Loading...
1/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#include <linux/slab.h>
11#include <linux/spinlock.h>
12#include <linux/completion.h>
13#include <linux/buffer_head.h>
14#include <linux/fs.h>
15#include <linux/gfs2_ondisk.h>
16#include <linux/prefetch.h>
17#include <linux/blkdev.h>
18#include <linux/rbtree.h>
19
20#include "gfs2.h"
21#include "incore.h"
22#include "glock.h"
23#include "glops.h"
24#include "lops.h"
25#include "meta_io.h"
26#include "quota.h"
27#include "rgrp.h"
28#include "super.h"
29#include "trans.h"
30#include "util.h"
31#include "log.h"
32#include "inode.h"
33#include "trace_gfs2.h"
34
35#define BFITNOENT ((u32)~0)
36#define NO_BLOCK ((u64)~0)
37
38#if BITS_PER_LONG == 32
39#define LBITMASK (0x55555555UL)
40#define LBITSKIP55 (0x55555555UL)
41#define LBITSKIP00 (0x00000000UL)
42#else
43#define LBITMASK (0x5555555555555555UL)
44#define LBITSKIP55 (0x5555555555555555UL)
45#define LBITSKIP00 (0x0000000000000000UL)
46#endif
47
48/*
49 * These routines are used by the resource group routines (rgrp.c)
50 * to keep track of block allocation. Each block is represented by two
51 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
52 *
53 * 0 = Free
54 * 1 = Used (not metadata)
55 * 2 = Unlinked (still in use) inode
56 * 3 = Used (metadata)
57 */
58
59static const char valid_change[16] = {
60 /* current */
61 /* n */ 0, 1, 1, 1,
62 /* e */ 1, 0, 0, 0,
63 /* w */ 0, 0, 0, 1,
64 1, 0, 0, 0
65};
66
67static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
68 unsigned char old_state,
69 struct gfs2_bitmap **rbi);
70
71/**
72 * gfs2_setbit - Set a bit in the bitmaps
73 * @rgd: the resource group descriptor
74 * @buf2: the clone buffer that holds the bitmaps
75 * @bi: the bitmap structure
76 * @block: the block to set
77 * @new_state: the new state of the block
78 *
79 */
80
81static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf2,
82 struct gfs2_bitmap *bi, u32 block,
83 unsigned char new_state)
84{
85 unsigned char *byte1, *byte2, *end, cur_state;
86 unsigned int buflen = bi->bi_len;
87 const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
88
89 byte1 = bi->bi_bh->b_data + bi->bi_offset + (block / GFS2_NBBY);
90 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
91
92 BUG_ON(byte1 >= end);
93
94 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
95
96 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
97 printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
98 "new_state=%d\n",
99 (unsigned long long)block, cur_state, new_state);
100 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
101 (unsigned long long)rgd->rd_addr,
102 (unsigned long)bi->bi_start);
103 printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
104 (unsigned long)bi->bi_offset,
105 (unsigned long)bi->bi_len);
106 dump_stack();
107 gfs2_consist_rgrpd(rgd);
108 return;
109 }
110 *byte1 ^= (cur_state ^ new_state) << bit;
111
112 if (buf2) {
113 byte2 = buf2 + bi->bi_offset + (block / GFS2_NBBY);
114 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
115 *byte2 ^= (cur_state ^ new_state) << bit;
116 }
117}
118
119/**
120 * gfs2_testbit - test a bit in the bitmaps
121 * @rgd: the resource group descriptor
122 * @buffer: the buffer that holds the bitmaps
123 * @buflen: the length (in bytes) of the buffer
124 * @block: the block to read
125 *
126 */
127
128static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
129 const unsigned char *buffer,
130 unsigned int buflen, u32 block)
131{
132 const unsigned char *byte, *end;
133 unsigned char cur_state;
134 unsigned int bit;
135
136 byte = buffer + (block / GFS2_NBBY);
137 bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
138 end = buffer + buflen;
139
140 gfs2_assert(rgd->rd_sbd, byte < end);
141
142 cur_state = (*byte >> bit) & GFS2_BIT_MASK;
143
144 return cur_state;
145}
146
147/**
148 * gfs2_bit_search
149 * @ptr: Pointer to bitmap data
150 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
151 * @state: The state we are searching for
152 *
153 * We xor the bitmap data with a patter which is the bitwise opposite
154 * of what we are looking for, this gives rise to a pattern of ones
155 * wherever there is a match. Since we have two bits per entry, we
156 * take this pattern, shift it down by one place and then and it with
157 * the original. All the even bit positions (0,2,4, etc) then represent
158 * successful matches, so we mask with 0x55555..... to remove the unwanted
159 * odd bit positions.
160 *
161 * This allows searching of a whole u64 at once (32 blocks) with a
162 * single test (on 64 bit arches).
163 */
164
165static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
166{
167 u64 tmp;
168 static const u64 search[] = {
169 [0] = 0xffffffffffffffffULL,
170 [1] = 0xaaaaaaaaaaaaaaaaULL,
171 [2] = 0x5555555555555555ULL,
172 [3] = 0x0000000000000000ULL,
173 };
174 tmp = le64_to_cpu(*ptr) ^ search[state];
175 tmp &= (tmp >> 1);
176 tmp &= mask;
177 return tmp;
178}
179
180/**
181 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
182 * a block in a given allocation state.
183 * @buf: the buffer that holds the bitmaps
184 * @len: the length (in bytes) of the buffer
185 * @goal: start search at this block's bit-pair (within @buffer)
186 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
187 *
188 * Scope of @goal and returned block number is only within this bitmap buffer,
189 * not entire rgrp or filesystem. @buffer will be offset from the actual
190 * beginning of a bitmap block buffer, skipping any header structures, but
191 * headers are always a multiple of 64 bits long so that the buffer is
192 * always aligned to a 64 bit boundary.
193 *
194 * The size of the buffer is in bytes, but is it assumed that it is
195 * always ok to read a complete multiple of 64 bits at the end
196 * of the block in case the end is no aligned to a natural boundary.
197 *
198 * Return: the block number (bitmap buffer scope) that was found
199 */
200
201static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
202 u32 goal, u8 state)
203{
204 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
205 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
206 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
207 u64 tmp;
208 u64 mask = 0x5555555555555555ULL;
209 u32 bit;
210
211 BUG_ON(state > 3);
212
213 /* Mask off bits we don't care about at the start of the search */
214 mask <<= spoint;
215 tmp = gfs2_bit_search(ptr, mask, state);
216 ptr++;
217 while(tmp == 0 && ptr < end) {
218 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
219 ptr++;
220 }
221 /* Mask off any bits which are more than len bytes from the start */
222 if (ptr == end && (len & (sizeof(u64) - 1)))
223 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
224 /* Didn't find anything, so return */
225 if (tmp == 0)
226 return BFITNOENT;
227 ptr--;
228 bit = __ffs64(tmp);
229 bit /= 2; /* two bits per entry in the bitmap */
230 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
231}
232
233/**
234 * gfs2_bitcount - count the number of bits in a certain state
235 * @rgd: the resource group descriptor
236 * @buffer: the buffer that holds the bitmaps
237 * @buflen: the length (in bytes) of the buffer
238 * @state: the state of the block we're looking for
239 *
240 * Returns: The number of bits
241 */
242
243static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
244 unsigned int buflen, u8 state)
245{
246 const u8 *byte = buffer;
247 const u8 *end = buffer + buflen;
248 const u8 state1 = state << 2;
249 const u8 state2 = state << 4;
250 const u8 state3 = state << 6;
251 u32 count = 0;
252
253 for (; byte < end; byte++) {
254 if (((*byte) & 0x03) == state)
255 count++;
256 if (((*byte) & 0x0C) == state1)
257 count++;
258 if (((*byte) & 0x30) == state2)
259 count++;
260 if (((*byte) & 0xC0) == state3)
261 count++;
262 }
263
264 return count;
265}
266
267/**
268 * gfs2_rgrp_verify - Verify that a resource group is consistent
269 * @rgd: the rgrp
270 *
271 */
272
273void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
274{
275 struct gfs2_sbd *sdp = rgd->rd_sbd;
276 struct gfs2_bitmap *bi = NULL;
277 u32 length = rgd->rd_length;
278 u32 count[4], tmp;
279 int buf, x;
280
281 memset(count, 0, 4 * sizeof(u32));
282
283 /* Count # blocks in each of 4 possible allocation states */
284 for (buf = 0; buf < length; buf++) {
285 bi = rgd->rd_bits + buf;
286 for (x = 0; x < 4; x++)
287 count[x] += gfs2_bitcount(rgd,
288 bi->bi_bh->b_data +
289 bi->bi_offset,
290 bi->bi_len, x);
291 }
292
293 if (count[0] != rgd->rd_free) {
294 if (gfs2_consist_rgrpd(rgd))
295 fs_err(sdp, "free data mismatch: %u != %u\n",
296 count[0], rgd->rd_free);
297 return;
298 }
299
300 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
301 if (count[1] != tmp) {
302 if (gfs2_consist_rgrpd(rgd))
303 fs_err(sdp, "used data mismatch: %u != %u\n",
304 count[1], tmp);
305 return;
306 }
307
308 if (count[2] + count[3] != rgd->rd_dinodes) {
309 if (gfs2_consist_rgrpd(rgd))
310 fs_err(sdp, "used metadata mismatch: %u != %u\n",
311 count[2] + count[3], rgd->rd_dinodes);
312 return;
313 }
314}
315
316static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
317{
318 u64 first = rgd->rd_data0;
319 u64 last = first + rgd->rd_data;
320 return first <= block && block < last;
321}
322
323/**
324 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
325 * @sdp: The GFS2 superblock
326 * @blk: The data block number
327 * @exact: True if this needs to be an exact match
328 *
329 * Returns: The resource group, or NULL if not found
330 */
331
332struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
333{
334 struct rb_node *n, *next;
335 struct gfs2_rgrpd *cur;
336
337 spin_lock(&sdp->sd_rindex_spin);
338 n = sdp->sd_rindex_tree.rb_node;
339 while (n) {
340 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
341 next = NULL;
342 if (blk < cur->rd_addr)
343 next = n->rb_left;
344 else if (blk >= cur->rd_data0 + cur->rd_data)
345 next = n->rb_right;
346 if (next == NULL) {
347 spin_unlock(&sdp->sd_rindex_spin);
348 if (exact) {
349 if (blk < cur->rd_addr)
350 return NULL;
351 if (blk >= cur->rd_data0 + cur->rd_data)
352 return NULL;
353 }
354 return cur;
355 }
356 n = next;
357 }
358 spin_unlock(&sdp->sd_rindex_spin);
359
360 return NULL;
361}
362
363/**
364 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
365 * @sdp: The GFS2 superblock
366 *
367 * Returns: The first rgrp in the filesystem
368 */
369
370struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
371{
372 const struct rb_node *n;
373 struct gfs2_rgrpd *rgd;
374
375 spin_lock(&sdp->sd_rindex_spin);
376 n = rb_first(&sdp->sd_rindex_tree);
377 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
378 spin_unlock(&sdp->sd_rindex_spin);
379
380 return rgd;
381}
382
383/**
384 * gfs2_rgrpd_get_next - get the next RG
385 * @rgd: the resource group descriptor
386 *
387 * Returns: The next rgrp
388 */
389
390struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
391{
392 struct gfs2_sbd *sdp = rgd->rd_sbd;
393 const struct rb_node *n;
394
395 spin_lock(&sdp->sd_rindex_spin);
396 n = rb_next(&rgd->rd_node);
397 if (n == NULL)
398 n = rb_first(&sdp->sd_rindex_tree);
399
400 if (unlikely(&rgd->rd_node == n)) {
401 spin_unlock(&sdp->sd_rindex_spin);
402 return NULL;
403 }
404 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
405 spin_unlock(&sdp->sd_rindex_spin);
406 return rgd;
407}
408
409void gfs2_free_clones(struct gfs2_rgrpd *rgd)
410{
411 int x;
412
413 for (x = 0; x < rgd->rd_length; x++) {
414 struct gfs2_bitmap *bi = rgd->rd_bits + x;
415 kfree(bi->bi_clone);
416 bi->bi_clone = NULL;
417 }
418}
419
420void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
421{
422 struct rb_node *n;
423 struct gfs2_rgrpd *rgd;
424 struct gfs2_glock *gl;
425
426 while ((n = rb_first(&sdp->sd_rindex_tree))) {
427 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
428 gl = rgd->rd_gl;
429
430 rb_erase(n, &sdp->sd_rindex_tree);
431
432 if (gl) {
433 spin_lock(&gl->gl_spin);
434 gl->gl_object = NULL;
435 spin_unlock(&gl->gl_spin);
436 gfs2_glock_add_to_lru(gl);
437 gfs2_glock_put(gl);
438 }
439
440 gfs2_free_clones(rgd);
441 kfree(rgd->rd_bits);
442 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
443 }
444}
445
446static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
447{
448 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
449 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
450 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
451 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
452 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
453}
454
455/**
456 * gfs2_compute_bitstructs - Compute the bitmap sizes
457 * @rgd: The resource group descriptor
458 *
459 * Calculates bitmap descriptors, one for each block that contains bitmap data
460 *
461 * Returns: errno
462 */
463
464static int compute_bitstructs(struct gfs2_rgrpd *rgd)
465{
466 struct gfs2_sbd *sdp = rgd->rd_sbd;
467 struct gfs2_bitmap *bi;
468 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
469 u32 bytes_left, bytes;
470 int x;
471
472 if (!length)
473 return -EINVAL;
474
475 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
476 if (!rgd->rd_bits)
477 return -ENOMEM;
478
479 bytes_left = rgd->rd_bitbytes;
480
481 for (x = 0; x < length; x++) {
482 bi = rgd->rd_bits + x;
483
484 bi->bi_flags = 0;
485 /* small rgrp; bitmap stored completely in header block */
486 if (length == 1) {
487 bytes = bytes_left;
488 bi->bi_offset = sizeof(struct gfs2_rgrp);
489 bi->bi_start = 0;
490 bi->bi_len = bytes;
491 /* header block */
492 } else if (x == 0) {
493 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
494 bi->bi_offset = sizeof(struct gfs2_rgrp);
495 bi->bi_start = 0;
496 bi->bi_len = bytes;
497 /* last block */
498 } else if (x + 1 == length) {
499 bytes = bytes_left;
500 bi->bi_offset = sizeof(struct gfs2_meta_header);
501 bi->bi_start = rgd->rd_bitbytes - bytes_left;
502 bi->bi_len = bytes;
503 /* other blocks */
504 } else {
505 bytes = sdp->sd_sb.sb_bsize -
506 sizeof(struct gfs2_meta_header);
507 bi->bi_offset = sizeof(struct gfs2_meta_header);
508 bi->bi_start = rgd->rd_bitbytes - bytes_left;
509 bi->bi_len = bytes;
510 }
511
512 bytes_left -= bytes;
513 }
514
515 if (bytes_left) {
516 gfs2_consist_rgrpd(rgd);
517 return -EIO;
518 }
519 bi = rgd->rd_bits + (length - 1);
520 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
521 if (gfs2_consist_rgrpd(rgd)) {
522 gfs2_rindex_print(rgd);
523 fs_err(sdp, "start=%u len=%u offset=%u\n",
524 bi->bi_start, bi->bi_len, bi->bi_offset);
525 }
526 return -EIO;
527 }
528
529 return 0;
530}
531
532/**
533 * gfs2_ri_total - Total up the file system space, according to the rindex.
