Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
 
 
  10#include <linux/slab.h>
  11#include <linux/spinlock.h>
  12#include <linux/completion.h>
  13#include <linux/buffer_head.h>
  14#include <linux/fs.h>
  15#include <linux/gfs2_ondisk.h>
  16#include <linux/prefetch.h>
  17#include <linux/blkdev.h>
  18#include <linux/rbtree.h>
 
  19
  20#include "gfs2.h"
  21#include "incore.h"
  22#include "glock.h"
  23#include "glops.h"
  24#include "lops.h"
  25#include "meta_io.h"
  26#include "quota.h"
  27#include "rgrp.h"
  28#include "super.h"
  29#include "trans.h"
  30#include "util.h"
  31#include "log.h"
  32#include "inode.h"
  33#include "trace_gfs2.h"
  34
  35#define BFITNOENT ((u32)~0)
  36#define NO_BLOCK ((u64)~0)
  37
  38#if BITS_PER_LONG == 32
  39#define LBITMASK   (0x55555555UL)
  40#define LBITSKIP55 (0x55555555UL)
  41#define LBITSKIP00 (0x00000000UL)
  42#else
  43#define LBITMASK   (0x5555555555555555UL)
  44#define LBITSKIP55 (0x5555555555555555UL)
  45#define LBITSKIP00 (0x0000000000000000UL)
  46#endif
  47
  48/*
  49 * These routines are used by the resource group routines (rgrp.c)
  50 * to keep track of block allocation.  Each block is represented by two
  51 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  52 *
  53 * 0 = Free
  54 * 1 = Used (not metadata)
  55 * 2 = Unlinked (still in use) inode
  56 * 3 = Used (metadata)
  57 */
  58
 
 
 
 
 
  59static const char valid_change[16] = {
  60	        /* current */
  61	/* n */ 0, 1, 1, 1,
  62	/* e */ 1, 0, 0, 0,
  63	/* w */ 0, 0, 0, 1,
  64	        1, 0, 0, 0
  65};
  66
  67static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
  68			unsigned char old_state,
  69			struct gfs2_bitmap **rbi);
 
  70
  71/**
  72 * gfs2_setbit - Set a bit in the bitmaps
  73 * @rgd: the resource group descriptor
  74 * @buf2: the clone buffer that holds the bitmaps
  75 * @bi: the bitmap structure
  76 * @block: the block to set
  77 * @new_state: the new state of the block
  78 *
  79 */
  80
  81static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf2,
  82			       struct gfs2_bitmap *bi, u32 block,
  83			       unsigned char new_state)
  84{
  85	unsigned char *byte1, *byte2, *end, cur_state;
 
  86	unsigned int buflen = bi->bi_len;
  87	const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
  88
  89	byte1 = bi->bi_bh->b_data + bi->bi_offset + (block / GFS2_NBBY);
  90	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  91
  92	BUG_ON(byte1 >= end);
  93
  94	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  95
  96	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
  97		printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
  98		       "new_state=%d\n",
  99		       (unsigned long long)block, cur_state, new_state);
 100		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
 101		       (unsigned long long)rgd->rd_addr,
 102		       (unsigned long)bi->bi_start);
 103		printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
 104		       (unsigned long)bi->bi_offset,
 105		       (unsigned long)bi->bi_len);
 106		dump_stack();
 107		gfs2_consist_rgrpd(rgd);
 108		return;
 109	}
 110	*byte1 ^= (cur_state ^ new_state) << bit;
 111
 112	if (buf2) {
 113		byte2 = buf2 + bi->bi_offset + (block / GFS2_NBBY);
 114		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 115		*byte2 ^= (cur_state ^ new_state) << bit;
 116	}
 117}
 118
 119/**
 120 * gfs2_testbit - test a bit in the bitmaps
 121 * @rgd: the resource group descriptor
 122 * @buffer: the buffer that holds the bitmaps
 123 * @buflen: the length (in bytes) of the buffer
 124 * @block: the block to read
 125 *
 
 126 */
 127
 128static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
 129					 const unsigned char *buffer,
 130					 unsigned int buflen, u32 block)
 131{
 132	const unsigned char *byte, *end;
 133	unsigned char cur_state;
 
 134	unsigned int bit;
 135
 136	byte = buffer + (block / GFS2_NBBY);
 137	bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
 138	end = buffer + buflen;
 139
 140	gfs2_assert(rgd->rd_sbd, byte < end);
 141
 142	cur_state = (*byte >> bit) & GFS2_BIT_MASK;
 143
 144	return cur_state;
 145}
 146
 147/**
 148 * gfs2_bit_search
 149 * @ptr: Pointer to bitmap data
 150 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 151 * @state: The state we are searching for
 152 *
 153 * We xor the bitmap data with a patter which is the bitwise opposite
 154 * of what we are looking for, this gives rise to a pattern of ones
 155 * wherever there is a match. Since we have two bits per entry, we
 156 * take this pattern, shift it down by one place and then and it with
 157 * the original. All the even bit positions (0,2,4, etc) then represent
 158 * successful matches, so we mask with 0x55555..... to remove the unwanted
 159 * odd bit positions.
 160 *
 161 * This allows searching of a whole u64 at once (32 blocks) with a
 162 * single test (on 64 bit arches).
 163 */
 164
 165static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 166{
 167	u64 tmp;
 168	static const u64 search[] = {
 169		[0] = 0xffffffffffffffffULL,
 170		[1] = 0xaaaaaaaaaaaaaaaaULL,
 171		[2] = 0x5555555555555555ULL,
 172		[3] = 0x0000000000000000ULL,
 173	};
 174	tmp = le64_to_cpu(*ptr) ^ search[state];
 175	tmp &= (tmp >> 1);
 176	tmp &= mask;
 177	return tmp;
 178}
 179
 180/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 182 *       a block in a given allocation state.
 183 * @buf: the buffer that holds the bitmaps
 184 * @len: the length (in bytes) of the buffer
 185 * @goal: start search at this block's bit-pair (within @buffer)
 186 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 187 *
 188 * Scope of @goal and returned block number is only within this bitmap buffer,
 189 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 190 * beginning of a bitmap block buffer, skipping any header structures, but
 191 * headers are always a multiple of 64 bits long so that the buffer is
 192 * always aligned to a 64 bit boundary.
 193 *
 194 * The size of the buffer is in bytes, but is it assumed that it is
 195 * always ok to read a complete multiple of 64 bits at the end
 196 * of the block in case the end is no aligned to a natural boundary.
 197 *
 198 * Return: the block number (bitmap buffer scope) that was found
 199 */
 200
 201static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 202		       u32 goal, u8 state)
 203{
 204	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 205	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 206	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 207	u64 tmp;
 208	u64 mask = 0x5555555555555555ULL;
 209	u32 bit;
 210
 211	BUG_ON(state > 3);
 212
 213	/* Mask off bits we don't care about at the start of the search */
 214	mask <<= spoint;
 215	tmp = gfs2_bit_search(ptr, mask, state);
 216	ptr++;
 217	while(tmp == 0 && ptr < end) {
 218		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 219		ptr++;
 220	}
 221	/* Mask off any bits which are more than len bytes from the start */
 222	if (ptr == end && (len & (sizeof(u64) - 1)))
 223		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 224	/* Didn't find anything, so return */
 225	if (tmp == 0)
 226		return BFITNOENT;
 227	ptr--;
 228	bit = __ffs64(tmp);
 229	bit /= 2;	/* two bits per entry in the bitmap */
 230	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 231}
 232
 233/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234 * gfs2_bitcount - count the number of bits in a certain state
 235 * @rgd: the resource group descriptor
 236 * @buffer: the buffer that holds the bitmaps
 237 * @buflen: the length (in bytes) of the buffer
 238 * @state: the state of the block we're looking for
 239 *
 240 * Returns: The number of bits
 241 */
 242
 243static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 244			 unsigned int buflen, u8 state)
 245{
 246	const u8 *byte = buffer;
 247	const u8 *end = buffer + buflen;
 248	const u8 state1 = state << 2;
 249	const u8 state2 = state << 4;
 250	const u8 state3 = state << 6;
 251	u32 count = 0;
 252
 253	for (; byte < end; byte++) {
 254		if (((*byte) & 0x03) == state)
 255			count++;
 256		if (((*byte) & 0x0C) == state1)
 257			count++;
 258		if (((*byte) & 0x30) == state2)
 259			count++;
 260		if (((*byte) & 0xC0) == state3)
 261			count++;
 262	}
 263
 264	return count;
 265}
 266
 267/**
 268 * gfs2_rgrp_verify - Verify that a resource group is consistent
 269 * @rgd: the rgrp
 270 *
 271 */
 272
 273void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 274{
 275	struct gfs2_sbd *sdp = rgd->rd_sbd;
 276	struct gfs2_bitmap *bi = NULL;
 277	u32 length = rgd->rd_length;
 278	u32 count[4], tmp;
 279	int buf, x;
 280
 281	memset(count, 0, 4 * sizeof(u32));
 282
 283	/* Count # blocks in each of 4 possible allocation states */
 284	for (buf = 0; buf < length; buf++) {
 285		bi = rgd->rd_bits + buf;
 286		for (x = 0; x < 4; x++)
 287			count[x] += gfs2_bitcount(rgd,
 288						  bi->bi_bh->b_data +
 289						  bi->bi_offset,
 290						  bi->bi_len, x);
 291	}
 292
 293	if (count[0] != rgd->rd_free) {
 294		if (gfs2_consist_rgrpd(rgd))
 295			fs_err(sdp, "free data mismatch:  %u != %u\n",
 296			       count[0], rgd->rd_free);
 297		return;
 298	}
 299
 300	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 301	if (count[1] != tmp) {
 302		if (gfs2_consist_rgrpd(rgd))
 303			fs_err(sdp, "used data mismatch:  %u != %u\n",
 304			       count[1], tmp);
 305		return;
 306	}
 307
 308	if (count[2] + count[3] != rgd->rd_dinodes) {
 309		if (gfs2_consist_rgrpd(rgd))
 310			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 311			       count[2] + count[3], rgd->rd_dinodes);
 312		return;
 313	}
 314}
 315
 316static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 317{
 318	u64 first = rgd->rd_data0;
 319	u64 last = first + rgd->rd_data;
 320	return first <= block && block < last;
 321}
 322
 323/**
 324 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 325 * @sdp: The GFS2 superblock
 326 * @blk: The data block number
 327 * @exact: True if this needs to be an exact match
 328 *
 329 * Returns: The resource group, or NULL if not found
 330 */
 331
 332struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 333{
 334	struct rb_node *n, *next;
 335	struct gfs2_rgrpd *cur;
 336
 337	spin_lock(&sdp->sd_rindex_spin);
 338	n = sdp->sd_rindex_tree.rb_node;
 339	while (n) {
 340		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 341		next = NULL;
 342		if (blk < cur->rd_addr)
 343			next = n->rb_left;
 344		else if (blk >= cur->rd_data0 + cur->rd_data)
 345			next = n->rb_right;
 346		if (next == NULL) {
 347			spin_unlock(&sdp->sd_rindex_spin);
 348			if (exact) {
 349				if (blk < cur->rd_addr)
 350					return NULL;
 351				if (blk >= cur->rd_data0 + cur->rd_data)
 352					return NULL;
 353			}
 354			return cur;
 355		}
 356		n = next;
 357	}
 358	spin_unlock(&sdp->sd_rindex_spin);
 359
 360	return NULL;
 361}
 362
 363/**
 364 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 365 * @sdp: The GFS2 superblock
 366 *
 367 * Returns: The first rgrp in the filesystem
 368 */
 369
 370struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 371{
 372	const struct rb_node *n;
 373	struct gfs2_rgrpd *rgd;
 374
 375	spin_lock(&sdp->sd_rindex_spin);
 376	n = rb_first(&sdp->sd_rindex_tree);
 377	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 378	spin_unlock(&sdp->sd_rindex_spin);
 379
 380	return rgd;
 381}
 382
 383/**
 384 * gfs2_rgrpd_get_next - get the next RG
 385 * @rgd: the resource group descriptor
 386 *
 387 * Returns: The next rgrp
 388 */
 389
 390struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 391{
 392	struct gfs2_sbd *sdp = rgd->rd_sbd;
 393	const struct rb_node *n;
 394
 395	spin_lock(&sdp->sd_rindex_spin);
 396	n = rb_next(&rgd->rd_node);
 397	if (n == NULL)
 398		n = rb_first(&sdp->sd_rindex_tree);
 399
 400	if (unlikely(&rgd->rd_node == n)) {
 401		spin_unlock(&sdp->sd_rindex_spin);
 402		return NULL;
 403	}
 404	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 405	spin_unlock(&sdp->sd_rindex_spin);
 406	return rgd;
 407}
 408
 409void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 410{
 411	int x;
 412
 413	for (x = 0; x < rgd->rd_length; x++) {
 414		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 415		kfree(bi->bi_clone);
 416		bi->bi_clone = NULL;
 417	}
 418}
 419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 421{
 422	struct rb_node *n;
 423	struct gfs2_rgrpd *rgd;
 424	struct gfs2_glock *gl;
 425
 426	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 427		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 428		gl = rgd->rd_gl;
 429
 430		rb_erase(n, &sdp->sd_rindex_tree);
 431
 432		if (gl) {
 433			spin_lock(&gl->gl_spin);
 434			gl->gl_object = NULL;
 435			spin_unlock(&gl->gl_spin);
 436			gfs2_glock_add_to_lru(gl);
 437			gfs2_glock_put(gl);
 438		}
 439
 440		gfs2_free_clones(rgd);
 441		kfree(rgd->rd_bits);
 
 442		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 443	}
 444}
 445
 446static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 447{
 448	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 449	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
 450	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 451	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
 452	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
 453}
 454
 455/**
 456 * gfs2_compute_bitstructs - Compute the bitmap sizes
 457 * @rgd: The resource group descriptor
 458 *
 459 * Calculates bitmap descriptors, one for each block that contains bitmap data
 460 *
 461 * Returns: errno
 462 */
 463
 464static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 465{
 466	struct gfs2_sbd *sdp = rgd->rd_sbd;
 467	struct gfs2_bitmap *bi;
 468	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 469	u32 bytes_left, bytes;
 470	int x;
 471
 472	if (!length)
 473		return -EINVAL;
 474
 475	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 476	if (!rgd->rd_bits)
 477		return -ENOMEM;
 478
 479	bytes_left = rgd->rd_bitbytes;
 480
 481	for (x = 0; x < length; x++) {
 482		bi = rgd->rd_bits + x;
 483
 484		bi->bi_flags = 0;
 485		/* small rgrp; bitmap stored completely in header block */
 486		if (length == 1) {
 487			bytes = bytes_left;
 488			bi->bi_offset = sizeof(struct gfs2_rgrp);
 489			bi->bi_start = 0;
 490			bi->bi_len = bytes;
 
 491		/* header block */
 492		} else if (x == 0) {
 493			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 494			bi->bi_offset = sizeof(struct gfs2_rgrp);
 495			bi->bi_start = 0;
 496			bi->bi_len = bytes;
 
 497		/* last block */
 498		} else if (x + 1 == length) {
 499			bytes = bytes_left;
 500			bi->bi_offset = sizeof(struct gfs2_meta_header);
 501			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 502			bi->bi_len = bytes;
 
 503		/* other blocks */
 504		} else {
 505			bytes = sdp->sd_sb.sb_bsize -
 506				sizeof(struct gfs2_meta_header);
 507			bi->bi_offset = sizeof(struct gfs2_meta_header);
 508			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 509			bi->bi_len = bytes;
 
