Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
 
 
  10#include <linux/slab.h>
  11#include <linux/spinlock.h>
  12#include <linux/completion.h>
  13#include <linux/buffer_head.h>
  14#include <linux/fs.h>
  15#include <linux/gfs2_ondisk.h>
  16#include <linux/prefetch.h>
  17#include <linux/blkdev.h>
  18#include <linux/rbtree.h>
 
  19
  20#include "gfs2.h"
  21#include "incore.h"
  22#include "glock.h"
  23#include "glops.h"
  24#include "lops.h"
  25#include "meta_io.h"
  26#include "quota.h"
  27#include "rgrp.h"
  28#include "super.h"
  29#include "trans.h"
  30#include "util.h"
  31#include "log.h"
  32#include "inode.h"
  33#include "trace_gfs2.h"
  34
  35#define BFITNOENT ((u32)~0)
  36#define NO_BLOCK ((u64)~0)
  37
  38#if BITS_PER_LONG == 32
  39#define LBITMASK   (0x55555555UL)
  40#define LBITSKIP55 (0x55555555UL)
  41#define LBITSKIP00 (0x00000000UL)
  42#else
  43#define LBITMASK   (0x5555555555555555UL)
  44#define LBITSKIP55 (0x5555555555555555UL)
  45#define LBITSKIP00 (0x0000000000000000UL)
  46#endif
  47
  48/*
  49 * These routines are used by the resource group routines (rgrp.c)
  50 * to keep track of block allocation.  Each block is represented by two
  51 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  52 *
  53 * 0 = Free
  54 * 1 = Used (not metadata)
  55 * 2 = Unlinked (still in use) inode
  56 * 3 = Used (metadata)
  57 */
  58
 
 
 
 
 
  59static const char valid_change[16] = {
  60	        /* current */
  61	/* n */ 0, 1, 1, 1,
  62	/* e */ 1, 0, 0, 0,
  63	/* w */ 0, 0, 0, 1,
  64	        1, 0, 0, 0
  65};
  66
  67static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
  68			unsigned char old_state,
  69			struct gfs2_bitmap **rbi);
 
  70
  71/**
  72 * gfs2_setbit - Set a bit in the bitmaps
  73 * @rgd: the resource group descriptor
  74 * @buf2: the clone buffer that holds the bitmaps
  75 * @bi: the bitmap structure
  76 * @block: the block to set
  77 * @new_state: the new state of the block
  78 *
  79 */
  80
  81static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf2,
  82			       struct gfs2_bitmap *bi, u32 block,
  83			       unsigned char new_state)
  84{
  85	unsigned char *byte1, *byte2, *end, cur_state;
 
  86	unsigned int buflen = bi->bi_len;
  87	const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
  88
  89	byte1 = bi->bi_bh->b_data + bi->bi_offset + (block / GFS2_NBBY);
  90	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  91
  92	BUG_ON(byte1 >= end);
  93
  94	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  95
  96	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
  97		printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
  98		       "new_state=%d\n",
  99		       (unsigned long long)block, cur_state, new_state);
 100		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
 101		       (unsigned long long)rgd->rd_addr,
 102		       (unsigned long)bi->bi_start);
 103		printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
 104		       (unsigned long)bi->bi_offset,
 105		       (unsigned long)bi->bi_len);
 106		dump_stack();
 107		gfs2_consist_rgrpd(rgd);
 108		return;
 109	}
 110	*byte1 ^= (cur_state ^ new_state) << bit;
 111
 112	if (buf2) {
 113		byte2 = buf2 + bi->bi_offset + (block / GFS2_NBBY);
 114		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 115		*byte2 ^= (cur_state ^ new_state) << bit;
 116	}
 117}
 118
 119/**
 120 * gfs2_testbit - test a bit in the bitmaps
 121 * @rgd: the resource group descriptor
 122 * @buffer: the buffer that holds the bitmaps
 123 * @buflen: the length (in bytes) of the buffer
 124 * @block: the block to read
 125 *
 
 126 */
 127
 128static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
 129					 const unsigned char *buffer,
 130					 unsigned int buflen, u32 block)
 131{
 132	const unsigned char *byte, *end;
 133	unsigned char cur_state;
 
 134	unsigned int bit;
 135
 136	byte = buffer + (block / GFS2_NBBY);
 137	bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
 138	end = buffer + buflen;
 139
 140	gfs2_assert(rgd->rd_sbd, byte < end);
 141
 142	cur_state = (*byte >> bit) & GFS2_BIT_MASK;
 143
 144	return cur_state;
 145}
 146
 147/**
 148 * gfs2_bit_search
 149 * @ptr: Pointer to bitmap data
 150 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 151 * @state: The state we are searching for
 152 *
 153 * We xor the bitmap data with a patter which is the bitwise opposite
 154 * of what we are looking for, this gives rise to a pattern of ones
 155 * wherever there is a match. Since we have two bits per entry, we
 156 * take this pattern, shift it down by one place and then and it with
 157 * the original. All the even bit positions (0,2,4, etc) then represent
 158 * successful matches, so we mask with 0x55555..... to remove the unwanted
 159 * odd bit positions.
 160 *
 161 * This allows searching of a whole u64 at once (32 blocks) with a
 162 * single test (on 64 bit arches).
 163 */
 164
 165static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 166{
 167	u64 tmp;
 168	static const u64 search[] = {
 169		[0] = 0xffffffffffffffffULL,
 170		[1] = 0xaaaaaaaaaaaaaaaaULL,
 171		[2] = 0x5555555555555555ULL,
 172		[3] = 0x0000000000000000ULL,
 173	};
 174	tmp = le64_to_cpu(*ptr) ^ search[state];
 175	tmp &= (tmp >> 1);
 176	tmp &= mask;
 177	return tmp;
 178}
 179
 180/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 182 *       a block in a given allocation state.
 183 * @buf: the buffer that holds the bitmaps
 184 * @len: the length (in bytes) of the buffer
 185 * @goal: start search at this block's bit-pair (within @buffer)
 186 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 187 *
 188 * Scope of @goal and returned block number is only within this bitmap buffer,
 189 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 190 * beginning of a bitmap block buffer, skipping any header structures, but
 191 * headers are always a multiple of 64 bits long so that the buffer is
 192 * always aligned to a 64 bit boundary.
 193 *
 194 * The size of the buffer is in bytes, but is it assumed that it is
 195 * always ok to read a complete multiple of 64 bits at the end
 196 * of the block in case the end is no aligned to a natural boundary.
 197 *
 198 * Return: the block number (bitmap buffer scope) that was found
 199 */
 200
 201static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 202		       u32 goal, u8 state)
 203{
 204	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 205	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 206	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 207	u64 tmp;
 208	u64 mask = 0x5555555555555555ULL;
 209	u32 bit;
 210
 211	BUG_ON(state > 3);
 212
 213	/* Mask off bits we don't care about at the start of the search */
 214	mask <<= spoint;
 215	tmp = gfs2_bit_search(ptr, mask, state);
 216	ptr++;
 217	while(tmp == 0 && ptr < end) {
 218		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 219		ptr++;
 220	}
 221	/* Mask off any bits which are more than len bytes from the start */
 222	if (ptr == end && (len & (sizeof(u64) - 1)))
 223		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 224	/* Didn't find anything, so return */
 225	if (tmp == 0)
 226		return BFITNOENT;
 227	ptr--;
 228	bit = __ffs64(tmp);
 229	bit /= 2;	/* two bits per entry in the bitmap */
 230	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 231}
 232
 233/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234 * gfs2_bitcount - count the number of bits in a certain state
 235 * @rgd: the resource group descriptor
 236 * @buffer: the buffer that holds the bitmaps
 237 * @buflen: the length (in bytes) of the buffer
 238 * @state: the state of the block we're looking for
 239 *
 240 * Returns: The number of bits
 241 */
 242
 243static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 244			 unsigned int buflen, u8 state)
 245{
 246	const u8 *byte = buffer;
 247	const u8 *end = buffer + buflen;
 248	const u8 state1 = state << 2;
 249	const u8 state2 = state << 4;
 250	const u8 state3 = state << 6;
 251	u32 count = 0;
 252
 253	for (; byte < end; byte++) {
 254		if (((*byte) & 0x03) == state)
 255			count++;
 256		if (((*byte) & 0x0C) == state1)
 257			count++;
 258		if (((*byte) & 0x30) == state2)
 259			count++;
 260		if (((*byte) & 0xC0) == state3)
 261			count++;
 262	}
 263
 264	return count;
 265}
 266
 267/**
 268 * gfs2_rgrp_verify - Verify that a resource group is consistent
 269 * @rgd: the rgrp
 270 *
 271 */
 272
 273void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 274{
 275	struct gfs2_sbd *sdp = rgd->rd_sbd;
 276	struct gfs2_bitmap *bi = NULL;
 277	u32 length = rgd->rd_length;
 278	u32 count[4], tmp;
 279	int buf, x;
 280
 281	memset(count, 0, 4 * sizeof(u32));
 282
 283	/* Count # blocks in each of 4 possible allocation states */
 284	for (buf = 0; buf < length; buf++) {
 285		bi = rgd->rd_bits + buf;
 286		for (x = 0; x < 4; x++)
 287			count[x] += gfs2_bitcount(rgd,
 288						  bi->bi_bh->b_data +
 289						  bi->bi_offset,
 290						  bi->bi_len, x);
 291	}
 292
 293	if (count[0] != rgd->rd_free) {
 294		if (gfs2_consist_rgrpd(rgd))
 295			fs_err(sdp, "free data mismatch:  %u != %u\n",
 296			       count[0], rgd->rd_free);
 297		return;
 298	}
 299
 300	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 301	if (count[1] != tmp) {
 302		if (gfs2_consist_rgrpd(rgd))
 303			fs_err(sdp, "used data mismatch:  %u != %u\n",
 304			       count[1], tmp);
 305		return;
 306	}
 307
 308	if (count[2] + count[3] != rgd->rd_dinodes) {
 309		if (gfs2_consist_rgrpd(rgd))
 310			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 311			       count[2] + count[3], rgd->rd_dinodes);
 312		return;
 313	}
 314}
 315
 316static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 317{
 318	u64 first = rgd->rd_data0;
 319	u64 last = first + rgd->rd_data;
 320	return first <= block && block < last;
 321}
 322
 323/**
 324 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 325 * @sdp: The GFS2 superblock
 326 * @blk: The data block number
 327 * @exact: True if this needs to be an exact match
 328 *
 329 * Returns: The resource group, or NULL if not found
 330 */
 331
 332struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 333{
 334	struct rb_node *n, *next;
 335	struct gfs2_rgrpd *cur;
 336
 337	spin_lock(&sdp->sd_rindex_spin);
 338	n = sdp->sd_rindex_tree.rb_node;
 339	while (n) {
 340		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 341		next = NULL;
 342		if (blk < cur->rd_addr)
 343			next = n->rb_left;
 344		else if (blk >= cur->rd_data0 + cur->rd_data)
 345			next = n->rb_right;
 346		if (next == NULL) {
 347			spin_unlock(&sdp->sd_rindex_spin);
 348			if (exact) {
 349				if (blk < cur->rd_addr)
 350					return NULL;
 351				if (blk >= cur->rd_data0 + cur->rd_data)
 352					return NULL;
 353			}
 354			return cur;
 355		}
 356		n = next;
 357	}
 358	spin_unlock(&sdp->sd_rindex_spin);
 359
 360	return NULL;
 361}
 362
 363/**
 364 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 365 * @sdp: The GFS2 superblock
 366 *
 367 * Returns: The first rgrp in the filesystem
 368 */
 369
 370struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 371{
 372	const struct rb_node *n;
 373	struct gfs2_rgrpd *rgd;
 374
 375	spin_lock(&sdp->sd_rindex_spin);
 376	n = rb_first(&sdp->sd_rindex_tree);
 377	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 378	spin_unlock(&sdp->sd_rindex_spin);
 379
 380	return rgd;
 381}
 382
 383/**
 384 * gfs2_rgrpd_get_next - get the next RG
 385 * @rgd: the resource group descriptor
 386 *
 387 * Returns: The next rgrp
 388 */
 389
 390struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 391{
 392	struct gfs2_sbd *sdp = rgd->rd_sbd;
 393	const struct rb_node *n;
 394
 395	spin_lock(&sdp->sd_rindex_spin);
 396	n = rb_next(&rgd->rd_node);
 397	if (n == NULL)
 398		n = rb_first(&sdp->sd_rindex_tree);
 399
 400	if (unlikely(&rgd->rd_node == n)) {
 401		spin_unlock(&sdp->sd_rindex_spin);
 402		return NULL;
 403	}
 404	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 405	spin_unlock(&sdp->sd_rindex_spin);
 406	return rgd;
 407}
 408
 
 
 
 
 
 
 
 409void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 410{
 411	int x;
 412
 413	for (x = 0; x < rgd->rd_length; x++) {
 414		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 415		kfree(bi->bi_clone);
 416		bi->bi_clone = NULL;
 417	}
 418}
 419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 421{
 422	struct rb_node *n;
 423	struct gfs2_rgrpd *rgd;
 424	struct gfs2_glock *gl;
 425
 426	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 427		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 428		gl = rgd->rd_gl;
 429
 430		rb_erase(n, &sdp->sd_rindex_tree);
 431
 432		if (gl) {
 433			spin_lock(&gl->gl_spin);
 434			gl->gl_object = NULL;
 435			spin_unlock(&gl->gl_spin);
 436			gfs2_glock_add_to_lru(gl);
 437			gfs2_glock_put(gl);
 438		}
 439
 440		gfs2_free_clones(rgd);
 441		kfree(rgd->rd_bits);
 
 442		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 443	}
 444}
 445
 446static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 447{
 448	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 449	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
 450	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 451	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
 452	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
 453}
 454
 455/**
 456 * gfs2_compute_bitstructs - Compute the bitmap sizes
 457 * @rgd: The resource group descriptor
 458 *
 459 * Calculates bitmap descriptors, one for each block that contains bitmap data
 460 *
 461 * Returns: errno
 462 */
 463
 464static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 465{
 466	struct gfs2_sbd *sdp = rgd->rd_sbd;
 467	struct gfs2_bitmap *bi;
 468	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 469	u32 bytes_left, bytes;
 470	int x;
 471
 472	if (!length)
 473		return -EINVAL;
 474
 475	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 476	if (!rgd->rd_bits)
 477		return -ENOMEM;
 478
 479	bytes_left = rgd->rd_bitbytes;
 480
 481	for (x = 0; x < length; x++) {
 482		bi = rgd->rd_bits + x;
 483
 484		bi->bi_flags = 0;
 485		/* small rgrp; bitmap stored completely in header block */
 486		if (length == 1) {
 487			bytes = bytes_left;
 488			bi->bi_offset = sizeof(struct gfs2_rgrp);
 489			bi->bi_start = 0;
 490			bi->bi_len = bytes;
 