534 * @sdp: the filesystem
535 *
536 */
537u64 gfs2_ri_total(struct gfs2_sbd *sdp)
538{
539 u64 total_data = 0;
540 struct inode *inode = sdp->sd_rindex;
541 struct gfs2_inode *ip = GFS2_I(inode);
542 char buf[sizeof(struct gfs2_rindex)];
543 int error, rgrps;
544
545 for (rgrps = 0;; rgrps++) {
546 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
547
548 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
549 break;
550 error = gfs2_internal_read(ip, buf, &pos,
551 sizeof(struct gfs2_rindex));
552 if (error != sizeof(struct gfs2_rindex))
553 break;
554 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
555 }
556 return total_data;
557}
558
559static int rgd_insert(struct gfs2_rgrpd *rgd)
560{
561 struct gfs2_sbd *sdp = rgd->rd_sbd;
562 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
563
564 /* Figure out where to put new node */
565 while (*newn) {
566 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
567 rd_node);
568
569 parent = *newn;
570 if (rgd->rd_addr < cur->rd_addr)
571 newn = &((*newn)->rb_left);
572 else if (rgd->rd_addr > cur->rd_addr)
573 newn = &((*newn)->rb_right);
574 else
575 return -EEXIST;
576 }
577
578 rb_link_node(&rgd->rd_node, parent, newn);
579 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
580 sdp->sd_rgrps++;
581 return 0;
582}
583
584/**
585 * read_rindex_entry - Pull in a new resource index entry from the disk
586 * @ip: Pointer to the rindex inode
587 *
588 * Returns: 0 on success, > 0 on EOF, error code otherwise
589 */
590
591static int read_rindex_entry(struct gfs2_inode *ip)
592{
593 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
594 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
595 struct gfs2_rindex buf;
596 int error;
597 struct gfs2_rgrpd *rgd;
598
599 if (pos >= i_size_read(&ip->i_inode))
600 return 1;
601
602 error = gfs2_internal_read(ip, (char *)&buf, &pos,
603 sizeof(struct gfs2_rindex));
604
605 if (error != sizeof(struct gfs2_rindex))
606 return (error == 0) ? 1 : error;
607
608 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
609 error = -ENOMEM;
610 if (!rgd)
611 return error;
612
613 rgd->rd_sbd = sdp;
614 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
615 rgd->rd_length = be32_to_cpu(buf.ri_length);
616 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
617 rgd->rd_data = be32_to_cpu(buf.ri_data);
618 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
619
620 error = compute_bitstructs(rgd);
621 if (error)
622 goto fail;
623
624 error = gfs2_glock_get(sdp, rgd->rd_addr,
625 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
626 if (error)
627 goto fail;
628
629 rgd->rd_gl->gl_object = rgd;
630 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
631 if (rgd->rd_data > sdp->sd_max_rg_data)
632 sdp->sd_max_rg_data = rgd->rd_data;
633 spin_lock(&sdp->sd_rindex_spin);
634 error = rgd_insert(rgd);
635 spin_unlock(&sdp->sd_rindex_spin);
636 if (!error)
637 return 0;
638
639 error = 0; /* someone else read in the rgrp; free it and ignore it */
640 gfs2_glock_put(rgd->rd_gl);
641
642fail:
643 kfree(rgd->rd_bits);
644 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
645 return error;
646}
647
648/**
649 * gfs2_ri_update - Pull in a new resource index from the disk
650 * @ip: pointer to the rindex inode
651 *
652 * Returns: 0 on successful update, error code otherwise
653 */
654
655static int gfs2_ri_update(struct gfs2_inode *ip)
656{
657 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
658 int error;
659
660 do {
661 error = read_rindex_entry(ip);
662 } while (error == 0);
663
664 if (error < 0)
665 return error;
666
667 sdp->sd_rindex_uptodate = 1;
668 return 0;
669}
670
671/**
672 * gfs2_rindex_update - Update the rindex if required
673 * @sdp: The GFS2 superblock
674 *
675 * We grab a lock on the rindex inode to make sure that it doesn't
676 * change whilst we are performing an operation. We keep this lock
677 * for quite long periods of time compared to other locks. This
678 * doesn't matter, since it is shared and it is very, very rarely
679 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
680 *
681 * This makes sure that we're using the latest copy of the resource index
682 * special file, which might have been updated if someone expanded the
683 * filesystem (via gfs2_grow utility), which adds new resource groups.
684 *
685 * Returns: 0 on succeess, error code otherwise
686 */
687
688int gfs2_rindex_update(struct gfs2_sbd *sdp)
689{
690 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
691 struct gfs2_glock *gl = ip->i_gl;
692 struct gfs2_holder ri_gh;
693 int error = 0;
694 int unlock_required = 0;
695
696 /* Read new copy from disk if we don't have the latest */
697 if (!sdp->sd_rindex_uptodate) {
698 if (!gfs2_glock_is_locked_by_me(gl)) {
699 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
700 if (error)
701 return error;
702 unlock_required = 1;
703 }
704 if (!sdp->sd_rindex_uptodate)
705 error = gfs2_ri_update(ip);
706 if (unlock_required)
707 gfs2_glock_dq_uninit(&ri_gh);
708 }
709
710 return error;
711}
712
713static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
714{
715 const struct gfs2_rgrp *str = buf;
716 u32 rg_flags;
717
718 rg_flags = be32_to_cpu(str->rg_flags);
719 rg_flags &= ~GFS2_RDF_MASK;
720 rgd->rd_flags &= GFS2_RDF_MASK;
721 rgd->rd_flags |= rg_flags;
722 rgd->rd_free = be32_to_cpu(str->rg_free);
723 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
724 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
725}
726
727static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
728{
729 struct gfs2_rgrp *str = buf;
730
731 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
732 str->rg_free = cpu_to_be32(rgd->rd_free);
733 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
734 str->__pad = cpu_to_be32(0);
735 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
736 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
737}
738
739/**
740 * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps
741 * @gh: The glock holder for the resource group
742 *
743 * Read in all of a Resource Group's header and bitmap blocks.
744 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
745 *
746 * Returns: errno
747 */
748
749int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
750{
751 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
752 struct gfs2_sbd *sdp = rgd->rd_sbd;
753 struct gfs2_glock *gl = rgd->rd_gl;
754 unsigned int length = rgd->rd_length;
755 struct gfs2_bitmap *bi;
756 unsigned int x, y;
757 int error;
758
759 for (x = 0; x < length; x++) {
760 bi = rgd->rd_bits + x;
761 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
762 if (error)
763 goto fail;
764 }
765
766 for (y = length; y--;) {
767 bi = rgd->rd_bits + y;
768 error = gfs2_meta_wait(sdp, bi->bi_bh);
769 if (error)
770 goto fail;
771 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
772 GFS2_METATYPE_RG)) {
773 error = -EIO;
774 goto fail;
775 }
776 }
777
778 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
779 for (x = 0; x < length; x++)
780 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
781 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
782 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
783 rgd->rd_free_clone = rgd->rd_free;
784 }
785
786 return 0;
787
788fail:
789 while (x--) {
790 bi = rgd->rd_bits + x;
791 brelse(bi->bi_bh);
792 bi->bi_bh = NULL;
793 gfs2_assert_warn(sdp, !bi->bi_clone);
794 }
795
796 return error;
797}
798
799/**
800 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
801 * @gh: The glock holder for the resource group
802 *
803 */
804
805void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
806{
807 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
808 int x, length = rgd->rd_length;
809
810 for (x = 0; x < length; x++) {
811 struct gfs2_bitmap *bi = rgd->rd_bits + x;
812 brelse(bi->bi_bh);
813 bi->bi_bh = NULL;
814 }
815
816}
817
818int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
819 struct buffer_head *bh,
820 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
821{
822 struct super_block *sb = sdp->sd_vfs;
823 struct block_device *bdev = sb->s_bdev;
824 const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
825 bdev_logical_block_size(sb->s_bdev);
826 u64 blk;
827 sector_t start = 0;
828 sector_t nr_sects = 0;
829 int rv;
830 unsigned int x;
831 u32 trimmed = 0;
832 u8 diff;
833
834 for (x = 0; x < bi->bi_len; x++) {
835 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
836 clone += bi->bi_offset;
837 clone += x;
838 if (bh) {
839 const u8 *orig = bh->b_data + bi->bi_offset + x;
840 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
841 } else {
842 diff = ~(*clone | (*clone >> 1));
843 }
844 diff &= 0x55;
845 if (diff == 0)
846 continue;
847 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
848 blk *= sects_per_blk; /* convert to sectors */
849 while(diff) {
850 if (diff & 1) {
851 if (nr_sects == 0)
852 goto start_new_extent;
853 if ((start + nr_sects) != blk) {
854 if (nr_sects >= minlen) {
855 rv = blkdev_issue_discard(bdev,
856 start, nr_sects,
857 GFP_NOFS, 0);
858 if (rv)
859 goto fail;
860 trimmed += nr_sects;
861 }
862 nr_sects = 0;
863start_new_extent:
864 start = blk;
865 }
866 nr_sects += sects_per_blk;
867 }
868 diff >>= 2;
869 blk += sects_per_blk;
870 }
871 }
872 if (nr_sects >= minlen) {
873 rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
874 if (rv)
875 goto fail;
876 trimmed += nr_sects;
877 }
878 if (ptrimmed)
879 *ptrimmed = trimmed;
880 return 0;
881
882fail:
883 if (sdp->sd_args.ar_discard)
884 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
885 sdp->sd_args.ar_discard = 0;
886 return -EIO;
887}
888
889/**
890 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
891 * @filp: Any file on the filesystem
892 * @argp: Pointer to the arguments (also used to pass result)
893 *
894 * Returns: 0 on success, otherwise error code
895 */
896
897int gfs2_fitrim(struct file *filp, void __user *argp)
898{
899 struct inode *inode = filp->f_dentry->d_inode;
900 struct gfs2_sbd *sdp = GFS2_SB(inode);
901 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
902 struct buffer_head *bh;
903 struct gfs2_rgrpd *rgd;
904 struct gfs2_rgrpd *rgd_end;
905 struct gfs2_holder gh;
906 struct fstrim_range r;
907 int ret = 0;
908 u64 amt;
909 u64 trimmed = 0;
910 unsigned int x;
911
912 if (!capable(CAP_SYS_ADMIN))
913 return -EPERM;
914
915 if (!blk_queue_discard(q))
916 return -EOPNOTSUPP;
917
918 if (argp == NULL) {
919 r.start = 0;
920 r.len = ULLONG_MAX;
921 r.minlen = 0;
922 } else if (copy_from_user(&r, argp, sizeof(r)))
923 return -EFAULT;
924
925 ret = gfs2_rindex_update(sdp);
926 if (ret)
927 return ret;
928
929 rgd = gfs2_blk2rgrpd(sdp, r.start, 0);
930 rgd_end = gfs2_blk2rgrpd(sdp, r.start + r.len, 0);
931
932 while (1) {
933
934 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
935 if (ret)
936 goto out;
937
938 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
939 /* Trim each bitmap in the rgrp */
940 for (x = 0; x < rgd->rd_length; x++) {
941 struct gfs2_bitmap *bi = rgd->rd_bits + x;
942 ret = gfs2_rgrp_send_discards(sdp, rgd->rd_data0, NULL, bi, r.minlen, &amt);
943 if (ret) {
944 gfs2_glock_dq_uninit(&gh);
945 goto out;
946 }
947 trimmed += amt;
948 }
949
950 /* Mark rgrp as having been trimmed */
951 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
952 if (ret == 0) {
953 bh = rgd->rd_bits[0].bi_bh;
954 rgd->rd_flags |= GFS2_RGF_TRIMMED;
955 gfs2_trans_add_bh(rgd->rd_gl, bh, 1);
956 gfs2_rgrp_out(rgd, bh->b_data);
957 gfs2_trans_end(sdp);
958 }
959 }
960 gfs2_glock_dq_uninit(&gh);
961
962 if (rgd == rgd_end)
963 break;
964
965 rgd = gfs2_rgrpd_get_next(rgd);
966 }
967
968out:
969 r.len = trimmed << 9;
970 if (argp && copy_to_user(argp, &r, sizeof(r)))
971 return -EFAULT;
972
973 return ret;
974}
975
976/**
977 * gfs2_qadata_get - get the struct gfs2_qadata structure for an inode
978 * @ip: the incore GFS2 inode structure
979 *
980 * Returns: the struct gfs2_qadata
981 */
982
983struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip)
984{
985 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
986 int error;
987 BUG_ON(ip->i_qadata != NULL);
988 ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS);
989 error = gfs2_rindex_update(sdp);
990 if (error)
991 fs_warn(sdp, "rindex update returns %d\n", error);
992 return ip->i_qadata;
993}
994
995/**
996 * gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode
997 * @ip: the incore GFS2 inode structure
998 *
999 * Returns: the struct gfs2_qadata
1000 */
1001
1002static int gfs2_blkrsv_get(struct gfs2_inode *ip)
1003{
1004 BUG_ON(ip->i_res != NULL);
1005 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
1006 if (!ip->i_res)
1007 return -ENOMEM;
1008 return 0;
1009}
1010
1011/**
1012 * try_rgrp_fit - See if a given reservation will fit in a given RG
1013 * @rgd: the RG data
1014 * @ip: the inode
1015 *
1016 * If there's room for the requested blocks to be allocated from the RG:
1017 *
1018 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
1019 */
1020
1021static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip)
1022{
1023 const struct gfs2_blkreserv *rs = ip->i_res;
1024
1025 if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1026 return 0;
1027 if (rgd->rd_free_clone >= rs->rs_requested)
1028 return 1;
1029 return 0;
1030}
1031
1032static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk)
1033{
1034 return (bi->bi_start * GFS2_NBBY) + blk;
1035}
1036
1037/**
1038 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1039 * @rgd: The rgrp
1040 * @last_unlinked: block address of the last dinode we unlinked
1041 * @skip: block address we should explicitly not unlink
1042 *
1043 * Returns: 0 if no error
1044 * The inode, if one has been found, in inode.
1045 */
1046
1047static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1048{
1049 u32 goal = 0, block;
1050 u64 no_addr;
1051 struct gfs2_sbd *sdp = rgd->rd_sbd;
1052 struct gfs2_glock *gl;
1053 struct gfs2_inode *ip;
1054 int error;
1055 int found = 0;
1056 struct gfs2_bitmap *bi;
1057
1058 while (goal < rgd->rd_data) {
1059 down_write(&sdp->sd_log_flush_lock);
1060 block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi);
1061 up_write(&sdp->sd_log_flush_lock);
1062 if (block == BFITNOENT)
1063 break;
1064
1065 block = gfs2_bi2rgd_blk(bi, block);
1066 /* rgblk_search can return a block < goal, so we need to
1067 keep it marching forward. */
1068 no_addr = block + rgd->rd_data0;
1069 goal = max(block + 1, goal + 1);
1070 if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
1071 continue;
1072 if (no_addr == skip)
1073 continue;
1074 *last_unlinked = no_addr;
1075
1076 error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
1077 if (error)
1078 continue;
1079
1080 /* If the inode is already in cache, we can ignore it here
1081 * because the existing inode disposal code will deal with
1082 * it when all refs have gone away. Accessing gl_object like
1083 * this is not safe in general. Here it is ok because we do
1084 * not dereference the pointer, and we only need an approx
1085 * answer to whether it is NULL or not.
1086 */
1087 ip = gl->gl_object;
1088
1089 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1090 gfs2_glock_put(gl);
1091 else
1092 found++;
1093
1094 /* Limit reclaim to sensible number of tasks */
1095 if (found > NR_CPUS)
1096 return;
1097 }
1098
1099 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1100 return;
1101}
1102
1103/**
1104 * get_local_rgrp - Choose and lock a rgrp for allocation
1105 * @ip: the inode to reserve space for
1106 * @last_unlinked: the last unlinked block
1107 *
1108 * Try to acquire rgrp in way which avoids contending with others.