 510		}
 511
 512		bytes_left -= bytes;
 513	}
 514
 515	if (bytes_left) {
 516		gfs2_consist_rgrpd(rgd);
 517		return -EIO;
 518	}
 519	bi = rgd->rd_bits + (length - 1);
 520	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 521		if (gfs2_consist_rgrpd(rgd)) {
 522			gfs2_rindex_print(rgd);
 523			fs_err(sdp, "start=%u len=%u offset=%u\n",
 524			       bi->bi_start, bi->bi_len, bi->bi_offset);
 525		}
 526		return -EIO;
 527	}
 528
 529	return 0;
 530}
 531
 532/**
 533 * gfs2_ri_total - Total up the file system space, according to the rindex.
 534 * @sdp: the filesystem
 535 *
 536 */
 537u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 538{
 539	u64 total_data = 0;	
 540	struct inode *inode = sdp->sd_rindex;
 541	struct gfs2_inode *ip = GFS2_I(inode);
 542	char buf[sizeof(struct gfs2_rindex)];
 543	int error, rgrps;
 544
 545	for (rgrps = 0;; rgrps++) {
 546		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 547
 548		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 549			break;
 550		error = gfs2_internal_read(ip, buf, &pos,
 551					   sizeof(struct gfs2_rindex));
 552		if (error != sizeof(struct gfs2_rindex))
 553			break;
 554		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 555	}
 556	return total_data;
 557}
 558
 559static int rgd_insert(struct gfs2_rgrpd *rgd)
 560{
 561	struct gfs2_sbd *sdp = rgd->rd_sbd;
 562	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 563
 564	/* Figure out where to put new node */
 565	while (*newn) {
 566		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 567						  rd_node);
 568
 569		parent = *newn;
 570		if (rgd->rd_addr < cur->rd_addr)
 571			newn = &((*newn)->rb_left);
 572		else if (rgd->rd_addr > cur->rd_addr)
 573			newn = &((*newn)->rb_right);
 574		else
 575			return -EEXIST;
 576	}
 577
 578	rb_link_node(&rgd->rd_node, parent, newn);
 579	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 580	sdp->sd_rgrps++;
 581	return 0;
 582}
 583
 584/**
 585 * read_rindex_entry - Pull in a new resource index entry from the disk
 586 * @ip: Pointer to the rindex inode
 587 *
 588 * Returns: 0 on success, > 0 on EOF, error code otherwise
 589 */
 590
 591static int read_rindex_entry(struct gfs2_inode *ip)
 592{
 593	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
 594	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 595	struct gfs2_rindex buf;
 596	int error;
 597	struct gfs2_rgrpd *rgd;
 598
 599	if (pos >= i_size_read(&ip->i_inode))
 600		return 1;
 601
 602	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 603				   sizeof(struct gfs2_rindex));
 604
 605	if (error != sizeof(struct gfs2_rindex))
 606		return (error == 0) ? 1 : error;
 607
 608	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 609	error = -ENOMEM;
 610	if (!rgd)
 611		return error;
 612
 613	rgd->rd_sbd = sdp;
 614	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 615	rgd->rd_length = be32_to_cpu(buf.ri_length);
 616	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 617	rgd->rd_data = be32_to_cpu(buf.ri_data);
 618	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 
 619
 620	error = compute_bitstructs(rgd);
 621	if (error)
 622		goto fail;
 623
 624	error = gfs2_glock_get(sdp, rgd->rd_addr,
 625			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 626	if (error)
 627		goto fail;
 628
 629	rgd->rd_gl->gl_object = rgd;
 
 
 
 630	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
 631	if (rgd->rd_data > sdp->sd_max_rg_data)
 632		sdp->sd_max_rg_data = rgd->rd_data;
 633	spin_lock(&sdp->sd_rindex_spin);
 634	error = rgd_insert(rgd);
 635	spin_unlock(&sdp->sd_rindex_spin);
 636	if (!error)
 637		return 0;
 638
 639	error = 0; /* someone else read in the rgrp; free it and ignore it */
 640	gfs2_glock_put(rgd->rd_gl);
 641
 642fail:
 643	kfree(rgd->rd_bits);
 644	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 645	return error;
 646}
 647
 648/**
 649 * gfs2_ri_update - Pull in a new resource index from the disk
 650 * @ip: pointer to the rindex inode
 651 *
 652 * Returns: 0 on successful update, error code otherwise
 653 */
 654
 655static int gfs2_ri_update(struct gfs2_inode *ip)
 656{
 657	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 658	int error;
 659
 660	do {
 661		error = read_rindex_entry(ip);
 662	} while (error == 0);
 663
 664	if (error < 0)
 665		return error;
 666
 667	sdp->sd_rindex_uptodate = 1;
 668	return 0;
 669}
 670
 671/**
 672 * gfs2_rindex_update - Update the rindex if required
 673 * @sdp: The GFS2 superblock
 674 *
 675 * We grab a lock on the rindex inode to make sure that it doesn't
 676 * change whilst we are performing an operation. We keep this lock
 677 * for quite long periods of time compared to other locks. This
 678 * doesn't matter, since it is shared and it is very, very rarely
 679 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
 680 *
 681 * This makes sure that we're using the latest copy of the resource index
 682 * special file, which might have been updated if someone expanded the
 683 * filesystem (via gfs2_grow utility), which adds new resource groups.
 684 *
 685 * Returns: 0 on succeess, error code otherwise
 686 */
 687
 688int gfs2_rindex_update(struct gfs2_sbd *sdp)
 689{
 690	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
 691	struct gfs2_glock *gl = ip->i_gl;
 692	struct gfs2_holder ri_gh;
 693	int error = 0;
 694	int unlock_required = 0;
 695
 696	/* Read new copy from disk if we don't have the latest */
 697	if (!sdp->sd_rindex_uptodate) {
 698		if (!gfs2_glock_is_locked_by_me(gl)) {
 699			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
 700			if (error)
 701				return error;
 702			unlock_required = 1;
 703		}
 704		if (!sdp->sd_rindex_uptodate)
 705			error = gfs2_ri_update(ip);
 706		if (unlock_required)
 707			gfs2_glock_dq_uninit(&ri_gh);
 708	}
 709
 710	return error;
 711}
 712
 713static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
 714{
 715	const struct gfs2_rgrp *str = buf;
 716	u32 rg_flags;
 717
 718	rg_flags = be32_to_cpu(str->rg_flags);
 719	rg_flags &= ~GFS2_RDF_MASK;
 720	rgd->rd_flags &= GFS2_RDF_MASK;
 721	rgd->rd_flags |= rg_flags;
 722	rgd->rd_free = be32_to_cpu(str->rg_free);
 723	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
 724	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
 725}
 726
 727static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
 728{
 729	struct gfs2_rgrp *str = buf;
 730
 731	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
 732	str->rg_free = cpu_to_be32(rgd->rd_free);
 733	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
 734	str->__pad = cpu_to_be32(0);
 735	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
 736	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
 737}
 738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739/**
 740 * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps
 741 * @gh: The glock holder for the resource group
 742 *
 743 * Read in all of a Resource Group's header and bitmap blocks.
 744 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
 745 *
 746 * Returns: errno
 747 */
 748
 749int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
 750{
 751	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
 752	struct gfs2_sbd *sdp = rgd->rd_sbd;
 753	struct gfs2_glock *gl = rgd->rd_gl;
 754	unsigned int length = rgd->rd_length;
 755	struct gfs2_bitmap *bi;
 756	unsigned int x, y;
 757	int error;
 758
 
 
 
 759	for (x = 0; x < length; x++) {
 760		bi = rgd->rd_bits + x;
 761		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
 762		if (error)
 763			goto fail;
 764	}
 765
 766	for (y = length; y--;) {
 767		bi = rgd->rd_bits + y;
 768		error = gfs2_meta_wait(sdp, bi->bi_bh);
 769		if (error)
 770			goto fail;
 771		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
 772					      GFS2_METATYPE_RG)) {
 773			error = -EIO;
 774			goto fail;
 775		}
 776	}
 777
 778	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
 779		for (x = 0; x < length; x++)
 780			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
 781		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
 782		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
 783		rgd->rd_free_clone = rgd->rd_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	}
 785
 786	return 0;
 787
 788fail:
 789	while (x--) {
 790		bi = rgd->rd_bits + x;
 791		brelse(bi->bi_bh);
 792		bi->bi_bh = NULL;
 793		gfs2_assert_warn(sdp, !bi->bi_clone);
 794	}
 795
 796	return error;
 797}
 798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 799/**
 800 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
 801 * @gh: The glock holder for the resource group
 802 *
 803 */
 804
 805void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
 806{
 807	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
 808	int x, length = rgd->rd_length;
 809
 810	for (x = 0; x < length; x++) {
 811		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 812		brelse(bi->bi_bh);
 813		bi->bi_bh = NULL;
 
 
 814	}
 815
 816}
 817
 818int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
 819			     struct buffer_head *bh,
 820			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
 821{
 822	struct super_block *sb = sdp->sd_vfs;
 823	struct block_device *bdev = sb->s_bdev;
 824	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
 825					   bdev_logical_block_size(sb->s_bdev);
 826	u64 blk;
 827	sector_t start = 0;
 828	sector_t nr_sects = 0;
 829	int rv;
 830	unsigned int x;
 831	u32 trimmed = 0;
 832	u8 diff;
 833
 834	for (x = 0; x < bi->bi_len; x++) {
 835		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
 836		clone += bi->bi_offset;
 837		clone += x;
 838		if (bh) {
 839			const u8 *orig = bh->b_data + bi->bi_offset + x;
 840			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
 841		} else {
 842			diff = ~(*clone | (*clone >> 1));
 843		}
 844		diff &= 0x55;
 845		if (diff == 0)
 846			continue;
 847		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 848		blk *= sects_per_blk; /* convert to sectors */
 849		while(diff) {
 850			if (diff & 1) {
 851				if (nr_sects == 0)
 852					goto start_new_extent;
 853				if ((start + nr_sects) != blk) {
 854					if (nr_sects >= minlen) {
 855						rv = blkdev_issue_discard(bdev,
 856							start, nr_sects,
 857							GFP_NOFS, 0);
 858						if (rv)
 859							goto fail;
 860						trimmed += nr_sects;
 861					}
 862					nr_sects = 0;
 863start_new_extent:
 864					start = blk;
 865				}
 866				nr_sects += sects_per_blk;
 867			}
 868			diff >>= 2;
 869			blk += sects_per_blk;
 870		}
 871	}
 872	if (nr_sects >= minlen) {
 873		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
 874		if (rv)
 875			goto fail;
 876		trimmed += nr_sects;
 877	}
 878	if (ptrimmed)
 879		*ptrimmed = trimmed;
 880	return 0;
 881
 882fail:
 883	if (sdp->sd_args.ar_discard)
 884		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
 885	sdp->sd_args.ar_discard = 0;
 886	return -EIO;
 887}
 888
 889/**
 890 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
 891 * @filp: Any file on the filesystem
 892 * @argp: Pointer to the arguments (also used to pass result)
 893 *
 894 * Returns: 0 on success, otherwise error code
 895 */
 896
 897int gfs2_fitrim(struct file *filp, void __user *argp)
 898{
 899	struct inode *inode = filp->f_dentry->d_inode;
 900	struct gfs2_sbd *sdp = GFS2_SB(inode);
 901	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
 902	struct buffer_head *bh;
 903	struct gfs2_rgrpd *rgd;
 904	struct gfs2_rgrpd *rgd_end;
 905	struct gfs2_holder gh;
 906	struct fstrim_range r;
 907	int ret = 0;
 908	u64 amt;
 909	u64 trimmed = 0;
 
 910	unsigned int x;
 
 911
 912	if (!capable(CAP_SYS_ADMIN))
 913		return -EPERM;
 914
 915	if (!blk_queue_discard(q))
 916		return -EOPNOTSUPP;
 917
 918	if (argp == NULL) {
 919		r.start = 0;
 920		r.len = ULLONG_MAX;
 921		r.minlen = 0;
 922	} else if (copy_from_user(&r, argp, sizeof(r)))
 923		return -EFAULT;
 924
 925	ret = gfs2_rindex_update(sdp);
 926	if (ret)
 927		return ret;
 928
 929	rgd = gfs2_blk2rgrpd(sdp, r.start, 0);
 930	rgd_end = gfs2_blk2rgrpd(sdp, r.start + r.len, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 931
 932	while (1) {
 933
 934		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
 935		if (ret)
 936			goto out;
 937
 938		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
 939			/* Trim each bitmap in the rgrp */
 940			for (x = 0; x < rgd->rd_length; x++) {
 941				struct gfs2_bitmap *bi = rgd->rd_bits + x;
 942				ret = gfs2_rgrp_send_discards(sdp, rgd->rd_data0, NULL, bi, r.minlen, &amt);
 
 
 943				if (ret) {
 944					gfs2_glock_dq_uninit(&gh);
 945					goto out;
 946				}
 947				trimmed += amt;
 948			}
 949
 950			/* Mark rgrp as having been trimmed */
 951			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
 952			if (ret == 0) {
 953				bh = rgd->rd_bits[0].bi_bh;
 954				rgd->rd_flags |= GFS2_RGF_TRIMMED;
 955				gfs2_trans_add_bh(rgd->rd_gl, bh, 1);
 956				gfs2_rgrp_out(rgd, bh->b_data);
 
 957				gfs2_trans_end(sdp);
 958			}
 959		}
 960		gfs2_glock_dq_uninit(&gh);
 961
 962		if (rgd == rgd_end)
 963			break;
 964
 965		rgd = gfs2_rgrpd_get_next(rgd);
 966	}
 967
 968out:
 969	r.len = trimmed << 9;
 970	if (argp && copy_to_user(argp, &r, sizeof(r)))
 971		return -EFAULT;
 972
 973	return ret;
 974}
 975
 976/**
 977 * gfs2_qadata_get - get the struct gfs2_qadata structure for an inode
 978 * @ip: the incore GFS2 inode structure
 979 *
 980 * Returns: the struct gfs2_qadata
 981 */
 982
 983struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip)
 984{
 985	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 986	int error;
 987	BUG_ON(ip->i_qadata != NULL);
 988	ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS);
 989	error = gfs2_rindex_update(sdp);
 990	if (error)
 991		fs_warn(sdp, "rindex update returns %d\n", error);
 992	return ip->i_qadata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993}
 994
 995/**
 996 * gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode
 997 * @ip: the incore GFS2 inode structure
 
 
 998 *
 999 * Returns: the struct gfs2_qadata
1000 */
1001
1002static int gfs2_blkrsv_get(struct gfs2_inode *ip)
 
1003{
1004	BUG_ON(ip->i_res != NULL);
1005	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
1006	if (!ip->i_res)
1007		return -ENOMEM;
1008	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009}
1010
1011/**
1012 * try_rgrp_fit - See if a given reservation will fit in a given RG
1013 * @rgd: the RG data
1014 * @ip: the inode
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015 *
1016 * If there's room for the requested blocks to be allocated from the RG:
 
 
 
 
1017 *
1018 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
1019 */
1020
1021static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip)
 
 
 
1022{
1023	const struct gfs2_blkreserv *rs = ip->i_res;
 
 
 
1024
1025	if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1026		return 0;
1027	if (rgd->rd_free_clone >= rs->rs_requested)
1028		return 1;
1029	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030}
1031
1032static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033{
1034	return (bi->bi_start * GFS2_NBBY) + blk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037/**
1038 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1039 * @rgd: The rgrp
1040 * @last_unlinked: block address of the last dinode we unlinked
1041 * @skip: block address we should explicitly not unlink
1042 *
1043 * Returns: 0 if no error
1044 *          The inode, if one has been found, in inode.
1045 */
1046
1047static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1048{
1049	u32 goal = 0, block;
1050	u64 no_addr;
1051	struct gfs2_sbd *sdp = rgd->rd_sbd;
1052	struct gfs2_glock *gl;
1053	struct gfs2_inode *ip;
1054	int error;
1055	int found = 0;
1056	struct gfs2_bitmap *bi;
1057
1058	while (goal < rgd->rd_data) {
1059		down_write(&sdp->sd_log_flush_lock);
1060		block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi);
 
1061		up_write(&sdp->sd_log_flush_lock);
1062		if (block == BFITNOENT)
 
 
1063			break;
1064
1065		block = gfs2_bi2rgd_blk(bi, block);
1066		/* rgblk_search can return a block < goal, so we need to
1067		   keep it marching forward. */
1068		no_addr = block + rgd->rd_data0;
1069		goal = max(block + 1, goal + 1);
1070		if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
1071			continue;
1072		if (no_addr == skip)
1073			continue;
1074		*last_unlinked = no_addr;
1075
1076		error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
1077		if (error)
1078			continue;
1079
1080		/* If the inode is already in cache, we can ignore it here
1081		 * because the existing inode disposal code will deal with
1082		 * it when all refs have gone away. Accessing gl_object like
1083		 * this is not safe in general. Here it is ok because we do
1084		 * not dereference the pointer, and we only need an approx
1085		 * answer to whether it is NULL or not.
1086		 */
1087		ip = gl->gl_object;
1088
1089		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1090			gfs2_glock_put(gl);
1091		else
1092			found++;
1093
1094		/* Limit reclaim to sensible number of tasks */
1095		if (found > NR_CPUS)
1096			return;
1097	}
1098
1099	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1100	return;
1101}
1102
1103/**
1104 * get_local_rgrp - Choose and lock a rgrp for allocation
1105 * @ip: the inode to reserve space for
1106 * @last_unlinked: the last unlinked block
1107 *
1108 * Try to acquire rgrp in way which avoids contending with others.
 