 491		/* header block */
 492		} else if (x == 0) {
 493			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 494			bi->bi_offset = sizeof(struct gfs2_rgrp);
 495			bi->bi_start = 0;
 496			bi->bi_len = bytes;
 
 497		/* last block */
 498		} else if (x + 1 == length) {
 499			bytes = bytes_left;
 500			bi->bi_offset = sizeof(struct gfs2_meta_header);
 501			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 502			bi->bi_len = bytes;
 
 503		/* other blocks */
 504		} else {
 505			bytes = sdp->sd_sb.sb_bsize -
 506				sizeof(struct gfs2_meta_header);
 507			bi->bi_offset = sizeof(struct gfs2_meta_header);
 508			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 509			bi->bi_len = bytes;
 
 510		}
 511
 512		bytes_left -= bytes;
 513	}
 514
 515	if (bytes_left) {
 516		gfs2_consist_rgrpd(rgd);
 517		return -EIO;
 518	}
 519	bi = rgd->rd_bits + (length - 1);
 520	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 521		if (gfs2_consist_rgrpd(rgd)) {
 522			gfs2_rindex_print(rgd);
 523			fs_err(sdp, "start=%u len=%u offset=%u\n",
 524			       bi->bi_start, bi->bi_len, bi->bi_offset);
 525		}
 526		return -EIO;
 527	}
 528
 529	return 0;
 530}
 531
 532/**
 533 * gfs2_ri_total - Total up the file system space, according to the rindex.
 534 * @sdp: the filesystem
 535 *
 536 */
 537u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 538{
 539	u64 total_data = 0;	
 540	struct inode *inode = sdp->sd_rindex;
 541	struct gfs2_inode *ip = GFS2_I(inode);
 542	char buf[sizeof(struct gfs2_rindex)];
 543	int error, rgrps;
 544
 545	for (rgrps = 0;; rgrps++) {
 546		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 547
 548		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 549			break;
 550		error = gfs2_internal_read(ip, buf, &pos,
 551					   sizeof(struct gfs2_rindex));
 552		if (error != sizeof(struct gfs2_rindex))
 553			break;
 554		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 555	}
 556	return total_data;
 557}
 558
 559static int rgd_insert(struct gfs2_rgrpd *rgd)
 560{
 561	struct gfs2_sbd *sdp = rgd->rd_sbd;
 562	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 563
 564	/* Figure out where to put new node */
 565	while (*newn) {
 566		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 567						  rd_node);
 568
 569		parent = *newn;
 570		if (rgd->rd_addr < cur->rd_addr)
 571			newn = &((*newn)->rb_left);
 572		else if (rgd->rd_addr > cur->rd_addr)
 573			newn = &((*newn)->rb_right);
 574		else
 575			return -EEXIST;
 576	}
 577
 578	rb_link_node(&rgd->rd_node, parent, newn);
 579	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 580	sdp->sd_rgrps++;
 581	return 0;
 582}
 583
 584/**
 585 * read_rindex_entry - Pull in a new resource index entry from the disk
 586 * @ip: Pointer to the rindex inode
 587 *
 588 * Returns: 0 on success, > 0 on EOF, error code otherwise
 589 */
 590
 591static int read_rindex_entry(struct gfs2_inode *ip)
 592{
 593	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
 594	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 595	struct gfs2_rindex buf;
 596	int error;
 597	struct gfs2_rgrpd *rgd;
 598
 599	if (pos >= i_size_read(&ip->i_inode))
 600		return 1;
 601
 602	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 603				   sizeof(struct gfs2_rindex));
 604
 605	if (error != sizeof(struct gfs2_rindex))
 606		return (error == 0) ? 1 : error;
 607
 608	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 609	error = -ENOMEM;
 610	if (!rgd)
 611		return error;
 612
 613	rgd->rd_sbd = sdp;
 614	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 615	rgd->rd_length = be32_to_cpu(buf.ri_length);
 616	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 617	rgd->rd_data = be32_to_cpu(buf.ri_data);
 618	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 
 619
 620	error = compute_bitstructs(rgd);
 621	if (error)
 622		goto fail;
 623
 624	error = gfs2_glock_get(sdp, rgd->rd_addr,
 625			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 626	if (error)
 627		goto fail;
 628
 629	rgd->rd_gl->gl_object = rgd;
 630	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
 
 
 
 631	if (rgd->rd_data > sdp->sd_max_rg_data)
 632		sdp->sd_max_rg_data = rgd->rd_data;
 633	spin_lock(&sdp->sd_rindex_spin);
 634	error = rgd_insert(rgd);
 635	spin_unlock(&sdp->sd_rindex_spin);
 636	if (!error)
 637		return 0;
 638
 639	error = 0; /* someone else read in the rgrp; free it and ignore it */
 640	gfs2_glock_put(rgd->rd_gl);
 641
 642fail:
 643	kfree(rgd->rd_bits);
 644	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 645	return error;
 646}
 647
 648/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649 * gfs2_ri_update - Pull in a new resource index from the disk
 650 * @ip: pointer to the rindex inode
 651 *
 652 * Returns: 0 on successful update, error code otherwise
 653 */
 654
 655static int gfs2_ri_update(struct gfs2_inode *ip)
 656{
 657	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 658	int error;
 659
 660	do {
 661		error = read_rindex_entry(ip);
 662	} while (error == 0);
 663
 664	if (error < 0)
 665		return error;
 666
 
 
 667	sdp->sd_rindex_uptodate = 1;
 668	return 0;
 669}
 670
 671/**
 672 * gfs2_rindex_update - Update the rindex if required
 673 * @sdp: The GFS2 superblock
 674 *
 675 * We grab a lock on the rindex inode to make sure that it doesn't
 676 * change whilst we are performing an operation. We keep this lock
 677 * for quite long periods of time compared to other locks. This
 678 * doesn't matter, since it is shared and it is very, very rarely
 679 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
 680 *
 681 * This makes sure that we're using the latest copy of the resource index
 682 * special file, which might have been updated if someone expanded the
 683 * filesystem (via gfs2_grow utility), which adds new resource groups.
 684 *
 685 * Returns: 0 on succeess, error code otherwise
 686 */
 687
 688int gfs2_rindex_update(struct gfs2_sbd *sdp)
 689{
 690	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
 691	struct gfs2_glock *gl = ip->i_gl;
 692	struct gfs2_holder ri_gh;
 693	int error = 0;
 694	int unlock_required = 0;
 695
 696	/* Read new copy from disk if we don't have the latest */
 697	if (!sdp->sd_rindex_uptodate) {
 698		if (!gfs2_glock_is_locked_by_me(gl)) {
 699			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
 700			if (error)
 701				return error;
 702			unlock_required = 1;
 703		}
 704		if (!sdp->sd_rindex_uptodate)
 705			error = gfs2_ri_update(ip);
 706		if (unlock_required)
 707			gfs2_glock_dq_uninit(&ri_gh);
 708	}
 709
 710	return error;
 711}
 712
 713static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
 714{
 715	const struct gfs2_rgrp *str = buf;
 716	u32 rg_flags;
 717
 718	rg_flags = be32_to_cpu(str->rg_flags);
 719	rg_flags &= ~GFS2_RDF_MASK;
 720	rgd->rd_flags &= GFS2_RDF_MASK;
 721	rgd->rd_flags |= rg_flags;
 722	rgd->rd_free = be32_to_cpu(str->rg_free);
 723	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
 724	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
 725}
 726
 727static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
 728{
 729	struct gfs2_rgrp *str = buf;
 730
 731	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
 732	str->rg_free = cpu_to_be32(rgd->rd_free);
 733	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
 734	str->__pad = cpu_to_be32(0);
 735	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
 736	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
 737}
 738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739/**
 740 * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps
 741 * @gh: The glock holder for the resource group
 742 *
 743 * Read in all of a Resource Group's header and bitmap blocks.
 744 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
 745 *
 746 * Returns: errno
 747 */
 748
 749int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
 750{
 751	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
 752	struct gfs2_sbd *sdp = rgd->rd_sbd;
 753	struct gfs2_glock *gl = rgd->rd_gl;
 754	unsigned int length = rgd->rd_length;
 755	struct gfs2_bitmap *bi;
 756	unsigned int x, y;
 757	int error;
 758
 
 
 
 759	for (x = 0; x < length; x++) {
 760		bi = rgd->rd_bits + x;
 761		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
 762		if (error)
 763			goto fail;
 764	}
 765
 766	for (y = length; y--;) {
 767		bi = rgd->rd_bits + y;
 768		error = gfs2_meta_wait(sdp, bi->bi_bh);
 769		if (error)
 770			goto fail;
 771		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
 772					      GFS2_METATYPE_RG)) {
 773			error = -EIO;
 774			goto fail;
 775		}
 776	}
 777
 778	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
 779		for (x = 0; x < length; x++)
 780			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
 781		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
 782		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
 783		rgd->rd_free_clone = rgd->rd_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	}
 785
 786	return 0;
 787
 788fail:
 789	while (x--) {
 790		bi = rgd->rd_bits + x;
 791		brelse(bi->bi_bh);
 792		bi->bi_bh = NULL;
 793		gfs2_assert_warn(sdp, !bi->bi_clone);
 794	}
 795
 796	return error;
 797}
 798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 799/**
 800 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
 801 * @gh: The glock holder for the resource group
 802 *
 803 */
 804
 805void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
 806{
 807	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
 808	int x, length = rgd->rd_length;
 809
 810	for (x = 0; x < length; x++) {
 811		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 812		brelse(bi->bi_bh);
 813		bi->bi_bh = NULL;
 
 
 814	}
 815
 816}
 817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
 819			     struct buffer_head *bh,
 820			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
 821{
 822	struct super_block *sb = sdp->sd_vfs;
 823	struct block_device *bdev = sb->s_bdev;
 824	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
 825					   bdev_logical_block_size(sb->s_bdev);
 826	u64 blk;
 827	sector_t start = 0;
 828	sector_t nr_sects = 0;
 829	int rv;
 830	unsigned int x;
 831	u32 trimmed = 0;
 832	u8 diff;
 833
 834	for (x = 0; x < bi->bi_len; x++) {
 835		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
 836		clone += bi->bi_offset;
 837		clone += x;
 838		if (bh) {
 839			const u8 *orig = bh->b_data + bi->bi_offset + x;
 840			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
 841		} else {
 842			diff = ~(*clone | (*clone >> 1));
 843		}
 844		diff &= 0x55;
 845		if (diff == 0)
 846			continue;
 847		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 848		blk *= sects_per_blk; /* convert to sectors */
 849		while(diff) {
 850			if (diff & 1) {
 851				if (nr_sects == 0)
 852					goto start_new_extent;
 853				if ((start + nr_sects) != blk) {
 854					if (nr_sects >= minlen) {
 855						rv = blkdev_issue_discard(bdev,
 856							start, nr_sects,
 857							GFP_NOFS, 0);
 858						if (rv)
 859							goto fail;
 860						trimmed += nr_sects;
 861					}
 862					nr_sects = 0;
 863start_new_extent:
 864					start = blk;
 865				}
 866				nr_sects += sects_per_blk;
 867			}
 868			diff >>= 2;
 869			blk += sects_per_blk;
 870		}
 871	}
 872	if (nr_sects >= minlen) {
 873		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
 874		if (rv)
 875			goto fail;
 876		trimmed += nr_sects;
 877	}
 878	if (ptrimmed)
 879		*ptrimmed = trimmed;
 880	return 0;
 881
 882fail:
 883	if (sdp->sd_args.ar_discard)
 884		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
 885	sdp->sd_args.ar_discard = 0;
 886	return -EIO;
 887}
 888
 889/**
 890 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
 891 * @filp: Any file on the filesystem
 892 * @argp: Pointer to the arguments (also used to pass result)
 893 *
 894 * Returns: 0 on success, otherwise error code
 895 */
 896
 897int gfs2_fitrim(struct file *filp, void __user *argp)
 898{
 899	struct inode *inode = filp->f_dentry->d_inode;
 900	struct gfs2_sbd *sdp = GFS2_SB(inode);
 901	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
 902	struct buffer_head *bh;
 903	struct gfs2_rgrpd *rgd;
 904	struct gfs2_rgrpd *rgd_end;
 905	struct gfs2_holder gh;
 906	struct fstrim_range r;
 907	int ret = 0;
 908	u64 amt;
 909	u64 trimmed = 0;
 
 910	unsigned int x;
 
 911
 912	if (!capable(CAP_SYS_ADMIN))
 913		return -EPERM;
 914
 915	if (!blk_queue_discard(q))
 916		return -EOPNOTSUPP;
 917
 918	if (argp == NULL) {
 919		r.start = 0;
 920		r.len = ULLONG_MAX;
 921		r.minlen = 0;
 922	} else if (copy_from_user(&r, argp, sizeof(r)))
 923		return -EFAULT;
 924
 925	ret = gfs2_rindex_update(sdp);
 926	if (ret)
 927		return ret;
 928
 929	rgd = gfs2_blk2rgrpd(sdp, r.start, 0);
 930	rgd_end = gfs2_blk2rgrpd(sdp, r.start + r.len, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 931
 932	while (1) {
 933
 934		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
 935		if (ret)
 936			goto out;
 937
 938		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
 939			/* Trim each bitmap in the rgrp */
 940			for (x = 0; x < rgd->rd_length; x++) {
 941				struct gfs2_bitmap *bi = rgd->rd_bits + x;
 942				ret = gfs2_rgrp_send_discards(sdp, rgd->rd_data0, NULL, bi, r.minlen, &amt);
 
 
 943				if (ret) {
 944					gfs2_glock_dq_uninit(&gh);
 945					goto out;
 946				}
 947				trimmed += amt;
 948			}
 949
 950			/* Mark rgrp as having been trimmed */
 951			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
 952			if (ret == 0) {
 953				bh = rgd->rd_bits[0].bi_bh;
 954				rgd->rd_flags |= GFS2_RGF_TRIMMED;
 955				gfs2_trans_add_bh(rgd->rd_gl, bh, 1);
 956				gfs2_rgrp_out(rgd, bh->b_data);
 
 957				gfs2_trans_end(sdp);
 958			}
 959		}
 960		gfs2_glock_dq_uninit(&gh);
 961
 962		if (rgd == rgd_end)
 963			break;
 964
 965		rgd = gfs2_rgrpd_get_next(rgd);
 966	}
 967
 968out:
 969	r.len = trimmed << 9;
 970	if (argp && copy_to_user(argp, &r, sizeof(r)))
 971		return -EFAULT;
 972
 973	return ret;
 974}
 975
 976/**
 977 * gfs2_qadata_get - get the struct gfs2_qadata structure for an inode
 978 * @ip: the incore GFS2 inode structure
 979 *
 980 * Returns: the struct gfs2_qadata
 981 */
 982
 983struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip)
 984{
 985	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 986	int error;
 987	BUG_ON(ip->i_qadata != NULL);
 988	ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS);
 989	error = gfs2_rindex_update(sdp);
 990	if (error)
 991		fs_warn(sdp, "rindex update returns %d\n", error);
 992	return ip->i_qadata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993}
 994
 995/**
 996 * gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode
 997 * @ip: the incore GFS2 inode structure
 
