Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
 
 
  10#include <linux/slab.h>
  11#include <linux/spinlock.h>
  12#include <linux/completion.h>
  13#include <linux/buffer_head.h>
  14#include <linux/fs.h>
  15#include <linux/gfs2_ondisk.h>
  16#include <linux/prefetch.h>
  17#include <linux/blkdev.h>
  18#include <linux/rbtree.h>
 
  19
  20#include "gfs2.h"
  21#include "incore.h"
  22#include "glock.h"
  23#include "glops.h"
  24#include "lops.h"
  25#include "meta_io.h"
  26#include "quota.h"
  27#include "rgrp.h"
  28#include "super.h"
  29#include "trans.h"
  30#include "util.h"
  31#include "log.h"
  32#include "inode.h"
  33#include "trace_gfs2.h"
 
  34
  35#define BFITNOENT ((u32)~0)
  36#define NO_BLOCK ((u64)~0)
  37
  38#if BITS_PER_LONG == 32
  39#define LBITMASK   (0x55555555UL)
  40#define LBITSKIP55 (0x55555555UL)
  41#define LBITSKIP00 (0x00000000UL)
  42#else
  43#define LBITMASK   (0x5555555555555555UL)
  44#define LBITSKIP55 (0x5555555555555555UL)
  45#define LBITSKIP00 (0x0000000000000000UL)
  46#endif
  47
  48/*
  49 * These routines are used by the resource group routines (rgrp.c)
  50 * to keep track of block allocation.  Each block is represented by two
  51 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  52 *
  53 * 0 = Free
  54 * 1 = Used (not metadata)
  55 * 2 = Unlinked (still in use) inode
  56 * 3 = Used (metadata)
  57 */
  58
 
 
 
 
 
  59static const char valid_change[16] = {
  60	        /* current */
  61	/* n */ 0, 1, 1, 1,
  62	/* e */ 1, 0, 0, 0,
  63	/* w */ 0, 0, 0, 1,
  64	        1, 0, 0, 0
  65};
  66
  67static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
  68			unsigned char old_state,
  69			struct gfs2_bitmap **rbi);
  70
  71/**
  72 * gfs2_setbit - Set a bit in the bitmaps
  73 * @rgd: the resource group descriptor
  74 * @buf2: the clone buffer that holds the bitmaps
  75 * @bi: the bitmap structure
  76 * @block: the block to set
  77 * @new_state: the new state of the block
  78 *
  79 */
  80
  81static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf2,
  82			       struct gfs2_bitmap *bi, u32 block,
  83			       unsigned char new_state)
  84{
  85	unsigned char *byte1, *byte2, *end, cur_state;
  86	unsigned int buflen = bi->bi_len;
  87	const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
 
  88
  89	byte1 = bi->bi_bh->b_data + bi->bi_offset + (block / GFS2_NBBY);
  90	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  91
  92	BUG_ON(byte1 >= end);
  93
  94	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  95
  96	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
  97		printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
  98		       "new_state=%d\n",
  99		       (unsigned long long)block, cur_state, new_state);
 100		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
 101		       (unsigned long long)rgd->rd_addr,
 102		       (unsigned long)bi->bi_start);
 103		printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
 104		       (unsigned long)bi->bi_offset,
 105		       (unsigned long)bi->bi_len);
 
 106		dump_stack();
 107		gfs2_consist_rgrpd(rgd);
 108		return;
 109	}
 110	*byte1 ^= (cur_state ^ new_state) << bit;
 111
 112	if (buf2) {
 113		byte2 = buf2 + bi->bi_offset + (block / GFS2_NBBY);
 114		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 115		*byte2 ^= (cur_state ^ new_state) << bit;
 116	}
 117}
 118
 119/**
 120 * gfs2_testbit - test a bit in the bitmaps
 121 * @rgd: the resource group descriptor
 122 * @buffer: the buffer that holds the bitmaps
 123 * @buflen: the length (in bytes) of the buffer
 124 * @block: the block to read
 125 *
 
 
 
 
 126 */
 127
 128static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
 129					 const unsigned char *buffer,
 130					 unsigned int buflen, u32 block)
 131{
 132	const unsigned char *byte, *end;
 133	unsigned char cur_state;
 
 134	unsigned int bit;
 135
 136	byte = buffer + (block / GFS2_NBBY);
 137	bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
 138	end = buffer + buflen;
 139
 140	gfs2_assert(rgd->rd_sbd, byte < end);
 141
 142	cur_state = (*byte >> bit) & GFS2_BIT_MASK;
 143
 144	return cur_state;
 145}
 146
 147/**
 148 * gfs2_bit_search
 149 * @ptr: Pointer to bitmap data
 150 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 151 * @state: The state we are searching for
 152 *
 153 * We xor the bitmap data with a patter which is the bitwise opposite
 154 * of what we are looking for, this gives rise to a pattern of ones
 155 * wherever there is a match. Since we have two bits per entry, we
 156 * take this pattern, shift it down by one place and then and it with
 157 * the original. All the even bit positions (0,2,4, etc) then represent
 158 * successful matches, so we mask with 0x55555..... to remove the unwanted
 159 * odd bit positions.
 160 *
 161 * This allows searching of a whole u64 at once (32 blocks) with a
 162 * single test (on 64 bit arches).
 163 */
 164
 165static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 166{
 167	u64 tmp;
 168	static const u64 search[] = {
 169		[0] = 0xffffffffffffffffULL,
 170		[1] = 0xaaaaaaaaaaaaaaaaULL,
 171		[2] = 0x5555555555555555ULL,
 172		[3] = 0x0000000000000000ULL,
 173	};
 174	tmp = le64_to_cpu(*ptr) ^ search[state];
 175	tmp &= (tmp >> 1);
 176	tmp &= mask;
 177	return tmp;
 178}
 179
 180/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 182 *       a block in a given allocation state.
 183 * @buf: the buffer that holds the bitmaps
 184 * @len: the length (in bytes) of the buffer
 185 * @goal: start search at this block's bit-pair (within @buffer)
 186 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 187 *
 188 * Scope of @goal and returned block number is only within this bitmap buffer,
 189 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 190 * beginning of a bitmap block buffer, skipping any header structures, but
 191 * headers are always a multiple of 64 bits long so that the buffer is
 192 * always aligned to a 64 bit boundary.
 193 *
 194 * The size of the buffer is in bytes, but is it assumed that it is
 195 * always ok to read a complete multiple of 64 bits at the end
 196 * of the block in case the end is no aligned to a natural boundary.
 197 *
 198 * Return: the block number (bitmap buffer scope) that was found
 199 */
 200
 201static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 202		       u32 goal, u8 state)
 203{
 204	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 205	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 206	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 207	u64 tmp;
 208	u64 mask = 0x5555555555555555ULL;
 209	u32 bit;
 210
 211	BUG_ON(state > 3);
 212
 213	/* Mask off bits we don't care about at the start of the search */
 214	mask <<= spoint;
 215	tmp = gfs2_bit_search(ptr, mask, state);
 216	ptr++;
 217	while(tmp == 0 && ptr < end) {
 218		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 219		ptr++;
 220	}
 221	/* Mask off any bits which are more than len bytes from the start */
 222	if (ptr == end && (len & (sizeof(u64) - 1)))
 223		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 224	/* Didn't find anything, so return */
 225	if (tmp == 0)
 226		return BFITNOENT;
 227	ptr--;
 228	bit = __ffs64(tmp);
 229	bit /= 2;	/* two bits per entry in the bitmap */
 230	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 231}
 232
 233/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234 * gfs2_bitcount - count the number of bits in a certain state
 235 * @rgd: the resource group descriptor
 236 * @buffer: the buffer that holds the bitmaps
 237 * @buflen: the length (in bytes) of the buffer
 238 * @state: the state of the block we're looking for
 239 *
 240 * Returns: The number of bits
 241 */
 242
 243static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 244			 unsigned int buflen, u8 state)
 245{
 246	const u8 *byte = buffer;
 247	const u8 *end = buffer + buflen;
 248	const u8 state1 = state << 2;
 249	const u8 state2 = state << 4;
 250	const u8 state3 = state << 6;
 251	u32 count = 0;
 252
 253	for (; byte < end; byte++) {
 254		if (((*byte) & 0x03) == state)
 255			count++;
 256		if (((*byte) & 0x0C) == state1)
 257			count++;
 258		if (((*byte) & 0x30) == state2)
 259			count++;
 260		if (((*byte) & 0xC0) == state3)
 261			count++;
 262	}
 263
 264	return count;
 265}
 266
 267/**
 268 * gfs2_rgrp_verify - Verify that a resource group is consistent
 269 * @rgd: the rgrp
 270 *
 271 */
 272
 273void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 274{
 275	struct gfs2_sbd *sdp = rgd->rd_sbd;
 276	struct gfs2_bitmap *bi = NULL;
 277	u32 length = rgd->rd_length;
 278	u32 count[4], tmp;
 279	int buf, x;
 280
 281	memset(count, 0, 4 * sizeof(u32));
 282
 283	/* Count # blocks in each of 4 possible allocation states */
 284	for (buf = 0; buf < length; buf++) {
 285		bi = rgd->rd_bits + buf;
 286		for (x = 0; x < 4; x++)
 287			count[x] += gfs2_bitcount(rgd,
 288						  bi->bi_bh->b_data +
 289						  bi->bi_offset,
 290						  bi->bi_len, x);
 291	}
 292
 293	if (count[0] != rgd->rd_free) {
 294		if (gfs2_consist_rgrpd(rgd))
 295			fs_err(sdp, "free data mismatch:  %u != %u\n",
 296			       count[0], rgd->rd_free);
 297		return;
 298	}
 299
 300	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 301	if (count[1] != tmp) {
 302		if (gfs2_consist_rgrpd(rgd))
 303			fs_err(sdp, "used data mismatch:  %u != %u\n",
 304			       count[1], tmp);
 305		return;
 306	}
 307
 308	if (count[2] + count[3] != rgd->rd_dinodes) {
 309		if (gfs2_consist_rgrpd(rgd))
 310			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 311			       count[2] + count[3], rgd->rd_dinodes);
 312		return;
 313	}
 314}
 315
 316static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 317{
 318	u64 first = rgd->rd_data0;
 319	u64 last = first + rgd->rd_data;
 320	return first <= block && block < last;
 321}
 322
 323/**
 324 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 325 * @sdp: The GFS2 superblock
 326 * @blk: The data block number
 327 * @exact: True if this needs to be an exact match
 328 *
 
 
 
 
 
 
 
 329 * Returns: The resource group, or NULL if not found
 330 */
 331
 332struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 333{
 334	struct rb_node *n, *next;
 335	struct gfs2_rgrpd *cur;
 336
 337	spin_lock(&sdp->sd_rindex_spin);
 338	n = sdp->sd_rindex_tree.rb_node;
 339	while (n) {
 340		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 341		next = NULL;
 342		if (blk < cur->rd_addr)
 343			next = n->rb_left;
 344		else if (blk >= cur->rd_data0 + cur->rd_data)
 345			next = n->rb_right;
 346		if (next == NULL) {
 347			spin_unlock(&sdp->sd_rindex_spin);
 348			if (exact) {
 349				if (blk < cur->rd_addr)
 350					return NULL;
 351				if (blk >= cur->rd_data0 + cur->rd_data)
 352					return NULL;
 353			}
 354			return cur;
 355		}
 356		n = next;
 357	}
 358	spin_unlock(&sdp->sd_rindex_spin);
 359
 360	return NULL;
 361}
 362
 363/**
 364 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 365 * @sdp: The GFS2 superblock
 366 *
 367 * Returns: The first rgrp in the filesystem
 368 */
 369
 370struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 371{
 372	const struct rb_node *n;
 373	struct gfs2_rgrpd *rgd;
 374
 375	spin_lock(&sdp->sd_rindex_spin);
 376	n = rb_first(&sdp->sd_rindex_tree);
 377	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 378	spin_unlock(&sdp->sd_rindex_spin);
 379
 380	return rgd;
 381}
 382
 383/**
 384 * gfs2_rgrpd_get_next - get the next RG
 385 * @rgd: the resource group descriptor
 386 *
 387 * Returns: The next rgrp
 388 */
 389
 390struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 391{
 392	struct gfs2_sbd *sdp = rgd->rd_sbd;
 393	const struct rb_node *n;
 394
 395	spin_lock(&sdp->sd_rindex_spin);
 396	n = rb_next(&rgd->rd_node);
 397	if (n == NULL)
 398		n = rb_first(&sdp->sd_rindex_tree);
 399
 400	if (unlikely(&rgd->rd_node == n)) {
 401		spin_unlock(&sdp->sd_rindex_spin);
 402		return NULL;
 403	}
 404	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 405	spin_unlock(&sdp->sd_rindex_spin);
 406	return rgd;
 407}
 408
 
 
 
 
 
 
 
 409void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 410{
 411	int x;
 412
 413	for (x = 0; x < rgd->rd_length; x++) {
 414		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 415		kfree(bi->bi_clone);
 416		bi->bi_clone = NULL;
 417	}
 418}
 419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 421{
 422	struct rb_node *n;
 423	struct gfs2_rgrpd *rgd;
 424	struct gfs2_glock *gl;
 425
 426	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 427		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 428		gl = rgd->rd_gl;
 429
 430		rb_erase(n, &sdp->sd_rindex_tree);
 431
 432		if (gl) {
 433			spin_lock(&gl->gl_spin);
 434			gl->gl_object = NULL;
 435			spin_unlock(&gl->gl_spin);
 436			gfs2_glock_add_to_lru(gl);
 437			gfs2_glock_put(gl);
 438		}
 439
 440		gfs2_free_clones(rgd);
 441		kfree(rgd->rd_bits);
 
 
 442		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 443	}
 444}
 445
 446static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 447{
 448	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 449	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
 450	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 451	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
 452	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
 
 
 453}
 454
 455/**
 456 * gfs2_compute_bitstructs - Compute the bitmap sizes
 457 * @rgd: The resource group descriptor
 458 *
 459 * Calculates bitmap descriptors, one for each block that contains bitmap data
 460 *
 461 * Returns: errno
 462 */
 463
 464static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 465{
 466	struct gfs2_sbd *sdp = rgd->rd_sbd;
 467	struct gfs2_bitmap *bi;
 468	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 469	u32 bytes_left, bytes;
 470	int x;
 471
 472	if (!length)
 473		return -EINVAL;
 474
 475	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 476	if (!rgd->rd_bits)
 477		return -ENOMEM;
 478
 479	bytes_left = rgd->rd_bitbytes;
 480
 481	for (x = 0; x < length; x++) {
 482		bi = rgd->rd_bits + x;
 483
 484		bi->bi_flags = 0;
 485		/* small rgrp; bitmap stored completely in header block */
 486		if (length == 1) {
 487			bytes = bytes_left;
 488			bi->bi_offset = sizeof(struct gfs2_rgrp);
 489			bi->bi_start = 0;
 490			bi->bi_len = bytes;
 
 491		/* header block */
 492		} else if (x == 0) {
 493			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 494			bi->bi_offset = sizeof(struct gfs2_rgrp);
 495			bi->bi_start = 0;
 496			bi->bi_len = bytes;
 
 497		/* last block */
 498		} else if (x + 1 == length) {
 499			bytes = bytes_left;
 500			bi->bi_offset = sizeof(struct gfs2_meta_header);
 501			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 502			bi->bi_len = bytes;
 
 503		/* other blocks */
 504		} else {
 505			bytes = sdp->sd_sb.sb_bsize -
 506				sizeof(struct gfs2_meta_header);
 507			bi->bi_offset = sizeof(struct gfs2_meta_header);
 508			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 509			bi->bi_len = bytes;
 
