatch:  %u != %u\n",
 304			       count[1], tmp);
 305		return;
 306	}
 307
 308	if (count[2] + count[3] != rgd->rd_dinodes) {
 309		if (gfs2_consist_rgrpd(rgd))
 310			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 311			       count[2] + count[3], rgd->rd_dinodes);
 312		return;
 313	}
 314}
 315
 316static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 317{
 318	u64 first = rgd->rd_data0;
 319	u64 last = first + rgd->rd_data;
 320	return first <= block && block < last;
 321}
 322
 323/**
 324 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 325 * @sdp: The GFS2 superblock
 326 * @blk: The data block number
 327 * @exact: True if this needs to be an exact match
 328 *
 
 
 
 
 
 
 
 329 * Returns: The resource group, or NULL if not found
 330 */
 331
 332struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 333{
 334	struct rb_node *n, *next;
 335	struct gfs2_rgrpd *cur;
 336
 337	spin_lock(&sdp->sd_rindex_spin);
 338	n = sdp->sd_rindex_tree.rb_node;
 339	while (n) {
 340		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 341		next = NULL;
 342		if (blk < cur->rd_addr)
 343			next = n->rb_left;
 344		else if (blk >= cur->rd_data0 + cur->rd_data)
 345			next = n->rb_right;
 346		if (next == NULL) {
 347			spin_unlock(&sdp->sd_rindex_spin);
 348			if (exact) {
 349				if (blk < cur->rd_addr)
 350					return NULL;
 351				if (blk >= cur->rd_data0 + cur->rd_data)
 352					return NULL;
 353			}
 354			return cur;
 355		}
 356		n = next;
 357	}
 358	spin_unlock(&sdp->sd_rindex_spin);
 359
 360	return NULL;
 361}
 362
 363/**
 364 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 365 * @sdp: The GFS2 superblock
 366 *
 367 * Returns: The first rgrp in the filesystem
 368 */
 369
 370struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 371{
 372	const struct rb_node *n;
 373	struct gfs2_rgrpd *rgd;
 374
 375	spin_lock(&sdp->sd_rindex_spin);
 376	n = rb_first(&sdp->sd_rindex_tree);
 377	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 378	spin_unlock(&sdp->sd_rindex_spin);
 379
 380	return rgd;
 381}
 382
 383/**
 384 * gfs2_rgrpd_get_next - get the next RG
 385 * @rgd: the resource group descriptor
 386 *
 387 * Returns: The next rgrp
 388 */
 389
 390struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 391{
 392	struct gfs2_sbd *sdp = rgd->rd_sbd;
 393	const struct rb_node *n;
 394
 395	spin_lock(&sdp->sd_rindex_spin);
 396	n = rb_next(&rgd->rd_node);
 397	if (n == NULL)
 398		n = rb_first(&sdp->sd_rindex_tree);
 399
 400	if (unlikely(&rgd->rd_node == n)) {
 401		spin_unlock(&sdp->sd_rindex_spin);
 402		return NULL;
 403	}
 404	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 405	spin_unlock(&sdp->sd_rindex_spin);
 406	return rgd;
 407}
 408
 
 
 
 
 
 
 
 409void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 410{
 411	int x;
 412
 413	for (x = 0; x < rgd->rd_length; x++) {
 414		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 415		kfree(bi->bi_clone);
 416		bi->bi_clone = NULL;
 417	}
 418}
 419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 421{
 422	struct rb_node *n;
 423	struct gfs2_rgrpd *rgd;
 424	struct gfs2_glock *gl;
 425
 426	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 427		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 428		gl = rgd->rd_gl;
 429
 430		rb_erase(n, &sdp->sd_rindex_tree);
 431
 432		if (gl) {
 433			spin_lock(&gl->gl_spin);
 434			gl->gl_object = NULL;
 435			spin_unlock(&gl->gl_spin);
 436			gfs2_glock_add_to_lru(gl);
 
 
 437			gfs2_glock_put(gl);
 438		}
 439
 440		gfs2_free_clones(rgd);
 
 441		kfree(rgd->rd_bits);
 
 442		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 443	}
 444}
 445
 446static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 447{
 448	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 449	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
 450	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 451	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
 452	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
 453}
 454
 455/**
 456 * gfs2_compute_bitstructs - Compute the bitmap sizes
 457 * @rgd: The resource group descriptor
 458 *
 459 * Calculates bitmap descriptors, one for each block that contains bitmap data
 460 *
 461 * Returns: errno
 462 */
 463
 464static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 465{
 466	struct gfs2_sbd *sdp = rgd->rd_sbd;
 467	struct gfs2_bitmap *bi;
 468	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 469	u32 bytes_left, bytes;
 470	int x;
 471
 472	if (!length)
 473		return -EINVAL;
 474
 475	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 476	if (!rgd->rd_bits)
 477		return -ENOMEM;
 478
 479	bytes_left = rgd->rd_bitbytes;
 480
 481	for (x = 0; x < length; x++) {
 482		bi = rgd->rd_bits + x;
 483
 484		bi->bi_flags = 0;
 485		/* small rgrp; bitmap stored completely in header block */
 486		if (length == 1) {
 487			bytes = bytes_left;
 488			bi->bi_offset = sizeof(struct gfs2_rgrp);
 489			bi->bi_start = 0;
 490			bi->bi_len = bytes;
 
 491		/* header block */
 492		} else if (x == 0) {
 493			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 494			bi->bi_offset = sizeof(struct gfs2_rgrp);
 495			bi->bi_start = 0;
 496			bi->bi_len = bytes;
 
 497		/* last block */
 498		} else if (x + 1 == length) {
 499			bytes = bytes_left;
 500			bi->bi_offset = sizeof(struct gfs2_meta_header);
 501			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 502			bi->bi_len = bytes;
 
 503		/* other blocks */
 504		} else {
 505			bytes = sdp->sd_sb.sb_bsize -
 506				sizeof(struct gfs2_meta_header);
 507			bi->bi_offset = sizeof(struct gfs2_meta_header);
 508			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 509			bi->bi_len = bytes;
 
 510		}
 511
 512		bytes_left -= bytes;
 513	}
 514
 515	if (bytes_left) {
 516		gfs2_consist_rgrpd(rgd);
 517		return -EIO;
 518	}
 519	bi = rgd->rd_bits + (length - 1);
 520	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 521		if (gfs2_consist_rgrpd(rgd)) {
 522			gfs2_rindex_print(rgd);
 523			fs_err(sdp, "start=%u len=%u offset=%u\n",
 524			       bi->bi_start, bi->bi_len, bi->bi_offset);
 525		}
 
 
 
 
 
 
 
 
 
 526		return -EIO;
 527	}
 528
 529	return 0;
 530}
 531
 532/**
 533 * gfs2_ri_total - Total up the file system space, according to the rindex.
 534 * @sdp: the filesystem
 535 *
 536 */
 537u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 538{
 539	u64 total_data = 0;	
 540	struct inode *inode = sdp->sd_rindex;
 541	struct gfs2_inode *ip = GFS2_I(inode);
 542	char buf[sizeof(struct gfs2_rindex)];
 543	int error, rgrps;
 544
 545	for (rgrps = 0;; rgrps++) {
 546		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 547
 548		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 549			break;
 550		error = gfs2_internal_read(ip, buf, &pos,
 551					   sizeof(struct gfs2_rindex));
 552		if (error != sizeof(struct gfs2_rindex))
 553			break;
 554		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 555	}
 556	return total_data;
 557}
 558
 559static int rgd_insert(struct gfs2_rgrpd *rgd)
 560{
 561	struct gfs2_sbd *sdp = rgd->rd_sbd;
 562	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 563
 564	/* Figure out where to put new node */
 565	while (*newn) {
 566		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 567						  rd_node);
 568
 569		parent = *newn;
 570		if (rgd->rd_addr < cur->rd_addr)
 571			newn = &((*newn)->rb_left);
 572		else if (rgd->rd_addr > cur->rd_addr)
 573			newn = &((*newn)->rb_right);
 574		else
 575			return -EEXIST;
 576	}
 577
 578	rb_link_node(&rgd->rd_node, parent, newn);
 579	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 580	sdp->sd_rgrps++;
 581	return 0;
 582}
 583
 584/**
 585 * read_rindex_entry - Pull in a new resource index entry from the disk
 586 * @ip: Pointer to the rindex inode
 587 *
 588 * Returns: 0 on success, > 0 on EOF, error code otherwise
 589 */
 590
 591static int read_rindex_entry(struct gfs2_inode *ip)
 592{
 593	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 594	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 595	struct gfs2_rindex buf;
 596	int error;
 597	struct gfs2_rgrpd *rgd;
 598
 599	if (pos >= i_size_read(&ip->i_inode))
 600		return 1;
 601
 602	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 603				   sizeof(struct gfs2_rindex));
 604
 605	if (error != sizeof(struct gfs2_rindex))
 606		return (error == 0) ? 1 : error;
 607
 608	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 609	error = -ENOMEM;
 610	if (!rgd)
 611		return error;
 612
 613	rgd->rd_sbd = sdp;
 614	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 615	rgd->rd_length = be32_to_cpu(buf.ri_length);
 616	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 617	rgd->rd_data = be32_to_cpu(buf.ri_data);
 618	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 619
 620	error = compute_bitstructs(rgd);
 621	if (error)
 622		goto fail;
 623
 624	error = gfs2_glock_get(sdp, rgd->rd_addr,
 625			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 626	if (error)
 627		goto fail;
 628
 629	rgd->rd_gl->gl_object = rgd;
 630	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
 
 
 
 
 631	if (rgd->rd_data > sdp->sd_max_rg_data)
 632		sdp->sd_max_rg_data = rgd->rd_data;
 633	spin_lock(&sdp->sd_rindex_spin);
 634	error = rgd_insert(rgd);
 635	spin_unlock(&sdp->sd_rindex_spin);
 636	if (!error)
 
 637		return 0;
 
 638
 639	error = 0; /* someone else read in the rgrp; free it and ignore it */
 
 640	gfs2_glock_put(rgd->rd_gl);
 641
 642fail:
 643	kfree(rgd->rd_bits);
 
 644	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 645	return error;
 646}
 647
 648/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649 * gfs2_ri_update - Pull in a new resource index from the disk
 650 * @ip: pointer to the rindex inode
 651 *
 652 * Returns: 0 on successful update, error code otherwise
 653 */
 654
 655static int gfs2_ri_update(struct gfs2_inode *ip)
 656{
 657	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 658	int error;
 659
 660	do {
 661		error = read_rindex_entry(ip);
 662	} while (error == 0);
 663
 664	if (error < 0)
 665		return error;
 666
 
 
 
 
 
 
 667	sdp->sd_rindex_uptodate = 1;
 668	return 0;
 669}
 670
 671/**
 672 * gfs2_rindex_update - Update the rindex if required
 673 * @sdp: The GFS2 superblock
 674 *
 675 * We grab a lock on the rindex inode to make sure that it doesn't
 676 * change whilst we are performing an operation. We keep this lock
 677 * for quite long periods of time compared to other locks. This
 678 * doesn't matter, since it is shared and it is very, very rarely
 679 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
 680 *
 681 * This makes sure that we're using the latest copy of the resource index
 682 * special file, which might have been updated if someone expanded the
 683 * filesystem (via gfs2_grow utility), which adds new resource groups.
 684 *
 685 * Returns: 0 on succeess, error code otherwise
 686 */
 687
 688int gfs2_rindex_update(struct gfs2_sbd *sdp)
 689{
 690	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
 691	struct gfs2_glock *gl = ip->i_gl;
 692	struct gfs2_holder ri_gh;
 693	int error = 0;
 694	int unlock_required = 0;
 695
 696	/* Read new copy from disk if we don't have the latest */
 697	if (!sdp->sd_rindex_uptodate) {
 698		if (!gfs2_glock_is_locked_by_me(gl)) {
 699			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
 700			if (error)
 701				return error;
 702			unlock_required = 1;
 703		}
 704		if (!sdp->sd_rindex_uptodate)
 705			error = gfs2_ri_update(ip);
 706		if (unlock_required)
 707			gfs2_glock_dq_uninit(&ri_gh);
 708	}
 709
 710	return error;
 711}
 712
 713static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
 714{
 715	const struct gfs2_rgrp *str = buf;
 716	u32 rg_flags;
 717
 718	rg_flags = be32_to_cpu(str->rg_flags);
 719	rg_flags &= ~GFS2_RDF_MASK;
 720	rgd->rd_flags &= GFS2_RDF_MASK;
 721	rgd->rd_flags |= rg_flags;
 722	rgd->rd_free = be32_to_cpu(str->rg_free);
 723	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
 724	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
 
 
 
 
 
 
 
 
 
 
 
 
 
 725}
 726
 727static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
 728{
 
 729	struct gfs2_rgrp *str = buf;
 
 730
 731	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
 732	str->rg_free = cpu_to_be32(rgd->rd_free);
 733	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
 734	str->__pad = cpu_to_be32(0);
 
 
 
 735	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
 
 
 
 
 
 
 
 736	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737}
 738
 739/**
 740 * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps
 741 * @gh: The glock holder for the resource group
 742 *
 743 * Read in all of a Resource Group's header and bitmap blocks.
 744 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
 745 *
 746 * Returns: errno
 747 */
 748
 749int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
 750{
 751	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
 752	struct gfs2_sbd *sdp = rgd->rd_sbd;
 753	struct gfs2_glock *gl = rgd->rd_gl;
 754	unsigned int length = rgd->rd_length;
 755	struct gfs2_bitmap *bi;
 756	unsigned int x, y;
 757	int error;
 758
 
 
 
 759	for (x = 0; x < length; x++) {
 760		bi = rgd->rd_bits + x;
 761		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
 762		if (error)
 763			goto fail;
 764	}
 765
 766	for (y = length; y--;) {
 767		bi = rgd->rd_bits + y;
 768		error = gfs2_meta_wait(sdp, bi->bi_bh);
 769		if (error)
 770			goto fail;
 771		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
 772					      GFS2_METATYPE_RG)) {
 773			error = -EIO;
 774			goto fail;
 775		}
 776	}
 777
 778	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
 779		for (x = 0; x < length; x++)
 780			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
 781		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
 782		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
 783		rgd->rd_free_clone = rgd->rd_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	}
 785
 786	return 0;
 787
 788fail:
 789	while (x--) {
 790		bi = rgd->rd_bits + x;
 791		brelse(bi->bi_bh);
 792		bi->bi_bh = NULL;
 793		gfs2_assert_warn(sdp, !bi->bi_clone);
 794	}
 795
 796	return error;
 797}
 798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 799/**
 800 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
 801 * @gh: The glock holder for the resource group
 802 *
 803 */
 804
 805void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
 806{
 807	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
 808	int x, length = rgd->rd_length;
 809
 810	for (x = 0; x < length; x++) {
 811		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 812		brelse(bi->bi_bh);
 813		bi->bi_bh = NULL;
 