1109 *
1110 * Returns: errno
1111 */
1112
1113static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
1114{
1115 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1116 struct gfs2_rgrpd *rgd, *begin = NULL;
1117 struct gfs2_blkreserv *rs = ip->i_res;
1118 int error, rg_locked, flags = LM_FLAG_TRY;
1119 int loops = 0;
1120
1121 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal))
1122 rgd = begin = ip->i_rgd;
1123 else
1124 rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1125
1126 if (rgd == NULL)
1127 return -EBADSLT;
1128
1129 while (loops < 3) {
1130 rg_locked = 0;
1131
1132 if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1133 rg_locked = 1;
1134 error = 0;
1135 } else {
1136 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1137 flags, &rs->rs_rgd_gh);
1138 }
1139 switch (error) {
1140 case 0:
1141 if (try_rgrp_fit(rgd, ip)) {
1142 ip->i_rgd = rgd;
1143 return 0;
1144 }
1145 if (rgd->rd_flags & GFS2_RDF_CHECK)
1146 try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1147 if (!rg_locked)
1148 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1149 /* fall through */
1150 case GLR_TRYFAILED:
1151 rgd = gfs2_rgrpd_get_next(rgd);
1152 if (rgd == begin) {
1153 flags = 0;
1154 loops++;
1155 }
1156 break;
1157 default:
1158 return error;
1159 }
1160 }
1161
1162 return -ENOSPC;
1163}
1164
1165static void gfs2_blkrsv_put(struct gfs2_inode *ip)
1166{
1167 BUG_ON(ip->i_res == NULL);
1168 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
1169 ip->i_res = NULL;
1170}
1171
1172/**
1173 * gfs2_inplace_reserve - Reserve space in the filesystem
1174 * @ip: the inode to reserve space for
1175 * @requested: the number of blocks to be reserved
1176 *
1177 * Returns: errno
1178 */
1179
1180int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
1181{
1182 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1183 struct gfs2_blkreserv *rs;
1184 int error;
1185 u64 last_unlinked = NO_BLOCK;
1186 int tries = 0;
1187
1188 error = gfs2_blkrsv_get(ip);
1189 if (error)
1190 return error;
1191
1192 rs = ip->i_res;
1193 rs->rs_requested = requested;
1194 if (gfs2_assert_warn(sdp, requested)) {
1195 error = -EINVAL;
1196 goto out;
1197 }
1198
1199 do {
1200 error = get_local_rgrp(ip, &last_unlinked);
1201 if (error != -ENOSPC)
1202 break;
1203 /* Check that fs hasn't grown if writing to rindex */
1204 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1205 error = gfs2_ri_update(ip);
1206 if (error)
1207 break;
1208 continue;
1209 }
1210 /* Flushing the log may release space */
1211 gfs2_log_flush(sdp, NULL);
1212 } while (tries++ < 3);
1213
1214out:
1215 if (error)
1216 gfs2_blkrsv_put(ip);
1217 return error;
1218}
1219
1220/**
1221 * gfs2_inplace_release - release an inplace reservation
1222 * @ip: the inode the reservation was taken out on
1223 *
1224 * Release a reservation made by gfs2_inplace_reserve().
1225 */
1226
1227void gfs2_inplace_release(struct gfs2_inode *ip)
1228{
1229 struct gfs2_blkreserv *rs = ip->i_res;
1230
1231 if (rs->rs_rgd_gh.gh_gl)
1232 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1233 gfs2_blkrsv_put(ip);
1234}
1235
1236/**
1237 * gfs2_get_block_type - Check a block in a RG is of given type
1238 * @rgd: the resource group holding the block
1239 * @block: the block number
1240 *
1241 * Returns: The block type (GFS2_BLKST_*)
1242 */
1243
1244static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1245{
1246 struct gfs2_bitmap *bi = NULL;
1247 u32 length, rgrp_block, buf_block;
1248 unsigned int buf;
1249 unsigned char type;
1250
1251 length = rgd->rd_length;
1252 rgrp_block = block - rgd->rd_data0;
1253
1254 for (buf = 0; buf < length; buf++) {
1255 bi = rgd->rd_bits + buf;
1256 if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1257 break;
1258 }
1259
1260 gfs2_assert(rgd->rd_sbd, buf < length);
1261 buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1262
1263 type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1264 bi->bi_len, buf_block);
1265
1266 return type;
1267}
1268
1269/**
1270 * rgblk_search - find a block in @state
1271 * @rgd: the resource group descriptor
1272 * @goal: the goal block within the RG (start here to search for avail block)
1273 * @state: GFS2_BLKST_XXX the before-allocation state to find
1274 * @rbi: address of the pointer to the bitmap containing the block found
1275 *
1276 * Walk rgrp's bitmap to find bits that represent a block in @state.
1277 *
1278 * This function never fails, because we wouldn't call it unless we
1279 * know (from reservation results, etc.) that a block is available.
1280 *
1281 * Scope of @goal is just within rgrp, not the whole filesystem.
1282 * Scope of @returned block is just within bitmap, not the whole filesystem.
1283 *
1284 * Returns: the block number found relative to the bitmap rbi
1285 */
1286
1287static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, unsigned char state,
1288 struct gfs2_bitmap **rbi)
1289{
1290 struct gfs2_bitmap *bi = NULL;
1291 const u32 length = rgd->rd_length;
1292 u32 biblk = BFITNOENT;
1293 unsigned int buf, x;
1294 const u8 *buffer = NULL;
1295
1296 *rbi = NULL;
1297 /* Find bitmap block that contains bits for goal block */
1298 for (buf = 0; buf < length; buf++) {
1299 bi = rgd->rd_bits + buf;
1300 /* Convert scope of "goal" from rgrp-wide to within found bit block */
1301 if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1302 goal -= bi->bi_start * GFS2_NBBY;
1303 goto do_search;
1304 }
1305 }
1306 buf = 0;
1307 goal = 0;
1308
1309do_search:
1310 /* Search (up to entire) bitmap in this rgrp for allocatable block.
1311 "x <= length", instead of "x < length", because we typically start
1312 the search in the middle of a bit block, but if we can't find an
1313 allocatable block anywhere else, we want to be able wrap around and
1314 search in the first part of our first-searched bit block. */
1315 for (x = 0; x <= length; x++) {
1316 bi = rgd->rd_bits + buf;
1317
1318 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1319 (state == GFS2_BLKST_FREE))
1320 goto skip;
1321
1322 /* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1323 bitmaps, so we must search the originals for that. */
1324 buffer = bi->bi_bh->b_data + bi->bi_offset;
1325 WARN_ON(!buffer_uptodate(bi->bi_bh));
1326 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1327 buffer = bi->bi_clone + bi->bi_offset;
1328
1329 biblk = gfs2_bitfit(buffer, bi->bi_len, goal, state);
1330 if (biblk != BFITNOENT)
1331 break;
1332
1333 if ((goal == 0) && (state == GFS2_BLKST_FREE))
1334 set_bit(GBF_FULL, &bi->bi_flags);
1335
1336 /* Try next bitmap block (wrap back to rgrp header if at end) */
1337skip:
1338 buf++;
1339 buf %= length;
1340 goal = 0;
1341 }
1342
1343 if (biblk != BFITNOENT)
1344 *rbi = bi;
1345
1346 return biblk;
1347}
1348
1349/**
1350 * gfs2_alloc_extent - allocate an extent from a given bitmap
1351 * @rgd: the resource group descriptor
1352 * @bi: the bitmap within the rgrp
1353 * @blk: the block within the bitmap
1354 * @dinode: TRUE if the first block we allocate is for a dinode
1355 * @n: The extent length
1356 *
1357 * Add the found bitmap buffer to the transaction.
1358 * Set the found bits to @new_state to change block's allocation state.
1359 * Returns: starting block number of the extent (fs scope)
1360 */
1361static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi,
1362 u32 blk, bool dinode, unsigned int *n)
1363{
1364 const unsigned int elen = *n;
1365 u32 goal;
1366 const u8 *buffer = NULL;
1367
1368 *n = 0;
1369 buffer = bi->bi_bh->b_data + bi->bi_offset;
1370 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1371 gfs2_setbit(rgd, bi->bi_clone, bi, blk,
1372 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1373 (*n)++;
1374 goal = blk;
1375 while (*n < elen) {
1376 goal++;
1377 if (goal >= (bi->bi_len * GFS2_NBBY))
1378 break;
1379 if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1380 GFS2_BLKST_FREE)
1381 break;
1382 gfs2_setbit(rgd, bi->bi_clone, bi, goal, GFS2_BLKST_USED);
1383 (*n)++;
1384 }
1385 blk = gfs2_bi2rgd_blk(bi, blk);
1386 rgd->rd_last_alloc = blk + *n - 1;
1387 return rgd->rd_data0 + blk;
1388}
1389
1390/**
1391 * rgblk_free - Change alloc state of given block(s)
1392 * @sdp: the filesystem
1393 * @bstart: the start of a run of blocks to free
1394 * @blen: the length of the block run (all must lie within ONE RG!)
1395 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1396 *
1397 * Returns: Resource group containing the block(s)
1398 */
1399
1400static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1401 u32 blen, unsigned char new_state)
1402{
1403 struct gfs2_rgrpd *rgd;
1404 struct gfs2_bitmap *bi = NULL;
1405 u32 length, rgrp_blk, buf_blk;
1406 unsigned int buf;
1407
1408 rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1409 if (!rgd) {
1410 if (gfs2_consist(sdp))
1411 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1412 return NULL;
1413 }
1414
1415 length = rgd->rd_length;
1416
1417 rgrp_blk = bstart - rgd->rd_data0;
1418
1419 while (blen--) {
1420 for (buf = 0; buf < length; buf++) {
1421 bi = rgd->rd_bits + buf;
1422 if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1423 break;
1424 }
1425
1426 gfs2_assert(rgd->rd_sbd, buf < length);
1427
1428 buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1429 rgrp_blk++;
1430
1431 if (!bi->bi_clone) {
1432 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1433 GFP_NOFS | __GFP_NOFAIL);
1434 memcpy(bi->bi_clone + bi->bi_offset,
1435 bi->bi_bh->b_data + bi->bi_offset,
1436 bi->bi_len);
1437 }
1438 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1439 gfs2_setbit(rgd, NULL, bi, buf_blk, new_state);
1440 }
1441
1442 return rgd;
1443}
1444
1445/**
1446 * gfs2_rgrp_dump - print out an rgrp
1447 * @seq: The iterator
1448 * @gl: The glock in question
1449 *
1450 */
1451
1452int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
1453{
1454 const struct gfs2_rgrpd *rgd = gl->gl_object;
1455 if (rgd == NULL)
1456 return 0;
1457 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
1458 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1459 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1460 return 0;
1461}
1462
1463static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1464{
1465 struct gfs2_sbd *sdp = rgd->rd_sbd;
1466 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1467 (unsigned long long)rgd->rd_addr);
1468 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1469 gfs2_rgrp_dump(NULL, rgd->rd_gl);
1470 rgd->rd_flags |= GFS2_RDF_ERROR;
1471}
1472
1473/**
1474 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
1475 * @ip: the inode to allocate the block for
1476 * @bn: Used to return the starting block number
1477 * @ndata: requested number of blocks/extent length (value/result)
1478 * @dinode: 1 if we're allocating a dinode block, else 0
1479 * @generation: the generation number of the inode
1480 *
1481 * Returns: 0 or error
1482 */
1483
1484int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
1485 bool dinode, u64 *generation)
1486{
1487 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1488 struct buffer_head *dibh;
1489 struct gfs2_rgrpd *rgd;
1490 unsigned int ndata;
1491 u32 goal, blk; /* block, within the rgrp scope */
1492 u64 block; /* block, within the file system scope */
1493 int error;
1494 struct gfs2_bitmap *bi;
1495
1496 /* Only happens if there is a bug in gfs2, return something distinctive
1497 * to ensure that it is noticed.
1498 */
1499 if (ip->i_res == NULL)
1500 return -ECANCELED;
1501
1502 rgd = ip->i_rgd;
1503
1504 if (!dinode && rgrp_contains_block(rgd, ip->i_goal))
1505 goal = ip->i_goal - rgd->rd_data0;
1506 else
1507 goal = rgd->rd_last_alloc;
1508
1509 blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi);
1510
1511 /* Since all blocks are reserved in advance, this shouldn't happen */
1512 if (blk == BFITNOENT)
1513 goto rgrp_error;
1514
1515 block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks);
1516 ndata = *nblocks;
1517 if (dinode)
1518 ndata--;
1519
1520 if (!dinode) {
1521 ip->i_goal = block + ndata - 1;
1522 error = gfs2_meta_inode_buffer(ip, &dibh);
1523 if (error == 0) {
1524 struct gfs2_dinode *di =
1525 (struct gfs2_dinode *)dibh->b_data;
1526 gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1527 di->di_goal_meta = di->di_goal_data =
1528 cpu_to_be64(ip->i_goal);
1529 brelse(dibh);
1530 }
1531 }
1532 if (rgd->rd_free < *nblocks)
1533 goto rgrp_error;
1534
1535 rgd->rd_free -= *nblocks;
1536 if (dinode) {
1537 rgd->rd_dinodes++;
1538 *generation = rgd->rd_igeneration++;
1539 if (*generation == 0)
1540 *generation = rgd->rd_igeneration++;
1541 }
1542
1543 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1544 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1545
1546 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
1547 if (dinode)
1548 gfs2_trans_add_unrevoke(sdp, block, 1);
1549
1550 /*
1551 * This needs reviewing to see why we cannot do the quota change
1552 * at this point in the dinode case.
