Loading...
1/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#include <linux/slab.h>
11#include <linux/spinlock.h>
12#include <linux/completion.h>
13#include <linux/buffer_head.h>
14#include <linux/fs.h>
15#include <linux/gfs2_ondisk.h>
16#include <linux/prefetch.h>
17#include <linux/blkdev.h>
18#include <linux/rbtree.h>
19
20#include "gfs2.h"
21#include "incore.h"
22#include "glock.h"
23#include "glops.h"
24#include "lops.h"
25#include "meta_io.h"
26#include "quota.h"
27#include "rgrp.h"
28#include "super.h"
29#include "trans.h"
30#include "util.h"
31#include "log.h"
32#include "inode.h"
33#include "trace_gfs2.h"
34
35#define BFITNOENT ((u32)~0)
36#define NO_BLOCK ((u64)~0)
37
38#if BITS_PER_LONG == 32
39#define LBITMASK (0x55555555UL)
40#define LBITSKIP55 (0x55555555UL)
41#define LBITSKIP00 (0x00000000UL)
42#else
43#define LBITMASK (0x5555555555555555UL)
44#define LBITSKIP55 (0x5555555555555555UL)
45#define LBITSKIP00 (0x0000000000000000UL)
46#endif
47
48/*
49 * These routines are used by the resource group routines (rgrp.c)
50 * to keep track of block allocation. Each block is represented by two
51 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
52 *
53 * 0 = Free
54 * 1 = Used (not metadata)
55 * 2 = Unlinked (still in use) inode
56 * 3 = Used (metadata)
57 */
58
59static const char valid_change[16] = {
60 /* current */
61 /* n */ 0, 1, 1, 1,
62 /* e */ 1, 0, 0, 0,
63 /* w */ 0, 0, 0, 1,
64 1, 0, 0, 0
65};
66
67static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
68 unsigned char old_state,
69 struct gfs2_bitmap **rbi);
70
71/**
72 * gfs2_setbit - Set a bit in the bitmaps
73 * @rgd: the resource group descriptor
74 * @buf2: the clone buffer that holds the bitmaps
75 * @bi: the bitmap structure
76 * @block: the block to set
77 * @new_state: the new state of the block
78 *
79 */
80
81static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf2,
82 struct gfs2_bitmap *bi, u32 block,
83 unsigned char new_state)
84{
85 unsigned char *byte1, *byte2, *end, cur_state;
86 unsigned int buflen = bi->bi_len;
87 const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
88
89 byte1 = bi->bi_bh->b_data + bi->bi_offset + (block / GFS2_NBBY);
90 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
91
92 BUG_ON(byte1 >= end);
93
94 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
95
96 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
97 printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
98 "new_state=%d\n",
99 (unsigned long long)block, cur_state, new_state);
100 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
101 (unsigned long long)rgd->rd_addr,
102 (unsigned long)bi->bi_start);
103 printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
104 (unsigned long)bi->bi_offset,
105 (unsigned long)bi->bi_len);
106 dump_stack();
107 gfs2_consist_rgrpd(rgd);
108 return;
109 }
110 *byte1 ^= (cur_state ^ new_state) << bit;
111
112 if (buf2) {
113 byte2 = buf2 + bi->bi_offset + (block / GFS2_NBBY);
114 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
115 *byte2 ^= (cur_state ^ new_state) << bit;
116 }
117}
118
119/**
120 * gfs2_testbit - test a bit in the bitmaps
121 * @rgd: the resource group descriptor
122 * @buffer: the buffer that holds the bitmaps
123 * @buflen: the length (in bytes) of the buffer
124 * @block: the block to read
125 *
126 */
127
128static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
129 const unsigned char *buffer,
130 unsigned int buflen, u32 block)
131{
132 const unsigned char *byte, *end;
133 unsigned char cur_state;
134 unsigned int bit;
135
136 byte = buffer + (block / GFS2_NBBY);
137 bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
138 end = buffer + buflen;
139
140 gfs2_assert(rgd->rd_sbd, byte < end);
141
142 cur_state = (*byte >> bit) & GFS2_BIT_MASK;
143
144 return cur_state;
145}
146
147/**
148 * gfs2_bit_search
149 * @ptr: Pointer to bitmap data
150 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
151 * @state: The state we are searching for
152 *
153 * We xor the bitmap data with a patter which is the bitwise opposite
154 * of what we are looking for, this gives rise to a pattern of ones
155 * wherever there is a match. Since we have two bits per entry, we
156 * take this pattern, shift it down by one place and then and it with
157 * the original. All the even bit positions (0,2,4, etc) then represent
158 * successful matches, so we mask with 0x55555..... to remove the unwanted
159 * odd bit positions.
160 *
161 * This allows searching of a whole u64 at once (32 blocks) with a
162 * single test (on 64 bit arches).
163 */
164
165static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
166{
167 u64 tmp;
168 static const u64 search[] = {
169 [0] = 0xffffffffffffffffULL,
170 [1] = 0xaaaaaaaaaaaaaaaaULL,
171 [2] = 0x5555555555555555ULL,
172 [3] = 0x0000000000000000ULL,
173 };
174 tmp = le64_to_cpu(*ptr) ^ search[state];
175 tmp &= (tmp >> 1);
176 tmp &= mask;
177 return tmp;
178}
179
180/**
181 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
182 * a block in a given allocation state.
183 * @buf: the buffer that holds the bitmaps
184 * @len: the length (in bytes) of the buffer
185 * @goal: start search at this block's bit-pair (within @buffer)
186 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
187 *
188 * Scope of @goal and returned block number is only within this bitmap buffer,
189 * not entire rgrp or filesystem. @buffer will be offset from the actual
190 * beginning of a bitmap block buffer, skipping any header structures, but
191 * headers are always a multiple of 64 bits long so that the buffer is
192 * always aligned to a 64 bit boundary.
193 *
194 * The size of the buffer is in bytes, but is it assumed that it is
195 * always ok to read a complete multiple of 64 bits at the end
196 * of the block in case the end is no aligned to a natural boundary.
197 *
198 * Return: the block number (bitmap buffer scope) that was found
199 */
200
201static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
202 u32 goal, u8 state)
203{
204 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
205 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
206 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
207 u64 tmp;
208 u64 mask = 0x5555555555555555ULL;
209 u32 bit;
210
211 BUG_ON(state > 3);
212
213 /* Mask off bits we don't care about at the start of the search */
214 mask <<= spoint;
215 tmp = gfs2_bit_search(ptr, mask, state);
216 ptr++;
217 while(tmp == 0 && ptr < end) {
218 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
219 ptr++;
220 }
221 /* Mask off any bits which are more than len bytes from the start */
222 if (ptr == end && (len & (sizeof(u64) - 1)))
223 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
224 /* Didn't find anything, so return */
225 if (tmp == 0)
226 return BFITNOENT;
227 ptr--;
228 bit = __ffs64(tmp);
229 bit /= 2; /* two bits per entry in the bitmap */
230 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
231}
232
233/**
234 * gfs2_bitcount - count the number of bits in a certain state
235 * @rgd: the resource group descriptor
236 * @buffer: the buffer that holds the bitmaps
237 * @buflen: the length (in bytes) of the buffer
238 * @state: the state of the block we're looking for
239 *
240 * Returns: The number of bits
241 */
242
243static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
244 unsigned int buflen, u8 state)
245{
246 const u8 *byte = buffer;
247 const u8 *end = buffer + buflen;
248 const u8 state1 = state << 2;
249 const u8 state2 = state << 4;
250 const u8 state3 = state << 6;
251 u32 count = 0;
252
253 for (; byte < end; byte++) {
254 if (((*byte) & 0x03) == state)
255 count++;
256 if (((*byte) & 0x0C) == state1)
257 count++;
258 if (((*byte) & 0x30) == state2)
259 count++;
260 if (((*byte) & 0xC0) == state3)
261 count++;
262 }
263
264 return count;
265}
266
267/**
268 * gfs2_rgrp_verify - Verify that a resource group is consistent
269 * @rgd: the rgrp
270 *
271 */
272
273void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
274{
275 struct gfs2_sbd *sdp = rgd->rd_sbd;
276 struct gfs2_bitmap *bi = NULL;
277 u32 length = rgd->rd_length;
278 u32 count[4], tmp;
279 int buf, x;
280
281 memset(count, 0, 4 * sizeof(u32));
282
283 /* Count # blocks in each of 4 possible allocation states */
284 for (buf = 0; buf < length; buf++) {
285 bi = rgd->rd_bits + buf;
286 for (x = 0; x < 4; x++)
287 count[x] += gfs2_bitcount(rgd,
288 bi->bi_bh->b_data +
289 bi->bi_offset,
290 bi->bi_len, x);
291 }
292
293 if (count[0] != rgd->rd_free) {
294 if (gfs2_consist_rgrpd(rgd))
295 fs_err(sdp, "free data mismatch: %u != %u\n",
296 count[0], rgd->rd_free);
297 return;
298 }
299
300 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
301 if (count[1] != tmp) {
302 if (gfs2_consist_rgrpd(rgd))
303 fs_err(sdp, "used data mismatch: %u != %u\n",
304 count[1], tmp);
305 return;
306 }
307
308 if (count[2] + count[3] != rgd->rd_dinodes) {
309 if (gfs2_consist_rgrpd(rgd))
310 fs_err(sdp, "used metadata mismatch: %u != %u\n",
311 count[2] + count[3], rgd->rd_dinodes);
312 return;
313 }
314}
315
316static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
317{
318 u64 first = rgd->rd_data0;
319 u64 last = first + rgd->rd_data;
320 return first <= block && block < last;
321}
322
323/**
324 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
325 * @sdp: The GFS2 superblock
326 * @blk: The data block number
327 * @exact: True if this needs to be an exact match
328 *
329 * Returns: The resource group, or NULL if not found
330 */
331
332struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
333{
334 struct rb_node *n, *next;
335 struct gfs2_rgrpd *cur;
336
337 spin_lock(&sdp->sd_rindex_spin);
338 n = sdp->sd_rindex_tree.rb_node;
339 while (n) {
340 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
341 next = NULL;
342 if (blk < cur->rd_addr)
343 next = n->rb_left;
344 else if (blk >= cur->rd_data0 + cur->rd_data)
345 next = n->rb_right;
346 if (next == NULL) {
347 spin_unlock(&sdp->sd_rindex_spin);
348 if (exact) {
349 if (blk < cur->rd_addr)
350 return NULL;
351 if (blk >= cur->rd_data0 + cur->rd_data)
352 return NULL;
353 }
354 return cur;
355 }
356 n = next;
357 }
358 spin_unlock(&sdp->sd_rindex_spin);
359
360 return NULL;
361}
362
363/**
364 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
365 * @sdp: The GFS2 superblock
366 *
367 * Returns: The first rgrp in the filesystem
368 */
369
370struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
371{
372 const struct rb_node *n;
373 struct gfs2_rgrpd *rgd;
374
375 spin_lock(&sdp->sd_rindex_spin);
376 n = rb_first(&sdp->sd_rindex_tree);
377 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
378 spin_unlock(&sdp->sd_rindex_spin);
379
380 return rgd;
381}
382
383/**
384 * gfs2_rgrpd_get_next - get the next RG
385 * @rgd: the resource group descriptor
386 *
387 * Returns: The next rgrp
388 */
389
390struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
391{
392 struct gfs2_sbd *sdp = rgd->rd_sbd;
393 const struct rb_node *n;
394
395 spin_lock(&sdp->sd_rindex_spin);
396 n = rb_next(&rgd->rd_node);
397 if (n == NULL)
398 n = rb_first(&sdp->sd_rindex_tree);
399
400 if (unlikely(&rgd->rd_node == n)) {
401 spin_unlock(&sdp->sd_rindex_spin);
402 return NULL;
403 }
404 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
405 spin_unlock(&sdp->sd_rindex_spin);
406 return rgd;
407}
408
409void gfs2_free_clones(struct gfs2_rgrpd *rgd)
410{
411 int x;
412
413 for (x = 0; x < rgd->rd_length; x++) {
414 struct gfs2_bitmap *bi = rgd->rd_bits + x;
415 kfree(bi->bi_clone);
416 bi->bi_clone = NULL;
417 }
418}
419
420void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
421{
422 struct rb_node *n;
423 struct gfs2_rgrpd *rgd;
424 struct gfs2_glock *gl;
425
426 while ((n = rb_first(&sdp->sd_rindex_tree))) {
427 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
428 gl = rgd->rd_gl;
429
430 rb_erase(n, &sdp->sd_rindex_tree);
431
432 if (gl) {
433 spin_lock(&gl->gl_spin);
434 gl->gl_object = NULL;
435 spin_unlock(&gl->gl_spin);
436 gfs2_glock_add_to_lru(gl);
437 gfs2_glock_put(gl);
438 }
439
440 gfs2_free_clones(rgd);
441 kfree(rgd->rd_bits);
442 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
443 }
444}
445
446static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
447{
448 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
449 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
450 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
451 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
452 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
453}
454
455/**
456 * gfs2_compute_bitstructs - Compute the bitmap sizes
457 * @rgd: The resource group descriptor
458 *
459 * Calculates bitmap descriptors, one for each block that contains bitmap data
460 *
461 * Returns: errno
462 */
463
464static int compute_bitstructs(struct gfs2_rgrpd *rgd)
465{
466 struct gfs2_sbd *sdp = rgd->rd_sbd;
467 struct gfs2_bitmap *bi;
468 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
469 u32 bytes_left, bytes;
470 int x;
471
472 if (!length)
473 return -EINVAL;
474
475 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
476 if (!rgd->rd_bits)
477 return -ENOMEM;
478
479 bytes_left = rgd->rd_bitbytes;
480
481 for (x = 0; x < length; x++) {
482 bi = rgd->rd_bits + x;
483
484 bi->bi_flags = 0;
485 /* small rgrp; bitmap stored completely in header block */
486 if (length == 1) {
487 bytes = bytes_left;
488 bi->bi_offset = sizeof(struct gfs2_rgrp);
489 bi->bi_start = 0;
490 bi->bi_len = bytes;
491 /* header block */
492 } else if (x == 0) {
493 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
494 bi->bi_offset = sizeof(struct gfs2_rgrp);
495 bi->bi_start = 0;
496 bi->bi_len = bytes;
497 /* last block */
498 } else if (x + 1 == length) {
499 bytes = bytes_left;
500 bi->bi_offset = sizeof(struct gfs2_meta_header);
501 bi->bi_start = rgd->rd_bitbytes - bytes_left;
502 bi->bi_len = bytes;
503 /* other blocks */
504 } else {
505 bytes = sdp->sd_sb.sb_bsize -
506 sizeof(struct gfs2_meta_header);
507 bi->bi_offset = sizeof(struct gfs2_meta_header);
508 bi->bi_start = rgd->rd_bitbytes - bytes_left;
509 bi->bi_len = bytes;
510 }
511
512 bytes_left -= bytes;
513 }
514
515 if (bytes_left) {
516 gfs2_consist_rgrpd(rgd);
517 return -EIO;
518 }
519 bi = rgd->rd_bits + (length - 1);
520 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
521 if (gfs2_consist_rgrpd(rgd)) {
522 gfs2_rindex_print(rgd);
523 fs_err(sdp, "start=%u len=%u offset=%u\n",
524 bi->bi_start, bi->bi_len, bi->bi_offset);
525 }
526 return -EIO;
527 }
528
529 return 0;
530}
531
532/**
533 * gfs2_ri_total - Total up the file system space, according to the rindex.