 
 814	}
 815
 816}
 817
 818int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
 819			     struct buffer_head *bh,
 820			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
 821{
 822	struct super_block *sb = sdp->sd_vfs;
 823	struct block_device *bdev = sb->s_bdev;
 824	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
 825					   bdev_logical_block_size(sb->s_bdev);
 826	u64 blk;
 827	sector_t start = 0;
 828	sector_t nr_sects = 0;
 829	int rv;
 830	unsigned int x;
 831	u32 trimmed = 0;
 832	u8 diff;
 833
 834	for (x = 0; x < bi->bi_len; x++) {
 835		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
 836		clone += bi->bi_offset;
 837		clone += x;
 838		if (bh) {
 839			const u8 *orig = bh->b_data + bi->bi_offset + x;
 840			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
 841		} else {
 842			diff = ~(*clone | (*clone >> 1));
 843		}
 844		diff &= 0x55;
 845		if (diff == 0)
 846			continue;
 847		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 848		blk *= sects_per_blk; /* convert to sectors */
 849		while(diff) {
 850			if (diff & 1) {
 851				if (nr_sects == 0)
 852					goto start_new_extent;
 853				if ((start + nr_sects) != blk) {
 854					if (nr_sects >= minlen) {
 855						rv = blkdev_issue_discard(bdev,
 856							start, nr_sects,
 857							GFP_NOFS, 0);
 858						if (rv)
 859							goto fail;
 860						trimmed += nr_sects;
 861					}
 862					nr_sects = 0;
 863start_new_extent:
 864					start = blk;
 865				}
 866				nr_sects += sects_per_blk;
 867			}
 868			diff >>= 2;
 869			blk += sects_per_blk;
 870		}
 871	}
 872	if (nr_sects >= minlen) {
 873		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
 874		if (rv)
 875			goto fail;
 876		trimmed += nr_sects;
 877	}
 878	if (ptrimmed)
 879		*ptrimmed = trimmed;
 880	return 0;
 881
 882fail:
 883	if (sdp->sd_args.ar_discard)
 884		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
 885	sdp->sd_args.ar_discard = 0;
 886	return -EIO;
 887}
 888
 889/**
 890 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
 891 * @filp: Any file on the filesystem
 892 * @argp: Pointer to the arguments (also used to pass result)
 893 *
 894 * Returns: 0 on success, otherwise error code
 895 */
 896
 897int gfs2_fitrim(struct file *filp, void __user *argp)
 898{
 899	struct inode *inode = filp->f_dentry->d_inode;
 900	struct gfs2_sbd *sdp = GFS2_SB(inode);
 901	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
 902	struct buffer_head *bh;
 903	struct gfs2_rgrpd *rgd;
 904	struct gfs2_rgrpd *rgd_end;
 905	struct gfs2_holder gh;
 906	struct fstrim_range r;
 907	int ret = 0;
 908	u64 amt;
 909	u64 trimmed = 0;
 
 910	unsigned int x;
 
 911
 912	if (!capable(CAP_SYS_ADMIN))
 913		return -EPERM;
 914
 915	if (!blk_queue_discard(q))
 
 
 
 916		return -EOPNOTSUPP;
 917
 918	if (argp == NULL) {
 919		r.start = 0;
 920		r.len = ULLONG_MAX;
 921		r.minlen = 0;
 922	} else if (copy_from_user(&r, argp, sizeof(r)))
 923		return -EFAULT;
 924
 925	ret = gfs2_rindex_update(sdp);
 926	if (ret)
 927		return ret;
 928
 929	rgd = gfs2_blk2rgrpd(sdp, r.start, 0);
 930	rgd_end = gfs2_blk2rgrpd(sdp, r.start + r.len, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 931
 932	while (1) {
 933
 934		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
 
 935		if (ret)
 936			goto out;
 937
 938		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
 939			/* Trim each bitmap in the rgrp */
 940			for (x = 0; x < rgd->rd_length; x++) {
 941				struct gfs2_bitmap *bi = rgd->rd_bits + x;
 942				ret = gfs2_rgrp_send_discards(sdp, rgd->rd_data0, NULL, bi, r.minlen, &amt);
 
 
 
 
 943				if (ret) {
 944					gfs2_glock_dq_uninit(&gh);
 945					goto out;
 946				}
 947				trimmed += amt;
 948			}
 949
 950			/* Mark rgrp as having been trimmed */
 951			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
 952			if (ret == 0) {
 953				bh = rgd->rd_bits[0].bi_bh;
 
 954				rgd->rd_flags |= GFS2_RGF_TRIMMED;
 955				gfs2_trans_add_bh(rgd->rd_gl, bh, 1);
 956				gfs2_rgrp_out(rgd, bh->b_data);
 
 957				gfs2_trans_end(sdp);
 958			}
 959		}
 960		gfs2_glock_dq_uninit(&gh);
 961
 962		if (rgd == rgd_end)
 963			break;
 964
 965		rgd = gfs2_rgrpd_get_next(rgd);
 966	}
 967
 968out:
 969	r.len = trimmed << 9;
 970	if (argp && copy_to_user(argp, &r, sizeof(r)))
 971		return -EFAULT;
 972
 973	return ret;
 974}
 975
 976/**
 977 * gfs2_qadata_get - get the struct gfs2_qadata structure for an inode
 978 * @ip: the incore GFS2 inode structure
 979 *
 980 * Returns: the struct gfs2_qadata
 981 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982
 983struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984{
 985	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 986	int error;
 987	BUG_ON(ip->i_qadata != NULL);
 988	ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS);
 989	error = gfs2_rindex_update(sdp);
 990	if (error)
 991		fs_warn(sdp, "rindex update returns %d\n", error);
 992	return ip->i_qadata;
 
 
 
 
 993}
 994
 995/**
 996 * gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode
 997 * @ip: the incore GFS2 inode structure
 
 
 998 *
 999 * Returns: the struct gfs2_qadata
1000 */
1001
1002static int gfs2_blkrsv_get(struct gfs2_inode *ip)
 
1003{
1004	BUG_ON(ip->i_res != NULL);
1005	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
1006	if (!ip->i_res)
1007		return -ENOMEM;
1008	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009}
1010
1011/**
1012 * try_rgrp_fit - See if a given reservation will fit in a given RG
1013 * @rgd: the RG data
1014 * @ip: the inode
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015 *
1016 * If there's room for the requested blocks to be allocated from the RG:
 
 
 
 
1017 *
1018 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
1019 */
1020
1021static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip)
 
 
 
1022{
1023	const struct gfs2_blkreserv *rs = ip->i_res;
 
 
1024
1025	if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1026		return 0;
1027	if (rgd->rd_free_clone >= rs->rs_requested)
1028		return 1;
1029	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030}
1031
1032static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033{
1034	return (bi->bi_start * GFS2_NBBY) + blk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037/**
1038 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1039 * @rgd: The rgrp
1040 * @last_unlinked: block address of the last dinode we unlinked
1041 * @skip: block address we should explicitly not unlink
1042 *
1043 * Returns: 0 if no error
1044 *          The inode, if one has been found, in inode.
1045 */
1046
1047static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1048{
1049	u32 goal = 0, block;
1050	u64 no_addr;
1051	struct gfs2_sbd *sdp = rgd->rd_sbd;
1052	struct gfs2_glock *gl;
1053	struct gfs2_inode *ip;
1054	int error;
1055	int found = 0;
1056	struct gfs2_bitmap *bi;
1057
1058	while (goal < rgd->rd_data) {
1059		down_write(&sdp->sd_log_flush_lock);
1060		block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi);
1061		up_write(&sdp->sd_log_flush_lock);
1062		if (block == BFITNOENT)
 
1063			break;
1064
1065		block = gfs2_bi2rgd_blk(bi, block);
1066		/* rgblk_search can return a block < goal, so we need to
1067		   keep it marching forward. */
1068		no_addr = block + rgd->rd_data0;
1069		goal = max(block + 1, goal + 1);
1070		if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
1071			continue;
1072		if (no_addr == skip)
1073			continue;
1074		*last_unlinked = no_addr;
1075
1076		error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
1077		if (error)
1078			continue;
1079
1080		/* If the inode is already in cache, we can ignore it here
1081		 * because the existing inode disposal code will deal with
1082		 * it when all refs have gone away. Accessing gl_object like
1083		 * this is not safe in general. Here it is ok because we do
1084		 * not dereference the pointer, and we only need an approx
1085		 * answer to whether it is NULL or not.
1086		 */
1087		ip = gl->gl_object;
1088
1089		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1090			gfs2_glock_put(gl);
1091		else
1092			found++;
1093
1094		/* Limit reclaim to sensible number of tasks */
1095		if (found > NR_CPUS)
1096			return;
1097	}
1098
1099	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1100	return;
1101}
1102
1103/**
1104 * get_local_rgrp - Choose and lock a rgrp for allocation
1105 * @ip: the inode to reserve space for
1106 * @last_unlinked: the last unlinked block
1107 *
1108 * Try to acquire rgrp in way which avoids contending with others.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109 *
1110 * Returns: errno
1111 */
1112
1113static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
1114{
1115	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1116	struct gfs2_rgrpd *rgd, *begin = NULL;
1117	struct gfs2_blkreserv *rs = ip->i_res;
1118	int error, rg_locked, flags = LM_FLAG_TRY;
1119	int loops = 0;
1120
1121	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal))
1122		rgd = begin = ip->i_rgd;
1123	else
1124		rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1125
1126	if (rgd == NULL)
1127		return -EBADSLT;
1128
1129	while (loops < 3) {
1130		rg_locked = 0;
 
 
1131
1132		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1133			rg_locked = 1;
1134			error = 0;
1135		} else {
1136			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1137						   flags, &rs->rs_rgd_gh);
1138		}
1139		switch (error) {
1140		case 0:
1141			if (try_rgrp_fit(rgd, ip)) {
1142				ip->i_rgd = rgd;
1143				return 0;
1144			}
1145			if (rgd->rd_flags & GFS2_RDF_CHECK)
1146				try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1147			if (!rg_locked)
1148				gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1149			/* fall through */
1150		case GLR_TRYFAILED:
1151			rgd = gfs2_rgrpd_get_next(rgd);
1152			if (rgd == begin) {
1153				flags = 0;
1154				loops++;
1155			}
1156			break;
1157		default:
1158			return error;
1159		}
1160	}
1161
1162	return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
1163}
1164
1165static void gfs2_blkrsv_put(struct gfs2_inode *ip)
 
 
 
 
 
 
 
1166{
1167	BUG_ON(ip->i_res == NULL);
1168	kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
1169	ip->i_res = NULL;
 
 
 
 
 
 
1170}
1171
1172/**
1173 * gfs2_inplace_reserve - Reserve space in the filesystem
1174 * @ip: the inode to reserve space for
1175 * @requested: the number of blocks to be reserved
1176 *
1177 * Returns: errno
 
 
 
 
 
 
 
1178 */
1179
1180int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
1181{
1182	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1183	struct gfs2_blkreserv *rs;
1184	int error;
 
 
1185	u64 last_unlinked = NO_BLOCK;
1186	int tries = 0;
 
 
1187
1188	error = gfs2_blkrsv_get(ip);
1189	if (error)
1190		return error;
1191
1192	rs = ip->i_res;
1193	rs->rs_requested = requested;
1194	if (gfs2_assert_warn(sdp, requested)) {
1195		error = -EINVAL;
1196		goto out;
1197	}
 
 
 
 
 
 
 
 
 
 
 
1198
1199	do {
1200		error = get_local_rgrp(ip, &last_unlinked);
1201		if (error != -ENOSPC)
1202			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203		/* Check that fs hasn't grown if writing to rindex */
1204		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1205			error = gfs2_ri_update(ip);
1206			if (error)
1207				break;
1208			continue;
1209		}
1210		/* Flushing the log may release space */
1211		gfs2_log_flush(sdp, NULL);
1212	} while (tries++ < 3);
 
 
 
 
 
1213
1214out:
1215	if (error)
1216		gfs2_blkrsv_put(ip);
1217	return error;
1218}
1219
1220/**
1221 * gfs2_inplace_release - release an inplace reservation
1222 * @ip: the inode the reservation was taken out on
1223 *
1224 * Release a reservation made by gfs2_inplace_reserve().
1225 */
1226
1227void gfs2_inplace_release(struct gfs2_inode *ip)
1228{
1229	struct gfs2_blkreserv *rs = ip->i_res;
1230
1231	if (rs->rs_rgd_gh.gh_gl)
1232		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1233	gfs2_blkrsv_put(ip);
1234}
1235
1236/**
1237 * gfs2_get_block_type - Check a block in a RG is of given type
1238 * @rgd: the resource group holding the block
1239 * @block: the block number
1240 *
1241 * Returns: The block type (GFS2_BLKST_*)
1242 */
1243
1244static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1245{
1246	struct gfs2_bitmap *bi = NULL;
1247	u32 length, rgrp_block, buf_block;
1248	unsigned int buf;
1249	unsigned char type;
1250
1251	length = rgd->rd_length;
1252	rgrp_block = block - rgd->rd_data0;
1253
1254	for (buf = 0; buf < length; buf++) {
1255		bi = rgd->rd_bits + buf;
1256		if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1257			break;
1258	}
1259
1260	gfs2_assert(rgd->rd_sbd, buf < length);
1261	buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1262
1263	type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1264			   bi->bi_len, buf_block);
1265
1266	return type;
1267}
1268
1269/**
1270 * rgblk_search - find a block in @state
1271 * @rgd: the resource group descriptor
1272 * @goal: the goal block within the RG (start here to search for avail block)
1273 * @state: GFS2_BLKST_XXX the before-allocation state to find
1274 * @rbi: address of the pointer to the bitmap containing the block found
1275 *
1276 * Walk rgrp's bitmap to find bits that represent a block in @state.
1277 *
1278 * This function never fails, because we wouldn't call it unless we
1279 * know (from reservation results, etc.) that a block is available.
1280 *
1281 * Scope of @goal is just within rgrp, not the whole filesystem.
1282 * Scope of @returned block is just within bitmap, not the whole filesystem.
1283 *
1284 * Returns: the block number found relative to the bitmap rbi
1285 */
1286
1287static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, unsigned char state,
1288			struct gfs2_bitmap **rbi)
1289{
1290	struct gfs2_bitmap *bi = NULL;
1291	const u32 length = rgd->rd_length;
1292	u32 biblk = BFITNOENT;
1293	unsigned int buf, x;
1294	const u8 *buffer = NULL;
1295
1296	*rbi = NULL;
1297	/* Find bitmap block that contains bits for goal block */
1298	for (buf = 0; buf < length; buf++) {
1299		bi = rgd->rd_bits + buf;
1300		/* Convert scope of "goal" from rgrp-wide to within found bit block */
1301		if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1302			goal -= bi->bi_start * GFS2_NBBY;
1303			goto do_search;
1304		}
1305	}
1306	buf = 0;
1307	goal = 0;
1308
1309do_search:
1310	/* Search (up to entire) bitmap in this rgrp for allocatable block.
1311	   "x <= length", instead of "x < length", because we typically start
1312	   the search in the middle of a bit block, but if we can't find an
1313	   allocatable block anywhere else, we want to be able wrap around and
1314	   search in the first part of our first-searched bit block.  */
1315	for (x = 0; x <= length; x++) {
1316		bi = rgd->rd_bits + buf;
1317
1318		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1319		    (state == GFS2_BLKST_FREE))
1320			goto skip;
1321
1322		/* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1323		   bitmaps, so we must search the originals for that. */
1324		buffer = bi->bi_bh->b_data + bi->bi_offset;
1325		WARN_ON(!buffer_uptodate(bi->bi_bh));
1326		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1327			buffer = bi->bi_clone + bi->bi_offset;
1328
1329		biblk = gfs2_bitfit(buffer, bi->bi_len, goal, state);
1330		if (biblk != BFITNOENT)
1331			break;
1332
1333		if ((goal == 0) && (state == GFS2_BLKST_FREE))
1334			set_bit(GBF_FULL, &bi->bi_flags);
1335
1336		/* Try next bitmap block (wrap back to rgrp header if at end) */
1337skip:
1338		buf++;
1339		buf %= length;
1340		goal = 0;
1341	}
1342
1343	if (biblk != BFITNOENT)
1344		*rbi = bi;
1345
1346	return biblk;
1347}
1348
1349/**
1350 * gfs2_alloc_extent - allocate an extent from a given bitmap
1351 * @rgd: the resource group descriptor
1352 * @bi: the bitmap within the rgrp
1353 * @blk: the block within the bitmap
1354 * @dinode: TRUE if the first block we allocate is for a dinode
1355 * @n: The extent length
1356 *
1357 * Add the found bitmap buffer to the transaction.
1358 * Set the found bits to @new_state to change block's allocation state.
1359 * Returns: starting block number of the extent (fs scope)
1360 */
1361static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi,
1362			     u32 blk, bool dinode, unsigned int *n)
1363{
 
1364	const unsigned int elen = *n;
1365	u32 goal;
1366	const u8 *buffer = NULL;
1367
1368	*n = 0;
1369	buffer = bi->bi_bh->b_data + bi->bi_offset;
1370	gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1371	gfs2_setbit(rgd, bi->bi_clone, bi, blk,
1372		    dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1373	(*n)++;
1374	goal = blk;
1375	while (*n < elen) {
1376		goal++;
1377		if (goal >= (bi->bi_len * GFS2_NBBY))
1378			break;
1379		if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1380		    GFS2_BLKST_FREE)
1381			break;
1382		gfs2_setbit(rgd, bi->bi_clone, bi, goal, GFS2_BLKST_USED);
 