1553 */
1554 if (ndata)
1555 gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
1556 ip->i_inode.i_gid);
1557
1558 rgd->rd_free_clone -= *nblocks;
1559 trace_gfs2_block_alloc(ip, rgd, block, *nblocks,
1560 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1561 *bn = block;
1562 return 0;
1563
1564rgrp_error:
1565 gfs2_rgrp_error(rgd);
1566 return -EIO;
1567}
1568
1569/**
1570 * __gfs2_free_blocks - free a contiguous run of block(s)
1571 * @ip: the inode these blocks are being freed from
1572 * @bstart: first block of a run of contiguous blocks
1573 * @blen: the length of the block run
1574 * @meta: 1 if the blocks represent metadata
1575 *
1576 */
1577
1578void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
1579{
1580 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1581 struct gfs2_rgrpd *rgd;
1582
1583 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1584 if (!rgd)
1585 return;
1586 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
1587 rgd->rd_free += blen;
1588 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
1589 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1590 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1591
1592 /* Directories keep their data in the metadata address space */
1593 if (meta || ip->i_depth)
1594 gfs2_meta_wipe(ip, bstart, blen);
1595}
1596
1597/**
1598 * gfs2_free_meta - free a contiguous run of data block(s)
1599 * @ip: the inode these blocks are being freed from
1600 * @bstart: first block of a run of contiguous blocks
1601 * @blen: the length of the block run
1602 *
1603 */
1604
1605void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
1606{
1607 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1608
1609 __gfs2_free_blocks(ip, bstart, blen, 1);
1610 gfs2_statfs_change(sdp, 0, +blen, 0);
1611 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1612}
1613
1614void gfs2_unlink_di(struct inode *inode)
1615{
1616 struct gfs2_inode *ip = GFS2_I(inode);
1617 struct gfs2_sbd *sdp = GFS2_SB(inode);
1618 struct gfs2_rgrpd *rgd;
1619 u64 blkno = ip->i_no_addr;
1620
1621 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1622 if (!rgd)
1623 return;
1624 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
1625 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1626 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1627}
1628
1629static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1630{
1631 struct gfs2_sbd *sdp = rgd->rd_sbd;
1632 struct gfs2_rgrpd *tmp_rgd;
1633
1634 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1635 if (!tmp_rgd)
1636 return;
1637 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1638
1639 if (!rgd->rd_dinodes)
1640 gfs2_consist_rgrpd(rgd);
1641 rgd->rd_dinodes--;
1642 rgd->rd_free++;
1643
1644 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1645 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1646
1647 gfs2_statfs_change(sdp, 0, +1, -1);
1648}
1649
1650
1651void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1652{
1653 gfs2_free_uninit_di(rgd, ip->i_no_addr);
1654 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1655 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1656 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1657}
1658
1659/**
1660 * gfs2_check_blk_type - Check the type of a block
1661 * @sdp: The superblock
1662 * @no_addr: The block number to check
1663 * @type: The block type we are looking for
1664 *
1665 * Returns: 0 if the block type matches the expected type
1666 * -ESTALE if it doesn't match
1667 * or -ve errno if something went wrong while checking
1668 */
1669
1670int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1671{
1672 struct gfs2_rgrpd *rgd;
1673 struct gfs2_holder rgd_gh;
1674 int error = -EINVAL;
1675
1676 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
1677 if (!rgd)
1678 goto fail;
1679
1680 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1681 if (error)
1682 goto fail;
1683
1684 if (gfs2_get_block_type(rgd, no_addr) != type)
1685 error = -ESTALE;
1686
1687 gfs2_glock_dq_uninit(&rgd_gh);
1688fail:
1689 return error;
1690}
1691
1692/**
1693 * gfs2_rlist_add - add a RG to a list of RGs
1694 * @ip: the inode
1695 * @rlist: the list of resource groups
1696 * @block: the block
1697 *
1698 * Figure out what RG a block belongs to and add that RG to the list
1699 *
1700 * FIXME: Don't use NOFAIL
1701 *
1702 */
1703
1704void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
1705 u64 block)
1706{
1707 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1708 struct gfs2_rgrpd *rgd;
1709 struct gfs2_rgrpd **tmp;
1710 unsigned int new_space;
1711 unsigned int x;
1712
1713 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1714 return;
1715
1716 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
1717 rgd = ip->i_rgd;
1718 else
1719 rgd = gfs2_blk2rgrpd(sdp, block, 1);
1720 if (!rgd) {
1721 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
1722 return;
1723 }
1724 ip->i_rgd = rgd;
1725
1726 for (x = 0; x < rlist->rl_rgrps; x++)
1727 if (rlist->rl_rgd[x] == rgd)
1728 return;
1729
1730 if (rlist->rl_rgrps == rlist->rl_space) {
1731 new_space = rlist->rl_space + 10;
1732
1733 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1734 GFP_NOFS | __GFP_NOFAIL);
1735
1736 if (rlist->rl_rgd) {
1737 memcpy(tmp, rlist->rl_rgd,
1738 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1739 kfree(rlist->rl_rgd);
1740 }
1741
1742 rlist->rl_space = new_space;
1743 rlist->rl_rgd = tmp;
1744 }
1745
1746 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1747}
1748
1749/**
1750 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1751 * and initialize an array of glock holders for them
1752 * @rlist: the list of resource groups
1753 * @state: the lock state to acquire the RG lock in
1754 *
1755 * FIXME: Don't use NOFAIL
1756 *
1757 */
1758
1759void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1760{
1761 unsigned int x;
1762
1763 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1764 GFP_NOFS | __GFP_NOFAIL);
1765 for (x = 0; x < rlist->rl_rgrps; x++)
1766 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1767 state, 0,
1768 &rlist->rl_ghs[x]);
1769}
1770
1771/**
1772 * gfs2_rlist_free - free a resource group list
1773 * @list: the list of resource groups
1774 *
1775 */
1776
1777void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1778{
1779 unsigned int x;
1780
1781 kfree(rlist->rl_rgd);
1782
1783 if (rlist->rl_ghs) {
1784 for (x = 0; x < rlist->rl_rgrps; x++)
1785 gfs2_holder_uninit(&rlist->rl_ghs[x]);
1786 kfree(rlist->rl_ghs);
1787 }
1788}
1789
1/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/slab.h>
13#include <linux/spinlock.h>
14#include <linux/completion.h>
15#include <linux/buffer_head.h>
16#include <linux/fs.h>
17#include <linux/gfs2_ondisk.h>
18#include <linux/prefetch.h>
19#include <linux/blkdev.h>
20#include <linux/rbtree.h>
21#include <linux/random.h>
22
23#include "gfs2.h"
24#include "incore.h"
25#include "glock.h"
26#include "glops.h"
27#include "lops.h"
28#include "meta_io.h"
29#include "quota.h"
30#include "rgrp.h"
31#include "super.h"
32#include "trans.h"
33#include "util.h"
34#include "log.h"
35#include "inode.h"
36#include "trace_gfs2.h"
37
38#define BFITNOENT ((u32)~0)
39#define NO_BLOCK ((u64)~0)
40
41#if BITS_PER_LONG == 32
42#define LBITMASK (0x55555555UL)
43#define LBITSKIP55 (0x55555555UL)
44#define LBITSKIP00 (0x00000000UL)
45#else
46#define LBITMASK (0x5555555555555555UL)
47#define LBITSKIP55 (0x5555555555555555UL)
48#define LBITSKIP00 (0x0000000000000000UL)
49#endif
50
51/*
52 * These routines are used by the resource group routines (rgrp.c)
53 * to keep track of block allocation. Each block is represented by two
54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55 *
56 * 0 = Free
57 * 1 = Used (not metadata)
58 * 2 = Unlinked (still in use) inode
59 * 3 = Used (metadata)
60 */
61
62struct gfs2_extent {
63 struct gfs2_rbm rbm;
64 u32 len;
65};
66
67static const char valid_change[16] = {
68 /* current */
69 /* n */ 0, 1, 1, 1,
70 /* e */ 1, 0, 0, 0,
71 /* w */ 0, 0, 0, 1,
72 1, 0, 0, 0
73};
74
75static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
76 const struct gfs2_inode *ip, bool nowrap,
77 const struct gfs2_alloc_parms *ap);
78
79
80/**
81 * gfs2_setbit - Set a bit in the bitmaps
82 * @rbm: The position of the bit to set
83 * @do_clone: Also set the clone bitmap, if it exists
84 * @new_state: the new state of the block
85 *
86 */
87
88static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
89 unsigned char new_state)
90{
91 unsigned char *byte1, *byte2, *end, cur_state;
92 struct gfs2_bitmap *bi = rbm_bi(rbm);
93 unsigned int buflen = bi->bi_len;
94 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
95
96 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
97 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
98
99 BUG_ON(byte1 >= end);
100
101 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
102
103 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
104 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
105 rbm->offset, cur_state, new_state);
106 pr_warn("rgrp=0x%llx bi_start=0x%x\n",
107 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
108 pr_warn("bi_offset=0x%x bi_len=0x%x\n",
109 bi->bi_offset, bi->bi_len);
110 dump_stack();
111 gfs2_consist_rgrpd(rbm->rgd);
112 return;
113 }
114 *byte1 ^= (cur_state ^ new_state) << bit;
115
116 if (do_clone && bi->bi_clone) {
117 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
118 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
119 *byte2 ^= (cur_state ^ new_state) << bit;
120 }
121}
122
123/**
124 * gfs2_testbit - test a bit in the bitmaps
125 * @rbm: The bit to test
126 *
127 * Returns: The two bit block state of the requested bit
128 */
129
130static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
131{
132 struct gfs2_bitmap *bi = rbm_bi(rbm);
133 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
134 const u8 *byte;
135 unsigned int bit;
136
137 byte = buffer + (rbm->offset / GFS2_NBBY);
138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
139
140 return (*byte >> bit) & GFS2_BIT_MASK;
141}
142
143/**
144 * gfs2_bit_search
145 * @ptr: Pointer to bitmap data
146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147 * @state: The state we are searching for
148 *
149 * We xor the bitmap data with a patter which is the bitwise opposite
150 * of what we are looking for, this gives rise to a pattern of ones
151 * wherever there is a match. Since we have two bits per entry, we
152 * take this pattern, shift it down by one place and then and it with
153 * the original. All the even bit positions (0,2,4, etc) then represent
154 * successful matches, so we mask with 0x55555..... to remove the unwanted
155 * odd bit positions.
156 *
157 * This allows searching of a whole u64 at once (32 blocks) with a
158 * single test (on 64 bit arches).
159 */
160
161static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
162{
163 u64 tmp;
164 static const u64 search[] = {
165 [0] = 0xffffffffffffffffULL,
166 [1] = 0xaaaaaaaaaaaaaaaaULL,
167 [2] = 0x5555555555555555ULL,
168 [3] = 0x0000000000000000ULL,
169 };
170 tmp = le64_to_cpu(*ptr) ^ search[state];
171 tmp &= (tmp >> 1);
172 tmp &= mask;
173 return tmp;
174}
175
176/**
177 * rs_cmp - multi-block reservation range compare
178 * @blk: absolute file system block number of the new reservation
179 * @len: number of blocks in the new reservation
180 * @rs: existing reservation to compare against
181 *
182 * returns: 1 if the block range is beyond the reach of the reservation
183 * -1 if the block range is before the start of the reservation
184 * 0 if the block range overlaps with the reservation
185 */
186static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
187{
188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
189
190 if (blk >= startblk + rs->rs_free)
191 return 1;
192 if (blk + len - 1 < startblk)
193 return -1;
194 return 0;
195}
196
197/**
198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199 * a block in a given allocation state.
200 * @buf: the buffer that holds the bitmaps
201 * @len: the length (in bytes) of the buffer
202 * @goal: start search at this block's bit-pair (within @buffer)
203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
204 *
205 * Scope of @goal and returned block number is only within this bitmap buffer,
206 * not entire rgrp or filesystem. @buffer will be offset from the actual
207 * beginning of a bitmap block buffer, skipping any header structures, but
208 * headers are always a multiple of 64 bits long so that the buffer is
209 * always aligned to a 64 bit boundary.
210 *
211 * The size of the buffer is in bytes, but is it assumed that it is
212 * always ok to read a complete multiple of 64 bits at the end
213 * of the block in case the end is no aligned to a natural boundary.
214 *
215 * Return: the block number (bitmap buffer scope) that was found
216 */
217
218static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
219 u32 goal, u8 state)
220{
221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
224 u64 tmp;
225 u64 mask = 0x5555555555555555ULL;
226 u32 bit;
227
228 /* Mask off bits we don't care about at the start of the search */
229 mask <<= spoint;
230 tmp = gfs2_bit_search(ptr, mask, state);
231 ptr++;
232 while(tmp == 0 && ptr < end) {
233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
234 ptr++;
235 }
236 /* Mask off any bits which are more than len bytes from the start */
237 if (ptr == end && (len & (sizeof(u64) - 1)))
238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
239 /* Didn't find anything, so return */
240 if (tmp == 0)
241 return BFITNOENT;
242 ptr--;
243 bit = __ffs64(tmp);
244 bit /= 2; /* two bits per entry in the bitmap */
245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
246}
247
248/**
249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250 * @rbm: The rbm with rgd already set correctly
251 * @block: The block number (filesystem relative)
252 *
253 * This sets the bi and offset members of an rbm based on a
254 * resource group and a filesystem relative block number. The
255 * resource group must be set in the rbm on entry, the bi and
256 * offset members will be set by this function.
257 *
258 * Returns: 0 on success, or an error code
259 */
260
261static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
262{
263 u64 rblock = block - rbm->rgd->rd_data0;
264
265 if (WARN_ON_ONCE(rblock > UINT_MAX))
266 return -EINVAL;
267 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
268 return -E2BIG;
269
270 rbm->bii = 0;
271 rbm->offset = (u32)(rblock);
272 /* Check if the block is within the first block */
273 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
274 return 0;
275
276 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
277 rbm->offset += (sizeof(struct gfs2_rgrp) -
278 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
279 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
281 return 0;
282}
283
284/**
285 * gfs2_rbm_incr - increment an rbm structure
286 * @rbm: The rbm with rgd already set correctly
287 *
288 * This function takes an existing rbm structure and increments it to the next
289 * viable block offset.
290 *
291 * Returns: If incrementing the offset would cause the rbm to go past the
292 * end of the rgrp, true is returned, otherwise false.