 510		}
 511
 512		bytes_left -= bytes;
 513	}
 514
 515	if (bytes_left) {
 516		gfs2_consist_rgrpd(rgd);
 517		return -EIO;
 518	}
 519	bi = rgd->rd_bits + (length - 1);
 520	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 521		if (gfs2_consist_rgrpd(rgd)) {
 522			gfs2_rindex_print(rgd);
 523			fs_err(sdp, "start=%u len=%u offset=%u\n",
 524			       bi->bi_start, bi->bi_len, bi->bi_offset);
 525		}
 526		return -EIO;
 527	}
 528
 529	return 0;
 530}
 531
 532/**
 533 * gfs2_ri_total - Total up the file system space, according to the rindex.
 534 * @sdp: the filesystem
 535 *
 536 */
 537u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 538{
 539	u64 total_data = 0;	
 540	struct inode *inode = sdp->sd_rindex;
 541	struct gfs2_inode *ip = GFS2_I(inode);
 542	char buf[sizeof(struct gfs2_rindex)];
 543	int error, rgrps;
 544
 545	for (rgrps = 0;; rgrps++) {
 546		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 547
 548		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 549			break;
 550		error = gfs2_internal_read(ip, buf, &pos,
 551					   sizeof(struct gfs2_rindex));
 552		if (error != sizeof(struct gfs2_rindex))
 553			break;
 554		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 555	}
 556	return total_data;
 557}
 558
 559static int rgd_insert(struct gfs2_rgrpd *rgd)
 560{
 561	struct gfs2_sbd *sdp = rgd->rd_sbd;
 562	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 563
 564	/* Figure out where to put new node */
 565	while (*newn) {
 566		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 567						  rd_node);
 568
 569		parent = *newn;
 570		if (rgd->rd_addr < cur->rd_addr)
 571			newn = &((*newn)->rb_left);
 572		else if (rgd->rd_addr > cur->rd_addr)
 573			newn = &((*newn)->rb_right);
 574		else
 575			return -EEXIST;
 576	}
 577
 578	rb_link_node(&rgd->rd_node, parent, newn);
 579	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 580	sdp->sd_rgrps++;
 581	return 0;
 582}
 583
 584/**
 585 * read_rindex_entry - Pull in a new resource index entry from the disk
 586 * @ip: Pointer to the rindex inode
 587 *
 588 * Returns: 0 on success, > 0 on EOF, error code otherwise
 589 */
 590
 591static int read_rindex_entry(struct gfs2_inode *ip)
 592{
 593	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
 594	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 595	struct gfs2_rindex buf;
 596	int error;
 597	struct gfs2_rgrpd *rgd;
 598
 599	if (pos >= i_size_read(&ip->i_inode))
 600		return 1;
 601
 602	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 603				   sizeof(struct gfs2_rindex));
 604
 605	if (error != sizeof(struct gfs2_rindex))
 606		return (error == 0) ? 1 : error;
 607
 608	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 609	error = -ENOMEM;
 610	if (!rgd)
 611		return error;
 612
 613	rgd->rd_sbd = sdp;
 614	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 615	rgd->rd_length = be32_to_cpu(buf.ri_length);
 616	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 617	rgd->rd_data = be32_to_cpu(buf.ri_data);
 618	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 
 619
 620	error = compute_bitstructs(rgd);
 621	if (error)
 622		goto fail;
 623
 624	error = gfs2_glock_get(sdp, rgd->rd_addr,
 625			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 626	if (error)
 627		goto fail;
 628
 629	rgd->rd_gl->gl_object = rgd;
 630	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
 631	if (rgd->rd_data > sdp->sd_max_rg_data)
 632		sdp->sd_max_rg_data = rgd->rd_data;
 633	spin_lock(&sdp->sd_rindex_spin);
 634	error = rgd_insert(rgd);
 635	spin_unlock(&sdp->sd_rindex_spin);
 636	if (!error)
 
 
 
 
 637		return 0;
 
 638
 639	error = 0; /* someone else read in the rgrp; free it and ignore it */
 640	gfs2_glock_put(rgd->rd_gl);
 641
 642fail:
 643	kfree(rgd->rd_bits);
 
 644	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 645	return error;
 646}
 647
 648/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649 * gfs2_ri_update - Pull in a new resource index from the disk
 650 * @ip: pointer to the rindex inode
 651 *
 652 * Returns: 0 on successful update, error code otherwise
 653 */
 654
 655static int gfs2_ri_update(struct gfs2_inode *ip)
 656{
 657	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 658	int error;
 659
 660	do {
 661		error = read_rindex_entry(ip);
 662	} while (error == 0);
 663
 664	if (error < 0)
 665		return error;
 666
 
 
 667	sdp->sd_rindex_uptodate = 1;
 668	return 0;
 669}
 670
 671/**
 672 * gfs2_rindex_update - Update the rindex if required
 673 * @sdp: The GFS2 superblock
 674 *
 675 * We grab a lock on the rindex inode to make sure that it doesn't
 676 * change whilst we are performing an operation. We keep this lock
 677 * for quite long periods of time compared to other locks. This
 678 * doesn't matter, since it is shared and it is very, very rarely
 679 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
 680 *
 681 * This makes sure that we're using the latest copy of the resource index
 682 * special file, which might have been updated if someone expanded the
 683 * filesystem (via gfs2_grow utility), which adds new resource groups.
 684 *
 685 * Returns: 0 on succeess, error code otherwise
 686 */
 687
 688int gfs2_rindex_update(struct gfs2_sbd *sdp)
 689{
 690	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
 691	struct gfs2_glock *gl = ip->i_gl;
 692	struct gfs2_holder ri_gh;
 693	int error = 0;
 694	int unlock_required = 0;
 695
 696	/* Read new copy from disk if we don't have the latest */
 697	if (!sdp->sd_rindex_uptodate) {
 698		if (!gfs2_glock_is_locked_by_me(gl)) {
 699			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
 700			if (error)
 701				return error;
 702			unlock_required = 1;
 703		}
 704		if (!sdp->sd_rindex_uptodate)
 705			error = gfs2_ri_update(ip);
 706		if (unlock_required)
 707			gfs2_glock_dq_uninit(&ri_gh);
 708	}
 709
 710	return error;
 711}
 712
 713static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
 714{
 715	const struct gfs2_rgrp *str = buf;
 716	u32 rg_flags;
 717
 718	rg_flags = be32_to_cpu(str->rg_flags);
 719	rg_flags &= ~GFS2_RDF_MASK;
 720	rgd->rd_flags &= GFS2_RDF_MASK;
 721	rgd->rd_flags |= rg_flags;
 722	rgd->rd_free = be32_to_cpu(str->rg_free);
 723	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
 724	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
 
 
 
 
 
 
 
 
 
 
 
 
 
 725}
 726
 727static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
 728{
 
 729	struct gfs2_rgrp *str = buf;
 
 730
 731	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
 732	str->rg_free = cpu_to_be32(rgd->rd_free);
 733	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
 734	str->__pad = cpu_to_be32(0);
 
 
 
 735	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
 
 
 
 
 
 
 
 736	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737}
 738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739/**
 740 * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps
 741 * @gh: The glock holder for the resource group
 742 *
 743 * Read in all of a Resource Group's header and bitmap blocks.
 744 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
 745 *
 746 * Returns: errno
 747 */
 748
 749int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
 750{
 751	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
 752	struct gfs2_sbd *sdp = rgd->rd_sbd;
 753	struct gfs2_glock *gl = rgd->rd_gl;
 754	unsigned int length = rgd->rd_length;
 755	struct gfs2_bitmap *bi;
 756	unsigned int x, y;
 757	int error;
 758
 
 
 
 759	for (x = 0; x < length; x++) {
 760		bi = rgd->rd_bits + x;
 761		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
 762		if (error)
 763			goto fail;
 764	}
 765
 766	for (y = length; y--;) {
 767		bi = rgd->rd_bits + y;
 768		error = gfs2_meta_wait(sdp, bi->bi_bh);
 769		if (error)
 770			goto fail;
 771		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
 772					      GFS2_METATYPE_RG)) {
 773			error = -EIO;
 774			goto fail;
 775		}
 776	}
 777
 778	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
 779		for (x = 0; x < length; x++)
 780			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
 781		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
 782		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
 783		rgd->rd_free_clone = rgd->rd_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	}
 785
 786	return 0;
 787
 788fail:
 789	while (x--) {
 790		bi = rgd->rd_bits + x;
 791		brelse(bi->bi_bh);
 792		bi->bi_bh = NULL;
 793		gfs2_assert_warn(sdp, !bi->bi_clone);
 794	}
 795
 796	return error;
 797}
 798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 799/**
 800 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
 801 * @gh: The glock holder for the resource group
 802 *
 803 */
 804
 805void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
 806{
 807	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
 808	int x, length = rgd->rd_length;
 809
 810	for (x = 0; x < length; x++) {
 811		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 812		brelse(bi->bi_bh);
 813		bi->bi_bh = NULL;
 
 
 814	}
 815
 816}
 817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
 819			     struct buffer_head *bh,
 820			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
 821{
 822	struct super_block *sb = sdp->sd_vfs;
 823	struct block_device *bdev = sb->s_bdev;
 824	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
 825					   bdev_logical_block_size(sb->s_bdev);
 826	u64 blk;
 827	sector_t start = 0;
 828	sector_t nr_sects = 0;
 829	int rv;
 830	unsigned int x;
 831	u32 trimmed = 0;
 832	u8 diff;
 833
 834	for (x = 0; x < bi->bi_len; x++) {
 835		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
 836		clone += bi->bi_offset;
 837		clone += x;
 838		if (bh) {
 839			const u8 *orig = bh->b_data + bi->bi_offset + x;
 840			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
 841		} else {
 842			diff = ~(*clone | (*clone >> 1));
 843		}
 844		diff &= 0x55;
 845		if (diff == 0)
 846			continue;
 847		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 848		blk *= sects_per_blk; /* convert to sectors */
 849		while(diff) {
 850			if (diff & 1) {
 851				if (nr_sects == 0)
 852					goto start_new_extent;
 853				if ((start + nr_sects) != blk) {
 854					if (nr_sects >= minlen) {
 855						rv = blkdev_issue_discard(bdev,
 856							start, nr_sects,
 857							GFP_NOFS, 0);
 858						if (rv)
 859							goto fail;
 860						trimmed += nr_sects;
 861					}
 862					nr_sects = 0;
 863start_new_extent:
 864					start = blk;
 865				}
 866				nr_sects += sects_per_blk;
 867			}
 868			diff >>= 2;
 869			blk += sects_per_blk;
 870		}
 871	}
 872	if (nr_sects >= minlen) {
 873		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
 874		if (rv)
 875			goto fail;
 876		trimmed += nr_sects;
 877	}
 878	if (ptrimmed)
 879		*ptrimmed = trimmed;
 880	return 0;
 881
 882fail:
 883	if (sdp->sd_args.ar_discard)
 884		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
 885	sdp->sd_args.ar_discard = 0;
 886	return -EIO;
 887}
 888
 889/**
 890 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
 891 * @filp: Any file on the filesystem
 892 * @argp: Pointer to the arguments (also used to pass result)
 893 *
 894 * Returns: 0 on success, otherwise error code
 895 */
 896
 897int gfs2_fitrim(struct file *filp, void __user *argp)
 898{
 899	struct inode *inode = filp->f_dentry->d_inode;
 900	struct gfs2_sbd *sdp = GFS2_SB(inode);
 901	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
 902	struct buffer_head *bh;
 903	struct gfs2_rgrpd *rgd;
 904	struct gfs2_rgrpd *rgd_end;
 905	struct gfs2_holder gh;
 906	struct fstrim_range r;
 907	int ret = 0;
 908	u64 amt;
 909	u64 trimmed = 0;
 
 910	unsigned int x;
 
 911
 912	if (!capable(CAP_SYS_ADMIN))
 913		return -EPERM;
 914
 915	if (!blk_queue_discard(q))
 916		return -EOPNOTSUPP;
 917
 918	if (argp == NULL) {
 919		r.start = 0;
 920		r.len = ULLONG_MAX;
 921		r.minlen = 0;
 922	} else if (copy_from_user(&r, argp, sizeof(r)))
 923		return -EFAULT;
 924
 925	ret = gfs2_rindex_update(sdp);
 926	if (ret)
 927		return ret;
 928
 929	rgd = gfs2_blk2rgrpd(sdp, r.start, 0);
 930	rgd_end = gfs2_blk2rgrpd(sdp, r.start + r.len, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 931
 932	while (1) {
 933
 934		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
 935		if (ret)
 936			goto out;
 937
 938		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
 939			/* Trim each bitmap in the rgrp */
 940			for (x = 0; x < rgd->rd_length; x++) {
 941				struct gfs2_bitmap *bi = rgd->rd_bits + x;
 942				ret = gfs2_rgrp_send_discards(sdp, rgd->rd_data0, NULL, bi, r.minlen, &amt);
 
 
 943				if (ret) {
 944					gfs2_glock_dq_uninit(&gh);
 945					goto out;
 946				}
 947				trimmed += amt;
 948			}
 949
 950			/* Mark rgrp as having been trimmed */
 951			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
 952			if (ret == 0) {
 953				bh = rgd->rd_bits[0].bi_bh;
 954				rgd->rd_flags |= GFS2_RGF_TRIMMED;
 955				gfs2_trans_add_bh(rgd->rd_gl, bh, 1);
 956				gfs2_rgrp_out(rgd, bh->b_data);
 957				gfs2_trans_end(sdp);
 958			}
 959		}
 960		gfs2_glock_dq_uninit(&gh);
 961
 962		if (rgd == rgd_end)
 963			break;
 964
 965		rgd = gfs2_rgrpd_get_next(rgd);
 966	}
 967
 968out:
 969	r.len = trimmed << 9;
 970	if (argp && copy_to_user(argp, &r, sizeof(r)))
 971		return -EFAULT;
 972
 973	return ret;
 974}
 975
 976/**
 977 * gfs2_qadata_get - get the struct gfs2_qadata structure for an inode
 978 * @ip: the incore GFS2 inode structure
 979 *
 980 * Returns: the struct gfs2_qadata
 981 */
 
 
 
 
 
 
 
 
 
 982
 983struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984{
 985	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 986	int error;
 987	BUG_ON(ip->i_qadata != NULL);
 988	ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS);
 989	error = gfs2_rindex_update(sdp);
 990	if (error)
 991		fs_warn(sdp, "rindex update returns %d\n", error);
 992	return ip->i_qadata;
 
 
 
 
 993}
 994
 995/**
 996 * gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode
 997 * @ip: the incore GFS2 inode structure
 
 
 998 *
 999 * Returns: the struct gfs2_qadata
1000 */
1001
1002static int gfs2_blkrsv_get(struct gfs2_inode *ip)
 
1003{
1004	BUG_ON(ip->i_res != NULL);
1005	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
1006	if (!ip->i_res)
1007		return -ENOMEM;
1008	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009}
1010
1011/**
1012 * try_rgrp_fit - See if a given reservation will fit in a given RG
1013 * @rgd: the RG data
1014 * @ip: the inode
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015 *
1016 * If there's room for the requested blocks to be allocated from the RG:
 
 
 
 
1017 *
1018 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
1019 */
1020
1021static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip)
 
 
 
1022{
1023	const struct gfs2_blkreserv *rs = ip->i_res;
 
 
 
1024
1025	if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1026		return 0;
1027	if (rgd->rd_free_clone >= rs->rs_requested)
1028		return 1;
1029	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030}
1031
1032static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033{
1034	return (bi->bi_start * GFS2_NBBY) + blk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037/**
1038 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1039 * @rgd: The rgrp
1040 * @last_unlinked: block address of the last dinode we unlinked
1041 * @skip: block address we should explicitly not unlink
1042 *
1043 * Returns: 0 if no error
1044 *          The inode, if one has been found, in inode.
1045 */
1046
1047static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1048{
1049	u32 goal = 0, block;
1050	u64 no_addr;
1051	struct gfs2_sbd *sdp = rgd->rd_sbd;
1052	struct gfs2_glock *gl;
1053	struct gfs2_inode *ip;
1054	int error;
1055	int found = 0;
1056	struct gfs2_bitmap *bi;
1057
1058	while (goal < rgd->rd_data) {
1059		down_write(&sdp->sd_log_flush_lock);
1060		block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi);
 
1061		up_write(&sdp->sd_log_flush_lock);
1062		if (block == BFITNOENT)
 
 
1063			break;
1064
1065		block = gfs2_bi2rgd_blk(bi, block);
1066		/* rgblk_search can return a block < goal, so we need to
1067		   keep it marching forward. */
1068		no_addr = block + rgd->rd_data0;
1069		goal = max(block + 1, goal + 1);
1070		if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
1071			continue;
1072		if (no_addr == skip)
1073			continue;
1074		*last_unlinked = no_addr;
1075
1076		error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
1077		if (error)
1078			continue;
1079
1080		/* If the inode is already in cache, we can ignore it here
1081		 * because the existing inode disposal code will deal with
1082		 * it when all refs have gone away. Accessing gl_object like
1083		 * this is not safe in general. Here it is ok because we do
1084		 * not dereference the pointer, and we only need an approx
1085		 * answer to whether it is NULL or not.
1086		 */
1087		ip = gl->gl_object;
1088
1089		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1090			gfs2_glock_put(gl);
1091		else
1092			found++;
1093
1094		/* Limit reclaim to sensible number of tasks */
1095		if (found > NR_CPUS)
1096			return;
1097	}
1098
1099	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1100	return;
1101}
1102
1103/**
1104 * get_local_rgrp - Choose and lock a rgrp for allocation
1105 * @ip: the inode to reserve space for
1106 * @last_unlinked: the last unlinked block
1107 *
1108 * Try to acquire rgrp in way which avoids contending with others.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109 *
1110 * Returns: errno
1111 */
1112
1113static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
1114{
1115	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1116	struct gfs2_rgrpd *rgd, *begin = NULL;
1117	struct gfs2_blkreserv *rs = ip->i_res;
1118	int error, rg_locked, flags = LM_FLAG_TRY;
1119	int loops = 0;
1120
1121	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal))
1122		rgd = begin = ip->i_rgd;
1123	else
1124		rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1125
1126	if (rgd == NULL)
1127		return -EBADSLT;
1128
1129	while (loops < 3) {
1130		rg_locked = 0;
 