1383		(*n)++;
 
1384	}
1385	blk = gfs2_bi2rgd_blk(bi, blk);
1386	rgd->rd_last_alloc = blk + *n - 1;
1387	return rgd->rd_data0 + blk;
1388}
1389
1390/**
1391 * rgblk_free - Change alloc state of given block(s)
1392 * @sdp: the filesystem
 
1393 * @bstart: the start of a run of blocks to free
1394 * @blen: the length of the block run (all must lie within ONE RG!)
1395 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1396 *
1397 * Returns:  Resource group containing the block(s)
1398 */
1399
1400static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1401				     u32 blen, unsigned char new_state)
1402{
1403	struct gfs2_rgrpd *rgd;
1404	struct gfs2_bitmap *bi = NULL;
1405	u32 length, rgrp_blk, buf_blk;
1406	unsigned int buf;
1407
1408	rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1409	if (!rgd) {
1410		if (gfs2_consist(sdp))
1411			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1412		return NULL;
1413	}
1414
1415	length = rgd->rd_length;
1416
1417	rgrp_blk = bstart - rgd->rd_data0;
1418
 
 
 
1419	while (blen--) {
1420		for (buf = 0; buf < length; buf++) {
1421			bi = rgd->rd_bits + buf;
1422			if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1423				break;
1424		}
1425
1426		gfs2_assert(rgd->rd_sbd, buf < length);
1427
1428		buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1429		rgrp_blk++;
1430
1431		if (!bi->bi_clone) {
1432			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1433					       GFP_NOFS | __GFP_NOFAIL);
1434			memcpy(bi->bi_clone + bi->bi_offset,
1435			       bi->bi_bh->b_data + bi->bi_offset,
1436			       bi->bi_len);
1437		}
1438		gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1439		gfs2_setbit(rgd, NULL, bi, buf_blk, new_state);
1440	}
1441
1442	return rgd;
1443}
1444
1445/**
1446 * gfs2_rgrp_dump - print out an rgrp
1447 * @seq: The iterator
1448 * @gl: The glock in question
 
1449 *
1450 */
1451
1452int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
 
1453{
1454	const struct gfs2_rgrpd *rgd = gl->gl_object;
1455	if (rgd == NULL)
1456		return 0;
1457	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
 
 
1458		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1459		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1460	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1461}
1462
1463static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1464{
1465	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
 
1466	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1467		(unsigned long long)rgd->rd_addr);
1468	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1469	gfs2_rgrp_dump(NULL, rgd->rd_gl);
 
1470	rgd->rd_flags |= GFS2_RDF_ERROR;
1471}
1472
1473/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
1475 * @ip: the inode to allocate the block for
1476 * @bn: Used to return the starting block number
1477 * @ndata: requested number of blocks/extent length (value/result)
1478 * @dinode: 1 if we're allocating a dinode block, else 0
1479 * @generation: the generation number of the inode
1480 *
1481 * Returns: 0 or error
1482 */
1483
1484int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
1485		      bool dinode, u64 *generation)
1486{
1487	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1488	struct buffer_head *dibh;
1489	struct gfs2_rgrpd *rgd;
1490	unsigned int ndata;
1491	u32 goal, blk; /* block, within the rgrp scope */
1492	u64 block; /* block, within the file system scope */
1493	int error;
1494	struct gfs2_bitmap *bi;
1495
1496	/* Only happens if there is a bug in gfs2, return something distinctive
1497	 * to ensure that it is noticed.
1498	 */
1499	if (ip->i_res == NULL)
1500		return -ECANCELED;
1501
1502	rgd = ip->i_rgd;
1503
1504	if (!dinode && rgrp_contains_block(rgd, ip->i_goal))
1505		goal = ip->i_goal - rgd->rd_data0;
1506	else
1507		goal = rgd->rd_last_alloc;
1508
1509	blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi);
 
 
 
1510
1511	/* Since all blocks are reserved in advance, this shouldn't happen */
1512	if (blk == BFITNOENT)
 
 
 
 
1513		goto rgrp_error;
 
1514
1515	block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks);
1516	ndata = *nblocks;
1517	if (dinode)
1518		ndata--;
1519
1520	if (!dinode) {
1521		ip->i_goal = block + ndata - 1;
1522		error = gfs2_meta_inode_buffer(ip, &dibh);
1523		if (error == 0) {
1524			struct gfs2_dinode *di =
1525				(struct gfs2_dinode *)dibh->b_data;
1526			gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1527			di->di_goal_meta = di->di_goal_data =
1528				cpu_to_be64(ip->i_goal);
1529			brelse(dibh);
1530		}
1531	}
1532	if (rgd->rd_free < *nblocks)
 
 
 
 
1533		goto rgrp_error;
1534
1535	rgd->rd_free -= *nblocks;
 
 
 
 
 
 
1536	if (dinode) {
1537		rgd->rd_dinodes++;
1538		*generation = rgd->rd_igeneration++;
1539		if (*generation == 0)
1540			*generation = rgd->rd_igeneration++;
1541	}
1542
1543	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1544	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1545
1546	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
1547	if (dinode)
1548		gfs2_trans_add_unrevoke(sdp, block, 1);
1549
1550	/*
1551	 * This needs reviewing to see why we cannot do the quota change
1552	 * at this point in the dinode case.
1553	 */
1554	if (ndata)
1555		gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
1556				  ip->i_inode.i_gid);
1557
1558	rgd->rd_free_clone -= *nblocks;
1559	trace_gfs2_block_alloc(ip, rgd, block, *nblocks,
1560			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1561	*bn = block;
1562	return 0;
1563
1564rgrp_error:
1565	gfs2_rgrp_error(rgd);
 
1566	return -EIO;
1567}
1568
1569/**
1570 * __gfs2_free_blocks - free a contiguous run of block(s)
1571 * @ip: the inode these blocks are being freed from
 
1572 * @bstart: first block of a run of contiguous blocks
1573 * @blen: the length of the block run
1574 * @meta: 1 if the blocks represent metadata
1575 *
1576 */
1577
1578void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
 
1579{
1580	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1581	struct gfs2_rgrpd *rgd;
1582
1583	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1584	if (!rgd)
1585		return;
1586	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
1587	rgd->rd_free += blen;
1588	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
1589	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1590	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1591
1592	/* Directories keep their data in the metadata address space */
1593	if (meta || ip->i_depth)
1594		gfs2_meta_wipe(ip, bstart, blen);
1595}
1596
1597/**
1598 * gfs2_free_meta - free a contiguous run of data block(s)
1599 * @ip: the inode these blocks are being freed from
 
1600 * @bstart: first block of a run of contiguous blocks
1601 * @blen: the length of the block run
1602 *
1603 */
1604
1605void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
 
1606{
1607	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1608
1609	__gfs2_free_blocks(ip, bstart, blen, 1);
1610	gfs2_statfs_change(sdp, 0, +blen, 0);
1611	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1612}
1613
1614void gfs2_unlink_di(struct inode *inode)
1615{
1616	struct gfs2_inode *ip = GFS2_I(inode);
1617	struct gfs2_sbd *sdp = GFS2_SB(inode);
1618	struct gfs2_rgrpd *rgd;
1619	u64 blkno = ip->i_no_addr;
1620
1621	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1622	if (!rgd)
1623		return;
 
 
1624	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
1625	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1626	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
 
1627}
1628
1629static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1630{
1631	struct gfs2_sbd *sdp = rgd->rd_sbd;
1632	struct gfs2_rgrpd *tmp_rgd;
1633
1634	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1635	if (!tmp_rgd)
1636		return;
1637	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1638
 
 
1639	if (!rgd->rd_dinodes)
1640		gfs2_consist_rgrpd(rgd);
1641	rgd->rd_dinodes--;
1642	rgd->rd_free++;
1643
1644	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1645	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
 
1646
1647	gfs2_statfs_change(sdp, 0, +1, -1);
1648}
1649
1650
1651void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1652{
1653	gfs2_free_uninit_di(rgd, ip->i_no_addr);
1654	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1655	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1656	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1657}
1658
1659/**
1660 * gfs2_check_blk_type - Check the type of a block
1661 * @sdp: The superblock
1662 * @no_addr: The block number to check
1663 * @type: The block type we are looking for
1664 *
 
 
 
 
1665 * Returns: 0 if the block type matches the expected type
1666 *          -ESTALE if it doesn't match
1667 *          or -ve errno if something went wrong while checking
1668 */
1669
1670int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1671{
1672	struct gfs2_rgrpd *rgd;
1673	struct gfs2_holder rgd_gh;
 
1674	int error = -EINVAL;
1675
1676	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
1677	if (!rgd)
1678		goto fail;
1679
1680	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1681	if (error)
1682		goto fail;
1683
1684	if (gfs2_get_block_type(rgd, no_addr) != type)
1685		error = -ESTALE;
 
 
 
 
 
 
 
 
 
 
 
1686
1687	gfs2_glock_dq_uninit(&rgd_gh);
 
1688fail:
1689	return error;
1690}
1691
1692/**
1693 * gfs2_rlist_add - add a RG to a list of RGs
1694 * @ip: the inode
1695 * @rlist: the list of resource groups
1696 * @block: the block
1697 *
1698 * Figure out what RG a block belongs to and add that RG to the list
1699 *
1700 * FIXME: Don't use NOFAIL
1701 *
1702 */
1703
1704void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
1705		    u64 block)
1706{
1707	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1708	struct gfs2_rgrpd *rgd;
1709	struct gfs2_rgrpd **tmp;
1710	unsigned int new_space;
1711	unsigned int x;
1712
1713	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1714		return;
1715
1716	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
1717		rgd = ip->i_rgd;
1718	else
 
 
 
 
 
1719		rgd = gfs2_blk2rgrpd(sdp, block, 1);
 
 
 
 
 
 
1720	if (!rgd) {
1721		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
 
1722		return;
1723	}
1724	ip->i_rgd = rgd;
1725
1726	for (x = 0; x < rlist->rl_rgrps; x++)
1727		if (rlist->rl_rgd[x] == rgd)
 
 
1728			return;
 
 
1729
1730	if (rlist->rl_rgrps == rlist->rl_space) {
1731		new_space = rlist->rl_space + 10;
1732
1733		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1734			      GFP_NOFS | __GFP_NOFAIL);
1735
1736		if (rlist->rl_rgd) {
1737			memcpy(tmp, rlist->rl_rgd,
1738			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1739			kfree(rlist->rl_rgd);
1740		}
1741
1742		rlist->rl_space = new_space;
1743		rlist->rl_rgd = tmp;
1744	}
1745
1746	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1747}
1748
1749/**
1750 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1751 *      and initialize an array of glock holders for them
1752 * @rlist: the list of resource groups
1753 * @state: the lock state to acquire the RG lock in
 
1754 *
1755 * FIXME: Don't use NOFAIL
1756 *
1757 */
1758
1759void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
 
1760{
1761	unsigned int x;
1762
1763	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1764				GFP_NOFS | __GFP_NOFAIL);
 
1765	for (x = 0; x < rlist->rl_rgrps; x++)
1766		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1767				state, 0,
1768				&rlist->rl_ghs[x]);
1769}
1770
1771/**
1772 * gfs2_rlist_free - free a resource group list
1773 * @list: the list of resource groups
1774 *
1775 */
1776
1777void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1778{
1779	unsigned int x;
1780
1781	kfree(rlist->rl_rgd);
1782
1783	if (rlist->rl_ghs) {
1784		for (x = 0; x < rlist->rl_rgrps; x++)
1785			gfs2_holder_uninit(&rlist->rl_ghs[x]);
1786		kfree(rlist->rl_ghs);
 
1787	}
1788}
1789
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   4 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
 
 
 
 
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/slab.h>
  10#include <linux/spinlock.h>
  11#include <linux/completion.h>
  12#include <linux/buffer_head.h>
  13#include <linux/fs.h>
  14#include <linux/gfs2_ondisk.h>
  15#include <linux/prefetch.h>
  16#include <linux/blkdev.h>
  17#include <linux/rbtree.h>
  18#include <linux/random.h>
  19
  20#include "gfs2.h"
  21#include "incore.h"
  22#include "glock.h"
  23#include "glops.h"
  24#include "lops.h"
  25#include "meta_io.h"
  26#include "quota.h"
  27#include "rgrp.h"
  28#include "super.h"
  29#include "trans.h"
  30#include "util.h"
  31#include "log.h"
  32#include "inode.h"
  33#include "trace_gfs2.h"
  34#include "dir.h"
  35
  36#define BFITNOENT ((u32)~0)
  37#define NO_BLOCK ((u64)~0)
  38
  39struct gfs2_rbm {
  40	struct gfs2_rgrpd *rgd;
  41	u32 offset;		/* The offset is bitmap relative */
  42	int bii;		/* Bitmap index */
  43};
  44
  45static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm)
  46{
  47	return rbm->rgd->rd_bits + rbm->bii;
  48}
  49
  50static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm)
  51{
  52	BUG_ON(rbm->offset >= rbm->rgd->rd_data);
  53	return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) +
  54		rbm->offset;
  55}
  56
  57/*
  58 * These routines are used by the resource group routines (rgrp.c)
  59 * to keep track of block allocation.  Each block is represented by two
  60 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  61 *
  62 * 0 = Free
  63 * 1 = Used (not metadata)
  64 * 2 = Unlinked (still in use) inode
  65 * 3 = Used (metadata)
  66 */
  67
  68struct gfs2_extent {
  69	struct gfs2_rbm rbm;
  70	u32 len;
  71};
  72
  73static const char valid_change[16] = {
  74	        /* current */
  75	/* n */ 0, 1, 1, 1,
  76	/* e */ 1, 0, 0, 0,
  77	/* w */ 0, 0, 0, 1,
  78	        1, 0, 0, 0
  79};
  80
  81static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  82			 struct gfs2_blkreserv *rs, bool nowrap);
  83
  84
  85/**
  86 * gfs2_setbit - Set a bit in the bitmaps
  87 * @rbm: The position of the bit to set
  88 * @do_clone: Also set the clone bitmap, if it exists
 
 
  89 * @new_state: the new state of the block
  90 *
  91 */
  92
  93static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
 
  94			       unsigned char new_state)
  95{
  96	unsigned char *byte1, *byte2, *end, cur_state;
  97	struct gfs2_bitmap *bi = rbm_bi(rbm);
  98	unsigned int buflen = bi->bi_bytes;
  99	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 100
 101	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 102	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
 103
 104	BUG_ON(byte1 >= end);
 105
 106	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
 107
 108	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 109		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
 110
 111		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
 112			rbm->offset, cur_state, new_state);
 113		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
 114			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
 115			(unsigned long long)bi->bi_bh->b_blocknr);
 116		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
 117			bi->bi_offset, bi->bi_bytes,
 118			(unsigned long long)gfs2_rbm_to_block(rbm));
 119		dump_stack();
 120		gfs2_consist_rgrpd(rbm->rgd);
 121		return;
 122	}
 123	*byte1 ^= (cur_state ^ new_state) << bit;
 124
 125	if (do_clone && bi->bi_clone) {
 126		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 127		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 128		*byte2 ^= (cur_state ^ new_state) << bit;
 129	}
 130}
 131
 132/**
 133 * gfs2_testbit - test a bit in the bitmaps
 134 * @rbm: The bit to test
 135 * @use_clone: If true, test the clone bitmap, not the official bitmap.
 136 *
 137 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
 138 * not the "real" bitmaps, to avoid allocating recently freed blocks.
 139 *
 140 * Returns: The two bit block state of the requested bit
 141 */
 142
 143static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
 