293 *
294 */
295
296static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
297{
298 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
299 rbm->offset++;
300 return false;
301 }
302 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
303 return true;
304
305 rbm->offset = 0;
306 rbm->bii++;
307 return false;
308}
309
310/**
311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
312 * @rbm: Position to search (value/result)
313 * @n_unaligned: Number of unaligned blocks to check
314 * @len: Decremented for each block found (terminate on zero)
315 *
316 * Returns: true if a non-free block is encountered
317 */
318
319static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
320{
321 u32 n;
322 u8 res;
323
324 for (n = 0; n < n_unaligned; n++) {
325 res = gfs2_testbit(rbm);
326 if (res != GFS2_BLKST_FREE)
327 return true;
328 (*len)--;
329 if (*len == 0)
330 return true;
331 if (gfs2_rbm_incr(rbm))
332 return true;
333 }
334
335 return false;
336}
337
338/**
339 * gfs2_free_extlen - Return extent length of free blocks
340 * @rrbm: Starting position
341 * @len: Max length to check
342 *
343 * Starting at the block specified by the rbm, see how many free blocks
344 * there are, not reading more than len blocks ahead. This can be done
345 * using memchr_inv when the blocks are byte aligned, but has to be done
346 * on a block by block basis in case of unaligned blocks. Also this
347 * function can cope with bitmap boundaries (although it must stop on
348 * a resource group boundary)
349 *
350 * Returns: Number of free blocks in the extent
351 */
352
353static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
354{
355 struct gfs2_rbm rbm = *rrbm;
356 u32 n_unaligned = rbm.offset & 3;
357 u32 size = len;
358 u32 bytes;
359 u32 chunk_size;
360 u8 *ptr, *start, *end;
361 u64 block;
362 struct gfs2_bitmap *bi;
363
364 if (n_unaligned &&
365 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
366 goto out;
367
368 n_unaligned = len & 3;
369 /* Start is now byte aligned */
370 while (len > 3) {
371 bi = rbm_bi(&rbm);
372 start = bi->bi_bh->b_data;
373 if (bi->bi_clone)
374 start = bi->bi_clone;
375 end = start + bi->bi_bh->b_size;
376 start += bi->bi_offset;
377 BUG_ON(rbm.offset & 3);
378 start += (rbm.offset / GFS2_NBBY);
379 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
380 ptr = memchr_inv(start, 0, bytes);
381 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
382 chunk_size *= GFS2_NBBY;
383 BUG_ON(len < chunk_size);
384 len -= chunk_size;
385 block = gfs2_rbm_to_block(&rbm);
386 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
387 n_unaligned = 0;
388 break;
389 }
390 if (ptr) {
391 n_unaligned = 3;
392 break;
393 }
394 n_unaligned = len & 3;
395 }
396
397 /* Deal with any bits left over at the end */
398 if (n_unaligned)
399 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
400out:
401 return size - len;
402}
403
404/**
405 * gfs2_bitcount - count the number of bits in a certain state
406 * @rgd: the resource group descriptor
407 * @buffer: the buffer that holds the bitmaps
408 * @buflen: the length (in bytes) of the buffer
409 * @state: the state of the block we're looking for
410 *
411 * Returns: The number of bits
412 */
413
414static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
415 unsigned int buflen, u8 state)
416{
417 const u8 *byte = buffer;
418 const u8 *end = buffer + buflen;
419 const u8 state1 = state << 2;
420 const u8 state2 = state << 4;
421 const u8 state3 = state << 6;
422 u32 count = 0;
423
424 for (; byte < end; byte++) {
425 if (((*byte) & 0x03) == state)
426 count++;
427 if (((*byte) & 0x0C) == state1)
428 count++;
429 if (((*byte) & 0x30) == state2)
430 count++;
431 if (((*byte) & 0xC0) == state3)
432 count++;
433 }
434
435 return count;
436}
437
438/**
439 * gfs2_rgrp_verify - Verify that a resource group is consistent
440 * @rgd: the rgrp
441 *
442 */
443
444void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
445{
446 struct gfs2_sbd *sdp = rgd->rd_sbd;
447 struct gfs2_bitmap *bi = NULL;
448 u32 length = rgd->rd_length;
449 u32 count[4], tmp;
450 int buf, x;
451
452 memset(count, 0, 4 * sizeof(u32));
453
454 /* Count # blocks in each of 4 possible allocation states */
455 for (buf = 0; buf < length; buf++) {
456 bi = rgd->rd_bits + buf;
457 for (x = 0; x < 4; x++)
458 count[x] += gfs2_bitcount(rgd,
459 bi->bi_bh->b_data +
460 bi->bi_offset,
461 bi->bi_len, x);
462 }
463
464 if (count[0] != rgd->rd_free) {
465 if (gfs2_consist_rgrpd(rgd))
466 fs_err(sdp, "free data mismatch: %u != %u\n",
467 count[0], rgd->rd_free);
468 return;
469 }
470
471 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
472 if (count[1] != tmp) {
473 if (gfs2_consist_rgrpd(rgd))
474 fs_err(sdp, "used data mismatch: %u != %u\n",
475 count[1], tmp);
476 return;
477 }
478
479 if (count[2] + count[3] != rgd->rd_dinodes) {
480 if (gfs2_consist_rgrpd(rgd))
481 fs_err(sdp, "used metadata mismatch: %u != %u\n",
482 count[2] + count[3], rgd->rd_dinodes);
483 return;
484 }
485}
486
487static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
488{
489 u64 first = rgd->rd_data0;
490 u64 last = first + rgd->rd_data;
491 return first <= block && block < last;
492}
493
494/**
495 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
496 * @sdp: The GFS2 superblock
497 * @blk: The data block number
498 * @exact: True if this needs to be an exact match
499 *
500 * Returns: The resource group, or NULL if not found
501 */
502
503struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
504{
505 struct rb_node *n, *next;
506 struct gfs2_rgrpd *cur;
507
508 spin_lock(&sdp->sd_rindex_spin);
509 n = sdp->sd_rindex_tree.rb_node;
510 while (n) {
511 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
512 next = NULL;
513 if (blk < cur->rd_addr)
514 next = n->rb_left;
515 else if (blk >= cur->rd_data0 + cur->rd_data)
516 next = n->rb_right;
517 if (next == NULL) {
518 spin_unlock(&sdp->sd_rindex_spin);
519 if (exact) {
520 if (blk < cur->rd_addr)
521 return NULL;
522 if (blk >= cur->rd_data0 + cur->rd_data)
523 return NULL;
524 }
525 return cur;
526 }
527 n = next;
528 }
529 spin_unlock(&sdp->sd_rindex_spin);
530
531 return NULL;
532}
533
534/**
535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
536 * @sdp: The GFS2 superblock
537 *
538 * Returns: The first rgrp in the filesystem
539 */
540
541struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
542{
543 const struct rb_node *n;
544 struct gfs2_rgrpd *rgd;
545
546 spin_lock(&sdp->sd_rindex_spin);
547 n = rb_first(&sdp->sd_rindex_tree);
548 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
549 spin_unlock(&sdp->sd_rindex_spin);
550
551 return rgd;
552}
553
554/**
555 * gfs2_rgrpd_get_next - get the next RG
556 * @rgd: the resource group descriptor
557 *
558 * Returns: The next rgrp
559 */
560
561struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
562{
563 struct gfs2_sbd *sdp = rgd->rd_sbd;
564 const struct rb_node *n;
565
566 spin_lock(&sdp->sd_rindex_spin);
567 n = rb_next(&rgd->rd_node);
568 if (n == NULL)
569 n = rb_first(&sdp->sd_rindex_tree);
570
571 if (unlikely(&rgd->rd_node == n)) {
572 spin_unlock(&sdp->sd_rindex_spin);
573 return NULL;
574 }
575 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
576 spin_unlock(&sdp->sd_rindex_spin);
577 return rgd;
578}
579
580void check_and_update_goal(struct gfs2_inode *ip)
581{
582 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
583 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
584 ip->i_goal = ip->i_no_addr;
585}
586
587void gfs2_free_clones(struct gfs2_rgrpd *rgd)
588{
589 int x;
590
591 for (x = 0; x < rgd->rd_length; x++) {
592 struct gfs2_bitmap *bi = rgd->rd_bits + x;
593 kfree(bi->bi_clone);
594 bi->bi_clone = NULL;
595 }
596}
597
598/**
599 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
600 * plus a quota allocations data structure, if necessary
601 * @ip: the inode for this reservation
602 */
603int gfs2_rsqa_alloc(struct gfs2_inode *ip)
604{
605 return gfs2_qa_alloc(ip);
606}
607
608static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
609{
610 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
611 (unsigned long long)rs->rs_inum,
612 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
613 rs->rs_rbm.offset, rs->rs_free);
614}
615
616/**
617 * __rs_deltree - remove a multi-block reservation from the rgd tree
618 * @rs: The reservation to remove
619 *
620 */
621static void __rs_deltree(struct gfs2_blkreserv *rs)
622{
623 struct gfs2_rgrpd *rgd;
624
625 if (!gfs2_rs_active(rs))
626 return;
627
628 rgd = rs->rs_rbm.rgd;
629 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
630 rb_erase(&rs->rs_node, &rgd->rd_rstree);
631 RB_CLEAR_NODE(&rs->rs_node);
632
633 if (rs->rs_free) {
634 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
635
636 /* return reserved blocks to the rgrp */
637 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
638 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
639 /* The rgrp extent failure point is likely not to increase;
640 it will only do so if the freed blocks are somehow
641 contiguous with a span of free blocks that follows. Still,
642 it will force the number to be recalculated later. */
643 rgd->rd_extfail_pt += rs->rs_free;
644 rs->rs_free = 0;
645 clear_bit(GBF_FULL, &bi->bi_flags);
646 }
647}
648
649/**
650 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
651 * @rs: The reservation to remove
652 *
653 */
654void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
655{
656 struct gfs2_rgrpd *rgd;
657
658 rgd = rs->rs_rbm.rgd;
659 if (rgd) {
660 spin_lock(&rgd->rd_rsspin);
661 __rs_deltree(rs);
662 spin_unlock(&rgd->rd_rsspin);
663 }
664}
665
666/**
667 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
668 * @ip: The inode for this reservation
669 * @wcount: The inode's write count, or NULL
670 *
671 */
672void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
673{
674 down_write(&ip->i_rw_mutex);
675 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) {
676 gfs2_rs_deltree(&ip->i_res);
677 BUG_ON(ip->i_res.rs_free);
678 }
679 up_write(&ip->i_rw_mutex);
680 gfs2_qa_delete(ip, wcount);
681}
682
683/**
684 * return_all_reservations - return all reserved blocks back to the rgrp.
685 * @rgd: the rgrp that needs its space back
686 *
687 * We previously reserved a bunch of blocks for allocation. Now we need to
688 * give them back. This leave the reservation structures in tact, but removes
689 * all of their corresponding "no-fly zones".
690 */
691static void return_all_reservations(struct gfs2_rgrpd *rgd)
692{
693 struct rb_node *n;
694 struct gfs2_blkreserv *rs;
695
696 spin_lock(&rgd->rd_rsspin);
697 while ((n = rb_first(&rgd->rd_rstree))) {
698 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
699 __rs_deltree(rs);
700 }
701 spin_unlock(&rgd->rd_rsspin);
702}
703
704void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
705{
706 struct rb_node *n;
707 struct gfs2_rgrpd *rgd;
708 struct gfs2_glock *gl;
709
710 while ((n = rb_first(&sdp->sd_rindex_tree))) {
711 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
712 gl = rgd->rd_gl;
713
714 rb_erase(n, &sdp->sd_rindex_tree);
715
716 if (gl) {
717 spin_lock(&gl->gl_lockref.lock);
718 gl->gl_object = NULL;
719 spin_unlock(&gl->gl_lockref.lock);
720 gfs2_glock_add_to_lru(gl);
721 gfs2_glock_put(gl);
722 }
723
724 gfs2_free_clones(rgd);
725 kfree(rgd->rd_bits);
726 return_all_reservations(rgd);
727 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
728 }
729}
730
731static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
732{
733 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
734 pr_info("ri_length = %u\n", rgd->rd_length);
735 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
736 pr_info("ri_data = %u\n", rgd->rd_data);
737 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
738}
739
740/**
741 * gfs2_compute_bitstructs - Compute the bitmap sizes
742 * @rgd: The resource group descriptor
743 *
744 * Calculates bitmap descriptors, one for each block that contains bitmap data
745 *
746 * Returns: errno
747 */
748
749static int compute_bitstructs(struct gfs2_rgrpd *rgd)
750{
751 struct gfs2_sbd *sdp = rgd->rd_sbd;
752 struct gfs2_bitmap *bi;
753 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
754 u32 bytes_left, bytes;
755 int x;
756
757 if (!length)
758 return -EINVAL;
759
760 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
761 if (!rgd->rd_bits)
762 return -ENOMEM;
763
764 bytes_left = rgd->rd_bitbytes;
765
766 for (x = 0; x < length; x++) {
767 bi = rgd->rd_bits + x;
768
769 bi->bi_flags = 0;
770 /* small rgrp; bitmap stored completely in header block */
771 if (length == 1) {
772 bytes = bytes_left;
773 bi->bi_offset = sizeof(struct gfs2_rgrp);
774 bi->bi_start = 0;
775 bi->bi_len = bytes;
776 bi->bi_blocks = bytes * GFS2_NBBY;
777 /* header block */
778 } else if (x == 0) {
779 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
780 bi->bi_offset = sizeof(struct gfs2_rgrp);
781 bi->bi_start = 0;
782 bi->bi_len = bytes;
783 bi->bi_blocks = bytes * GFS2_NBBY;
784 /* last block */
785 } else if (x + 1 == length) {
786 bytes = bytes_left;
787 bi->bi_offset = sizeof(struct gfs2_meta_header);
788 bi->bi_start = rgd->rd_bitbytes - bytes_left;
789 bi->bi_len = bytes;
790 bi->bi_blocks = bytes * GFS2_NBBY;
791 /* other blocks */
792 } else {
793 bytes = sdp->sd_sb.sb_bsize -
794 sizeof(struct gfs2_meta_header);
795 bi->bi_offset = sizeof(struct gfs2_meta_header);
796 bi->bi_start = rgd->rd_bitbytes - bytes_left;
797 bi->bi_len = bytes;
798 bi->bi_blocks = bytes * GFS2_NBBY;
799 }
800
801 bytes_left -= bytes;
802 }
803
804 if (bytes_left) {
805 gfs2_consist_rgrpd(rgd);
806 return -EIO;
807 }
808 bi = rgd->rd_bits + (length - 1);
809 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
810 if (gfs2_consist_rgrpd(rgd)) {
811 gfs2_rindex_print(rgd);
812 fs_err(sdp, "start=%u len=%u offset=%u\n",
813 bi->bi_start, bi->bi_len, bi->bi_offset);
814 }
815 return -EIO;
816 }
817
818 return 0;
819}
820
821/**
822 * gfs2_ri_total - Total up the file system space, according to the rindex.
823 * @sdp: the filesystem
824 *
825 */
826u64 gfs2_ri_total(struct gfs2_sbd *sdp)
827{
828 u64 total_data = 0;
829 struct inode *inode = sdp->sd_rindex;
830 struct gfs2_inode *ip = GFS2_I(inode);
831 char buf[sizeof(struct gfs2_rindex)];
832 int error, rgrps;
833
834 for (rgrps = 0;; rgrps++) {
835 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
836
837 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
838 break;
839 error = gfs2_internal_read(ip, buf, &pos,
840 sizeof(struct gfs2_rindex));
841 if (error != sizeof(struct gfs2_rindex))
842 break;
843 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
844 }
845 return total_data;
846}
847
848static int rgd_insert(struct gfs2_rgrpd *rgd)
849{
850 struct gfs2_sbd *sdp = rgd->rd_sbd;
851 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
852
853 /* Figure out where to put new node */
854 while (*newn) {
855 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
856 rd_node);
857
858 parent = *newn;
859 if (rgd->rd_addr < cur->rd_addr)
860 newn = &((*newn)->rb_left);
861 else if (rgd->rd_addr > cur->rd_addr)
862 newn = &((*newn)->rb_right);
863 else
864 return -EEXIST;
865 }
866
867 rb_link_node(&rgd->rd_node, parent, newn);
868 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
869 sdp->sd_rgrps++;
870 return 0;
871}
872
873/**
874 * read_rindex_entry - Pull in a new resource index entry from the disk
875 * @ip: Pointer to the rindex inode
876 *
877 * Returns: 0 on success, > 0 on EOF, error code otherwise
878 */
879
880static int read_rindex_entry(struct gfs2_inode *ip)
881{
882 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
883 const unsigned bsize = sdp->sd_sb.sb_bsize;
884 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
885 struct gfs2_rindex buf;
886 int error;
887 struct gfs2_rgrpd *rgd;
888
889 if (pos >= i_size_read(&ip->i_inode))
890 return 1;
891
892 error = gfs2_internal_read(ip, (char *)&buf, &pos,
893 sizeof(struct gfs2_rindex));
894
895 if (error != sizeof(struct gfs2_rindex))
896 return (error == 0) ? 1 : error;
897
898 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
899 error = -ENOMEM;
900 if (!rgd)
901 return error;
902
903 rgd->rd_sbd = sdp;
904 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
905 rgd->rd_length = be32_to_cpu(buf.ri_length);
906 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
907 rgd->rd_data = be32_to_cpu(buf.ri_data);
908 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
909 spin_lock_init(&rgd->rd_rsspin);
910
911 error = compute_bitstructs(rgd);
912 if (error)
913 goto fail;
914
915 error = gfs2_glock_get(sdp, rgd->rd_addr,
916 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
917 if (error)
918 goto fail;
919
920 rgd->rd_gl->gl_object = rgd;
921 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
922 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + rgd->rd_length) * bsize) - 1;
923 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
924 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
925 if (rgd->rd_data > sdp->sd_max_rg_data)
926 sdp->sd_max_rg_data = rgd->rd_data;
927 spin_lock(&sdp->sd_rindex_spin);
928 error = rgd_insert(rgd);
929 spin_unlock(&sdp->sd_rindex_spin);
930 if (!error)
931 return 0;
932
933 error = 0; /* someone else read in the rgrp; free it and ignore it */
934 gfs2_glock_put(rgd->rd_gl);
935
936fail:
937 kfree(rgd->rd_bits);
938 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
939 return error;
940}
941
942/**
943 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
944 * @sdp: the GFS2 superblock
945 *
946 * The purpose of this function is to select a subset of the resource groups
947 * and mark them as PREFERRED. We do it in such a way that each node prefers
948 * to use a unique set of rgrps to minimize glock contention.
949 */
950static void set_rgrp_preferences(struct gfs2_sbd *sdp)
951{
952 struct gfs2_rgrpd *rgd, *first;
953 int i;
954
955 /* Skip an initial number of rgrps, based on this node's journal ID.