 
 998 *
 999 * Returns: the struct gfs2_qadata
1000 */
1001
1002static int gfs2_blkrsv_get(struct gfs2_inode *ip)
 
1003{
1004	BUG_ON(ip->i_res != NULL);
1005	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
1006	if (!ip->i_res)
1007		return -ENOMEM;
1008	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009}
1010
1011/**
1012 * try_rgrp_fit - See if a given reservation will fit in a given RG
1013 * @rgd: the RG data
1014 * @ip: the inode
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015 *
1016 * If there's room for the requested blocks to be allocated from the RG:
 
 
 
 
1017 *
1018 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
1019 */
1020
1021static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip)
 
 
 
1022{
1023	const struct gfs2_blkreserv *rs = ip->i_res;
 
 
 
1024
1025	if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1026		return 0;
1027	if (rgd->rd_free_clone >= rs->rs_requested)
1028		return 1;
1029	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030}
1031
1032static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033{
1034	return (bi->bi_start * GFS2_NBBY) + blk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037/**
1038 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1039 * @rgd: The rgrp
1040 * @last_unlinked: block address of the last dinode we unlinked
1041 * @skip: block address we should explicitly not unlink
1042 *
1043 * Returns: 0 if no error
1044 *          The inode, if one has been found, in inode.
1045 */
1046
1047static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1048{
1049	u32 goal = 0, block;
1050	u64 no_addr;
1051	struct gfs2_sbd *sdp = rgd->rd_sbd;
1052	struct gfs2_glock *gl;
1053	struct gfs2_inode *ip;
1054	int error;
1055	int found = 0;
1056	struct gfs2_bitmap *bi;
1057
1058	while (goal < rgd->rd_data) {
1059		down_write(&sdp->sd_log_flush_lock);
1060		block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi);
 
1061		up_write(&sdp->sd_log_flush_lock);
1062		if (block == BFITNOENT)
 
 
1063			break;
1064
1065		block = gfs2_bi2rgd_blk(bi, block);
1066		/* rgblk_search can return a block < goal, so we need to
1067		   keep it marching forward. */
1068		no_addr = block + rgd->rd_data0;
1069		goal = max(block + 1, goal + 1);
1070		if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
1071			continue;
1072		if (no_addr == skip)
1073			continue;
1074		*last_unlinked = no_addr;
1075
1076		error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
1077		if (error)
1078			continue;
1079
1080		/* If the inode is already in cache, we can ignore it here
1081		 * because the existing inode disposal code will deal with
1082		 * it when all refs have gone away. Accessing gl_object like
1083		 * this is not safe in general. Here it is ok because we do
1084		 * not dereference the pointer, and we only need an approx
1085		 * answer to whether it is NULL or not.
1086		 */
1087		ip = gl->gl_object;
1088
1089		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1090			gfs2_glock_put(gl);
1091		else
1092			found++;
1093
1094		/* Limit reclaim to sensible number of tasks */
1095		if (found > NR_CPUS)
1096			return;
1097	}
1098
1099	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1100	return;
1101}
1102
1103/**
1104 * get_local_rgrp - Choose and lock a rgrp for allocation
1105 * @ip: the inode to reserve space for
1106 * @last_unlinked: the last unlinked block
1107 *
1108 * Try to acquire rgrp in way which avoids contending with others.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109 *
1110 * Returns: errno
1111 */
1112
1113static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
1114{
1115	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1116	struct gfs2_rgrpd *rgd, *begin = NULL;
1117	struct gfs2_blkreserv *rs = ip->i_res;
1118	int error, rg_locked, flags = LM_FLAG_TRY;
1119	int loops = 0;
1120
1121	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal))
1122		rgd = begin = ip->i_rgd;
1123	else
1124		rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1125
1126	if (rgd == NULL)
1127		return -EBADSLT;
1128
1129	while (loops < 3) {
1130		rg_locked = 0;
 
 
1131
1132		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1133			rg_locked = 1;
1134			error = 0;
1135		} else {
1136			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1137						   flags, &rs->rs_rgd_gh);
1138		}
1139		switch (error) {
1140		case 0:
1141			if (try_rgrp_fit(rgd, ip)) {
1142				ip->i_rgd = rgd;
1143				return 0;
1144			}
1145			if (rgd->rd_flags & GFS2_RDF_CHECK)
1146				try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1147			if (!rg_locked)
1148				gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1149			/* fall through */
1150		case GLR_TRYFAILED:
1151			rgd = gfs2_rgrpd_get_next(rgd);
1152			if (rgd == begin) {
1153				flags = 0;
1154				loops++;
1155			}
1156			break;
1157		default:
1158			return error;
1159		}
1160	}
1161
1162	return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
1163}
1164
1165static void gfs2_blkrsv_put(struct gfs2_inode *ip)
 
 
 
 
 
 
1166{
1167	BUG_ON(ip->i_res == NULL);
1168	kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
1169	ip->i_res = NULL;
 
 
 
 
 
 
1170}
1171
1172/**
1173 * gfs2_inplace_reserve - Reserve space in the filesystem
1174 * @ip: the inode to reserve space for
1175 * @requested: the number of blocks to be reserved
1176 *
1177 * Returns: errno
 
 
 
 
 
 
 
 
1178 */
1179
1180int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
1181{
1182	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1183	struct gfs2_blkreserv *rs;
1184	int error;
 
1185	u64 last_unlinked = NO_BLOCK;
1186	int tries = 0;
 
1187
1188	error = gfs2_blkrsv_get(ip);
1189	if (error)
1190		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
1191
1192	rs = ip->i_res;
1193	rs->rs_requested = requested;
1194	if (gfs2_assert_warn(sdp, requested)) {
1195		error = -EINVAL;
1196		goto out;
1197	}
1198
1199	do {
1200		error = get_local_rgrp(ip, &last_unlinked);
1201		if (error != -ENOSPC)
1202			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203		/* Check that fs hasn't grown if writing to rindex */
1204		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1205			error = gfs2_ri_update(ip);
1206			if (error)
1207				break;
1208			continue;
1209		}
1210		/* Flushing the log may release space */
1211		gfs2_log_flush(sdp, NULL);
1212	} while (tries++ < 3);
 
1213
1214out:
1215	if (error)
1216		gfs2_blkrsv_put(ip);
1217	return error;
1218}
1219
1220/**
1221 * gfs2_inplace_release - release an inplace reservation
1222 * @ip: the inode the reservation was taken out on
1223 *
1224 * Release a reservation made by gfs2_inplace_reserve().
1225 */
1226
1227void gfs2_inplace_release(struct gfs2_inode *ip)
1228{
1229	struct gfs2_blkreserv *rs = ip->i_res;
1230
1231	if (rs->rs_rgd_gh.gh_gl)
1232		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1233	gfs2_blkrsv_put(ip);
1234}
1235
1236/**
1237 * gfs2_get_block_type - Check a block in a RG is of given type
1238 * @rgd: the resource group holding the block
1239 * @block: the block number
1240 *
1241 * Returns: The block type (GFS2_BLKST_*)
1242 */
1243
1244static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1245{
1246	struct gfs2_bitmap *bi = NULL;
1247	u32 length, rgrp_block, buf_block;
1248	unsigned int buf;
1249	unsigned char type;
1250
1251	length = rgd->rd_length;
1252	rgrp_block = block - rgd->rd_data0;
1253
1254	for (buf = 0; buf < length; buf++) {
1255		bi = rgd->rd_bits + buf;
1256		if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1257			break;
1258	}
1259
1260	gfs2_assert(rgd->rd_sbd, buf < length);
1261	buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1262
1263	type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1264			   bi->bi_len, buf_block);
1265
1266	return type;
1267}
1268
1269/**
1270 * rgblk_search - find a block in @state
1271 * @rgd: the resource group descriptor
1272 * @goal: the goal block within the RG (start here to search for avail block)
1273 * @state: GFS2_BLKST_XXX the before-allocation state to find
1274 * @rbi: address of the pointer to the bitmap containing the block found
1275 *
1276 * Walk rgrp's bitmap to find bits that represent a block in @state.
1277 *
1278 * This function never fails, because we wouldn't call it unless we
1279 * know (from reservation results, etc.) that a block is available.
1280 *
1281 * Scope of @goal is just within rgrp, not the whole filesystem.
1282 * Scope of @returned block is just within bitmap, not the whole filesystem.
1283 *
1284 * Returns: the block number found relative to the bitmap rbi
1285 */
1286
1287static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, unsigned char state,
1288			struct gfs2_bitmap **rbi)
1289{
1290	struct gfs2_bitmap *bi = NULL;
1291	const u32 length = rgd->rd_length;
1292	u32 biblk = BFITNOENT;
1293	unsigned int buf, x;
1294	const u8 *buffer = NULL;
1295
1296	*rbi = NULL;
1297	/* Find bitmap block that contains bits for goal block */
1298	for (buf = 0; buf < length; buf++) {
1299		bi = rgd->rd_bits + buf;
1300		/* Convert scope of "goal" from rgrp-wide to within found bit block */
1301		if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1302			goal -= bi->bi_start * GFS2_NBBY;
1303			goto do_search;
1304		}
1305	}
1306	buf = 0;
1307	goal = 0;
1308
1309do_search:
1310	/* Search (up to entire) bitmap in this rgrp for allocatable block.
1311	   "x <= length", instead of "x < length", because we typically start
1312	   the search in the middle of a bit block, but if we can't find an
1313	   allocatable block anywhere else, we want to be able wrap around and
1314	   search in the first part of our first-searched bit block.  */
1315	for (x = 0; x <= length; x++) {
1316		bi = rgd->rd_bits + buf;
1317
1318		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1319		    (state == GFS2_BLKST_FREE))
1320			goto skip;
1321
1322		/* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1323		   bitmaps, so we must search the originals for that. */
1324		buffer = bi->bi_bh->b_data + bi->bi_offset;
1325		WARN_ON(!buffer_uptodate(bi->bi_bh));
1326		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1327			buffer = bi->bi_clone + bi->bi_offset;
1328
1329		biblk = gfs2_bitfit(buffer, bi->bi_len, goal, state);
1330		if (biblk != BFITNOENT)
1331			break;
1332
1333		if ((goal == 0) && (state == GFS2_BLKST_FREE))
1334			set_bit(GBF_FULL, &bi->bi_flags);
1335
1336		/* Try next bitmap block (wrap back to rgrp header if at end) */
1337skip:
1338		buf++;
1339		buf %= length;
1340		goal = 0;
1341	}
1342
1343	if (biblk != BFITNOENT)
1344		*rbi = bi;
1345
1346	return biblk;
1347}
1348
1349/**
1350 * gfs2_alloc_extent - allocate an extent from a given bitmap
1351 * @rgd: the resource group descriptor
1352 * @bi: the bitmap within the rgrp
1353 * @blk: the block within the bitmap
1354 * @dinode: TRUE if the first block we allocate is for a dinode
1355 * @n: The extent length
1356 *
1357 * Add the found bitmap buffer to the transaction.
1358 * Set the found bits to @new_state to change block's allocation state.
1359 * Returns: starting block number of the extent (fs scope)
1360 */
1361static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi,
1362			     u32 blk, bool dinode, unsigned int *n)
1363{
 
1364	const unsigned int elen = *n;
1365	u32 goal;
1366	const u8 *buffer = NULL;
1367
1368	*n = 0;
1369	buffer = bi->bi_bh->b_data + bi->bi_offset;
1370	gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1371	gfs2_setbit(rgd, bi->bi_clone, bi, blk,
1372		    dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1373	(*n)++;
1374	goal = blk;
1375	while (*n < elen) {
1376		goal++;
1377		if (goal >= (bi->bi_len * GFS2_NBBY))
1378			break;
1379		if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1380		    GFS2_BLKST_FREE)
1381			break;
1382		gfs2_setbit(rgd, bi->bi_clone, bi, goal, GFS2_BLKST_USED);
 
1383		(*n)++;
 
1384	}
1385	blk = gfs2_bi2rgd_blk(bi, blk);
1386	rgd->rd_last_alloc = blk + *n - 1;
1387	return rgd->rd_data0 + blk;
1388}
1389
1390/**
1391 * rgblk_free - Change alloc state of given block(s)
1392 * @sdp: the filesystem
1393 * @bstart: the start of a run of blocks to free
1394 * @blen: the length of the block run (all must lie within ONE RG!)
1395 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1396 *
1397 * Returns:  Resource group containing the block(s)
1398 */
1399
1400static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1401				     u32 blen, unsigned char new_state)
1402{
1403	struct gfs2_rgrpd *rgd;
1404	struct gfs2_bitmap *bi = NULL;
1405	u32 length, rgrp_blk, buf_blk;
1406	unsigned int buf;
1407
1408	rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1409	if (!rgd) {
1410		if (gfs2_consist(sdp))
1411			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1412		return NULL;
1413	}
1414
1415	length = rgd->rd_length;
1416
1417	rgrp_blk = bstart - rgd->rd_data0;
1418
1419	while (blen--) {
1420		for (buf = 0; buf < length; buf++) {
1421			bi = rgd->rd_bits + buf;
1422			if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1423				break;
1424		}
1425
1426		gfs2_assert(rgd->rd_sbd, buf < length);
1427
1428		buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1429		rgrp_blk++;
1430
1431		if (!bi->bi_clone) {
1432			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1433					       GFP_NOFS | __GFP_NOFAIL);
1434			memcpy(bi->bi_clone + bi->bi_offset,
1435			       bi->bi_bh->b_data + bi->bi_offset,
1436			       bi->bi_len);
1437		}
1438		gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1439		gfs2_setbit(rgd, NULL, bi, buf_blk, new_state);
1440	}
1441
1442	return rgd;
1443}
1444
1445/**
1446 * gfs2_rgrp_dump - print out an rgrp
1447 * @seq: The iterator
1448 * @gl: The glock in question
1449 *
1450 */
1451
1452int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
1453{
1454	const struct gfs2_rgrpd *rgd = gl->gl_object;
 
 
 
1455	if (rgd == NULL)
1456		return 0;
1457	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
1458		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1459		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1460	return 0;
 
 
 
 
 