534 * @sdp: the filesystem
535 *
536 */
537u64 gfs2_ri_total(struct gfs2_sbd *sdp)
538{
539 u64 total_data = 0;
540 struct inode *inode = sdp->sd_rindex;
541 struct gfs2_inode *ip = GFS2_I(inode);
542 char buf[sizeof(struct gfs2_rindex)];
543 int error, rgrps;
544
545 for (rgrps = 0;; rgrps++) {
546 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
547
548 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
549 break;
550 error = gfs2_internal_read(ip, buf, &pos,
551 sizeof(struct gfs2_rindex));
552 if (error != sizeof(struct gfs2_rindex))
553 break;
554 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
555 }
556 return total_data;
557}
558
559static int rgd_insert(struct gfs2_rgrpd *rgd)
560{
561 struct gfs2_sbd *sdp = rgd->rd_sbd;
562 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
563
564 /* Figure out where to put new node */
565 while (*newn) {
566 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
567 rd_node);
568
569 parent = *newn;
570 if (rgd->rd_addr < cur->rd_addr)
571 newn = &((*newn)->rb_left);
572 else if (rgd->rd_addr > cur->rd_addr)
573 newn = &((*newn)->rb_right);
574 else
575 return -EEXIST;
576 }
577
578 rb_link_node(&rgd->rd_node, parent, newn);
579 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
580 sdp->sd_rgrps++;
581 return 0;
582}
583
584/**
585 * read_rindex_entry - Pull in a new resource index entry from the disk
586 * @ip: Pointer to the rindex inode
587 *
588 * Returns: 0 on success, > 0 on EOF, error code otherwise
589 */
590
591static int read_rindex_entry(struct gfs2_inode *ip)
592{
593 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
594 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
595 struct gfs2_rindex buf;
596 int error;
597 struct gfs2_rgrpd *rgd;
598
599 if (pos >= i_size_read(&ip->i_inode))
600 return 1;
601
602 error = gfs2_internal_read(ip, (char *)&buf, &pos,
603 sizeof(struct gfs2_rindex));
604
605 if (error != sizeof(struct gfs2_rindex))
606 return (error == 0) ? 1 : error;
607
608 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
609 error = -ENOMEM;
610 if (!rgd)
611 return error;
612
613 rgd->rd_sbd = sdp;
614 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
615 rgd->rd_length = be32_to_cpu(buf.ri_length);
616 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
617 rgd->rd_data = be32_to_cpu(buf.ri_data);
618 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
619
620 error = compute_bitstructs(rgd);
621 if (error)
622 goto fail;
623
624 error = gfs2_glock_get(sdp, rgd->rd_addr,
625 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
626 if (error)
627 goto fail;
628
629 rgd->rd_gl->gl_object = rgd;
630 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
631 if (rgd->rd_data > sdp->sd_max_rg_data)
632 sdp->sd_max_rg_data = rgd->rd_data;
633 spin_lock(&sdp->sd_rindex_spin);
634 error = rgd_insert(rgd);
635 spin_unlock(&sdp->sd_rindex_spin);
636 if (!error)
637 return 0;
638
639 error = 0; /* someone else read in the rgrp; free it and ignore it */
640 gfs2_glock_put(rgd->rd_gl);
641
642fail:
643 kfree(rgd->rd_bits);
644 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
645 return error;
646}
647
648/**
649 * gfs2_ri_update - Pull in a new resource index from the disk
650 * @ip: pointer to the rindex inode
651 *
652 * Returns: 0 on successful update, error code otherwise
653 */
654
655static int gfs2_ri_update(struct gfs2_inode *ip)
656{
657 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
658 int error;
659
660 do {
661 error = read_rindex_entry(ip);
662 } while (error == 0);
663
664 if (error < 0)
665 return error;
666
667 sdp->sd_rindex_uptodate = 1;
668 return 0;
669}
670
671/**
672 * gfs2_rindex_update - Update the rindex if required
673 * @sdp: The GFS2 superblock
674 *
675 * We grab a lock on the rindex inode to make sure that it doesn't
676 * change whilst we are performing an operation. We keep this lock
677 * for quite long periods of time compared to other locks. This
678 * doesn't matter, since it is shared and it is very, very rarely
679 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
680 *
681 * This makes sure that we're using the latest copy of the resource index
682 * special file, which might have been updated if someone expanded the
683 * filesystem (via gfs2_grow utility), which adds new resource groups.
684 *
685 * Returns: 0 on succeess, error code otherwise
686 */
687
688int gfs2_rindex_update(struct gfs2_sbd *sdp)
689{
690 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
691 struct gfs2_glock *gl = ip->i_gl;
692 struct gfs2_holder ri_gh;
693 int error = 0;
694 int unlock_required = 0;
695
696 /* Read new copy from disk if we don't have the latest */
697 if (!sdp->sd_rindex_uptodate) {
698 if (!gfs2_glock_is_locked_by_me(gl)) {
699 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
700 if (error)
701 return error;
702 unlock_required = 1;
703 }
704 if (!sdp->sd_rindex_uptodate)
705 error = gfs2_ri_update(ip);
706 if (unlock_required)
707 gfs2_glock_dq_uninit(&ri_gh);
708 }
709
710 return error;
711}
712
713static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
714{
715 const struct gfs2_rgrp *str = buf;
716 u32 rg_flags;
717
718 rg_flags = be32_to_cpu(str->rg_flags);
719 rg_flags &= ~GFS2_RDF_MASK;
720 rgd->rd_flags &= GFS2_RDF_MASK;
721 rgd->rd_flags |= rg_flags;
722 rgd->rd_free = be32_to_cpu(str->rg_free);
723 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
724 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
725}
726
727static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
728{
729 struct gfs2_rgrp *str = buf;
730
731 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
732 str->rg_free = cpu_to_be32(rgd->rd_free);
733 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
734 str->__pad = cpu_to_be32(0);
735 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
736 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
737}
738
739/**
740 * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps
741 * @gh: The glock holder for the resource group
742 *
743 * Read in all of a Resource Group's header and bitmap blocks.
744 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
745 *
746 * Returns: errno
747 */
748
749int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
750{
751 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
752 struct gfs2_sbd *sdp = rgd->rd_sbd;
753 struct gfs2_glock *gl = rgd->rd_gl;
754 unsigned int length = rgd->rd_length;
755 struct gfs2_bitmap *bi;
756 unsigned int x, y;
757 int error;
758
759 for (x = 0; x < length; x++) {
760 bi = rgd->rd_bits + x;
761 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
762 if (error)
763 goto fail;
764 }
765
766 for (y = length; y--;) {
767 bi = rgd->rd_bits + y;
768 error = gfs2_meta_wait(sdp, bi->bi_bh);
769 if (error)
770 goto fail;
771 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
772 GFS2_METATYPE_RG)) {
773 error = -EIO;
774 goto fail;
775 }
776 }
777
778 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
779 for (x = 0; x < length; x++)
780 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
781 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
782 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
783 rgd->rd_free_clone = rgd->rd_free;
784 }
785
786 return 0;
787
788fail:
789 while (x--) {
790 bi = rgd->rd_bits + x;
791 brelse(bi->bi_bh);
792 bi->bi_bh = NULL;
793 gfs2_assert_warn(sdp, !bi->bi_clone);
794 }
795
796 return error;
797}
798
799/**
800 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
801 * @gh: The glock holder for the resource group
802 *
803 */
804
805void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
806{
807 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
808 int x, length = rgd->rd_length;
809
810 for (x = 0; x < length; x++) {
811 struct gfs2_bitmap *bi = rgd->rd_bits + x;
812 brelse(bi->bi_bh);
813 bi->bi_bh = NULL;
814 }
815
816}
817
818int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
819 struct buffer_head *bh,
820 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
821{
822 struct super_block *sb = sdp->sd_vfs;
823 struct block_device *bdev = sb->s_bdev;
824 const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
825 bdev_logical_block_size(sb->s_bdev);
826 u64 blk;
827 sector_t start = 0;
828 sector_t nr_sects = 0;
829 int rv;
830 unsigned int x;
831 u32 trimmed = 0;
832 u8 diff;
833
834 for (x = 0; x < bi->bi_len; x++) {
835 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
836 clone += bi->bi_offset;
837 clone += x;
838 if (bh) {
839 const u8 *orig = bh->b_data + bi->bi_offset + x;
840 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
841 } else {
842 diff = ~(*clone | (*clone >> 1));
843 }
844 diff &= 0x55;
845 if (diff == 0)
846 continue;
847 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
848 blk *= sects_per_blk; /* convert to sectors */
849 while(diff) {
850 if (diff & 1) {
851 if (nr_sects == 0)
852 goto start_new_extent;
853 if ((start + nr_sects) != blk) {
854 if (nr_sects >= minlen) {
855 rv = blkdev_issue_discard(bdev,
856 start, nr_sects,
857 GFP_NOFS, 0);
858 if (rv)
859 goto fail;
860 trimmed += nr_sects;
861 }
862 nr_sects = 0;
863start_new_extent:
864 start = blk;
865 }
866 nr_sects += sects_per_blk;
867 }
868 diff >>= 2;
869 blk += sects_per_blk;
870 }
871 }
872 if (nr_sects >= minlen) {
873 rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
874 if (rv)
875 goto fail;
876 trimmed += nr_sects;
877 }
878 if (ptrimmed)
879 *ptrimmed = trimmed;
880 return 0;
881
882fail:
883 if (sdp->sd_args.ar_discard)
884 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
885 sdp->sd_args.ar_discard = 0;
886 return -EIO;
887}
888
889/**
890 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
891 * @filp: Any file on the filesystem
892 * @argp: Pointer to the arguments (also used to pass result)
893 *
894 * Returns: 0 on success, otherwise error code
895 */
896
897int gfs2_fitrim(struct file *filp, void __user *argp)
898{
899 struct inode *inode = filp->f_dentry->d_inode;
900 struct gfs2_sbd *sdp = GFS2_SB(inode);
901 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
902 struct buffer_head *bh;
903 struct gfs2_rgrpd *rgd;
904 struct gfs2_rgrpd *rgd_end;
905 struct gfs2_holder gh;
906 struct fstrim_range r;
907 int ret = 0;
908 u64 amt;
909 u64 trimmed = 0;
910 unsigned int x;
911
912 if (!capable(CAP_SYS_ADMIN))
913 return -EPERM;
914
915 if (!blk_queue_discard(q))
916 return -EOPNOTSUPP;
917
918 if (argp == NULL) {
919 r.start = 0;
920 r.len = ULLONG_MAX;
921 r.minlen = 0;
922 } else if (copy_from_user(&r, argp, sizeof(r)))
923 return -EFAULT;
924
925 ret = gfs2_rindex_update(sdp);
926 if (ret)
927 return ret;
928
929 rgd = gfs2_blk2rgrpd(sdp, r.start, 0);
930 rgd_end = gfs2_blk2rgrpd(sdp, r.start + r.len, 0);
931
932 while (1) {
933
934 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
935 if (ret)
936 goto out;
937
938 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
939 /* Trim each bitmap in the rgrp */
940 for (x = 0; x < rgd->rd_length; x++) {
941 struct gfs2_bitmap *bi = rgd->rd_bits + x;
942 ret = gfs2_rgrp_send_discards(sdp, rgd->rd_data0, NULL, bi, r.minlen, &amt);
943 if (ret) {
944 gfs2_glock_dq_uninit(&gh);
945 goto out;
946 }
947 trimmed += amt;
948 }
949
950 /* Mark rgrp as having been trimmed */
951 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
952 if (ret == 0) {
953 bh = rgd->rd_bits[0].bi_bh;
954 rgd->rd_flags |= GFS2_RGF_TRIMMED;
955 gfs2_trans_add_bh(rgd->rd_gl, bh, 1);
956 gfs2_rgrp_out(rgd, bh->b_data);
957 gfs2_trans_end(sdp);
958 }
959 }
960 gfs2_glock_dq_uninit(&gh);
961
962 if (rgd == rgd_end)
963 break;
964
965 rgd = gfs2_rgrpd_get_next(rgd);
966 }
967
968out:
969 r.len = trimmed << 9;
970 if (argp && copy_to_user(argp, &r, sizeof(r)))
971 return -EFAULT;
972
973 return ret;
974}
975
976/**
977 * gfs2_qadata_get - get the struct gfs2_qadata structure for an inode
978 * @ip: the incore GFS2 inode structure
979 *
980 * Returns: the struct gfs2_qadata
981 */
982
983struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip)
984{
985 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
986 int error;
987 BUG_ON(ip->i_qadata != NULL);
988 ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS);
989 error = gfs2_rindex_update(sdp);
990 if (error)
991 fs_warn(sdp, "rindex update returns %d\n", error);
992 return ip->i_qadata;
993}
994
995/**
996 * gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode
997 * @ip: the incore GFS2 inode structure
998 *
999 * Returns: the struct gfs2_qadata
1000 */
1001
1002static int gfs2_blkrsv_get(struct gfs2_inode *ip)
1003{
1004 BUG_ON(ip->i_res != NULL);
1005 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
1006 if (!ip->i_res)
1007 return -ENOMEM;
1008 return 0;
1009}
1010
1011/**
1012 * try_rgrp_fit - See if a given reservation will fit in a given RG
1013 * @rgd: the RG data
1014 * @ip: the inode
1015 *
1016 * If there's room for the requested blocks to be allocated from the RG:
1017 *
1018 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
1019 */
1020
1021static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip)
1022{
1023 const struct gfs2_blkreserv *rs = ip->i_res;
1024
1025 if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1026 return 0;
1027 if (rgd->rd_free_clone >= rs->rs_requested)
1028 return 1;
1029 return 0;
1030}
1031
1032static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk)
1033{
1034 return (bi->bi_start * GFS2_NBBY) + blk;
1035}
1036
1037/**
1038 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1039 * @rgd: The rgrp
1040 * @last_unlinked: block address of the last dinode we unlinked
1041 * @skip: block address we should explicitly not unlink
1042 *
1043 * Returns: 0 if no error
1044 * The inode, if one has been found, in inode.
1045 */
1046
1047static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1048{
1049 u32 goal = 0, block;
1050 u64 no_addr;
1051 struct gfs2_sbd *sdp = rgd->rd_sbd;
1052 struct gfs2_glock *gl;
1053 struct gfs2_inode *ip;
1054 int error;
1055 int found = 0;
1056 struct gfs2_bitmap *bi;
1057
1058 while (goal < rgd->rd_data) {
1059 down_write(&sdp->sd_log_flush_lock);
1060 block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi);
1061 up_write(&sdp->sd_log_flush_lock);
1062 if (block == BFITNOENT)
1063 break;
1064
1065 block = gfs2_bi2rgd_blk(bi, block);
1066 /* rgblk_search can return a block < goal, so we need to
1067 keep it marching forward. */
1068 no_addr = block + rgd->rd_data0;
1069 goal = max(block + 1, goal + 1);
1070 if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
1071 continue;
1072 if (no_addr == skip)
1073 continue;
1074 *last_unlinked = no_addr;
1075
1076 error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
1077 if (error)
1078 continue;
1079
1080 /* If the inode is already in cache, we can ignore it here
1081 * because the existing inode disposal code will deal with
1082 * it when all refs have gone away. Accessing gl_object like
1083 * this is not safe in general. Here it is ok because we do
1084 * not dereference the pointer, and we only need an approx
1085 * answer to whether it is NULL or not.