 
1131
1132		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1133			rg_locked = 1;
1134			error = 0;
1135		} else {
1136			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1137						   flags, &rs->rs_rgd_gh);
1138		}
1139		switch (error) {
1140		case 0:
1141			if (try_rgrp_fit(rgd, ip)) {
1142				ip->i_rgd = rgd;
1143				return 0;
1144			}
1145			if (rgd->rd_flags & GFS2_RDF_CHECK)
1146				try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1147			if (!rg_locked)
1148				gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1149			/* fall through */
1150		case GLR_TRYFAILED:
1151			rgd = gfs2_rgrpd_get_next(rgd);
1152			if (rgd == begin) {
1153				flags = 0;
1154				loops++;
1155			}
1156			break;
1157		default:
1158			return error;
1159		}
1160	}
1161
1162	return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
1163}
1164
1165static void gfs2_blkrsv_put(struct gfs2_inode *ip)
 
 
 
 
 
 
1166{
1167	BUG_ON(ip->i_res == NULL);
1168	kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
1169	ip->i_res = NULL;
 
 
 
 
 
 
1170}
1171
1172/**
1173 * gfs2_inplace_reserve - Reserve space in the filesystem
1174 * @ip: the inode to reserve space for
1175 * @requested: the number of blocks to be reserved
1176 *
1177 * Returns: errno
 
 
 
 
 
 
 
 
1178 */
1179
1180int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
1181{
1182	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1183	struct gfs2_blkreserv *rs;
1184	int error;
 
1185	u64 last_unlinked = NO_BLOCK;
1186	int tries = 0;
 
1187
1188	error = gfs2_blkrsv_get(ip);
1189	if (error)
1190		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191
1192	rs = ip->i_res;
1193	rs->rs_requested = requested;
1194	if (gfs2_assert_warn(sdp, requested)) {
1195		error = -EINVAL;
1196		goto out;
1197	}
1198
1199	do {
1200		error = get_local_rgrp(ip, &last_unlinked);
1201		if (error != -ENOSPC)
1202			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203		/* Check that fs hasn't grown if writing to rindex */
1204		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1205			error = gfs2_ri_update(ip);
1206			if (error)
1207				break;
1208			continue;
1209		}
1210		/* Flushing the log may release space */
1211		gfs2_log_flush(sdp, NULL);
1212	} while (tries++ < 3);
 
 
1213
1214out:
1215	if (error)
1216		gfs2_blkrsv_put(ip);
1217	return error;
1218}
1219
1220/**
1221 * gfs2_inplace_release - release an inplace reservation
1222 * @ip: the inode the reservation was taken out on
1223 *
1224 * Release a reservation made by gfs2_inplace_reserve().
1225 */
1226
1227void gfs2_inplace_release(struct gfs2_inode *ip)
1228{
1229	struct gfs2_blkreserv *rs = ip->i_res;
1230
1231	if (rs->rs_rgd_gh.gh_gl)
1232		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1233	gfs2_blkrsv_put(ip);
1234}
1235
1236/**
1237 * gfs2_get_block_type - Check a block in a RG is of given type
1238 * @rgd: the resource group holding the block
1239 * @block: the block number
1240 *
1241 * Returns: The block type (GFS2_BLKST_*)
1242 */
1243
1244static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1245{
1246	struct gfs2_bitmap *bi = NULL;
1247	u32 length, rgrp_block, buf_block;
1248	unsigned int buf;
1249	unsigned char type;
1250
1251	length = rgd->rd_length;
1252	rgrp_block = block - rgd->rd_data0;
1253
1254	for (buf = 0; buf < length; buf++) {
1255		bi = rgd->rd_bits + buf;
1256		if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1257			break;
1258	}
1259
1260	gfs2_assert(rgd->rd_sbd, buf < length);
1261	buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1262
1263	type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1264			   bi->bi_len, buf_block);
1265
1266	return type;
1267}
1268
1269/**
1270 * rgblk_search - find a block in @state
1271 * @rgd: the resource group descriptor
1272 * @goal: the goal block within the RG (start here to search for avail block)
1273 * @state: GFS2_BLKST_XXX the before-allocation state to find
1274 * @rbi: address of the pointer to the bitmap containing the block found
1275 *
1276 * Walk rgrp's bitmap to find bits that represent a block in @state.
1277 *
1278 * This function never fails, because we wouldn't call it unless we
1279 * know (from reservation results, etc.) that a block is available.
1280 *
1281 * Scope of @goal is just within rgrp, not the whole filesystem.
1282 * Scope of @returned block is just within bitmap, not the whole filesystem.
1283 *
1284 * Returns: the block number found relative to the bitmap rbi
1285 */
1286
1287static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, unsigned char state,
1288			struct gfs2_bitmap **rbi)
1289{
1290	struct gfs2_bitmap *bi = NULL;
1291	const u32 length = rgd->rd_length;
1292	u32 biblk = BFITNOENT;
1293	unsigned int buf, x;
1294	const u8 *buffer = NULL;
1295
1296	*rbi = NULL;
1297	/* Find bitmap block that contains bits for goal block */
1298	for (buf = 0; buf < length; buf++) {
1299		bi = rgd->rd_bits + buf;
1300		/* Convert scope of "goal" from rgrp-wide to within found bit block */
1301		if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1302			goal -= bi->bi_start * GFS2_NBBY;
1303			goto do_search;
1304		}
1305	}
1306	buf = 0;
1307	goal = 0;
1308
1309do_search:
1310	/* Search (up to entire) bitmap in this rgrp for allocatable block.
1311	   "x <= length", instead of "x < length", because we typically start
1312	   the search in the middle of a bit block, but if we can't find an
1313	   allocatable block anywhere else, we want to be able wrap around and
1314	   search in the first part of our first-searched bit block.  */
1315	for (x = 0; x <= length; x++) {
1316		bi = rgd->rd_bits + buf;
1317
1318		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1319		    (state == GFS2_BLKST_FREE))
1320			goto skip;
1321
1322		/* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1323		   bitmaps, so we must search the originals for that. */
1324		buffer = bi->bi_bh->b_data + bi->bi_offset;
1325		WARN_ON(!buffer_uptodate(bi->bi_bh));
1326		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1327			buffer = bi->bi_clone + bi->bi_offset;
1328
1329		biblk = gfs2_bitfit(buffer, bi->bi_len, goal, state);
1330		if (biblk != BFITNOENT)
1331			break;
1332
1333		if ((goal == 0) && (state == GFS2_BLKST_FREE))
1334			set_bit(GBF_FULL, &bi->bi_flags);
1335
1336		/* Try next bitmap block (wrap back to rgrp header if at end) */
1337skip:
1338		buf++;
1339		buf %= length;
1340		goal = 0;
1341	}
1342
1343	if (biblk != BFITNOENT)
1344		*rbi = bi;
1345
1346	return biblk;
1347}
1348
1349/**
1350 * gfs2_alloc_extent - allocate an extent from a given bitmap
1351 * @rgd: the resource group descriptor
1352 * @bi: the bitmap within the rgrp
1353 * @blk: the block within the bitmap
1354 * @dinode: TRUE if the first block we allocate is for a dinode
1355 * @n: The extent length
1356 *
1357 * Add the found bitmap buffer to the transaction.
1358 * Set the found bits to @new_state to change block's allocation state.
1359 * Returns: starting block number of the extent (fs scope)
1360 */
1361static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi,
1362			     u32 blk, bool dinode, unsigned int *n)
1363{
 
1364	const unsigned int elen = *n;
1365	u32 goal;
1366	const u8 *buffer = NULL;
1367
1368	*n = 0;
1369	buffer = bi->bi_bh->b_data + bi->bi_offset;
1370	gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1371	gfs2_setbit(rgd, bi->bi_clone, bi, blk,
1372		    dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1373	(*n)++;
1374	goal = blk;
1375	while (*n < elen) {
1376		goal++;
1377		if (goal >= (bi->bi_len * GFS2_NBBY))
1378			break;
1379		if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1380		    GFS2_BLKST_FREE)
1381			break;
1382		gfs2_setbit(rgd, bi->bi_clone, bi, goal, GFS2_BLKST_USED);
 
1383		(*n)++;
 
1384	}
1385	blk = gfs2_bi2rgd_blk(bi, blk);
1386	rgd->rd_last_alloc = blk + *n - 1;
1387	return rgd->rd_data0 + blk;
1388}
1389
1390/**
1391 * rgblk_free - Change alloc state of given block(s)
1392 * @sdp: the filesystem
 
1393 * @bstart: the start of a run of blocks to free
1394 * @blen: the length of the block run (all must lie within ONE RG!)
1395 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1396 *
1397 * Returns:  Resource group containing the block(s)
1398 */
1399
1400static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1401				     u32 blen, unsigned char new_state)
1402{
1403	struct gfs2_rgrpd *rgd;
1404	struct gfs2_bitmap *bi = NULL;
1405	u32 length, rgrp_blk, buf_blk;
1406	unsigned int buf;
1407
1408	rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1409	if (!rgd) {
1410		if (gfs2_consist(sdp))
1411			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1412		return NULL;
1413	}
1414
1415	length = rgd->rd_length;
1416
1417	rgrp_blk = bstart - rgd->rd_data0;
1418
 
 
 
1419	while (blen--) {
1420		for (buf = 0; buf < length; buf++) {
1421			bi = rgd->rd_bits + buf;
1422			if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1423				break;
1424		}
1425
1426		gfs2_assert(rgd->rd_sbd, buf < length);
1427
1428		buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1429		rgrp_blk++;
1430
1431		if (!bi->bi_clone) {
1432			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1433					       GFP_NOFS | __GFP_NOFAIL);
1434			memcpy(bi->bi_clone + bi->bi_offset,
1435			       bi->bi_bh->b_data + bi->bi_offset,
1436			       bi->bi_len);
1437		}
1438		gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1439		gfs2_setbit(rgd, NULL, bi, buf_blk, new_state);
1440	}
1441
1442	return rgd;
1443}
1444
1445/**
1446 * gfs2_rgrp_dump - print out an rgrp
1447 * @seq: The iterator
1448 * @gl: The glock in question
 
1449 *
1450 */
1451
1452int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
 
1453{
1454	const struct gfs2_rgrpd *rgd = gl->gl_object;
 
 
 
1455	if (rgd == NULL)
1456		return 0;
1457	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
 
1458		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1459		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1460	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461}
1462
1463static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1464{
1465	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
 
1466	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1467		(unsigned long long)rgd->rd_addr);
1468	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1469	gfs2_rgrp_dump(NULL, rgd->rd_gl);
 
1470	rgd->rd_flags |= GFS2_RDF_ERROR;
1471}
1472
1473/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
1475 * @ip: the inode to allocate the block for
1476 * @bn: Used to return the starting block number
1477 * @ndata: requested number of blocks/extent length (value/result)
1478 * @dinode: 1 if we're allocating a dinode block, else 0
1479 * @generation: the generation number of the inode
1480 *
1481 * Returns: 0 or error
1482 */
1483
1484int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
1485		      bool dinode, u64 *generation)
1486{
1487	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1488	struct buffer_head *dibh;
1489	struct gfs2_rgrpd *rgd;
1490	unsigned int ndata;
1491	u32 goal, blk; /* block, within the rgrp scope */
1492	u64 block; /* block, within the file system scope */
1493	int error;
1494	struct gfs2_bitmap *bi;
1495
1496	/* Only happens if there is a bug in gfs2, return something distinctive
1497	 * to ensure that it is noticed.
1498	 */
1499	if (ip->i_res == NULL)
1500		return -ECANCELED;
1501
1502	rgd = ip->i_rgd;
1503
1504	if (!dinode && rgrp_contains_block(rgd, ip->i_goal))
1505		goal = ip->i_goal - rgd->rd_data0;
1506	else
1507		goal = rgd->rd_last_alloc;
1508
1509	blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi);
1510
1511	/* Since all blocks are reserved in advance, this shouldn't happen */
1512	if (blk == BFITNOENT)
 
 
 
 
1513		goto rgrp_error;
 
1514
1515	block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks);
 
 
 
 
1516	ndata = *nblocks;
1517	if (dinode)
1518		ndata--;
1519
1520	if (!dinode) {
1521		ip->i_goal = block + ndata - 1;
1522		error = gfs2_meta_inode_buffer(ip, &dibh);
1523		if (error == 0) {
1524			struct gfs2_dinode *di =
1525				(struct gfs2_dinode *)dibh->b_data;
1526			gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1527			di->di_goal_meta = di->di_goal_data =
1528				cpu_to_be64(ip->i_goal);
1529			brelse(dibh);
1530		}
1531	}
1532	if (rgd->rd_free < *nblocks)
 
1533		goto rgrp_error;
 
1534
1535	rgd->rd_free -= *nblocks;
1536	if (dinode) {
1537		rgd->rd_dinodes++;
1538		*generation = rgd->rd_igeneration++;
1539		if (*generation == 0)
1540			*generation = rgd->rd_igeneration++;
1541	}
1542
1543	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1544	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1545
1546	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
1547	if (dinode)
1548		gfs2_trans_add_unrevoke(sdp, block, 1);
1549
1550	/*
1551	 * This needs reviewing to see why we cannot do the quota change
1552	 * at this point in the dinode case.
1553	 */
1554	if (ndata)
1555		gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
1556				  ip->i_inode.i_gid);
1557
1558	rgd->rd_free_clone -= *nblocks;
1559	trace_gfs2_block_alloc(ip, rgd, block, *nblocks,
1560			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1561	*bn = block;
1562	return 0;
1563
1564rgrp_error:
1565	gfs2_rgrp_error(rgd);
1566	return -EIO;
1567}
1568
1569/**
1570 * __gfs2_free_blocks - free a contiguous run of block(s)
1571 * @ip: the inode these blocks are being freed from
 
1572 * @bstart: first block of a run of contiguous blocks
1573 * @blen: the length of the block run
1574 * @meta: 1 if the blocks represent metadata
1575 *
1576 */
1577
1578void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
 
1579{
1580	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1581	struct gfs2_rgrpd *rgd;
1582
1583	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1584	if (!rgd)
1585		return;
1586	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
1587	rgd->rd_free += blen;
1588	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
1589	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1590	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1591
1592	/* Directories keep their data in the metadata address space */
1593	if (meta || ip->i_depth)
1594		gfs2_meta_wipe(ip, bstart, blen);
1595}
1596
1597/**
1598 * gfs2_free_meta - free a contiguous run of data block(s)
1599 * @ip: the inode these blocks are being freed from
 
1600 * @bstart: first block of a run of contiguous blocks
1601 * @blen: the length of the block run
1602 *
1603 */
1604
1605void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
 
1606{
1607	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1608
1609	__gfs2_free_blocks(ip, bstart, blen, 1);
1610	gfs2_statfs_change(sdp, 0, +blen, 0);
1611	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1612}
1613
1614void gfs2_unlink_di(struct inode *inode)
1615{
1616	struct gfs2_inode *ip = GFS2_I(inode);
1617	struct gfs2_sbd *sdp = GFS2_SB(inode);
1618	struct gfs2_rgrpd *rgd;
1619	u64 blkno = ip->i_no_addr;
1620
1621	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1622	if (!rgd)
1623		return;
 
1624	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
1625	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1626	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1627}
1628
1629static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1630{
1631	struct gfs2_sbd *sdp = rgd->rd_sbd;
1632	struct gfs2_rgrpd *tmp_rgd;
1633
1634	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1635	if (!tmp_rgd)
1636		return;
1637	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1638
 