 
1461}
1462
1463static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1464{
1465	struct gfs2_sbd *sdp = rgd->rd_sbd;
1466	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1467		(unsigned long long)rgd->rd_addr);
1468	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1469	gfs2_rgrp_dump(NULL, rgd->rd_gl);
1470	rgd->rd_flags |= GFS2_RDF_ERROR;
1471}
1472
1473/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
1475 * @ip: the inode to allocate the block for
1476 * @bn: Used to return the starting block number
1477 * @ndata: requested number of blocks/extent length (value/result)
1478 * @dinode: 1 if we're allocating a dinode block, else 0
1479 * @generation: the generation number of the inode
1480 *
1481 * Returns: 0 or error
1482 */
1483
1484int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
1485		      bool dinode, u64 *generation)
1486{
1487	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1488	struct buffer_head *dibh;
1489	struct gfs2_rgrpd *rgd;
1490	unsigned int ndata;
1491	u32 goal, blk; /* block, within the rgrp scope */
1492	u64 block; /* block, within the file system scope */
1493	int error;
1494	struct gfs2_bitmap *bi;
1495
1496	/* Only happens if there is a bug in gfs2, return something distinctive
1497	 * to ensure that it is noticed.
1498	 */
1499	if (ip->i_res == NULL)
1500		return -ECANCELED;
1501
1502	rgd = ip->i_rgd;
1503
1504	if (!dinode && rgrp_contains_block(rgd, ip->i_goal))
1505		goal = ip->i_goal - rgd->rd_data0;
1506	else
1507		goal = rgd->rd_last_alloc;
1508
1509	blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi);
 
 
 
 
1510
1511	/* Since all blocks are reserved in advance, this shouldn't happen */
1512	if (blk == BFITNOENT)
 
 
 
 
1513		goto rgrp_error;
 
1514
1515	block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks);
 
 
 
 
1516	ndata = *nblocks;
1517	if (dinode)
1518		ndata--;
1519
1520	if (!dinode) {
1521		ip->i_goal = block + ndata - 1;
1522		error = gfs2_meta_inode_buffer(ip, &dibh);
1523		if (error == 0) {
1524			struct gfs2_dinode *di =
1525				(struct gfs2_dinode *)dibh->b_data;
1526			gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1527			di->di_goal_meta = di->di_goal_data =
1528				cpu_to_be64(ip->i_goal);
1529			brelse(dibh);
1530		}
1531	}
1532	if (rgd->rd_free < *nblocks)
 
1533		goto rgrp_error;
 
1534
1535	rgd->rd_free -= *nblocks;
1536	if (dinode) {
1537		rgd->rd_dinodes++;
1538		*generation = rgd->rd_igeneration++;
1539		if (*generation == 0)
1540			*generation = rgd->rd_igeneration++;
1541	}
1542
1543	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1544	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1545
1546	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
1547	if (dinode)
1548		gfs2_trans_add_unrevoke(sdp, block, 1);
1549
1550	/*
1551	 * This needs reviewing to see why we cannot do the quota change
1552	 * at this point in the dinode case.
1553	 */
1554	if (ndata)
1555		gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
1556				  ip->i_inode.i_gid);
1557
1558	rgd->rd_free_clone -= *nblocks;
1559	trace_gfs2_block_alloc(ip, rgd, block, *nblocks,
1560			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1561	*bn = block;
1562	return 0;
1563
1564rgrp_error:
1565	gfs2_rgrp_error(rgd);
1566	return -EIO;
1567}
1568
1569/**
1570 * __gfs2_free_blocks - free a contiguous run of block(s)
1571 * @ip: the inode these blocks are being freed from
1572 * @bstart: first block of a run of contiguous blocks
1573 * @blen: the length of the block run
1574 * @meta: 1 if the blocks represent metadata
1575 *
1576 */
1577
1578void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
1579{
1580	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1581	struct gfs2_rgrpd *rgd;
1582
1583	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1584	if (!rgd)
1585		return;
1586	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
1587	rgd->rd_free += blen;
1588	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
1589	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1590	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1591
1592	/* Directories keep their data in the metadata address space */
1593	if (meta || ip->i_depth)
1594		gfs2_meta_wipe(ip, bstart, blen);
1595}
1596
1597/**
1598 * gfs2_free_meta - free a contiguous run of data block(s)
1599 * @ip: the inode these blocks are being freed from
1600 * @bstart: first block of a run of contiguous blocks
1601 * @blen: the length of the block run
1602 *
1603 */
1604
1605void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
1606{
1607	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1608
1609	__gfs2_free_blocks(ip, bstart, blen, 1);
1610	gfs2_statfs_change(sdp, 0, +blen, 0);
1611	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1612}
1613
1614void gfs2_unlink_di(struct inode *inode)
1615{
1616	struct gfs2_inode *ip = GFS2_I(inode);
1617	struct gfs2_sbd *sdp = GFS2_SB(inode);
1618	struct gfs2_rgrpd *rgd;
1619	u64 blkno = ip->i_no_addr;
1620
1621	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1622	if (!rgd)
1623		return;
1624	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
1625	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1626	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
 
1627}
1628
1629static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1630{
1631	struct gfs2_sbd *sdp = rgd->rd_sbd;
1632	struct gfs2_rgrpd *tmp_rgd;
1633
1634	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1635	if (!tmp_rgd)
1636		return;
1637	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1638
1639	if (!rgd->rd_dinodes)
1640		gfs2_consist_rgrpd(rgd);
1641	rgd->rd_dinodes--;
1642	rgd->rd_free++;
1643
1644	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1645	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
 
1646
1647	gfs2_statfs_change(sdp, 0, +1, -1);
1648}
1649
1650
1651void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1652{
1653	gfs2_free_uninit_di(rgd, ip->i_no_addr);
1654	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1655	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1656	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1657}
1658
1659/**
1660 * gfs2_check_blk_type - Check the type of a block
1661 * @sdp: The superblock
1662 * @no_addr: The block number to check
1663 * @type: The block type we are looking for
1664 *
1665 * Returns: 0 if the block type matches the expected type
1666 *          -ESTALE if it doesn't match
1667 *          or -ve errno if something went wrong while checking
1668 */
1669
1670int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1671{
1672	struct gfs2_rgrpd *rgd;
1673	struct gfs2_holder rgd_gh;
1674	int error = -EINVAL;
1675
1676	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
1677	if (!rgd)
1678		goto fail;
1679
1680	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1681	if (error)
1682		goto fail;
1683
1684	if (gfs2_get_block_type(rgd, no_addr) != type)
1685		error = -ESTALE;
1686
1687	gfs2_glock_dq_uninit(&rgd_gh);
1688fail:
1689	return error;
1690}
1691
1692/**
1693 * gfs2_rlist_add - add a RG to a list of RGs
1694 * @ip: the inode
1695 * @rlist: the list of resource groups
1696 * @block: the block
1697 *
1698 * Figure out what RG a block belongs to and add that RG to the list
1699 *
1700 * FIXME: Don't use NOFAIL
1701 *
1702 */
1703
1704void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
1705		    u64 block)
1706{
1707	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1708	struct gfs2_rgrpd *rgd;
1709	struct gfs2_rgrpd **tmp;
1710	unsigned int new_space;
1711	unsigned int x;
1712
1713	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1714		return;
1715
1716	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
1717		rgd = ip->i_rgd;
1718	else
1719		rgd = gfs2_blk2rgrpd(sdp, block, 1);
1720	if (!rgd) {
1721		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
1722		return;
1723	}
1724	ip->i_rgd = rgd;
1725
1726	for (x = 0; x < rlist->rl_rgrps; x++)
1727		if (rlist->rl_rgd[x] == rgd)
1728			return;
1729
1730	if (rlist->rl_rgrps == rlist->rl_space) {
1731		new_space = rlist->rl_space + 10;
1732
1733		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1734			      GFP_NOFS | __GFP_NOFAIL);
1735
1736		if (rlist->rl_rgd) {
1737			memcpy(tmp, rlist->rl_rgd,
1738			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1739			kfree(rlist->rl_rgd);
1740		}
1741
1742		rlist->rl_space = new_space;
1743		rlist->rl_rgd = tmp;
1744	}
1745
1746	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1747}
1748
1749/**
1750 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1751 *      and initialize an array of glock holders for them
1752 * @rlist: the list of resource groups
1753 * @state: the lock state to acquire the RG lock in
1754 *
1755 * FIXME: Don't use NOFAIL
1756 *
1757 */
1758
1759void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1760{
1761	unsigned int x;
1762
1763	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1764				GFP_NOFS | __GFP_NOFAIL);
1765	for (x = 0; x < rlist->rl_rgrps; x++)
1766		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1767				state, 0,
1768				&rlist->rl_ghs[x]);
1769}
1770
1771/**
1772 * gfs2_rlist_free - free a resource group list
1773 * @list: the list of resource groups
1774 *
1775 */
1776
1777void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1778{
1779	unsigned int x;
1780
1781	kfree(rlist->rl_rgd);
1782
1783	if (rlist->rl_ghs) {
1784		for (x = 0; x < rlist->rl_rgrps; x++)
1785			gfs2_holder_uninit(&rlist->rl_ghs[x]);
1786		kfree(rlist->rl_ghs);
 
1787	}
1788}
1789
v4.6
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/slab.h>
  13#include <linux/spinlock.h>
  14#include <linux/completion.h>
  15#include <linux/buffer_head.h>
  16#include <linux/fs.h>
  17#include <linux/gfs2_ondisk.h>
  18#include <linux/prefetch.h>
  19#include <linux/blkdev.h>
  20#include <linux/rbtree.h>
  21#include <linux/random.h>
  22
  23#include "gfs2.h"
  24#include "incore.h"
  25#include "glock.h"
  26#include "glops.h"
  27#include "lops.h"
  28#include "meta_io.h"
  29#include "quota.h"
  30#include "rgrp.h"
  31#include "super.h"
  32#include "trans.h"
  33#include "util.h"
  34#include "log.h"
  35#include "inode.h"
  36#include "trace_gfs2.h"
  37
  38#define BFITNOENT ((u32)~0)
  39#define NO_BLOCK ((u64)~0)
  40
  41#if BITS_PER_LONG == 32
  42#define LBITMASK   (0x55555555UL)
  43#define LBITSKIP55 (0x55555555UL)
  44#define LBITSKIP00 (0x00000000UL)
  45#else
  46#define LBITMASK   (0x5555555555555555UL)
  47#define LBITSKIP55 (0x5555555555555555UL)
  48#define LBITSKIP00 (0x0000000000000000UL)
  49#endif
  50
  51/*
  52 * These routines are used by the resource group routines (rgrp.c)
  53 * to keep track of block allocation.  Each block is represented by two
  54 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  55 *
  56 * 0 = Free
  57 * 1 = Used (not metadata)
  58 * 2 = Unlinked (still in use) inode
  59 * 3 = Used (metadata)
  60 */
  61
  62struct gfs2_extent {
  63	struct gfs2_rbm rbm;
  64	u32 len;
  65};
  66
  67static const char valid_change[16] = {
  68	        /* current */
  69	/* n */ 0, 1, 1, 1,
  70	/* e */ 1, 0, 0, 0,
  71	/* w */ 0, 0, 0, 1,
  72	        1, 0, 0, 0
  73};
  74
  75static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  76			 const struct gfs2_inode *ip, bool nowrap,
  77			 const struct gfs2_alloc_parms *ap);
  78
  79
  80/**
  81 * gfs2_setbit - Set a bit in the bitmaps
  82 * @rbm: The position of the bit to set
  83 * @do_clone: Also set the clone bitmap, if it exists
 
 
  84 * @new_state: the new state of the block
  85 *
  86 */
  87
  88static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
 
  89			       unsigned char new_state)
  90{
  91	unsigned char *byte1, *byte2, *end, cur_state;
  92	struct gfs2_bitmap *bi = rbm_bi(rbm);
  93	unsigned int buflen = bi->bi_len;
  94	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  95
  96	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
  97	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  98
  99	BUG_ON(byte1 >= end);
 100
 101	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
 102
 103	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 104		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
 105			rbm->offset, cur_state, new_state);
 106		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
 107			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
 108		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
 109			bi->bi_offset, bi->bi_len);
 
 
 
 110		dump_stack();
 111		gfs2_consist_rgrpd(rbm->rgd);
 112		return;
 113	}
 114	*byte1 ^= (cur_state ^ new_state) << bit;
 115
 116	if (do_clone && bi->bi_clone) {
 117		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 118		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 119		*byte2 ^= (cur_state ^ new_state) << bit;
 120	}
 121}
 122
 123/**
 124 * gfs2_testbit - test a bit in the bitmaps
 125 * @rbm: The bit to test
 
 
 
 126 *
 127 * Returns: The two bit block state of the requested bit
 128 */
 129
 130static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
 
 
 131{
 132	struct gfs2_bitmap *bi = rbm_bi(rbm);
 133	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
 134	const u8 *byte;
 135	unsigned int bit;
 136
 137	byte = buffer + (rbm->offset / GFS2_NBBY);
 138	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 
 
 
 139
 140	return (*byte >> bit) & GFS2_BIT_MASK;
 
 
 141}
 142
 143/**
 144 * gfs2_bit_search
 145 * @ptr: Pointer to bitmap data
 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 147 * @state: The state we are searching for
 148 *
 149 * We xor the bitmap data with a patter which is the bitwise opposite
 150 * of what we are looking for, this gives rise to a pattern of ones
 151 * wherever there is a match. Since we have two bits per entry, we
 152 * take this pattern, shift it down by one place and then and it with
 153 * the original. All the even bit positions (0,2,4, etc) then represent
 154 * successful matches, so we mask with 0x55555..... to remove the unwanted
 155 * odd bit positions.
 156 *
 157 * This allows searching of a whole u64 at once (32 blocks) with a
 158 * single test (on 64 bit arches).
 159 */
 160
 161static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 162{
 163	u64 tmp;
 164	static const u64 search[] = {
 165		[0] = 0xffffffffffffffffULL,
 166		[1] = 0xaaaaaaaaaaaaaaaaULL,
 167		[2] = 0x5555555555555555ULL,
 168		[3] = 0x0000000000000000ULL,
 169	};
 170	tmp = le64_to_cpu(*ptr) ^ search[state];
 171	tmp &= (tmp >> 1);
 172	tmp &= mask;
 173	return tmp;
 174}
 175
 176/**
 177 * rs_cmp - multi-block reservation range compare
 178 * @blk: absolute file system block number of the new reservation
 179 * @len: number of blocks in the new reservation
 180 * @rs: existing reservation to compare against
 181 *
 182 * returns: 1 if the block range is beyond the reach of the reservation
 183 *         -1 if the block range is before the start of the reservation
 184 *          0 if the block range overlaps with the reservation
 185 */
 186static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 187{
 188	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 189
 190	if (blk >= startblk + rs->rs_free)
 191		return 1;
 192	if (blk + len - 1 < startblk)
 193		return -1;
 194	return 0;
 195}
 196
 197/**
 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 199 *       a block in a given allocation state.
 200 * @buf: the buffer that holds the bitmaps
 201 * @len: the length (in bytes) of the buffer
 202 * @goal: start search at this block's bit-pair (within @buffer)
 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 204 *
 205 * Scope of @goal and returned block number is only within this bitmap buffer,
 206 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 207 * beginning of a bitmap block buffer, skipping any header structures, but
 208 * headers are always a multiple of 64 bits long so that the buffer is
 209 * always aligned to a 64 bit boundary.
 210 *
 211 * The size of the buffer is in bytes, but is it assumed that it is
 212 * always ok to read a complete multiple of 64 bits at the end
 213 * of the block in case the end is no aligned to a natural boundary.
 214 *
 215 * Return: the block number (bitmap buffer scope) that was found
 216 */
 217
 218static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 219		       u32 goal, u8 state)
 220{
 221	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 222	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 223	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 224	u64 tmp;
 225	u64 mask = 0x5555555555555555ULL;
 226	u32 bit;
 227
 