1086 */
1087 ip = gl->gl_object;
1088
1089 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1090 gfs2_glock_put(gl);
1091 else
1092 found++;
1093
1094 /* Limit reclaim to sensible number of tasks */
1095 if (found > NR_CPUS)
1096 return;
1097 }
1098
1099 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1100 return;
1101}
1102
1103/**
1104 * get_local_rgrp - Choose and lock a rgrp for allocation
1105 * @ip: the inode to reserve space for
1106 * @last_unlinked: the last unlinked block
1107 *
1108 * Try to acquire rgrp in way which avoids contending with others.
1109 *
1110 * Returns: errno
1111 */
1112
1113static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
1114{
1115 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1116 struct gfs2_rgrpd *rgd, *begin = NULL;
1117 struct gfs2_blkreserv *rs = ip->i_res;
1118 int error, rg_locked, flags = LM_FLAG_TRY;
1119 int loops = 0;
1120
1121 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal))
1122 rgd = begin = ip->i_rgd;
1123 else
1124 rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1125
1126 if (rgd == NULL)
1127 return -EBADSLT;
1128
1129 while (loops < 3) {
1130 rg_locked = 0;
1131
1132 if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1133 rg_locked = 1;
1134 error = 0;
1135 } else {
1136 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1137 flags, &rs->rs_rgd_gh);
1138 }
1139 switch (error) {
1140 case 0:
1141 if (try_rgrp_fit(rgd, ip)) {
1142 ip->i_rgd = rgd;
1143 return 0;
1144 }
1145 if (rgd->rd_flags & GFS2_RDF_CHECK)
1146 try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1147 if (!rg_locked)
1148 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1149 /* fall through */
1150 case GLR_TRYFAILED:
1151 rgd = gfs2_rgrpd_get_next(rgd);
1152 if (rgd == begin) {
1153 flags = 0;
1154 loops++;
1155 }
1156 break;
1157 default:
1158 return error;
1159 }
1160 }
1161
1162 return -ENOSPC;
1163}
1164
1165static void gfs2_blkrsv_put(struct gfs2_inode *ip)
1166{
1167 BUG_ON(ip->i_res == NULL);
1168 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
1169 ip->i_res = NULL;
1170}
1171
1172/**
1173 * gfs2_inplace_reserve - Reserve space in the filesystem
1174 * @ip: the inode to reserve space for
1175 * @requested: the number of blocks to be reserved
1176 *
1177 * Returns: errno
1178 */
1179
1180int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
1181{
1182 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1183 struct gfs2_blkreserv *rs;
1184 int error;
1185 u64 last_unlinked = NO_BLOCK;
1186 int tries = 0;
1187
1188 error = gfs2_blkrsv_get(ip);
1189 if (error)
1190 return error;
1191
1192 rs = ip->i_res;
1193 rs->rs_requested = requested;
1194 if (gfs2_assert_warn(sdp, requested)) {
1195 error = -EINVAL;
1196 goto out;
1197 }
1198
1199 do {
1200 error = get_local_rgrp(ip, &last_unlinked);
1201 if (error != -ENOSPC)
1202 break;
1203 /* Check that fs hasn't grown if writing to rindex */
1204 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1205 error = gfs2_ri_update(ip);
1206 if (error)
1207 break;
1208 continue;
1209 }
1210 /* Flushing the log may release space */
1211 gfs2_log_flush(sdp, NULL);
1212 } while (tries++ < 3);
1213
1214out:
1215 if (error)
1216 gfs2_blkrsv_put(ip);
1217 return error;
1218}
1219
1220/**
1221 * gfs2_inplace_release - release an inplace reservation
1222 * @ip: the inode the reservation was taken out on
1223 *
1224 * Release a reservation made by gfs2_inplace_reserve().
1225 */
1226
1227void gfs2_inplace_release(struct gfs2_inode *ip)
1228{
1229 struct gfs2_blkreserv *rs = ip->i_res;
1230
1231 if (rs->rs_rgd_gh.gh_gl)
1232 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1233 gfs2_blkrsv_put(ip);
1234}
1235
1236/**
1237 * gfs2_get_block_type - Check a block in a RG is of given type
1238 * @rgd: the resource group holding the block
1239 * @block: the block number
1240 *
1241 * Returns: The block type (GFS2_BLKST_*)
1242 */
1243
1244static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1245{
1246 struct gfs2_bitmap *bi = NULL;
1247 u32 length, rgrp_block, buf_block;
1248 unsigned int buf;
1249 unsigned char type;
1250
1251 length = rgd->rd_length;
1252 rgrp_block = block - rgd->rd_data0;
1253
1254 for (buf = 0; buf < length; buf++) {
1255 bi = rgd->rd_bits + buf;
1256 if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1257 break;
1258 }
1259
1260 gfs2_assert(rgd->rd_sbd, buf < length);
1261 buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1262
1263 type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1264 bi->bi_len, buf_block);
1265
1266 return type;
1267}
1268
1269/**
1270 * rgblk_search - find a block in @state
1271 * @rgd: the resource group descriptor
1272 * @goal: the goal block within the RG (start here to search for avail block)
1273 * @state: GFS2_BLKST_XXX the before-allocation state to find
1274 * @rbi: address of the pointer to the bitmap containing the block found
1275 *
1276 * Walk rgrp's bitmap to find bits that represent a block in @state.
1277 *
1278 * This function never fails, because we wouldn't call it unless we
1279 * know (from reservation results, etc.) that a block is available.
1280 *
1281 * Scope of @goal is just within rgrp, not the whole filesystem.
1282 * Scope of @returned block is just within bitmap, not the whole filesystem.
1283 *
1284 * Returns: the block number found relative to the bitmap rbi
1285 */
1286
1287static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, unsigned char state,
1288 struct gfs2_bitmap **rbi)
1289{
1290 struct gfs2_bitmap *bi = NULL;
1291 const u32 length = rgd->rd_length;
1292 u32 biblk = BFITNOENT;
1293 unsigned int buf, x;
1294 const u8 *buffer = NULL;
1295
1296 *rbi = NULL;
1297 /* Find bitmap block that contains bits for goal block */
1298 for (buf = 0; buf < length; buf++) {
1299 bi = rgd->rd_bits + buf;
1300 /* Convert scope of "goal" from rgrp-wide to within found bit block */
1301 if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1302 goal -= bi->bi_start * GFS2_NBBY;
1303 goto do_search;
1304 }
1305 }
1306 buf = 0;
1307 goal = 0;
1308
1309do_search:
1310 /* Search (up to entire) bitmap in this rgrp for allocatable block.
1311 "x <= length", instead of "x < length", because we typically start
1312 the search in the middle of a bit block, but if we can't find an
1313 allocatable block anywhere else, we want to be able wrap around and
1314 search in the first part of our first-searched bit block. */
1315 for (x = 0; x <= length; x++) {
1316 bi = rgd->rd_bits + buf;
1317
1318 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1319 (state == GFS2_BLKST_FREE))
1320 goto skip;
1321
1322 /* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1323 bitmaps, so we must search the originals for that. */
1324 buffer = bi->bi_bh->b_data + bi->bi_offset;
1325 WARN_ON(!buffer_uptodate(bi->bi_bh));
1326 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1327 buffer = bi->bi_clone + bi->bi_offset;
1328
1329 biblk = gfs2_bitfit(buffer, bi->bi_len, goal, state);
1330 if (biblk != BFITNOENT)
1331 break;
1332
1333 if ((goal == 0) && (state == GFS2_BLKST_FREE))
1334 set_bit(GBF_FULL, &bi->bi_flags);
1335
1336 /* Try next bitmap block (wrap back to rgrp header if at end) */
1337skip:
1338 buf++;
1339 buf %= length;
1340 goal = 0;
1341 }
1342
1343 if (biblk != BFITNOENT)
1344 *rbi = bi;
1345
1346 return biblk;
1347}
1348
1349/**
1350 * gfs2_alloc_extent - allocate an extent from a given bitmap
1351 * @rgd: the resource group descriptor
1352 * @bi: the bitmap within the rgrp
1353 * @blk: the block within the bitmap
1354 * @dinode: TRUE if the first block we allocate is for a dinode
1355 * @n: The extent length
1356 *
1357 * Add the found bitmap buffer to the transaction.
1358 * Set the found bits to @new_state to change block's allocation state.
1359 * Returns: starting block number of the extent (fs scope)
1360 */
1361static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi,
1362 u32 blk, bool dinode, unsigned int *n)
1363{
1364 const unsigned int elen = *n;
1365 u32 goal;
1366 const u8 *buffer = NULL;
1367
1368 *n = 0;
1369 buffer = bi->bi_bh->b_data + bi->bi_offset;
1370 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1371 gfs2_setbit(rgd, bi->bi_clone, bi, blk,
1372 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1373 (*n)++;
1374 goal = blk;
1375 while (*n < elen) {
1376 goal++;
1377 if (goal >= (bi->bi_len * GFS2_NBBY))
1378 break;
1379 if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1380 GFS2_BLKST_FREE)
1381 break;
1382 gfs2_setbit(rgd, bi->bi_clone, bi, goal, GFS2_BLKST_USED);
1383 (*n)++;
1384 }
1385 blk = gfs2_bi2rgd_blk(bi, blk);
1386 rgd->rd_last_alloc = blk + *n - 1;
1387 return rgd->rd_data0 + blk;
1388}
1389
1390/**
1391 * rgblk_free - Change alloc state of given block(s)
1392 * @sdp: the filesystem
1393 * @bstart: the start of a run of blocks to free
1394 * @blen: the length of the block run (all must lie within ONE RG!)
1395 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1396 *
1397 * Returns: Resource group containing the block(s)
1398 */
1399
1400static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1401 u32 blen, unsigned char new_state)
1402{
1403 struct gfs2_rgrpd *rgd;
1404 struct gfs2_bitmap *bi = NULL;
1405 u32 length, rgrp_blk, buf_blk;
1406 unsigned int buf;
1407
1408 rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1409 if (!rgd) {
1410 if (gfs2_consist(sdp))
1411 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1412 return NULL;
1413 }
1414
1415 length = rgd->rd_length;
1416
1417 rgrp_blk = bstart - rgd->rd_data0;
1418
1419 while (blen--) {
1420 for (buf = 0; buf < length; buf++) {
1421 bi = rgd->rd_bits + buf;
1422 if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1423 break;
1424 }
1425
1426 gfs2_assert(rgd->rd_sbd, buf < length);
1427
1428 buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1429 rgrp_blk++;
1430
1431 if (!bi->bi_clone) {
1432 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1433 GFP_NOFS | __GFP_NOFAIL);
1434 memcpy(bi->bi_clone + bi->bi_offset,
1435 bi->bi_bh->b_data + bi->bi_offset,
1436 bi->bi_len);
1437 }
1438 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1439 gfs2_setbit(rgd, NULL, bi, buf_blk, new_state);
1440 }
1441
1442 return rgd;
1443}
1444
1445/**
1446 * gfs2_rgrp_dump - print out an rgrp
1447 * @seq: The iterator
1448 * @gl: The glock in question
1449 *
1450 */
1451
1452int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
1453{
1454 const struct gfs2_rgrpd *rgd = gl->gl_object;
1455 if (rgd == NULL)
1456 return 0;
1457 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
1458 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1459 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1460 return 0;
1461}
1462
1463static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1464{
1465 struct gfs2_sbd *sdp = rgd->rd_sbd;
1466 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1467 (unsigned long long)rgd->rd_addr);
1468 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1469 gfs2_rgrp_dump(NULL, rgd->rd_gl);
1470 rgd->rd_flags |= GFS2_RDF_ERROR;
1471}
1472
1473/**
1474 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
1475 * @ip: the inode to allocate the block for
1476 * @bn: Used to return the starting block number
1477 * @ndata: requested number of blocks/extent length (value/result)
1478 * @dinode: 1 if we're allocating a dinode block, else 0
1479 * @generation: the generation number of the inode
1480 *
1481 * Returns: 0 or error
1482 */
1483
1484int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
1485 bool dinode, u64 *generation)
1486{
1487 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1488 struct buffer_head *dibh;
1489 struct gfs2_rgrpd *rgd;
1490 unsigned int ndata;
1491 u32 goal, blk; /* block, within the rgrp scope */
1492 u64 block; /* block, within the file system scope */
1493 int error;
1494 struct gfs2_bitmap *bi;
1495
1496 /* Only happens if there is a bug in gfs2, return something distinctive
1497 * to ensure that it is noticed.
1498 */
1499 if (ip->i_res == NULL)
1500 return -ECANCELED;
1501
1502 rgd = ip->i_rgd;
1503
1504 if (!dinode && rgrp_contains_block(rgd, ip->i_goal))
1505 goal = ip->i_goal - rgd->rd_data0;
1506 else
1507 goal = rgd->rd_last_alloc;
1508
1509 blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi);
1510
1511 /* Since all blocks are reserved in advance, this shouldn't happen */
1512 if (blk == BFITNOENT)
1513 goto rgrp_error;
1514
1515 block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks);
1516 ndata = *nblocks;
1517 if (dinode)
1518 ndata--;
1519
1520 if (!dinode) {
1521 ip->i_goal = block + ndata - 1;
1522 error = gfs2_meta_inode_buffer(ip, &dibh);
1523 if (error == 0) {
1524 struct gfs2_dinode *di =
1525 (struct gfs2_dinode *)dibh->b_data;
1526 gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1527 di->di_goal_meta = di->di_goal_data =
1528 cpu_to_be64(ip->i_goal);
1529 brelse(dibh);
1530 }
1531 }
1532 if (rgd->rd_free < *nblocks)
1533 goto rgrp_error;
1534
1535 rgd->rd_free -= *nblocks;
1536 if (dinode) {
1537 rgd->rd_dinodes++;
1538 *generation = rgd->rd_igeneration++;
1539 if (*generation == 0)
1540 *generation = rgd->rd_igeneration++;
1541 }
1542
1543 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1544 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1545
1546 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
1547 if (dinode)
1548 gfs2_trans_add_unrevoke(sdp, block, 1);
1549
1550 /*
1551 * This needs reviewing to see why we cannot do the quota change
1552 * at this point in the dinode case.