 
 
 
 
 
 
1109 *
1110 * Returns: errno
 
 
 
 
 
 
 
 
 
 
1111 */
1112
1113static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
1114{
1115	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1116	struct gfs2_rgrpd *rgd, *begin = NULL;
1117	struct gfs2_blkreserv *rs = ip->i_res;
1118	int error, rg_locked, flags = LM_FLAG_TRY;
1119	int loops = 0;
 
 
 
1120
1121	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal))
1122		rgd = begin = ip->i_rgd;
1123	else
1124		rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
 
 
 
1125
1126	if (rgd == NULL)
1127		return -EBADSLT;
1128
1129	while (loops < 3) {
1130		rg_locked = 0;
1131
1132		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1133			rg_locked = 1;
1134			error = 0;
1135		} else {
1136			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1137						   flags, &rs->rs_rgd_gh);
1138		}
1139		switch (error) {
1140		case 0:
1141			if (try_rgrp_fit(rgd, ip)) {
1142				ip->i_rgd = rgd;
1143				return 0;
1144			}
1145			if (rgd->rd_flags & GFS2_RDF_CHECK)
1146				try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1147			if (!rg_locked)
1148				gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1149			/* fall through */
1150		case GLR_TRYFAILED:
1151			rgd = gfs2_rgrpd_get_next(rgd);
1152			if (rgd == begin) {
1153				flags = 0;
1154				loops++;
1155			}
1156			break;
1157		default:
1158			return error;
1159		}
1160	}
1161
1162	return -ENOSPC;
 
 
 
 
 
 
1163}
1164
1165static void gfs2_blkrsv_put(struct gfs2_inode *ip)
 
 
 
 
 
 
 
 
1166{
1167	BUG_ON(ip->i_res == NULL);
1168	kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
1169	ip->i_res = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170}
1171
1172/**
1173 * gfs2_inplace_reserve - Reserve space in the filesystem
1174 * @ip: the inode to reserve space for
1175 * @requested: the number of blocks to be reserved
1176 *
1177 * Returns: errno
1178 */
1179
1180int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
1181{
1182	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1183	struct gfs2_blkreserv *rs;
1184	int error;
 
1185	u64 last_unlinked = NO_BLOCK;
1186	int tries = 0;
 
1187
1188	error = gfs2_blkrsv_get(ip);
1189	if (error)
1190		return error;
 
 
 
 
 
 
 
 
 
 
 
 
1191
1192	rs = ip->i_res;
1193	rs->rs_requested = requested;
1194	if (gfs2_assert_warn(sdp, requested)) {
1195		error = -EINVAL;
1196		goto out;
1197	}
1198
1199	do {
1200		error = get_local_rgrp(ip, &last_unlinked);
1201		if (error != -ENOSPC)
1202			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203		/* Check that fs hasn't grown if writing to rindex */
1204		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1205			error = gfs2_ri_update(ip);
1206			if (error)
1207				break;
1208			continue;
1209		}
1210		/* Flushing the log may release space */
1211		gfs2_log_flush(sdp, NULL);
1212	} while (tries++ < 3);
 
1213
1214out:
1215	if (error)
1216		gfs2_blkrsv_put(ip);
1217	return error;
1218}
1219
1220/**
1221 * gfs2_inplace_release - release an inplace reservation
1222 * @ip: the inode the reservation was taken out on
1223 *
1224 * Release a reservation made by gfs2_inplace_reserve().
1225 */
1226
1227void gfs2_inplace_release(struct gfs2_inode *ip)
1228{
1229	struct gfs2_blkreserv *rs = ip->i_res;
1230
1231	if (rs->rs_rgd_gh.gh_gl)
1232		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1233	gfs2_blkrsv_put(ip);
1234}
1235
1236/**
1237 * gfs2_get_block_type - Check a block in a RG is of given type
1238 * @rgd: the resource group holding the block
1239 * @block: the block number
1240 *
1241 * Returns: The block type (GFS2_BLKST_*)
1242 */
1243
1244static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1245{
1246	struct gfs2_bitmap *bi = NULL;
1247	u32 length, rgrp_block, buf_block;
1248	unsigned int buf;
1249	unsigned char type;
1250
1251	length = rgd->rd_length;
1252	rgrp_block = block - rgd->rd_data0;
1253
1254	for (buf = 0; buf < length; buf++) {
1255		bi = rgd->rd_bits + buf;
1256		if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1257			break;
1258	}
1259
1260	gfs2_assert(rgd->rd_sbd, buf < length);
1261	buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1262
1263	type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1264			   bi->bi_len, buf_block);
1265
1266	return type;
1267}
1268
1269/**
1270 * rgblk_search - find a block in @state
1271 * @rgd: the resource group descriptor
1272 * @goal: the goal block within the RG (start here to search for avail block)
1273 * @state: GFS2_BLKST_XXX the before-allocation state to find
1274 * @rbi: address of the pointer to the bitmap containing the block found
1275 *
1276 * Walk rgrp's bitmap to find bits that represent a block in @state.
1277 *
1278 * This function never fails, because we wouldn't call it unless we
1279 * know (from reservation results, etc.) that a block is available.
1280 *
1281 * Scope of @goal is just within rgrp, not the whole filesystem.
1282 * Scope of @returned block is just within bitmap, not the whole filesystem.
1283 *
1284 * Returns: the block number found relative to the bitmap rbi
1285 */
1286
1287static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, unsigned char state,
1288			struct gfs2_bitmap **rbi)
1289{
1290	struct gfs2_bitmap *bi = NULL;
1291	const u32 length = rgd->rd_length;
1292	u32 biblk = BFITNOENT;
1293	unsigned int buf, x;
1294	const u8 *buffer = NULL;
1295
1296	*rbi = NULL;
1297	/* Find bitmap block that contains bits for goal block */
1298	for (buf = 0; buf < length; buf++) {
1299		bi = rgd->rd_bits + buf;
1300		/* Convert scope of "goal" from rgrp-wide to within found bit block */
1301		if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1302			goal -= bi->bi_start * GFS2_NBBY;
1303			goto do_search;
1304		}
1305	}
1306	buf = 0;
1307	goal = 0;
1308
1309do_search:
1310	/* Search (up to entire) bitmap in this rgrp for allocatable block.
1311	   "x <= length", instead of "x < length", because we typically start
1312	   the search in the middle of a bit block, but if we can't find an
1313	   allocatable block anywhere else, we want to be able wrap around and
1314	   search in the first part of our first-searched bit block.  */
1315	for (x = 0; x <= length; x++) {
1316		bi = rgd->rd_bits + buf;
1317
1318		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1319		    (state == GFS2_BLKST_FREE))
1320			goto skip;
1321
1322		/* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1323		   bitmaps, so we must search the originals for that. */
1324		buffer = bi->bi_bh->b_data + bi->bi_offset;
1325		WARN_ON(!buffer_uptodate(bi->bi_bh));
1326		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1327			buffer = bi->bi_clone + bi->bi_offset;
1328
1329		biblk = gfs2_bitfit(buffer, bi->bi_len, goal, state);
1330		if (biblk != BFITNOENT)
1331			break;
1332
1333		if ((goal == 0) && (state == GFS2_BLKST_FREE))
1334			set_bit(GBF_FULL, &bi->bi_flags);
1335
1336		/* Try next bitmap block (wrap back to rgrp header if at end) */
1337skip:
1338		buf++;
1339		buf %= length;
1340		goal = 0;
1341	}
1342
1343	if (biblk != BFITNOENT)
1344		*rbi = bi;
1345
1346	return biblk;
1347}
1348
1349/**
1350 * gfs2_alloc_extent - allocate an extent from a given bitmap
1351 * @rgd: the resource group descriptor
1352 * @bi: the bitmap within the rgrp
1353 * @blk: the block within the bitmap
1354 * @dinode: TRUE if the first block we allocate is for a dinode
1355 * @n: The extent length
1356 *
1357 * Add the found bitmap buffer to the transaction.
1358 * Set the found bits to @new_state to change block's allocation state.
1359 * Returns: starting block number of the extent (fs scope)
1360 */
1361static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi,
1362			     u32 blk, bool dinode, unsigned int *n)
1363{
 
1364	const unsigned int elen = *n;
1365	u32 goal;
1366	const u8 *buffer = NULL;
1367
1368	*n = 0;
1369	buffer = bi->bi_bh->b_data + bi->bi_offset;
1370	gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1371	gfs2_setbit(rgd, bi->bi_clone, bi, blk,
1372		    dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1373	(*n)++;
1374	goal = blk;
1375	while (*n < elen) {
1376		goal++;
1377		if (goal >= (bi->bi_len * GFS2_NBBY))
1378			break;
1379		if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1380		    GFS2_BLKST_FREE)
1381			break;
1382		gfs2_setbit(rgd, bi->bi_clone, bi, goal, GFS2_BLKST_USED);
 
1383		(*n)++;
 
1384	}
1385	blk = gfs2_bi2rgd_blk(bi, blk);
1386	rgd->rd_last_alloc = blk + *n - 1;
1387	return rgd->rd_data0 + blk;
1388}
1389
1390/**
1391 * rgblk_free - Change alloc state of given block(s)
1392 * @sdp: the filesystem
1393 * @bstart: the start of a run of blocks to free
1394 * @blen: the length of the block run (all must lie within ONE RG!)
1395 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1396 *
1397 * Returns:  Resource group containing the block(s)
1398 */
1399
1400static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1401				     u32 blen, unsigned char new_state)
1402{
1403	struct gfs2_rgrpd *rgd;
1404	struct gfs2_bitmap *bi = NULL;
1405	u32 length, rgrp_blk, buf_blk;
1406	unsigned int buf;
1407
1408	rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1409	if (!rgd) {
1410		if (gfs2_consist(sdp))
1411			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1412		return NULL;
1413	}
1414
1415	length = rgd->rd_length;
1416
1417	rgrp_blk = bstart - rgd->rd_data0;
1418
1419	while (blen--) {
1420		for (buf = 0; buf < length; buf++) {
1421			bi = rgd->rd_bits + buf;
1422			if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1423				break;
1424		}
1425
1426		gfs2_assert(rgd->rd_sbd, buf < length);
1427
1428		buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1429		rgrp_blk++;
1430
1431		if (!bi->bi_clone) {
1432			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1433					       GFP_NOFS | __GFP_NOFAIL);
1434			memcpy(bi->bi_clone + bi->bi_offset,
1435			       bi->bi_bh->b_data + bi->bi_offset,
1436			       bi->bi_len);
1437		}
1438		gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1439		gfs2_setbit(rgd, NULL, bi, buf_blk, new_state);
1440	}
1441
1442	return rgd;
1443}
1444
1445/**
1446 * gfs2_rgrp_dump - print out an rgrp
1447 * @seq: The iterator
1448 * @gl: The glock in question
1449 *
1450 */
1451
1452int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
1453{
1454	const struct gfs2_rgrpd *rgd = gl->gl_object;
 
 
 
1455	if (rgd == NULL)
1456		return 0;
1457	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
1458		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1459		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1460	return 0;
 
 
 
 
 
 
1461}
1462
1463static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1464{
1465	struct gfs2_sbd *sdp = rgd->rd_sbd;
1466	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1467		(unsigned long long)rgd->rd_addr);
1468	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1469	gfs2_rgrp_dump(NULL, rgd->rd_gl);
1470	rgd->rd_flags |= GFS2_RDF_ERROR;
1471}
1472
1473/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
1475 * @ip: the inode to allocate the block for
1476 * @bn: Used to return the starting block number
1477 * @ndata: requested number of blocks/extent length (value/result)
1478 * @dinode: 1 if we're allocating a dinode block, else 0
1479 * @generation: the generation number of the inode
1480 *
1481 * Returns: 0 or error
1482 */
1483
1484int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
1485		      bool dinode, u64 *generation)
1486{
1487	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1488	struct buffer_head *dibh;
1489	struct gfs2_rgrpd *rgd;
1490	unsigned int ndata;
1491	u32 goal, blk; /* block, within the rgrp scope */
1492	u64 block; /* block, within the file system scope */
1493	int error;
1494	struct gfs2_bitmap *bi;
1495
1496	/* Only happens if there is a bug in gfs2, return something distinctive
1497	 * to ensure that it is noticed.
1498	 */
1499	if (ip->i_res == NULL)
1500		return -ECANCELED;
1501
1502	rgd = ip->i_rgd;
1503
1504	if (!dinode && rgrp_contains_block(rgd, ip->i_goal))
1505		goal = ip->i_goal - rgd->rd_data0;
1506	else
1507		goal = rgd->rd_last_alloc;
1508
1509	blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi);
 
 
 
 
1510
1511	/* Since all blocks are reserved in advance, this shouldn't happen */
1512	if (blk == BFITNOENT)
 
 
 
 
1513		goto rgrp_error;
 
1514
1515	block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks);
 
 
 
 
1516	ndata = *nblocks;
1517	if (dinode)
1518		ndata--;
1519
1520	if (!dinode) {
1521		ip->i_goal = block + ndata - 1;
1522		error = gfs2_meta_inode_buffer(ip, &dibh);
1523		if (error == 0) {
1524			struct gfs2_dinode *di =
1525				(struct gfs2_dinode *)dibh->b_data;
1526			gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1527			di->di_goal_meta = di->di_goal_data =
1528				cpu_to_be64(ip->i_goal);
1529			brelse(dibh);
1530		}
1531	}
1532	if (rgd->rd_free < *nblocks)
 
1533		goto rgrp_error;
 
1534
1535	rgd->rd_free -= *nblocks;
1536	if (dinode) {
1537		rgd->rd_dinodes++;
1538		*generation = rgd->rd_igeneration++;
1539		if (*generation == 0)
1540			*generation = rgd->rd_igeneration++;
1541	}
1542
1543	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1544	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1545
1546	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
1547	if (dinode)
1548		gfs2_trans_add_unrevoke(sdp, block, 1);
1549
1550	/*
1551	 * This needs reviewing to see why we cannot do the quota change
1552	 * at this point in the dinode case.
1553	 */
1554	if (ndata)
1555		gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
1556				  ip->i_inode.i_gid);
1557
1558	rgd->rd_free_clone -= *nblocks;
1559	trace_gfs2_block_alloc(ip, rgd, block, *nblocks,
1560			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1561	*bn = block;
1562	return 0;
1563
1564rgrp_error:
1565	gfs2_rgrp_error(rgd);
1566	return -EIO;
1567}
1568
1569/**
1570 * __gfs2_free_blocks - free a contiguous run of block(s)
1571 * @ip: the inode these blocks are being freed from
1572 * @bstart: first block of a run of contiguous blocks
1573 * @blen: the length of the block run
1574 * @meta: 1 if the blocks represent metadata
1575 *
1576 */
1577
1578void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
1579{
1580	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1581	struct gfs2_rgrpd *rgd;
1582
1583	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1584	if (!rgd)
1585		return;
1586	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
1587	rgd->rd_free += blen;
1588	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
1589	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1590	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1591
1592	/* Directories keep their data in the metadata address space */
1593	if (meta || ip->i_depth)
1594		gfs2_meta_wipe(ip, bstart, blen);
1595}
1596
1597/**
1598 * gfs2_free_meta - free a contiguous run of data block(s)
1599 * @ip: the inode these blocks are being freed from
1600 * @bstart: first block of a run of contiguous blocks
1601 * @blen: the length of the block run
1602 *
1603 */
1604
1605void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
1606{
1607	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1608
1609	__gfs2_free_blocks(ip, bstart, blen, 1);
1610	gfs2_statfs_change(sdp, 0, +blen, 0);
1611	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1612}
1613
1614void gfs2_unlink_di(struct inode *inode)
1615{
1616	struct gfs2_inode *ip = GFS2_I(inode);
1617	struct gfs2_sbd *sdp = GFS2_SB(inode);
1618	struct gfs2_rgrpd *rgd;
1619	u64 blkno = ip->i_no_addr;
1620
1621	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1622	if (!rgd)
1623		return;
1624	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
1625	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1626	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
 