956 That should start each node out on its own set. */
957 rgd = gfs2_rgrpd_get_first(sdp);
958 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
959 rgd = gfs2_rgrpd_get_next(rgd);
960 first = rgd;
961
962 do {
963 rgd->rd_flags |= GFS2_RDF_PREFERRED;
964 for (i = 0; i < sdp->sd_journals; i++) {
965 rgd = gfs2_rgrpd_get_next(rgd);
966 if (!rgd || rgd == first)
967 break;
968 }
969 } while (rgd && rgd != first);
970}
971
972/**
973 * gfs2_ri_update - Pull in a new resource index from the disk
974 * @ip: pointer to the rindex inode
975 *
976 * Returns: 0 on successful update, error code otherwise
977 */
978
979static int gfs2_ri_update(struct gfs2_inode *ip)
980{
981 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
982 int error;
983
984 do {
985 error = read_rindex_entry(ip);
986 } while (error == 0);
987
988 if (error < 0)
989 return error;
990
991 set_rgrp_preferences(sdp);
992
993 sdp->sd_rindex_uptodate = 1;
994 return 0;
995}
996
997/**
998 * gfs2_rindex_update - Update the rindex if required
999 * @sdp: The GFS2 superblock
1000 *
1001 * We grab a lock on the rindex inode to make sure that it doesn't
1002 * change whilst we are performing an operation. We keep this lock
1003 * for quite long periods of time compared to other locks. This
1004 * doesn't matter, since it is shared and it is very, very rarely
1005 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1006 *
1007 * This makes sure that we're using the latest copy of the resource index
1008 * special file, which might have been updated if someone expanded the
1009 * filesystem (via gfs2_grow utility), which adds new resource groups.
1010 *
1011 * Returns: 0 on succeess, error code otherwise
1012 */
1013
1014int gfs2_rindex_update(struct gfs2_sbd *sdp)
1015{
1016 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1017 struct gfs2_glock *gl = ip->i_gl;
1018 struct gfs2_holder ri_gh;
1019 int error = 0;
1020 int unlock_required = 0;
1021
1022 /* Read new copy from disk if we don't have the latest */
1023 if (!sdp->sd_rindex_uptodate) {
1024 if (!gfs2_glock_is_locked_by_me(gl)) {
1025 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1026 if (error)
1027 return error;
1028 unlock_required = 1;
1029 }
1030 if (!sdp->sd_rindex_uptodate)
1031 error = gfs2_ri_update(ip);
1032 if (unlock_required)
1033 gfs2_glock_dq_uninit(&ri_gh);
1034 }
1035
1036 return error;
1037}
1038
1039static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1040{
1041 const struct gfs2_rgrp *str = buf;
1042 u32 rg_flags;
1043
1044 rg_flags = be32_to_cpu(str->rg_flags);
1045 rg_flags &= ~GFS2_RDF_MASK;
1046 rgd->rd_flags &= GFS2_RDF_MASK;
1047 rgd->rd_flags |= rg_flags;
1048 rgd->rd_free = be32_to_cpu(str->rg_free);
1049 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1050 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1051}
1052
1053static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1054{
1055 struct gfs2_rgrp *str = buf;
1056
1057 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1058 str->rg_free = cpu_to_be32(rgd->rd_free);
1059 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1060 str->__pad = cpu_to_be32(0);
1061 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1062 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1063}
1064
1065static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1066{
1067 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1068 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1069
1070 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1071 rgl->rl_dinodes != str->rg_dinodes ||
1072 rgl->rl_igeneration != str->rg_igeneration)
1073 return 0;
1074 return 1;
1075}
1076
1077static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1078{
1079 const struct gfs2_rgrp *str = buf;
1080
1081 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1082 rgl->rl_flags = str->rg_flags;
1083 rgl->rl_free = str->rg_free;
1084 rgl->rl_dinodes = str->rg_dinodes;
1085 rgl->rl_igeneration = str->rg_igeneration;
1086 rgl->__pad = 0UL;
1087}
1088
1089static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1090{
1091 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1092 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1093 rgl->rl_unlinked = cpu_to_be32(unlinked);
1094}
1095
1096static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1097{
1098 struct gfs2_bitmap *bi;
1099 const u32 length = rgd->rd_length;
1100 const u8 *buffer = NULL;
1101 u32 i, goal, count = 0;
1102
1103 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1104 goal = 0;
1105 buffer = bi->bi_bh->b_data + bi->bi_offset;
1106 WARN_ON(!buffer_uptodate(bi->bi_bh));
1107 while (goal < bi->bi_len * GFS2_NBBY) {
1108 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1109 GFS2_BLKST_UNLINKED);
1110 if (goal == BFITNOENT)
1111 break;
1112 count++;
1113 goal++;
1114 }
1115 }
1116
1117 return count;
1118}
1119
1120
1121/**
1122 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1123 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1124 *
1125 * Read in all of a Resource Group's header and bitmap blocks.
1126 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1127 *
1128 * Returns: errno
1129 */
1130
1131static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1132{
1133 struct gfs2_sbd *sdp = rgd->rd_sbd;
1134 struct gfs2_glock *gl = rgd->rd_gl;
1135 unsigned int length = rgd->rd_length;
1136 struct gfs2_bitmap *bi;
1137 unsigned int x, y;
1138 int error;
1139
1140 if (rgd->rd_bits[0].bi_bh != NULL)
1141 return 0;
1142
1143 for (x = 0; x < length; x++) {
1144 bi = rgd->rd_bits + x;
1145 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1146 if (error)
1147 goto fail;
1148 }
1149
1150 for (y = length; y--;) {
1151 bi = rgd->rd_bits + y;
1152 error = gfs2_meta_wait(sdp, bi->bi_bh);
1153 if (error)
1154 goto fail;
1155 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1156 GFS2_METATYPE_RG)) {
1157 error = -EIO;
1158 goto fail;
1159 }
1160 }
1161
1162 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1163 for (x = 0; x < length; x++)
1164 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1165 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1166 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1167 rgd->rd_free_clone = rgd->rd_free;
1168 /* max out the rgrp allocation failure point */
1169 rgd->rd_extfail_pt = rgd->rd_free;
1170 }
1171 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1172 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1173 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1174 rgd->rd_bits[0].bi_bh->b_data);
1175 }
1176 else if (sdp->sd_args.ar_rgrplvb) {
1177 if (!gfs2_rgrp_lvb_valid(rgd)){
1178 gfs2_consist_rgrpd(rgd);
1179 error = -EIO;
1180 goto fail;
1181 }
1182 if (rgd->rd_rgl->rl_unlinked == 0)
1183 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1184 }
1185 return 0;
1186
1187fail:
1188 while (x--) {
1189 bi = rgd->rd_bits + x;
1190 brelse(bi->bi_bh);
1191 bi->bi_bh = NULL;
1192 gfs2_assert_warn(sdp, !bi->bi_clone);
1193 }
1194
1195 return error;
1196}
1197
1198static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1199{
1200 u32 rl_flags;
1201
1202 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1203 return 0;
1204
1205 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1206 return gfs2_rgrp_bh_get(rgd);
1207
1208 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1209 rl_flags &= ~GFS2_RDF_MASK;
1210 rgd->rd_flags &= GFS2_RDF_MASK;
1211 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1212 if (rgd->rd_rgl->rl_unlinked == 0)
1213 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1214 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1215 rgd->rd_free_clone = rgd->rd_free;
1216 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1217 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1218 return 0;
1219}
1220
1221int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1222{
1223 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1224 struct gfs2_sbd *sdp = rgd->rd_sbd;
1225
1226 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1227 return 0;
1228 return gfs2_rgrp_bh_get(rgd);
1229}
1230
1231/**
1232 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1233 * @rgd: The resource group
1234 *
1235 */
1236
1237void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1238{
1239 int x, length = rgd->rd_length;
1240
1241 for (x = 0; x < length; x++) {
1242 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1243 if (bi->bi_bh) {
1244 brelse(bi->bi_bh);
1245 bi->bi_bh = NULL;
1246 }
1247 }
1248
1249}
1250
1251/**
1252 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1253 * @gh: The glock holder for the resource group
1254 *
1255 */
1256
1257void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1258{
1259 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1260 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1261 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1262
1263 if (rgd && demote_requested)
1264 gfs2_rgrp_brelse(rgd);
1265}
1266
1267int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1268 struct buffer_head *bh,
1269 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1270{
1271 struct super_block *sb = sdp->sd_vfs;
1272 u64 blk;
1273 sector_t start = 0;
1274 sector_t nr_blks = 0;
1275 int rv;
1276 unsigned int x;
1277 u32 trimmed = 0;
1278 u8 diff;
1279
1280 for (x = 0; x < bi->bi_len; x++) {
1281 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1282 clone += bi->bi_offset;
1283 clone += x;
1284 if (bh) {
1285 const u8 *orig = bh->b_data + bi->bi_offset + x;
1286 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1287 } else {
1288 diff = ~(*clone | (*clone >> 1));
1289 }
1290 diff &= 0x55;
1291 if (diff == 0)
1292 continue;
1293 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1294 while(diff) {
1295 if (diff & 1) {
1296 if (nr_blks == 0)
1297 goto start_new_extent;
1298 if ((start + nr_blks) != blk) {
1299 if (nr_blks >= minlen) {
1300 rv = sb_issue_discard(sb,
1301 start, nr_blks,
1302 GFP_NOFS, 0);
1303 if (rv)
1304 goto fail;
1305 trimmed += nr_blks;
1306 }
1307 nr_blks = 0;
1308start_new_extent:
1309 start = blk;
1310 }
1311 nr_blks++;
1312 }
1313 diff >>= 2;
1314 blk++;
1315 }
1316 }
1317 if (nr_blks >= minlen) {
1318 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1319 if (rv)
1320 goto fail;
1321 trimmed += nr_blks;
1322 }
1323 if (ptrimmed)
1324 *ptrimmed = trimmed;
1325 return 0;
1326
1327fail:
1328 if (sdp->sd_args.ar_discard)
1329 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1330 sdp->sd_args.ar_discard = 0;
1331 return -EIO;
1332}
1333
1334/**
1335 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1336 * @filp: Any file on the filesystem
1337 * @argp: Pointer to the arguments (also used to pass result)
1338 *
1339 * Returns: 0 on success, otherwise error code
1340 */
1341
1342int gfs2_fitrim(struct file *filp, void __user *argp)
1343{
1344 struct inode *inode = file_inode(filp);
1345 struct gfs2_sbd *sdp = GFS2_SB(inode);
1346 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1347 struct buffer_head *bh;
1348 struct gfs2_rgrpd *rgd;
1349 struct gfs2_rgrpd *rgd_end;
1350 struct gfs2_holder gh;
1351 struct fstrim_range r;
1352 int ret = 0;
1353 u64 amt;
1354 u64 trimmed = 0;
1355 u64 start, end, minlen;
1356 unsigned int x;
1357 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1358
1359 if (!capable(CAP_SYS_ADMIN))
1360 return -EPERM;
1361
1362 if (!blk_queue_discard(q))
1363 return -EOPNOTSUPP;
1364
1365 if (copy_from_user(&r, argp, sizeof(r)))
1366 return -EFAULT;
1367
1368 ret = gfs2_rindex_update(sdp);
1369 if (ret)
1370 return ret;
1371
1372 start = r.start >> bs_shift;
1373 end = start + (r.len >> bs_shift);
1374 minlen = max_t(u64, r.minlen,
1375 q->limits.discard_granularity) >> bs_shift;
1376
1377 if (end <= start || minlen > sdp->sd_max_rg_data)
1378 return -EINVAL;
1379
1380 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1381 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1382
1383 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1384 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1385 return -EINVAL; /* start is beyond the end of the fs */
1386
1387 while (1) {
1388
1389 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1390 if (ret)
1391 goto out;
1392
1393 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1394 /* Trim each bitmap in the rgrp */
1395 for (x = 0; x < rgd->rd_length; x++) {
1396 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1397 ret = gfs2_rgrp_send_discards(sdp,
1398 rgd->rd_data0, NULL, bi, minlen,
1399 &amt);
1400 if (ret) {
1401 gfs2_glock_dq_uninit(&gh);
1402 goto out;
1403 }
1404 trimmed += amt;
1405 }
1406
1407 /* Mark rgrp as having been trimmed */
1408 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1409 if (ret == 0) {
1410 bh = rgd->rd_bits[0].bi_bh;
1411 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1412 gfs2_trans_add_meta(rgd->rd_gl, bh);
1413 gfs2_rgrp_out(rgd, bh->b_data);
1414 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1415 gfs2_trans_end(sdp);
1416 }
1417 }
1418 gfs2_glock_dq_uninit(&gh);
1419
1420 if (rgd == rgd_end)
1421 break;
1422
1423 rgd = gfs2_rgrpd_get_next(rgd);
1424 }
1425
1426out:
1427 r.len = trimmed << bs_shift;
1428 if (copy_to_user(argp, &r, sizeof(r)))
1429 return -EFAULT;
1430
1431 return ret;
1432}
1433
1434/**
1435 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1436 * @ip: the inode structure
1437 *
1438 */
1439static void rs_insert(struct gfs2_inode *ip)
1440{
1441 struct rb_node **newn, *parent = NULL;
1442 int rc;
1443 struct gfs2_blkreserv *rs = &ip->i_res;
1444 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1445 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1446
1447 BUG_ON(gfs2_rs_active(rs));
1448
1449 spin_lock(&rgd->rd_rsspin);
1450 newn = &rgd->rd_rstree.rb_node;
1451 while (*newn) {
1452 struct gfs2_blkreserv *cur =
1453 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1454
1455 parent = *newn;
1456 rc = rs_cmp(fsblock, rs->rs_free, cur);
1457 if (rc > 0)
1458 newn = &((*newn)->rb_right);
1459 else if (rc < 0)
1460 newn = &((*newn)->rb_left);
1461 else {
1462 spin_unlock(&rgd->rd_rsspin);
1463 WARN_ON(1);
1464 return;
1465 }
1466 }
1467
1468 rb_link_node(&rs->rs_node, parent, newn);
1469 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1470
1471 /* Do our rgrp accounting for the reservation */
1472 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1473 spin_unlock(&rgd->rd_rsspin);
1474 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1475}
1476
1477/**
1478 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1479 * @rgd: the resource group descriptor
1480 * @ip: pointer to the inode for which we're reserving blocks
1481 * @ap: the allocation parameters
1482 *
1483 */
1484
1485static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1486 const struct gfs2_alloc_parms *ap)
1487{
1488 struct gfs2_rbm rbm = { .rgd = rgd, };
1489 u64 goal;
1490 struct gfs2_blkreserv *rs = &ip->i_res;
1491 u32 extlen;
1492 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1493 int ret;
1494 struct inode *inode = &ip->i_inode;
1495
1496 if (S_ISDIR(inode->i_mode))
1497 extlen = 1;
1498 else {
1499 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1500 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1501 }
1502 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1503 return;
1504
1505 /* Find bitmap block that contains bits for goal block */
1506 if (rgrp_contains_block(rgd, ip->i_goal))
1507 goal = ip->i_goal;
1508 else
1509 goal = rgd->rd_last_alloc + rgd->rd_data0;
1510
1511 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1512 return;
1513
1514 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap);
1515 if (ret == 0) {
1516 rs->rs_rbm = rbm;
1517 rs->rs_free = extlen;
1518 rs->rs_inum = ip->i_no_addr;
1519 rs_insert(ip);
1520 } else {
1521 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1522 rgd->rd_last_alloc = 0;
1523 }
1524}
1525
1526/**
1527 * gfs2_next_unreserved_block - Return next block that is not reserved
1528 * @rgd: The resource group
1529 * @block: The starting block
1530 * @length: The required length
1531 * @ip: Ignore any reservations for this inode
1532 *
1533 * If the block does not appear in any reservation, then return the
1534 * block number unchanged. If it does appear in the reservation, then
1535 * keep looking through the tree of reservations in order to find the
1536 * first block number which is not reserved.