1639	if (!rgd->rd_dinodes)
1640		gfs2_consist_rgrpd(rgd);
1641	rgd->rd_dinodes--;
1642	rgd->rd_free++;
1643
1644	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1645	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1646
1647	gfs2_statfs_change(sdp, 0, +1, -1);
1648}
1649
1650
1651void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1652{
1653	gfs2_free_uninit_di(rgd, ip->i_no_addr);
1654	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1655	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1656	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1657}
1658
1659/**
1660 * gfs2_check_blk_type - Check the type of a block
1661 * @sdp: The superblock
1662 * @no_addr: The block number to check
1663 * @type: The block type we are looking for
1664 *
1665 * Returns: 0 if the block type matches the expected type
1666 *          -ESTALE if it doesn't match
1667 *          or -ve errno if something went wrong while checking
1668 */
1669
1670int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1671{
1672	struct gfs2_rgrpd *rgd;
1673	struct gfs2_holder rgd_gh;
 
1674	int error = -EINVAL;
1675
1676	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
1677	if (!rgd)
1678		goto fail;
1679
1680	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1681	if (error)
1682		goto fail;
1683
1684	if (gfs2_get_block_type(rgd, no_addr) != type)
 
 
 
 
 
1685		error = -ESTALE;
1686
1687	gfs2_glock_dq_uninit(&rgd_gh);
1688fail:
1689	return error;
1690}
1691
1692/**
1693 * gfs2_rlist_add - add a RG to a list of RGs
1694 * @ip: the inode
1695 * @rlist: the list of resource groups
1696 * @block: the block
1697 *
1698 * Figure out what RG a block belongs to and add that RG to the list
1699 *
1700 * FIXME: Don't use NOFAIL
1701 *
1702 */
1703
1704void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
1705		    u64 block)
1706{
1707	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1708	struct gfs2_rgrpd *rgd;
1709	struct gfs2_rgrpd **tmp;
1710	unsigned int new_space;
1711	unsigned int x;
1712
1713	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1714		return;
1715
1716	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
1717		rgd = ip->i_rgd;
1718	else
 
 
 
 
 
1719		rgd = gfs2_blk2rgrpd(sdp, block, 1);
 
 
 
 
 
 
1720	if (!rgd) {
1721		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
 
1722		return;
1723	}
1724	ip->i_rgd = rgd;
1725
1726	for (x = 0; x < rlist->rl_rgrps; x++)
1727		if (rlist->rl_rgd[x] == rgd)
 
 
1728			return;
 
 
1729
1730	if (rlist->rl_rgrps == rlist->rl_space) {
1731		new_space = rlist->rl_space + 10;
1732
1733		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1734			      GFP_NOFS | __GFP_NOFAIL);
1735
1736		if (rlist->rl_rgd) {
1737			memcpy(tmp, rlist->rl_rgd,
1738			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1739			kfree(rlist->rl_rgd);
1740		}
1741
1742		rlist->rl_space = new_space;
1743		rlist->rl_rgd = tmp;
1744	}
1745
1746	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1747}
1748
1749/**
1750 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1751 *      and initialize an array of glock holders for them
1752 * @rlist: the list of resource groups
1753 * @state: the lock state to acquire the RG lock in
1754 *
1755 * FIXME: Don't use NOFAIL
1756 *
1757 */
1758
1759void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1760{
1761	unsigned int x;
1762
1763	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1764				GFP_NOFS | __GFP_NOFAIL);
 
1765	for (x = 0; x < rlist->rl_rgrps; x++)
1766		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1767				state, 0,
1768				&rlist->rl_ghs[x]);
1769}
1770
1771/**
1772 * gfs2_rlist_free - free a resource group list
1773 * @list: the list of resource groups
1774 *
1775 */
1776
1777void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1778{
1779	unsigned int x;
1780
1781	kfree(rlist->rl_rgd);
1782
1783	if (rlist->rl_ghs) {
1784		for (x = 0; x < rlist->rl_rgrps; x++)
1785			gfs2_holder_uninit(&rlist->rl_ghs[x]);
1786		kfree(rlist->rl_ghs);
 
1787	}
1788}
1789
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   4 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
 
 
 
 
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/slab.h>
  10#include <linux/spinlock.h>
  11#include <linux/completion.h>
  12#include <linux/buffer_head.h>
  13#include <linux/fs.h>
  14#include <linux/gfs2_ondisk.h>
  15#include <linux/prefetch.h>
  16#include <linux/blkdev.h>
  17#include <linux/rbtree.h>
  18#include <linux/random.h>
  19
  20#include "gfs2.h"
  21#include "incore.h"
  22#include "glock.h"
  23#include "glops.h"
  24#include "lops.h"
  25#include "meta_io.h"
  26#include "quota.h"
  27#include "rgrp.h"
  28#include "super.h"
  29#include "trans.h"
  30#include "util.h"
  31#include "log.h"
  32#include "inode.h"
  33#include "trace_gfs2.h"
  34#include "dir.h"
  35
  36#define BFITNOENT ((u32)~0)
  37#define NO_BLOCK ((u64)~0)
  38
  39#if BITS_PER_LONG == 32
  40#define LBITMASK   (0x55555555UL)
  41#define LBITSKIP55 (0x55555555UL)
  42#define LBITSKIP00 (0x00000000UL)
  43#else
  44#define LBITMASK   (0x5555555555555555UL)
  45#define LBITSKIP55 (0x5555555555555555UL)
  46#define LBITSKIP00 (0x0000000000000000UL)
  47#endif
  48
  49/*
  50 * These routines are used by the resource group routines (rgrp.c)
  51 * to keep track of block allocation.  Each block is represented by two
  52 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  53 *
  54 * 0 = Free
  55 * 1 = Used (not metadata)
  56 * 2 = Unlinked (still in use) inode
  57 * 3 = Used (metadata)
  58 */
  59
  60struct gfs2_extent {
  61	struct gfs2_rbm rbm;
  62	u32 len;
  63};
  64
  65static const char valid_change[16] = {
  66	        /* current */
  67	/* n */ 0, 1, 1, 1,
  68	/* e */ 1, 0, 0, 0,
  69	/* w */ 0, 0, 0, 1,
  70	        1, 0, 0, 0
  71};
  72
  73static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  74			 const struct gfs2_inode *ip, bool nowrap);
  75
  76
  77/**
  78 * gfs2_setbit - Set a bit in the bitmaps
  79 * @rbm: The position of the bit to set
  80 * @do_clone: Also set the clone bitmap, if it exists
 
 
  81 * @new_state: the new state of the block
  82 *
  83 */
  84
  85static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
 
  86			       unsigned char new_state)
  87{
  88	unsigned char *byte1, *byte2, *end, cur_state;
  89	struct gfs2_bitmap *bi = rbm_bi(rbm);
  90	unsigned int buflen = bi->bi_bytes;
  91	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  92
  93	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
  94	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  95
  96	BUG_ON(byte1 >= end);
  97
  98	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  99
 100	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 101		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
 102
 103		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
 104			rbm->offset, cur_state, new_state);
 105		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
 106			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
 107			(unsigned long long)bi->bi_bh->b_blocknr);
 108		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
 109			bi->bi_offset, bi->bi_bytes,
 110			(unsigned long long)gfs2_rbm_to_block(rbm));
 111		dump_stack();
 112		gfs2_consist_rgrpd(rbm->rgd);
 113		return;
 114	}
 115	*byte1 ^= (cur_state ^ new_state) << bit;
 116
 117	if (do_clone && bi->bi_clone) {
 118		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 119		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 120		*byte2 ^= (cur_state ^ new_state) << bit;
 121	}
 122}
 123
 124/**
 125 * gfs2_testbit - test a bit in the bitmaps
 126 * @rbm: The bit to test
 127 * @use_clone: If true, test the clone bitmap, not the official bitmap.
 
 
 128 *
 129 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
 130 * not the "real" bitmaps, to avoid allocating recently freed blocks.
 131 *
 132 * Returns: The two bit block state of the requested bit
 133 */
 134
 135static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
 
 
 136{
 137	struct gfs2_bitmap *bi = rbm_bi(rbm);
 138	const u8 *buffer;
 139	const u8 *byte;
 140	unsigned int bit;
 141
 142	if (use_clone && bi->bi_clone)
 143		buffer = bi->bi_clone;
 144	else
 145		buffer = bi->bi_bh->b_data;
 146	buffer += bi->bi_offset;
 147	byte = buffer + (rbm->offset / GFS2_NBBY);
 148	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 149
 150	return (*byte >> bit) & GFS2_BIT_MASK;
 151}
 152
 153/**
 154 * gfs2_bit_search
 155 * @ptr: Pointer to bitmap data
 156 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 157 * @state: The state we are searching for
 158 *
 159 * We xor the bitmap data with a patter which is the bitwise opposite
 160 * of what we are looking for, this gives rise to a pattern of ones
 161 * wherever there is a match. Since we have two bits per entry, we
 162 * take this pattern, shift it down by one place and then and it with
 163 * the original. All the even bit positions (0,2,4, etc) then represent
 164 * successful matches, so we mask with 0x55555..... to remove the unwanted
 165 * odd bit positions.
 166 *
 167 * This allows searching of a whole u64 at once (32 blocks) with a
 168 * single test (on 64 bit arches).
 169 */
 170
 171static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 172{
 173	u64 tmp;
 174	static const u64 search[] = {
 175		[0] = 0xffffffffffffffffULL,
 176		[1] = 0xaaaaaaaaaaaaaaaaULL,
 177		[2] = 0x5555555555555555ULL,
 178		[3] = 0x0000000000000000ULL,
 179	};
 180	tmp = le64_to_cpu(*ptr) ^ search[state];
 181	tmp &= (tmp >> 1);
 182	tmp &= mask;
 183	return tmp;
 184}
 185
 186/**
 187 * rs_cmp - multi-block reservation range compare
 188 * @blk: absolute file system block number of the new reservation
 189 * @len: number of blocks in the new reservation
 190 * @rs: existing reservation to compare against
 191 *
 192 * returns: 1 if the block range is beyond the reach of the reservation
 193 *         -1 if the block range is before the start of the reservation
 194 *          0 if the block range overlaps with the reservation
 195 */
 196static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 197{
 198	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 199
 200	if (blk >= startblk + rs->rs_free)
 201		return 1;
 202	if (blk + len - 1 < startblk)
 203		return -1;
 204	return 0;
 205}
 206
 207/**
 208 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 209 *       a block in a given allocation state.
 210 * @buf: the buffer that holds the bitmaps
 211 * @len: the length (in bytes) of the buffer
 212 * @goal: start search at this block's bit-pair (within @buffer)
 213 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 214 *
 215 * Scope of @goal and returned block number is only within this bitmap buffer,
 216 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 217 * beginning of a bitmap block buffer, skipping any header structures, but
 218 * headers are always a multiple of 64 bits long so that the buffer is
 219 * always aligned to a 64 bit boundary.
 220 *
 221 * The size of the buffer is in bytes, but is it assumed that it is
 222 * always ok to read a complete multiple of 64 bits at the end
 223 * of the block in case the end is no aligned to a natural boundary.
 224 *
 225 * Return: the block number (bitmap buffer scope) that was found
 226 */
 227
 228static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 229		       u32 goal, u8 state)
 230{
 231	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 232	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 233	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 234	u64 tmp;
 235	u64 mask = 0x5555555555555555ULL;
 236	u32 bit;
 237
 
 
 238	/* Mask off bits we don't care about at the start of the search */
 239	mask <<= spoint;
 240	tmp = gfs2_bit_search(ptr, mask, state);
 241	ptr++;
 242	while(tmp == 0 && ptr < end) {
 243		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 244		ptr++;
 245	}
 246	/* Mask off any bits which are more than len bytes from the start */
 247	if (ptr == end && (len & (sizeof(u64) - 1)))
 248		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 249	/* Didn't find anything, so return */
 250	if (tmp == 0)
 251		return BFITNOENT;
 252	ptr--;
 253	bit = __ffs64(tmp);
 254	bit /= 2;	/* two bits per entry in the bitmap */
 255	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 256}
 257
 258/**
 259 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 260 * @rbm: The rbm with rgd already set correctly
 261 * @block: The block number (filesystem relative)
 262 *
 263 * This sets the bi and offset members of an rbm based on a
 264 * resource group and a filesystem relative block number. The
 265 * resource group must be set in the rbm on entry, the bi and
 266 * offset members will be set by this function.
 267 *
 268 * Returns: 0 on success, or an error code
 269 */
 270
 271static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 272{
 273	if (!rgrp_contains_block(rbm->rgd, block))
 274		return -E2BIG;
 275	rbm->bii = 0;
 276	rbm->offset = block - rbm->rgd->rd_data0;
 277	/* Check if the block is within the first block */
 278	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 279		return 0;
 280
 281	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 282	rbm->offset += (sizeof(struct gfs2_rgrp) -
 283			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 284	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 285	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 286	return 0;
 287}
 288
 289/**
 290 * gfs2_rbm_incr - increment an rbm structure
 291 * @rbm: The rbm with rgd already set correctly
 292 *
 293 * This function takes an existing rbm structure and increments it to the next
 294 * viable block offset.
 295 *
 296 * Returns: If incrementing the offset would cause the rbm to go past the
 297 *          end of the rgrp, true is returned, otherwise false.
 298 *
 299 */
 300
 301static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
 302{
 303	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
 304		rbm->offset++;
 305		return false;
 306	}
 307	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
 308		return true;
 309
 310	rbm->offset = 0;
 311	rbm->bii++;
 312	return false;
 313}
 314
 315/**
 316 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 317 * @rbm: Position to search (value/result)
 318 * @n_unaligned: Number of unaligned blocks to check
 319 * @len: Decremented for each block found (terminate on zero)
 320 *
 321 * Returns: true if a non-free block is encountered
 322 */
 323
 324static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 325{
 326	u32 n;
 327	u8 res;
 328
 329	for (n = 0; n < n_unaligned; n++) {
 330		res = gfs2_testbit(rbm, true);
 331		if (res != GFS2_BLKST_FREE)
 332			return true;
 333		(*len)--;
 334		if (*len == 0)
 335			return true;
 336		if (gfs2_rbm_incr(rbm))
 337			return true;
 338	}
 339
 340	return false;
 341}
 342
 343/**
 344 * gfs2_free_extlen - Return extent length of free blocks
 345 * @rrbm: Starting position
 346 * @len: Max length to check
 347 *
 348 * Starting at the block specified by the rbm, see how many free blocks
 349 * there are, not reading more than len blocks ahead. This can be done
 350 * using memchr_inv when the blocks are byte aligned, but has to be done
 351 * on a block by block basis in case of unaligned blocks. Also this
 352 * function can cope with bitmap boundaries (although it must stop on
 353 * a resource group boundary)
 354 *
 355 * Returns: Number of free blocks in the extent
 356 */
 357
 358static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 359{
 360	struct gfs2_rbm rbm = *rrbm;
 361	u32 n_unaligned = rbm.offset & 3;
 362	u32 size = len;
 363	u32 bytes;
 364	u32 chunk_size;
 365	u8 *ptr, *start, *end;
 366	u64 block;
 367	struct gfs2_bitmap *bi;
 368
 369	if (n_unaligned &&
 370	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 371		goto out;
 372
 373	n_unaligned = len & 3;
 374	/* Start is now byte aligned */
 375	while (len > 3) {
 376		bi = rbm_bi(&rbm);
 377		start = bi->bi_bh->b_data;
 378		if (bi->bi_clone)
 379			start = bi->bi_clone;
 380		start += bi->bi_offset;
 381		end = start + bi->bi_bytes;
 382		BUG_ON(rbm.offset & 3);
 383		start += (rbm.offset / GFS2_NBBY);
 384		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 385		ptr = memchr_inv(start, 0, bytes);
 386		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 387		chunk_size *= GFS2_NBBY;
 388		BUG_ON(len < chunk_size);
 389		len -= chunk_size;
 390		block = gfs2_rbm_to_block(&rbm);
 391		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 392			n_unaligned = 0;
 393			break;
 394		}
 395		if (ptr) {
 396			n_unaligned = 3;
 397			break;
 398		}
 399		n_unaligned = len & 3;
 400	}
 401
 402	/* Deal with any bits left over at the end */
 403	if (n_unaligned)
 404		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 405out:
 406	return size - len;
 407}
 408
 409/**
 410 * gfs2_bitcount - count the number of bits in a certain state
 411 * @rgd: the resource group descriptor
 412 * @buffer: the buffer that holds the bitmaps
 413 * @buflen: the length (in bytes) of the buffer
 414 * @state: the state of the block we're looking for
 415 *
 416 * Returns: The number of bits
 417 */
 418
 419static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 420			 unsigned int buflen, u8 state)
 421{
 422	const u8 *byte = buffer;
 423	const u8 *end = buffer + buflen;
 424	const u8 state1 = state << 2;
 425	const u8 state2 = state << 4;
 426	const u8 state3 = state << 6;
 427	u32 count = 0;
 428
 429	for (; byte < end; byte++) {
 430		if (((*byte) & 0x03) == state)
 431			count++;
 432		if (((*byte) & 0x0C) == state1)
 433			count++;
 434		if (((*byte) & 0x30) == state2)
 435			count++;
 436		if (((*byte) & 0xC0) == state3)
 437			count++;
 438	}
 439
 440	return count;
 441}
 442
 443/**
 444 * gfs2_rgrp_verify - Verify that a resource group is consistent
 445 * @rgd: the rgrp
 446 *
 447 */
 448
 449void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 450{
 451	struct gfs2_sbd *sdp = rgd->rd_sbd;
 452	struct gfs2_bitmap *bi = NULL;
 453	u32 length = rgd->rd_length;
 454	u32 count[4], tmp;
 455	int buf, x;
 456
 457	memset(count, 0, 4 * sizeof(u32));
 458
 459	/* Count # blocks in each of 4 possible allocation states */
 460	for (buf = 0; buf < length; buf++) {
 461		bi = rgd->rd_bits + buf;
 462		for (x = 0; x < 4; x++)
 463			count[x] += gfs2_bitcount(rgd,
 464						  bi->bi_bh->b_data +
 465						  bi->bi_offset,
 466						  bi->bi_bytes, x);
 467	}
 468
 469	if (count[0] != rgd->rd_free) {
 470		if (gfs2_consist_rgrpd(rgd))
 471			fs_err(sdp, "free data mismatch:  %u != %u\n",
 472			       count[0], rgd->rd_free);
 473		return;
 474	}
 475
 476	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 477	if (count[1] != tmp) {
 478		if (gfs2_consist_rgrpd(rgd))
 479			fs_err(sdp, "used data mismatch:  %u != %u\n",
 480			       count[1], tmp);
 481		return;
 482	}
 483
 484	if (count[2] + count[3] != rgd->rd_dinodes) {
 485		if (gfs2_consist_rgrpd(rgd))
 486			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 487			       count[2] + count[3], rgd->rd_dinodes);
 488		return;
 489	}
 490}
 491
 