1553 */
1554 if (ndata)
1555 gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
1556 ip->i_inode.i_gid);
1557
1558 rgd->rd_free_clone -= *nblocks;
1559 trace_gfs2_block_alloc(ip, rgd, block, *nblocks,
1560 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1561 *bn = block;
1562 return 0;
1563
1564rgrp_error:
1565 gfs2_rgrp_error(rgd);
1566 return -EIO;
1567}
1568
1569/**
1570 * __gfs2_free_blocks - free a contiguous run of block(s)
1571 * @ip: the inode these blocks are being freed from
1572 * @bstart: first block of a run of contiguous blocks
1573 * @blen: the length of the block run
1574 * @meta: 1 if the blocks represent metadata
1575 *
1576 */
1577
1578void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
1579{
1580 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1581 struct gfs2_rgrpd *rgd;
1582
1583 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1584 if (!rgd)
1585 return;
1586 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
1587 rgd->rd_free += blen;
1588 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
1589 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1590 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1591
1592 /* Directories keep their data in the metadata address space */
1593 if (meta || ip->i_depth)
1594 gfs2_meta_wipe(ip, bstart, blen);
1595}
1596
1597/**
1598 * gfs2_free_meta - free a contiguous run of data block(s)
1599 * @ip: the inode these blocks are being freed from
1600 * @bstart: first block of a run of contiguous blocks
1601 * @blen: the length of the block run
1602 *
1603 */
1604
1605void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
1606{
1607 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1608
1609 __gfs2_free_blocks(ip, bstart, blen, 1);
1610 gfs2_statfs_change(sdp, 0, +blen, 0);
1611 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1612}
1613
1614void gfs2_unlink_di(struct inode *inode)
1615{
1616 struct gfs2_inode *ip = GFS2_I(inode);
1617 struct gfs2_sbd *sdp = GFS2_SB(inode);
1618 struct gfs2_rgrpd *rgd;
1619 u64 blkno = ip->i_no_addr;
1620
1621 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1622 if (!rgd)
1623 return;
1624 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
1625 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1626 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1627}
1628
1629static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1630{
1631 struct gfs2_sbd *sdp = rgd->rd_sbd;
1632 struct gfs2_rgrpd *tmp_rgd;
1633
1634 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1635 if (!tmp_rgd)
1636 return;
1637 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1638
1639 if (!rgd->rd_dinodes)
1640 gfs2_consist_rgrpd(rgd);
1641 rgd->rd_dinodes--;
1642 rgd->rd_free++;
1643
1644 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1645 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1646
1647 gfs2_statfs_change(sdp, 0, +1, -1);
1648}
1649
1650
1651void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1652{
1653 gfs2_free_uninit_di(rgd, ip->i_no_addr);
1654 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1655 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1656 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1657}
1658
1659/**
1660 * gfs2_check_blk_type - Check the type of a block
1661 * @sdp: The superblock
1662 * @no_addr: The block number to check
1663 * @type: The block type we are looking for
1664 *
1665 * Returns: 0 if the block type matches the expected type
1666 * -ESTALE if it doesn't match
1667 * or -ve errno if something went wrong while checking
1668 */
1669
1670int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1671{
1672 struct gfs2_rgrpd *rgd;
1673 struct gfs2_holder rgd_gh;
1674 int error = -EINVAL;
1675
1676 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
1677 if (!rgd)
1678 goto fail;
1679
1680 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1681 if (error)
1682 goto fail;
1683
1684 if (gfs2_get_block_type(rgd, no_addr) != type)
1685 error = -ESTALE;
1686
1687 gfs2_glock_dq_uninit(&rgd_gh);
1688fail:
1689 return error;
1690}
1691
1692/**
1693 * gfs2_rlist_add - add a RG to a list of RGs
1694 * @ip: the inode
1695 * @rlist: the list of resource groups
1696 * @block: the block
1697 *
1698 * Figure out what RG a block belongs to and add that RG to the list
1699 *
1700 * FIXME: Don't use NOFAIL
1701 *
1702 */
1703
1704void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
1705 u64 block)
1706{
1707 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1708 struct gfs2_rgrpd *rgd;
1709 struct gfs2_rgrpd **tmp;
1710 unsigned int new_space;
1711 unsigned int x;
1712
1713 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1714 return;
1715
1716 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
1717 rgd = ip->i_rgd;
1718 else
1719 rgd = gfs2_blk2rgrpd(sdp, block, 1);
1720 if (!rgd) {
1721 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
1722 return;
1723 }
1724 ip->i_rgd = rgd;
1725
1726 for (x = 0; x < rlist->rl_rgrps; x++)
1727 if (rlist->rl_rgd[x] == rgd)
1728 return;
1729
1730 if (rlist->rl_rgrps == rlist->rl_space) {
1731 new_space = rlist->rl_space + 10;
1732
1733 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1734 GFP_NOFS | __GFP_NOFAIL);
1735
1736 if (rlist->rl_rgd) {
1737 memcpy(tmp, rlist->rl_rgd,
1738 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1739 kfree(rlist->rl_rgd);
1740 }
1741
1742 rlist->rl_space = new_space;
1743 rlist->rl_rgd = tmp;
1744 }
1745
1746 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1747}
1748
1749/**
1750 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1751 * and initialize an array of glock holders for them
1752 * @rlist: the list of resource groups
1753 * @state: the lock state to acquire the RG lock in
1754 *
1755 * FIXME: Don't use NOFAIL
1756 *
1757 */
1758
1759void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1760{
1761 unsigned int x;
1762
1763 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1764 GFP_NOFS | __GFP_NOFAIL);
1765 for (x = 0; x < rlist->rl_rgrps; x++)
1766 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1767 state, 0,
1768 &rlist->rl_ghs[x]);
1769}
1770
1771/**
1772 * gfs2_rlist_free - free a resource group list
1773 * @list: the list of resource groups
1774 *
1775 */
1776
1777void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1778{
1779 unsigned int x;
1780
1781 kfree(rlist->rl_rgd);
1782
1783 if (rlist->rl_ghs) {
1784 for (x = 0; x < rlist->rl_rgrps; x++)
1785 gfs2_holder_uninit(&rlist->rl_ghs[x]);
1786 kfree(rlist->rl_ghs);
1787 }
1788}
1789
1/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/slab.h>
13#include <linux/spinlock.h>
14#include <linux/completion.h>
15#include <linux/buffer_head.h>
16#include <linux/fs.h>
17#include <linux/gfs2_ondisk.h>
18#include <linux/prefetch.h>
19#include <linux/blkdev.h>
20#include <linux/rbtree.h>
21#include <linux/random.h>
22
23#include "gfs2.h"
24#include "incore.h"
25#include "glock.h"
26#include "glops.h"
27#include "lops.h"
28#include "meta_io.h"
29#include "quota.h"
30#include "rgrp.h"
31#include "super.h"
32#include "trans.h"
33#include "util.h"
34#include "log.h"
35#include "inode.h"
36#include "trace_gfs2.h"
37
38#define BFITNOENT ((u32)~0)
39#define NO_BLOCK ((u64)~0)
40
41#if BITS_PER_LONG == 32
42#define LBITMASK (0x55555555UL)
43#define LBITSKIP55 (0x55555555UL)
44#define LBITSKIP00 (0x00000000UL)
45#else
46#define LBITMASK (0x5555555555555555UL)
47#define LBITSKIP55 (0x5555555555555555UL)
48#define LBITSKIP00 (0x0000000000000000UL)
49#endif
50
51/*
52 * These routines are used by the resource group routines (rgrp.c)
53 * to keep track of block allocation. Each block is represented by two
54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55 *
56 * 0 = Free
57 * 1 = Used (not metadata)
58 * 2 = Unlinked (still in use) inode
59 * 3 = Used (metadata)
60 */
61
62struct gfs2_extent {
63 struct gfs2_rbm rbm;
64 u32 len;
65};
66
67static const char valid_change[16] = {
68 /* current */
69 /* n */ 0, 1, 1, 1,
70 /* e */ 1, 0, 0, 0,
71 /* w */ 0, 0, 0, 1,
72 1, 0, 0, 0
73};
74
75static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
76 const struct gfs2_inode *ip, bool nowrap,
77 const struct gfs2_alloc_parms *ap);
78
79
80/**
81 * gfs2_setbit - Set a bit in the bitmaps
82 * @rbm: The position of the bit to set
83 * @do_clone: Also set the clone bitmap, if it exists
84 * @new_state: the new state of the block
85 *
86 */
87
88static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
89 unsigned char new_state)
90{
91 unsigned char *byte1, *byte2, *end, cur_state;
92 struct gfs2_bitmap *bi = rbm_bi(rbm);
93 unsigned int buflen = bi->bi_len;
94 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
95
96 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
97 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
98
99 BUG_ON(byte1 >= end);
100
101 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
102
103 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
104 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
105 rbm->offset, cur_state, new_state);
106 pr_warn("rgrp=0x%llx bi_start=0x%x\n",
107 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
108 pr_warn("bi_offset=0x%x bi_len=0x%x\n",
109 bi->bi_offset, bi->bi_len);
110 dump_stack();
111 gfs2_consist_rgrpd(rbm->rgd);
112 return;
113 }
114 *byte1 ^= (cur_state ^ new_state) << bit;
115
116 if (do_clone && bi->bi_clone) {
117 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
118 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
119 *byte2 ^= (cur_state ^ new_state) << bit;
120 }
121}
122
123/**
124 * gfs2_testbit - test a bit in the bitmaps
125 * @rbm: The bit to test
126 *
127 * Returns: The two bit block state of the requested bit
128 */
129
130static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
131{
132 struct gfs2_bitmap *bi = rbm_bi(rbm);
133 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
134 const u8 *byte;
135 unsigned int bit;
136
137 byte = buffer + (rbm->offset / GFS2_NBBY);
138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
139
140 return (*byte >> bit) & GFS2_BIT_MASK;
141}
142
143/**
144 * gfs2_bit_search
145 * @ptr: Pointer to bitmap data
146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147 * @state: The state we are searching for
148 *
149 * We xor the bitmap data with a patter which is the bitwise opposite
150 * of what we are looking for, this gives rise to a pattern of ones
151 * wherever there is a match. Since we have two bits per entry, we
152 * take this pattern, shift it down by one place and then and it with
153 * the original. All the even bit positions (0,2,4, etc) then represent
154 * successful matches, so we mask with 0x55555..... to remove the unwanted
155 * odd bit positions.
156 *
157 * This allows searching of a whole u64 at once (32 blocks) with a
158 * single test (on 64 bit arches).
159 */
160
161static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
162{
163 u64 tmp;
164 static const u64 search[] = {
165 [0] = 0xffffffffffffffffULL,
166 [1] = 0xaaaaaaaaaaaaaaaaULL,
167 [2] = 0x5555555555555555ULL,
168 [3] = 0x0000000000000000ULL,
169 };
170 tmp = le64_to_cpu(*ptr) ^ search[state];
171 tmp &= (tmp >> 1);
172 tmp &= mask;
173 return tmp;
174}
175
176/**
177 * rs_cmp - multi-block reservation range compare
178 * @blk: absolute file system block number of the new reservation
179 * @len: number of blocks in the new reservation
180 * @rs: existing reservation to compare against
181 *
182 * returns: 1 if the block range is beyond the reach of the reservation
183 * -1 if the block range is before the start of the reservation
184 * 0 if the block range overlaps with the reservation
185 */
186static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
187{
188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
189
190 if (blk >= startblk + rs->rs_free)
191 return 1;
192 if (blk + len - 1 < startblk)
193 return -1;
194 return 0;
195}
196
197/**
198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199 * a block in a given allocation state.
200 * @buf: the buffer that holds the bitmaps
201 * @len: the length (in bytes) of the buffer
202 * @goal: start search at this block's bit-pair (within @buffer)
203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
204 *
205 * Scope of @goal and returned block number is only within this bitmap buffer,
206 * not entire rgrp or filesystem. @buffer will be offset from the actual
207 * beginning of a bitmap block buffer, skipping any header structures, but
208 * headers are always a multiple of 64 bits long so that the buffer is
209 * always aligned to a 64 bit boundary.
210 *
211 * The size of the buffer is in bytes, but is it assumed that it is
212 * always ok to read a complete multiple of 64 bits at the end
213 * of the block in case the end is no aligned to a natural boundary.
214 *
215 * Return: the block number (bitmap buffer scope) that was found
216 */
217
218static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
219 u32 goal, u8 state)
220{
221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
224 u64 tmp;
225 u64 mask = 0x5555555555555555ULL;
226 u32 bit;
227
228 /* Mask off bits we don't care about at the start of the search */
229 mask <<= spoint;
230 tmp = gfs2_bit_search(ptr, mask, state);
231 ptr++;
232 while(tmp == 0 && ptr < end) {
233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
234 ptr++;
235 }
236 /* Mask off any bits which are more than len bytes from the start */
237 if (ptr == end && (len & (sizeof(u64) - 1)))
238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
239 /* Didn't find anything, so return */
240 if (tmp == 0)
241 return BFITNOENT;
242 ptr--;
243 bit = __ffs64(tmp);
244 bit /= 2; /* two bits per entry in the bitmap */
245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
246}
247
248/**
249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250 * @rbm: The rbm with rgd already set correctly
251 * @block: The block number (filesystem relative)
252 *
253 * This sets the bi and offset members of an rbm based on a
254 * resource group and a filesystem relative block number. The
255 * resource group must be set in the rbm on entry, the bi and
256 * offset members will be set by this function.
257 *
258 * Returns: 0 on success, or an error code
259 */
260
261static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
262{
263 u64 rblock = block - rbm->rgd->rd_data0;
264
265 if (WARN_ON_ONCE(rblock > UINT_MAX))
266 return -EINVAL;
267 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
268 return -E2BIG;
269
270 rbm->bii = 0;
271 rbm->offset = (u32)(rblock);
272 /* Check if the block is within the first block */
273 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
274 return 0;
275
276 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
277 rbm->offset += (sizeof(struct gfs2_rgrp) -
278 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
279 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
281 return 0;
282}
283
284/**
285 * gfs2_rbm_incr - increment an rbm structure
286 * @rbm: The rbm with rgd already set correctly
287 *
288 * This function takes an existing rbm structure and increments it to the next
289 * viable block offset.
290 *
291 * Returns: If incrementing the offset would cause the rbm to go past the
292 * end of the rgrp, true is returned, otherwise false.