 
 144{
 145	struct gfs2_bitmap *bi = rbm_bi(rbm);
 146	const u8 *buffer;
 147	const u8 *byte;
 148	unsigned int bit;
 149
 150	if (use_clone && bi->bi_clone)
 151		buffer = bi->bi_clone;
 152	else
 153		buffer = bi->bi_bh->b_data;
 154	buffer += bi->bi_offset;
 155	byte = buffer + (rbm->offset / GFS2_NBBY);
 156	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 157
 158	return (*byte >> bit) & GFS2_BIT_MASK;
 159}
 160
 161/**
 162 * gfs2_bit_search
 163 * @ptr: Pointer to bitmap data
 164 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 165 * @state: The state we are searching for
 166 *
 167 * We xor the bitmap data with a patter which is the bitwise opposite
 168 * of what we are looking for, this gives rise to a pattern of ones
 169 * wherever there is a match. Since we have two bits per entry, we
 170 * take this pattern, shift it down by one place and then and it with
 171 * the original. All the even bit positions (0,2,4, etc) then represent
 172 * successful matches, so we mask with 0x55555..... to remove the unwanted
 173 * odd bit positions.
 174 *
 175 * This allows searching of a whole u64 at once (32 blocks) with a
 176 * single test (on 64 bit arches).
 177 */
 178
 179static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 180{
 181	u64 tmp;
 182	static const u64 search[] = {
 183		[0] = 0xffffffffffffffffULL,
 184		[1] = 0xaaaaaaaaaaaaaaaaULL,
 185		[2] = 0x5555555555555555ULL,
 186		[3] = 0x0000000000000000ULL,
 187	};
 188	tmp = le64_to_cpu(*ptr) ^ search[state];
 189	tmp &= (tmp >> 1);
 190	tmp &= mask;
 191	return tmp;
 192}
 193
 194/**
 195 * rs_cmp - multi-block reservation range compare
 196 * @start: start of the new reservation
 197 * @len: number of blocks in the new reservation
 198 * @rs: existing reservation to compare against
 199 *
 200 * returns: 1 if the block range is beyond the reach of the reservation
 201 *         -1 if the block range is before the start of the reservation
 202 *          0 if the block range overlaps with the reservation
 203 */
 204static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs)
 205{
 206	if (start >= rs->rs_start + rs->rs_requested)
 207		return 1;
 208	if (rs->rs_start >= start + len)
 209		return -1;
 210	return 0;
 211}
 212
 213/**
 214 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 215 *       a block in a given allocation state.
 216 * @buf: the buffer that holds the bitmaps
 217 * @len: the length (in bytes) of the buffer
 218 * @goal: start search at this block's bit-pair (within @buffer)
 219 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 220 *
 221 * Scope of @goal and returned block number is only within this bitmap buffer,
 222 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 223 * beginning of a bitmap block buffer, skipping any header structures, but
 224 * headers are always a multiple of 64 bits long so that the buffer is
 225 * always aligned to a 64 bit boundary.
 226 *
 227 * The size of the buffer is in bytes, but is it assumed that it is
 228 * always ok to read a complete multiple of 64 bits at the end
 229 * of the block in case the end is no aligned to a natural boundary.
 230 *
 231 * Return: the block number (bitmap buffer scope) that was found
 232 */
 233
 234static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 235		       u32 goal, u8 state)
 236{
 237	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 238	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 239	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 240	u64 tmp;
 241	u64 mask = 0x5555555555555555ULL;
 242	u32 bit;
 243
 
 
 244	/* Mask off bits we don't care about at the start of the search */
 245	mask <<= spoint;
 246	tmp = gfs2_bit_search(ptr, mask, state);
 247	ptr++;
 248	while(tmp == 0 && ptr < end) {
 249		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 250		ptr++;
 251	}
 252	/* Mask off any bits which are more than len bytes from the start */
 253	if (ptr == end && (len & (sizeof(u64) - 1)))
 254		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 255	/* Didn't find anything, so return */
 256	if (tmp == 0)
 257		return BFITNOENT;
 258	ptr--;
 259	bit = __ffs64(tmp);
 260	bit /= 2;	/* two bits per entry in the bitmap */
 261	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 262}
 263
 264/**
 265 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 266 * @rbm: The rbm with rgd already set correctly
 267 * @block: The block number (filesystem relative)
 268 *
 269 * This sets the bi and offset members of an rbm based on a
 270 * resource group and a filesystem relative block number. The
 271 * resource group must be set in the rbm on entry, the bi and
 272 * offset members will be set by this function.
 273 *
 274 * Returns: 0 on success, or an error code
 275 */
 276
 277static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 278{
 279	if (!rgrp_contains_block(rbm->rgd, block))
 280		return -E2BIG;
 281	rbm->bii = 0;
 282	rbm->offset = block - rbm->rgd->rd_data0;
 283	/* Check if the block is within the first block */
 284	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 285		return 0;
 286
 287	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 288	rbm->offset += (sizeof(struct gfs2_rgrp) -
 289			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 290	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 291	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 292	return 0;
 293}
 294
 295/**
 296 * gfs2_rbm_add - add a number of blocks to an rbm
 297 * @rbm: The rbm with rgd already set correctly
 298 * @blocks: The number of blocks to add to rpm
 299 *
 300 * This function takes an existing rbm structure and adds a number of blocks to
 301 * it.
 302 *
 303 * Returns: True if the new rbm would point past the end of the rgrp.
 304 */
 305
 306static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks)
 307{
 308	struct gfs2_rgrpd *rgd = rbm->rgd;
 309	struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii;
 310
 311	if (rbm->offset + blocks < bi->bi_blocks) {
 312		rbm->offset += blocks;
 313		return false;
 314	}
 315	blocks -= bi->bi_blocks - rbm->offset;
 316
 317	for(;;) {
 318		bi++;
 319		if (bi == rgd->rd_bits + rgd->rd_length)
 320			return true;
 321		if (blocks < bi->bi_blocks) {
 322			rbm->offset = blocks;
 323			rbm->bii = bi - rgd->rd_bits;
 324			return false;
 325		}
 326		blocks -= bi->bi_blocks;
 327	}
 328}
 329
 330/**
 331 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 332 * @rbm: Position to search (value/result)
 333 * @n_unaligned: Number of unaligned blocks to check
 334 * @len: Decremented for each block found (terminate on zero)
 335 *
 336 * Returns: true if a non-free block is encountered or the end of the resource
 337 *	    group is reached.
 338 */
 339
 340static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 341{
 342	u32 n;
 343	u8 res;
 344
 345	for (n = 0; n < n_unaligned; n++) {
 346		res = gfs2_testbit(rbm, true);
 347		if (res != GFS2_BLKST_FREE)
 348			return true;
 349		(*len)--;
 350		if (*len == 0)
 351			return true;
 352		if (gfs2_rbm_add(rbm, 1))
 353			return true;
 354	}
 355
 356	return false;
 357}
 358
 359/**
 360 * gfs2_free_extlen - Return extent length of free blocks
 361 * @rrbm: Starting position
 362 * @len: Max length to check
 363 *
 364 * Starting at the block specified by the rbm, see how many free blocks
 365 * there are, not reading more than len blocks ahead. This can be done
 366 * using memchr_inv when the blocks are byte aligned, but has to be done
 367 * on a block by block basis in case of unaligned blocks. Also this
 368 * function can cope with bitmap boundaries (although it must stop on
 369 * a resource group boundary)
 370 *
 371 * Returns: Number of free blocks in the extent
 372 */
 373
 374static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 375{
 376	struct gfs2_rbm rbm = *rrbm;
 377	u32 n_unaligned = rbm.offset & 3;
 378	u32 size = len;
 379	u32 bytes;
 380	u32 chunk_size;
 381	u8 *ptr, *start, *end;
 382	u64 block;
 383	struct gfs2_bitmap *bi;
 384
 385	if (n_unaligned &&
 386	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 387		goto out;
 388
 389	n_unaligned = len & 3;
 390	/* Start is now byte aligned */
 391	while (len > 3) {
 392		bi = rbm_bi(&rbm);
 393		start = bi->bi_bh->b_data;
 394		if (bi->bi_clone)
 395			start = bi->bi_clone;
 396		start += bi->bi_offset;
 397		end = start + bi->bi_bytes;
 398		BUG_ON(rbm.offset & 3);
 399		start += (rbm.offset / GFS2_NBBY);
 400		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 401		ptr = memchr_inv(start, 0, bytes);
 402		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 403		chunk_size *= GFS2_NBBY;
 404		BUG_ON(len < chunk_size);
 405		len -= chunk_size;
 406		block = gfs2_rbm_to_block(&rbm);
 407		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 408			n_unaligned = 0;
 409			break;
 410		}
 411		if (ptr) {
 412			n_unaligned = 3;
 413			break;
 414		}
 415		n_unaligned = len & 3;
 416	}
 417
 418	/* Deal with any bits left over at the end */
 419	if (n_unaligned)
 420		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 421out:
 422	return size - len;
 423}
 424
 425/**
 426 * gfs2_bitcount - count the number of bits in a certain state
 427 * @rgd: the resource group descriptor
 428 * @buffer: the buffer that holds the bitmaps
 429 * @buflen: the length (in bytes) of the buffer
 430 * @state: the state of the block we're looking for
 431 *
 432 * Returns: The number of bits
 433 */
 434
 435static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 436			 unsigned int buflen, u8 state)
 437{
 438	const u8 *byte = buffer;
 439	const u8 *end = buffer + buflen;
 440	const u8 state1 = state << 2;
 441	const u8 state2 = state << 4;
 442	const u8 state3 = state << 6;
 443	u32 count = 0;
 444
 445	for (; byte < end; byte++) {
 446		if (((*byte) & 0x03) == state)
 447			count++;
 448		if (((*byte) & 0x0C) == state1)
 449			count++;
 450		if (((*byte) & 0x30) == state2)
 451			count++;
 452		if (((*byte) & 0xC0) == state3)
 453			count++;
 454	}
 455
 456	return count;
 457}
 458
 459/**
 460 * gfs2_rgrp_verify - Verify that a resource group is consistent
 461 * @rgd: the rgrp
 462 *
 463 */
 464
 465void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 466{
 467	struct gfs2_sbd *sdp = rgd->rd_sbd;
 468	struct gfs2_bitmap *bi = NULL;
 469	u32 length = rgd->rd_length;
 470	u32 count[4], tmp;
 471	int buf, x;
 472
 473	memset(count, 0, 4 * sizeof(u32));
 474
 475	/* Count # blocks in each of 4 possible allocation states */
 476	for (buf = 0; buf < length; buf++) {
 477		bi = rgd->rd_bits + buf;
 478		for (x = 0; x < 4; x++)
 479			count[x] += gfs2_bitcount(rgd,
 480						  bi->bi_bh->b_data +
 481						  bi->bi_offset,
 482						  bi->bi_bytes, x);
 483	}
 484
 485	if (count[0] != rgd->rd_free) {
 486		gfs2_lm(sdp, "free data mismatch:  %u != %u\n",
 487			count[0], rgd->rd_free);
 488		gfs2_consist_rgrpd(rgd);
 489		return;
 490	}
 491
 492	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 493	if (count[1] != tmp) {
 494		gfs2_lm(sdp, "used data mismatch:  %u != %u\n",
 495			count[1], tmp);
 496		gfs2_consist_rgrpd(rgd);
 497		return;
 498	}
 499
 500	if (count[2] + count[3] != rgd->rd_dinodes) {
 501		gfs2_lm(sdp, "used metadata mismatch:  %u != %u\n",
 502			count[2] + count[3], rgd->rd_dinodes);
 503		gfs2_consist_rgrpd(rgd);
 504		return;
 505	}
 506}
 507
 
 
 
 
 
 
 
 508/**
 509 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 510 * @sdp: The GFS2 superblock
 511 * @blk: The data block number
 512 * @exact: True if this needs to be an exact match
 513 *
 514 * The @exact argument should be set to true by most callers. The exception
 515 * is when we need to match blocks which are not represented by the rgrp
 516 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
 517 * there for alignment purposes. Another way of looking at it is that @exact
 518 * matches only valid data/metadata blocks, but with @exact false, it will
 519 * match any block within the extent of the rgrp.
 520 *
 521 * Returns: The resource group, or NULL if not found
 522 */
 523
 524struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 525{
 526	struct rb_node *n, *next;
 527	struct gfs2_rgrpd *cur;
 528
 529	spin_lock(&sdp->sd_rindex_spin);
 530	n = sdp->sd_rindex_tree.rb_node;
 531	while (n) {
 532		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 533		next = NULL;
 534		if (blk < cur->rd_addr)
 535			next = n->rb_left;
 536		else if (blk >= cur->rd_data0 + cur->rd_data)
 537			next = n->rb_right;
 538		if (next == NULL) {
 539			spin_unlock(&sdp->sd_rindex_spin);
 540			if (exact) {
 541				if (blk < cur->rd_addr)
 542					return NULL;
 543				if (blk >= cur->rd_data0 + cur->rd_data)
 544					return NULL;
 545			}
 546			return cur;
 547		}
 548		n = next;
 549	}
 550	spin_unlock(&sdp->sd_rindex_spin);
 551
 552	return NULL;
 553}
 554
 555/**
 556 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 557 * @sdp: The GFS2 superblock
 558 *
 559 * Returns: The first rgrp in the filesystem
 560 */
 561
 562struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 563{
 564	const struct rb_node *n;
 565	struct gfs2_rgrpd *rgd;
 566
 567	spin_lock(&sdp->sd_rindex_spin);
 568	n = rb_first(&sdp->sd_rindex_tree);
 569	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 570	spin_unlock(&sdp->sd_rindex_spin);
 571
 572	return rgd;
 573}
 574
 575/**
 576 * gfs2_rgrpd_get_next - get the next RG
 577 * @rgd: the resource group descriptor
 578 *
 579 * Returns: The next rgrp
 580 */
 581
 582struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 583{
 584	struct gfs2_sbd *sdp = rgd->rd_sbd;
 585	const struct rb_node *n;
 586
 587	spin_lock(&sdp->sd_rindex_spin);
 588	n = rb_next(&rgd->rd_node);
 589	if (n == NULL)
 590		n = rb_first(&sdp->sd_rindex_tree);
 591
 592	if (unlikely(&rgd->rd_node == n)) {
 593		spin_unlock(&sdp->sd_rindex_spin);
 594		return NULL;
 595	}
 596	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 597	spin_unlock(&sdp->sd_rindex_spin);
 598	return rgd;
 599}
 600
 601void check_and_update_goal(struct gfs2_inode *ip)
 602{
 603	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 604	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 605		ip->i_goal = ip->i_no_addr;
 606}
 607
 608void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 609{
 610	int x;
 611
 612	for (x = 0; x < rgd->rd_length; x++) {
 613		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 614		kfree(bi->bi_clone);
 615		bi->bi_clone = NULL;
 616	}
 617}
 618
 619static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
 620		    const char *fs_id_buf)
 621{
 622	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
 623
 624	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu f:%u\n",
 625		       fs_id_buf,
 626		       (unsigned long long)ip->i_no_addr,
 627		       (unsigned long long)rs->rs_start,
 628		       rs->rs_requested);
 629}
 630
 631/**
 632 * __rs_deltree - remove a multi-block reservation from the rgd tree
 633 * @rs: The reservation to remove
 634 *
 635 */
 636static void __rs_deltree(struct gfs2_blkreserv *rs)
 637{
 638	struct gfs2_rgrpd *rgd;
 639
 640	if (!gfs2_rs_active(rs))
 641		return;
 642
 643	rgd = rs->rs_rgd;
 644	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 645	rb_erase(&rs->rs_node, &rgd->rd_rstree);
 646	RB_CLEAR_NODE(&rs->rs_node);
 647
 648	if (rs->rs_requested) {
 649		/* return requested blocks to the rgrp */
 650		BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested);
 651		rs->rs_rgd->rd_requested -= rs->rs_requested;
 652
 653		/* The rgrp extent failure point is likely not to increase;
 654		   it will only do so if the freed blocks are somehow
 655		   contiguous with a span of free blocks that follows. Still,
 656		   it will force the number to be recalculated later. */
 657		rgd->rd_extfail_pt += rs->rs_requested;
 658		rs->rs_requested = 0;
 659	}
 660}
 661
 662/**
 663 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 664 * @rs: The reservation to remove
 665 *
 666 */
 667void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 668{
 669	struct gfs2_rgrpd *rgd;
 670
 671	rgd = rs->rs_rgd;
 672	if (rgd) {
 673		spin_lock(&rgd->rd_rsspin);
 674		__rs_deltree(rs);
 675		BUG_ON(rs->rs_requested);
 676		spin_unlock(&rgd->rd_rsspin);
 677	}
 678}
 679
 680/**
 681 * gfs2_rs_delete - delete a multi-block reservation
 682 * @ip: The inode for this reservation
 683 *
 684 */
 685void gfs2_rs_delete(struct gfs2_inode *ip)
 686{
 687	struct inode *inode = &ip->i_inode;
 688
 689	down_write(&ip->i_rw_mutex);
 690	if (atomic_read(&inode->i_writecount) <= 1)
 691		gfs2_rs_deltree(&ip->i_res);
 692	up_write(&ip->i_rw_mutex);
 693}
 694
 695/**
 696 * return_all_reservations - return all reserved blocks back to the rgrp.
 697 * @rgd: the rgrp that needs its space back
 698 *
 699 * We previously reserved a bunch of blocks for allocation. Now we need to
 700 * give them back. This leave the reservation structures in tact, but removes
 701 * all of their corresponding "no-fly zones".
 702 */
 703static void return_all_reservations(struct gfs2_rgrpd *rgd)
 704{
 705	struct rb_node *n;
 706	struct gfs2_blkreserv *rs;
 707
 708	spin_lock(&rgd->rd_rsspin);
 709	while ((n = rb_first(&rgd->rd_rstree))) {
 710		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 711		__rs_deltree(rs);
 712	}
 713	spin_unlock(&rgd->rd_rsspin);
 714}
 715
 716void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 717{
 718	struct rb_node *n;
 719	struct gfs2_rgrpd *rgd;
 720	struct gfs2_glock *gl;
 721
 722	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 723		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 724		gl = rgd->rd_gl;
 725
 726		rb_erase(n, &sdp->sd_rindex_tree);
 727
 728		if (gl) {
 729			if (gl->gl_state != LM_ST_UNLOCKED) {
 730				gfs2_glock_cb(gl, LM_ST_UNLOCKED);
 731				flush_delayed_work(&gl->gl_work);
 732			}
 733			gfs2_rgrp_brelse(rgd);
 734			glock_clear_object(gl, rgd);
 735			gfs2_glock_put(gl);
 736		}
 737
 738		gfs2_free_clones(rgd);
 739		return_all_reservations(rgd);
 740		kfree(rgd->rd_bits);
 741		rgd->rd_bits = NULL;
 742		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 743	}
 744}
 745
 