 
 
 
 
 
 
 492/**
 493 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 494 * @sdp: The GFS2 superblock
 495 * @blk: The data block number
 496 * @exact: True if this needs to be an exact match
 497 *
 498 * The @exact argument should be set to true by most callers. The exception
 499 * is when we need to match blocks which are not represented by the rgrp
 500 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
 501 * there for alignment purposes. Another way of looking at it is that @exact
 502 * matches only valid data/metadata blocks, but with @exact false, it will
 503 * match any block within the extent of the rgrp.
 504 *
 505 * Returns: The resource group, or NULL if not found
 506 */
 507
 508struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 509{
 510	struct rb_node *n, *next;
 511	struct gfs2_rgrpd *cur;
 512
 513	spin_lock(&sdp->sd_rindex_spin);
 514	n = sdp->sd_rindex_tree.rb_node;
 515	while (n) {
 516		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 517		next = NULL;
 518		if (blk < cur->rd_addr)
 519			next = n->rb_left;
 520		else if (blk >= cur->rd_data0 + cur->rd_data)
 521			next = n->rb_right;
 522		if (next == NULL) {
 523			spin_unlock(&sdp->sd_rindex_spin);
 524			if (exact) {
 525				if (blk < cur->rd_addr)
 526					return NULL;
 527				if (blk >= cur->rd_data0 + cur->rd_data)
 528					return NULL;
 529			}
 530			return cur;
 531		}
 532		n = next;
 533	}
 534	spin_unlock(&sdp->sd_rindex_spin);
 535
 536	return NULL;
 537}
 538
 539/**
 540 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 541 * @sdp: The GFS2 superblock
 542 *
 543 * Returns: The first rgrp in the filesystem
 544 */
 545
 546struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 547{
 548	const struct rb_node *n;
 549	struct gfs2_rgrpd *rgd;
 550
 551	spin_lock(&sdp->sd_rindex_spin);
 552	n = rb_first(&sdp->sd_rindex_tree);
 553	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 554	spin_unlock(&sdp->sd_rindex_spin);
 555
 556	return rgd;
 557}
 558
 559/**
 560 * gfs2_rgrpd_get_next - get the next RG
 561 * @rgd: the resource group descriptor
 562 *
 563 * Returns: The next rgrp
 564 */
 565
 566struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 567{
 568	struct gfs2_sbd *sdp = rgd->rd_sbd;
 569	const struct rb_node *n;
 570
 571	spin_lock(&sdp->sd_rindex_spin);
 572	n = rb_next(&rgd->rd_node);
 573	if (n == NULL)
 574		n = rb_first(&sdp->sd_rindex_tree);
 575
 576	if (unlikely(&rgd->rd_node == n)) {
 577		spin_unlock(&sdp->sd_rindex_spin);
 578		return NULL;
 579	}
 580	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 581	spin_unlock(&sdp->sd_rindex_spin);
 582	return rgd;
 583}
 584
 585void check_and_update_goal(struct gfs2_inode *ip)
 586{
 587	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 588	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 589		ip->i_goal = ip->i_no_addr;
 590}
 591
 592void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 593{
 594	int x;
 595
 596	for (x = 0; x < rgd->rd_length; x++) {
 597		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 598		kfree(bi->bi_clone);
 599		bi->bi_clone = NULL;
 600	}
 601}
 602
 603/**
 604 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
 605 *                 plus a quota allocations data structure, if necessary
 606 * @ip: the inode for this reservation
 607 */
 608int gfs2_rsqa_alloc(struct gfs2_inode *ip)
 609{
 610	return gfs2_qa_alloc(ip);
 611}
 612
 613static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
 614		    const char *fs_id_buf)
 615{
 616	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
 617
 618	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf,
 619		       (unsigned long long)ip->i_no_addr,
 620		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 621		       rs->rs_rbm.offset, rs->rs_free);
 622}
 623
 624/**
 625 * __rs_deltree - remove a multi-block reservation from the rgd tree
 626 * @rs: The reservation to remove
 627 *
 628 */
 629static void __rs_deltree(struct gfs2_blkreserv *rs)
 630{
 631	struct gfs2_rgrpd *rgd;
 632
 633	if (!gfs2_rs_active(rs))
 634		return;
 635
 636	rgd = rs->rs_rbm.rgd;
 637	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 638	rb_erase(&rs->rs_node, &rgd->rd_rstree);
 639	RB_CLEAR_NODE(&rs->rs_node);
 640
 641	if (rs->rs_free) {
 642		u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
 643				 rs->rs_free - 1;
 644		struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
 645		struct gfs2_bitmap *start, *last;
 646
 647		/* return reserved blocks to the rgrp */
 648		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 649		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 650		/* The rgrp extent failure point is likely not to increase;
 651		   it will only do so if the freed blocks are somehow
 652		   contiguous with a span of free blocks that follows. Still,
 653		   it will force the number to be recalculated later. */
 654		rgd->rd_extfail_pt += rs->rs_free;
 655		rs->rs_free = 0;
 656		if (gfs2_rbm_from_block(&last_rbm, last_block))
 657			return;
 658		start = rbm_bi(&rs->rs_rbm);
 659		last = rbm_bi(&last_rbm);
 660		do
 661			clear_bit(GBF_FULL, &start->bi_flags);
 662		while (start++ != last);
 663	}
 664}
 665
 666/**
 667 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 668 * @rs: The reservation to remove
 669 *
 670 */
 671void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 672{
 673	struct gfs2_rgrpd *rgd;
 674
 675	rgd = rs->rs_rbm.rgd;
 676	if (rgd) {
 677		spin_lock(&rgd->rd_rsspin);
 678		__rs_deltree(rs);
 679		BUG_ON(rs->rs_free);
 680		spin_unlock(&rgd->rd_rsspin);
 681	}
 682}
 683
 684/**
 685 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
 686 * @ip: The inode for this reservation
 687 * @wcount: The inode's write count, or NULL
 688 *
 689 */
 690void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
 691{
 692	down_write(&ip->i_rw_mutex);
 693	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
 694		gfs2_rs_deltree(&ip->i_res);
 695	up_write(&ip->i_rw_mutex);
 696	gfs2_qa_delete(ip, wcount);
 697}
 698
 699/**
 700 * return_all_reservations - return all reserved blocks back to the rgrp.
 701 * @rgd: the rgrp that needs its space back
 702 *
 703 * We previously reserved a bunch of blocks for allocation. Now we need to
 704 * give them back. This leave the reservation structures in tact, but removes
 705 * all of their corresponding "no-fly zones".
 706 */
 707static void return_all_reservations(struct gfs2_rgrpd *rgd)
 708{
 709	struct rb_node *n;
 710	struct gfs2_blkreserv *rs;
 711
 712	spin_lock(&rgd->rd_rsspin);
 713	while ((n = rb_first(&rgd->rd_rstree))) {
 714		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 715		__rs_deltree(rs);
 716	}
 717	spin_unlock(&rgd->rd_rsspin);
 718}
 719
 720void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 721{
 722	struct rb_node *n;
 723	struct gfs2_rgrpd *rgd;
 724	struct gfs2_glock *gl;
 725
 726	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 727		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 728		gl = rgd->rd_gl;
 729
 730		rb_erase(n, &sdp->sd_rindex_tree);
 731
 732		if (gl) {
 733			glock_clear_object(gl, rgd);
 734			gfs2_rgrp_brelse(rgd);
 
 
 735			gfs2_glock_put(gl);
 736		}
 737
 738		gfs2_free_clones(rgd);
 739		kfree(rgd->rd_bits);
 740		rgd->rd_bits = NULL;
 741		return_all_reservations(rgd);
 742		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 743	}
 744}
 745
 746static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 747{
 748	struct gfs2_sbd *sdp = rgd->rd_sbd;
 749
 750	fs_info(sdp, "ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 751	fs_info(sdp, "ri_length = %u\n", rgd->rd_length);
 752	fs_info(sdp, "ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 753	fs_info(sdp, "ri_data = %u\n", rgd->rd_data);
 754	fs_info(sdp, "ri_bitbytes = %u\n", rgd->rd_bitbytes);
 755}
 756
 757/**
 758 * gfs2_compute_bitstructs - Compute the bitmap sizes
 759 * @rgd: The resource group descriptor
 760 *
 761 * Calculates bitmap descriptors, one for each block that contains bitmap data
 762 *
 763 * Returns: errno
 764 */
 765
 766static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 767{
 768	struct gfs2_sbd *sdp = rgd->rd_sbd;
 769	struct gfs2_bitmap *bi;
 770	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 771	u32 bytes_left, bytes;
 772	int x;
 773
 774	if (!length)
 775		return -EINVAL;
 776
 777	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 778	if (!rgd->rd_bits)
 779		return -ENOMEM;
 780
 781	bytes_left = rgd->rd_bitbytes;
 782
 783	for (x = 0; x < length; x++) {
 784		bi = rgd->rd_bits + x;
 785
 786		bi->bi_flags = 0;
 787		/* small rgrp; bitmap stored completely in header block */
 788		if (length == 1) {
 789			bytes = bytes_left;
 790			bi->bi_offset = sizeof(struct gfs2_rgrp);
 791			bi->bi_start = 0;
 792			bi->bi_bytes = bytes;
 793			bi->bi_blocks = bytes * GFS2_NBBY;
 794		/* header block */
 795		} else if (x == 0) {
 796			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 797			bi->bi_offset = sizeof(struct gfs2_rgrp);
 798			bi->bi_start = 0;
 799			bi->bi_bytes = bytes;
 800			bi->bi_blocks = bytes * GFS2_NBBY;
 801		/* last block */
 802		} else if (x + 1 == length) {
 803			bytes = bytes_left;
 804			bi->bi_offset = sizeof(struct gfs2_meta_header);
 805			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 806			bi->bi_bytes = bytes;
 807			bi->bi_blocks = bytes * GFS2_NBBY;
 808		/* other blocks */
 809		} else {
 810			bytes = sdp->sd_sb.sb_bsize -
 811				sizeof(struct gfs2_meta_header);
 812			bi->bi_offset = sizeof(struct gfs2_meta_header);
 813			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 814			bi->bi_bytes = bytes;
 815			bi->bi_blocks = bytes * GFS2_NBBY;
 816		}
 817
 818		bytes_left -= bytes;
 819	}
 820
 821	if (bytes_left) {
 822		gfs2_consist_rgrpd(rgd);
 823		return -EIO;
 824	}
 825	bi = rgd->rd_bits + (length - 1);
 826	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
 827		if (gfs2_consist_rgrpd(rgd)) {
 828			gfs2_rindex_print(rgd);
 829			fs_err(sdp, "start=%u len=%u offset=%u\n",
 830			       bi->bi_start, bi->bi_bytes, bi->bi_offset);
 831		}
 832		return -EIO;
 833	}
 834
 835	return 0;
 836}
 837
 838/**
 839 * gfs2_ri_total - Total up the file system space, according to the rindex.
 840 * @sdp: the filesystem
 841 *
 842 */
 843u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 844{
 845	u64 total_data = 0;	
 846	struct inode *inode = sdp->sd_rindex;
 847	struct gfs2_inode *ip = GFS2_I(inode);
 848	char buf[sizeof(struct gfs2_rindex)];
 849	int error, rgrps;
 850
 851	for (rgrps = 0;; rgrps++) {
 852		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 853
 854		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 855			break;
 856		error = gfs2_internal_read(ip, buf, &pos,
 857					   sizeof(struct gfs2_rindex));
 858		if (error != sizeof(struct gfs2_rindex))
 859			break;
 860		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 861	}
 862	return total_data;
 863}
 864
 865static int rgd_insert(struct gfs2_rgrpd *rgd)
 866{
 867	struct gfs2_sbd *sdp = rgd->rd_sbd;
 868	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 869
 870	/* Figure out where to put new node */
 871	while (*newn) {
 872		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 873						  rd_node);
 874
 875		parent = *newn;
 876		if (rgd->rd_addr < cur->rd_addr)
 877			newn = &((*newn)->rb_left);
 878		else if (rgd->rd_addr > cur->rd_addr)
 879			newn = &((*newn)->rb_right);
 880		else
 881			return -EEXIST;
 882	}
 883
 884	rb_link_node(&rgd->rd_node, parent, newn);
 885	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 886	sdp->sd_rgrps++;
 887	return 0;
 888}
 889
 890/**
 891 * read_rindex_entry - Pull in a new resource index entry from the disk
 892 * @ip: Pointer to the rindex inode
 893 *
 894 * Returns: 0 on success, > 0 on EOF, error code otherwise
 895 */
 896
 897static int read_rindex_entry(struct gfs2_inode *ip)
 898{
 899	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 900	const unsigned bsize = sdp->sd_sb.sb_bsize;
 901	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 902	struct gfs2_rindex buf;
 903	int error;
 904	struct gfs2_rgrpd *rgd;
 905
 906	if (pos >= i_size_read(&ip->i_inode))
 907		return 1;
 908
 909	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 910				   sizeof(struct gfs2_rindex));
 911
 912	if (error != sizeof(struct gfs2_rindex))
 913		return (error == 0) ? 1 : error;
 914
 915	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 916	error = -ENOMEM;
 917	if (!rgd)
 918		return error;
 919
 920	rgd->rd_sbd = sdp;
 921	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 922	rgd->rd_length = be32_to_cpu(buf.ri_length);
 923	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 924	rgd->rd_data = be32_to_cpu(buf.ri_data);
 925	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 926	spin_lock_init(&rgd->rd_rsspin);
 927
 928	error = compute_bitstructs(rgd);
 929	if (error)
 930		goto fail;
 931
 932	error = gfs2_glock_get(sdp, rgd->rd_addr,
 933			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 934	if (error)
 935		goto fail;
 936
 937	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 938	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
 939	if (rgd->rd_data > sdp->sd_max_rg_data)
 940		sdp->sd_max_rg_data = rgd->rd_data;
 941	spin_lock(&sdp->sd_rindex_spin);
 942	error = rgd_insert(rgd);
 943	spin_unlock(&sdp->sd_rindex_spin);
 944	if (!error) {
 945		glock_set_object(rgd->rd_gl, rgd);
 946		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
 947		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
 948						    rgd->rd_length) * bsize) - 1;
 949		return 0;
 950	}
 951
 952	error = 0; /* someone else read in the rgrp; free it and ignore it */
 953	gfs2_glock_put(rgd->rd_gl);
 954
 955fail:
 956	kfree(rgd->rd_bits);
 957	rgd->rd_bits = NULL;
 958	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 959	return error;
 960}
 961
 962/**
 963 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 964 * @sdp: the GFS2 superblock
 965 *
 966 * The purpose of this function is to select a subset of the resource groups
 967 * and mark them as PREFERRED. We do it in such a way that each node prefers
 968 * to use a unique set of rgrps to minimize glock contention.
 969 */
 970static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 971{
 972	struct gfs2_rgrpd *rgd, *first;
 973	int i;
 974
 975	/* Skip an initial number of rgrps, based on this node's journal ID.
 976	   That should start each node out on its own set. */
 977	rgd = gfs2_rgrpd_get_first(sdp);
 978	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 979		rgd = gfs2_rgrpd_get_next(rgd);
 980	first = rgd;
 981
 982	do {
 983		rgd->rd_flags |= GFS2_RDF_PREFERRED;
 984		for (i = 0; i < sdp->sd_journals; i++) {
 985			rgd = gfs2_rgrpd_get_next(rgd);
 986			if (!rgd || rgd == first)
 987				break;
 988		}
 989	} while (rgd && rgd != first);
 990}
 991
 992/**
 993 * gfs2_ri_update - Pull in a new resource index from the disk
 994 * @ip: pointer to the rindex inode
 995 *
 996 * Returns: 0 on successful update, error code otherwise
 997 */
 998
 999static int gfs2_ri_update(struct gfs2_inode *ip)
1000{
1001	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1002	int error;
1003
1004	do {
1005		error = read_rindex_entry(ip);
1006	} while (error == 0);
1007
1008	if (error < 0)
1009		return error;
1010
1011	set_rgrp_preferences(sdp);
1012
1013	sdp->sd_rindex_uptodate = 1;
1014	return 0;
1015}
1016
1017/**
1018 * gfs2_rindex_update - Update the rindex if required
1019 * @sdp: The GFS2 superblock
1020 *
1021 * We grab a lock on the rindex inode to make sure that it doesn't
1022 * change whilst we are performing an operation. We keep this lock
1023 * for quite long periods of time compared to other locks. This
1024 * doesn't matter, since it is shared and it is very, very rarely
1025 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1026 *
1027 * This makes sure that we're using the latest copy of the resource index
1028 * special file, which might have been updated if someone expanded the
1029 * filesystem (via gfs2_grow utility), which adds new resource groups.
1030 *
1031 * Returns: 0 on succeess, error code otherwise
1032 */
1033
1034int gfs2_rindex_update(struct gfs2_sbd *sdp)
1035{
1036	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1037	struct gfs2_glock *gl = ip->i_gl;
1038	struct gfs2_holder ri_gh;
1039	int error = 0;
1040	int unlock_required = 0;
1041
1042	/* Read new copy from disk if we don't have the latest */
1043	if (!sdp->sd_rindex_uptodate) {
1044		if (!gfs2_glock_is_locked_by_me(gl)) {
1045			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1046			if (error)
1047				return error;
1048			unlock_required = 1;
1049		}
1050		if (!sdp->sd_rindex_uptodate)
1051			error = gfs2_ri_update(ip);
1052		if (unlock_required)
1053			gfs2_glock_dq_uninit(&ri_gh);
1054	}
1055
1056	return error;
1057}
1058
1059static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1060{
1061	const struct gfs2_rgrp *str = buf;
1062	u32 rg_flags;
1063
1064	rg_flags = be32_to_cpu(str->rg_flags);
1065	rg_flags &= ~GFS2_RDF_MASK;
1066	rgd->rd_flags &= GFS2_RDF_MASK;
1067	rgd->rd_flags |= rg_flags;
1068	rgd->rd_free = be32_to_cpu(str->rg_free);
1069	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1070	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1071	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1072}
1073
1074static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1075{
1076	const struct gfs2_rgrp *str = buf;
1077
1078	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1079	rgl->rl_flags = str->rg_flags;
1080	rgl->rl_free = str->rg_free;
1081	rgl->rl_dinodes = str->rg_dinodes;
1082	rgl->rl_igeneration = str->rg_igeneration;
1083	rgl->__pad = 0UL;
1084}
1085
1086static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1087{
1088	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1089	struct gfs2_rgrp *str = buf;
1090	u32 crc;
1091
1092	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1093	str->rg_free = cpu_to_be32(rgd->rd_free);
1094	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1095	if (next == NULL)
1096		str->rg_skip = 0;
1097	else if (next->rd_addr > rgd->rd_addr)
1098		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1099	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1100	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1101	str->rg_data = cpu_to_be32(rgd->rd_data);
1102	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1103	str->rg_crc = 0;
1104	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1105	str->rg_crc = cpu_to_be32(crc);
1106
1107	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1108	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1109}
1110
1111static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1112{
1113	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1114	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1115	struct gfs2_sbd *sdp = rgd->rd_sbd;
1116	int valid = 1;
1117
1118	if (rgl->rl_flags != str->rg_flags) {
1119		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120			(unsigned long long)rgd->rd_addr,
1121		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1122		valid = 0;
1123	}
1124	if (rgl->rl_free != str->rg_free) {
1125		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1126			(unsigned long long)rgd->rd_addr,
1127			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1128		valid = 0;
1129	}
1130	if (rgl->rl_dinodes != str->rg_dinodes) {
1131		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132			(unsigned long long)rgd->rd_addr,
1133			be32_to_cpu(rgl->rl_dinodes),
1134			be32_to_cpu(str->rg_dinodes));
1135		valid = 0;
1136	}
1137	if (rgl->rl_igeneration != str->rg_igeneration) {
1138		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1139			(unsigned long long)rgd->rd_addr,
1140			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1141			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1142		valid = 0;
1143	}
1144	return valid;
1145}
1146
1147static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1148{
1149	struct gfs2_bitmap *bi;
1150	const u32 length = rgd->rd_length;
1151	const u8 *buffer = NULL;
1152	u32 i, goal, count = 0;
1153
1154	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1155		goal = 0;
1156		buffer = bi->bi_bh->b_data + bi->bi_offset;
1157		WARN_ON(!buffer_uptodate(bi->bi_bh));
1158		while (goal < bi->bi_blocks) {
1159			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1160					   GFS2_BLKST_UNLINKED);
1161			if (goal == BFITNOENT)
1162				break;
1163			count++;
1164			goal++;
1165		}
1166	}
1167
1168	return count;
1169}
1170
1171
1172/**
1173 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1174 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1175 *
1176 * Read in all of a Resource Group's header and bitmap blocks.
1177 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1178 *
1179 * Returns: errno
1180 */
1181
1182static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1183{
 