1537 */
1538
1539static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1540 u32 length,
1541 const struct gfs2_inode *ip)
1542{
1543 struct gfs2_blkreserv *rs;
1544 struct rb_node *n;
1545 int rc;
1546
1547 spin_lock(&rgd->rd_rsspin);
1548 n = rgd->rd_rstree.rb_node;
1549 while (n) {
1550 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1551 rc = rs_cmp(block, length, rs);
1552 if (rc < 0)
1553 n = n->rb_left;
1554 else if (rc > 0)
1555 n = n->rb_right;
1556 else
1557 break;
1558 }
1559
1560 if (n) {
1561 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1562 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1563 n = n->rb_right;
1564 if (n == NULL)
1565 break;
1566 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1567 }
1568 }
1569
1570 spin_unlock(&rgd->rd_rsspin);
1571 return block;
1572}
1573
1574/**
1575 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1576 * @rbm: The current position in the resource group
1577 * @ip: The inode for which we are searching for blocks
1578 * @minext: The minimum extent length
1579 * @maxext: A pointer to the maximum extent structure
1580 *
1581 * This checks the current position in the rgrp to see whether there is
1582 * a reservation covering this block. If not then this function is a
1583 * no-op. If there is, then the position is moved to the end of the
1584 * contiguous reservation(s) so that we are pointing at the first
1585 * non-reserved block.
1586 *
1587 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1588 */
1589
1590static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1591 const struct gfs2_inode *ip,
1592 u32 minext,
1593 struct gfs2_extent *maxext)
1594{
1595 u64 block = gfs2_rbm_to_block(rbm);
1596 u32 extlen = 1;
1597 u64 nblock;
1598 int ret;
1599
1600 /*
1601 * If we have a minimum extent length, then skip over any extent
1602 * which is less than the min extent length in size.
1603 */
1604 if (minext) {
1605 extlen = gfs2_free_extlen(rbm, minext);
1606 if (extlen <= maxext->len)
1607 goto fail;
1608 }
1609
1610 /*
1611 * Check the extent which has been found against the reservations
1612 * and skip if parts of it are already reserved
1613 */
1614 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1615 if (nblock == block) {
1616 if (!minext || extlen >= minext)
1617 return 0;
1618
1619 if (extlen > maxext->len) {
1620 maxext->len = extlen;
1621 maxext->rbm = *rbm;
1622 }
1623fail:
1624 nblock = block + extlen;
1625 }
1626 ret = gfs2_rbm_from_block(rbm, nblock);
1627 if (ret < 0)
1628 return ret;
1629 return 1;
1630}
1631
1632/**
1633 * gfs2_rbm_find - Look for blocks of a particular state
1634 * @rbm: Value/result starting position and final position
1635 * @state: The state which we want to find
1636 * @minext: Pointer to the requested extent length (NULL for a single block)
1637 * This is updated to be the actual reservation size.
1638 * @ip: If set, check for reservations
1639 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1640 * around until we've reached the starting point.
1641 * @ap: the allocation parameters
1642 *
1643 * Side effects:
1644 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1645 * has no free blocks in it.
1646 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1647 * has come up short on a free block search.
1648 *
1649 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1650 */
1651
1652static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1653 const struct gfs2_inode *ip, bool nowrap,
1654 const struct gfs2_alloc_parms *ap)
1655{
1656 struct buffer_head *bh;
1657 int initial_bii;
1658 u32 initial_offset;
1659 int first_bii = rbm->bii;
1660 u32 first_offset = rbm->offset;
1661 u32 offset;
1662 u8 *buffer;
1663 int n = 0;
1664 int iters = rbm->rgd->rd_length;
1665 int ret;
1666 struct gfs2_bitmap *bi;
1667 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1668
1669 /* If we are not starting at the beginning of a bitmap, then we
1670 * need to add one to the bitmap count to ensure that we search
1671 * the starting bitmap twice.
1672 */
1673 if (rbm->offset != 0)
1674 iters++;
1675
1676 while(1) {
1677 bi = rbm_bi(rbm);
1678 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1679 (state == GFS2_BLKST_FREE))
1680 goto next_bitmap;
1681
1682 bh = bi->bi_bh;
1683 buffer = bh->b_data + bi->bi_offset;
1684 WARN_ON(!buffer_uptodate(bh));
1685 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1686 buffer = bi->bi_clone + bi->bi_offset;
1687 initial_offset = rbm->offset;
1688 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1689 if (offset == BFITNOENT)
1690 goto bitmap_full;
1691 rbm->offset = offset;
1692 if (ip == NULL)
1693 return 0;
1694
1695 initial_bii = rbm->bii;
1696 ret = gfs2_reservation_check_and_update(rbm, ip,
1697 minext ? *minext : 0,
1698 &maxext);
1699 if (ret == 0)
1700 return 0;
1701 if (ret > 0) {
1702 n += (rbm->bii - initial_bii);
1703 goto next_iter;
1704 }
1705 if (ret == -E2BIG) {
1706 rbm->bii = 0;
1707 rbm->offset = 0;
1708 n += (rbm->bii - initial_bii);
1709 goto res_covered_end_of_rgrp;
1710 }
1711 return ret;
1712
1713bitmap_full: /* Mark bitmap as full and fall through */
1714 if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1715 set_bit(GBF_FULL, &bi->bi_flags);
1716
1717next_bitmap: /* Find next bitmap in the rgrp */
1718 rbm->offset = 0;
1719 rbm->bii++;
1720 if (rbm->bii == rbm->rgd->rd_length)
1721 rbm->bii = 0;
1722res_covered_end_of_rgrp:
1723 if ((rbm->bii == 0) && nowrap)
1724 break;
1725 n++;
1726next_iter:
1727 if (n >= iters)
1728 break;
1729 }
1730
1731 if (minext == NULL || state != GFS2_BLKST_FREE)
1732 return -ENOSPC;
1733
1734 /* If the extent was too small, and it's smaller than the smallest
1735 to have failed before, remember for future reference that it's
1736 useless to search this rgrp again for this amount or more. */
1737 if ((first_offset == 0) && (first_bii == 0) &&
1738 (*minext < rbm->rgd->rd_extfail_pt))
1739 rbm->rgd->rd_extfail_pt = *minext;
1740
1741 /* If the maximum extent we found is big enough to fulfill the
1742 minimum requirements, use it anyway. */
1743 if (maxext.len) {
1744 *rbm = maxext.rbm;
1745 *minext = maxext.len;
1746 return 0;
1747 }
1748
1749 return -ENOSPC;
1750}
1751
1752/**
1753 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1754 * @rgd: The rgrp
1755 * @last_unlinked: block address of the last dinode we unlinked
1756 * @skip: block address we should explicitly not unlink
1757 *
1758 * Returns: 0 if no error
1759 * The inode, if one has been found, in inode.
1760 */
1761
1762static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1763{
1764 u64 block;
1765 struct gfs2_sbd *sdp = rgd->rd_sbd;
1766 struct gfs2_glock *gl;
1767 struct gfs2_inode *ip;
1768 int error;
1769 int found = 0;
1770 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1771
1772 while (1) {
1773 down_write(&sdp->sd_log_flush_lock);
1774 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1775 true, NULL);
1776 up_write(&sdp->sd_log_flush_lock);
1777 if (error == -ENOSPC)
1778 break;
1779 if (WARN_ON_ONCE(error))
1780 break;
1781
1782 block = gfs2_rbm_to_block(&rbm);
1783 if (gfs2_rbm_from_block(&rbm, block + 1))
1784 break;
1785 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1786 continue;
1787 if (block == skip)
1788 continue;
1789 *last_unlinked = block;
1790
1791 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1792 if (error)
1793 continue;
1794
1795 /* If the inode is already in cache, we can ignore it here
1796 * because the existing inode disposal code will deal with
1797 * it when all refs have gone away. Accessing gl_object like
1798 * this is not safe in general. Here it is ok because we do
1799 * not dereference the pointer, and we only need an approx
1800 * answer to whether it is NULL or not.
1801 */
1802 ip = gl->gl_object;
1803
1804 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1805 gfs2_glock_put(gl);
1806 else
1807 found++;
1808
1809 /* Limit reclaim to sensible number of tasks */
1810 if (found > NR_CPUS)
1811 return;
1812 }
1813
1814 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1815 return;
1816}
1817
1818/**
1819 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1820 * @rgd: The rgrp in question
1821 * @loops: An indication of how picky we can be (0=very, 1=less so)
1822 *
1823 * This function uses the recently added glock statistics in order to
1824 * figure out whether a parciular resource group is suffering from
1825 * contention from multiple nodes. This is done purely on the basis
1826 * of timings, since this is the only data we have to work with and
1827 * our aim here is to reject a resource group which is highly contended
1828 * but (very important) not to do this too often in order to ensure that
1829 * we do not land up introducing fragmentation by changing resource
1830 * groups when not actually required.
1831 *
1832 * The calculation is fairly simple, we want to know whether the SRTTB
1833 * (i.e. smoothed round trip time for blocking operations) to acquire
1834 * the lock for this rgrp's glock is significantly greater than the
1835 * time taken for resource groups on average. We introduce a margin in
1836 * the form of the variable @var which is computed as the sum of the two
1837 * respective variences, and multiplied by a factor depending on @loops
1838 * and whether we have a lot of data to base the decision on. This is
1839 * then tested against the square difference of the means in order to
1840 * decide whether the result is statistically significant or not.
1841 *
1842 * Returns: A boolean verdict on the congestion status
1843 */
1844
1845static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1846{
1847 const struct gfs2_glock *gl = rgd->rd_gl;
1848 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1849 struct gfs2_lkstats *st;
1850 u64 r_dcount, l_dcount;
1851 u64 l_srttb, a_srttb = 0;
1852 s64 srttb_diff;
1853 u64 sqr_diff;
1854 u64 var;
1855 int cpu, nonzero = 0;
1856
1857 preempt_disable();
1858 for_each_present_cpu(cpu) {
1859 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1860 if (st->stats[GFS2_LKS_SRTTB]) {
1861 a_srttb += st->stats[GFS2_LKS_SRTTB];
1862 nonzero++;
1863 }
1864 }
1865 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1866 if (nonzero)
1867 do_div(a_srttb, nonzero);
1868 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1869 var = st->stats[GFS2_LKS_SRTTVARB] +
1870 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1871 preempt_enable();
1872
1873 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1874 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1875
1876 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1877 return false;
1878
1879 srttb_diff = a_srttb - l_srttb;
1880 sqr_diff = srttb_diff * srttb_diff;
1881
1882 var *= 2;
1883 if (l_dcount < 8 || r_dcount < 8)
1884 var *= 2;
1885 if (loops == 1)
1886 var *= 2;
1887
1888 return ((srttb_diff < 0) && (sqr_diff > var));
1889}
1890
1891/**
1892 * gfs2_rgrp_used_recently
1893 * @rs: The block reservation with the rgrp to test
1894 * @msecs: The time limit in milliseconds
1895 *
1896 * Returns: True if the rgrp glock has been used within the time limit
1897 */
1898static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1899 u64 msecs)
1900{
1901 u64 tdiff;
1902
1903 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1904 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1905
1906 return tdiff > (msecs * 1000 * 1000);
1907}
1908
1909static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1910{
1911 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1912 u32 skip;
1913
1914 get_random_bytes(&skip, sizeof(skip));
1915 return skip % sdp->sd_rgrps;
1916}
1917
1918static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1919{
1920 struct gfs2_rgrpd *rgd = *pos;
1921 struct gfs2_sbd *sdp = rgd->rd_sbd;
1922
1923 rgd = gfs2_rgrpd_get_next(rgd);
1924 if (rgd == NULL)
1925 rgd = gfs2_rgrpd_get_first(sdp);
1926 *pos = rgd;
1927 if (rgd != begin) /* If we didn't wrap */
1928 return true;
1929 return false;
1930}
1931
1932/**
1933 * fast_to_acquire - determine if a resource group will be fast to acquire
1934 *
1935 * If this is one of our preferred rgrps, it should be quicker to acquire,
1936 * because we tried to set ourselves up as dlm lock master.
1937 */
1938static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1939{
1940 struct gfs2_glock *gl = rgd->rd_gl;
1941
1942 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1943 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1944 !test_bit(GLF_DEMOTE, &gl->gl_flags))
1945 return 1;
1946 if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1947 return 1;
1948 return 0;
1949}
1950
1951/**
1952 * gfs2_inplace_reserve - Reserve space in the filesystem
1953 * @ip: the inode to reserve space for
1954 * @ap: the allocation parameters
1955 *
1956 * We try our best to find an rgrp that has at least ap->target blocks
1957 * available. After a couple of passes (loops == 2), the prospects of finding
1958 * such an rgrp diminish. At this stage, we return the first rgrp that has
1959 * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1960 * the number of blocks available in the chosen rgrp.
1961 *
1962 * Returns: 0 on success,
1963 * -ENOMEM if a suitable rgrp can't be found
1964 * errno otherwise
1965 */
1966
1967int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1968{
1969 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1970 struct gfs2_rgrpd *begin = NULL;
1971 struct gfs2_blkreserv *rs = &ip->i_res;
1972 int error = 0, rg_locked, flags = 0;
1973 u64 last_unlinked = NO_BLOCK;
1974 int loops = 0;
1975 u32 skip = 0;
1976
1977 if (sdp->sd_args.ar_rgrplvb)
1978 flags |= GL_SKIP;
1979 if (gfs2_assert_warn(sdp, ap->target))
1980 return -EINVAL;
1981 if (gfs2_rs_active(rs)) {
1982 begin = rs->rs_rbm.rgd;
1983 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1984 rs->rs_rbm.rgd = begin = ip->i_rgd;
1985 } else {
1986 check_and_update_goal(ip);
1987 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1988 }
1989 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1990 skip = gfs2_orlov_skip(ip);
1991 if (rs->rs_rbm.rgd == NULL)
1992 return -EBADSLT;
1993
1994 while (loops < 3) {
1995 rg_locked = 1;
1996
1997 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1998 rg_locked = 0;
1999 if (skip && skip--)
2000 goto next_rgrp;
2001 if (!gfs2_rs_active(rs)) {
2002 if (loops == 0 &&
2003 !fast_to_acquire(rs->rs_rbm.rgd))
2004 goto next_rgrp;
2005 if ((loops < 2) &&
2006 gfs2_rgrp_used_recently(rs, 1000) &&
2007 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2008 goto next_rgrp;
2009 }
2010 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2011 LM_ST_EXCLUSIVE, flags,
2012 &rs->rs_rgd_gh);
2013 if (unlikely(error))
2014 return error;
2015 if (!gfs2_rs_active(rs) && (loops < 2) &&
2016 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2017 goto skip_rgrp;
2018 if (sdp->sd_args.ar_rgrplvb) {
2019 error = update_rgrp_lvb(rs->rs_rbm.rgd);
2020 if (unlikely(error)) {
2021 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2022 return error;
2023 }
2024 }
2025 }
2026
2027 /* Skip unuseable resource groups */
2028 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2029 GFS2_RDF_ERROR)) ||
2030 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2031 goto skip_rgrp;
2032
2033 if (sdp->sd_args.ar_rgrplvb)
2034 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2035
2036 /* Get a reservation if we don't already have one */
2037 if (!gfs2_rs_active(rs))
2038 rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2039
2040 /* Skip rgrps when we can't get a reservation on first pass */
2041 if (!gfs2_rs_active(rs) && (loops < 1))
2042 goto check_rgrp;
2043
2044 /* If rgrp has enough free space, use it */
2045 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2046 (loops == 2 && ap->min_target &&
2047 rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2048 ip->i_rgd = rs->rs_rbm.rgd;
2049 ap->allowed = ip->i_rgd->rd_free_clone;
2050 return 0;
2051 }
2052check_rgrp:
2053 /* Check for unlinked inodes which can be reclaimed */
2054 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2055 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2056 ip->i_no_addr);
2057skip_rgrp:
2058 /* Drop reservation, if we couldn't use reserved rgrp */
2059 if (gfs2_rs_active(rs))
2060 gfs2_rs_deltree(rs);
2061
2062 /* Unlock rgrp if required */
2063 if (!rg_locked)
2064 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2065next_rgrp:
2066 /* Find the next rgrp, and continue looking */
2067 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2068 continue;
2069 if (skip)
2070 continue;
2071
2072 /* If we've scanned all the rgrps, but found no free blocks
2073 * then this checks for some less likely conditions before
2074 * trying again.