1627}
1628
1629static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1630{
1631	struct gfs2_sbd *sdp = rgd->rd_sbd;
1632	struct gfs2_rgrpd *tmp_rgd;
1633
1634	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1635	if (!tmp_rgd)
1636		return;
1637	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1638
1639	if (!rgd->rd_dinodes)
1640		gfs2_consist_rgrpd(rgd);
1641	rgd->rd_dinodes--;
1642	rgd->rd_free++;
1643
1644	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1645	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
 
1646
1647	gfs2_statfs_change(sdp, 0, +1, -1);
1648}
1649
1650
1651void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1652{
1653	gfs2_free_uninit_di(rgd, ip->i_no_addr);
1654	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1655	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1656	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1657}
1658
1659/**
1660 * gfs2_check_blk_type - Check the type of a block
1661 * @sdp: The superblock
1662 * @no_addr: The block number to check
1663 * @type: The block type we are looking for
1664 *
1665 * Returns: 0 if the block type matches the expected type
1666 *          -ESTALE if it doesn't match
1667 *          or -ve errno if something went wrong while checking
1668 */
1669
1670int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1671{
1672	struct gfs2_rgrpd *rgd;
1673	struct gfs2_holder rgd_gh;
1674	int error = -EINVAL;
1675
1676	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
1677	if (!rgd)
1678		goto fail;
1679
1680	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1681	if (error)
1682		goto fail;
1683
1684	if (gfs2_get_block_type(rgd, no_addr) != type)
1685		error = -ESTALE;
1686
1687	gfs2_glock_dq_uninit(&rgd_gh);
1688fail:
1689	return error;
1690}
1691
1692/**
1693 * gfs2_rlist_add - add a RG to a list of RGs
1694 * @ip: the inode
1695 * @rlist: the list of resource groups
1696 * @block: the block
1697 *
1698 * Figure out what RG a block belongs to and add that RG to the list
1699 *
1700 * FIXME: Don't use NOFAIL
1701 *
1702 */
1703
1704void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
1705		    u64 block)
1706{
1707	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1708	struct gfs2_rgrpd *rgd;
1709	struct gfs2_rgrpd **tmp;
1710	unsigned int new_space;
1711	unsigned int x;
1712
1713	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1714		return;
1715
1716	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
1717		rgd = ip->i_rgd;
1718	else
1719		rgd = gfs2_blk2rgrpd(sdp, block, 1);
1720	if (!rgd) {
1721		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
1722		return;
1723	}
1724	ip->i_rgd = rgd;
1725
1726	for (x = 0; x < rlist->rl_rgrps; x++)
1727		if (rlist->rl_rgd[x] == rgd)
1728			return;
1729
1730	if (rlist->rl_rgrps == rlist->rl_space) {
1731		new_space = rlist->rl_space + 10;
1732
1733		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1734			      GFP_NOFS | __GFP_NOFAIL);
1735
1736		if (rlist->rl_rgd) {
1737			memcpy(tmp, rlist->rl_rgd,
1738			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1739			kfree(rlist->rl_rgd);
1740		}
1741
1742		rlist->rl_space = new_space;
1743		rlist->rl_rgd = tmp;
1744	}
1745
1746	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1747}
1748
1749/**
1750 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1751 *      and initialize an array of glock holders for them
1752 * @rlist: the list of resource groups
1753 * @state: the lock state to acquire the RG lock in
1754 *
1755 * FIXME: Don't use NOFAIL
1756 *
1757 */
1758
1759void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1760{
1761	unsigned int x;
1762
1763	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1764				GFP_NOFS | __GFP_NOFAIL);
1765	for (x = 0; x < rlist->rl_rgrps; x++)
1766		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1767				state, 0,
1768				&rlist->rl_ghs[x]);
1769}
1770
1771/**
1772 * gfs2_rlist_free - free a resource group list
1773 * @list: the list of resource groups
1774 *
1775 */
1776
1777void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1778{
1779	unsigned int x;
1780
1781	kfree(rlist->rl_rgd);
1782
1783	if (rlist->rl_ghs) {
1784		for (x = 0; x < rlist->rl_rgrps; x++)
1785			gfs2_holder_uninit(&rlist->rl_ghs[x]);
1786		kfree(rlist->rl_ghs);
 
1787	}
1788}
1789
v3.15
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/slab.h>
  13#include <linux/spinlock.h>
  14#include <linux/completion.h>
  15#include <linux/buffer_head.h>
  16#include <linux/fs.h>
  17#include <linux/gfs2_ondisk.h>
  18#include <linux/prefetch.h>
  19#include <linux/blkdev.h>
  20#include <linux/rbtree.h>
  21#include <linux/random.h>
  22
  23#include "gfs2.h"
  24#include "incore.h"
  25#include "glock.h"
  26#include "glops.h"
  27#include "lops.h"
  28#include "meta_io.h"
  29#include "quota.h"
  30#include "rgrp.h"
  31#include "super.h"
  32#include "trans.h"
  33#include "util.h"
  34#include "log.h"
  35#include "inode.h"
  36#include "trace_gfs2.h"
  37
  38#define BFITNOENT ((u32)~0)
  39#define NO_BLOCK ((u64)~0)
  40
  41#if BITS_PER_LONG == 32
  42#define LBITMASK   (0x55555555UL)
  43#define LBITSKIP55 (0x55555555UL)
  44#define LBITSKIP00 (0x00000000UL)
  45#else
  46#define LBITMASK   (0x5555555555555555UL)
  47#define LBITSKIP55 (0x5555555555555555UL)
  48#define LBITSKIP00 (0x0000000000000000UL)
  49#endif
  50
  51/*
  52 * These routines are used by the resource group routines (rgrp.c)
  53 * to keep track of block allocation.  Each block is represented by two
  54 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  55 *
  56 * 0 = Free
  57 * 1 = Used (not metadata)
  58 * 2 = Unlinked (still in use) inode
  59 * 3 = Used (metadata)
  60 */
  61
  62struct gfs2_extent {
  63	struct gfs2_rbm rbm;
  64	u32 len;
  65};
  66
  67static const char valid_change[16] = {
  68	        /* current */
  69	/* n */ 0, 1, 1, 1,
  70	/* e */ 1, 0, 0, 0,
  71	/* w */ 0, 0, 0, 1,
  72	        1, 0, 0, 0
  73};
  74
  75static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  76			 const struct gfs2_inode *ip, bool nowrap,
  77			 const struct gfs2_alloc_parms *ap);
  78
  79
  80/**
  81 * gfs2_setbit - Set a bit in the bitmaps
  82 * @rbm: The position of the bit to set
  83 * @do_clone: Also set the clone bitmap, if it exists
 
 
  84 * @new_state: the new state of the block
  85 *
  86 */
  87
  88static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
 
  89			       unsigned char new_state)
  90{
  91	unsigned char *byte1, *byte2, *end, cur_state;
  92	struct gfs2_bitmap *bi = rbm_bi(rbm);
  93	unsigned int buflen = bi->bi_len;
  94	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  95
  96	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
  97	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  98
  99	BUG_ON(byte1 >= end);
 100
 101	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
 102
 103	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 104		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
 105			rbm->offset, cur_state, new_state);
 106		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
 107			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
 108		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
 109			bi->bi_offset, bi->bi_len);
 
 
 
 110		dump_stack();
 111		gfs2_consist_rgrpd(rbm->rgd);
 112		return;
 113	}
 114	*byte1 ^= (cur_state ^ new_state) << bit;
 115
 116	if (do_clone && bi->bi_clone) {
 117		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 118		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 119		*byte2 ^= (cur_state ^ new_state) << bit;
 120	}
 121}
 122
 123/**
 124 * gfs2_testbit - test a bit in the bitmaps
 125 * @rbm: The bit to test
 
 
 
 126 *
 127 * Returns: The two bit block state of the requested bit
 128 */
 129
 130static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
 
 
 131{
 132	struct gfs2_bitmap *bi = rbm_bi(rbm);
 133	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
 134	const u8 *byte;
 135	unsigned int bit;
 136
 137	byte = buffer + (rbm->offset / GFS2_NBBY);
 138	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 
 
 
 139
 140	return (*byte >> bit) & GFS2_BIT_MASK;
 
 
 141}
 142
 143/**
 144 * gfs2_bit_search
 145 * @ptr: Pointer to bitmap data
 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 147 * @state: The state we are searching for
 148 *
 149 * We xor the bitmap data with a patter which is the bitwise opposite
 150 * of what we are looking for, this gives rise to a pattern of ones
 151 * wherever there is a match. Since we have two bits per entry, we
 152 * take this pattern, shift it down by one place and then and it with
 153 * the original. All the even bit positions (0,2,4, etc) then represent
 154 * successful matches, so we mask with 0x55555..... to remove the unwanted
 155 * odd bit positions.
 156 *
 157 * This allows searching of a whole u64 at once (32 blocks) with a
 158 * single test (on 64 bit arches).
 159 */
 160
 161static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 162{
 163	u64 tmp;
 164	static const u64 search[] = {
 165		[0] = 0xffffffffffffffffULL,
 166		[1] = 0xaaaaaaaaaaaaaaaaULL,
 167		[2] = 0x5555555555555555ULL,
 168		[3] = 0x0000000000000000ULL,
 169	};
 170	tmp = le64_to_cpu(*ptr) ^ search[state];
 171	tmp &= (tmp >> 1);
 172	tmp &= mask;
 173	return tmp;
 174}
 175
 176/**
 177 * rs_cmp - multi-block reservation range compare
 178 * @blk: absolute file system block number of the new reservation
 179 * @len: number of blocks in the new reservation
 180 * @rs: existing reservation to compare against
 181 *
 182 * returns: 1 if the block range is beyond the reach of the reservation
 183 *         -1 if the block range is before the start of the reservation
 184 *          0 if the block range overlaps with the reservation
 185 */
 186static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 187{
 188	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 189
 190	if (blk >= startblk + rs->rs_free)
 191		return 1;
 192	if (blk + len - 1 < startblk)
 193		return -1;
 194	return 0;
 195}
 196
 197/**
 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 199 *       a block in a given allocation state.
 200 * @buf: the buffer that holds the bitmaps
 201 * @len: the length (in bytes) of the buffer
 202 * @goal: start search at this block's bit-pair (within @buffer)
 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 204 *
 205 * Scope of @goal and returned block number is only within this bitmap buffer,
 206 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 207 * beginning of a bitmap block buffer, skipping any header structures, but
 208 * headers are always a multiple of 64 bits long so that the buffer is
 209 * always aligned to a 64 bit boundary.
 210 *
 211 * The size of the buffer is in bytes, but is it assumed that it is
 212 * always ok to read a complete multiple of 64 bits at the end
 213 * of the block in case the end is no aligned to a natural boundary.
 214 *
 215 * Return: the block number (bitmap buffer scope) that was found
 216 */
 217
 218static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 219		       u32 goal, u8 state)
 220{
 221	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 222	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 223	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 224	u64 tmp;
 225	u64 mask = 0x5555555555555555ULL;
 226	u32 bit;
 227
 