1184	struct gfs2_sbd *sdp = rgd->rd_sbd;
1185	struct gfs2_glock *gl = rgd->rd_gl;
1186	unsigned int length = rgd->rd_length;
1187	struct gfs2_bitmap *bi;
1188	unsigned int x, y;
1189	int error;
1190
1191	if (rgd->rd_bits[0].bi_bh != NULL)
1192		return 0;
1193
1194	for (x = 0; x < length; x++) {
1195		bi = rgd->rd_bits + x;
1196		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1197		if (error)
1198			goto fail;
1199	}
1200
1201	for (y = length; y--;) {
1202		bi = rgd->rd_bits + y;
1203		error = gfs2_meta_wait(sdp, bi->bi_bh);
1204		if (error)
1205			goto fail;
1206		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1207					      GFS2_METATYPE_RG)) {
1208			error = -EIO;
1209			goto fail;
1210		}
1211	}
1212
1213	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1214		for (x = 0; x < length; x++)
1215			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1216		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1217		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1218		rgd->rd_free_clone = rgd->rd_free;
1219		/* max out the rgrp allocation failure point */
1220		rgd->rd_extfail_pt = rgd->rd_free;
1221	}
1222	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1223		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1224		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1225				     rgd->rd_bits[0].bi_bh->b_data);
1226	}
1227	else if (sdp->sd_args.ar_rgrplvb) {
1228		if (!gfs2_rgrp_lvb_valid(rgd)){
1229			gfs2_consist_rgrpd(rgd);
1230			error = -EIO;
1231			goto fail;
1232		}
1233		if (rgd->rd_rgl->rl_unlinked == 0)
1234			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1235	}
 
1236	return 0;
1237
1238fail:
1239	while (x--) {
1240		bi = rgd->rd_bits + x;
1241		brelse(bi->bi_bh);
1242		bi->bi_bh = NULL;
1243		gfs2_assert_warn(sdp, !bi->bi_clone);
1244	}
1245
1246	return error;
1247}
1248
1249static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1250{
1251	u32 rl_flags;
1252
1253	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1254		return 0;
1255
1256	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1257		return gfs2_rgrp_bh_get(rgd);
1258
1259	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1260	rl_flags &= ~GFS2_RDF_MASK;
1261	rgd->rd_flags &= GFS2_RDF_MASK;
1262	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1263	if (rgd->rd_rgl->rl_unlinked == 0)
1264		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1265	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1266	rgd->rd_free_clone = rgd->rd_free;
1267	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1268	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1269	return 0;
1270}
1271
1272int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1273{
1274	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1275	struct gfs2_sbd *sdp = rgd->rd_sbd;
1276
1277	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1278		return 0;
1279	return gfs2_rgrp_bh_get(rgd);
1280}
1281
1282/**
1283 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1284 * @rgd: The resource group
1285 *
1286 */
1287
1288void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1289{
 
1290	int x, length = rgd->rd_length;
1291
1292	for (x = 0; x < length; x++) {
1293		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1294		if (bi->bi_bh) {
1295			brelse(bi->bi_bh);
1296			bi->bi_bh = NULL;
1297		}
1298	}
1299
1300}
1301
1302/**
1303 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1304 * @gh: The glock holder for the resource group
1305 *
1306 */
1307
1308void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1309{
1310	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1311	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1312		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1313
1314	if (rgd && demote_requested)
1315		gfs2_rgrp_brelse(rgd);
1316}
1317
1318int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1319			     struct buffer_head *bh,
1320			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1321{
1322	struct super_block *sb = sdp->sd_vfs;
 
 
 
1323	u64 blk;
1324	sector_t start = 0;
1325	sector_t nr_blks = 0;
1326	int rv;
1327	unsigned int x;
1328	u32 trimmed = 0;
1329	u8 diff;
1330
1331	for (x = 0; x < bi->bi_bytes; x++) {
1332		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1333		clone += bi->bi_offset;
1334		clone += x;
1335		if (bh) {
1336			const u8 *orig = bh->b_data + bi->bi_offset + x;
1337			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1338		} else {
1339			diff = ~(*clone | (*clone >> 1));
1340		}
1341		diff &= 0x55;
1342		if (diff == 0)
1343			continue;
1344		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 
1345		while(diff) {
1346			if (diff & 1) {
1347				if (nr_blks == 0)
1348					goto start_new_extent;
1349				if ((start + nr_blks) != blk) {
1350					if (nr_blks >= minlen) {
1351						rv = sb_issue_discard(sb,
1352							start, nr_blks,
1353							GFP_NOFS, 0);
1354						if (rv)
1355							goto fail;
1356						trimmed += nr_blks;
1357					}
1358					nr_blks = 0;
1359start_new_extent:
1360					start = blk;
1361				}
1362				nr_blks++;
1363			}
1364			diff >>= 2;
1365			blk++;
1366		}
1367	}
1368	if (nr_blks >= minlen) {
1369		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1370		if (rv)
1371			goto fail;
1372		trimmed += nr_blks;
1373	}
1374	if (ptrimmed)
1375		*ptrimmed = trimmed;
1376	return 0;
1377
1378fail:
1379	if (sdp->sd_args.ar_discard)
1380		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1381	sdp->sd_args.ar_discard = 0;
1382	return -EIO;
1383}
1384
1385/**
1386 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1387 * @filp: Any file on the filesystem
1388 * @argp: Pointer to the arguments (also used to pass result)
1389 *
1390 * Returns: 0 on success, otherwise error code
1391 */
1392
1393int gfs2_fitrim(struct file *filp, void __user *argp)
1394{
1395	struct inode *inode = file_inode(filp);
1396	struct gfs2_sbd *sdp = GFS2_SB(inode);
1397	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1398	struct buffer_head *bh;
1399	struct gfs2_rgrpd *rgd;
1400	struct gfs2_rgrpd *rgd_end;
1401	struct gfs2_holder gh;
1402	struct fstrim_range r;
1403	int ret = 0;
1404	u64 amt;
1405	u64 trimmed = 0;
1406	u64 start, end, minlen;
1407	unsigned int x;
1408	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1409
1410	if (!capable(CAP_SYS_ADMIN))
1411		return -EPERM;
1412
1413	if (!blk_queue_discard(q))
1414		return -EOPNOTSUPP;
1415
1416	if (copy_from_user(&r, argp, sizeof(r)))
 
 
 
 
1417		return -EFAULT;
1418
1419	ret = gfs2_rindex_update(sdp);
1420	if (ret)
1421		return ret;
1422
1423	start = r.start >> bs_shift;
1424	end = start + (r.len >> bs_shift);
1425	minlen = max_t(u64, r.minlen,
1426		       q->limits.discard_granularity) >> bs_shift;
1427
1428	if (end <= start || minlen > sdp->sd_max_rg_data)
1429		return -EINVAL;
1430
1431	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1432	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1433
1434	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1435	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1436		return -EINVAL; /* start is beyond the end of the fs */
1437
1438	while (1) {
1439
1440		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1441		if (ret)
1442			goto out;
1443
1444		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1445			/* Trim each bitmap in the rgrp */
1446			for (x = 0; x < rgd->rd_length; x++) {
1447				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1448				ret = gfs2_rgrp_send_discards(sdp,
1449						rgd->rd_data0, NULL, bi, minlen,
1450						&amt);
1451				if (ret) {
1452					gfs2_glock_dq_uninit(&gh);
1453					goto out;
1454				}
1455				trimmed += amt;
1456			}
1457
1458			/* Mark rgrp as having been trimmed */
1459			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1460			if (ret == 0) {
1461				bh = rgd->rd_bits[0].bi_bh;
1462				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1463				gfs2_trans_add_meta(rgd->rd_gl, bh);
1464				gfs2_rgrp_out(rgd, bh->b_data);
1465				gfs2_trans_end(sdp);
1466			}
1467		}
1468		gfs2_glock_dq_uninit(&gh);
1469
1470		if (rgd == rgd_end)
1471			break;
1472
1473		rgd = gfs2_rgrpd_get_next(rgd);
1474	}
1475
1476out:
1477	r.len = trimmed << bs_shift;
1478	if (copy_to_user(argp, &r, sizeof(r)))
1479		return -EFAULT;
1480
1481	return ret;
1482}
1483
1484/**
1485 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1486 * @ip: the inode structure
1487 *
 
1488 */
1489static void rs_insert(struct gfs2_inode *ip)
1490{
1491	struct rb_node **newn, *parent = NULL;
1492	int rc;
1493	struct gfs2_blkreserv *rs = &ip->i_res;
1494	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1495	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1496
1497	BUG_ON(gfs2_rs_active(rs));
1498
1499	spin_lock(&rgd->rd_rsspin);
1500	newn = &rgd->rd_rstree.rb_node;
1501	while (*newn) {
1502		struct gfs2_blkreserv *cur =
1503			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1504
1505		parent = *newn;
1506		rc = rs_cmp(fsblock, rs->rs_free, cur);
1507		if (rc > 0)
1508			newn = &((*newn)->rb_right);
1509		else if (rc < 0)
1510			newn = &((*newn)->rb_left);
1511		else {
1512			spin_unlock(&rgd->rd_rsspin);
1513			WARN_ON(1);
1514			return;
1515		}
1516	}
1517
1518	rb_link_node(&rs->rs_node, parent, newn);
1519	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1520
1521	/* Do our rgrp accounting for the reservation */
1522	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1523	spin_unlock(&rgd->rd_rsspin);
1524	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1525}
1526
1527/**
1528 * rgd_free - return the number of free blocks we can allocate.
1529 * @rgd: the resource group
1530 *
1531 * This function returns the number of free blocks for an rgrp.
1532 * That's the clone-free blocks (blocks that are free, not including those
1533 * still being used for unlinked files that haven't been deleted.)
1534 *
1535 * It also subtracts any blocks reserved by someone else, but does not
1536 * include free blocks that are still part of our current reservation,
1537 * because obviously we can (and will) allocate them.
1538 */
1539static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1540{
1541	u32 tot_reserved, tot_free;
1542
1543	if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free))
1544		return 0;
1545	tot_reserved = rgd->rd_reserved - rs->rs_free;
1546
1547	if (rgd->rd_free_clone < tot_reserved)
1548		tot_reserved = 0;
1549
1550	tot_free = rgd->rd_free_clone - tot_reserved;
1551
1552	return tot_free;
1553}
1554
1555/**
1556 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1557 * @rgd: the resource group descriptor
1558 * @ip: pointer to the inode for which we're reserving blocks
1559 * @ap: the allocation parameters
1560 *
 