293 *
294 */
295
296static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
297{
298 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
299 rbm->offset++;
300 return false;
301 }
302 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
303 return true;
304
305 rbm->offset = 0;
306 rbm->bii++;
307 return false;
308}
309
310/**
311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
312 * @rbm: Position to search (value/result)
313 * @n_unaligned: Number of unaligned blocks to check
314 * @len: Decremented for each block found (terminate on zero)
315 *
316 * Returns: true if a non-free block is encountered
317 */
318
319static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
320{
321 u32 n;
322 u8 res;
323
324 for (n = 0; n < n_unaligned; n++) {
325 res = gfs2_testbit(rbm);
326 if (res != GFS2_BLKST_FREE)
327 return true;
328 (*len)--;
329 if (*len == 0)
330 return true;
331 if (gfs2_rbm_incr(rbm))
332 return true;
333 }
334
335 return false;
336}
337
338/**
339 * gfs2_free_extlen - Return extent length of free blocks
340 * @rbm: Starting position
341 * @len: Max length to check
342 *
343 * Starting at the block specified by the rbm, see how many free blocks
344 * there are, not reading more than len blocks ahead. This can be done
345 * using memchr_inv when the blocks are byte aligned, but has to be done
346 * on a block by block basis in case of unaligned blocks. Also this
347 * function can cope with bitmap boundaries (although it must stop on
348 * a resource group boundary)
349 *
350 * Returns: Number of free blocks in the extent
351 */
352
353static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
354{
355 struct gfs2_rbm rbm = *rrbm;
356 u32 n_unaligned = rbm.offset & 3;
357 u32 size = len;
358 u32 bytes;
359 u32 chunk_size;
360 u8 *ptr, *start, *end;
361 u64 block;
362 struct gfs2_bitmap *bi;
363
364 if (n_unaligned &&
365 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
366 goto out;
367
368 n_unaligned = len & 3;
369 /* Start is now byte aligned */
370 while (len > 3) {
371 bi = rbm_bi(&rbm);
372 start = bi->bi_bh->b_data;
373 if (bi->bi_clone)
374 start = bi->bi_clone;
375 end = start + bi->bi_bh->b_size;
376 start += bi->bi_offset;
377 BUG_ON(rbm.offset & 3);
378 start += (rbm.offset / GFS2_NBBY);
379 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
380 ptr = memchr_inv(start, 0, bytes);
381 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
382 chunk_size *= GFS2_NBBY;
383 BUG_ON(len < chunk_size);
384 len -= chunk_size;
385 block = gfs2_rbm_to_block(&rbm);
386 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
387 n_unaligned = 0;
388 break;
389 }
390 if (ptr) {
391 n_unaligned = 3;
392 break;
393 }
394 n_unaligned = len & 3;
395 }
396
397 /* Deal with any bits left over at the end */
398 if (n_unaligned)
399 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
400out:
401 return size - len;
402}
403
404/**
405 * gfs2_bitcount - count the number of bits in a certain state
406 * @rgd: the resource group descriptor
407 * @buffer: the buffer that holds the bitmaps
408 * @buflen: the length (in bytes) of the buffer
409 * @state: the state of the block we're looking for
410 *
411 * Returns: The number of bits
412 */
413
414static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
415 unsigned int buflen, u8 state)
416{
417 const u8 *byte = buffer;
418 const u8 *end = buffer + buflen;
419 const u8 state1 = state << 2;
420 const u8 state2 = state << 4;
421 const u8 state3 = state << 6;
422 u32 count = 0;
423
424 for (; byte < end; byte++) {
425 if (((*byte) & 0x03) == state)
426 count++;
427 if (((*byte) & 0x0C) == state1)
428 count++;
429 if (((*byte) & 0x30) == state2)
430 count++;
431 if (((*byte) & 0xC0) == state3)
432 count++;
433 }
434
435 return count;
436}
437
438/**
439 * gfs2_rgrp_verify - Verify that a resource group is consistent
440 * @rgd: the rgrp
441 *
442 */
443
444void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
445{
446 struct gfs2_sbd *sdp = rgd->rd_sbd;
447 struct gfs2_bitmap *bi = NULL;
448 u32 length = rgd->rd_length;
449 u32 count[4], tmp;
450 int buf, x;
451
452 memset(count, 0, 4 * sizeof(u32));
453
454 /* Count # blocks in each of 4 possible allocation states */
455 for (buf = 0; buf < length; buf++) {
456 bi = rgd->rd_bits + buf;
457 for (x = 0; x < 4; x++)
458 count[x] += gfs2_bitcount(rgd,
459 bi->bi_bh->b_data +
460 bi->bi_offset,
461 bi->bi_len, x);
462 }
463
464 if (count[0] != rgd->rd_free) {
465 if (gfs2_consist_rgrpd(rgd))
466 fs_err(sdp, "free data mismatch: %u != %u\n",
467 count[0], rgd->rd_free);
468 return;
469 }
470
471 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
472 if (count[1] != tmp) {
473 if (gfs2_consist_rgrpd(rgd))
474 fs_err(sdp, "used data mismatch: %u != %u\n",
475 count[1], tmp);
476 return;
477 }
478
479 if (count[2] + count[3] != rgd->rd_dinodes) {
480 if (gfs2_consist_rgrpd(rgd))
481 fs_err(sdp, "used metadata mismatch: %u != %u\n",
482 count[2] + count[3], rgd->rd_dinodes);
483 return;
484 }
485}
486
487static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
488{
489 u64 first = rgd->rd_data0;
490 u64 last = first + rgd->rd_data;
491 return first <= block && block < last;
492}
493
494/**
495 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
496 * @sdp: The GFS2 superblock
497 * @blk: The data block number
498 * @exact: True if this needs to be an exact match
499 *
500 * Returns: The resource group, or NULL if not found
501 */
502
503struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
504{
505 struct rb_node *n, *next;
506 struct gfs2_rgrpd *cur;
507
508 spin_lock(&sdp->sd_rindex_spin);
509 n = sdp->sd_rindex_tree.rb_node;
510 while (n) {
511 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
512 next = NULL;
513 if (blk < cur->rd_addr)
514 next = n->rb_left;
515 else if (blk >= cur->rd_data0 + cur->rd_data)
516 next = n->rb_right;
517 if (next == NULL) {
518 spin_unlock(&sdp->sd_rindex_spin);
519 if (exact) {
520 if (blk < cur->rd_addr)
521 return NULL;
522 if (blk >= cur->rd_data0 + cur->rd_data)
523 return NULL;
524 }
525 return cur;
526 }
527 n = next;
528 }
529 spin_unlock(&sdp->sd_rindex_spin);
530
531 return NULL;
532}
533
534/**
535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
536 * @sdp: The GFS2 superblock
537 *
538 * Returns: The first rgrp in the filesystem
539 */
540
541struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
542{
543 const struct rb_node *n;
544 struct gfs2_rgrpd *rgd;
545
546 spin_lock(&sdp->sd_rindex_spin);
547 n = rb_first(&sdp->sd_rindex_tree);
548 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
549 spin_unlock(&sdp->sd_rindex_spin);
550
551 return rgd;
552}
553
554/**
555 * gfs2_rgrpd_get_next - get the next RG
556 * @rgd: the resource group descriptor
557 *
558 * Returns: The next rgrp
559 */
560
561struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
562{
563 struct gfs2_sbd *sdp = rgd->rd_sbd;
564 const struct rb_node *n;
565
566 spin_lock(&sdp->sd_rindex_spin);
567 n = rb_next(&rgd->rd_node);
568 if (n == NULL)
569 n = rb_first(&sdp->sd_rindex_tree);
570
571 if (unlikely(&rgd->rd_node == n)) {
572 spin_unlock(&sdp->sd_rindex_spin);
573 return NULL;
574 }
575 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
576 spin_unlock(&sdp->sd_rindex_spin);
577 return rgd;
578}
579
580void gfs2_free_clones(struct gfs2_rgrpd *rgd)
581{
582 int x;
583
584 for (x = 0; x < rgd->rd_length; x++) {
585 struct gfs2_bitmap *bi = rgd->rd_bits + x;
586 kfree(bi->bi_clone);
587 bi->bi_clone = NULL;
588 }
589}
590
591/**
592 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
593 * @ip: the inode for this reservation
594 */
595int gfs2_rs_alloc(struct gfs2_inode *ip)
596{
597 int error = 0;
598
599 down_write(&ip->i_rw_mutex);
600 if (ip->i_res)
601 goto out;
602
603 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
604 if (!ip->i_res) {
605 error = -ENOMEM;
606 goto out;
607 }
608
609 RB_CLEAR_NODE(&ip->i_res->rs_node);
610out:
611 up_write(&ip->i_rw_mutex);
612 return error;
613}
614
615static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
616{
617 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
618 (unsigned long long)rs->rs_inum,
619 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
620 rs->rs_rbm.offset, rs->rs_free);
621}
622
623/**
624 * __rs_deltree - remove a multi-block reservation from the rgd tree
625 * @rs: The reservation to remove
626 *
627 */
628static void __rs_deltree(struct gfs2_blkreserv *rs)
629{
630 struct gfs2_rgrpd *rgd;
631
632 if (!gfs2_rs_active(rs))
633 return;
634
635 rgd = rs->rs_rbm.rgd;
636 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
637 rb_erase(&rs->rs_node, &rgd->rd_rstree);
638 RB_CLEAR_NODE(&rs->rs_node);
639
640 if (rs->rs_free) {
641 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
642
643 /* return reserved blocks to the rgrp */
644 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
645 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
646 /* The rgrp extent failure point is likely not to increase;
647 it will only do so if the freed blocks are somehow
648 contiguous with a span of free blocks that follows. Still,
649 it will force the number to be recalculated later. */
650 rgd->rd_extfail_pt += rs->rs_free;
651 rs->rs_free = 0;
652 clear_bit(GBF_FULL, &bi->bi_flags);
653 }
654}
655
656/**
657 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
658 * @rs: The reservation to remove
659 *
660 */
661void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
662{
663 struct gfs2_rgrpd *rgd;
664
665 rgd = rs->rs_rbm.rgd;
666 if (rgd) {
667 spin_lock(&rgd->rd_rsspin);
668 __rs_deltree(rs);
669 spin_unlock(&rgd->rd_rsspin);
670 }
671}
672
673/**
674 * gfs2_rs_delete - delete a multi-block reservation
675 * @ip: The inode for this reservation
676 * @wcount: The inode's write count, or NULL
677 *
678 */
679void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
680{
681 down_write(&ip->i_rw_mutex);
682 if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) {
683 gfs2_rs_deltree(ip->i_res);
684 BUG_ON(ip->i_res->rs_free);
685 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
686 ip->i_res = NULL;
687 }
688 up_write(&ip->i_rw_mutex);
689}
690
691/**
692 * return_all_reservations - return all reserved blocks back to the rgrp.
693 * @rgd: the rgrp that needs its space back
694 *
695 * We previously reserved a bunch of blocks for allocation. Now we need to
696 * give them back. This leave the reservation structures in tact, but removes
697 * all of their corresponding "no-fly zones".
698 */
699static void return_all_reservations(struct gfs2_rgrpd *rgd)
700{
701 struct rb_node *n;
702 struct gfs2_blkreserv *rs;
703
704 spin_lock(&rgd->rd_rsspin);
705 while ((n = rb_first(&rgd->rd_rstree))) {
706 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
707 __rs_deltree(rs);
708 }
709 spin_unlock(&rgd->rd_rsspin);
710}
711
712void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
713{
714 struct rb_node *n;
715 struct gfs2_rgrpd *rgd;
716 struct gfs2_glock *gl;
717
718 while ((n = rb_first(&sdp->sd_rindex_tree))) {
719 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
720 gl = rgd->rd_gl;
721
722 rb_erase(n, &sdp->sd_rindex_tree);
723
724 if (gl) {
725 spin_lock(&gl->gl_spin);
726 gl->gl_object = NULL;
727 spin_unlock(&gl->gl_spin);
728 gfs2_glock_add_to_lru(gl);
729 gfs2_glock_put(gl);
730 }
731
732 gfs2_free_clones(rgd);
733 kfree(rgd->rd_bits);
734 return_all_reservations(rgd);
735 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
736 }
737}
738
739static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
740{
741 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
742 pr_info("ri_length = %u\n", rgd->rd_length);
743 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
744 pr_info("ri_data = %u\n", rgd->rd_data);
745 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
746}
747
748/**
749 * gfs2_compute_bitstructs - Compute the bitmap sizes
750 * @rgd: The resource group descriptor
751 *
752 * Calculates bitmap descriptors, one for each block that contains bitmap data
753 *
754 * Returns: errno
755 */
756
757static int compute_bitstructs(struct gfs2_rgrpd *rgd)
758{
759 struct gfs2_sbd *sdp = rgd->rd_sbd;
760 struct gfs2_bitmap *bi;
761 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
762 u32 bytes_left, bytes;
763 int x;
764
765 if (!length)
766 return -EINVAL;
767
768 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
769 if (!rgd->rd_bits)
770 return -ENOMEM;
771
772 bytes_left = rgd->rd_bitbytes;
773
774 for (x = 0; x < length; x++) {
775 bi = rgd->rd_bits + x;
776
777 bi->bi_flags = 0;
778 /* small rgrp; bitmap stored completely in header block */
779 if (length == 1) {
780 bytes = bytes_left;
781 bi->bi_offset = sizeof(struct gfs2_rgrp);
782 bi->bi_start = 0;
783 bi->bi_len = bytes;
784 bi->bi_blocks = bytes * GFS2_NBBY;
785 /* header block */
786 } else if (x == 0) {
787 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
788 bi->bi_offset = sizeof(struct gfs2_rgrp);
789 bi->bi_start = 0;
790 bi->bi_len = bytes;
791 bi->bi_blocks = bytes * GFS2_NBBY;
792 /* last block */
793 } else if (x + 1 == length) {
794 bytes = bytes_left;
795 bi->bi_offset = sizeof(struct gfs2_meta_header);
796 bi->bi_start = rgd->rd_bitbytes - bytes_left;
797 bi->bi_len = bytes;
798 bi->bi_blocks = bytes * GFS2_NBBY;
799 /* other blocks */
800 } else {
801 bytes = sdp->sd_sb.sb_bsize -
802 sizeof(struct gfs2_meta_header);
803 bi->bi_offset = sizeof(struct gfs2_meta_header);
804 bi->bi_start = rgd->rd_bitbytes - bytes_left;
805 bi->bi_len = bytes;
806 bi->bi_blocks = bytes * GFS2_NBBY;
807 }
808
809 bytes_left -= bytes;
810 }
811
812 if (bytes_left) {
813 gfs2_consist_rgrpd(rgd);
814 return -EIO;
815 }
816 bi = rgd->rd_bits + (length - 1);
817 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
818 if (gfs2_consist_rgrpd(rgd)) {
819 gfs2_rindex_print(rgd);
820 fs_err(sdp, "start=%u len=%u offset=%u\n",
821 bi->bi_start, bi->bi_len, bi->bi_offset);
822 }
823 return -EIO;
824 }
825
826 return 0;
827}
828
829/**
830 * gfs2_ri_total - Total up the file system space, according to the rindex.
831 * @sdp: the filesystem
832 *
833 */
834u64 gfs2_ri_total(struct gfs2_sbd *sdp)
835{
836 u64 total_data = 0;
837 struct inode *inode = sdp->sd_rindex;
838 struct gfs2_inode *ip = GFS2_I(inode);
839 char buf[sizeof(struct gfs2_rindex)];
840 int error, rgrps;
841
842 for (rgrps = 0;; rgrps++) {
843 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
844
845 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
846 break;
847 error = gfs2_internal_read(ip, buf, &pos,
848 sizeof(struct gfs2_rindex));
849 if (error != sizeof(struct gfs2_rindex))
850 break;
851 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
852 }
853 return total_data;
854}
855
856static int rgd_insert(struct gfs2_rgrpd *rgd)
857{
858 struct gfs2_sbd *sdp = rgd->rd_sbd;
859 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
860
861 /* Figure out where to put new node */
862 while (*newn) {
863 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
864 rd_node);
865
866 parent = *newn;
867 if (rgd->rd_addr < cur->rd_addr)
868 newn = &((*newn)->rb_left);
869 else if (rgd->rd_addr > cur->rd_addr)
870 newn = &((*newn)->rb_right);
871 else
872 return -EEXIST;
873 }
874
875 rb_link_node(&rgd->rd_node, parent, newn);
876 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
877 sdp->sd_rgrps++;
878 return 0;
879}
880
881/**
882 * read_rindex_entry - Pull in a new resource index entry from the disk
883 * @ip: Pointer to the rindex inode
884 *
885 * Returns: 0 on success, > 0 on EOF, error code otherwise
886 */
887
888static int read_rindex_entry(struct gfs2_inode *ip)
889{
890 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
891 const unsigned bsize = sdp->sd_sb.sb_bsize;
892 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
893 struct gfs2_rindex buf;
894 int error;
895 struct gfs2_rgrpd *rgd;
896
897 if (pos >= i_size_read(&ip->i_inode))
898 return 1;
899
900 error = gfs2_internal_read(ip, (char *)&buf, &pos,
901 sizeof(struct gfs2_rindex));
902
903 if (error != sizeof(struct gfs2_rindex))
904 return (error == 0) ? 1 : error;
905
906 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
907 error = -ENOMEM;
908 if (!rgd)
909 return error;
910
911 rgd->rd_sbd = sdp;
912 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
913 rgd->rd_length = be32_to_cpu(buf.ri_length);
914 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
915 rgd->rd_data = be32_to_cpu(buf.ri_data);
916 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
917 spin_lock_init(&rgd->rd_rsspin);
918
919 error = compute_bitstructs(rgd);
920 if (error)
921 goto fail;
922
923 error = gfs2_glock_get(sdp, rgd->rd_addr,
924 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
925 if (error)
926 goto fail;
927
928 rgd->rd_gl->gl_object = rgd;
929 rgd->rd_gl->gl_vm.start = rgd->rd_addr * bsize;
930 rgd->rd_gl->gl_vm.end = rgd->rd_gl->gl_vm.start + (rgd->rd_length * bsize) - 1;
931 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
932 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
933 if (rgd->rd_data > sdp->sd_max_rg_data)
934 sdp->sd_max_rg_data = rgd->rd_data;
935 spin_lock(&sdp->sd_rindex_spin);
936 error = rgd_insert(rgd);
937 spin_unlock(&sdp->sd_rindex_spin);
938 if (!error)
939 return 0;
940
941 error = 0; /* someone else read in the rgrp; free it and ignore it */
942 gfs2_glock_put(rgd->rd_gl);
943
944fail:
945 kfree(rgd->rd_bits);
946 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
947 return error;
948}
949
950/**
951 * gfs2_ri_update - Pull in a new resource index from the disk
952 * @ip: pointer to the rindex inode
953 *
954 * Returns: 0 on successful update, error code otherwise
955 */
956
957static int gfs2_ri_update(struct gfs2_inode *ip)
958{
959 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
960 int error;
961
962 do {
963 error = read_rindex_entry(ip);
964 } while (error == 0);
965
966 if (error < 0)
967 return error;
968
969 sdp->sd_rindex_uptodate = 1;
970 return 0;
971}
972
973/**
974 * gfs2_rindex_update - Update the rindex if required
975 * @sdp: The GFS2 superblock
976 *
977 * We grab a lock on the rindex inode to make sure that it doesn't
978 * change whilst we are performing an operation. We keep this lock
979 * for quite long periods of time compared to other locks. This
980 * doesn't matter, since it is shared and it is very, very rarely
981 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
982 *
983 * This makes sure that we're using the latest copy of the resource index
984 * special file, which might have been updated if someone expanded the
985 * filesystem (via gfs2_grow utility), which adds new resource groups.