 
 228	/* Mask off bits we don't care about at the start of the search */
 229	mask <<= spoint;
 230	tmp = gfs2_bit_search(ptr, mask, state);
 231	ptr++;
 232	while(tmp == 0 && ptr < end) {
 233		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 234		ptr++;
 235	}
 236	/* Mask off any bits which are more than len bytes from the start */
 237	if (ptr == end && (len & (sizeof(u64) - 1)))
 238		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 239	/* Didn't find anything, so return */
 240	if (tmp == 0)
 241		return BFITNOENT;
 242	ptr--;
 243	bit = __ffs64(tmp);
 244	bit /= 2;	/* two bits per entry in the bitmap */
 245	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 246}
 247
 248/**
 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 250 * @rbm: The rbm with rgd already set correctly
 251 * @block: The block number (filesystem relative)
 252 *
 253 * This sets the bi and offset members of an rbm based on a
 254 * resource group and a filesystem relative block number. The
 255 * resource group must be set in the rbm on entry, the bi and
 256 * offset members will be set by this function.
 257 *
 258 * Returns: 0 on success, or an error code
 259 */
 260
 261static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 262{
 263	u64 rblock = block - rbm->rgd->rd_data0;
 264
 265	if (WARN_ON_ONCE(rblock > UINT_MAX))
 266		return -EINVAL;
 267	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
 268		return -E2BIG;
 269
 270	rbm->bii = 0;
 271	rbm->offset = (u32)(rblock);
 272	/* Check if the block is within the first block */
 273	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 274		return 0;
 275
 276	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 277	rbm->offset += (sizeof(struct gfs2_rgrp) -
 278			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 279	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 280	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 281	return 0;
 282}
 283
 284/**
 285 * gfs2_rbm_incr - increment an rbm structure
 286 * @rbm: The rbm with rgd already set correctly
 287 *
 288 * This function takes an existing rbm structure and increments it to the next
 289 * viable block offset.
 290 *
 291 * Returns: If incrementing the offset would cause the rbm to go past the
 292 *          end of the rgrp, true is returned, otherwise false.
 293 *
 294 */
 295
 296static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
 297{
 298	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
 299		rbm->offset++;
 300		return false;
 301	}
 302	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
 303		return true;
 304
 305	rbm->offset = 0;
 306	rbm->bii++;
 307	return false;
 308}
 309
 310/**
 311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 312 * @rbm: Position to search (value/result)
 313 * @n_unaligned: Number of unaligned blocks to check
 314 * @len: Decremented for each block found (terminate on zero)
 315 *
 316 * Returns: true if a non-free block is encountered
 317 */
 318
 319static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 320{
 321	u32 n;
 322	u8 res;
 323
 324	for (n = 0; n < n_unaligned; n++) {
 325		res = gfs2_testbit(rbm);
 326		if (res != GFS2_BLKST_FREE)
 327			return true;
 328		(*len)--;
 329		if (*len == 0)
 330			return true;
 331		if (gfs2_rbm_incr(rbm))
 332			return true;
 333	}
 334
 335	return false;
 336}
 337
 338/**
 339 * gfs2_free_extlen - Return extent length of free blocks
 340 * @rbm: Starting position
 341 * @len: Max length to check
 342 *
 343 * Starting at the block specified by the rbm, see how many free blocks
 344 * there are, not reading more than len blocks ahead. This can be done
 345 * using memchr_inv when the blocks are byte aligned, but has to be done
 346 * on a block by block basis in case of unaligned blocks. Also this
 347 * function can cope with bitmap boundaries (although it must stop on
 348 * a resource group boundary)
 349 *
 350 * Returns: Number of free blocks in the extent
 351 */
 352
 353static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 354{
 355	struct gfs2_rbm rbm = *rrbm;
 356	u32 n_unaligned = rbm.offset & 3;
 357	u32 size = len;
 358	u32 bytes;
 359	u32 chunk_size;
 360	u8 *ptr, *start, *end;
 361	u64 block;
 362	struct gfs2_bitmap *bi;
 363
 364	if (n_unaligned &&
 365	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 366		goto out;
 367
 368	n_unaligned = len & 3;
 369	/* Start is now byte aligned */
 370	while (len > 3) {
 371		bi = rbm_bi(&rbm);
 372		start = bi->bi_bh->b_data;
 373		if (bi->bi_clone)
 374			start = bi->bi_clone;
 375		end = start + bi->bi_bh->b_size;
 376		start += bi->bi_offset;
 377		BUG_ON(rbm.offset & 3);
 378		start += (rbm.offset / GFS2_NBBY);
 379		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 380		ptr = memchr_inv(start, 0, bytes);
 381		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 382		chunk_size *= GFS2_NBBY;
 383		BUG_ON(len < chunk_size);
 384		len -= chunk_size;
 385		block = gfs2_rbm_to_block(&rbm);
 386		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 387			n_unaligned = 0;
 388			break;
 389		}
 390		if (ptr) {
 391			n_unaligned = 3;
 392			break;
 393		}
 394		n_unaligned = len & 3;
 395	}
 396
 397	/* Deal with any bits left over at the end */
 398	if (n_unaligned)
 399		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 400out:
 401	return size - len;
 402}
 403
 404/**
 405 * gfs2_bitcount - count the number of bits in a certain state
 406 * @rgd: the resource group descriptor
 407 * @buffer: the buffer that holds the bitmaps
 408 * @buflen: the length (in bytes) of the buffer
 409 * @state: the state of the block we're looking for
 410 *
 411 * Returns: The number of bits
 412 */
 413
 414static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 415			 unsigned int buflen, u8 state)
 416{
 417	const u8 *byte = buffer;
 418	const u8 *end = buffer + buflen;
 419	const u8 state1 = state << 2;
 420	const u8 state2 = state << 4;
 421	const u8 state3 = state << 6;
 422	u32 count = 0;
 423
 424	for (; byte < end; byte++) {
 425		if (((*byte) & 0x03) == state)
 426			count++;
 427		if (((*byte) & 0x0C) == state1)
 428			count++;
 429		if (((*byte) & 0x30) == state2)
 430			count++;
 431		if (((*byte) & 0xC0) == state3)
 432			count++;
 433	}
 434
 435	return count;
 436}
 437
 438/**
 439 * gfs2_rgrp_verify - Verify that a resource group is consistent
 440 * @rgd: the rgrp
 441 *
 442 */
 443
 444void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 445{
 446	struct gfs2_sbd *sdp = rgd->rd_sbd;
 447	struct gfs2_bitmap *bi = NULL;
 448	u32 length = rgd->rd_length;
 449	u32 count[4], tmp;
 450	int buf, x;
 451
 452	memset(count, 0, 4 * sizeof(u32));
 453
 454	/* Count # blocks in each of 4 possible allocation states */
 455	for (buf = 0; buf < length; buf++) {
 456		bi = rgd->rd_bits + buf;
 457		for (x = 0; x < 4; x++)
 458			count[x] += gfs2_bitcount(rgd,
 459						  bi->bi_bh->b_data +
 460						  bi->bi_offset,
 461						  bi->bi_len, x);
 462	}
 463
 464	if (count[0] != rgd->rd_free) {
 465		if (gfs2_consist_rgrpd(rgd))
 466			fs_err(sdp, "free data mismatch:  %u != %u\n",
 467			       count[0], rgd->rd_free);
 468		return;
 469	}
 470
 471	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 472	if (count[1] != tmp) {
 473		if (gfs2_consist_rgrpd(rgd))
 474			fs_err(sdp, "used data mismatch:  %u != %u\n",
 475			       count[1], tmp);
 476		return;
 477	}
 478
 479	if (count[2] + count[3] != rgd->rd_dinodes) {
 480		if (gfs2_consist_rgrpd(rgd))
 481			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 482			       count[2] + count[3], rgd->rd_dinodes);
 483		return;
 484	}
 485}
 486
 487static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 488{
 489	u64 first = rgd->rd_data0;
 490	u64 last = first + rgd->rd_data;
 491	return first <= block && block < last;
 492}
 493
 494/**
 495 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 496 * @sdp: The GFS2 superblock
 497 * @blk: The data block number
 498 * @exact: True if this needs to be an exact match
 499 *
 500 * Returns: The resource group, or NULL if not found
 501 */
 502
 503struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 504{
 505	struct rb_node *n, *next;
 506	struct gfs2_rgrpd *cur;
 507
 508	spin_lock(&sdp->sd_rindex_spin);
 509	n = sdp->sd_rindex_tree.rb_node;
 510	while (n) {
 511		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 512		next = NULL;
 513		if (blk < cur->rd_addr)
 514			next = n->rb_left;
 515		else if (blk >= cur->rd_data0 + cur->rd_data)
 516			next = n->rb_right;
 517		if (next == NULL) {
 518			spin_unlock(&sdp->sd_rindex_spin);
 519			if (exact) {
 520				if (blk < cur->rd_addr)
 521					return NULL;
 522				if (blk >= cur->rd_data0 + cur->rd_data)
 523					return NULL;
 524			}
 525			return cur;
 526		}
 527		n = next;
 528	}
 529	spin_unlock(&sdp->sd_rindex_spin);
 530
 531	return NULL;
 532}
 533
 534/**
 535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 536 * @sdp: The GFS2 superblock
 537 *
 538 * Returns: The first rgrp in the filesystem
 539 */
 540
 541struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 542{
 543	const struct rb_node *n;
 544	struct gfs2_rgrpd *rgd;
 545
 546	spin_lock(&sdp->sd_rindex_spin);
 547	n = rb_first(&sdp->sd_rindex_tree);
 548	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 549	spin_unlock(&sdp->sd_rindex_spin);
 550
 551	return rgd;
 552}
 553
 554/**
 555 * gfs2_rgrpd_get_next - get the next RG
 556 * @rgd: the resource group descriptor
 557 *
 558 * Returns: The next rgrp
 559 */
 560
 561struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 562{
 563	struct gfs2_sbd *sdp = rgd->rd_sbd;
 564	const struct rb_node *n;
 565
 566	spin_lock(&sdp->sd_rindex_spin);
 567	n = rb_next(&rgd->rd_node);
 568	if (n == NULL)
 569		n = rb_first(&sdp->sd_rindex_tree);
 570
 571	if (unlikely(&rgd->rd_node == n)) {
 572		spin_unlock(&sdp->sd_rindex_spin);
 573		return NULL;
 574	}
 575	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 576	spin_unlock(&sdp->sd_rindex_spin);
 577	return rgd;
 578}
 579
 580void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 581{
 582	int x;
 583
 584	for (x = 0; x < rgd->rd_length; x++) {
 585		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 586		kfree(bi->bi_clone);
 587		bi->bi_clone = NULL;
 588	}
 589}
 590
 591/**
 592 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
 593 * @ip: the inode for this reservation
 594 */
 595int gfs2_rs_alloc(struct gfs2_inode *ip)
 596{
 597	int error = 0;
 598
 599	down_write(&ip->i_rw_mutex);
 600	if (ip->i_res)
 601		goto out;
 602
 603	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
 604	if (!ip->i_res) {
 605		error = -ENOMEM;
 606		goto out;
 607	}
 608
 609	RB_CLEAR_NODE(&ip->i_res->rs_node);
 610out:
 611	up_write(&ip->i_rw_mutex);
 612	return error;
 613}
 614
 615static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
 616{
 617	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
 618		       (unsigned long long)rs->rs_inum,
 619		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 620		       rs->rs_rbm.offset, rs->rs_free);
 621}
 622
 623/**
 624 * __rs_deltree - remove a multi-block reservation from the rgd tree
 625 * @rs: The reservation to remove
 626 *
 627 */
 628static void __rs_deltree(struct gfs2_blkreserv *rs)
 629{
 630	struct gfs2_rgrpd *rgd;
 631
 632	if (!gfs2_rs_active(rs))
 633		return;
 634
 635	rgd = rs->rs_rbm.rgd;
 636	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 637	rb_erase(&rs->rs_node, &rgd->rd_rstree);
 638	RB_CLEAR_NODE(&rs->rs_node);
 639
 640	if (rs->rs_free) {
 641		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
 642
 643		/* return reserved blocks to the rgrp */
 644		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 645		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 646		/* The rgrp extent failure point is likely not to increase;
 647		   it will only do so if the freed blocks are somehow
 648		   contiguous with a span of free blocks that follows. Still,
 649		   it will force the number to be recalculated later. */
 650		rgd->rd_extfail_pt += rs->rs_free;
 651		rs->rs_free = 0;
 652		clear_bit(GBF_FULL, &bi->bi_flags);
 653	}
 654}
 655
 656/**
 657 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 658 * @rs: The reservation to remove
 659 *
 660 */
 661void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 662{
 663	struct gfs2_rgrpd *rgd;
 664
 665	rgd = rs->rs_rbm.rgd;
 666	if (rgd) {
 667		spin_lock(&rgd->rd_rsspin);
 668		__rs_deltree(rs);
 669		spin_unlock(&rgd->rd_rsspin);
 670	}
 671}
 672
 673/**
 674 * gfs2_rs_delete - delete a multi-block reservation
 675 * @ip: The inode for this reservation
 676 * @wcount: The inode's write count, or NULL
 677 *
 678 */
 679void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
 680{
 681	down_write(&ip->i_rw_mutex);
 682	if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) {
 683		gfs2_rs_deltree(ip->i_res);
 684		BUG_ON(ip->i_res->rs_free);
 685		kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
 686		ip->i_res = NULL;
 687	}
 688	up_write(&ip->i_rw_mutex);
 689}
 690
 691/**
 692 * return_all_reservations - return all reserved blocks back to the rgrp.
 693 * @rgd: the rgrp that needs its space back
 694 *
 695 * We previously reserved a bunch of blocks for allocation. Now we need to
 696 * give them back. This leave the reservation structures in tact, but removes
 697 * all of their corresponding "no-fly zones".
 698 */
 699static void return_all_reservations(struct gfs2_rgrpd *rgd)
 700{
 701	struct rb_node *n;
 702	struct gfs2_blkreserv *rs;
 703
 704	spin_lock(&rgd->rd_rsspin);
 705	while ((n = rb_first(&rgd->rd_rstree))) {
 706		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 707		__rs_deltree(rs);
 708	}
 709	spin_unlock(&rgd->rd_rsspin);
 710}
 711
 712void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 713{
 714	struct rb_node *n;
 715	struct gfs2_rgrpd *rgd;
 716	struct gfs2_glock *gl;
 717
 718	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 719		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 720		gl = rgd->rd_gl;
 721
 722		rb_erase(n, &sdp->sd_rindex_tree);
 723
 724		if (gl) {
 725			spin_lock(&gl->gl_spin);
 726			gl->gl_object = NULL;
 727			spin_unlock(&gl->gl_spin);
 728			gfs2_glock_add_to_lru(gl);
 729			gfs2_glock_put(gl);
 730		}
 731
 732		gfs2_free_clones(rgd);
 733		kfree(rgd->rd_bits);
 734		return_all_reservations(rgd);
 735		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 736	}
 737}
 738
 739static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 740{
 741	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 742	pr_info("ri_length = %u\n", rgd->rd_length);
 743	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 744	pr_info("ri_data = %u\n", rgd->rd_data);
 745	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
 746}
 747
 748/**
 749 * gfs2_compute_bitstructs - Compute the bitmap sizes
 750 * @rgd: The resource group descriptor
 751 *
 752 * Calculates bitmap descriptors, one for each block that contains bitmap data
 753 *
 754 * Returns: errno
 755 */
 756
 757static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 758{
 759	struct gfs2_sbd *sdp = rgd->rd_sbd;
 760	struct gfs2_bitmap *bi;
 761	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 762	u32 bytes_left, bytes;
 763	int x;
 764
 765	if (!length)
 766		return -EINVAL;
 767
 768	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 769	if (!rgd->rd_bits)
 770		return -ENOMEM;
 771
 772	bytes_left = rgd->rd_bitbytes;
 773
 774	for (x = 0; x < length; x++) {
 775		bi = rgd->rd_bits + x;
 776
 777		bi->bi_flags = 0;
 778		/* small rgrp; bitmap stored completely in header block */
 779		if (length == 1) {
 780			bytes = bytes_left;
 781			bi->bi_offset = sizeof(struct gfs2_rgrp);
 782			bi->bi_start = 0;
 783			bi->bi_len = bytes;
 784			bi->bi_blocks = bytes * GFS2_NBBY;
 785		/* header block */
 786		} else if (x == 0) {
 787			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 788			bi->bi_offset = sizeof(struct gfs2_rgrp);
 789			bi->bi_start = 0;
 790			bi->bi_len = bytes;
 791			bi->bi_blocks = bytes * GFS2_NBBY;
 792		/* last block */
 793		} else if (x + 1 == length) {
 794			bytes = bytes_left;
 795			bi->bi_offset = sizeof(struct gfs2_meta_header);
 796			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 797			bi->bi_len = bytes;
 798			bi->bi_blocks = bytes * GFS2_NBBY;
 799		/* other blocks */
 800		} else {
 801			bytes = sdp->sd_sb.sb_bsize -
 802				sizeof(struct gfs2_meta_header);
 803			bi->bi_offset = sizeof(struct gfs2_meta_header);
 804			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 805			bi->bi_len = bytes;
 806			bi->bi_blocks = bytes * GFS2_NBBY;
 807		}
 808
 809		bytes_left -= bytes;
 810	}
 811
 812	if (bytes_left) {
 813		gfs2_consist_rgrpd(rgd);
 814		return -EIO;
 815	}
 816	bi = rgd->rd_bits + (length - 1);
 817	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 818		if (gfs2_consist_rgrpd(rgd)) {
 819			gfs2_rindex_print(rgd);
 820			fs_err(sdp, "start=%u len=%u offset=%u\n",
 821			       bi->bi_start, bi->bi_len, bi->bi_offset);
 822		}
 823		return -EIO;
 824	}
 825
 826	return 0;
 827}
 828
 829/**
 830 * gfs2_ri_total - Total up the file system space, according to the rindex.
 831 * @sdp: the filesystem
 832 *
 833 */
 834u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 835{
 836	u64 total_data = 0;	
 837	struct inode *inode = sdp->sd_rindex;
 838	struct gfs2_inode *ip = GFS2_I(inode);
 839	char buf[sizeof(struct gfs2_rindex)];
 840	int error, rgrps;
 841
 842	for (rgrps = 0;; rgrps++) {
 843		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 844
 845		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 846			break;
 847		error = gfs2_internal_read(ip, buf, &pos,
 848					   sizeof(struct gfs2_rindex));
 849		if (error != sizeof(struct gfs2_rindex))
 850			break;
 851		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 852	}
 853	return total_data;
 854}
 855
 856static int rgd_insert(struct gfs2_rgrpd *rgd)
 857{
 858	struct gfs2_sbd *sdp = rgd->rd_sbd;
 859	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 860
 861	/* Figure out where to put new node */
 862	while (*newn) {
 863		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 864						  rd_node);
 865
 866		parent = *newn;
 867		if (rgd->rd_addr < cur->rd_addr)
 868			newn = &((*newn)->rb_left);
 869		else if (rgd->rd_addr > cur->rd_addr)
 870			newn = &((*newn)->rb_right);
 871		else
 872			return -EEXIST;
 873	}
 874
 875	rb_link_node(&rgd->rd_node, parent, newn);
 876	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 877	sdp->sd_rgrps++;
 878	return 0;
 879}
 880
 881/**
 882 * read_rindex_entry - Pull in a new resource index entry from the disk
 883 * @ip: Pointer to the rindex inode
 884 *
 885 * Returns: 0 on success, > 0 on EOF, error code otherwise
 886 */
 887
 888static int read_rindex_entry(struct gfs2_inode *ip)
 889{
 890	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 891	const unsigned bsize = sdp->sd_sb.sb_bsize;
 892	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 893	struct gfs2_rindex buf;
 894	int error;
 895	struct gfs2_rgrpd *rgd;
 896
 897	if (pos >= i_size_read(&ip->i_inode))
 898		return 1;
 899
 900	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 901				   sizeof(struct gfs2_rindex));
 902
 903	if (error != sizeof(struct gfs2_rindex))
 904		return (error == 0) ? 1 : error;
 905
 906	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 907	error = -ENOMEM;
 908	if (!rgd)
 909		return error;
 910
 911	rgd->rd_sbd = sdp;
 912	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 913	rgd->rd_length = be32_to_cpu(buf.ri_length);
 914	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 915	rgd->rd_data = be32_to_cpu(buf.ri_data);
 916	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 917	spin_lock_init(&rgd->rd_rsspin);
 918
 919	error = compute_bitstructs(rgd);
 920	if (error)
 921		goto fail;
 922
 923	error = gfs2_glock_get(sdp, rgd->rd_addr,
 924			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 925	if (error)
 926		goto fail;
 927
 928	rgd->rd_gl->gl_object = rgd;
 929	rgd->rd_gl->gl_vm.start = rgd->rd_addr * bsize;
 930	rgd->rd_gl->gl_vm.end = rgd->rd_gl->gl_vm.start + (rgd->rd_length * bsize) - 1;
 931	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 932	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
 933	if (rgd->rd_data > sdp->sd_max_rg_data)
 934		sdp->sd_max_rg_data = rgd->rd_data;
 935	spin_lock(&sdp->sd_rindex_spin);
 936	error = rgd_insert(rgd);
 937	spin_unlock(&sdp->sd_rindex_spin);
 938	if (!error)
 939		return 0;
 940
 941	error = 0; /* someone else read in the rgrp; free it and ignore it */
 942	gfs2_glock_put(rgd->rd_gl);
 943
 944fail:
 945	kfree(rgd->rd_bits);
 946	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 947	return error;
 948}
 949
 950/**
 951 * gfs2_ri_update - Pull in a new resource index from the disk
 952 * @ip: pointer to the rindex inode
 953 *
 954 * Returns: 0 on successful update, error code otherwise
 955 */
 956
 957static int gfs2_ri_update(struct gfs2_inode *ip)
 958{
 959	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 960	int error;
 961
 962	do {
 963		error = read_rindex_entry(ip);
 964	} while (error == 0);
 965
 966	if (error < 0)
 967		return error;
 968
 969	sdp->sd_rindex_uptodate = 1;
 970	return 0;
 971}
 972
 973/**
 974 * gfs2_rindex_update - Update the rindex if required
 975 * @sdp: The GFS2 superblock
 976 *
 977 * We grab a lock on the rindex inode to make sure that it doesn't
 978 * change whilst we are performing an operation. We keep this lock
 979 * for quite long periods of time compared to other locks. This
 980 * doesn't matter, since it is shared and it is very, very rarely
 981 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
 982 *
 983 * This makes sure that we're using the latest copy of the resource index
 984 * special file, which might have been updated if someone expanded the
 985 * filesystem (via gfs2_grow utility), which adds new resource groups.
 986 *
 987 * Returns: 0 on succeess, error code otherwise
 988 */
 989
 990int gfs2_rindex_update(struct gfs2_sbd *sdp)
 991{
 992	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
 993	struct gfs2_glock *gl = ip->i_gl;
 994	struct gfs2_holder ri_gh;
 995	int error = 0;
 996	int unlock_required = 0;
 997
 998	/* Read new copy from disk if we don't have the latest */
 999	if (!sdp->sd_rindex_uptodate) {
1000		if (!gfs2_glock_is_locked_by_me(gl)) {
1001			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1002			if (error)
1003				return error;
1004			unlock_required = 1;
1005		}
1006		if (!sdp->sd_rindex_uptodate)
1007			error = gfs2_ri_update(ip);
1008		if (unlock_required)
1009			gfs2_glock_dq_uninit(&ri_gh);
1010	}
1011
1012	return error;
1013}
1014
1015static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1016{
1017	const struct gfs2_rgrp *str = buf;
1018	u32 rg_flags;
1019
1020	rg_flags = be32_to_cpu(str->rg_flags);
1021	rg_flags &= ~GFS2_RDF_MASK;
1022	rgd->rd_flags &= GFS2_RDF_MASK;
1023	rgd->rd_flags |= rg_flags;
1024	rgd->rd_free = be32_to_cpu(str->rg_free);
1025	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1026	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1027}
1028
1029static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1030{
1031	struct gfs2_rgrp *str = buf;
1032
1033	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1034	str->rg_free = cpu_to_be32(rgd->rd_free);
1035	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1036	str->__pad = cpu_to_be32(0);
1037	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1038	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1039}
1040
1041static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1042{
1043	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1044	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1045
1046	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1047	    rgl->rl_dinodes != str->rg_dinodes ||
1048	    rgl->rl_igeneration != str->rg_igeneration)
1049		return 0;
1050	return 1;
1051}
1052
1053static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1054{
1055	const struct gfs2_rgrp *str = buf;
1056
1057	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1058	rgl->rl_flags = str->rg_flags;
1059	rgl->rl_free = str->rg_free;
1060	rgl->rl_dinodes = str->rg_dinodes;
1061	rgl->rl_igeneration = str->rg_igeneration;
1062	rgl->__pad = 0UL;
1063}
1064
1065static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1066{
1067	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1068	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1069	rgl->rl_unlinked = cpu_to_be32(unlinked);
1070}
1071
1072static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1073{
1074	struct gfs2_bitmap *bi;
1075	const u32 length = rgd->rd_length;
1076	const u8 *buffer = NULL;
1077	u32 i, goal, count = 0;
1078
1079	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1080		goal = 0;
1081		buffer = bi->bi_bh->b_data + bi->bi_offset;
1082		WARN_ON(!buffer_uptodate(bi->bi_bh));
1083		while (goal < bi->bi_len * GFS2_NBBY) {
1084			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1085					   GFS2_BLKST_UNLINKED);
1086			if (goal == BFITNOENT)
1087				break;
1088			count++;
1089			goal++;
1090		}
1091	}
1092
1093	return count;
1094}
1095
1096
1097/**
1098 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1099 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1100 *
1101 * Read in all of a Resource Group's header and bitmap blocks.
1102 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1103 *
1104 * Returns: errno
1105 */
1106
1107static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1108{
 