1561 */
1562
1563static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1564			   const struct gfs2_alloc_parms *ap)
1565{
1566	struct gfs2_rbm rbm = { .rgd = rgd, };
1567	u64 goal;
1568	struct gfs2_blkreserv *rs = &ip->i_res;
1569	u32 extlen;
1570	u32 free_blocks = rgd_free(rgd, rs);
1571	int ret;
1572	struct inode *inode = &ip->i_inode;
1573
1574	if (S_ISDIR(inode->i_mode))
1575		extlen = 1;
1576	else {
1577		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1578		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1579	}
1580	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1581		return;
1582
1583	/* Find bitmap block that contains bits for goal block */
1584	if (rgrp_contains_block(rgd, ip->i_goal))
1585		goal = ip->i_goal;
1586	else
1587		goal = rgd->rd_last_alloc + rgd->rd_data0;
1588
1589	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1590		return;
1591
1592	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1593	if (ret == 0) {
1594		rs->rs_rbm = rbm;
1595		rs->rs_free = extlen;
1596		rs_insert(ip);
1597	} else {
1598		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1599			rgd->rd_last_alloc = 0;
1600	}
1601}
1602
1603/**
1604 * gfs2_next_unreserved_block - Return next block that is not reserved
1605 * @rgd: The resource group
1606 * @block: The starting block
1607 * @length: The required length
1608 * @ip: Ignore any reservations for this inode
1609 *
1610 * If the block does not appear in any reservation, then return the
1611 * block number unchanged. If it does appear in the reservation, then
1612 * keep looking through the tree of reservations in order to find the
1613 * first block number which is not reserved.
1614 */
1615
1616static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1617				      u32 length,
1618				      const struct gfs2_inode *ip)
1619{
1620	struct gfs2_blkreserv *rs;
1621	struct rb_node *n;
1622	int rc;
1623
1624	spin_lock(&rgd->rd_rsspin);
1625	n = rgd->rd_rstree.rb_node;
1626	while (n) {
1627		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1628		rc = rs_cmp(block, length, rs);
1629		if (rc < 0)
1630			n = n->rb_left;
1631		else if (rc > 0)
1632			n = n->rb_right;
1633		else
1634			break;
1635	}
1636
1637	if (n) {
1638		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1639			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1640			n = n->rb_right;
1641			if (n == NULL)
1642				break;
1643			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1644		}
1645	}
1646
1647	spin_unlock(&rgd->rd_rsspin);
1648	return block;
1649}
1650
1651/**
1652 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1653 * @rbm: The current position in the resource group
1654 * @ip: The inode for which we are searching for blocks
1655 * @minext: The minimum extent length
1656 * @maxext: A pointer to the maximum extent structure
1657 *
1658 * This checks the current position in the rgrp to see whether there is
1659 * a reservation covering this block. If not then this function is a
1660 * no-op. If there is, then the position is moved to the end of the
1661 * contiguous reservation(s) so that we are pointing at the first
1662 * non-reserved block.
1663 *
1664 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1665 */
1666
1667static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1668					     const struct gfs2_inode *ip,
1669					     u32 minext,
1670					     struct gfs2_extent *maxext)
1671{
1672	u64 block = gfs2_rbm_to_block(rbm);
1673	u32 extlen = 1;
1674	u64 nblock;
1675	int ret;
1676
1677	/*
1678	 * If we have a minimum extent length, then skip over any extent
1679	 * which is less than the min extent length in size.
1680	 */
1681	if (minext) {
1682		extlen = gfs2_free_extlen(rbm, minext);
1683		if (extlen <= maxext->len)
1684			goto fail;
1685	}
1686
1687	/*
1688	 * Check the extent which has been found against the reservations
1689	 * and skip if parts of it are already reserved
1690	 */
1691	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1692	if (nblock == block) {
1693		if (!minext || extlen >= minext)
1694			return 0;
1695
1696		if (extlen > maxext->len) {
1697			maxext->len = extlen;
1698			maxext->rbm = *rbm;
1699		}
1700fail:
1701		nblock = block + extlen;
1702	}
1703	ret = gfs2_rbm_from_block(rbm, nblock);
1704	if (ret < 0)
1705		return ret;
1706	return 1;
1707}
1708
1709/**
1710 * gfs2_rbm_find - Look for blocks of a particular state
1711 * @rbm: Value/result starting position and final position
1712 * @state: The state which we want to find
1713 * @minext: Pointer to the requested extent length (NULL for a single block)
1714 *          This is updated to be the actual reservation size.
1715 * @ip: If set, check for reservations
1716 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1717 *          around until we've reached the starting point.
1718 *
1719 * Side effects:
1720 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1721 *   has no free blocks in it.
1722 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1723 *   has come up short on a free block search.
1724 *
1725 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1726 */
1727
1728static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1729			 const struct gfs2_inode *ip, bool nowrap)
1730{
1731	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1732	struct buffer_head *bh;
1733	int last_bii;
1734	u32 offset;
1735	u8 *buffer;
1736	bool wrapped = false;
1737	int ret;
1738	struct gfs2_bitmap *bi;
1739	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1740
1741	/*
1742	 * Determine the last bitmap to search.  If we're not starting at the
1743	 * beginning of a bitmap, we need to search that bitmap twice to scan
1744	 * the entire resource group.
1745	 */
1746	last_bii = rbm->bii - (rbm->offset == 0);
1747
1748	while(1) {
1749		bi = rbm_bi(rbm);
1750		if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) &&
1751		    test_bit(GBF_FULL, &bi->bi_flags) &&
1752		    (state == GFS2_BLKST_FREE))
1753			goto next_bitmap;
1754
1755		bh = bi->bi_bh;
1756		buffer = bh->b_data + bi->bi_offset;
1757		WARN_ON(!buffer_uptodate(bh));
1758		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1759			buffer = bi->bi_clone + bi->bi_offset;
1760		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1761		if (offset == BFITNOENT) {
1762			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1763				set_bit(GBF_FULL, &bi->bi_flags);
1764			goto next_bitmap;
1765		}
1766		rbm->offset = offset;
1767		if (ip == NULL)
1768			return 0;
1769
1770		ret = gfs2_reservation_check_and_update(rbm, ip,
1771							minext ? *minext : 0,
1772							&maxext);
1773		if (ret == 0)
1774			return 0;
1775		if (ret > 0)
1776			goto next_iter;
1777		if (ret == -E2BIG) {
1778			rbm->bii = 0;
1779			rbm->offset = 0;
1780			goto res_covered_end_of_rgrp;
1781		}
1782		return ret;
1783
1784next_bitmap:	/* Find next bitmap in the rgrp */
1785		rbm->offset = 0;
1786		rbm->bii++;
1787		if (rbm->bii == rbm->rgd->rd_length)
1788			rbm->bii = 0;
1789res_covered_end_of_rgrp:
1790		if (rbm->bii == 0) {
1791			if (wrapped)
1792				break;
1793			wrapped = true;
1794			if (nowrap)
1795				break;
1796		}
1797next_iter:
1798		/* Have we scanned the entire resource group? */
1799		if (wrapped && rbm->bii > last_bii)
1800			break;
1801	}
1802
1803	if (minext == NULL || state != GFS2_BLKST_FREE)
1804		return -ENOSPC;
1805
1806	/* If the extent was too small, and it's smaller than the smallest
1807	   to have failed before, remember for future reference that it's
1808	   useless to search this rgrp again for this amount or more. */
1809	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1810	    *minext < rbm->rgd->rd_extfail_pt)
1811		rbm->rgd->rd_extfail_pt = *minext;
1812
1813	/* If the maximum extent we found is big enough to fulfill the
1814	   minimum requirements, use it anyway. */
1815	if (maxext.len) {
1816		*rbm = maxext.rbm;
1817		*minext = maxext.len;
1818		return 0;
1819	}
1820
1821	return -ENOSPC;
1822}
1823
1824/**
1825 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1826 * @rgd: The rgrp
1827 * @last_unlinked: block address of the last dinode we unlinked
1828 * @skip: block address we should explicitly not unlink
1829 *
1830 * Returns: 0 if no error
1831 *          The inode, if one has been found, in inode.
1832 */
1833
1834static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1835{
1836	u64 block;
 
1837	struct gfs2_sbd *sdp = rgd->rd_sbd;
1838	struct gfs2_glock *gl;
1839	struct gfs2_inode *ip;
1840	int error;
1841	int found = 0;
1842	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1843
1844	while (1) {
1845		down_write(&sdp->sd_log_flush_lock);
1846		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1847				      true);
1848		up_write(&sdp->sd_log_flush_lock);
1849		if (error == -ENOSPC)
1850			break;
1851		if (WARN_ON_ONCE(error))
1852			break;
1853
1854		block = gfs2_rbm_to_block(&rbm);
1855		if (gfs2_rbm_from_block(&rbm, block + 1))
1856			break;
1857		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
 
 
1858			continue;
1859		if (block == skip)
1860			continue;
1861		*last_unlinked = block;
1862
1863		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1864		if (error)
1865			continue;
1866
1867		/* If the inode is already in cache, we can ignore it here
1868		 * because the existing inode disposal code will deal with
1869		 * it when all refs have gone away. Accessing gl_object like
1870		 * this is not safe in general. Here it is ok because we do
1871		 * not dereference the pointer, and we only need an approx
1872		 * answer to whether it is NULL or not.
1873		 */
1874		ip = gl->gl_object;
1875
1876		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1877			gfs2_glock_put(gl);
1878		else
1879			found++;
1880
1881		/* Limit reclaim to sensible number of tasks */
1882		if (found > NR_CPUS)
1883			return;
1884	}
1885
1886	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1887	return;
1888}
1889
1890/**
1891 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1892 * @rgd: The rgrp in question
1893 * @loops: An indication of how picky we can be (0=very, 1=less so)
1894 *
1895 * This function uses the recently added glock statistics in order to
1896 * figure out whether a parciular resource group is suffering from
1897 * contention from multiple nodes. This is done purely on the basis
1898 * of timings, since this is the only data we have to work with and
1899 * our aim here is to reject a resource group which is highly contended
1900 * but (very important) not to do this too often in order to ensure that
1901 * we do not land up introducing fragmentation by changing resource
1902 * groups when not actually required.
1903 *
1904 * The calculation is fairly simple, we want to know whether the SRTTB
1905 * (i.e. smoothed round trip time for blocking operations) to acquire
1906 * the lock for this rgrp's glock is significantly greater than the
1907 * time taken for resource groups on average. We introduce a margin in
1908 * the form of the variable @var which is computed as the sum of the two
1909 * respective variences, and multiplied by a factor depending on @loops
1910 * and whether we have a lot of data to base the decision on. This is
1911 * then tested against the square difference of the means in order to
1912 * decide whether the result is statistically significant or not.
1913 *
1914 * Returns: A boolean verdict on the congestion status
1915 */
1916
1917static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1918{
1919	const struct gfs2_glock *gl = rgd->rd_gl;
1920	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1921	struct gfs2_lkstats *st;
1922	u64 r_dcount, l_dcount;
1923	u64 l_srttb, a_srttb = 0;
1924	s64 srttb_diff;
1925	u64 sqr_diff;
1926	u64 var;
1927	int cpu, nonzero = 0;
1928
1929	preempt_disable();
1930	for_each_present_cpu(cpu) {
1931		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1932		if (st->stats[GFS2_LKS_SRTTB]) {
1933			a_srttb += st->stats[GFS2_LKS_SRTTB];
1934			nonzero++;
1935		}
1936	}
1937	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1938	if (nonzero)
1939		do_div(a_srttb, nonzero);
1940	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1941	var = st->stats[GFS2_LKS_SRTTVARB] +
1942	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1943	preempt_enable();
1944
1945	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1946	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1947
1948	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1949		return false;
1950
1951	srttb_diff = a_srttb - l_srttb;
1952	sqr_diff = srttb_diff * srttb_diff;
1953
1954	var *= 2;
1955	if (l_dcount < 8 || r_dcount < 8)
1956		var *= 2;
1957	if (loops == 1)
1958		var *= 2;
1959
1960	return ((srttb_diff < 0) && (sqr_diff > var));
1961}
1962
1963/**
1964 * gfs2_rgrp_used_recently
1965 * @rs: The block reservation with the rgrp to test
1966 * @msecs: The time limit in milliseconds
1967 *
1968 * Returns: True if the rgrp glock has been used within the time limit
1969 */
1970static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1971				    u64 msecs)
1972{
1973	u64 tdiff;
 
 
 
 
1974
1975	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1976                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
 
 
1977
1978	return tdiff > (msecs * 1000 * 1000);
1979}
1980
1981static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1982{
1983	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1984	u32 skip;
1985
1986	get_random_bytes(&skip, sizeof(skip));
1987	return skip % sdp->sd_rgrps;
1988}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1989
1990static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1991{
1992	struct gfs2_rgrpd *rgd = *pos;
1993	struct gfs2_sbd *sdp = rgd->rd_sbd;
1994
1995	rgd = gfs2_rgrpd_get_next(rgd);
1996	if (rgd == NULL)
1997		rgd = gfs2_rgrpd_get_first(sdp);
1998	*pos = rgd;
1999	if (rgd != begin) /* If we didn't wrap */
2000		return true;
2001	return false;
2002}
2003
2004/**
2005 * fast_to_acquire - determine if a resource group will be fast to acquire
2006 *
2007 * If this is one of our preferred rgrps, it should be quicker to acquire,
2008 * because we tried to set ourselves up as dlm lock master.
2009 */
2010static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2011{
2012	struct gfs2_glock *gl = rgd->rd_gl;
2013
2014	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2015	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2016	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
2017		return 1;
2018	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2019		return 1;
2020	return 0;
2021}
2022
2023/**
2024 * gfs2_inplace_reserve - Reserve space in the filesystem
2025 * @ip: the inode to reserve space for
2026 * @ap: the allocation parameters
2027 *
2028 * We try our best to find an rgrp that has at least ap->target blocks
2029 * available. After a couple of passes (loops == 2), the prospects of finding
2030 * such an rgrp diminish. At this stage, we return the first rgrp that has
2031 * at least ap->min_target blocks available. Either way, we set ap->allowed to
2032 * the number of blocks available in the chosen rgrp.
2033 *
2034 * Returns: 0 on success,
2035 *          -ENOMEM if a suitable rgrp can't be found
2036 *          errno otherwise
2037 */
2038
2039int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2040{
2041	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2042	struct gfs2_rgrpd *begin = NULL;
2043	struct gfs2_blkreserv *rs = &ip->i_res;
2044	int error = 0, rg_locked, flags = 0;
2045	u64 last_unlinked = NO_BLOCK;
2046	int loops = 0;
2047	u32 free_blocks, skip = 0;
2048
2049	if (sdp->sd_args.ar_rgrplvb)
2050		flags |= GL_SKIP;
2051	if (gfs2_assert_warn(sdp, ap->target))
2052		return -EINVAL;
2053	if (gfs2_rs_active(rs)) {
2054		begin = rs->rs_rbm.rgd;
2055	} else if (rs->rs_rbm.rgd &&
2056		   rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) {
2057		begin = rs->rs_rbm.rgd;
2058	} else {
2059		check_and_update_goal(ip);
2060		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2061	}
2062	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2063		skip = gfs2_orlov_skip(ip);
2064	if (rs->rs_rbm.rgd == NULL)
2065		return -EBADSLT;
2066
2067	while (loops < 3) {
2068		rg_locked = 1;
 
 
 
 
2069
2070		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2071			rg_locked = 0;
2072			if (skip && skip--)
2073				goto next_rgrp;
2074			if (!gfs2_rs_active(rs)) {
2075				if (loops == 0 &&
2076				    !fast_to_acquire(rs->rs_rbm.rgd))
2077					goto next_rgrp;
2078				if ((loops < 2) &&
2079				    gfs2_rgrp_used_recently(rs, 1000) &&
2080				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2081					goto next_rgrp;
2082			}
2083			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2084						   LM_ST_EXCLUSIVE, flags,
2085						   &ip->i_rgd_gh);
2086			if (unlikely(error))
2087				return error;
2088			if (!gfs2_rs_active(rs) && (loops < 2) &&
2089			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2090				goto skip_rgrp;
2091			if (sdp->sd_args.ar_rgrplvb) {
2092				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2093				if (unlikely(error)) {
2094					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2095					return error;
2096				}
2097			}
2098		}
2099
2100		/* Skip unusable resource groups */
2101		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2102						 GFS2_RDF_ERROR)) ||
2103		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2104			goto skip_rgrp;
2105
2106		if (sdp->sd_args.ar_rgrplvb)
2107			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2108
2109		/* Get a reservation if we don't already have one */
2110		if (!gfs2_rs_active(rs))
2111			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2112
2113		/* Skip rgrps when we can't get a reservation on first pass */
2114		if (!gfs2_rs_active(rs) && (loops < 1))
2115			goto check_rgrp;
2116
2117		/* If rgrp has enough free space, use it */
2118		free_blocks = rgd_free(rs->rs_rbm.rgd, rs);
2119		if (free_blocks >= ap->target ||
2120		    (loops == 2 && ap->min_target &&
2121		     free_blocks >= ap->min_target)) {
2122			ap->allowed = free_blocks;
2123			return 0;
2124		}
2125check_rgrp:
2126		/* Check for unlinked inodes which can be reclaimed */
2127		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2128			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2129					ip->i_no_addr);
2130skip_rgrp:
2131		/* Drop reservation, if we couldn't use reserved rgrp */
2132		if (gfs2_rs_active(rs))
2133			gfs2_rs_deltree(rs);
2134
2135		/* Unlock rgrp if required */
2136		if (!rg_locked)
2137			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2138next_rgrp:
2139		/* Find the next rgrp, and continue looking */
2140		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2141			continue;
2142		if (skip)
2143			continue;
2144
2145		/* If we've scanned all the rgrps, but found no free blocks
2146		 * then this checks for some less likely conditions before
2147		 * trying again.
2148		 */
2149		loops++;
2150		/* Check that fs hasn't grown if writing to rindex */
2151		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2152			error = gfs2_ri_update(ip);
2153			if (error)
2154				return error;
 
2155		}
2156		/* Flushing the log may release space */
2157		if (loops == 2)
2158			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2159				       GFS2_LFC_INPLACE_RESERVE);
2160	}
2161
2162	return -ENOSPC;
 
 
 
2163}
2164
2165/**
2166 * gfs2_inplace_release - release an inplace reservation
2167 * @ip: the inode the reservation was taken out on
2168 *
2169 * Release a reservation made by gfs2_inplace_reserve().
2170 */
2171
2172void gfs2_inplace_release(struct gfs2_inode *ip)
2173{
2174	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2175		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176}
2177
2178/**
2179 * gfs2_alloc_extent - allocate an extent from a given bitmap
2180 * @rbm: the resource group information
 
 
2181 * @dinode: TRUE if the first block we allocate is for a dinode
2182 * @n: The extent length (value/result)
2183 *
2184 * Add the bitmap buffer to the transaction.
2185 * Set the found bits to @new_state to change block's allocation state.
 