 
 228	/* Mask off bits we don't care about at the start of the search */
 229	mask <<= spoint;
 230	tmp = gfs2_bit_search(ptr, mask, state);
 231	ptr++;
 232	while(tmp == 0 && ptr < end) {
 233		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 234		ptr++;
 235	}
 236	/* Mask off any bits which are more than len bytes from the start */
 237	if (ptr == end && (len & (sizeof(u64) - 1)))
 238		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 239	/* Didn't find anything, so return */
 240	if (tmp == 0)
 241		return BFITNOENT;
 242	ptr--;
 243	bit = __ffs64(tmp);
 244	bit /= 2;	/* two bits per entry in the bitmap */
 245	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 246}
 247
 248/**
 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 250 * @rbm: The rbm with rgd already set correctly
 251 * @block: The block number (filesystem relative)
 252 *
 253 * This sets the bi and offset members of an rbm based on a
 254 * resource group and a filesystem relative block number. The
 255 * resource group must be set in the rbm on entry, the bi and
 256 * offset members will be set by this function.
 257 *
 258 * Returns: 0 on success, or an error code
 259 */
 260
 261static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 262{
 263	u64 rblock = block - rbm->rgd->rd_data0;
 264
 265	if (WARN_ON_ONCE(rblock > UINT_MAX))
 266		return -EINVAL;
 267	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
 268		return -E2BIG;
 269
 270	rbm->bii = 0;
 271	rbm->offset = (u32)(rblock);
 272	/* Check if the block is within the first block */
 273	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 274		return 0;
 275
 276	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 277	rbm->offset += (sizeof(struct gfs2_rgrp) -
 278			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 279	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 280	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 281	return 0;
 282}
 283
 284/**
 285 * gfs2_rbm_incr - increment an rbm structure
 286 * @rbm: The rbm with rgd already set correctly
 287 *
 288 * This function takes an existing rbm structure and increments it to the next
 289 * viable block offset.
 290 *
 291 * Returns: If incrementing the offset would cause the rbm to go past the
 292 *          end of the rgrp, true is returned, otherwise false.
 293 *
 294 */
 295
 296static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
 297{
 298	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
 299		rbm->offset++;
 300		return false;
 301	}
 302	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
 303		return true;
 304
 305	rbm->offset = 0;
 306	rbm->bii++;
 307	return false;
 308}
 309
 310/**
 311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 312 * @rbm: Position to search (value/result)
 313 * @n_unaligned: Number of unaligned blocks to check
 314 * @len: Decremented for each block found (terminate on zero)
 315 *
 316 * Returns: true if a non-free block is encountered
 317 */
 318
 319static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 320{
 321	u32 n;
 322	u8 res;
 323
 324	for (n = 0; n < n_unaligned; n++) {
 325		res = gfs2_testbit(rbm);
 326		if (res != GFS2_BLKST_FREE)
 327			return true;
 328		(*len)--;
 329		if (*len == 0)
 330			return true;
 331		if (gfs2_rbm_incr(rbm))
 332			return true;
 333	}
 334
 335	return false;
 336}
 337
 338/**
 339 * gfs2_free_extlen - Return extent length of free blocks
 340 * @rrbm: Starting position
 341 * @len: Max length to check
 342 *
 343 * Starting at the block specified by the rbm, see how many free blocks
 344 * there are, not reading more than len blocks ahead. This can be done
 345 * using memchr_inv when the blocks are byte aligned, but has to be done
 346 * on a block by block basis in case of unaligned blocks. Also this
 347 * function can cope with bitmap boundaries (although it must stop on
 348 * a resource group boundary)
 349 *
 350 * Returns: Number of free blocks in the extent
 351 */
 352
 353static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 354{
 355	struct gfs2_rbm rbm = *rrbm;
 356	u32 n_unaligned = rbm.offset & 3;
 357	u32 size = len;
 358	u32 bytes;
 359	u32 chunk_size;
 360	u8 *ptr, *start, *end;
 361	u64 block;
 362	struct gfs2_bitmap *bi;
 363
 364	if (n_unaligned &&
 365	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 366		goto out;
 367
 368	n_unaligned = len & 3;
 369	/* Start is now byte aligned */
 370	while (len > 3) {
 371		bi = rbm_bi(&rbm);
 372		start = bi->bi_bh->b_data;
 373		if (bi->bi_clone)
 374			start = bi->bi_clone;
 375		end = start + bi->bi_bh->b_size;
 376		start += bi->bi_offset;
 377		BUG_ON(rbm.offset & 3);
 378		start += (rbm.offset / GFS2_NBBY);
 379		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 380		ptr = memchr_inv(start, 0, bytes);
 381		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 382		chunk_size *= GFS2_NBBY;
 383		BUG_ON(len < chunk_size);
 384		len -= chunk_size;
 385		block = gfs2_rbm_to_block(&rbm);
 386		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 387			n_unaligned = 0;
 388			break;
 389		}
 390		if (ptr) {
 391			n_unaligned = 3;
 392			break;
 393		}
 394		n_unaligned = len & 3;
 395	}
 396
 397	/* Deal with any bits left over at the end */
 398	if (n_unaligned)
 399		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 400out:
 401	return size - len;
 402}
 403
 404/**
 405 * gfs2_bitcount - count the number of bits in a certain state
 406 * @rgd: the resource group descriptor
 407 * @buffer: the buffer that holds the bitmaps
 408 * @buflen: the length (in bytes) of the buffer
 409 * @state: the state of the block we're looking for
 410 *
 411 * Returns: The number of bits
 412 */
 413
 414static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 415			 unsigned int buflen, u8 state)
 416{
 417	const u8 *byte = buffer;
 418	const u8 *end = buffer + buflen;
 419	const u8 state1 = state << 2;
 420	const u8 state2 = state << 4;
 421	const u8 state3 = state << 6;
 422	u32 count = 0;
 423
 424	for (; byte < end; byte++) {
 425		if (((*byte) & 0x03) == state)
 426			count++;
 427		if (((*byte) & 0x0C) == state1)
 428			count++;
 429		if (((*byte) & 0x30) == state2)
 430			count++;
 431		if (((*byte) & 0xC0) == state3)
 432			count++;
 433	}
 434
 435	return count;
 436}
 437
 438/**
 439 * gfs2_rgrp_verify - Verify that a resource group is consistent
 440 * @rgd: the rgrp
 441 *
 442 */
 443
 444void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 445{
 446	struct gfs2_sbd *sdp = rgd->rd_sbd;
 447	struct gfs2_bitmap *bi = NULL;
 448	u32 length = rgd->rd_length;
 449	u32 count[4], tmp;
 450	int buf, x;
 451
 452	memset(count, 0, 4 * sizeof(u32));
 453
 454	/* Count # blocks in each of 4 possible allocation states */
 455	for (buf = 0; buf < length; buf++) {
 456		bi = rgd->rd_bits + buf;
 457		for (x = 0; x < 4; x++)
 458			count[x] += gfs2_bitcount(rgd,
 459						  bi->bi_bh->b_data +
 460						  bi->bi_offset,
 461						  bi->bi_len, x);
 462	}
 463
 464	if (count[0] != rgd->rd_free) {
 465		if (gfs2_consist_rgrpd(rgd))
 466			fs_err(sdp, "free data mismatch:  %u != %u\n",
 467			       count[0], rgd->rd_free);
 468		return;
 469	}
 470
 471	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 472	if (count[1] != tmp) {
 473		if (gfs2_consist_rgrpd(rgd))
 474			fs_err(sdp, "used data mismatch:  %u != %u\n",
 475			       count[1], tmp);
 476		return;
 477	}
 478
 479	if (count[2] + count[3] != rgd->rd_dinodes) {
 480		if (gfs2_consist_rgrpd(rgd))
 481			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 482			       count[2] + count[3], rgd->rd_dinodes);
 483		return;
 484	}
 485}
 486
 487static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 488{
 489	u64 first = rgd->rd_data0;
 490	u64 last = first + rgd->rd_data;
 491	return first <= block && block < last;
 492}
 493
 494/**
 495 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 496 * @sdp: The GFS2 superblock
 497 * @blk: The data block number
 498 * @exact: True if this needs to be an exact match
 499 *
 500 * Returns: The resource group, or NULL if not found
 501 */
 502
 503struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 504{
 505	struct rb_node *n, *next;
 506	struct gfs2_rgrpd *cur;
 507
 508	spin_lock(&sdp->sd_rindex_spin);
 509	n = sdp->sd_rindex_tree.rb_node;
 510	while (n) {
 511		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 512		next = NULL;
 513		if (blk < cur->rd_addr)
 514			next = n->rb_left;
 515		else if (blk >= cur->rd_data0 + cur->rd_data)
 516			next = n->rb_right;
 517		if (next == NULL) {
 518			spin_unlock(&sdp->sd_rindex_spin);
 519			if (exact) {
 520				if (blk < cur->rd_addr)
 521					return NULL;
 522				if (blk >= cur->rd_data0 + cur->rd_data)
 523					return NULL;
 524			}
 525			return cur;
 526		}
 527		n = next;
 528	}
 529	spin_unlock(&sdp->sd_rindex_spin);
 530
 531	return NULL;
 532}
 533
 534/**
 535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 536 * @sdp: The GFS2 superblock
 537 *
 538 * Returns: The first rgrp in the filesystem
 539 */
 540
 541struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 542{
 543	const struct rb_node *n;
 544	struct gfs2_rgrpd *rgd;
 545
 546	spin_lock(&sdp->sd_rindex_spin);
 547	n = rb_first(&sdp->sd_rindex_tree);
 548	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 549	spin_unlock(&sdp->sd_rindex_spin);
 550
 551	return rgd;
 552}
 553
 554/**
 555 * gfs2_rgrpd_get_next - get the next RG
 556 * @rgd: the resource group descriptor
 557 *
 558 * Returns: The next rgrp
 559 */
 560
 561struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 562{
 563	struct gfs2_sbd *sdp = rgd->rd_sbd;
 564	const struct rb_node *n;
 565
 566	spin_lock(&sdp->sd_rindex_spin);
 567	n = rb_next(&rgd->rd_node);
 568	if (n == NULL)
 569		n = rb_first(&sdp->sd_rindex_tree);
 570
 571	if (unlikely(&rgd->rd_node == n)) {
 572		spin_unlock(&sdp->sd_rindex_spin);
 573		return NULL;
 574	}
 575	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 576	spin_unlock(&sdp->sd_rindex_spin);
 577	return rgd;
 578}
 579
 580void check_and_update_goal(struct gfs2_inode *ip)
 581{
 582	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 583	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 584		ip->i_goal = ip->i_no_addr;
 585}
 586
 587void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 588{
 589	int x;
 590
 591	for (x = 0; x < rgd->rd_length; x++) {
 592		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 593		kfree(bi->bi_clone);
 594		bi->bi_clone = NULL;
 595	}
 596}
 597
 598/**
 599 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
 600 *                 plus a quota allocations data structure, if necessary
 601 * @ip: the inode for this reservation
 602 */
 603int gfs2_rsqa_alloc(struct gfs2_inode *ip)
 604{
 605	return gfs2_qa_alloc(ip);
 606}
 607
 608static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
 609{
 610	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
 611		       (unsigned long long)rs->rs_inum,
 612		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 613		       rs->rs_rbm.offset, rs->rs_free);
 614}
 615
 616/**
 617 * __rs_deltree - remove a multi-block reservation from the rgd tree
 618 * @rs: The reservation to remove
 619 *
 620 */
 621static void __rs_deltree(struct gfs2_blkreserv *rs)
 622{
 623	struct gfs2_rgrpd *rgd;
 624
 625	if (!gfs2_rs_active(rs))
 626		return;
 627
 628	rgd = rs->rs_rbm.rgd;
 629	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 630	rb_erase(&rs->rs_node, &rgd->rd_rstree);
 631	RB_CLEAR_NODE(&rs->rs_node);
 632
 633	if (rs->rs_free) {
 634		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
 635
 636		/* return reserved blocks to the rgrp */
 637		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 638		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 639		/* The rgrp extent failure point is likely not to increase;
 640		   it will only do so if the freed blocks are somehow
 641		   contiguous with a span of free blocks that follows. Still,
 642		   it will force the number to be recalculated later. */
 643		rgd->rd_extfail_pt += rs->rs_free;
 644		rs->rs_free = 0;
 645		clear_bit(GBF_FULL, &bi->bi_flags);
 646	}
 647}
 648
 649/**
 650 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 651 * @rs: The reservation to remove
 652 *
 653 */
 654void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 655{
 656	struct gfs2_rgrpd *rgd;
 657
 658	rgd = rs->rs_rbm.rgd;
 659	if (rgd) {
 660		spin_lock(&rgd->rd_rsspin);
 661		__rs_deltree(rs);
 662		spin_unlock(&rgd->rd_rsspin);
 663	}
 664}
 665
 666/**
 667 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
 668 * @ip: The inode for this reservation
 669 * @wcount: The inode's write count, or NULL
 670 *
 671 */
 672void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
 673{
 674	down_write(&ip->i_rw_mutex);
 675	if ((wcount == NULL) || (atomic_read(wcount) <= 1)) {
 676		gfs2_rs_deltree(&ip->i_res);
 677		BUG_ON(ip->i_res.rs_free);
 678	}
 679	up_write(&ip->i_rw_mutex);
 680	gfs2_qa_delete(ip, wcount);
 681}
 682
 683/**
 684 * return_all_reservations - return all reserved blocks back to the rgrp.
 685 * @rgd: the rgrp that needs its space back
 686 *
 687 * We previously reserved a bunch of blocks for allocation. Now we need to
 688 * give them back. This leave the reservation structures in tact, but removes
 689 * all of their corresponding "no-fly zones".
 690 */
 691static void return_all_reservations(struct gfs2_rgrpd *rgd)
 692{
 693	struct rb_node *n;
 694	struct gfs2_blkreserv *rs;
 695
 696	spin_lock(&rgd->rd_rsspin);
 697	while ((n = rb_first(&rgd->rd_rstree))) {
 698		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 699		__rs_deltree(rs);
 700	}
 701	spin_unlock(&rgd->rd_rsspin);
 702}
 703
 704void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 705{
 706	struct rb_node *n;
 707	struct gfs2_rgrpd *rgd;
 708	struct gfs2_glock *gl;
 709
 710	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 711		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 712		gl = rgd->rd_gl;
 713
 714		rb_erase(n, &sdp->sd_rindex_tree);
 715
 716		if (gl) {
 717			spin_lock(&gl->gl_lockref.lock);
 718			gl->gl_object = NULL;
 719			spin_unlock(&gl->gl_lockref.lock);
 720			gfs2_glock_add_to_lru(gl);
 721			gfs2_glock_put(gl);
 722		}
 723
 724		gfs2_free_clones(rgd);
 725		kfree(rgd->rd_bits);
 726		return_all_reservations(rgd);
 727		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 728	}
 729}
 730
 731static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 732{
 733	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 734	pr_info("ri_length = %u\n", rgd->rd_length);
 735	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 736	pr_info("ri_data = %u\n", rgd->rd_data);
 737	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
 738}
 739
 740/**
 741 * gfs2_compute_bitstructs - Compute the bitmap sizes
 742 * @rgd: The resource group descriptor
 743 *
 744 * Calculates bitmap descriptors, one for each block that contains bitmap data
 745 *
 746 * Returns: errno
 747 */
 748
 749static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 750{
 751	struct gfs2_sbd *sdp = rgd->rd_sbd;
 752	struct gfs2_bitmap *bi;
 753	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 754	u32 bytes_left, bytes;
 755	int x;
 756
 757	if (!length)
 758		return -EINVAL;
 759
 760	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 761	if (!rgd->rd_bits)
 762		return -ENOMEM;
 763
 764	bytes_left = rgd->rd_bitbytes;
 765
 766	for (x = 0; x < length; x++) {
 767		bi = rgd->rd_bits + x;
 768
 769		bi->bi_flags = 0;
 770		/* small rgrp; bitmap stored completely in header block */
 771		if (length == 1) {
 772			bytes = bytes_left;
 773			bi->bi_offset = sizeof(struct gfs2_rgrp);
 774			bi->bi_start = 0;
 775			bi->bi_len = bytes;
 776			bi->bi_blocks = bytes * GFS2_NBBY;
 777		/* header block */
 778		} else if (x == 0) {
 779			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 780			bi->bi_offset = sizeof(struct gfs2_rgrp);
 781			bi->bi_start = 0;
 782			bi->bi_len = bytes;
 783			bi->bi_blocks = bytes * GFS2_NBBY;
 784		/* last block */
 785		} else if (x + 1 == length) {
 786			bytes = bytes_left;
 787			bi->bi_offset = sizeof(struct gfs2_meta_header);
 788			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 789			bi->bi_len = bytes;
 790			bi->bi_blocks = bytes * GFS2_NBBY;
 791		/* other blocks */
 792		} else {
 793			bytes = sdp->sd_sb.sb_bsize -
 794				sizeof(struct gfs2_meta_header);
 795			bi->bi_offset = sizeof(struct gfs2_meta_header);
 796			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 797			bi->bi_len = bytes;
 798			bi->bi_blocks = bytes * GFS2_NBBY;
 799		}
 800
 801		bytes_left -= bytes;
 802	}
 803
 804	if (bytes_left) {
 805		gfs2_consist_rgrpd(rgd);
 806		return -EIO;
 807	}
 808	bi = rgd->rd_bits + (length - 1);
 809	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 810		if (gfs2_consist_rgrpd(rgd)) {
 811			gfs2_rindex_print(rgd);
 812			fs_err(sdp, "start=%u len=%u offset=%u\n",
 813			       bi->bi_start, bi->bi_len, bi->bi_offset);
 814		}
 815		return -EIO;
 816	}
 817
 818	return 0;
 819}
 820
 821/**
 822 * gfs2_ri_total - Total up the file system space, according to the rindex.
 823 * @sdp: the filesystem
 824 *
 825 */
 826u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 827{
 828	u64 total_data = 0;	
 829	struct inode *inode = sdp->sd_rindex;
 830	struct gfs2_inode *ip = GFS2_I(inode);
 831	char buf[sizeof(struct gfs2_rindex)];
 832	int error, rgrps;
 833
 834	for (rgrps = 0;; rgrps++) {
 835		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 836
 837		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 838			break;
 839		error = gfs2_internal_read(ip, buf, &pos,
 840					   sizeof(struct gfs2_rindex));
 841		if (error != sizeof(struct gfs2_rindex))
 842			break;
 843		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 844	}
 845	return total_data;
 846}
 847
 848static int rgd_insert(struct gfs2_rgrpd *rgd)
 849{
 850	struct gfs2_sbd *sdp = rgd->rd_sbd;
 851	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 852
 853	/* Figure out where to put new node */
 854	while (*newn) {
 855		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 856						  rd_node);
 857
 858		parent = *newn;
 859		if (rgd->rd_addr < cur->rd_addr)
 860			newn = &((*newn)->rb_left);
 861		else if (rgd->rd_addr > cur->rd_addr)
 862			newn = &((*newn)->rb_right);
 863		else
 864			return -EEXIST;
 865	}
 866
 867	rb_link_node(&rgd->rd_node, parent, newn);
 868	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 869	sdp->sd_rgrps++;
 870	return 0;
 871}
 872
 873/**
 874 * read_rindex_entry - Pull in a new resource index entry from the disk
 875 * @ip: Pointer to the rindex inode
 876 *
 877 * Returns: 0 on success, > 0 on EOF, error code otherwise
 878 */
 879
 880static int read_rindex_entry(struct gfs2_inode *ip)
 881{
 882	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 883	const unsigned bsize = sdp->sd_sb.sb_bsize;
 884	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 885	struct gfs2_rindex buf;
 886	int error;
 887	struct gfs2_rgrpd *rgd;
 888
 889	if (pos >= i_size_read(&ip->i_inode))
 890		return 1;
 891
 892	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 893				   sizeof(struct gfs2_rindex));
 894
 895	if (error != sizeof(struct gfs2_rindex))
 896		return (error == 0) ? 1 : error;
 897
 898	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 899	error = -ENOMEM;
 900	if (!rgd)
 901		return error;
 902
 903	rgd->rd_sbd = sdp;
 904	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 905	rgd->rd_length = be32_to_cpu(buf.ri_length);
 906	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 907	rgd->rd_data = be32_to_cpu(buf.ri_data);
 908	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 909	spin_lock_init(&rgd->rd_rsspin);
 910
 911	error = compute_bitstructs(rgd);
 912	if (error)
 913		goto fail;
 914
 915	error = gfs2_glock_get(sdp, rgd->rd_addr,
 916			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 917	if (error)
 918		goto fail;
 919
 920	rgd->rd_gl->gl_object = rgd;
 921	rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
 922	rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + rgd->rd_length) * bsize) - 1;
 923	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 924	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
 925	if (rgd->rd_data > sdp->sd_max_rg_data)
 926		sdp->sd_max_rg_data = rgd->rd_data;
 927	spin_lock(&sdp->sd_rindex_spin);
 928	error = rgd_insert(rgd);
 929	spin_unlock(&sdp->sd_rindex_spin);
 930	if (!error)
 931		return 0;
 932
 933	error = 0; /* someone else read in the rgrp; free it and ignore it */
 934	gfs2_glock_put(rgd->rd_gl);
 935
 936fail:
 937	kfree(rgd->rd_bits);
 938	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 939	return error;
 940}
 941
 942/**
 943 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 944 * @sdp: the GFS2 superblock
 945 *
 946 * The purpose of this function is to select a subset of the resource groups
 947 * and mark them as PREFERRED. We do it in such a way that each node prefers
 948 * to use a unique set of rgrps to minimize glock contention.
 949 */
 950static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 951{
 952	struct gfs2_rgrpd *rgd, *first;
 953	int i;
 954
 955	/* Skip an initial number of rgrps, based on this node's journal ID.
 956	   That should start each node out on its own set. */
 957	rgd = gfs2_rgrpd_get_first(sdp);
 958	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 959		rgd = gfs2_rgrpd_get_next(rgd);
 960	first = rgd;
 961
 962	do {
 963		rgd->rd_flags |= GFS2_RDF_PREFERRED;
 964		for (i = 0; i < sdp->sd_journals; i++) {
 965			rgd = gfs2_rgrpd_get_next(rgd);
 966			if (!rgd || rgd == first)
 967				break;
 968		}
 969	} while (rgd && rgd != first);
 970}
 971
 972/**
 973 * gfs2_ri_update - Pull in a new resource index from the disk
 974 * @ip: pointer to the rindex inode
 975 *
 976 * Returns: 0 on successful update, error code otherwise
 977 */
 978
 979static int gfs2_ri_update(struct gfs2_inode *ip)
 980{
 981	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 982	int error;
 983
 984	do {
 985		error = read_rindex_entry(ip);
 986	} while (error == 0);
 987
 988	if (error < 0)
 989		return error;
 990
 991	set_rgrp_preferences(sdp);
 992
 993	sdp->sd_rindex_uptodate = 1;
 994	return 0;
 995}
 996
 997/**
 998 * gfs2_rindex_update - Update the rindex if required
 999 * @sdp: The GFS2 superblock
1000 *
1001 * We grab a lock on the rindex inode to make sure that it doesn't
1002 * change whilst we are performing an operation. We keep this lock
1003 * for quite long periods of time compared to other locks. This
1004 * doesn't matter, since it is shared and it is very, very rarely
1005 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1006 *
1007 * This makes sure that we're using the latest copy of the resource index
1008 * special file, which might have been updated if someone expanded the
1009 * filesystem (via gfs2_grow utility), which adds new resource groups.
1010 *
1011 * Returns: 0 on succeess, error code otherwise
1012 */
1013
1014int gfs2_rindex_update(struct gfs2_sbd *sdp)
1015{
1016	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1017	struct gfs2_glock *gl = ip->i_gl;
1018	struct gfs2_holder ri_gh;
1019	int error = 0;
1020	int unlock_required = 0;
1021
1022	/* Read new copy from disk if we don't have the latest */
1023	if (!sdp->sd_rindex_uptodate) {
1024		if (!gfs2_glock_is_locked_by_me(gl)) {
1025			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1026			if (error)
1027				return error;
1028			unlock_required = 1;
1029		}
1030		if (!sdp->sd_rindex_uptodate)
1031			error = gfs2_ri_update(ip);
1032		if (unlock_required)
1033			gfs2_glock_dq_uninit(&ri_gh);
1034	}
1035
1036	return error;
1037}
1038
1039static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1040{
1041	const struct gfs2_rgrp *str = buf;
1042	u32 rg_flags;
1043
1044	rg_flags = be32_to_cpu(str->rg_flags);
1045	rg_flags &= ~GFS2_RDF_MASK;
1046	rgd->rd_flags &= GFS2_RDF_MASK;
1047	rgd->rd_flags |= rg_flags;
1048	rgd->rd_free = be32_to_cpu(str->rg_free);
1049	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1050	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1051}
1052
1053static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1054{
1055	struct gfs2_rgrp *str = buf;
1056
1057	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1058	str->rg_free = cpu_to_be32(rgd->rd_free);
1059	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1060	str->__pad = cpu_to_be32(0);
1061	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1062	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1063}
1064
1065static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1066{
1067	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1068	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1069
1070	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1071	    rgl->rl_dinodes != str->rg_dinodes ||
1072	    rgl->rl_igeneration != str->rg_igeneration)
1073		return 0;
1074	return 1;
1075}
1076
1077static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1078{
1079	const struct gfs2_rgrp *str = buf;
1080
1081	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1082	rgl->rl_flags = str->rg_flags;
1083	rgl->rl_free = str->rg_free;
1084	rgl->rl_dinodes = str->rg_dinodes;
1085	rgl->rl_igeneration = str->rg_igeneration;
1086	rgl->__pad = 0UL;
1087}
1088
1089static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1090{
1091	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1092	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1093	rgl->rl_unlinked = cpu_to_be32(unlinked);
1094}
1095
1096static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1097{
1098	struct gfs2_bitmap *bi;
1099	const u32 length = rgd->rd_length;
1100	const u8 *buffer = NULL;
1101	u32 i, goal, count = 0;
1102
1103	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1104		goal = 0;
1105		buffer = bi->bi_bh->b_data + bi->bi_offset;
1106		WARN_ON(!buffer_uptodate(bi->bi_bh));
1107		while (goal < bi->bi_len * GFS2_NBBY) {
1108			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1109					   GFS2_BLKST_UNLINKED);
1110			if (goal == BFITNOENT)
1111				break;
1112			count++;
1113			goal++;
1114		}
1115	}
1116
1117	return count;
1118}
1119
1120
1121/**
1122 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1123 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1124 *
1125 * Read in all of a Resource Group's header and bitmap blocks.
1126 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1127 *
1128 * Returns: errno
1129 */
1130
1131static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1132{
 