986 *
987 * Returns: 0 on succeess, error code otherwise
988 */
989
990int gfs2_rindex_update(struct gfs2_sbd *sdp)
991{
992 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
993 struct gfs2_glock *gl = ip->i_gl;
994 struct gfs2_holder ri_gh;
995 int error = 0;
996 int unlock_required = 0;
997
998 /* Read new copy from disk if we don't have the latest */
999 if (!sdp->sd_rindex_uptodate) {
1000 if (!gfs2_glock_is_locked_by_me(gl)) {
1001 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1002 if (error)
1003 return error;
1004 unlock_required = 1;
1005 }
1006 if (!sdp->sd_rindex_uptodate)
1007 error = gfs2_ri_update(ip);
1008 if (unlock_required)
1009 gfs2_glock_dq_uninit(&ri_gh);
1010 }
1011
1012 return error;
1013}
1014
1015static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1016{
1017 const struct gfs2_rgrp *str = buf;
1018 u32 rg_flags;
1019
1020 rg_flags = be32_to_cpu(str->rg_flags);
1021 rg_flags &= ~GFS2_RDF_MASK;
1022 rgd->rd_flags &= GFS2_RDF_MASK;
1023 rgd->rd_flags |= rg_flags;
1024 rgd->rd_free = be32_to_cpu(str->rg_free);
1025 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1026 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1027}
1028
1029static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1030{
1031 struct gfs2_rgrp *str = buf;
1032
1033 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1034 str->rg_free = cpu_to_be32(rgd->rd_free);
1035 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1036 str->__pad = cpu_to_be32(0);
1037 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1038 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1039}
1040
1041static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1042{
1043 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1044 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1045
1046 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1047 rgl->rl_dinodes != str->rg_dinodes ||
1048 rgl->rl_igeneration != str->rg_igeneration)
1049 return 0;
1050 return 1;
1051}
1052
1053static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1054{
1055 const struct gfs2_rgrp *str = buf;
1056
1057 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1058 rgl->rl_flags = str->rg_flags;
1059 rgl->rl_free = str->rg_free;
1060 rgl->rl_dinodes = str->rg_dinodes;
1061 rgl->rl_igeneration = str->rg_igeneration;
1062 rgl->__pad = 0UL;
1063}
1064
1065static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1066{
1067 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1068 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1069 rgl->rl_unlinked = cpu_to_be32(unlinked);
1070}
1071
1072static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1073{
1074 struct gfs2_bitmap *bi;
1075 const u32 length = rgd->rd_length;
1076 const u8 *buffer = NULL;
1077 u32 i, goal, count = 0;
1078
1079 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1080 goal = 0;
1081 buffer = bi->bi_bh->b_data + bi->bi_offset;
1082 WARN_ON(!buffer_uptodate(bi->bi_bh));
1083 while (goal < bi->bi_len * GFS2_NBBY) {
1084 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1085 GFS2_BLKST_UNLINKED);
1086 if (goal == BFITNOENT)
1087 break;
1088 count++;
1089 goal++;
1090 }
1091 }
1092
1093 return count;
1094}
1095
1096
1097/**
1098 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1099 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1100 *
1101 * Read in all of a Resource Group's header and bitmap blocks.
1102 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1103 *
1104 * Returns: errno
1105 */
1106
1107static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1108{
1109 struct gfs2_sbd *sdp = rgd->rd_sbd;
1110 struct gfs2_glock *gl = rgd->rd_gl;
1111 unsigned int length = rgd->rd_length;
1112 struct gfs2_bitmap *bi;
1113 unsigned int x, y;
1114 int error;
1115
1116 if (rgd->rd_bits[0].bi_bh != NULL)
1117 return 0;
1118
1119 for (x = 0; x < length; x++) {
1120 bi = rgd->rd_bits + x;
1121 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1122 if (error)
1123 goto fail;
1124 }
1125
1126 for (y = length; y--;) {
1127 bi = rgd->rd_bits + y;
1128 error = gfs2_meta_wait(sdp, bi->bi_bh);
1129 if (error)
1130 goto fail;
1131 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1132 GFS2_METATYPE_RG)) {
1133 error = -EIO;
1134 goto fail;
1135 }
1136 }
1137
1138 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1139 for (x = 0; x < length; x++)
1140 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1141 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1142 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1143 rgd->rd_free_clone = rgd->rd_free;
1144 /* max out the rgrp allocation failure point */
1145 rgd->rd_extfail_pt = rgd->rd_free;
1146 }
1147 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1148 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1149 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1150 rgd->rd_bits[0].bi_bh->b_data);
1151 }
1152 else if (sdp->sd_args.ar_rgrplvb) {
1153 if (!gfs2_rgrp_lvb_valid(rgd)){
1154 gfs2_consist_rgrpd(rgd);
1155 error = -EIO;
1156 goto fail;
1157 }
1158 if (rgd->rd_rgl->rl_unlinked == 0)
1159 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1160 }
1161 return 0;
1162
1163fail:
1164 while (x--) {
1165 bi = rgd->rd_bits + x;
1166 brelse(bi->bi_bh);
1167 bi->bi_bh = NULL;
1168 gfs2_assert_warn(sdp, !bi->bi_clone);
1169 }
1170
1171 return error;
1172}
1173
1174static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1175{
1176 u32 rl_flags;
1177
1178 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1179 return 0;
1180
1181 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1182 return gfs2_rgrp_bh_get(rgd);
1183
1184 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1185 rl_flags &= ~GFS2_RDF_MASK;
1186 rgd->rd_flags &= GFS2_RDF_MASK;
1187 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1188 if (rgd->rd_rgl->rl_unlinked == 0)
1189 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1190 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1191 rgd->rd_free_clone = rgd->rd_free;
1192 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1193 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1194 return 0;
1195}
1196
1197int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1198{
1199 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1200 struct gfs2_sbd *sdp = rgd->rd_sbd;
1201
1202 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1203 return 0;
1204 return gfs2_rgrp_bh_get(rgd);
1205}
1206
1207/**
1208 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1209 * @gh: The glock holder for the resource group
1210 *
1211 */
1212
1213void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1214{
1215 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1216 int x, length = rgd->rd_length;
1217
1218 for (x = 0; x < length; x++) {
1219 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1220 if (bi->bi_bh) {
1221 brelse(bi->bi_bh);
1222 bi->bi_bh = NULL;
1223 }
1224 }
1225
1226}
1227
1228int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1229 struct buffer_head *bh,
1230 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1231{
1232 struct super_block *sb = sdp->sd_vfs;
1233 u64 blk;
1234 sector_t start = 0;
1235 sector_t nr_blks = 0;
1236 int rv;
1237 unsigned int x;
1238 u32 trimmed = 0;
1239 u8 diff;
1240
1241 for (x = 0; x < bi->bi_len; x++) {
1242 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1243 clone += bi->bi_offset;
1244 clone += x;
1245 if (bh) {
1246 const u8 *orig = bh->b_data + bi->bi_offset + x;
1247 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1248 } else {
1249 diff = ~(*clone | (*clone >> 1));
1250 }
1251 diff &= 0x55;
1252 if (diff == 0)
1253 continue;
1254 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1255 while(diff) {
1256 if (diff & 1) {
1257 if (nr_blks == 0)
1258 goto start_new_extent;
1259 if ((start + nr_blks) != blk) {
1260 if (nr_blks >= minlen) {
1261 rv = sb_issue_discard(sb,
1262 start, nr_blks,
1263 GFP_NOFS, 0);
1264 if (rv)
1265 goto fail;
1266 trimmed += nr_blks;
1267 }
1268 nr_blks = 0;
1269start_new_extent:
1270 start = blk;
1271 }
1272 nr_blks++;
1273 }
1274 diff >>= 2;
1275 blk++;
1276 }
1277 }
1278 if (nr_blks >= minlen) {
1279 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1280 if (rv)
1281 goto fail;
1282 trimmed += nr_blks;
1283 }
1284 if (ptrimmed)
1285 *ptrimmed = trimmed;
1286 return 0;
1287
1288fail:
1289 if (sdp->sd_args.ar_discard)
1290 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1291 sdp->sd_args.ar_discard = 0;
1292 return -EIO;
1293}
1294
1295/**
1296 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1297 * @filp: Any file on the filesystem
1298 * @argp: Pointer to the arguments (also used to pass result)
1299 *
1300 * Returns: 0 on success, otherwise error code
1301 */
1302
1303int gfs2_fitrim(struct file *filp, void __user *argp)
1304{
1305 struct inode *inode = file_inode(filp);
1306 struct gfs2_sbd *sdp = GFS2_SB(inode);
1307 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1308 struct buffer_head *bh;
1309 struct gfs2_rgrpd *rgd;
1310 struct gfs2_rgrpd *rgd_end;
1311 struct gfs2_holder gh;
1312 struct fstrim_range r;
1313 int ret = 0;
1314 u64 amt;
1315 u64 trimmed = 0;
1316 u64 start, end, minlen;
1317 unsigned int x;
1318 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1319
1320 if (!capable(CAP_SYS_ADMIN))
1321 return -EPERM;
1322
1323 if (!blk_queue_discard(q))
1324 return -EOPNOTSUPP;
1325
1326 if (copy_from_user(&r, argp, sizeof(r)))
1327 return -EFAULT;
1328
1329 ret = gfs2_rindex_update(sdp);
1330 if (ret)
1331 return ret;
1332
1333 start = r.start >> bs_shift;
1334 end = start + (r.len >> bs_shift);
1335 minlen = max_t(u64, r.minlen,
1336 q->limits.discard_granularity) >> bs_shift;
1337
1338 if (end <= start || minlen > sdp->sd_max_rg_data)
1339 return -EINVAL;
1340
1341 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1342 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1343
1344 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1345 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1346 return -EINVAL; /* start is beyond the end of the fs */
1347
1348 while (1) {
1349
1350 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1351 if (ret)
1352 goto out;
1353
1354 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1355 /* Trim each bitmap in the rgrp */
1356 for (x = 0; x < rgd->rd_length; x++) {
1357 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1358 ret = gfs2_rgrp_send_discards(sdp,
1359 rgd->rd_data0, NULL, bi, minlen,
1360 &amt);
1361 if (ret) {
1362 gfs2_glock_dq_uninit(&gh);
1363 goto out;
1364 }
1365 trimmed += amt;
1366 }
1367
1368 /* Mark rgrp as having been trimmed */
1369 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1370 if (ret == 0) {
1371 bh = rgd->rd_bits[0].bi_bh;
1372 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1373 gfs2_trans_add_meta(rgd->rd_gl, bh);
1374 gfs2_rgrp_out(rgd, bh->b_data);
1375 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1376 gfs2_trans_end(sdp);
1377 }
1378 }
1379 gfs2_glock_dq_uninit(&gh);
1380
1381 if (rgd == rgd_end)
1382 break;
1383
1384 rgd = gfs2_rgrpd_get_next(rgd);
1385 }
1386
1387out:
1388 r.len = trimmed << bs_shift;
1389 if (copy_to_user(argp, &r, sizeof(r)))
1390 return -EFAULT;
1391
1392 return ret;
1393}
1394
1395/**
1396 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1397 * @ip: the inode structure
1398 *
1399 */
1400static void rs_insert(struct gfs2_inode *ip)
1401{
1402 struct rb_node **newn, *parent = NULL;
1403 int rc;
1404 struct gfs2_blkreserv *rs = ip->i_res;
1405 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1406 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1407
1408 BUG_ON(gfs2_rs_active(rs));
1409
1410 spin_lock(&rgd->rd_rsspin);
1411 newn = &rgd->rd_rstree.rb_node;
1412 while (*newn) {
1413 struct gfs2_blkreserv *cur =
1414 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1415
1416 parent = *newn;
1417 rc = rs_cmp(fsblock, rs->rs_free, cur);
1418 if (rc > 0)
1419 newn = &((*newn)->rb_right);
1420 else if (rc < 0)
1421 newn = &((*newn)->rb_left);
1422 else {
1423 spin_unlock(&rgd->rd_rsspin);
1424 WARN_ON(1);
1425 return;
1426 }
1427 }
1428
1429 rb_link_node(&rs->rs_node, parent, newn);
1430 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1431
1432 /* Do our rgrp accounting for the reservation */
1433 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1434 spin_unlock(&rgd->rd_rsspin);
1435 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1436}
1437
1438/**
1439 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1440 * @rgd: the resource group descriptor
1441 * @ip: pointer to the inode for which we're reserving blocks
1442 * @ap: the allocation parameters
1443 *
1444 */
1445
1446static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1447 const struct gfs2_alloc_parms *ap)
1448{
1449 struct gfs2_rbm rbm = { .rgd = rgd, };
1450 u64 goal;
1451 struct gfs2_blkreserv *rs = ip->i_res;
1452 u32 extlen;
1453 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1454 int ret;
1455 struct inode *inode = &ip->i_inode;
1456
1457 if (S_ISDIR(inode->i_mode))
1458 extlen = 1;
1459 else {
1460 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1461 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1462 }
1463 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1464 return;
1465
1466 /* Find bitmap block that contains bits for goal block */
1467 if (rgrp_contains_block(rgd, ip->i_goal))
1468 goal = ip->i_goal;
1469 else
1470 goal = rgd->rd_last_alloc + rgd->rd_data0;
1471
1472 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1473 return;
1474
1475 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap);
1476 if (ret == 0) {
1477 rs->rs_rbm = rbm;
1478 rs->rs_free = extlen;
1479 rs->rs_inum = ip->i_no_addr;
1480 rs_insert(ip);
1481 } else {
1482 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1483 rgd->rd_last_alloc = 0;
1484 }
1485}
1486
1487/**
1488 * gfs2_next_unreserved_block - Return next block that is not reserved
1489 * @rgd: The resource group
1490 * @block: The starting block
1491 * @length: The required length
1492 * @ip: Ignore any reservations for this inode
1493 *
1494 * If the block does not appear in any reservation, then return the
1495 * block number unchanged. If it does appear in the reservation, then
1496 * keep looking through the tree of reservations in order to find the
1497 * first block number which is not reserved.