 
 
 
 
 
 
 
 
 746/**
 747 * compute_bitstructs - Compute the bitmap sizes
 748 * @rgd: The resource group descriptor
 749 *
 750 * Calculates bitmap descriptors, one for each block that contains bitmap data
 751 *
 752 * Returns: errno
 753 */
 754
 755static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 756{
 757	struct gfs2_sbd *sdp = rgd->rd_sbd;
 758	struct gfs2_bitmap *bi;
 759	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 760	u32 bytes_left, bytes;
 761	int x;
 762
 763	if (!length)
 764		return -EINVAL;
 765
 766	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 767	if (!rgd->rd_bits)
 768		return -ENOMEM;
 769
 770	bytes_left = rgd->rd_bitbytes;
 771
 772	for (x = 0; x < length; x++) {
 773		bi = rgd->rd_bits + x;
 774
 775		bi->bi_flags = 0;
 776		/* small rgrp; bitmap stored completely in header block */
 777		if (length == 1) {
 778			bytes = bytes_left;
 779			bi->bi_offset = sizeof(struct gfs2_rgrp);
 780			bi->bi_start = 0;
 781			bi->bi_bytes = bytes;
 782			bi->bi_blocks = bytes * GFS2_NBBY;
 783		/* header block */
 784		} else if (x == 0) {
 785			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 786			bi->bi_offset = sizeof(struct gfs2_rgrp);
 787			bi->bi_start = 0;
 788			bi->bi_bytes = bytes;
 789			bi->bi_blocks = bytes * GFS2_NBBY;
 790		/* last block */
 791		} else if (x + 1 == length) {
 792			bytes = bytes_left;
 793			bi->bi_offset = sizeof(struct gfs2_meta_header);
 794			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 795			bi->bi_bytes = bytes;
 796			bi->bi_blocks = bytes * GFS2_NBBY;
 797		/* other blocks */
 798		} else {
 799			bytes = sdp->sd_sb.sb_bsize -
 800				sizeof(struct gfs2_meta_header);
 801			bi->bi_offset = sizeof(struct gfs2_meta_header);
 802			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 803			bi->bi_bytes = bytes;
 804			bi->bi_blocks = bytes * GFS2_NBBY;
 805		}
 806
 807		bytes_left -= bytes;
 808	}
 809
 810	if (bytes_left) {
 811		gfs2_consist_rgrpd(rgd);
 812		return -EIO;
 813	}
 814	bi = rgd->rd_bits + (length - 1);
 815	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
 816		gfs2_lm(sdp,
 817			"ri_addr = %llu\n"
 818			"ri_length = %u\n"
 819			"ri_data0 = %llu\n"
 820			"ri_data = %u\n"
 821			"ri_bitbytes = %u\n"
 822			"start=%u len=%u offset=%u\n",
 823			(unsigned long long)rgd->rd_addr,
 824			rgd->rd_length,
 825			(unsigned long long)rgd->rd_data0,
 826			rgd->rd_data,
 827			rgd->rd_bitbytes,
 828			bi->bi_start, bi->bi_bytes, bi->bi_offset);
 829		gfs2_consist_rgrpd(rgd);
 830		return -EIO;
 831	}
 832
 833	return 0;
 834}
 835
 836/**
 837 * gfs2_ri_total - Total up the file system space, according to the rindex.
 838 * @sdp: the filesystem
 839 *
 840 */
 841u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 842{
 843	u64 total_data = 0;	
 844	struct inode *inode = sdp->sd_rindex;
 845	struct gfs2_inode *ip = GFS2_I(inode);
 846	char buf[sizeof(struct gfs2_rindex)];
 847	int error, rgrps;
 848
 849	for (rgrps = 0;; rgrps++) {
 850		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 851
 852		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 853			break;
 854		error = gfs2_internal_read(ip, buf, &pos,
 855					   sizeof(struct gfs2_rindex));
 856		if (error != sizeof(struct gfs2_rindex))
 857			break;
 858		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 859	}
 860	return total_data;
 861}
 862
 863static int rgd_insert(struct gfs2_rgrpd *rgd)
 864{
 865	struct gfs2_sbd *sdp = rgd->rd_sbd;
 866	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 867
 868	/* Figure out where to put new node */
 869	while (*newn) {
 870		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 871						  rd_node);
 872
 873		parent = *newn;
 874		if (rgd->rd_addr < cur->rd_addr)
 875			newn = &((*newn)->rb_left);
 876		else if (rgd->rd_addr > cur->rd_addr)
 877			newn = &((*newn)->rb_right);
 878		else
 879			return -EEXIST;
 880	}
 881
 882	rb_link_node(&rgd->rd_node, parent, newn);
 883	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 884	sdp->sd_rgrps++;
 885	return 0;
 886}
 887
 888/**
 889 * read_rindex_entry - Pull in a new resource index entry from the disk
 890 * @ip: Pointer to the rindex inode
 891 *
 892 * Returns: 0 on success, > 0 on EOF, error code otherwise
 893 */
 894
 895static int read_rindex_entry(struct gfs2_inode *ip)
 896{
 897	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 898	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 899	struct gfs2_rindex buf;
 900	int error;
 901	struct gfs2_rgrpd *rgd;
 902
 903	if (pos >= i_size_read(&ip->i_inode))
 904		return 1;
 905
 906	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 907				   sizeof(struct gfs2_rindex));
 908
 909	if (error != sizeof(struct gfs2_rindex))
 910		return (error == 0) ? 1 : error;
 911
 912	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 913	error = -ENOMEM;
 914	if (!rgd)
 915		return error;
 916
 917	rgd->rd_sbd = sdp;
 918	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 919	rgd->rd_length = be32_to_cpu(buf.ri_length);
 920	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 921	rgd->rd_data = be32_to_cpu(buf.ri_data);
 922	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 923	spin_lock_init(&rgd->rd_rsspin);
 924	mutex_init(&rgd->rd_mutex);
 
 
 925
 926	error = gfs2_glock_get(sdp, rgd->rd_addr,
 927			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 928	if (error)
 929		goto fail;
 930
 931	error = compute_bitstructs(rgd);
 932	if (error)
 933		goto fail_glock;
 934
 935	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 936	rgd->rd_flags &= ~GFS2_RDF_PREFERRED;
 937	if (rgd->rd_data > sdp->sd_max_rg_data)
 938		sdp->sd_max_rg_data = rgd->rd_data;
 939	spin_lock(&sdp->sd_rindex_spin);
 940	error = rgd_insert(rgd);
 941	spin_unlock(&sdp->sd_rindex_spin);
 942	if (!error) {
 943		glock_set_object(rgd->rd_gl, rgd);
 944		return 0;
 945	}
 946
 947	error = 0; /* someone else read in the rgrp; free it and ignore it */
 948fail_glock:
 949	gfs2_glock_put(rgd->rd_gl);
 950
 951fail:
 952	kfree(rgd->rd_bits);
 953	rgd->rd_bits = NULL;
 954	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 955	return error;
 956}
 957
 958/**
 959 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 960 * @sdp: the GFS2 superblock
 961 *
 962 * The purpose of this function is to select a subset of the resource groups
 963 * and mark them as PREFERRED. We do it in such a way that each node prefers
 964 * to use a unique set of rgrps to minimize glock contention.
 965 */
 966static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 967{
 968	struct gfs2_rgrpd *rgd, *first;
 969	int i;
 970
 971	/* Skip an initial number of rgrps, based on this node's journal ID.
 972	   That should start each node out on its own set. */
 973	rgd = gfs2_rgrpd_get_first(sdp);
 974	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 975		rgd = gfs2_rgrpd_get_next(rgd);
 976	first = rgd;
 977
 978	do {
 979		rgd->rd_flags |= GFS2_RDF_PREFERRED;
 980		for (i = 0; i < sdp->sd_journals; i++) {
 981			rgd = gfs2_rgrpd_get_next(rgd);
 982			if (!rgd || rgd == first)
 983				break;
 984		}
 985	} while (rgd && rgd != first);
 986}
 987
 988/**
 989 * gfs2_ri_update - Pull in a new resource index from the disk
 990 * @ip: pointer to the rindex inode
 991 *
 992 * Returns: 0 on successful update, error code otherwise
 993 */
 994
 995static int gfs2_ri_update(struct gfs2_inode *ip)
 996{
 997	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 998	int error;
 999
1000	do {
1001		error = read_rindex_entry(ip);
1002	} while (error == 0);
1003
1004	if (error < 0)
1005		return error;
1006
1007	if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1008		fs_err(sdp, "no resource groups found in the file system.\n");
1009		return -ENOENT;
1010	}
1011	set_rgrp_preferences(sdp);
1012
1013	sdp->sd_rindex_uptodate = 1;
1014	return 0;
1015}
1016
1017/**
1018 * gfs2_rindex_update - Update the rindex if required
1019 * @sdp: The GFS2 superblock
1020 *
1021 * We grab a lock on the rindex inode to make sure that it doesn't
1022 * change whilst we are performing an operation. We keep this lock
1023 * for quite long periods of time compared to other locks. This
1024 * doesn't matter, since it is shared and it is very, very rarely
1025 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1026 *
1027 * This makes sure that we're using the latest copy of the resource index
1028 * special file, which might have been updated if someone expanded the
1029 * filesystem (via gfs2_grow utility), which adds new resource groups.
1030 *
1031 * Returns: 0 on succeess, error code otherwise
1032 */
1033
1034int gfs2_rindex_update(struct gfs2_sbd *sdp)
1035{
1036	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1037	struct gfs2_glock *gl = ip->i_gl;
1038	struct gfs2_holder ri_gh;
1039	int error = 0;
1040	int unlock_required = 0;
1041
1042	/* Read new copy from disk if we don't have the latest */
1043	if (!sdp->sd_rindex_uptodate) {
1044		if (!gfs2_glock_is_locked_by_me(gl)) {
1045			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1046			if (error)
1047				return error;
1048			unlock_required = 1;
1049		}
1050		if (!sdp->sd_rindex_uptodate)
1051			error = gfs2_ri_update(ip);
1052		if (unlock_required)
1053			gfs2_glock_dq_uninit(&ri_gh);
1054	}
1055
1056	return error;
1057}
1058
1059static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1060{
1061	const struct gfs2_rgrp *str = buf;
1062	u32 rg_flags;
1063
1064	rg_flags = be32_to_cpu(str->rg_flags);
1065	rg_flags &= ~GFS2_RDF_MASK;
1066	rgd->rd_flags &= GFS2_RDF_MASK;
1067	rgd->rd_flags |= rg_flags;
1068	rgd->rd_free = be32_to_cpu(str->rg_free);
1069	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1070	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1071	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1072}
1073
1074static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1075{
1076	const struct gfs2_rgrp *str = buf;
1077
1078	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1079	rgl->rl_flags = str->rg_flags;
1080	rgl->rl_free = str->rg_free;
1081	rgl->rl_dinodes = str->rg_dinodes;
1082	rgl->rl_igeneration = str->rg_igeneration;
1083	rgl->__pad = 0UL;
1084}
1085
1086static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1087{
1088	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1089	struct gfs2_rgrp *str = buf;
1090	u32 crc;
1091
1092	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1093	str->rg_free = cpu_to_be32(rgd->rd_free);
1094	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1095	if (next == NULL)
1096		str->rg_skip = 0;
1097	else if (next->rd_addr > rgd->rd_addr)
1098		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1099	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1100	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1101	str->rg_data = cpu_to_be32(rgd->rd_data);
1102	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1103	str->rg_crc = 0;
1104	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1105	str->rg_crc = cpu_to_be32(crc);
1106
1107	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1108	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1109}
1110
1111static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1112{
1113	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1114	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1115	struct gfs2_sbd *sdp = rgd->rd_sbd;
1116	int valid = 1;
1117
1118	if (rgl->rl_flags != str->rg_flags) {
1119		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120			(unsigned long long)rgd->rd_addr,
1121		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1122		valid = 0;
1123	}
1124	if (rgl->rl_free != str->rg_free) {
1125		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1126			(unsigned long long)rgd->rd_addr,
1127			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1128		valid = 0;
1129	}
1130	if (rgl->rl_dinodes != str->rg_dinodes) {
1131		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132			(unsigned long long)rgd->rd_addr,
1133			be32_to_cpu(rgl->rl_dinodes),
1134			be32_to_cpu(str->rg_dinodes));
1135		valid = 0;
1136	}
1137	if (rgl->rl_igeneration != str->rg_igeneration) {
1138		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1139			(unsigned long long)rgd->rd_addr,
1140			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1141			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1142		valid = 0;
1143	}
1144	return valid;
1145}
1146
1147static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1148{
1149	struct gfs2_bitmap *bi;
1150	const u32 length = rgd->rd_length;
1151	const u8 *buffer = NULL;
1152	u32 i, goal, count = 0;
1153
1154	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1155		goal = 0;
1156		buffer = bi->bi_bh->b_data + bi->bi_offset;
1157		WARN_ON(!buffer_uptodate(bi->bi_bh));
1158		while (goal < bi->bi_blocks) {
1159			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1160					   GFS2_BLKST_UNLINKED);
1161			if (goal == BFITNOENT)
1162				break;
1163			count++;
1164			goal++;
1165		}
1166	}
1167
1168	return count;
1169}
1170
1171static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd)
1172{
1173	struct gfs2_bitmap *bi;
1174	int x;
1175
1176	if (rgd->rd_free) {
1177		for (x = 0; x < rgd->rd_length; x++) {
1178			bi = rgd->rd_bits + x;
1179			clear_bit(GBF_FULL, &bi->bi_flags);
1180		}
1181	} else {
1182		for (x = 0; x < rgd->rd_length; x++) {
1183			bi = rgd->rd_bits + x;
1184			set_bit(GBF_FULL, &bi->bi_flags);
1185		}
1186	}
1187}
1188
1189/**
1190 * gfs2_rgrp_go_instantiate - Read in a RG's header and bitmaps
1191 * @gh: the glock holder representing the rgrpd to read in
1192 *
1193 * Read in all of a Resource Group's header and bitmap blocks.
1194 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1195 *
1196 * Returns: errno
1197 */
1198
1199int gfs2_rgrp_go_instantiate(struct gfs2_glock *gl)
1200{
1201	struct gfs2_rgrpd *rgd = gl->gl_object;
1202	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
1203	unsigned int length = rgd->rd_length;
1204	struct gfs2_bitmap *bi;
1205	unsigned int x, y;
1206	int error;
1207
1208	if (rgd->rd_bits[0].bi_bh != NULL)
1209		return 0;
1210
1211	for (x = 0; x < length; x++) {
1212		bi = rgd->rd_bits + x;
1213		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1214		if (error)
1215			goto fail;
1216	}
1217
1218	for (y = length; y--;) {
1219		bi = rgd->rd_bits + y;
1220		error = gfs2_meta_wait(sdp, bi->bi_bh);
1221		if (error)
1222			goto fail;
1223		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1224					      GFS2_METATYPE_RG)) {
1225			error = -EIO;
1226			goto fail;
1227		}
1228	}
1229
1230	gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1231	rgrp_set_bitmap_flags(rgd);
1232	rgd->rd_flags |= GFS2_RDF_CHECK;
1233	rgd->rd_free_clone = rgd->rd_free;
1234	GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved);
1235	/* max out the rgrp allocation failure point */
1236	rgd->rd_extfail_pt = rgd->rd_free;
1237	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1238		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1239		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1240				     rgd->rd_bits[0].bi_bh->b_data);
1241	} else if (sdp->sd_args.ar_rgrplvb) {
1242		if (!gfs2_rgrp_lvb_valid(rgd)){
1243			gfs2_consist_rgrpd(rgd);
1244			error = -EIO;
1245			goto fail;
1246		}
1247		if (rgd->rd_rgl->rl_unlinked == 0)
1248			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1249	}
 