1133	struct gfs2_sbd *sdp = rgd->rd_sbd;
1134	struct gfs2_glock *gl = rgd->rd_gl;
1135	unsigned int length = rgd->rd_length;
1136	struct gfs2_bitmap *bi;
1137	unsigned int x, y;
1138	int error;
1139
1140	if (rgd->rd_bits[0].bi_bh != NULL)
1141		return 0;
1142
1143	for (x = 0; x < length; x++) {
1144		bi = rgd->rd_bits + x;
1145		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1146		if (error)
1147			goto fail;
1148	}
1149
1150	for (y = length; y--;) {
1151		bi = rgd->rd_bits + y;
1152		error = gfs2_meta_wait(sdp, bi->bi_bh);
1153		if (error)
1154			goto fail;
1155		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1156					      GFS2_METATYPE_RG)) {
1157			error = -EIO;
1158			goto fail;
1159		}
1160	}
1161
1162	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1163		for (x = 0; x < length; x++)
1164			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1165		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1166		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1167		rgd->rd_free_clone = rgd->rd_free;
1168		/* max out the rgrp allocation failure point */
1169		rgd->rd_extfail_pt = rgd->rd_free;
1170	}
1171	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1172		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1173		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1174				     rgd->rd_bits[0].bi_bh->b_data);
1175	}
1176	else if (sdp->sd_args.ar_rgrplvb) {
1177		if (!gfs2_rgrp_lvb_valid(rgd)){
1178			gfs2_consist_rgrpd(rgd);
1179			error = -EIO;
1180			goto fail;
1181		}
1182		if (rgd->rd_rgl->rl_unlinked == 0)
1183			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1184	}
 