2186 */
2187static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2188			     unsigned int *n)
2189{
2190	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2191	const unsigned int elen = *n;
2192	u64 block;
2193	int ret;
2194
2195	*n = 1;
2196	block = gfs2_rbm_to_block(rbm);
2197	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2198	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2199	block++;
 
 
2200	while (*n < elen) {
2201		ret = gfs2_rbm_from_block(&pos, block);
2202		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
 
 
 
2203			break;
2204		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2205		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2206		(*n)++;
2207		block++;
2208	}
 
 
 
2209}
2210
2211/**
2212 * rgblk_free - Change alloc state of given block(s)
2213 * @sdp: the filesystem
2214 * @rgd: the resource group the blocks are in
2215 * @bstart: the start of a run of blocks to free
2216 * @blen: the length of the block run (all must lie within ONE RG!)
2217 * @new_state: GFS2_BLKST_XXX the after-allocation block state
 
 
2218 */
2219
2220static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2221		       u64 bstart, u32 blen, unsigned char new_state)
2222{
2223	struct gfs2_rbm rbm;
2224	struct gfs2_bitmap *bi, *bi_prev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2225
2226	rbm.rgd = rgd;
2227	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2228		return;
2229	while (blen--) {
2230		bi = rbm_bi(&rbm);
2231		if (bi != bi_prev) {
2232			if (!bi->bi_clone) {
2233				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2234						      GFP_NOFS | __GFP_NOFAIL);
2235				memcpy(bi->bi_clone + bi->bi_offset,
2236				       bi->bi_bh->b_data + bi->bi_offset,
2237				       bi->bi_bytes);
2238			}
2239			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2240			bi_prev = bi;
 
 
 
 
 
 
2241		}
2242		gfs2_setbit(&rbm, false, new_state);
2243		gfs2_rbm_incr(&rbm);
2244	}
 
 
2245}
2246
2247/**
2248 * gfs2_rgrp_dump - print out an rgrp
2249 * @seq: The iterator
2250 * @gl: The glock in question
2251 * @fs_id_buf: pointer to file system id (if requested)
2252 *
2253 */
2254
2255void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl,
2256		    const char *fs_id_buf)
2257{
2258	struct gfs2_rgrpd *rgd = gl->gl_object;
2259	struct gfs2_blkreserv *trs;
2260	const struct rb_node *n;
2261
2262	if (rgd == NULL)
2263		return;
2264	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2265		       fs_id_buf,
2266		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2267		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2268		       rgd->rd_reserved, rgd->rd_extfail_pt);
2269	if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2270		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2271
2272		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2273			       be32_to_cpu(rgl->rl_flags),
2274			       be32_to_cpu(rgl->rl_free),
2275			       be32_to_cpu(rgl->rl_dinodes));
2276	}
2277	spin_lock(&rgd->rd_rsspin);
2278	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2279		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2280		dump_rs(seq, trs, fs_id_buf);
2281	}
2282	spin_unlock(&rgd->rd_rsspin);
2283}
2284
2285static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2286{
2287	struct gfs2_sbd *sdp = rgd->rd_sbd;
2288	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2289
2290	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2291		(unsigned long long)rgd->rd_addr);
2292	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2293	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2294	gfs2_rgrp_dump(NULL, rgd->rd_gl, fs_id_buf);
2295	rgd->rd_flags |= GFS2_RDF_ERROR;
2296}
2297
2298/**
2299 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2300 * @ip: The inode we have just allocated blocks for
2301 * @rbm: The start of the allocated blocks
2302 * @len: The extent length
2303 *
2304 * Adjusts a reservation after an allocation has taken place. If the
2305 * reservation does not match the allocation, or if it is now empty
2306 * then it is removed.
2307 */
2308
2309static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2310				    const struct gfs2_rbm *rbm, unsigned len)
2311{
2312	struct gfs2_blkreserv *rs = &ip->i_res;
2313	struct gfs2_rgrpd *rgd = rbm->rgd;
2314	unsigned rlen;
2315	u64 block;
2316	int ret;
2317
2318	spin_lock(&rgd->rd_rsspin);
2319	if (gfs2_rs_active(rs)) {
2320		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2321			block = gfs2_rbm_to_block(rbm);
2322			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2323			rlen = min(rs->rs_free, len);
2324			rs->rs_free -= rlen;
2325			rgd->rd_reserved -= rlen;
2326			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2327			if (rs->rs_free && !ret)
2328				goto out;
2329			/* We used up our block reservation, so we should
2330			   reserve more blocks next time. */
2331			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2332		}
2333		__rs_deltree(rs);
2334	}
2335out:
2336	spin_unlock(&rgd->rd_rsspin);
2337}
2338
2339/**
2340 * gfs2_set_alloc_start - Set starting point for block allocation
2341 * @rbm: The rbm which will be set to the required location
2342 * @ip: The gfs2 inode
2343 * @dinode: Flag to say if allocation includes a new inode
2344 *
2345 * This sets the starting point from the reservation if one is active
2346 * otherwise it falls back to guessing a start point based on the
2347 * inode's goal block or the last allocation point in the rgrp.
2348 */
2349
2350static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2351				 const struct gfs2_inode *ip, bool dinode)
2352{
2353	u64 goal;
2354
2355	if (gfs2_rs_active(&ip->i_res)) {
2356		*rbm = ip->i_res.rs_rbm;
2357		return;
2358	}
2359
2360	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2361		goal = ip->i_goal;
2362	else
2363		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2364
2365	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2366		rbm->bii = 0;
2367		rbm->offset = 0;
2368	}
2369}
2370
2371/**
2372 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2373 * @ip: the inode to allocate the block for
2374 * @bn: Used to return the starting block number
2375 * @nblocks: requested number of blocks/extent length (value/result)
2376 * @dinode: 1 if we're allocating a dinode block, else 0
2377 * @generation: the generation number of the inode
2378 *
2379 * Returns: 0 or error
2380 */
2381
2382int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2383		      bool dinode, u64 *generation)
2384{
2385	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2386	struct buffer_head *dibh;
2387	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, };
2388	unsigned int ndata;
 
2389	u64 block; /* block, within the file system scope */
2390	int error;
 
2391
2392	gfs2_set_alloc_start(&rbm, ip, dinode);
2393	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
 
 
 
2394
2395	if (error == -ENOSPC) {
2396		gfs2_set_alloc_start(&rbm, ip, dinode);
2397		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2398	}
 
 
 
 
2399
2400	/* Since all blocks are reserved in advance, this shouldn't happen */
2401	if (error) {
2402		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2403			(unsigned long long)ip->i_no_addr, error, *nblocks,
2404			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2405			rbm.rgd->rd_extfail_pt);
2406		goto rgrp_error;
2407	}
2408
2409	gfs2_alloc_extent(&rbm, dinode, nblocks);
2410	block = gfs2_rbm_to_block(&rbm);
2411	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2412	if (gfs2_rs_active(&ip->i_res))
2413		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2414	ndata = *nblocks;
2415	if (dinode)
2416		ndata--;
2417
2418	if (!dinode) {
2419		ip->i_goal = block + ndata - 1;
2420		error = gfs2_meta_inode_buffer(ip, &dibh);
2421		if (error == 0) {
2422			struct gfs2_dinode *di =
2423				(struct gfs2_dinode *)dibh->b_data;
2424			gfs2_trans_add_meta(ip->i_gl, dibh);
2425			di->di_goal_meta = di->di_goal_data =
2426				cpu_to_be64(ip->i_goal);
2427			brelse(dibh);
2428		}
2429	}
2430	if (rbm.rgd->rd_free < *nblocks) {
2431		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2432		goto rgrp_error;
2433	}
2434
2435	rbm.rgd->rd_free -= *nblocks;
2436	if (dinode) {
2437		rbm.rgd->rd_dinodes++;
2438		*generation = rbm.rgd->rd_igeneration++;
2439		if (*generation == 0)
2440			*generation = rbm.rgd->rd_igeneration++;
2441	}
2442
2443	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2444	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2445
2446	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2447	if (dinode)
2448		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2449
2450	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
 
 
 
 
 
 
2451
2452	rbm.rgd->rd_free_clone -= *nblocks;
2453	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2454			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2455	*bn = block;
2456	return 0;
2457
2458rgrp_error:
2459	gfs2_rgrp_error(rbm.rgd);
2460	return -EIO;
2461}
2462
2463/**
2464 * __gfs2_free_blocks - free a contiguous run of block(s)
2465 * @ip: the inode these blocks are being freed from
2466 * @rgd: the resource group the blocks are in
2467 * @bstart: first block of a run of contiguous blocks
2468 * @blen: the length of the block run
2469 * @meta: 1 if the blocks represent metadata
2470 *
2471 */
2472
2473void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2474			u64 bstart, u32 blen, int meta)
2475{
2476	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
2477
2478	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
 
 
2479	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2480	rgd->rd_free += blen;
2481	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2482	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2483	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2484
2485	/* Directories keep their data in the metadata address space */
2486	if (meta || ip->i_depth)
2487		gfs2_meta_wipe(ip, bstart, blen);
2488}
2489
2490/**
2491 * gfs2_free_meta - free a contiguous run of data block(s)
2492 * @ip: the inode these blocks are being freed from
2493 * @rgd: the resource group the blocks are in
2494 * @bstart: first block of a run of contiguous blocks
2495 * @blen: the length of the block run
2496 *
2497 */
2498
2499void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2500		    u64 bstart, u32 blen)
2501{
2502	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2503
2504	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2505	gfs2_statfs_change(sdp, 0, +blen, 0);
2506	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2507}
2508
2509void gfs2_unlink_di(struct inode *inode)
2510{
2511	struct gfs2_inode *ip = GFS2_I(inode);
2512	struct gfs2_sbd *sdp = GFS2_SB(inode);
2513	struct gfs2_rgrpd *rgd;
2514	u64 blkno = ip->i_no_addr;
2515
2516	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2517	if (!rgd)
2518		return;
2519	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2520	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2521	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2522	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2523	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2524}
2525
2526void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2527{
2528	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
 
 
 
 
 
2529
2530	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2531	if (!rgd->rd_dinodes)
2532		gfs2_consist_rgrpd(rgd);
2533	rgd->rd_dinodes--;
2534	rgd->rd_free++;
2535
2536	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2537	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2538	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2539
2540	gfs2_statfs_change(sdp, 0, +1, -1);
 
 
 
 
 
 
2541	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2542	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2543	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2544}
2545
2546/**
2547 * gfs2_check_blk_type - Check the type of a block
2548 * @sdp: The superblock
2549 * @no_addr: The block number to check
2550 * @type: The block type we are looking for
2551 *
2552 * Returns: 0 if the block type matches the expected type
2553 *          -ESTALE if it doesn't match
2554 *          or -ve errno if something went wrong while checking
2555 */
2556
2557int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2558{
2559	struct gfs2_rgrpd *rgd;
2560	struct gfs2_holder rgd_gh;
2561	struct gfs2_rbm rbm;
2562	int error = -EINVAL;
2563
2564	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2565	if (!rgd)
2566		goto fail;
2567
2568	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2569	if (error)
2570		goto fail;
2571
2572	rbm.rgd = rgd;
2573	error = gfs2_rbm_from_block(&rbm, no_addr);
2574	if (WARN_ON_ONCE(error))
2575		goto fail;
2576
2577	if (gfs2_testbit(&rbm, false) != type)
2578		error = -ESTALE;
2579
2580	gfs2_glock_dq_uninit(&rgd_gh);
2581fail:
2582	return error;
2583}
2584
2585/**
2586 * gfs2_rlist_add - add a RG to a list of RGs
2587 * @ip: the inode
2588 * @rlist: the list of resource groups
2589 * @block: the block
2590 *
2591 * Figure out what RG a block belongs to and add that RG to the list
2592 *
2593 * FIXME: Don't use NOFAIL
2594 *
2595 */
2596
2597void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2598		    u64 block)
2599{
2600	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2601	struct gfs2_rgrpd *rgd;
2602	struct gfs2_rgrpd **tmp;
2603	unsigned int new_space;
2604	unsigned int x;
2605
2606	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2607		return;
2608
2609	/*
2610	 * The resource group last accessed is kept in the last position.
2611	 */
2612
2613	if (rlist->rl_rgrps) {
2614		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2615		if (rgrp_contains_block(rgd, block))
2616			return;
2617		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2618	} else {
2619		rgd = ip->i_res.rs_rbm.rgd;
2620		if (!rgd || !rgrp_contains_block(rgd, block))
2621			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2622	}
2623
2624	if (!rgd) {
2625		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2626		       (unsigned long long)block);
2627		return;
2628	}
 
2629
2630	for (x = 0; x < rlist->rl_rgrps; x++) {
2631		if (rlist->rl_rgd[x] == rgd) {
2632			swap(rlist->rl_rgd[x],
2633			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2634			return;
2635		}
2636	}
2637
2638	if (rlist->rl_rgrps == rlist->rl_space) {
2639		new_space = rlist->rl_space + 10;
2640
2641		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2642			      GFP_NOFS | __GFP_NOFAIL);
2643
2644		if (rlist->rl_rgd) {
2645			memcpy(tmp, rlist->rl_rgd,
2646			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2647			kfree(rlist->rl_rgd);
2648		}
2649
2650		rlist->rl_space = new_space;
2651		rlist->rl_rgd = tmp;
2652	}
2653
2654	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2655}
2656
2657/**
2658 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2659 *      and initialize an array of glock holders for them
2660 * @rlist: the list of resource groups
 
2661 *
2662 * FIXME: Don't use NOFAIL
2663 *
2664 */
2665
2666void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2667{
2668	unsigned int x;
2669
2670	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2671				      sizeof(struct gfs2_holder),
2672				      GFP_NOFS | __GFP_NOFAIL);
2673	for (x = 0; x < rlist->rl_rgrps; x++)
2674		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2675				LM_ST_EXCLUSIVE, 0,
2676				&rlist->rl_ghs[x]);
2677}
2678
2679/**
2680 * gfs2_rlist_free - free a resource group list
2681 * @rlist: the list of resource groups
2682 *
2683 */
2684
2685void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2686{
2687	unsigned int x;
2688
2689	kfree(rlist->rl_rgd);
2690
2691	if (rlist->rl_ghs) {
2692		for (x = 0; x < rlist->rl_rgrps; x++)
2693			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2694		kfree(rlist->rl_ghs);
2695		rlist->rl_ghs = NULL;
2696	}
2697}
2698