1250	return 0;
1251
1252fail:
1253	while (x--) {
1254		bi = rgd->rd_bits + x;
1255		brelse(bi->bi_bh);
1256		bi->bi_bh = NULL;
1257		gfs2_assert_warn(sdp, !bi->bi_clone);
1258	}
 
1259	return error;
1260}
1261
1262static int update_rgrp_lvb(struct gfs2_rgrpd *rgd, struct gfs2_holder *gh)
1263{
1264	u32 rl_flags;
1265
1266	if (!test_bit(GLF_INSTANTIATE_NEEDED, &gh->gh_gl->gl_flags))
1267		return 0;
1268
1269	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1270		return gfs2_instantiate(gh);
1271
1272	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1273	rl_flags &= ~GFS2_RDF_MASK;
1274	rgd->rd_flags &= GFS2_RDF_MASK;
1275	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1276	if (rgd->rd_rgl->rl_unlinked == 0)
1277		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1278	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1279	rgrp_set_bitmap_flags(rgd);
1280	rgd->rd_free_clone = rgd->rd_free;
1281	GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved);
1282	/* max out the rgrp allocation failure point */
1283	rgd->rd_extfail_pt = rgd->rd_free;
1284	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1285	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1286	return 0;
1287}
1288
1289/**
1290 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1291 * @rgd: The resource group
1292 *
1293 */
1294
1295void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1296{
 
1297	int x, length = rgd->rd_length;
1298
1299	for (x = 0; x < length; x++) {
1300		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1301		if (bi->bi_bh) {
1302			brelse(bi->bi_bh);
1303			bi->bi_bh = NULL;
1304		}
1305	}
1306	set_bit(GLF_INSTANTIATE_NEEDED, &rgd->rd_gl->gl_flags);
1307}
1308
1309int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1310			     struct buffer_head *bh,
1311			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1312{
1313	struct super_block *sb = sdp->sd_vfs;
 
 
 
1314	u64 blk;
1315	sector_t start = 0;
1316	sector_t nr_blks = 0;
1317	int rv = -EIO;
1318	unsigned int x;
1319	u32 trimmed = 0;
1320	u8 diff;
1321
1322	for (x = 0; x < bi->bi_bytes; x++) {
1323		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1324		clone += bi->bi_offset;
1325		clone += x;
1326		if (bh) {
1327			const u8 *orig = bh->b_data + bi->bi_offset + x;
1328			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1329		} else {
1330			diff = ~(*clone | (*clone >> 1));
1331		}
1332		diff &= 0x55;
1333		if (diff == 0)
1334			continue;
1335		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 
1336		while(diff) {
1337			if (diff & 1) {
1338				if (nr_blks == 0)
1339					goto start_new_extent;
1340				if ((start + nr_blks) != blk) {
1341					if (nr_blks >= minlen) {
1342						rv = sb_issue_discard(sb,
1343							start, nr_blks,
1344							GFP_NOFS, 0);
1345						if (rv)
1346							goto fail;
1347						trimmed += nr_blks;
1348					}
1349					nr_blks = 0;
1350start_new_extent:
1351					start = blk;
1352				}
1353				nr_blks++;
1354			}
1355			diff >>= 2;
1356			blk++;
1357		}
1358	}
1359	if (nr_blks >= minlen) {
1360		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1361		if (rv)
1362			goto fail;
1363		trimmed += nr_blks;
1364	}
1365	if (ptrimmed)
1366		*ptrimmed = trimmed;
1367	return 0;
1368
1369fail:
1370	if (sdp->sd_args.ar_discard)
1371		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1372	sdp->sd_args.ar_discard = 0;
1373	return rv;
1374}
1375
1376/**
1377 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1378 * @filp: Any file on the filesystem
1379 * @argp: Pointer to the arguments (also used to pass result)
1380 *
1381 * Returns: 0 on success, otherwise error code
1382 */
1383
1384int gfs2_fitrim(struct file *filp, void __user *argp)
1385{
1386	struct inode *inode = file_inode(filp);
1387	struct gfs2_sbd *sdp = GFS2_SB(inode);
1388	struct block_device *bdev = sdp->sd_vfs->s_bdev;
1389	struct buffer_head *bh;
1390	struct gfs2_rgrpd *rgd;
1391	struct gfs2_rgrpd *rgd_end;
1392	struct gfs2_holder gh;
1393	struct fstrim_range r;
1394	int ret = 0;
1395	u64 amt;
1396	u64 trimmed = 0;
1397	u64 start, end, minlen;
1398	unsigned int x;
1399	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1400
1401	if (!capable(CAP_SYS_ADMIN))
1402		return -EPERM;
1403
1404	if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1405		return -EROFS;
1406
1407	if (!bdev_max_discard_sectors(bdev))
1408		return -EOPNOTSUPP;
1409
1410	if (copy_from_user(&r, argp, sizeof(r)))
 
 
 
 
1411		return -EFAULT;
1412
1413	ret = gfs2_rindex_update(sdp);
1414	if (ret)
1415		return ret;
1416
1417	start = r.start >> bs_shift;
1418	end = start + (r.len >> bs_shift);
1419	minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize);
1420	minlen = max_t(u64, minlen, bdev_discard_granularity(bdev)) >> bs_shift;
1421
1422	if (end <= start || minlen > sdp->sd_max_rg_data)
1423		return -EINVAL;
1424
1425	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1426	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1427
1428	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1429	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1430		return -EINVAL; /* start is beyond the end of the fs */
1431
1432	while (1) {
1433
1434		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1435					 LM_FLAG_NODE_SCOPE, &gh);
1436		if (ret)
1437			goto out;
1438
1439		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1440			/* Trim each bitmap in the rgrp */
1441			for (x = 0; x < rgd->rd_length; x++) {
1442				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1443				rgrp_lock_local(rgd);
1444				ret = gfs2_rgrp_send_discards(sdp,
1445						rgd->rd_data0, NULL, bi, minlen,
1446						&amt);
1447				rgrp_unlock_local(rgd);
1448				if (ret) {
1449					gfs2_glock_dq_uninit(&gh);
1450					goto out;
1451				}
1452				trimmed += amt;
1453			}
1454
1455			/* Mark rgrp as having been trimmed */
1456			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1457			if (ret == 0) {
1458				bh = rgd->rd_bits[0].bi_bh;
1459				rgrp_lock_local(rgd);
1460				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1461				gfs2_trans_add_meta(rgd->rd_gl, bh);
1462				gfs2_rgrp_out(rgd, bh->b_data);
1463				rgrp_unlock_local(rgd);
1464				gfs2_trans_end(sdp);
1465			}
1466		}
1467		gfs2_glock_dq_uninit(&gh);
1468
1469		if (rgd == rgd_end)
1470			break;
1471
1472		rgd = gfs2_rgrpd_get_next(rgd);
1473	}
1474
1475out:
1476	r.len = trimmed << bs_shift;
1477	if (copy_to_user(argp, &r, sizeof(r)))
1478		return -EFAULT;
1479
1480	return ret;
1481}
1482
1483/**
1484 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1485 * @ip: the inode structure
1486 *
 
1487 */
1488static void rs_insert(struct gfs2_inode *ip)
1489{
1490	struct rb_node **newn, *parent = NULL;
1491	int rc;
1492	struct gfs2_blkreserv *rs = &ip->i_res;
1493	struct gfs2_rgrpd *rgd = rs->rs_rgd;
1494
1495	BUG_ON(gfs2_rs_active(rs));
1496
1497	spin_lock(&rgd->rd_rsspin);
1498	newn = &rgd->rd_rstree.rb_node;
1499	while (*newn) {
1500		struct gfs2_blkreserv *cur =
1501			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1502
1503		parent = *newn;
1504		rc = rs_cmp(rs->rs_start, rs->rs_requested, cur);
1505		if (rc > 0)
1506			newn = &((*newn)->rb_right);
1507		else if (rc < 0)
1508			newn = &((*newn)->rb_left);
1509		else {
1510			spin_unlock(&rgd->rd_rsspin);
1511			WARN_ON(1);
1512			return;
1513		}
1514	}
1515
1516	rb_link_node(&rs->rs_node, parent, newn);
1517	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1518
1519	/* Do our rgrp accounting for the reservation */
1520	rgd->rd_requested += rs->rs_requested; /* blocks requested */
1521	spin_unlock(&rgd->rd_rsspin);
1522	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1523}
1524
1525/**
1526 * rgd_free - return the number of free blocks we can allocate
1527 * @rgd: the resource group
1528 * @rs: The reservation to free
1529 *
1530 * This function returns the number of free blocks for an rgrp.
1531 * That's the clone-free blocks (blocks that are free, not including those
1532 * still being used for unlinked files that haven't been deleted.)
1533 *
1534 * It also subtracts any blocks reserved by someone else, but does not
1535 * include free blocks that are still part of our current reservation,
1536 * because obviously we can (and will) allocate them.
1537 */
1538static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1539{
1540	u32 tot_reserved, tot_free;
1541
1542	if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested))
1543		return 0;
1544	tot_reserved = rgd->rd_requested - rs->rs_requested;
1545
1546	if (rgd->rd_free_clone < tot_reserved)
1547		tot_reserved = 0;
1548
1549	tot_free = rgd->rd_free_clone - tot_reserved;
1550
1551	return tot_free;
1552}
1553
1554/**
1555 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1556 * @rgd: the resource group descriptor
1557 * @ip: pointer to the inode for which we're reserving blocks
1558 * @ap: the allocation parameters
1559 *
 
1560 */
1561
1562static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1563			   const struct gfs2_alloc_parms *ap)
1564{
1565	struct gfs2_rbm rbm = { .rgd = rgd, };
1566	u64 goal;
1567	struct gfs2_blkreserv *rs = &ip->i_res;
1568	u32 extlen;
1569	u32 free_blocks, blocks_available;
1570	int ret;
1571	struct inode *inode = &ip->i_inode;
1572
1573	spin_lock(&rgd->rd_rsspin);
1574	free_blocks = rgd_free(rgd, rs);
1575	if (rgd->rd_free_clone < rgd->rd_requested)
1576		free_blocks = 0;
1577	blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
1578	if (rgd == rs->rs_rgd)
1579		blocks_available += rs->rs_reserved;
1580	spin_unlock(&rgd->rd_rsspin);
1581
1582	if (S_ISDIR(inode->i_mode))
1583		extlen = 1;
1584	else {
1585		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1586		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1587	}
1588	if (free_blocks < extlen || blocks_available < extlen)
1589		return;
1590
1591	/* Find bitmap block that contains bits for goal block */
1592	if (rgrp_contains_block(rgd, ip->i_goal))
1593		goal = ip->i_goal;
1594	else
1595		goal = rgd->rd_last_alloc + rgd->rd_data0;
1596
1597	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1598		return;
1599
1600	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true);
1601	if (ret == 0) {
1602		rs->rs_start = gfs2_rbm_to_block(&rbm);
1603		rs->rs_requested = extlen;
1604		rs_insert(ip);
1605	} else {
1606		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1607			rgd->rd_last_alloc = 0;
1608	}
1609}
1610
1611/**
1612 * gfs2_next_unreserved_block - Return next block that is not reserved
1613 * @rgd: The resource group
1614 * @block: The starting block
1615 * @length: The required length
1616 * @ignore_rs: Reservation to ignore
1617 *
1618 * If the block does not appear in any reservation, then return the
1619 * block number unchanged. If it does appear in the reservation, then
1620 * keep looking through the tree of reservations in order to find the
1621 * first block number which is not reserved.
1622 */
1623
1624static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1625				      u32 length,
1626				      struct gfs2_blkreserv *ignore_rs)
1627{
1628	struct gfs2_blkreserv *rs;
1629	struct rb_node *n;
1630	int rc;
1631
1632	spin_lock(&rgd->rd_rsspin);
1633	n = rgd->rd_rstree.rb_node;
1634	while (n) {
1635		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1636		rc = rs_cmp(block, length, rs);
1637		if (rc < 0)
1638			n = n->rb_left;
1639		else if (rc > 0)
1640			n = n->rb_right;
1641		else
1642			break;
1643	}
1644
1645	if (n) {
1646		while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) {
1647			block = rs->rs_start + rs->rs_requested;
1648			n = n->rb_right;
1649			if (n == NULL)
1650				break;
1651			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1652		}
1653	}
1654
1655	spin_unlock(&rgd->rd_rsspin);
1656	return block;
1657}
1658
1659/**
1660 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1661 * @rbm: The current position in the resource group
1662 * @rs: Our own reservation
1663 * @minext: The minimum extent length
1664 * @maxext: A pointer to the maximum extent structure
1665 *
1666 * This checks the current position in the rgrp to see whether there is
1667 * a reservation covering this block. If not then this function is a
1668 * no-op. If there is, then the position is moved to the end of the
1669 * contiguous reservation(s) so that we are pointing at the first
1670 * non-reserved block.
1671 *
1672 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1673 */
1674
1675static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1676					     struct gfs2_blkreserv *rs,
1677					     u32 minext,
1678					     struct gfs2_extent *maxext)
1679{
1680	u64 block = gfs2_rbm_to_block(rbm);
1681	u32 extlen = 1;
1682	u64 nblock;
1683
1684	/*
1685	 * If we have a minimum extent length, then skip over any extent
1686	 * which is less than the min extent length in size.
1687	 */
1688	if (minext > 1) {
1689		extlen = gfs2_free_extlen(rbm, minext);
1690		if (extlen <= maxext->len)
1691			goto fail;
1692	}
1693
1694	/*
1695	 * Check the extent which has been found against the reservations
1696	 * and skip if parts of it are already reserved
1697	 */
1698	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs);
1699	if (nblock == block) {
1700		if (!minext || extlen >= minext)
1701			return 0;
1702
1703		if (extlen > maxext->len) {
1704			maxext->len = extlen;
1705			maxext->rbm = *rbm;
1706		}
1707	} else {
1708		u64 len = nblock - block;
1709		if (len >= (u64)1 << 32)
1710			return -E2BIG;
1711		extlen = len;
1712	}
1713fail:
1714	if (gfs2_rbm_add(rbm, extlen))
1715		return -E2BIG;
1716	return 1;
1717}
1718
1719/**
1720 * gfs2_rbm_find - Look for blocks of a particular state
1721 * @rbm: Value/result starting position and final position
1722 * @state: The state which we want to find
1723 * @minext: Pointer to the requested extent length
1724 *          This is updated to be the actual reservation size.
1725 * @rs: Our own reservation (NULL to skip checking for reservations)
1726 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1727 *          around until we've reached the starting point.
1728 *
1729 * Side effects:
1730 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1731 *   has no free blocks in it.
1732 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1733 *   has come up short on a free block search.
1734 *
1735 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1736 */
1737
1738static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1739			 struct gfs2_blkreserv *rs, bool nowrap)
1740{
1741	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1742	struct buffer_head *bh;
1743	int last_bii;
1744	u32 offset;
1745	u8 *buffer;
1746	bool wrapped = false;
1747	int ret;
1748	struct gfs2_bitmap *bi;
1749	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1750
1751	/*
1752	 * Determine the last bitmap to search.  If we're not starting at the
1753	 * beginning of a bitmap, we need to search that bitmap twice to scan
1754	 * the entire resource group.
1755	 */
1756	last_bii = rbm->bii - (rbm->offset == 0);
1757
1758	while(1) {
1759		bi = rbm_bi(rbm);
1760		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1761		    (state == GFS2_BLKST_FREE))
1762			goto next_bitmap;
1763
1764		bh = bi->bi_bh;
1765		buffer = bh->b_data + bi->bi_offset;
1766		WARN_ON(!buffer_uptodate(bh));
1767		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1768			buffer = bi->bi_clone + bi->bi_offset;
1769		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1770		if (offset == BFITNOENT) {
1771			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1772				set_bit(GBF_FULL, &bi->bi_flags);
1773			goto next_bitmap;
1774		}
1775		rbm->offset = offset;
1776		if (!rs || !minext)
1777			return 0;
1778
1779		ret = gfs2_reservation_check_and_update(rbm, rs, *minext,
1780							&maxext);
1781		if (ret == 0)
1782			return 0;
1783		if (ret > 0)
1784			goto next_iter;
1785		if (ret == -E2BIG) {
1786			rbm->bii = 0;
1787			rbm->offset = 0;
1788			goto res_covered_end_of_rgrp;
1789		}
1790		return ret;
1791
1792next_bitmap:	/* Find next bitmap in the rgrp */
1793		rbm->offset = 0;
1794		rbm->bii++;
1795		if (rbm->bii == rbm->rgd->rd_length)
1796			rbm->bii = 0;
1797res_covered_end_of_rgrp:
1798		if (rbm->bii == 0) {
1799			if (wrapped)
1800				break;
1801			wrapped = true;
1802			if (nowrap)
1803				break;
1804		}
1805next_iter:
1806		/* Have we scanned the entire resource group? */
1807		if (wrapped && rbm->bii > last_bii)
1808			break;
1809	}
1810
1811	if (state != GFS2_BLKST_FREE)
1812		return -ENOSPC;
1813
1814	/* If the extent was too small, and it's smaller than the smallest
1815	   to have failed before, remember for future reference that it's
1816	   useless to search this rgrp again for this amount or more. */
1817	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1818	    *minext < rbm->rgd->rd_extfail_pt)
1819		rbm->rgd->rd_extfail_pt = *minext - 1;
1820
1821	/* If the maximum extent we found is big enough to fulfill the
1822	   minimum requirements, use it anyway. */
1823	if (maxext.len) {
1824		*rbm = maxext.rbm;
1825		*minext = maxext.len;
1826		return 0;
1827	}
1828
1829	return -ENOSPC;
1830}
1831
1832/**
1833 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1834 * @rgd: The rgrp
1835 * @last_unlinked: block address of the last dinode we unlinked
1836 * @skip: block address we should explicitly not unlink
1837 *
1838 * Returns: 0 if no error
1839 *          The inode, if one has been found, in inode.
1840 */
1841
1842static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1843{
1844	u64 block;
 