1109	struct gfs2_sbd *sdp = rgd->rd_sbd;
1110	struct gfs2_glock *gl = rgd->rd_gl;
1111	unsigned int length = rgd->rd_length;
1112	struct gfs2_bitmap *bi;
1113	unsigned int x, y;
1114	int error;
1115
1116	if (rgd->rd_bits[0].bi_bh != NULL)
1117		return 0;
1118
1119	for (x = 0; x < length; x++) {
1120		bi = rgd->rd_bits + x;
1121		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1122		if (error)
1123			goto fail;
1124	}
1125
1126	for (y = length; y--;) {
1127		bi = rgd->rd_bits + y;
1128		error = gfs2_meta_wait(sdp, bi->bi_bh);
1129		if (error)
1130			goto fail;
1131		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1132					      GFS2_METATYPE_RG)) {
1133			error = -EIO;
1134			goto fail;
1135		}
1136	}
1137
1138	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1139		for (x = 0; x < length; x++)
1140			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1141		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1142		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1143		rgd->rd_free_clone = rgd->rd_free;
1144		/* max out the rgrp allocation failure point */
1145		rgd->rd_extfail_pt = rgd->rd_free;
1146	}
1147	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1148		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1149		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1150				     rgd->rd_bits[0].bi_bh->b_data);
1151	}
1152	else if (sdp->sd_args.ar_rgrplvb) {
1153		if (!gfs2_rgrp_lvb_valid(rgd)){
1154			gfs2_consist_rgrpd(rgd);
1155			error = -EIO;
1156			goto fail;
1157		}
1158		if (rgd->rd_rgl->rl_unlinked == 0)
1159			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1160	}
 
1161	return 0;
1162
1163fail:
1164	while (x--) {
1165		bi = rgd->rd_bits + x;
1166		brelse(bi->bi_bh);
1167		bi->bi_bh = NULL;
1168		gfs2_assert_warn(sdp, !bi->bi_clone);
1169	}
1170
1171	return error;
1172}
1173
1174static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1175{
1176	u32 rl_flags;
1177
1178	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1179		return 0;
1180
1181	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1182		return gfs2_rgrp_bh_get(rgd);
1183
1184	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1185	rl_flags &= ~GFS2_RDF_MASK;
1186	rgd->rd_flags &= GFS2_RDF_MASK;
1187	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1188	if (rgd->rd_rgl->rl_unlinked == 0)
1189		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1190	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1191	rgd->rd_free_clone = rgd->rd_free;
1192	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1193	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1194	return 0;
1195}
1196
1197int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1198{
1199	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1200	struct gfs2_sbd *sdp = rgd->rd_sbd;
1201
1202	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1203		return 0;
1204	return gfs2_rgrp_bh_get(rgd);
1205}
1206
1207/**
1208 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1209 * @gh: The glock holder for the resource group
1210 *
1211 */
1212
1213void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1214{
1215	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1216	int x, length = rgd->rd_length;
1217
1218	for (x = 0; x < length; x++) {
1219		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1220		if (bi->bi_bh) {
1221			brelse(bi->bi_bh);
1222			bi->bi_bh = NULL;
1223		}
1224	}
1225
1226}
1227
1228int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1229			     struct buffer_head *bh,
1230			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1231{
1232	struct super_block *sb = sdp->sd_vfs;
 
 
 
1233	u64 blk;
1234	sector_t start = 0;
1235	sector_t nr_blks = 0;
1236	int rv;
1237	unsigned int x;
1238	u32 trimmed = 0;
1239	u8 diff;
1240
1241	for (x = 0; x < bi->bi_len; x++) {
1242		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1243		clone += bi->bi_offset;
1244		clone += x;
1245		if (bh) {
1246			const u8 *orig = bh->b_data + bi->bi_offset + x;
1247			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1248		} else {
1249			diff = ~(*clone | (*clone >> 1));
1250		}
1251		diff &= 0x55;
1252		if (diff == 0)
1253			continue;
1254		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 
1255		while(diff) {
1256			if (diff & 1) {
1257				if (nr_blks == 0)
1258					goto start_new_extent;
1259				if ((start + nr_blks) != blk) {
1260					if (nr_blks >= minlen) {
1261						rv = sb_issue_discard(sb,
1262							start, nr_blks,
1263							GFP_NOFS, 0);
1264						if (rv)
1265							goto fail;
1266						trimmed += nr_blks;
1267					}
1268					nr_blks = 0;
1269start_new_extent:
1270					start = blk;
1271				}
1272				nr_blks++;
1273			}
1274			diff >>= 2;
1275			blk++;
1276		}
1277	}
1278	if (nr_blks >= minlen) {
1279		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1280		if (rv)
1281			goto fail;
1282		trimmed += nr_blks;
1283	}
1284	if (ptrimmed)
1285		*ptrimmed = trimmed;
1286	return 0;
1287
1288fail:
1289	if (sdp->sd_args.ar_discard)
1290		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1291	sdp->sd_args.ar_discard = 0;
1292	return -EIO;
1293}
1294
1295/**
1296 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1297 * @filp: Any file on the filesystem
1298 * @argp: Pointer to the arguments (also used to pass result)
1299 *
1300 * Returns: 0 on success, otherwise error code
1301 */
1302
1303int gfs2_fitrim(struct file *filp, void __user *argp)
1304{
1305	struct inode *inode = file_inode(filp);
1306	struct gfs2_sbd *sdp = GFS2_SB(inode);
1307	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1308	struct buffer_head *bh;
1309	struct gfs2_rgrpd *rgd;
1310	struct gfs2_rgrpd *rgd_end;
1311	struct gfs2_holder gh;
1312	struct fstrim_range r;
1313	int ret = 0;
1314	u64 amt;
1315	u64 trimmed = 0;
1316	u64 start, end, minlen;
1317	unsigned int x;
1318	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1319
1320	if (!capable(CAP_SYS_ADMIN))
1321		return -EPERM;
1322
1323	if (!blk_queue_discard(q))
1324		return -EOPNOTSUPP;
1325
1326	if (copy_from_user(&r, argp, sizeof(r)))
 
 
 
 
1327		return -EFAULT;
1328
1329	ret = gfs2_rindex_update(sdp);
1330	if (ret)
1331		return ret;
1332
1333	start = r.start >> bs_shift;
1334	end = start + (r.len >> bs_shift);
1335	minlen = max_t(u64, r.minlen,
1336		       q->limits.discard_granularity) >> bs_shift;
1337
1338	if (end <= start || minlen > sdp->sd_max_rg_data)
1339		return -EINVAL;
1340
1341	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1342	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1343
1344	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1345	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1346		return -EINVAL; /* start is beyond the end of the fs */
1347
1348	while (1) {
1349
1350		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1351		if (ret)
1352			goto out;
1353
1354		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1355			/* Trim each bitmap in the rgrp */
1356			for (x = 0; x < rgd->rd_length; x++) {
1357				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1358				ret = gfs2_rgrp_send_discards(sdp,
1359						rgd->rd_data0, NULL, bi, minlen,
1360						&amt);
1361				if (ret) {
1362					gfs2_glock_dq_uninit(&gh);
1363					goto out;
1364				}
1365				trimmed += amt;
1366			}
1367
1368			/* Mark rgrp as having been trimmed */
1369			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1370			if (ret == 0) {
1371				bh = rgd->rd_bits[0].bi_bh;
1372				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1373				gfs2_trans_add_meta(rgd->rd_gl, bh);
1374				gfs2_rgrp_out(rgd, bh->b_data);
1375				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1376				gfs2_trans_end(sdp);
1377			}
1378		}
1379		gfs2_glock_dq_uninit(&gh);
1380
1381		if (rgd == rgd_end)
1382			break;
1383
1384		rgd = gfs2_rgrpd_get_next(rgd);
1385	}
1386
1387out:
1388	r.len = trimmed << bs_shift;
1389	if (copy_to_user(argp, &r, sizeof(r)))
1390		return -EFAULT;
1391
1392	return ret;
1393}
1394
1395/**
1396 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1397 * @ip: the inode structure
1398 *
 
1399 */
1400static void rs_insert(struct gfs2_inode *ip)
 
1401{
1402	struct rb_node **newn, *parent = NULL;
1403	int rc;
1404	struct gfs2_blkreserv *rs = ip->i_res;
1405	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1406	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1407
1408	BUG_ON(gfs2_rs_active(rs));
1409
1410	spin_lock(&rgd->rd_rsspin);
1411	newn = &rgd->rd_rstree.rb_node;
1412	while (*newn) {
1413		struct gfs2_blkreserv *cur =
1414			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1415
1416		parent = *newn;
1417		rc = rs_cmp(fsblock, rs->rs_free, cur);
1418		if (rc > 0)
1419			newn = &((*newn)->rb_right);
1420		else if (rc < 0)
1421			newn = &((*newn)->rb_left);
1422		else {
1423			spin_unlock(&rgd->rd_rsspin);
1424			WARN_ON(1);
1425			return;
1426		}
1427	}
1428
1429	rb_link_node(&rs->rs_node, parent, newn);
1430	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1431
1432	/* Do our rgrp accounting for the reservation */
1433	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1434	spin_unlock(&rgd->rd_rsspin);
1435	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1436}
1437
1438/**
1439 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1440 * @rgd: the resource group descriptor
1441 * @ip: pointer to the inode for which we're reserving blocks
1442 * @ap: the allocation parameters
1443 *
 