1185	return 0;
1186
1187fail:
1188	while (x--) {
1189		bi = rgd->rd_bits + x;
1190		brelse(bi->bi_bh);
1191		bi->bi_bh = NULL;
1192		gfs2_assert_warn(sdp, !bi->bi_clone);
1193	}
1194
1195	return error;
1196}
1197
1198static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1199{
1200	u32 rl_flags;
1201
1202	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1203		return 0;
1204
1205	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1206		return gfs2_rgrp_bh_get(rgd);
1207
1208	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1209	rl_flags &= ~GFS2_RDF_MASK;
1210	rgd->rd_flags &= GFS2_RDF_MASK;
1211	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1212	if (rgd->rd_rgl->rl_unlinked == 0)
1213		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1214	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1215	rgd->rd_free_clone = rgd->rd_free;
1216	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1217	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1218	return 0;
1219}
1220
1221int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1222{
1223	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1224	struct gfs2_sbd *sdp = rgd->rd_sbd;
1225
1226	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1227		return 0;
1228	return gfs2_rgrp_bh_get(rgd);
1229}
1230
1231/**
1232 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1233 * @rgd: The resource group
1234 *
1235 */
1236
1237void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1238{
 
1239	int x, length = rgd->rd_length;
1240
1241	for (x = 0; x < length; x++) {
1242		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1243		if (bi->bi_bh) {
1244			brelse(bi->bi_bh);
1245			bi->bi_bh = NULL;
1246		}
1247	}
1248
1249}
1250
1251/**
1252 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1253 * @gh: The glock holder for the resource group
1254 *
1255 */
1256
1257void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1258{
1259	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1260	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1261		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1262
1263	if (rgd && demote_requested)
1264		gfs2_rgrp_brelse(rgd);
1265}
1266
1267int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1268			     struct buffer_head *bh,
1269			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1270{
1271	struct super_block *sb = sdp->sd_vfs;
 
 
 
1272	u64 blk;
1273	sector_t start = 0;
1274	sector_t nr_blks = 0;
1275	int rv;
1276	unsigned int x;
1277	u32 trimmed = 0;
1278	u8 diff;
1279
1280	for (x = 0; x < bi->bi_len; x++) {
1281		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1282		clone += bi->bi_offset;
1283		clone += x;
1284		if (bh) {
1285			const u8 *orig = bh->b_data + bi->bi_offset + x;
1286			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1287		} else {
1288			diff = ~(*clone | (*clone >> 1));
1289		}
1290		diff &= 0x55;
1291		if (diff == 0)
1292			continue;
1293		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 
1294		while(diff) {
1295			if (diff & 1) {
1296				if (nr_blks == 0)
1297					goto start_new_extent;
1298				if ((start + nr_blks) != blk) {
1299					if (nr_blks >= minlen) {
1300						rv = sb_issue_discard(sb,
1301							start, nr_blks,
1302							GFP_NOFS, 0);
1303						if (rv)
1304							goto fail;
1305						trimmed += nr_blks;
1306					}
1307					nr_blks = 0;
1308start_new_extent:
1309					start = blk;
1310				}
1311				nr_blks++;
1312			}
1313			diff >>= 2;
1314			blk++;
1315		}
1316	}
1317	if (nr_blks >= minlen) {
1318		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1319		if (rv)
1320			goto fail;
1321		trimmed += nr_blks;
1322	}
1323	if (ptrimmed)
1324		*ptrimmed = trimmed;
1325	return 0;
1326
1327fail:
1328	if (sdp->sd_args.ar_discard)
1329		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1330	sdp->sd_args.ar_discard = 0;
1331	return -EIO;
1332}
1333
1334/**
1335 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1336 * @filp: Any file on the filesystem
1337 * @argp: Pointer to the arguments (also used to pass result)
1338 *
1339 * Returns: 0 on success, otherwise error code
1340 */
1341
1342int gfs2_fitrim(struct file *filp, void __user *argp)
1343{
1344	struct inode *inode = file_inode(filp);
1345	struct gfs2_sbd *sdp = GFS2_SB(inode);
1346	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1347	struct buffer_head *bh;
1348	struct gfs2_rgrpd *rgd;
1349	struct gfs2_rgrpd *rgd_end;
1350	struct gfs2_holder gh;
1351	struct fstrim_range r;
1352	int ret = 0;
1353	u64 amt;
1354	u64 trimmed = 0;
1355	u64 start, end, minlen;
1356	unsigned int x;
1357	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1358
1359	if (!capable(CAP_SYS_ADMIN))
1360		return -EPERM;
1361
1362	if (!blk_queue_discard(q))
1363		return -EOPNOTSUPP;
1364
1365	if (copy_from_user(&r, argp, sizeof(r)))
 
 
 
 
1366		return -EFAULT;
1367
1368	ret = gfs2_rindex_update(sdp);
1369	if (ret)
1370		return ret;
1371
1372	start = r.start >> bs_shift;
1373	end = start + (r.len >> bs_shift);
1374	minlen = max_t(u64, r.minlen,
1375		       q->limits.discard_granularity) >> bs_shift;
1376
1377	if (end <= start || minlen > sdp->sd_max_rg_data)
1378		return -EINVAL;
1379
1380	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1381	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1382
1383	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1384	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1385		return -EINVAL; /* start is beyond the end of the fs */
1386
1387	while (1) {
1388
1389		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1390		if (ret)
1391			goto out;
1392
1393		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1394			/* Trim each bitmap in the rgrp */
1395			for (x = 0; x < rgd->rd_length; x++) {
1396				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1397				ret = gfs2_rgrp_send_discards(sdp,
1398						rgd->rd_data0, NULL, bi, minlen,
1399						&amt);
1400				if (ret) {
1401					gfs2_glock_dq_uninit(&gh);
1402					goto out;
1403				}
1404				trimmed += amt;
1405			}
1406
1407			/* Mark rgrp as having been trimmed */
1408			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1409			if (ret == 0) {
1410				bh = rgd->rd_bits[0].bi_bh;
1411				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1412				gfs2_trans_add_meta(rgd->rd_gl, bh);
1413				gfs2_rgrp_out(rgd, bh->b_data);
1414				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1415				gfs2_trans_end(sdp);
1416			}
1417		}
1418		gfs2_glock_dq_uninit(&gh);
1419
1420		if (rgd == rgd_end)
1421			break;
1422
1423		rgd = gfs2_rgrpd_get_next(rgd);
1424	}
1425
1426out:
1427	r.len = trimmed << bs_shift;
1428	if (copy_to_user(argp, &r, sizeof(r)))
1429		return -EFAULT;
1430
1431	return ret;
1432}
1433
1434/**
1435 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1436 * @ip: the inode structure
1437 *
 
1438 */
1439static void rs_insert(struct gfs2_inode *ip)
 
1440{
1441	struct rb_node **newn, *parent = NULL;
1442	int rc;
1443	struct gfs2_blkreserv *rs = &ip->i_res;
1444	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1445	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1446
1447	BUG_ON(gfs2_rs_active(rs));
1448
1449	spin_lock(&rgd->rd_rsspin);
1450	newn = &rgd->rd_rstree.rb_node;
1451	while (*newn) {
1452		struct gfs2_blkreserv *cur =
1453			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1454
1455		parent = *newn;
1456		rc = rs_cmp(fsblock, rs->rs_free, cur);
1457		if (rc > 0)
1458			newn = &((*newn)->rb_right);
1459		else if (rc < 0)
1460			newn = &((*newn)->rb_left);
1461		else {
1462			spin_unlock(&rgd->rd_rsspin);
1463			WARN_ON(1);
1464			return;
1465		}
1466	}
1467
1468	rb_link_node(&rs->rs_node, parent, newn);
1469	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1470
1471	/* Do our rgrp accounting for the reservation */
1472	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1473	spin_unlock(&rgd->rd_rsspin);
1474	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1475}
1476
1477/**
1478 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1479 * @rgd: the resource group descriptor
1480 * @ip: pointer to the inode for which we're reserving blocks
1481 * @ap: the allocation parameters
1482 *
 
1483 */
1484
1485static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1486			   const struct gfs2_alloc_parms *ap)
1487{
1488	struct gfs2_rbm rbm = { .rgd = rgd, };
1489	u64 goal;
1490	struct gfs2_blkreserv *rs = &ip->i_res;
1491	u32 extlen;
1492	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1493	int ret;
1494	struct inode *inode = &ip->i_inode;
1495
1496	if (S_ISDIR(inode->i_mode))
1497		extlen = 1;
1498	else {
1499		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1500		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1501	}
1502	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1503		return;
1504
1505	/* Find bitmap block that contains bits for goal block */
1506	if (rgrp_contains_block(rgd, ip->i_goal))
1507		goal = ip->i_goal;
1508	else
1509		goal = rgd->rd_last_alloc + rgd->rd_data0;
1510
1511	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1512		return;
1513
1514	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap);
1515	if (ret == 0) {
1516		rs->rs_rbm = rbm;
1517		rs->rs_free = extlen;
1518		rs->rs_inum = ip->i_no_addr;
1519		rs_insert(ip);
1520	} else {
1521		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1522			rgd->rd_last_alloc = 0;
1523	}
1524}
1525
1526/**
1527 * gfs2_next_unreserved_block - Return next block that is not reserved
1528 * @rgd: The resource group
1529 * @block: The starting block
1530 * @length: The required length
1531 * @ip: Ignore any reservations for this inode
1532 *
1533 * If the block does not appear in any reservation, then return the
1534 * block number unchanged. If it does appear in the reservation, then
1535 * keep looking through the tree of reservations in order to find the
1536 * first block number which is not reserved.
1537 */
1538
1539static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1540				      u32 length,
1541				      const struct gfs2_inode *ip)
1542{
1543	struct gfs2_blkreserv *rs;
1544	struct rb_node *n;
1545	int rc;
1546
1547	spin_lock(&rgd->rd_rsspin);
1548	n = rgd->rd_rstree.rb_node;
1549	while (n) {
1550		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1551		rc = rs_cmp(block, length, rs);
1552		if (rc < 0)
1553			n = n->rb_left;
1554		else if (rc > 0)
1555			n = n->rb_right;
1556		else
1557			break;
1558	}
1559
1560	if (n) {
1561		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1562			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1563			n = n->rb_right;
1564			if (n == NULL)
1565				break;
1566			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1567		}
1568	}
1569
1570	spin_unlock(&rgd->rd_rsspin);
1571	return block;
1572}
1573
1574/**
1575 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1576 * @rbm: The current position in the resource group
1577 * @ip: The inode for which we are searching for blocks
1578 * @minext: The minimum extent length
1579 * @maxext: A pointer to the maximum extent structure
1580 *
1581 * This checks the current position in the rgrp to see whether there is
1582 * a reservation covering this block. If not then this function is a
1583 * no-op. If there is, then the position is moved to the end of the
1584 * contiguous reservation(s) so that we are pointing at the first
1585 * non-reserved block.
1586 *
1587 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1588 */
1589
1590static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1591					     const struct gfs2_inode *ip,
1592					     u32 minext,
1593					     struct gfs2_extent *maxext)
1594{
1595	u64 block = gfs2_rbm_to_block(rbm);
1596	u32 extlen = 1;
1597	u64 nblock;
1598	int ret;
1599
1600	/*
1601	 * If we have a minimum extent length, then skip over any extent
1602	 * which is less than the min extent length in size.
1603	 */
1604	if (minext) {
1605		extlen = gfs2_free_extlen(rbm, minext);
1606		if (extlen <= maxext->len)
1607			goto fail;
1608	}
1609
1610	/*
1611	 * Check the extent which has been found against the reservations
1612	 * and skip if parts of it are already reserved
1613	 */
1614	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1615	if (nblock == block) {
1616		if (!minext || extlen >= minext)
1617			return 0;
1618
1619		if (extlen > maxext->len) {
1620			maxext->len = extlen;
1621			maxext->rbm = *rbm;
1622		}
1623fail:
1624		nblock = block + extlen;
1625	}
1626	ret = gfs2_rbm_from_block(rbm, nblock);
1627	if (ret < 0)
1628		return ret;
1629	return 1;
1630}
1631
1632/**
1633 * gfs2_rbm_find - Look for blocks of a particular state
1634 * @rbm: Value/result starting position and final position
1635 * @state: The state which we want to find
1636 * @minext: Pointer to the requested extent length (NULL for a single block)
1637 *          This is updated to be the actual reservation size.
1638 * @ip: If set, check for reservations
1639 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1640 *          around until we've reached the starting point.
1641 * @ap: the allocation parameters
1642 *
1643 * Side effects:
1644 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1645 *   has no free blocks in it.
1646 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1647 *   has come up short on a free block search.
1648 *
1649 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1650 */
1651
1652static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1653			 const struct gfs2_inode *ip, bool nowrap,
1654			 const struct gfs2_alloc_parms *ap)
1655{
1656	struct buffer_head *bh;
1657	int initial_bii;
1658	u32 initial_offset;
1659	int first_bii = rbm->bii;
1660	u32 first_offset = rbm->offset;
1661	u32 offset;
1662	u8 *buffer;
1663	int n = 0;
1664	int iters = rbm->rgd->rd_length;
1665	int ret;
1666	struct gfs2_bitmap *bi;
1667	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1668
1669	/* If we are not starting at the beginning of a bitmap, then we
1670	 * need to add one to the bitmap count to ensure that we search
1671	 * the starting bitmap twice.
1672	 */
1673	if (rbm->offset != 0)
1674		iters++;
1675
1676	while(1) {
1677		bi = rbm_bi(rbm);
1678		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1679		    (state == GFS2_BLKST_FREE))
1680			goto next_bitmap;
1681
1682		bh = bi->bi_bh;
1683		buffer = bh->b_data + bi->bi_offset;
1684		WARN_ON(!buffer_uptodate(bh));
1685		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1686			buffer = bi->bi_clone + bi->bi_offset;
1687		initial_offset = rbm->offset;
1688		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1689		if (offset == BFITNOENT)
1690			goto bitmap_full;
1691		rbm->offset = offset;
1692		if (ip == NULL)
1693			return 0;
1694
1695		initial_bii = rbm->bii;
1696		ret = gfs2_reservation_check_and_update(rbm, ip,
1697							minext ? *minext : 0,
1698							&maxext);
1699		if (ret == 0)
1700			return 0;
1701		if (ret > 0) {
1702			n += (rbm->bii - initial_bii);
1703			goto next_iter;
1704		}
1705		if (ret == -E2BIG) {
1706			rbm->bii = 0;
1707			rbm->offset = 0;
1708			n += (rbm->bii - initial_bii);
1709			goto res_covered_end_of_rgrp;
1710		}
1711		return ret;
1712
1713bitmap_full:	/* Mark bitmap as full and fall through */
1714		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1715			set_bit(GBF_FULL, &bi->bi_flags);
1716
1717next_bitmap:	/* Find next bitmap in the rgrp */
1718		rbm->offset = 0;
1719		rbm->bii++;
1720		if (rbm->bii == rbm->rgd->rd_length)
1721			rbm->bii = 0;
1722res_covered_end_of_rgrp:
1723		if ((rbm->bii == 0) && nowrap)
1724			break;
1725		n++;
1726next_iter:
1727		if (n >= iters)
1728			break;
1729	}
1730
1731	if (minext == NULL || state != GFS2_BLKST_FREE)
1732		return -ENOSPC;
1733
1734	/* If the extent was too small, and it's smaller than the smallest
1735	   to have failed before, remember for future reference that it's
1736	   useless to search this rgrp again for this amount or more. */
1737	if ((first_offset == 0) && (first_bii == 0) &&
1738	    (*minext < rbm->rgd->rd_extfail_pt))
1739		rbm->rgd->rd_extfail_pt = *minext;
1740
1741	/* If the maximum extent we found is big enough to fulfill the
1742	   minimum requirements, use it anyway. */
1743	if (maxext.len) {
1744		*rbm = maxext.rbm;
1745		*minext = maxext.len;
1746		return 0;
1747	}
1748
1749	return -ENOSPC;
1750}
1751
1752/**
1753 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1754 * @rgd: The rgrp
1755 * @last_unlinked: block address of the last dinode we unlinked
1756 * @skip: block address we should explicitly not unlink
1757 *
1758 * Returns: 0 if no error
1759 *          The inode, if one has been found, in inode.
1760 */
1761
1762static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1763{
1764	u64 block;
 