1845	struct gfs2_sbd *sdp = rgd->rd_sbd;
1846	struct gfs2_glock *gl;
1847	struct gfs2_inode *ip;
1848	int error;
1849	int found = 0;
1850	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1851
1852	while (1) {
1853		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1854				      true);
1855		if (error == -ENOSPC)
1856			break;
1857		if (WARN_ON_ONCE(error))
1858			break;
1859
1860		block = gfs2_rbm_to_block(&rbm);
1861		if (gfs2_rbm_from_block(&rbm, block + 1))
1862			break;
1863		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
 
 
1864			continue;
1865		if (block == skip)
1866			continue;
1867		*last_unlinked = block;
1868
1869		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1870		if (error)
1871			continue;
1872
1873		/* If the inode is already in cache, we can ignore it here
1874		 * because the existing inode disposal code will deal with
1875		 * it when all refs have gone away. Accessing gl_object like
1876		 * this is not safe in general. Here it is ok because we do
1877		 * not dereference the pointer, and we only need an approx
1878		 * answer to whether it is NULL or not.
1879		 */
1880		ip = gl->gl_object;
1881
1882		if (ip || !gfs2_queue_delete_work(gl, 0))
1883			gfs2_glock_put(gl);
1884		else
1885			found++;
1886
1887		/* Limit reclaim to sensible number of tasks */
1888		if (found > NR_CPUS)
1889			return;
1890	}
1891
1892	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1893	return;
1894}
1895
1896/**
1897 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1898 * @rgd: The rgrp in question
1899 * @loops: An indication of how picky we can be (0=very, 1=less so)
1900 *
1901 * This function uses the recently added glock statistics in order to
1902 * figure out whether a parciular resource group is suffering from
1903 * contention from multiple nodes. This is done purely on the basis
1904 * of timings, since this is the only data we have to work with and
1905 * our aim here is to reject a resource group which is highly contended
1906 * but (very important) not to do this too often in order to ensure that
1907 * we do not land up introducing fragmentation by changing resource
1908 * groups when not actually required.
1909 *
1910 * The calculation is fairly simple, we want to know whether the SRTTB
1911 * (i.e. smoothed round trip time for blocking operations) to acquire
1912 * the lock for this rgrp's glock is significantly greater than the
1913 * time taken for resource groups on average. We introduce a margin in
1914 * the form of the variable @var which is computed as the sum of the two
1915 * respective variences, and multiplied by a factor depending on @loops
1916 * and whether we have a lot of data to base the decision on. This is
1917 * then tested against the square difference of the means in order to
1918 * decide whether the result is statistically significant or not.
1919 *
1920 * Returns: A boolean verdict on the congestion status
1921 */
1922
1923static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1924{
1925	const struct gfs2_glock *gl = rgd->rd_gl;
1926	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1927	struct gfs2_lkstats *st;
1928	u64 r_dcount, l_dcount;
1929	u64 l_srttb, a_srttb = 0;
1930	s64 srttb_diff;
1931	u64 sqr_diff;
1932	u64 var;
1933	int cpu, nonzero = 0;
1934
1935	preempt_disable();
1936	for_each_present_cpu(cpu) {
1937		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1938		if (st->stats[GFS2_LKS_SRTTB]) {
1939			a_srttb += st->stats[GFS2_LKS_SRTTB];
1940			nonzero++;
1941		}
1942	}
1943	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1944	if (nonzero)
1945		do_div(a_srttb, nonzero);
1946	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1947	var = st->stats[GFS2_LKS_SRTTVARB] +
1948	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1949	preempt_enable();
1950
1951	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1952	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1953
1954	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1955		return false;
1956
1957	srttb_diff = a_srttb - l_srttb;
1958	sqr_diff = srttb_diff * srttb_diff;
1959
1960	var *= 2;
1961	if (l_dcount < 8 || r_dcount < 8)
1962		var *= 2;
1963	if (loops == 1)
1964		var *= 2;
1965
1966	return ((srttb_diff < 0) && (sqr_diff > var));
1967}
1968
1969/**
1970 * gfs2_rgrp_used_recently
1971 * @rs: The block reservation with the rgrp to test
1972 * @msecs: The time limit in milliseconds
1973 *
1974 * Returns: True if the rgrp glock has been used within the time limit
1975 */
1976static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1977				    u64 msecs)
1978{
1979	u64 tdiff;
 
 
 
 
1980
1981	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1982                            rs->rs_rgd->rd_gl->gl_dstamp));
 
 
1983
1984	return tdiff > (msecs * 1000 * 1000);
1985}
1986
1987static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1988{
1989	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1990	u32 skip;
1991
1992	get_random_bytes(&skip, sizeof(skip));
1993	return skip % sdp->sd_rgrps;
1994}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1995
1996static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1997{
1998	struct gfs2_rgrpd *rgd = *pos;
1999	struct gfs2_sbd *sdp = rgd->rd_sbd;
2000
2001	rgd = gfs2_rgrpd_get_next(rgd);
2002	if (rgd == NULL)
2003		rgd = gfs2_rgrpd_get_first(sdp);
2004	*pos = rgd;
2005	if (rgd != begin) /* If we didn't wrap */
2006		return true;
2007	return false;
2008}
2009
2010/**
2011 * fast_to_acquire - determine if a resource group will be fast to acquire
2012 * @rgd: The rgrp
2013 *
2014 * If this is one of our preferred rgrps, it should be quicker to acquire,
2015 * because we tried to set ourselves up as dlm lock master.
2016 */
2017static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2018{
2019	struct gfs2_glock *gl = rgd->rd_gl;
2020
2021	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2022	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2023	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
2024		return 1;
2025	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2026		return 1;
2027	return 0;
2028}
2029
2030/**
2031 * gfs2_inplace_reserve - Reserve space in the filesystem
2032 * @ip: the inode to reserve space for
2033 * @ap: the allocation parameters
2034 *
2035 * We try our best to find an rgrp that has at least ap->target blocks
2036 * available. After a couple of passes (loops == 2), the prospects of finding
2037 * such an rgrp diminish. At this stage, we return the first rgrp that has
2038 * at least ap->min_target blocks available.
2039 *
2040 * Returns: 0 on success,
2041 *          -ENOMEM if a suitable rgrp can't be found
2042 *          errno otherwise
2043 */
2044
2045int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2046{
2047	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2048	struct gfs2_rgrpd *begin = NULL;
2049	struct gfs2_blkreserv *rs = &ip->i_res;
2050	int error = 0, flags = LM_FLAG_NODE_SCOPE;
2051	bool rg_locked;
2052	u64 last_unlinked = NO_BLOCK;
2053	u32 target = ap->target;
2054	int loops = 0;
2055	u32 free_blocks, blocks_available, skip = 0;
2056
2057	BUG_ON(rs->rs_reserved);
 
 
2058
2059	if (sdp->sd_args.ar_rgrplvb)
2060		flags |= GL_SKIP;
2061	if (gfs2_assert_warn(sdp, target))
2062		return -EINVAL;
2063	if (gfs2_rs_active(rs)) {
2064		begin = rs->rs_rgd;
2065	} else if (rs->rs_rgd &&
2066		   rgrp_contains_block(rs->rs_rgd, ip->i_goal)) {
2067		begin = rs->rs_rgd;
2068	} else {
2069		check_and_update_goal(ip);
2070		rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2071	}
2072	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2073		skip = gfs2_orlov_skip(ip);
2074	if (rs->rs_rgd == NULL)
2075		return -EBADSLT;
2076
2077	while (loops < 3) {
2078		struct gfs2_rgrpd *rgd;
2079
2080		rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl);
2081		if (rg_locked) {
2082			rgrp_lock_local(rs->rs_rgd);
2083		} else {
2084			if (skip && skip--)
2085				goto next_rgrp;
2086			if (!gfs2_rs_active(rs)) {
2087				if (loops == 0 &&
2088				    !fast_to_acquire(rs->rs_rgd))
2089					goto next_rgrp;
2090				if ((loops < 2) &&
2091				    gfs2_rgrp_used_recently(rs, 1000) &&
2092				    gfs2_rgrp_congested(rs->rs_rgd, loops))
2093					goto next_rgrp;
2094			}
2095			error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl,
2096						   LM_ST_EXCLUSIVE, flags,
2097						   &ip->i_rgd_gh);
2098			if (unlikely(error))
2099				return error;
2100			rgrp_lock_local(rs->rs_rgd);
2101			if (!gfs2_rs_active(rs) && (loops < 2) &&
2102			    gfs2_rgrp_congested(rs->rs_rgd, loops))
2103				goto skip_rgrp;
2104			if (sdp->sd_args.ar_rgrplvb) {
2105				error = update_rgrp_lvb(rs->rs_rgd,
2106							&ip->i_rgd_gh);
2107				if (unlikely(error)) {
2108					rgrp_unlock_local(rs->rs_rgd);
2109					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2110					return error;
2111				}
2112			}
2113		}
2114
2115		/* Skip unusable resource groups */
2116		if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC |
2117						 GFS2_RDF_ERROR)) ||
2118		    (loops == 0 && target > rs->rs_rgd->rd_extfail_pt))
2119			goto skip_rgrp;
2120
2121		if (sdp->sd_args.ar_rgrplvb) {
2122			error = gfs2_instantiate(&ip->i_rgd_gh);
2123			if (error)
2124				goto skip_rgrp;
2125		}
2126
2127		/* Get a reservation if we don't already have one */
2128		if (!gfs2_rs_active(rs))
2129			rg_mblk_search(rs->rs_rgd, ip, ap);
2130
2131		/* Skip rgrps when we can't get a reservation on first pass */
2132		if (!gfs2_rs_active(rs) && (loops < 1))
2133			goto check_rgrp;
2134
2135		/* If rgrp has enough free space, use it */
2136		rgd = rs->rs_rgd;
2137		spin_lock(&rgd->rd_rsspin);
2138		free_blocks = rgd_free(rgd, rs);
2139		blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
2140		if (free_blocks < target || blocks_available < target) {
2141			spin_unlock(&rgd->rd_rsspin);
2142			goto check_rgrp;
2143		}
2144		rs->rs_reserved = ap->target;
2145		if (rs->rs_reserved > blocks_available)
2146			rs->rs_reserved = blocks_available;
2147		rgd->rd_reserved += rs->rs_reserved;
2148		spin_unlock(&rgd->rd_rsspin);
2149		rgrp_unlock_local(rs->rs_rgd);
2150		return 0;
2151check_rgrp:
2152		/* Check for unlinked inodes which can be reclaimed */
2153		if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK)
2154			try_rgrp_unlink(rs->rs_rgd, &last_unlinked,
2155					ip->i_no_addr);
2156skip_rgrp:
2157		rgrp_unlock_local(rs->rs_rgd);
2158
2159		/* Drop reservation, if we couldn't use reserved rgrp */
2160		if (gfs2_rs_active(rs))
2161			gfs2_rs_deltree(rs);
2162
2163		/* Unlock rgrp if required */
2164		if (!rg_locked)
2165			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2166next_rgrp:
2167		/* Find the next rgrp, and continue looking */
2168		if (gfs2_select_rgrp(&rs->rs_rgd, begin))
2169			continue;
2170		if (skip)
2171			continue;
2172
2173		/* If we've scanned all the rgrps, but found no free blocks
2174		 * then this checks for some less likely conditions before
2175		 * trying again.
2176		 */
2177		loops++;
2178		/* Check that fs hasn't grown if writing to rindex */
2179		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2180			error = gfs2_ri_update(ip);
2181			if (error)
2182				return error;
 
2183		}
2184		/* Flushing the log may release space */
2185		if (loops == 2) {
2186			if (ap->min_target)
2187				target = ap->min_target;
2188			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2189				       GFS2_LFC_INPLACE_RESERVE);
2190		}
2191	}
2192
2193	return -ENOSPC;
 
 
 
2194}
2195
2196/**
2197 * gfs2_inplace_release - release an inplace reservation
2198 * @ip: the inode the reservation was taken out on
2199 *
2200 * Release a reservation made by gfs2_inplace_reserve().
2201 */
2202
2203void gfs2_inplace_release(struct gfs2_inode *ip)
2204{
2205	struct gfs2_blkreserv *rs = &ip->i_res;
2206
2207	if (rs->rs_reserved) {
2208		struct gfs2_rgrpd *rgd = rs->rs_rgd;
 
 
2209
2210		spin_lock(&rgd->rd_rsspin);
2211		GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved < rs->rs_reserved);
2212		rgd->rd_reserved -= rs->rs_reserved;
2213		spin_unlock(&rgd->rd_rsspin);
2214		rs->rs_reserved = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2215	}
2216	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2217		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
 
 
 
2218}
2219
2220/**
2221 * gfs2_alloc_extent - allocate an extent from a given bitmap
2222 * @rbm: the resource group information
 
 
2223 * @dinode: TRUE if the first block we allocate is for a dinode
2224 * @n: The extent length (value/result)
2225 *
2226 * Add the bitmap buffer to the transaction.
2227 * Set the found bits to @new_state to change block's allocation state.
 