1444 */
1445
1446static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1447			   const struct gfs2_alloc_parms *ap)
1448{
1449	struct gfs2_rbm rbm = { .rgd = rgd, };
1450	u64 goal;
1451	struct gfs2_blkreserv *rs = ip->i_res;
1452	u32 extlen;
1453	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1454	int ret;
1455	struct inode *inode = &ip->i_inode;
1456
1457	if (S_ISDIR(inode->i_mode))
1458		extlen = 1;
1459	else {
1460		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1461		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1462	}
1463	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1464		return;
1465
1466	/* Find bitmap block that contains bits for goal block */
1467	if (rgrp_contains_block(rgd, ip->i_goal))
1468		goal = ip->i_goal;
1469	else
1470		goal = rgd->rd_last_alloc + rgd->rd_data0;
1471
1472	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1473		return;
1474
1475	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap);
1476	if (ret == 0) {
1477		rs->rs_rbm = rbm;
1478		rs->rs_free = extlen;
1479		rs->rs_inum = ip->i_no_addr;
1480		rs_insert(ip);
1481	} else {
1482		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1483			rgd->rd_last_alloc = 0;
1484	}
1485}
1486
1487/**
1488 * gfs2_next_unreserved_block - Return next block that is not reserved
1489 * @rgd: The resource group
1490 * @block: The starting block
1491 * @length: The required length
1492 * @ip: Ignore any reservations for this inode
1493 *
1494 * If the block does not appear in any reservation, then return the
1495 * block number unchanged. If it does appear in the reservation, then
1496 * keep looking through the tree of reservations in order to find the
1497 * first block number which is not reserved.
1498 */
1499
1500static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1501				      u32 length,
1502				      const struct gfs2_inode *ip)
1503{
1504	struct gfs2_blkreserv *rs;
1505	struct rb_node *n;
1506	int rc;
1507
1508	spin_lock(&rgd->rd_rsspin);
1509	n = rgd->rd_rstree.rb_node;
1510	while (n) {
1511		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1512		rc = rs_cmp(block, length, rs);
1513		if (rc < 0)
1514			n = n->rb_left;
1515		else if (rc > 0)
1516			n = n->rb_right;
1517		else
1518			break;
1519	}
1520
1521	if (n) {
1522		while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1523			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1524			n = n->rb_right;
1525			if (n == NULL)
1526				break;
1527			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1528		}
1529	}
1530
1531	spin_unlock(&rgd->rd_rsspin);
1532	return block;
1533}
1534
1535/**
1536 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1537 * @rbm: The current position in the resource group
1538 * @ip: The inode for which we are searching for blocks
1539 * @minext: The minimum extent length
1540 * @maxext: A pointer to the maximum extent structure
1541 *
1542 * This checks the current position in the rgrp to see whether there is
1543 * a reservation covering this block. If not then this function is a
1544 * no-op. If there is, then the position is moved to the end of the
1545 * contiguous reservation(s) so that we are pointing at the first
1546 * non-reserved block.
1547 *
1548 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1549 */
1550
1551static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1552					     const struct gfs2_inode *ip,
1553					     u32 minext,
1554					     struct gfs2_extent *maxext)
1555{
1556	u64 block = gfs2_rbm_to_block(rbm);
1557	u32 extlen = 1;
1558	u64 nblock;
1559	int ret;
1560
1561	/*
1562	 * If we have a minimum extent length, then skip over any extent
1563	 * which is less than the min extent length in size.
1564	 */
1565	if (minext) {
1566		extlen = gfs2_free_extlen(rbm, minext);
1567		if (extlen <= maxext->len)
1568			goto fail;
1569	}
1570
1571	/*
1572	 * Check the extent which has been found against the reservations
1573	 * and skip if parts of it are already reserved
1574	 */
1575	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1576	if (nblock == block) {
1577		if (!minext || extlen >= minext)
1578			return 0;
1579
1580		if (extlen > maxext->len) {
1581			maxext->len = extlen;
1582			maxext->rbm = *rbm;
1583		}
1584fail:
1585		nblock = block + extlen;
1586	}
1587	ret = gfs2_rbm_from_block(rbm, nblock);
1588	if (ret < 0)
1589		return ret;
1590	return 1;
1591}
1592
1593/**
1594 * gfs2_rbm_find - Look for blocks of a particular state
1595 * @rbm: Value/result starting position and final position
1596 * @state: The state which we want to find
1597 * @minext: Pointer to the requested extent length (NULL for a single block)
1598 *          This is updated to be the actual reservation size.
1599 * @ip: If set, check for reservations
1600 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1601 *          around until we've reached the starting point.
1602 * @ap: the allocation parameters
1603 *
1604 * Side effects:
1605 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1606 *   has no free blocks in it.
1607 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1608 *   has come up short on a free block search.
1609 *
1610 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1611 */
1612
1613static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1614			 const struct gfs2_inode *ip, bool nowrap,
1615			 const struct gfs2_alloc_parms *ap)
1616{
1617	struct buffer_head *bh;
1618	int initial_bii;
1619	u32 initial_offset;
1620	int first_bii = rbm->bii;
1621	u32 first_offset = rbm->offset;
1622	u32 offset;
1623	u8 *buffer;
1624	int n = 0;
1625	int iters = rbm->rgd->rd_length;
1626	int ret;
1627	struct gfs2_bitmap *bi;
1628	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1629
1630	/* If we are not starting at the beginning of a bitmap, then we
1631	 * need to add one to the bitmap count to ensure that we search
1632	 * the starting bitmap twice.
1633	 */
1634	if (rbm->offset != 0)
1635		iters++;
1636
1637	while(1) {
1638		bi = rbm_bi(rbm);
1639		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1640		    (state == GFS2_BLKST_FREE))
1641			goto next_bitmap;
1642
1643		bh = bi->bi_bh;
1644		buffer = bh->b_data + bi->bi_offset;
1645		WARN_ON(!buffer_uptodate(bh));
1646		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1647			buffer = bi->bi_clone + bi->bi_offset;
1648		initial_offset = rbm->offset;
1649		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1650		if (offset == BFITNOENT)
1651			goto bitmap_full;
1652		rbm->offset = offset;
1653		if (ip == NULL)
1654			return 0;
1655
1656		initial_bii = rbm->bii;
1657		ret = gfs2_reservation_check_and_update(rbm, ip,
1658							minext ? *minext : 0,
1659							&maxext);
1660		if (ret == 0)
1661			return 0;
1662		if (ret > 0) {
1663			n += (rbm->bii - initial_bii);
1664			goto next_iter;
1665		}
1666		if (ret == -E2BIG) {
1667			rbm->bii = 0;
1668			rbm->offset = 0;
1669			n += (rbm->bii - initial_bii);
1670			goto res_covered_end_of_rgrp;
1671		}
1672		return ret;
1673
1674bitmap_full:	/* Mark bitmap as full and fall through */
1675		if ((state == GFS2_BLKST_FREE) && initial_offset == 0) {
1676			struct gfs2_bitmap *bi = rbm_bi(rbm);
1677			set_bit(GBF_FULL, &bi->bi_flags);
1678		}
1679
1680next_bitmap:	/* Find next bitmap in the rgrp */
1681		rbm->offset = 0;
1682		rbm->bii++;
1683		if (rbm->bii == rbm->rgd->rd_length)
1684			rbm->bii = 0;
1685res_covered_end_of_rgrp:
1686		if ((rbm->bii == 0) && nowrap)
1687			break;
1688		n++;
1689next_iter:
1690		if (n >= iters)
1691			break;
1692	}
1693
1694	if (minext == NULL || state != GFS2_BLKST_FREE)
1695		return -ENOSPC;
1696
1697	/* If the extent was too small, and it's smaller than the smallest
1698	   to have failed before, remember for future reference that it's
1699	   useless to search this rgrp again for this amount or more. */
1700	if ((first_offset == 0) && (first_bii == 0) &&
1701	    (*minext < rbm->rgd->rd_extfail_pt))
1702		rbm->rgd->rd_extfail_pt = *minext;
1703
1704	/* If the maximum extent we found is big enough to fulfill the
1705	   minimum requirements, use it anyway. */
1706	if (maxext.len) {
1707		*rbm = maxext.rbm;
1708		*minext = maxext.len;
1709		return 0;
1710	}
1711
1712	return -ENOSPC;
1713}
1714
1715/**
1716 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1717 * @rgd: The rgrp
1718 * @last_unlinked: block address of the last dinode we unlinked
1719 * @skip: block address we should explicitly not unlink
1720 *
1721 * Returns: 0 if no error
1722 *          The inode, if one has been found, in inode.
1723 */
1724
1725static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1726{
1727	u64 block;
 
1728	struct gfs2_sbd *sdp = rgd->rd_sbd;
1729	struct gfs2_glock *gl;
1730	struct gfs2_inode *ip;
1731	int error;
1732	int found = 0;
1733	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1734
1735	while (1) {
1736		down_write(&sdp->sd_log_flush_lock);
1737		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1738				      true, NULL);
1739		up_write(&sdp->sd_log_flush_lock);
1740		if (error == -ENOSPC)
1741			break;
1742		if (WARN_ON_ONCE(error))
1743			break;
1744
1745		block = gfs2_rbm_to_block(&rbm);
1746		if (gfs2_rbm_from_block(&rbm, block + 1))
1747			break;
1748		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
 
 
1749			continue;
1750		if (block == skip)
1751			continue;
1752		*last_unlinked = block;
1753
1754		error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1755		if (error)
1756			continue;
1757
1758		/* If the inode is already in cache, we can ignore it here
1759		 * because the existing inode disposal code will deal with
1760		 * it when all refs have gone away. Accessing gl_object like
1761		 * this is not safe in general. Here it is ok because we do
1762		 * not dereference the pointer, and we only need an approx
1763		 * answer to whether it is NULL or not.
1764		 */
1765		ip = gl->gl_object;
1766
1767		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1768			gfs2_glock_put(gl);
1769		else
1770			found++;
1771
1772		/* Limit reclaim to sensible number of tasks */
1773		if (found > NR_CPUS)
1774			return;
1775	}
1776
1777	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1778	return;
1779}
1780
1781/**
1782 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1783 * @rgd: The rgrp in question
1784 * @loops: An indication of how picky we can be (0=very, 1=less so)
1785 *
1786 * This function uses the recently added glock statistics in order to
1787 * figure out whether a parciular resource group is suffering from
1788 * contention from multiple nodes. This is done purely on the basis
1789 * of timings, since this is the only data we have to work with and
1790 * our aim here is to reject a resource group which is highly contended
1791 * but (very important) not to do this too often in order to ensure that
1792 * we do not land up introducing fragmentation by changing resource
1793 * groups when not actually required.
1794 *
1795 * The calculation is fairly simple, we want to know whether the SRTTB
1796 * (i.e. smoothed round trip time for blocking operations) to acquire
1797 * the lock for this rgrp's glock is significantly greater than the
1798 * time taken for resource groups on average. We introduce a margin in
1799 * the form of the variable @var which is computed as the sum of the two
1800 * respective variences, and multiplied by a factor depending on @loops
1801 * and whether we have a lot of data to base the decision on. This is
1802 * then tested against the square difference of the means in order to
1803 * decide whether the result is statistically significant or not.
1804 *
1805 * Returns: A boolean verdict on the congestion status
1806 */
1807
1808static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1809{
1810	const struct gfs2_glock *gl = rgd->rd_gl;
1811	const struct gfs2_sbd *sdp = gl->gl_sbd;
1812	struct gfs2_lkstats *st;
1813	s64 r_dcount, l_dcount;
1814	s64 r_srttb, l_srttb;
1815	s64 srttb_diff;
1816	s64 sqr_diff;
1817	s64 var;
1818
1819	preempt_disable();
1820	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1821	r_srttb = st->stats[GFS2_LKS_SRTTB];
1822	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1823	var = st->stats[GFS2_LKS_SRTTVARB] +
1824	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1825	preempt_enable();
1826
1827	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1828	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1829
1830	if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1831		return false;
1832
1833	srttb_diff = r_srttb - l_srttb;
1834	sqr_diff = srttb_diff * srttb_diff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1835
1836	var *= 2;
1837	if (l_dcount < 8 || r_dcount < 8)
1838		var *= 2;
1839	if (loops == 1)
1840		var *= 2;
1841
1842	return ((srttb_diff < 0) && (sqr_diff > var));
1843}
1844
1845/**
1846 * gfs2_rgrp_used_recently
1847 * @rs: The block reservation with the rgrp to test
1848 * @msecs: The time limit in milliseconds
1849 *
1850 * Returns: True if the rgrp glock has been used within the time limit
1851 */
1852static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1853				    u64 msecs)
1854{
1855	u64 tdiff;
1856
1857	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1858                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1859
1860	return tdiff > (msecs * 1000 * 1000);
1861}
1862
1863static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1864{
1865	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1866	u32 skip;
1867
1868	get_random_bytes(&skip, sizeof(skip));
1869	return skip % sdp->sd_rgrps;
1870}
1871
1872static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1873{
1874	struct gfs2_rgrpd *rgd = *pos;
1875	struct gfs2_sbd *sdp = rgd->rd_sbd;
1876
1877	rgd = gfs2_rgrpd_get_next(rgd);
1878	if (rgd == NULL)
1879		rgd = gfs2_rgrpd_get_first(sdp);
1880	*pos = rgd;
1881	if (rgd != begin) /* If we didn't wrap */
1882		return true;
1883	return false;
1884}
1885
1886/**
1887 * gfs2_inplace_reserve - Reserve space in the filesystem
1888 * @ip: the inode to reserve space for
1889 * @ap: the allocation parameters
1890 *
1891 * Returns: errno
1892 */
1893
1894int gfs2_inplace_reserve(struct gfs2_inode *ip, const struct gfs2_alloc_parms *ap)
1895{
1896	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1897	struct gfs2_rgrpd *begin = NULL;
1898	struct gfs2_blkreserv *rs = ip->i_res;
1899	int error = 0, rg_locked, flags = 0;
1900	u64 last_unlinked = NO_BLOCK;
1901	int loops = 0;
1902	u32 skip = 0;
1903
1904	if (sdp->sd_args.ar_rgrplvb)
1905		flags |= GL_SKIP;
1906	if (gfs2_assert_warn(sdp, ap->target))
1907		return -EINVAL;
1908	if (gfs2_rs_active(rs)) {
1909		begin = rs->rs_rbm.rgd;
1910	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1911		rs->rs_rbm.rgd = begin = ip->i_rgd;
1912	} else {
1913		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1914	}
1915	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1916		skip = gfs2_orlov_skip(ip);
1917	if (rs->rs_rbm.rgd == NULL)
1918		return -EBADSLT;
1919
1920	while (loops < 3) {
1921		rg_locked = 1;
 
 
 
 
1922
1923		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1924			rg_locked = 0;
1925			if (skip && skip--)
1926				goto next_rgrp;
1927			if (!gfs2_rs_active(rs) && (loops < 2) &&
1928			     gfs2_rgrp_used_recently(rs, 1000) &&
1929			     gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1930				goto next_rgrp;
1931			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1932						   LM_ST_EXCLUSIVE, flags,
1933						   &rs->rs_rgd_gh);
1934			if (unlikely(error))
1935				return error;
1936			if (!gfs2_rs_active(rs) && (loops < 2) &&
1937			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1938				goto skip_rgrp;
1939			if (sdp->sd_args.ar_rgrplvb) {
1940				error = update_rgrp_lvb(rs->rs_rbm.rgd);
1941				if (unlikely(error)) {
1942					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1943					return error;
1944				}
1945			}
1946		}
1947
1948		/* Skip unuseable resource groups */
1949		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
1950						 GFS2_RDF_ERROR)) ||
1951		    (ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
1952			goto skip_rgrp;
1953
1954		if (sdp->sd_args.ar_rgrplvb)
1955			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1956
1957		/* Get a reservation if we don't already have one */
1958		if (!gfs2_rs_active(rs))
1959			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
1960
1961		/* Skip rgrps when we can't get a reservation on first pass */
1962		if (!gfs2_rs_active(rs) && (loops < 1))
1963			goto check_rgrp;
1964
1965		/* If rgrp has enough free space, use it */
1966		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target) {
1967			ip->i_rgd = rs->rs_rbm.rgd;
1968			return 0;
1969		}
1970
1971check_rgrp:
1972		/* Check for unlinked inodes which can be reclaimed */
1973		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1974			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1975					ip->i_no_addr);
1976skip_rgrp:
1977		/* Drop reservation, if we couldn't use reserved rgrp */
1978		if (gfs2_rs_active(rs))
1979			gfs2_rs_deltree(rs);
1980
1981		/* Unlock rgrp if required */
1982		if (!rg_locked)
1983			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1984next_rgrp:
1985		/* Find the next rgrp, and continue looking */
1986		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1987			continue;
1988		if (skip)
1989			continue;
1990
1991		/* If we've scanned all the rgrps, but found no free blocks
1992		 * then this checks for some less likely conditions before
1993		 * trying again.
1994		 */
1995		loops++;
1996		/* Check that fs hasn't grown if writing to rindex */
1997		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1998			error = gfs2_ri_update(ip);
1999			if (error)
2000				return error;
 