2075 */
2076 loops++;
2077 /* Check that fs hasn't grown if writing to rindex */
2078 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2079 error = gfs2_ri_update(ip);
2080 if (error)
2081 return error;
2082 }
2083 /* Flushing the log may release space */
2084 if (loops == 2)
2085 gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2086 }
2087
2088 return -ENOSPC;
2089}
2090
2091/**
2092 * gfs2_inplace_release - release an inplace reservation
2093 * @ip: the inode the reservation was taken out on
2094 *
2095 * Release a reservation made by gfs2_inplace_reserve().
2096 */
2097
2098void gfs2_inplace_release(struct gfs2_inode *ip)
2099{
2100 struct gfs2_blkreserv *rs = &ip->i_res;
2101
2102 if (rs->rs_rgd_gh.gh_gl)
2103 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2104}
2105
2106/**
2107 * gfs2_get_block_type - Check a block in a RG is of given type
2108 * @rgd: the resource group holding the block
2109 * @block: the block number
2110 *
2111 * Returns: The block type (GFS2_BLKST_*)
2112 */
2113
2114static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2115{
2116 struct gfs2_rbm rbm = { .rgd = rgd, };
2117 int ret;
2118
2119 ret = gfs2_rbm_from_block(&rbm, block);
2120 WARN_ON_ONCE(ret != 0);
2121
2122 return gfs2_testbit(&rbm);
2123}
2124
2125
2126/**
2127 * gfs2_alloc_extent - allocate an extent from a given bitmap
2128 * @rbm: the resource group information
2129 * @dinode: TRUE if the first block we allocate is for a dinode
2130 * @n: The extent length (value/result)
2131 *
2132 * Add the bitmap buffer to the transaction.
2133 * Set the found bits to @new_state to change block's allocation state.
2134 */
2135static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2136 unsigned int *n)
2137{
2138 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2139 const unsigned int elen = *n;
2140 u64 block;
2141 int ret;
2142
2143 *n = 1;
2144 block = gfs2_rbm_to_block(rbm);
2145 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2146 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2147 block++;
2148 while (*n < elen) {
2149 ret = gfs2_rbm_from_block(&pos, block);
2150 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2151 break;
2152 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2153 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2154 (*n)++;
2155 block++;
2156 }
2157}
2158
2159/**
2160 * rgblk_free - Change alloc state of given block(s)
2161 * @sdp: the filesystem
2162 * @bstart: the start of a run of blocks to free
2163 * @blen: the length of the block run (all must lie within ONE RG!)
2164 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2165 *
2166 * Returns: Resource group containing the block(s)
2167 */
2168
2169static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2170 u32 blen, unsigned char new_state)
2171{
2172 struct gfs2_rbm rbm;
2173 struct gfs2_bitmap *bi, *bi_prev = NULL;
2174
2175 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2176 if (!rbm.rgd) {
2177 if (gfs2_consist(sdp))
2178 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2179 return NULL;
2180 }
2181
2182 gfs2_rbm_from_block(&rbm, bstart);
2183 while (blen--) {
2184 bi = rbm_bi(&rbm);
2185 if (bi != bi_prev) {
2186 if (!bi->bi_clone) {
2187 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2188 GFP_NOFS | __GFP_NOFAIL);
2189 memcpy(bi->bi_clone + bi->bi_offset,
2190 bi->bi_bh->b_data + bi->bi_offset,
2191 bi->bi_len);
2192 }
2193 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2194 bi_prev = bi;
2195 }
2196 gfs2_setbit(&rbm, false, new_state);
2197 gfs2_rbm_incr(&rbm);
2198 }
2199
2200 return rbm.rgd;
2201}
2202
2203/**
2204 * gfs2_rgrp_dump - print out an rgrp
2205 * @seq: The iterator
2206 * @gl: The glock in question
2207 *
2208 */
2209
2210void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2211{
2212 struct gfs2_rgrpd *rgd = gl->gl_object;
2213 struct gfs2_blkreserv *trs;
2214 const struct rb_node *n;
2215
2216 if (rgd == NULL)
2217 return;
2218 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2219 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2220 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2221 rgd->rd_reserved, rgd->rd_extfail_pt);
2222 spin_lock(&rgd->rd_rsspin);
2223 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2224 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2225 dump_rs(seq, trs);
2226 }
2227 spin_unlock(&rgd->rd_rsspin);
2228}
2229
2230static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2231{
2232 struct gfs2_sbd *sdp = rgd->rd_sbd;
2233 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2234 (unsigned long long)rgd->rd_addr);
2235 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2236 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2237 rgd->rd_flags |= GFS2_RDF_ERROR;
2238}
2239
2240/**
2241 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2242 * @ip: The inode we have just allocated blocks for
2243 * @rbm: The start of the allocated blocks
2244 * @len: The extent length
2245 *
2246 * Adjusts a reservation after an allocation has taken place. If the
2247 * reservation does not match the allocation, or if it is now empty
2248 * then it is removed.
2249 */
2250
2251static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2252 const struct gfs2_rbm *rbm, unsigned len)
2253{
2254 struct gfs2_blkreserv *rs = &ip->i_res;
2255 struct gfs2_rgrpd *rgd = rbm->rgd;
2256 unsigned rlen;
2257 u64 block;
2258 int ret;
2259
2260 spin_lock(&rgd->rd_rsspin);
2261 if (gfs2_rs_active(rs)) {
2262 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2263 block = gfs2_rbm_to_block(rbm);
2264 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2265 rlen = min(rs->rs_free, len);
2266 rs->rs_free -= rlen;
2267 rgd->rd_reserved -= rlen;
2268 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2269 if (rs->rs_free && !ret)
2270 goto out;
2271 /* We used up our block reservation, so we should
2272 reserve more blocks next time. */
2273 atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2274 }
2275 __rs_deltree(rs);
2276 }
2277out:
2278 spin_unlock(&rgd->rd_rsspin);
2279}
2280
2281/**
2282 * gfs2_set_alloc_start - Set starting point for block allocation
2283 * @rbm: The rbm which will be set to the required location
2284 * @ip: The gfs2 inode
2285 * @dinode: Flag to say if allocation includes a new inode
2286 *
2287 * This sets the starting point from the reservation if one is active
2288 * otherwise it falls back to guessing a start point based on the
2289 * inode's goal block or the last allocation point in the rgrp.
2290 */
2291
2292static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2293 const struct gfs2_inode *ip, bool dinode)
2294{
2295 u64 goal;
2296
2297 if (gfs2_rs_active(&ip->i_res)) {
2298 *rbm = ip->i_res.rs_rbm;
2299 return;
2300 }
2301
2302 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2303 goal = ip->i_goal;
2304 else
2305 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2306
2307 gfs2_rbm_from_block(rbm, goal);
2308}
2309
2310/**
2311 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2312 * @ip: the inode to allocate the block for
2313 * @bn: Used to return the starting block number
2314 * @nblocks: requested number of blocks/extent length (value/result)
2315 * @dinode: 1 if we're allocating a dinode block, else 0
2316 * @generation: the generation number of the inode
2317 *
2318 * Returns: 0 or error
2319 */
2320
2321int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2322 bool dinode, u64 *generation)
2323{
2324 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2325 struct buffer_head *dibh;
2326 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2327 unsigned int ndata;
2328 u64 block; /* block, within the file system scope */
2329 int error;
2330
2331 gfs2_set_alloc_start(&rbm, ip, dinode);
2332 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL);
2333
2334 if (error == -ENOSPC) {
2335 gfs2_set_alloc_start(&rbm, ip, dinode);
2336 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false,
2337 NULL);
2338 }
2339
2340 /* Since all blocks are reserved in advance, this shouldn't happen */
2341 if (error) {
2342 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2343 (unsigned long long)ip->i_no_addr, error, *nblocks,
2344 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2345 rbm.rgd->rd_extfail_pt);
2346 goto rgrp_error;
2347 }
2348
2349 gfs2_alloc_extent(&rbm, dinode, nblocks);
2350 block = gfs2_rbm_to_block(&rbm);
2351 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2352 if (gfs2_rs_active(&ip->i_res))
2353 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2354 ndata = *nblocks;
2355 if (dinode)
2356 ndata--;
2357
2358 if (!dinode) {
2359 ip->i_goal = block + ndata - 1;
2360 error = gfs2_meta_inode_buffer(ip, &dibh);
2361 if (error == 0) {
2362 struct gfs2_dinode *di =
2363 (struct gfs2_dinode *)dibh->b_data;
2364 gfs2_trans_add_meta(ip->i_gl, dibh);
2365 di->di_goal_meta = di->di_goal_data =
2366 cpu_to_be64(ip->i_goal);
2367 brelse(dibh);
2368 }
2369 }
2370 if (rbm.rgd->rd_free < *nblocks) {
2371 pr_warn("nblocks=%u\n", *nblocks);
2372 goto rgrp_error;
2373 }
2374
2375 rbm.rgd->rd_free -= *nblocks;
2376 if (dinode) {
2377 rbm.rgd->rd_dinodes++;
2378 *generation = rbm.rgd->rd_igeneration++;
2379 if (*generation == 0)
2380 *generation = rbm.rgd->rd_igeneration++;
2381 }
2382
2383 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2384 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2385 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2386
2387 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2388 if (dinode)
2389 gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2390
2391 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2392
2393 rbm.rgd->rd_free_clone -= *nblocks;
2394 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2395 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2396 *bn = block;
2397 return 0;
2398
2399rgrp_error:
2400 gfs2_rgrp_error(rbm.rgd);
2401 return -EIO;
2402}
2403
2404/**
2405 * __gfs2_free_blocks - free a contiguous run of block(s)
2406 * @ip: the inode these blocks are being freed from
2407 * @bstart: first block of a run of contiguous blocks
2408 * @blen: the length of the block run
2409 * @meta: 1 if the blocks represent metadata
2410 *
2411 */
2412
2413void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2414{
2415 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2416 struct gfs2_rgrpd *rgd;
2417
2418 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2419 if (!rgd)
2420 return;
2421 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2422 rgd->rd_free += blen;
2423 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2424 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2425 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2426 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2427
2428 /* Directories keep their data in the metadata address space */
2429 if (meta || ip->i_depth)
2430 gfs2_meta_wipe(ip, bstart, blen);
2431}
2432
2433/**
2434 * gfs2_free_meta - free a contiguous run of data block(s)
2435 * @ip: the inode these blocks are being freed from
2436 * @bstart: first block of a run of contiguous blocks
2437 * @blen: the length of the block run
2438 *
2439 */
2440
2441void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2442{
2443 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2444
2445 __gfs2_free_blocks(ip, bstart, blen, 1);
2446 gfs2_statfs_change(sdp, 0, +blen, 0);
2447 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2448}
2449
2450void gfs2_unlink_di(struct inode *inode)
2451{
2452 struct gfs2_inode *ip = GFS2_I(inode);
2453 struct gfs2_sbd *sdp = GFS2_SB(inode);
2454 struct gfs2_rgrpd *rgd;
2455 u64 blkno = ip->i_no_addr;
2456
2457 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2458 if (!rgd)
2459 return;
2460 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2461 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2462 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2463 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2464 update_rgrp_lvb_unlinked(rgd, 1);
2465}
2466
2467static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2468{
2469 struct gfs2_sbd *sdp = rgd->rd_sbd;
2470 struct gfs2_rgrpd *tmp_rgd;
2471
2472 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2473 if (!tmp_rgd)
2474 return;
2475 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2476
2477 if (!rgd->rd_dinodes)
2478 gfs2_consist_rgrpd(rgd);
2479 rgd->rd_dinodes--;
2480 rgd->rd_free++;
2481
2482 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2483 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2484 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2485 update_rgrp_lvb_unlinked(rgd, -1);
2486
2487 gfs2_statfs_change(sdp, 0, +1, -1);
2488}
2489
2490
2491void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2492{
2493 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2494 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2495 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2496 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2497}
2498
2499/**
2500 * gfs2_check_blk_type - Check the type of a block
2501 * @sdp: The superblock
2502 * @no_addr: The block number to check
2503 * @type: The block type we are looking for
2504 *
2505 * Returns: 0 if the block type matches the expected type
2506 * -ESTALE if it doesn't match
2507 * or -ve errno if something went wrong while checking
2508 */
2509
2510int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2511{
2512 struct gfs2_rgrpd *rgd;
2513 struct gfs2_holder rgd_gh;
2514 int error = -EINVAL;
2515
2516 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2517 if (!rgd)
2518 goto fail;
2519
2520 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2521 if (error)
2522 goto fail;
2523
2524 if (gfs2_get_block_type(rgd, no_addr) != type)
2525 error = -ESTALE;
2526
2527 gfs2_glock_dq_uninit(&rgd_gh);
2528fail:
2529 return error;
2530}
2531
2532/**
2533 * gfs2_rlist_add - add a RG to a list of RGs
2534 * @ip: the inode
2535 * @rlist: the list of resource groups
2536 * @block: the block
2537 *
2538 * Figure out what RG a block belongs to and add that RG to the list
2539 *
2540 * FIXME: Don't use NOFAIL
2541 *
2542 */
2543
2544void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2545 u64 block)
2546{
2547 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2548 struct gfs2_rgrpd *rgd;
2549 struct gfs2_rgrpd **tmp;
2550 unsigned int new_space;
2551 unsigned int x;
2552
2553 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2554 return;
2555
2556 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2557 rgd = ip->i_rgd;
2558 else
2559 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2560 if (!rgd) {
2561 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2562 return;
2563 }
2564 ip->i_rgd = rgd;
2565
2566 for (x = 0; x < rlist->rl_rgrps; x++)
2567 if (rlist->rl_rgd[x] == rgd)
2568 return;
2569
2570 if (rlist->rl_rgrps == rlist->rl_space) {
2571 new_space = rlist->rl_space + 10;
2572
2573 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2574 GFP_NOFS | __GFP_NOFAIL);
2575
2576 if (rlist->rl_rgd) {
2577 memcpy(tmp, rlist->rl_rgd,
2578 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2579 kfree(rlist->rl_rgd);
2580 }
2581
2582 rlist->rl_space = new_space;
2583 rlist->rl_rgd = tmp;
2584 }
2585
2586 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2587}
2588
2589/**
2590 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2591 * and initialize an array of glock holders for them
2592 * @rlist: the list of resource groups
2593 * @state: the lock state to acquire the RG lock in
2594 *
2595 * FIXME: Don't use NOFAIL
2596 *
2597 */
2598
2599void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2600{
2601 unsigned int x;
2602
2603 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2604 GFP_NOFS | __GFP_NOFAIL);
2605 for (x = 0; x < rlist->rl_rgrps; x++)
2606 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2607 state, 0,
2608 &rlist->rl_ghs[x]);
2609}
2610
2611/**
2612 * gfs2_rlist_free - free a resource group list
2613 * @rlist: the list of resource groups
2614 *
2615 */
2616
2617void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2618{
2619 unsigned int x;
2620
2621 kfree(rlist->rl_rgd);
2622
2623 if (rlist->rl_ghs) {
2624 for (x = 0; x < rlist->rl_rgrps; x++)
2625 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2626 kfree(rlist->rl_ghs);
2627 rlist->rl_ghs = NULL;
2628 }
2629}
2630