2228 */
2229static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2230			     unsigned int *n)
2231{
2232	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2233	const unsigned int elen = *n;
2234	u64 block;
2235	int ret;
2236
2237	*n = 1;
2238	block = gfs2_rbm_to_block(rbm);
2239	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2240	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2241	block++;
 
 
2242	while (*n < elen) {
2243		ret = gfs2_rbm_from_block(&pos, block);
2244		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
 
 
 
2245			break;
2246		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2247		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2248		(*n)++;
2249		block++;
2250	}
 
 
 
2251}
2252
2253/**
2254 * rgblk_free - Change alloc state of given block(s)
2255 * @sdp: the filesystem
2256 * @rgd: the resource group the blocks are in
2257 * @bstart: the start of a run of blocks to free
2258 * @blen: the length of the block run (all must lie within ONE RG!)
2259 * @new_state: GFS2_BLKST_XXX the after-allocation block state
 
 
2260 */
2261
2262static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2263		       u64 bstart, u32 blen, unsigned char new_state)
2264{
2265	struct gfs2_rbm rbm;
2266	struct gfs2_bitmap *bi, *bi_prev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2267
2268	rbm.rgd = rgd;
2269	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2270		return;
2271	while (blen--) {
2272		bi = rbm_bi(&rbm);
2273		if (bi != bi_prev) {
2274			if (!bi->bi_clone) {
2275				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2276						      GFP_NOFS | __GFP_NOFAIL);
2277				memcpy(bi->bi_clone + bi->bi_offset,
2278				       bi->bi_bh->b_data + bi->bi_offset,
2279				       bi->bi_bytes);
2280			}
2281			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2282			bi_prev = bi;
 
 
 
 
 
 
2283		}
2284		gfs2_setbit(&rbm, false, new_state);
2285		gfs2_rbm_add(&rbm, 1);
2286	}
 
 
2287}
2288
2289/**
2290 * gfs2_rgrp_dump - print out an rgrp
2291 * @seq: The iterator
2292 * @rgd: The rgrp in question
2293 * @fs_id_buf: pointer to file system id (if requested)
2294 *
2295 */
2296
2297void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd,
2298		    const char *fs_id_buf)
2299{
2300	struct gfs2_blkreserv *trs;
2301	const struct rb_node *n;
2302
2303	spin_lock(&rgd->rd_rsspin);
2304	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n",
2305		       fs_id_buf,
2306		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2307		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2308		       rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt);
2309	if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2310		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2311
2312		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2313			       be32_to_cpu(rgl->rl_flags),
2314			       be32_to_cpu(rgl->rl_free),
2315			       be32_to_cpu(rgl->rl_dinodes));
2316	}
2317	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2318		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2319		dump_rs(seq, trs, fs_id_buf);
2320	}
2321	spin_unlock(&rgd->rd_rsspin);
2322}
2323
2324static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2325{
2326	struct gfs2_sbd *sdp = rgd->rd_sbd;
2327	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2328
2329	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2330		(unsigned long long)rgd->rd_addr);
2331	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2332	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2333	gfs2_rgrp_dump(NULL, rgd, fs_id_buf);
2334	rgd->rd_flags |= GFS2_RDF_ERROR;
2335}
2336
2337/**
2338 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2339 * @ip: The inode we have just allocated blocks for
2340 * @rbm: The start of the allocated blocks
2341 * @len: The extent length
2342 *
2343 * Adjusts a reservation after an allocation has taken place. If the
2344 * reservation does not match the allocation, or if it is now empty
2345 * then it is removed.
2346 */
2347
2348static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2349				    const struct gfs2_rbm *rbm, unsigned len)
2350{
2351	struct gfs2_blkreserv *rs = &ip->i_res;
2352	struct gfs2_rgrpd *rgd = rbm->rgd;
2353
2354	BUG_ON(rs->rs_reserved < len);
2355	rs->rs_reserved -= len;
2356	if (gfs2_rs_active(rs)) {
2357		u64 start = gfs2_rbm_to_block(rbm);
2358
2359		if (rs->rs_start == start) {
2360			unsigned int rlen;
2361
2362			rs->rs_start += len;
2363			rlen = min(rs->rs_requested, len);
2364			rs->rs_requested -= rlen;
2365			rgd->rd_requested -= rlen;
2366			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2367			if (rs->rs_start < rgd->rd_data0 + rgd->rd_data &&
2368			    rs->rs_requested)
2369				return;
2370			/* We used up our block reservation, so we should
2371			   reserve more blocks next time. */
2372			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2373		}
2374		__rs_deltree(rs);
2375	}
2376}
2377
2378/**
2379 * gfs2_set_alloc_start - Set starting point for block allocation
2380 * @rbm: The rbm which will be set to the required location
2381 * @ip: The gfs2 inode
2382 * @dinode: Flag to say if allocation includes a new inode
2383 *
2384 * This sets the starting point from the reservation if one is active
2385 * otherwise it falls back to guessing a start point based on the
2386 * inode's goal block or the last allocation point in the rgrp.
2387 */
2388
2389static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2390				 const struct gfs2_inode *ip, bool dinode)
2391{
2392	u64 goal;
2393
2394	if (gfs2_rs_active(&ip->i_res)) {
2395		goal = ip->i_res.rs_start;
2396	} else {
2397		if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2398			goal = ip->i_goal;
2399		else
2400			goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2401	}
2402	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2403		rbm->bii = 0;
2404		rbm->offset = 0;
2405	}
2406}
2407
2408/**
2409 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2410 * @ip: the inode to allocate the block for
2411 * @bn: Used to return the starting block number
2412 * @nblocks: requested number of blocks/extent length (value/result)
2413 * @dinode: 1 if we're allocating a dinode block, else 0
2414 * @generation: the generation number of the inode
2415 *
2416 * Returns: 0 or error
2417 */
2418
2419int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2420		      bool dinode, u64 *generation)
2421{
2422	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2423	struct buffer_head *dibh;
2424	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, };
 
 
2425	u64 block; /* block, within the file system scope */
2426	u32 minext = 1;
2427	int error = -ENOSPC;
 
 
 
 
 
 
2428
2429	BUG_ON(ip->i_res.rs_reserved < *nblocks);
2430
2431	rgrp_lock_local(rbm.rgd);
2432	if (gfs2_rs_active(&ip->i_res)) {
2433		gfs2_set_alloc_start(&rbm, ip, dinode);
2434		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false);
2435	}
2436	if (error == -ENOSPC) {
2437		gfs2_set_alloc_start(&rbm, ip, dinode);
2438		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false);
2439	}
2440
2441	/* Since all blocks are reserved in advance, this shouldn't happen */
2442	if (error) {
2443		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2444			(unsigned long long)ip->i_no_addr, error, *nblocks,
2445			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2446			rbm.rgd->rd_extfail_pt);
2447		goto rgrp_error;
2448	}
2449
2450	gfs2_alloc_extent(&rbm, dinode, nblocks);
2451	block = gfs2_rbm_to_block(&rbm);
2452	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
 
 
2453	if (!dinode) {
2454		ip->i_goal = block + *nblocks - 1;
2455		error = gfs2_meta_inode_buffer(ip, &dibh);
2456		if (error == 0) {
2457			struct gfs2_dinode *di =
2458				(struct gfs2_dinode *)dibh->b_data;
2459			gfs2_trans_add_meta(ip->i_gl, dibh);
2460			di->di_goal_meta = di->di_goal_data =
2461				cpu_to_be64(ip->i_goal);
2462			brelse(dibh);
2463		}
2464	}
2465	spin_lock(&rbm.rgd->rd_rsspin);
2466	gfs2_adjust_reservation(ip, &rbm, *nblocks);
2467	if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) {
2468		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2469		spin_unlock(&rbm.rgd->rd_rsspin);
2470		goto rgrp_error;
2471	}
2472	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_reserved < *nblocks);
2473	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free_clone < *nblocks);
2474	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free < *nblocks);
2475	rbm.rgd->rd_reserved -= *nblocks;
2476	rbm.rgd->rd_free_clone -= *nblocks;
2477	rbm.rgd->rd_free -= *nblocks;
2478	spin_unlock(&rbm.rgd->rd_rsspin);
2479	if (dinode) {
2480		rbm.rgd->rd_dinodes++;
2481		*generation = rbm.rgd->rd_igeneration++;
2482		if (*generation == 0)
2483			*generation = rbm.rgd->rd_igeneration++;
2484	}
2485
2486	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2487	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2488	rgrp_unlock_local(rbm.rgd);
2489
2490	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2491	if (dinode)
2492		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2493
2494	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
 
 
 
 
 
 
2495
2496	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
 
2497			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2498	*bn = block;
2499	return 0;
2500
2501rgrp_error:
2502	rgrp_unlock_local(rbm.rgd);
2503	gfs2_rgrp_error(rbm.rgd);
2504	return -EIO;
2505}
2506
2507/**
2508 * __gfs2_free_blocks - free a contiguous run of block(s)
2509 * @ip: the inode these blocks are being freed from
2510 * @rgd: the resource group the blocks are in
2511 * @bstart: first block of a run of contiguous blocks
2512 * @blen: the length of the block run
2513 * @meta: 1 if the blocks represent metadata
2514 *
2515 */
2516
2517void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2518			u64 bstart, u32 blen, int meta)
2519{
2520	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
2521
2522	rgrp_lock_local(rgd);
2523	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
 
2524	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2525	rgd->rd_free += blen;
2526	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2527	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2528	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2529	rgrp_unlock_local(rgd);
2530
2531	/* Directories keep their data in the metadata address space */
2532	if (meta || ip->i_depth || gfs2_is_jdata(ip))
2533		gfs2_journal_wipe(ip, bstart, blen);
2534}
2535
2536/**
2537 * gfs2_free_meta - free a contiguous run of data block(s)
2538 * @ip: the inode these blocks are being freed from
2539 * @rgd: the resource group the blocks are in
2540 * @bstart: first block of a run of contiguous blocks
2541 * @blen: the length of the block run
2542 *
2543 */
2544
2545void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2546		    u64 bstart, u32 blen)
2547{
2548	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2549
2550	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2551	gfs2_statfs_change(sdp, 0, +blen, 0);
2552	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2553}
2554
2555void gfs2_unlink_di(struct inode *inode)
2556{
2557	struct gfs2_inode *ip = GFS2_I(inode);
2558	struct gfs2_sbd *sdp = GFS2_SB(inode);
2559	struct gfs2_rgrpd *rgd;
2560	u64 blkno = ip->i_no_addr;
2561
2562	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2563	if (!rgd)
2564		return;
2565	rgrp_lock_local(rgd);
2566	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2567	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2568	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2569	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2570	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2571	rgrp_unlock_local(rgd);
2572}
2573
2574void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2575{
2576	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
 
 
 
 
 
2577
2578	rgrp_lock_local(rgd);
2579	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2580	if (!rgd->rd_dinodes)
2581		gfs2_consist_rgrpd(rgd);
2582	rgd->rd_dinodes--;
2583	rgd->rd_free++;
2584
2585	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2586	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2587	rgrp_unlock_local(rgd);
2588	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2589
2590	gfs2_statfs_change(sdp, 0, +1, -1);
 
 
 
 
 
 
2591	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2592	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2593	gfs2_journal_wipe(ip, ip->i_no_addr, 1);
2594}
2595
2596/**
2597 * gfs2_check_blk_type - Check the type of a block
2598 * @sdp: The superblock
2599 * @no_addr: The block number to check
2600 * @type: The block type we are looking for
2601 *
2602 * The inode glock of @no_addr must be held.  The @type to check for is either
2603 * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE
2604 * or GFS2_BLKST_USED would make no sense.
2605 *
2606 * Returns: 0 if the block type matches the expected type
2607 *          -ESTALE if it doesn't match
2608 *          or -ve errno if something went wrong while checking
2609 */
2610
2611int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2612{
2613	struct gfs2_rgrpd *rgd;
2614	struct gfs2_holder rgd_gh;
2615	struct gfs2_rbm rbm;
2616	int error = -EINVAL;
2617
2618	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2619	if (!rgd)
2620		goto fail;
2621
2622	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2623	if (error)
2624		goto fail;
2625
2626	rbm.rgd = rgd;
2627	error = gfs2_rbm_from_block(&rbm, no_addr);
2628	if (!WARN_ON_ONCE(error)) {
2629		/*
2630		 * No need to take the local resource group lock here; the
2631		 * inode glock of @no_addr provides the necessary
2632		 * synchronization in case the block is an inode.  (In case
2633		 * the block is not an inode, the block type will not match
2634		 * the @type we are looking for.)
2635		 */
2636		if (gfs2_testbit(&rbm, false) != type)
2637			error = -ESTALE;
2638	}
2639
2640	gfs2_glock_dq_uninit(&rgd_gh);
2641
2642fail:
2643	return error;
2644}
2645
2646/**
2647 * gfs2_rlist_add - add a RG to a list of RGs
2648 * @ip: the inode
2649 * @rlist: the list of resource groups
2650 * @block: the block
2651 *
2652 * Figure out what RG a block belongs to and add that RG to the list
2653 *
2654 * FIXME: Don't use NOFAIL
2655 *
2656 */
2657
2658void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2659		    u64 block)
2660{
2661	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2662	struct gfs2_rgrpd *rgd;
2663	struct gfs2_rgrpd **tmp;
2664	unsigned int new_space;
2665	unsigned int x;
2666
2667	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2668		return;
2669
2670	/*
2671	 * The resource group last accessed is kept in the last position.
2672	 */
2673
2674	if (rlist->rl_rgrps) {
2675		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2676		if (rgrp_contains_block(rgd, block))
2677			return;
2678		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2679	} else {
2680		rgd = ip->i_res.rs_rgd;
2681		if (!rgd || !rgrp_contains_block(rgd, block))
2682			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2683	}
2684
2685	if (!rgd) {
2686		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2687		       (unsigned long long)block);
2688		return;
2689	}
 
2690
2691	for (x = 0; x < rlist->rl_rgrps; x++) {
2692		if (rlist->rl_rgd[x] == rgd) {
2693			swap(rlist->rl_rgd[x],
2694			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2695			return;
2696		}
2697	}
2698
2699	if (rlist->rl_rgrps == rlist->rl_space) {
2700		new_space = rlist->rl_space + 10;
2701
2702		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2703			      GFP_NOFS | __GFP_NOFAIL);
2704
2705		if (rlist->rl_rgd) {
2706			memcpy(tmp, rlist->rl_rgd,
2707			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2708			kfree(rlist->rl_rgd);
2709		}
2710
2711		rlist->rl_space = new_space;
2712		rlist->rl_rgd = tmp;
2713	}
2714
2715	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2716}
2717
2718/**
2719 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2720 *      and initialize an array of glock holders for them
2721 * @rlist: the list of resource groups
2722 * @state: the state we're requesting
2723 * @flags: the modifier flags
2724 *
2725 * FIXME: Don't use NOFAIL
2726 *
2727 */
2728
2729void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist,
2730		      unsigned int state, u16 flags)
2731{
2732	unsigned int x;
2733
2734	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2735				      sizeof(struct gfs2_holder),
2736				      GFP_NOFS | __GFP_NOFAIL);
2737	for (x = 0; x < rlist->rl_rgrps; x++)
2738		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, state, flags,
2739				 &rlist->rl_ghs[x]);
 
2740}
2741
2742/**
2743 * gfs2_rlist_free - free a resource group list
2744 * @rlist: the list of resource groups
2745 *
2746 */
2747
2748void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2749{
2750	unsigned int x;
2751
2752	kfree(rlist->rl_rgd);
2753
2754	if (rlist->rl_ghs) {
2755		for (x = 0; x < rlist->rl_rgrps; x++)
2756			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2757		kfree(rlist->rl_ghs);
2758		rlist->rl_ghs = NULL;
2759	}
2760}
2761
2762void rgrp_lock_local(struct gfs2_rgrpd *rgd)
2763{
2764	mutex_lock(&rgd->rd_mutex);
2765}
2766
2767void rgrp_unlock_local(struct gfs2_rgrpd *rgd)
2768{
2769	mutex_unlock(&rgd->rd_mutex);
2770}