2001		}
2002		/* Flushing the log may release space */
2003		if (loops == 2)
2004			gfs2_log_flush(sdp, NULL);
2005	}
2006
2007	return -ENOSPC;
 
 
 
2008}
2009
2010/**
2011 * gfs2_inplace_release - release an inplace reservation
2012 * @ip: the inode the reservation was taken out on
2013 *
2014 * Release a reservation made by gfs2_inplace_reserve().
2015 */
2016
2017void gfs2_inplace_release(struct gfs2_inode *ip)
2018{
2019	struct gfs2_blkreserv *rs = ip->i_res;
2020
2021	if (rs->rs_rgd_gh.gh_gl)
2022		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
 
2023}
2024
2025/**
2026 * gfs2_get_block_type - Check a block in a RG is of given type
2027 * @rgd: the resource group holding the block
2028 * @block: the block number
2029 *
2030 * Returns: The block type (GFS2_BLKST_*)
2031 */
2032
2033static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2034{
2035	struct gfs2_rbm rbm = { .rgd = rgd, };
2036	int ret;
 
 
 
 
 
 
 
 
 
 
 
2037
2038	ret = gfs2_rbm_from_block(&rbm, block);
2039	WARN_ON_ONCE(ret != 0);
2040
2041	return gfs2_testbit(&rbm);
 
 
 
2042}
2043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044
2045/**
2046 * gfs2_alloc_extent - allocate an extent from a given bitmap
2047 * @rbm: the resource group information
 
 
2048 * @dinode: TRUE if the first block we allocate is for a dinode
2049 * @n: The extent length (value/result)
2050 *
2051 * Add the bitmap buffer to the transaction.
2052 * Set the found bits to @new_state to change block's allocation state.
 
2053 */
2054static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2055			     unsigned int *n)
2056{
2057	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2058	const unsigned int elen = *n;
2059	u64 block;
2060	int ret;
2061
2062	*n = 1;
2063	block = gfs2_rbm_to_block(rbm);
2064	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2065	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2066	block++;
 
 
2067	while (*n < elen) {
2068		ret = gfs2_rbm_from_block(&pos, block);
2069		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
 
 
 
2070			break;
2071		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2072		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2073		(*n)++;
2074		block++;
2075	}
 
 
 
2076}
2077
2078/**
2079 * rgblk_free - Change alloc state of given block(s)
2080 * @sdp: the filesystem
2081 * @bstart: the start of a run of blocks to free
2082 * @blen: the length of the block run (all must lie within ONE RG!)
2083 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2084 *
2085 * Returns:  Resource group containing the block(s)
2086 */
2087
2088static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2089				     u32 blen, unsigned char new_state)
2090{
2091	struct gfs2_rbm rbm;
2092	struct gfs2_bitmap *bi;
 
 
2093
2094	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2095	if (!rbm.rgd) {
2096		if (gfs2_consist(sdp))
2097			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2098		return NULL;
2099	}
2100
 
 
 
 
2101	while (blen--) {
2102		gfs2_rbm_from_block(&rbm, bstart);
2103		bi = rbm_bi(&rbm);
2104		bstart++;
 
 
 
 
 
 
 
 
2105		if (!bi->bi_clone) {
2106			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2107					       GFP_NOFS | __GFP_NOFAIL);
2108			memcpy(bi->bi_clone + bi->bi_offset,
2109			       bi->bi_bh->b_data + bi->bi_offset, bi->bi_len);
 
2110		}
2111		gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2112		gfs2_setbit(&rbm, false, new_state);
2113	}
2114
2115	return rbm.rgd;
2116}
2117
2118/**
2119 * gfs2_rgrp_dump - print out an rgrp
2120 * @seq: The iterator
2121 * @gl: The glock in question
2122 *
2123 */
2124
2125void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2126{
2127	struct gfs2_rgrpd *rgd = gl->gl_object;
2128	struct gfs2_blkreserv *trs;
2129	const struct rb_node *n;
2130
2131	if (rgd == NULL)
2132		return;
2133	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2134		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2135		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2136		       rgd->rd_reserved, rgd->rd_extfail_pt);
2137	spin_lock(&rgd->rd_rsspin);
2138	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2139		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2140		dump_rs(seq, trs);
2141	}
2142	spin_unlock(&rgd->rd_rsspin);
2143}
2144
2145static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2146{
2147	struct gfs2_sbd *sdp = rgd->rd_sbd;
2148	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2149		(unsigned long long)rgd->rd_addr);
2150	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2151	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2152	rgd->rd_flags |= GFS2_RDF_ERROR;
2153}
2154
2155/**
2156 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2157 * @ip: The inode we have just allocated blocks for
2158 * @rbm: The start of the allocated blocks
2159 * @len: The extent length
2160 *
2161 * Adjusts a reservation after an allocation has taken place. If the
2162 * reservation does not match the allocation, or if it is now empty
2163 * then it is removed.
2164 */
2165
2166static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2167				    const struct gfs2_rbm *rbm, unsigned len)
2168{
2169	struct gfs2_blkreserv *rs = ip->i_res;
2170	struct gfs2_rgrpd *rgd = rbm->rgd;
2171	unsigned rlen;
2172	u64 block;
2173	int ret;
2174
2175	spin_lock(&rgd->rd_rsspin);
2176	if (gfs2_rs_active(rs)) {
2177		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2178			block = gfs2_rbm_to_block(rbm);
2179			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2180			rlen = min(rs->rs_free, len);
2181			rs->rs_free -= rlen;
2182			rgd->rd_reserved -= rlen;
2183			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2184			if (rs->rs_free && !ret)
2185				goto out;
2186		}
2187		__rs_deltree(rs);
2188	}
2189out:
2190	spin_unlock(&rgd->rd_rsspin);
2191}
2192
2193/**
2194 * gfs2_set_alloc_start - Set starting point for block allocation
2195 * @rbm: The rbm which will be set to the required location
2196 * @ip: The gfs2 inode
2197 * @dinode: Flag to say if allocation includes a new inode
2198 *
2199 * This sets the starting point from the reservation if one is active
2200 * otherwise it falls back to guessing a start point based on the
2201 * inode's goal block or the last allocation point in the rgrp.
2202 */
2203
2204static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2205				 const struct gfs2_inode *ip, bool dinode)
2206{
2207	u64 goal;
2208
2209	if (gfs2_rs_active(ip->i_res)) {
2210		*rbm = ip->i_res->rs_rbm;
2211		return;
2212	}
2213
2214	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2215		goal = ip->i_goal;
2216	else
2217		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2218
2219	gfs2_rbm_from_block(rbm, goal);
2220}
2221
2222/**
2223 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2224 * @ip: the inode to allocate the block for
2225 * @bn: Used to return the starting block number
2226 * @nblocks: requested number of blocks/extent length (value/result)
2227 * @dinode: 1 if we're allocating a dinode block, else 0
2228 * @generation: the generation number of the inode
2229 *
2230 * Returns: 0 or error
2231 */
2232
2233int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2234		      bool dinode, u64 *generation)
2235{
2236	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2237	struct buffer_head *dibh;
2238	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2239	unsigned int ndata;
 
2240	u64 block; /* block, within the file system scope */
2241	int error;
 
 
 
 
 
 
 
 
 
2242
2243	gfs2_set_alloc_start(&rbm, ip, dinode);
2244	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL);
 
 
2245
2246	if (error == -ENOSPC) {
2247		gfs2_set_alloc_start(&rbm, ip, dinode);
2248		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false,
2249				      NULL);
2250	}
2251
2252	/* Since all blocks are reserved in advance, this shouldn't happen */
2253	if (error) {
2254		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2255			(unsigned long long)ip->i_no_addr, error, *nblocks,
2256			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2257			rbm.rgd->rd_extfail_pt);
2258		goto rgrp_error;
2259	}
2260
2261	gfs2_alloc_extent(&rbm, dinode, nblocks);
2262	block = gfs2_rbm_to_block(&rbm);
2263	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2264	if (gfs2_rs_active(ip->i_res))
2265		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2266	ndata = *nblocks;
2267	if (dinode)
2268		ndata--;
2269
2270	if (!dinode) {
2271		ip->i_goal = block + ndata - 1;
2272		error = gfs2_meta_inode_buffer(ip, &dibh);
2273		if (error == 0) {
2274			struct gfs2_dinode *di =
2275				(struct gfs2_dinode *)dibh->b_data;
2276			gfs2_trans_add_meta(ip->i_gl, dibh);
2277			di->di_goal_meta = di->di_goal_data =
2278				cpu_to_be64(ip->i_goal);
2279			brelse(dibh);
2280		}
2281	}
2282	if (rbm.rgd->rd_free < *nblocks) {
2283		pr_warn("nblocks=%u\n", *nblocks);
2284		goto rgrp_error;
2285	}
2286
2287	rbm.rgd->rd_free -= *nblocks;
2288	if (dinode) {
2289		rbm.rgd->rd_dinodes++;
2290		*generation = rbm.rgd->rd_igeneration++;
2291		if (*generation == 0)
2292			*generation = rbm.rgd->rd_igeneration++;
2293	}
2294
2295	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2296	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2297	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2298
2299	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2300	if (dinode)
2301		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2302
2303	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
 
 
 
 
 
 
2304
2305	rbm.rgd->rd_free_clone -= *nblocks;
2306	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2307			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2308	*bn = block;
2309	return 0;
2310
2311rgrp_error:
2312	gfs2_rgrp_error(rbm.rgd);
2313	return -EIO;
2314}
2315
2316/**
2317 * __gfs2_free_blocks - free a contiguous run of block(s)
2318 * @ip: the inode these blocks are being freed from
2319 * @bstart: first block of a run of contiguous blocks
2320 * @blen: the length of the block run
2321 * @meta: 1 if the blocks represent metadata
2322 *
2323 */
2324
2325void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2326{
2327	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2328	struct gfs2_rgrpd *rgd;
2329
2330	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2331	if (!rgd)
2332		return;
2333	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2334	rgd->rd_free += blen;
2335	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2336	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2337	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2338	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2339
2340	/* Directories keep their data in the metadata address space */
2341	if (meta || ip->i_depth)
2342		gfs2_meta_wipe(ip, bstart, blen);
2343}
2344
2345/**
2346 * gfs2_free_meta - free a contiguous run of data block(s)
2347 * @ip: the inode these blocks are being freed from
2348 * @bstart: first block of a run of contiguous blocks
2349 * @blen: the length of the block run
2350 *
2351 */
2352
2353void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2354{
2355	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2356
2357	__gfs2_free_blocks(ip, bstart, blen, 1);
2358	gfs2_statfs_change(sdp, 0, +blen, 0);
2359	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2360}
2361
2362void gfs2_unlink_di(struct inode *inode)
2363{
2364	struct gfs2_inode *ip = GFS2_I(inode);
2365	struct gfs2_sbd *sdp = GFS2_SB(inode);
2366	struct gfs2_rgrpd *rgd;
2367	u64 blkno = ip->i_no_addr;
2368
2369	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2370	if (!rgd)
2371		return;
2372	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2373	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2374	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2375	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2376	update_rgrp_lvb_unlinked(rgd, 1);
2377}
2378
2379static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2380{
2381	struct gfs2_sbd *sdp = rgd->rd_sbd;
2382	struct gfs2_rgrpd *tmp_rgd;
2383
2384	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2385	if (!tmp_rgd)
2386		return;
2387	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2388
2389	if (!rgd->rd_dinodes)
2390		gfs2_consist_rgrpd(rgd);
2391	rgd->rd_dinodes--;
2392	rgd->rd_free++;
2393
2394	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2395	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2396	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2397	update_rgrp_lvb_unlinked(rgd, -1);
2398
2399	gfs2_statfs_change(sdp, 0, +1, -1);
2400}
2401
2402
2403void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2404{
2405	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2406	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2407	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2408	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2409}
2410
2411/**
2412 * gfs2_check_blk_type - Check the type of a block
2413 * @sdp: The superblock
2414 * @no_addr: The block number to check
2415 * @type: The block type we are looking for
2416 *
2417 * Returns: 0 if the block type matches the expected type
2418 *          -ESTALE if it doesn't match
2419 *          or -ve errno if something went wrong while checking
2420 */
2421
2422int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2423{
2424	struct gfs2_rgrpd *rgd;
2425	struct gfs2_holder rgd_gh;
2426	int error = -EINVAL;
2427
2428	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2429	if (!rgd)
2430		goto fail;
2431
2432	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2433	if (error)
2434		goto fail;
2435
2436	if (gfs2_get_block_type(rgd, no_addr) != type)
2437		error = -ESTALE;
2438
2439	gfs2_glock_dq_uninit(&rgd_gh);
2440fail:
2441	return error;
2442}
2443
2444/**
2445 * gfs2_rlist_add - add a RG to a list of RGs
2446 * @ip: the inode
2447 * @rlist: the list of resource groups
2448 * @block: the block
2449 *
2450 * Figure out what RG a block belongs to and add that RG to the list
2451 *
2452 * FIXME: Don't use NOFAIL
2453 *
2454 */
2455
2456void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2457		    u64 block)
2458{
2459	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2460	struct gfs2_rgrpd *rgd;
2461	struct gfs2_rgrpd **tmp;
2462	unsigned int new_space;
2463	unsigned int x;
2464
2465	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2466		return;
2467
2468	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2469		rgd = ip->i_rgd;
2470	else
2471		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2472	if (!rgd) {
2473		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2474		return;
2475	}
2476	ip->i_rgd = rgd;
2477
2478	for (x = 0; x < rlist->rl_rgrps; x++)
2479		if (rlist->rl_rgd[x] == rgd)
2480			return;
2481
2482	if (rlist->rl_rgrps == rlist->rl_space) {
2483		new_space = rlist->rl_space + 10;
2484
2485		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2486			      GFP_NOFS | __GFP_NOFAIL);
2487
2488		if (rlist->rl_rgd) {
2489			memcpy(tmp, rlist->rl_rgd,
2490			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2491			kfree(rlist->rl_rgd);
2492		}
2493
2494		rlist->rl_space = new_space;
2495		rlist->rl_rgd = tmp;
2496	}
2497
2498	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2499}
2500
2501/**
2502 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2503 *      and initialize an array of glock holders for them
2504 * @rlist: the list of resource groups
2505 * @state: the lock state to acquire the RG lock in
2506 *
2507 * FIXME: Don't use NOFAIL
2508 *
2509 */
2510
2511void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2512{
2513	unsigned int x;
2514
2515	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2516				GFP_NOFS | __GFP_NOFAIL);
2517	for (x = 0; x < rlist->rl_rgrps; x++)
2518		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2519				state, 0,
2520				&rlist->rl_ghs[x]);
2521}
2522
2523/**
2524 * gfs2_rlist_free - free a resource group list
2525 * @list: the list of resource groups
2526 *
2527 */
2528
2529void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2530{
2531	unsigned int x;
2532
2533	kfree(rlist->rl_rgd);
2534
2535	if (rlist->rl_ghs) {
2536		for (x = 0; x < rlist->rl_rgrps; x++)
2537			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2538		kfree(rlist->rl_ghs);
2539		rlist->rl_ghs = NULL;
2540	}
2541}
2542