1498 */
1499
1500static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1501 u32 length,
1502 const struct gfs2_inode *ip)
1503{
1504 struct gfs2_blkreserv *rs;
1505 struct rb_node *n;
1506 int rc;
1507
1508 spin_lock(&rgd->rd_rsspin);
1509 n = rgd->rd_rstree.rb_node;
1510 while (n) {
1511 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1512 rc = rs_cmp(block, length, rs);
1513 if (rc < 0)
1514 n = n->rb_left;
1515 else if (rc > 0)
1516 n = n->rb_right;
1517 else
1518 break;
1519 }
1520
1521 if (n) {
1522 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1523 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1524 n = n->rb_right;
1525 if (n == NULL)
1526 break;
1527 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1528 }
1529 }
1530
1531 spin_unlock(&rgd->rd_rsspin);
1532 return block;
1533}
1534
1535/**
1536 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1537 * @rbm: The current position in the resource group
1538 * @ip: The inode for which we are searching for blocks
1539 * @minext: The minimum extent length
1540 * @maxext: A pointer to the maximum extent structure
1541 *
1542 * This checks the current position in the rgrp to see whether there is
1543 * a reservation covering this block. If not then this function is a
1544 * no-op. If there is, then the position is moved to the end of the
1545 * contiguous reservation(s) so that we are pointing at the first
1546 * non-reserved block.
1547 *
1548 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1549 */
1550
1551static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1552 const struct gfs2_inode *ip,
1553 u32 minext,
1554 struct gfs2_extent *maxext)
1555{
1556 u64 block = gfs2_rbm_to_block(rbm);
1557 u32 extlen = 1;
1558 u64 nblock;
1559 int ret;
1560
1561 /*
1562 * If we have a minimum extent length, then skip over any extent
1563 * which is less than the min extent length in size.
1564 */
1565 if (minext) {
1566 extlen = gfs2_free_extlen(rbm, minext);
1567 if (extlen <= maxext->len)
1568 goto fail;
1569 }
1570
1571 /*
1572 * Check the extent which has been found against the reservations
1573 * and skip if parts of it are already reserved
1574 */
1575 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1576 if (nblock == block) {
1577 if (!minext || extlen >= minext)
1578 return 0;
1579
1580 if (extlen > maxext->len) {
1581 maxext->len = extlen;
1582 maxext->rbm = *rbm;
1583 }
1584fail:
1585 nblock = block + extlen;
1586 }
1587 ret = gfs2_rbm_from_block(rbm, nblock);
1588 if (ret < 0)
1589 return ret;
1590 return 1;
1591}
1592
1593/**
1594 * gfs2_rbm_find - Look for blocks of a particular state
1595 * @rbm: Value/result starting position and final position
1596 * @state: The state which we want to find
1597 * @minext: Pointer to the requested extent length (NULL for a single block)
1598 * This is updated to be the actual reservation size.
1599 * @ip: If set, check for reservations
1600 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1601 * around until we've reached the starting point.
1602 * @ap: the allocation parameters
1603 *
1604 * Side effects:
1605 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1606 * has no free blocks in it.
1607 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1608 * has come up short on a free block search.
1609 *
1610 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1611 */
1612
1613static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1614 const struct gfs2_inode *ip, bool nowrap,
1615 const struct gfs2_alloc_parms *ap)
1616{
1617 struct buffer_head *bh;
1618 int initial_bii;
1619 u32 initial_offset;
1620 int first_bii = rbm->bii;
1621 u32 first_offset = rbm->offset;
1622 u32 offset;
1623 u8 *buffer;
1624 int n = 0;
1625 int iters = rbm->rgd->rd_length;
1626 int ret;
1627 struct gfs2_bitmap *bi;
1628 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1629
1630 /* If we are not starting at the beginning of a bitmap, then we
1631 * need to add one to the bitmap count to ensure that we search
1632 * the starting bitmap twice.
1633 */
1634 if (rbm->offset != 0)
1635 iters++;
1636
1637 while(1) {
1638 bi = rbm_bi(rbm);
1639 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1640 (state == GFS2_BLKST_FREE))
1641 goto next_bitmap;
1642
1643 bh = bi->bi_bh;
1644 buffer = bh->b_data + bi->bi_offset;
1645 WARN_ON(!buffer_uptodate(bh));
1646 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1647 buffer = bi->bi_clone + bi->bi_offset;
1648 initial_offset = rbm->offset;
1649 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1650 if (offset == BFITNOENT)
1651 goto bitmap_full;
1652 rbm->offset = offset;
1653 if (ip == NULL)
1654 return 0;
1655
1656 initial_bii = rbm->bii;
1657 ret = gfs2_reservation_check_and_update(rbm, ip,
1658 minext ? *minext : 0,
1659 &maxext);
1660 if (ret == 0)
1661 return 0;
1662 if (ret > 0) {
1663 n += (rbm->bii - initial_bii);
1664 goto next_iter;
1665 }
1666 if (ret == -E2BIG) {
1667 rbm->bii = 0;
1668 rbm->offset = 0;
1669 n += (rbm->bii - initial_bii);
1670 goto res_covered_end_of_rgrp;
1671 }
1672 return ret;
1673
1674bitmap_full: /* Mark bitmap as full and fall through */
1675 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) {
1676 struct gfs2_bitmap *bi = rbm_bi(rbm);
1677 set_bit(GBF_FULL, &bi->bi_flags);
1678 }
1679
1680next_bitmap: /* Find next bitmap in the rgrp */
1681 rbm->offset = 0;
1682 rbm->bii++;
1683 if (rbm->bii == rbm->rgd->rd_length)
1684 rbm->bii = 0;
1685res_covered_end_of_rgrp:
1686 if ((rbm->bii == 0) && nowrap)
1687 break;
1688 n++;
1689next_iter:
1690 if (n >= iters)
1691 break;
1692 }
1693
1694 if (minext == NULL || state != GFS2_BLKST_FREE)
1695 return -ENOSPC;
1696
1697 /* If the extent was too small, and it's smaller than the smallest
1698 to have failed before, remember for future reference that it's
1699 useless to search this rgrp again for this amount or more. */
1700 if ((first_offset == 0) && (first_bii == 0) &&
1701 (*minext < rbm->rgd->rd_extfail_pt))
1702 rbm->rgd->rd_extfail_pt = *minext;
1703
1704 /* If the maximum extent we found is big enough to fulfill the
1705 minimum requirements, use it anyway. */
1706 if (maxext.len) {
1707 *rbm = maxext.rbm;
1708 *minext = maxext.len;
1709 return 0;
1710 }
1711
1712 return -ENOSPC;
1713}
1714
1715/**
1716 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1717 * @rgd: The rgrp
1718 * @last_unlinked: block address of the last dinode we unlinked
1719 * @skip: block address we should explicitly not unlink
1720 *
1721 * Returns: 0 if no error
1722 * The inode, if one has been found, in inode.
1723 */
1724
1725static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1726{
1727 u64 block;
1728 struct gfs2_sbd *sdp = rgd->rd_sbd;
1729 struct gfs2_glock *gl;
1730 struct gfs2_inode *ip;
1731 int error;
1732 int found = 0;
1733 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1734
1735 while (1) {
1736 down_write(&sdp->sd_log_flush_lock);
1737 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1738 true, NULL);
1739 up_write(&sdp->sd_log_flush_lock);
1740 if (error == -ENOSPC)
1741 break;
1742 if (WARN_ON_ONCE(error))
1743 break;
1744
1745 block = gfs2_rbm_to_block(&rbm);
1746 if (gfs2_rbm_from_block(&rbm, block + 1))
1747 break;
1748 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1749 continue;
1750 if (block == skip)
1751 continue;
1752 *last_unlinked = block;
1753
1754 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1755 if (error)
1756 continue;
1757
1758 /* If the inode is already in cache, we can ignore it here
1759 * because the existing inode disposal code will deal with
1760 * it when all refs have gone away. Accessing gl_object like
1761 * this is not safe in general. Here it is ok because we do
1762 * not dereference the pointer, and we only need an approx
1763 * answer to whether it is NULL or not.
1764 */
1765 ip = gl->gl_object;
1766
1767 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1768 gfs2_glock_put(gl);
1769 else
1770 found++;
1771
1772 /* Limit reclaim to sensible number of tasks */
1773 if (found > NR_CPUS)
1774 return;
1775 }
1776
1777 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1778 return;
1779}
1780
1781/**
1782 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1783 * @rgd: The rgrp in question
1784 * @loops: An indication of how picky we can be (0=very, 1=less so)
1785 *
1786 * This function uses the recently added glock statistics in order to
1787 * figure out whether a parciular resource group is suffering from
1788 * contention from multiple nodes. This is done purely on the basis
1789 * of timings, since this is the only data we have to work with and
1790 * our aim here is to reject a resource group which is highly contended
1791 * but (very important) not to do this too often in order to ensure that
1792 * we do not land up introducing fragmentation by changing resource
1793 * groups when not actually required.
1794 *
1795 * The calculation is fairly simple, we want to know whether the SRTTB
1796 * (i.e. smoothed round trip time for blocking operations) to acquire
1797 * the lock for this rgrp's glock is significantly greater than the
1798 * time taken for resource groups on average. We introduce a margin in
1799 * the form of the variable @var which is computed as the sum of the two
1800 * respective variences, and multiplied by a factor depending on @loops
1801 * and whether we have a lot of data to base the decision on. This is
1802 * then tested against the square difference of the means in order to
1803 * decide whether the result is statistically significant or not.
1804 *
1805 * Returns: A boolean verdict on the congestion status
1806 */
1807
1808static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1809{
1810 const struct gfs2_glock *gl = rgd->rd_gl;
1811 const struct gfs2_sbd *sdp = gl->gl_sbd;
1812 struct gfs2_lkstats *st;
1813 s64 r_dcount, l_dcount;
1814 s64 r_srttb, l_srttb;
1815 s64 srttb_diff;
1816 s64 sqr_diff;
1817 s64 var;
1818
1819 preempt_disable();
1820 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1821 r_srttb = st->stats[GFS2_LKS_SRTTB];
1822 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1823 var = st->stats[GFS2_LKS_SRTTVARB] +
1824 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1825 preempt_enable();
1826
1827 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1828 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1829
1830 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1831 return false;
1832
1833 srttb_diff = r_srttb - l_srttb;
1834 sqr_diff = srttb_diff * srttb_diff;
1835
1836 var *= 2;
1837 if (l_dcount < 8 || r_dcount < 8)
1838 var *= 2;
1839 if (loops == 1)
1840 var *= 2;
1841
1842 return ((srttb_diff < 0) && (sqr_diff > var));
1843}
1844
1845/**
1846 * gfs2_rgrp_used_recently
1847 * @rs: The block reservation with the rgrp to test
1848 * @msecs: The time limit in milliseconds
1849 *
1850 * Returns: True if the rgrp glock has been used within the time limit
1851 */
1852static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1853 u64 msecs)
1854{
1855 u64 tdiff;
1856
1857 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1858 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1859
1860 return tdiff > (msecs * 1000 * 1000);
1861}
1862
1863static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1864{
1865 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1866 u32 skip;
1867
1868 get_random_bytes(&skip, sizeof(skip));
1869 return skip % sdp->sd_rgrps;
1870}
1871
1872static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1873{
1874 struct gfs2_rgrpd *rgd = *pos;
1875 struct gfs2_sbd *sdp = rgd->rd_sbd;
1876
1877 rgd = gfs2_rgrpd_get_next(rgd);
1878 if (rgd == NULL)
1879 rgd = gfs2_rgrpd_get_first(sdp);
1880 *pos = rgd;
1881 if (rgd != begin) /* If we didn't wrap */
1882 return true;
1883 return false;
1884}
1885
1886/**
1887 * gfs2_inplace_reserve - Reserve space in the filesystem
1888 * @ip: the inode to reserve space for
1889 * @ap: the allocation parameters
1890 *
1891 * Returns: errno
1892 */
1893
1894int gfs2_inplace_reserve(struct gfs2_inode *ip, const struct gfs2_alloc_parms *ap)
1895{
1896 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1897 struct gfs2_rgrpd *begin = NULL;
1898 struct gfs2_blkreserv *rs = ip->i_res;
1899 int error = 0, rg_locked, flags = 0;
1900 u64 last_unlinked = NO_BLOCK;
1901 int loops = 0;
1902 u32 skip = 0;
1903
1904 if (sdp->sd_args.ar_rgrplvb)
1905 flags |= GL_SKIP;
1906 if (gfs2_assert_warn(sdp, ap->target))
1907 return -EINVAL;
1908 if (gfs2_rs_active(rs)) {
1909 begin = rs->rs_rbm.rgd;
1910 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1911 rs->rs_rbm.rgd = begin = ip->i_rgd;
1912 } else {
1913 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1914 }
1915 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1916 skip = gfs2_orlov_skip(ip);
1917 if (rs->rs_rbm.rgd == NULL)
1918 return -EBADSLT;
1919
1920 while (loops < 3) {
1921 rg_locked = 1;
1922
1923 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1924 rg_locked = 0;
1925 if (skip && skip--)
1926 goto next_rgrp;
1927 if (!gfs2_rs_active(rs) && (loops < 2) &&
1928 gfs2_rgrp_used_recently(rs, 1000) &&
1929 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1930 goto next_rgrp;
1931 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1932 LM_ST_EXCLUSIVE, flags,
1933 &rs->rs_rgd_gh);
1934 if (unlikely(error))
1935 return error;
1936 if (!gfs2_rs_active(rs) && (loops < 2) &&
1937 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1938 goto skip_rgrp;
1939 if (sdp->sd_args.ar_rgrplvb) {
1940 error = update_rgrp_lvb(rs->rs_rbm.rgd);
1941 if (unlikely(error)) {
1942 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1943 return error;
1944 }
1945 }
1946 }
1947
1948 /* Skip unuseable resource groups */
1949 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
1950 GFS2_RDF_ERROR)) ||
1951 (ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
1952 goto skip_rgrp;
1953
1954 if (sdp->sd_args.ar_rgrplvb)
1955 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1956
1957 /* Get a reservation if we don't already have one */
1958 if (!gfs2_rs_active(rs))
1959 rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
1960
1961 /* Skip rgrps when we can't get a reservation on first pass */
1962 if (!gfs2_rs_active(rs) && (loops < 1))
1963 goto check_rgrp;
1964
1965 /* If rgrp has enough free space, use it */
1966 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target) {
1967 ip->i_rgd = rs->rs_rbm.rgd;
1968 return 0;
1969 }
1970
1971check_rgrp:
1972 /* Check for unlinked inodes which can be reclaimed */
1973 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1974 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1975 ip->i_no_addr);
1976skip_rgrp:
1977 /* Drop reservation, if we couldn't use reserved rgrp */
1978 if (gfs2_rs_active(rs))
1979 gfs2_rs_deltree(rs);
1980
1981 /* Unlock rgrp if required */
1982 if (!rg_locked)
1983 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1984next_rgrp:
1985 /* Find the next rgrp, and continue looking */
1986 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1987 continue;
1988 if (skip)
1989 continue;
1990
1991 /* If we've scanned all the rgrps, but found no free blocks
1992 * then this checks for some less likely conditions before
1993 * trying again.
1994 */
1995 loops++;
1996 /* Check that fs hasn't grown if writing to rindex */
1997 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1998 error = gfs2_ri_update(ip);
1999 if (error)
2000 return error;
2001 }
2002 /* Flushing the log may release space */
2003 if (loops == 2)
2004 gfs2_log_flush(sdp, NULL);
2005 }
2006
2007 return -ENOSPC;
2008}
2009
2010/**
2011 * gfs2_inplace_release - release an inplace reservation
2012 * @ip: the inode the reservation was taken out on
2013 *
2014 * Release a reservation made by gfs2_inplace_reserve().
2015 */
2016
2017void gfs2_inplace_release(struct gfs2_inode *ip)
2018{
2019 struct gfs2_blkreserv *rs = ip->i_res;
2020
2021 if (rs->rs_rgd_gh.gh_gl)
2022 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2023}
2024
2025/**
2026 * gfs2_get_block_type - Check a block in a RG is of given type
2027 * @rgd: the resource group holding the block
2028 * @block: the block number
2029 *
2030 * Returns: The block type (GFS2_BLKST_*)
2031 */
2032
2033static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2034{
2035 struct gfs2_rbm rbm = { .rgd = rgd, };
2036 int ret;
2037
2038 ret = gfs2_rbm_from_block(&rbm, block);
2039 WARN_ON_ONCE(ret != 0);
2040
2041 return gfs2_testbit(&rbm);
2042}
2043
2044
2045/**
2046 * gfs2_alloc_extent - allocate an extent from a given bitmap
2047 * @rbm: the resource group information
2048 * @dinode: TRUE if the first block we allocate is for a dinode
2049 * @n: The extent length (value/result)
2050 *
2051 * Add the bitmap buffer to the transaction.
2052 * Set the found bits to @new_state to change block's allocation state.
2053 */
2054static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2055 unsigned int *n)
2056{
2057 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2058 const unsigned int elen = *n;
2059 u64 block;
2060 int ret;
2061
2062 *n = 1;
2063 block = gfs2_rbm_to_block(rbm);
2064 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2065 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2066 block++;
2067 while (*n < elen) {
2068 ret = gfs2_rbm_from_block(&pos, block);
2069 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2070 break;
2071 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2072 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2073 (*n)++;
2074 block++;
2075 }
2076}
2077
2078/**
2079 * rgblk_free - Change alloc state of given block(s)
2080 * @sdp: the filesystem
2081 * @bstart: the start of a run of blocks to free
2082 * @blen: the length of the block run (all must lie within ONE RG!)
2083 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2084 *
2085 * Returns: Resource group containing the block(s)
2086 */
2087
2088static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2089 u32 blen, unsigned char new_state)
2090{
2091 struct gfs2_rbm rbm;
2092 struct gfs2_bitmap *bi;
2093
2094 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2095 if (!rbm.rgd) {
2096 if (gfs2_consist(sdp))
2097 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2098 return NULL;
2099 }
2100
2101 while (blen--) {
2102 gfs2_rbm_from_block(&rbm, bstart);
2103 bi = rbm_bi(&rbm);
2104 bstart++;
2105 if (!bi->bi_clone) {
2106 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2107 GFP_NOFS | __GFP_NOFAIL);
2108 memcpy(bi->bi_clone + bi->bi_offset,
2109 bi->bi_bh->b_data + bi->bi_offset, bi->bi_len);
2110 }
2111 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2112 gfs2_setbit(&rbm, false, new_state);
2113 }
2114
2115 return rbm.rgd;
2116}
2117
2118/**
2119 * gfs2_rgrp_dump - print out an rgrp
2120 * @seq: The iterator
2121 * @gl: The glock in question
2122 *
2123 */
2124
2125void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2126{
2127 struct gfs2_rgrpd *rgd = gl->gl_object;
2128 struct gfs2_blkreserv *trs;
2129 const struct rb_node *n;
2130
2131 if (rgd == NULL)
2132 return;
2133 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2134 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2135 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2136 rgd->rd_reserved, rgd->rd_extfail_pt);
2137 spin_lock(&rgd->rd_rsspin);
2138 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2139 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2140 dump_rs(seq, trs);
2141 }
2142 spin_unlock(&rgd->rd_rsspin);
2143}
2144
2145static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2146{
2147 struct gfs2_sbd *sdp = rgd->rd_sbd;
2148 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2149 (unsigned long long)rgd->rd_addr);
2150 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2151 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2152 rgd->rd_flags |= GFS2_RDF_ERROR;
2153}
2154
2155/**
2156 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2157 * @ip: The inode we have just allocated blocks for
2158 * @rbm: The start of the allocated blocks
2159 * @len: The extent length
2160 *
2161 * Adjusts a reservation after an allocation has taken place. If the
2162 * reservation does not match the allocation, or if it is now empty
2163 * then it is removed.
2164 */
2165
2166static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2167 const struct gfs2_rbm *rbm, unsigned len)
2168{
2169 struct gfs2_blkreserv *rs = ip->i_res;
2170 struct gfs2_rgrpd *rgd = rbm->rgd;
2171 unsigned rlen;
2172 u64 block;
2173 int ret;
2174
2175 spin_lock(&rgd->rd_rsspin);
2176 if (gfs2_rs_active(rs)) {
2177 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2178 block = gfs2_rbm_to_block(rbm);
2179 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2180 rlen = min(rs->rs_free, len);
2181 rs->rs_free -= rlen;
2182 rgd->rd_reserved -= rlen;
2183 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2184 if (rs->rs_free && !ret)
2185 goto out;
2186 }
2187 __rs_deltree(rs);
2188 }
2189out:
2190 spin_unlock(&rgd->rd_rsspin);
2191}
2192
2193/**
2194 * gfs2_set_alloc_start - Set starting point for block allocation
2195 * @rbm: The rbm which will be set to the required location
2196 * @ip: The gfs2 inode
2197 * @dinode: Flag to say if allocation includes a new inode
2198 *
2199 * This sets the starting point from the reservation if one is active
2200 * otherwise it falls back to guessing a start point based on the
2201 * inode's goal block or the last allocation point in the rgrp.
2202 */
2203
2204static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2205 const struct gfs2_inode *ip, bool dinode)
2206{
2207 u64 goal;
2208
2209 if (gfs2_rs_active(ip->i_res)) {
2210 *rbm = ip->i_res->rs_rbm;
2211 return;
2212 }
2213
2214 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2215 goal = ip->i_goal;
2216 else
2217 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2218
2219 gfs2_rbm_from_block(rbm, goal);
2220}
2221
2222/**
2223 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2224 * @ip: the inode to allocate the block for
2225 * @bn: Used to return the starting block number
2226 * @nblocks: requested number of blocks/extent length (value/result)
2227 * @dinode: 1 if we're allocating a dinode block, else 0
2228 * @generation: the generation number of the inode
2229 *
2230 * Returns: 0 or error
2231 */
2232
2233int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2234 bool dinode, u64 *generation)
2235{
2236 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2237 struct buffer_head *dibh;
2238 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2239 unsigned int ndata;
2240 u64 block; /* block, within the file system scope */
2241 int error;
2242
2243 gfs2_set_alloc_start(&rbm, ip, dinode);
2244 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL);
2245
2246 if (error == -ENOSPC) {
2247 gfs2_set_alloc_start(&rbm, ip, dinode);
2248 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false,
2249 NULL);
2250 }
2251
2252 /* Since all blocks are reserved in advance, this shouldn't happen */
2253 if (error) {
2254 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2255 (unsigned long long)ip->i_no_addr, error, *nblocks,
2256 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2257 rbm.rgd->rd_extfail_pt);
2258 goto rgrp_error;
2259 }
2260
2261 gfs2_alloc_extent(&rbm, dinode, nblocks);
2262 block = gfs2_rbm_to_block(&rbm);
2263 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2264 if (gfs2_rs_active(ip->i_res))
2265 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2266 ndata = *nblocks;
2267 if (dinode)
2268 ndata--;
2269
2270 if (!dinode) {
2271 ip->i_goal = block + ndata - 1;
2272 error = gfs2_meta_inode_buffer(ip, &dibh);
2273 if (error == 0) {
2274 struct gfs2_dinode *di =
2275 (struct gfs2_dinode *)dibh->b_data;
2276 gfs2_trans_add_meta(ip->i_gl, dibh);
2277 di->di_goal_meta = di->di_goal_data =
2278 cpu_to_be64(ip->i_goal);
2279 brelse(dibh);
2280 }
2281 }
2282 if (rbm.rgd->rd_free < *nblocks) {
2283 pr_warn("nblocks=%u\n", *nblocks);
2284 goto rgrp_error;
2285 }
2286
2287 rbm.rgd->rd_free -= *nblocks;
2288 if (dinode) {
2289 rbm.rgd->rd_dinodes++;
2290 *generation = rbm.rgd->rd_igeneration++;
2291 if (*generation == 0)
2292 *generation = rbm.rgd->rd_igeneration++;
2293 }
2294
2295 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2296 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2297 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2298
2299 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2300 if (dinode)
2301 gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2302
2303 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2304
2305 rbm.rgd->rd_free_clone -= *nblocks;
2306 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2307 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2308 *bn = block;
2309 return 0;
2310
2311rgrp_error:
2312 gfs2_rgrp_error(rbm.rgd);
2313 return -EIO;
2314}
2315
2316/**
2317 * __gfs2_free_blocks - free a contiguous run of block(s)
2318 * @ip: the inode these blocks are being freed from
2319 * @bstart: first block of a run of contiguous blocks
2320 * @blen: the length of the block run
2321 * @meta: 1 if the blocks represent metadata
2322 *
2323 */
2324
2325void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2326{
2327 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2328 struct gfs2_rgrpd *rgd;
2329
2330 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2331 if (!rgd)
2332 return;
2333 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2334 rgd->rd_free += blen;
2335 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2336 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2337 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2338 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2339
2340 /* Directories keep their data in the metadata address space */
2341 if (meta || ip->i_depth)
2342 gfs2_meta_wipe(ip, bstart, blen);
2343}
2344
2345/**
2346 * gfs2_free_meta - free a contiguous run of data block(s)
2347 * @ip: the inode these blocks are being freed from
2348 * @bstart: first block of a run of contiguous blocks
2349 * @blen: the length of the block run
2350 *
2351 */
2352
2353void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2354{
2355 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2356
2357 __gfs2_free_blocks(ip, bstart, blen, 1);
2358 gfs2_statfs_change(sdp, 0, +blen, 0);
2359 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2360}
2361
2362void gfs2_unlink_di(struct inode *inode)
2363{
2364 struct gfs2_inode *ip = GFS2_I(inode);
2365 struct gfs2_sbd *sdp = GFS2_SB(inode);
2366 struct gfs2_rgrpd *rgd;
2367 u64 blkno = ip->i_no_addr;
2368
2369 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2370 if (!rgd)
2371 return;
2372 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2373 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2374 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2375 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2376 update_rgrp_lvb_unlinked(rgd, 1);
2377}
2378
2379static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2380{
2381 struct gfs2_sbd *sdp = rgd->rd_sbd;
2382 struct gfs2_rgrpd *tmp_rgd;
2383
2384 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2385 if (!tmp_rgd)
2386 return;
2387 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2388
2389 if (!rgd->rd_dinodes)
2390 gfs2_consist_rgrpd(rgd);
2391 rgd->rd_dinodes--;
2392 rgd->rd_free++;
2393
2394 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2395 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2396 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2397 update_rgrp_lvb_unlinked(rgd, -1);
2398
2399 gfs2_statfs_change(sdp, 0, +1, -1);
2400}
2401
2402
2403void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2404{
2405 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2406 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2407 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2408 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2409}
2410
2411/**
2412 * gfs2_check_blk_type - Check the type of a block
2413 * @sdp: The superblock
2414 * @no_addr: The block number to check
2415 * @type: The block type we are looking for
2416 *
2417 * Returns: 0 if the block type matches the expected type
2418 * -ESTALE if it doesn't match
2419 * or -ve errno if something went wrong while checking
2420 */
2421
2422int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2423{
2424 struct gfs2_rgrpd *rgd;
2425 struct gfs2_holder rgd_gh;
2426 int error = -EINVAL;
2427
2428 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2429 if (!rgd)
2430 goto fail;
2431
2432 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2433 if (error)
2434 goto fail;
2435
2436 if (gfs2_get_block_type(rgd, no_addr) != type)
2437 error = -ESTALE;
2438
2439 gfs2_glock_dq_uninit(&rgd_gh);
2440fail:
2441 return error;
2442}
2443
2444/**
2445 * gfs2_rlist_add - add a RG to a list of RGs
2446 * @ip: the inode
2447 * @rlist: the list of resource groups
2448 * @block: the block
2449 *
2450 * Figure out what RG a block belongs to and add that RG to the list
2451 *
2452 * FIXME: Don't use NOFAIL
2453 *
2454 */
2455
2456void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2457 u64 block)
2458{
2459 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2460 struct gfs2_rgrpd *rgd;
2461 struct gfs2_rgrpd **tmp;
2462 unsigned int new_space;
2463 unsigned int x;
2464
2465 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2466 return;
2467
2468 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2469 rgd = ip->i_rgd;
2470 else
2471 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2472 if (!rgd) {
2473 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2474 return;
2475 }
2476 ip->i_rgd = rgd;
2477
2478 for (x = 0; x < rlist->rl_rgrps; x++)
2479 if (rlist->rl_rgd[x] == rgd)
2480 return;
2481
2482 if (rlist->rl_rgrps == rlist->rl_space) {
2483 new_space = rlist->rl_space + 10;
2484
2485 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2486 GFP_NOFS | __GFP_NOFAIL);
2487
2488 if (rlist->rl_rgd) {
2489 memcpy(tmp, rlist->rl_rgd,
2490 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2491 kfree(rlist->rl_rgd);
2492 }
2493
2494 rlist->rl_space = new_space;
2495 rlist->rl_rgd = tmp;
2496 }
2497
2498 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2499}
2500
2501/**
2502 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2503 * and initialize an array of glock holders for them
2504 * @rlist: the list of resource groups
2505 * @state: the lock state to acquire the RG lock in
2506 *
2507 * FIXME: Don't use NOFAIL
2508 *
2509 */
2510
2511void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2512{
2513 unsigned int x;
2514
2515 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2516 GFP_NOFS | __GFP_NOFAIL);
2517 for (x = 0; x < rlist->rl_rgrps; x++)
2518 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2519 state, 0,
2520 &rlist->rl_ghs[x]);
2521}
2522
2523/**
2524 * gfs2_rlist_free - free a resource group list
2525 * @list: the list of resource groups
2526 *
2527 */
2528
2529void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2530{
2531 unsigned int x;
2532
2533 kfree(rlist->rl_rgd);
2534
2535 if (rlist->rl_ghs) {
2536 for (x = 0; x < rlist->rl_rgrps; x++)
2537 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2538 kfree(rlist->rl_ghs);
2539 rlist->rl_ghs = NULL;
2540 }
2541}
2542