1765	struct gfs2_sbd *sdp = rgd->rd_sbd;
1766	struct gfs2_glock *gl;
1767	struct gfs2_inode *ip;
1768	int error;
1769	int found = 0;
1770	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1771
1772	while (1) {
1773		down_write(&sdp->sd_log_flush_lock);
1774		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1775				      true, NULL);
1776		up_write(&sdp->sd_log_flush_lock);
1777		if (error == -ENOSPC)
1778			break;
1779		if (WARN_ON_ONCE(error))
1780			break;
1781
1782		block = gfs2_rbm_to_block(&rbm);
1783		if (gfs2_rbm_from_block(&rbm, block + 1))
1784			break;
1785		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
 
 
1786			continue;
1787		if (block == skip)
1788			continue;
1789		*last_unlinked = block;
1790
1791		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1792		if (error)
1793			continue;
1794
1795		/* If the inode is already in cache, we can ignore it here
1796		 * because the existing inode disposal code will deal with
1797		 * it when all refs have gone away. Accessing gl_object like
1798		 * this is not safe in general. Here it is ok because we do
1799		 * not dereference the pointer, and we only need an approx
1800		 * answer to whether it is NULL or not.
1801		 */
1802		ip = gl->gl_object;
1803
1804		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1805			gfs2_glock_put(gl);
1806		else
1807			found++;
1808
1809		/* Limit reclaim to sensible number of tasks */
1810		if (found > NR_CPUS)
1811			return;
1812	}
1813
1814	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1815	return;
1816}
1817
1818/**
1819 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1820 * @rgd: The rgrp in question
1821 * @loops: An indication of how picky we can be (0=very, 1=less so)
1822 *
1823 * This function uses the recently added glock statistics in order to
1824 * figure out whether a parciular resource group is suffering from
1825 * contention from multiple nodes. This is done purely on the basis
1826 * of timings, since this is the only data we have to work with and
1827 * our aim here is to reject a resource group which is highly contended
1828 * but (very important) not to do this too often in order to ensure that
1829 * we do not land up introducing fragmentation by changing resource
1830 * groups when not actually required.
1831 *
1832 * The calculation is fairly simple, we want to know whether the SRTTB
1833 * (i.e. smoothed round trip time for blocking operations) to acquire
1834 * the lock for this rgrp's glock is significantly greater than the
1835 * time taken for resource groups on average. We introduce a margin in
1836 * the form of the variable @var which is computed as the sum of the two
1837 * respective variences, and multiplied by a factor depending on @loops
1838 * and whether we have a lot of data to base the decision on. This is
1839 * then tested against the square difference of the means in order to
1840 * decide whether the result is statistically significant or not.
1841 *
1842 * Returns: A boolean verdict on the congestion status
1843 */
1844
1845static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1846{
1847	const struct gfs2_glock *gl = rgd->rd_gl;
1848	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1849	struct gfs2_lkstats *st;
1850	u64 r_dcount, l_dcount;
1851	u64 l_srttb, a_srttb = 0;
1852	s64 srttb_diff;
1853	u64 sqr_diff;
1854	u64 var;
1855	int cpu, nonzero = 0;
1856
1857	preempt_disable();
1858	for_each_present_cpu(cpu) {
1859		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1860		if (st->stats[GFS2_LKS_SRTTB]) {
1861			a_srttb += st->stats[GFS2_LKS_SRTTB];
1862			nonzero++;
1863		}
1864	}
1865	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1866	if (nonzero)
1867		do_div(a_srttb, nonzero);
1868	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1869	var = st->stats[GFS2_LKS_SRTTVARB] +
1870	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1871	preempt_enable();
1872
1873	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1874	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1875
1876	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1877		return false;
1878
1879	srttb_diff = a_srttb - l_srttb;
1880	sqr_diff = srttb_diff * srttb_diff;
1881
1882	var *= 2;
1883	if (l_dcount < 8 || r_dcount < 8)
1884		var *= 2;
1885	if (loops == 1)
1886		var *= 2;
1887
1888	return ((srttb_diff < 0) && (sqr_diff > var));
1889}
1890
1891/**
1892 * gfs2_rgrp_used_recently
1893 * @rs: The block reservation with the rgrp to test
1894 * @msecs: The time limit in milliseconds
1895 *
1896 * Returns: True if the rgrp glock has been used within the time limit
1897 */
1898static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1899				    u64 msecs)
1900{
1901	u64 tdiff;
 
 
 
 
1902
1903	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1904                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
 
 
1905
1906	return tdiff > (msecs * 1000 * 1000);
1907}
1908
1909static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1910{
1911	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1912	u32 skip;
1913
1914	get_random_bytes(&skip, sizeof(skip));
1915	return skip % sdp->sd_rgrps;
1916}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1917
1918static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1919{
1920	struct gfs2_rgrpd *rgd = *pos;
1921	struct gfs2_sbd *sdp = rgd->rd_sbd;
1922
1923	rgd = gfs2_rgrpd_get_next(rgd);
1924	if (rgd == NULL)
1925		rgd = gfs2_rgrpd_get_first(sdp);
1926	*pos = rgd;
1927	if (rgd != begin) /* If we didn't wrap */
1928		return true;
1929	return false;
1930}
1931
1932/**
1933 * fast_to_acquire - determine if a resource group will be fast to acquire
1934 *
1935 * If this is one of our preferred rgrps, it should be quicker to acquire,
1936 * because we tried to set ourselves up as dlm lock master.
1937 */
1938static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1939{
1940	struct gfs2_glock *gl = rgd->rd_gl;
1941
1942	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1943	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1944	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1945		return 1;
1946	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1947		return 1;
1948	return 0;
1949}
1950
1951/**
1952 * gfs2_inplace_reserve - Reserve space in the filesystem
1953 * @ip: the inode to reserve space for
1954 * @ap: the allocation parameters
1955 *
1956 * We try our best to find an rgrp that has at least ap->target blocks
1957 * available. After a couple of passes (loops == 2), the prospects of finding
1958 * such an rgrp diminish. At this stage, we return the first rgrp that has
1959 * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1960 * the number of blocks available in the chosen rgrp.
1961 *
1962 * Returns: 0 on success,
1963 *          -ENOMEM if a suitable rgrp can't be found
1964 *          errno otherwise
1965 */
1966
1967int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1968{
1969	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1970	struct gfs2_rgrpd *begin = NULL;
1971	struct gfs2_blkreserv *rs = &ip->i_res;
1972	int error = 0, rg_locked, flags = 0;
1973	u64 last_unlinked = NO_BLOCK;
1974	int loops = 0;
1975	u32 skip = 0;
1976
1977	if (sdp->sd_args.ar_rgrplvb)
1978		flags |= GL_SKIP;
1979	if (gfs2_assert_warn(sdp, ap->target))
1980		return -EINVAL;
1981	if (gfs2_rs_active(rs)) {
1982		begin = rs->rs_rbm.rgd;
1983	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1984		rs->rs_rbm.rgd = begin = ip->i_rgd;
1985	} else {
1986		check_and_update_goal(ip);
1987		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1988	}
1989	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1990		skip = gfs2_orlov_skip(ip);
1991	if (rs->rs_rbm.rgd == NULL)
1992		return -EBADSLT;
1993
1994	while (loops < 3) {
1995		rg_locked = 1;
 
 
 
 
1996
1997		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1998			rg_locked = 0;
1999			if (skip && skip--)
2000				goto next_rgrp;
2001			if (!gfs2_rs_active(rs)) {
2002				if (loops == 0 &&
2003				    !fast_to_acquire(rs->rs_rbm.rgd))
2004					goto next_rgrp;
2005				if ((loops < 2) &&
2006				    gfs2_rgrp_used_recently(rs, 1000) &&
2007				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2008					goto next_rgrp;
2009			}
2010			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2011						   LM_ST_EXCLUSIVE, flags,
2012						   &rs->rs_rgd_gh);
2013			if (unlikely(error))
2014				return error;
2015			if (!gfs2_rs_active(rs) && (loops < 2) &&
2016			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2017				goto skip_rgrp;
2018			if (sdp->sd_args.ar_rgrplvb) {
2019				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2020				if (unlikely(error)) {
2021					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2022					return error;
2023				}
2024			}
2025		}
2026
2027		/* Skip unuseable resource groups */
2028		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2029						 GFS2_RDF_ERROR)) ||
2030		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2031			goto skip_rgrp;
2032
2033		if (sdp->sd_args.ar_rgrplvb)
2034			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2035
2036		/* Get a reservation if we don't already have one */
2037		if (!gfs2_rs_active(rs))
2038			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2039
2040		/* Skip rgrps when we can't get a reservation on first pass */
2041		if (!gfs2_rs_active(rs) && (loops < 1))
2042			goto check_rgrp;
2043
2044		/* If rgrp has enough free space, use it */
2045		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2046		    (loops == 2 && ap->min_target &&
2047		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2048			ip->i_rgd = rs->rs_rbm.rgd;
2049			ap->allowed = ip->i_rgd->rd_free_clone;
2050			return 0;
2051		}
2052check_rgrp:
2053		/* Check for unlinked inodes which can be reclaimed */
2054		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2055			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2056					ip->i_no_addr);
2057skip_rgrp:
2058		/* Drop reservation, if we couldn't use reserved rgrp */
2059		if (gfs2_rs_active(rs))
2060			gfs2_rs_deltree(rs);
2061
2062		/* Unlock rgrp if required */
2063		if (!rg_locked)
2064			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2065next_rgrp:
2066		/* Find the next rgrp, and continue looking */
2067		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2068			continue;
2069		if (skip)
2070			continue;
2071
2072		/* If we've scanned all the rgrps, but found no free blocks
2073		 * then this checks for some less likely conditions before
2074		 * trying again.
2075		 */
2076		loops++;
2077		/* Check that fs hasn't grown if writing to rindex */
2078		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2079			error = gfs2_ri_update(ip);
2080			if (error)
2081				return error;
 
2082		}
2083		/* Flushing the log may release space */
2084		if (loops == 2)
2085			gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2086	}
2087
2088	return -ENOSPC;
 
 
 
2089}
2090
2091/**
2092 * gfs2_inplace_release - release an inplace reservation
2093 * @ip: the inode the reservation was taken out on
2094 *
2095 * Release a reservation made by gfs2_inplace_reserve().
2096 */
2097
2098void gfs2_inplace_release(struct gfs2_inode *ip)
2099{
2100	struct gfs2_blkreserv *rs = &ip->i_res;
2101
2102	if (rs->rs_rgd_gh.gh_gl)
2103		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
 
2104}
2105
2106/**
2107 * gfs2_get_block_type - Check a block in a RG is of given type
2108 * @rgd: the resource group holding the block
2109 * @block: the block number
2110 *
2111 * Returns: The block type (GFS2_BLKST_*)
2112 */
2113
2114static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2115{
2116	struct gfs2_rbm rbm = { .rgd = rgd, };
2117	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118
2119	ret = gfs2_rbm_from_block(&rbm, block);
2120	WARN_ON_ONCE(ret != 0);
2121
2122	return gfs2_testbit(&rbm);
2123}
2124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2125
2126/**
2127 * gfs2_alloc_extent - allocate an extent from a given bitmap
2128 * @rbm: the resource group information
 
 
2129 * @dinode: TRUE if the first block we allocate is for a dinode
2130 * @n: The extent length (value/result)
2131 *
2132 * Add the bitmap buffer to the transaction.
2133 * Set the found bits to @new_state to change block's allocation state.
 
2134 */
2135static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2136			     unsigned int *n)
2137{
2138	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2139	const unsigned int elen = *n;
2140	u64 block;
2141	int ret;
2142
2143	*n = 1;
2144	block = gfs2_rbm_to_block(rbm);
2145	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2146	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2147	block++;
 
 
2148	while (*n < elen) {
2149		ret = gfs2_rbm_from_block(&pos, block);
2150		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
 
 
 
2151			break;
2152		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2153		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2154		(*n)++;
2155		block++;
2156	}
 
 
 
2157}
2158
2159/**
2160 * rgblk_free - Change alloc state of given block(s)
2161 * @sdp: the filesystem
2162 * @bstart: the start of a run of blocks to free
2163 * @blen: the length of the block run (all must lie within ONE RG!)
2164 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2165 *
2166 * Returns:  Resource group containing the block(s)
2167 */
2168
2169static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2170				     u32 blen, unsigned char new_state)
2171{
2172	struct gfs2_rbm rbm;
2173	struct gfs2_bitmap *bi, *bi_prev = NULL;
 
 
2174
2175	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2176	if (!rbm.rgd) {
2177		if (gfs2_consist(sdp))
2178			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2179		return NULL;
2180	}
2181
2182	gfs2_rbm_from_block(&rbm, bstart);
 
 
 
2183	while (blen--) {
2184		bi = rbm_bi(&rbm);
2185		if (bi != bi_prev) {
2186			if (!bi->bi_clone) {
2187				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2188						      GFP_NOFS | __GFP_NOFAIL);
2189				memcpy(bi->bi_clone + bi->bi_offset,
2190				       bi->bi_bh->b_data + bi->bi_offset,
2191				       bi->bi_len);
2192			}
2193			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2194			bi_prev = bi;
 
 
 
 
 
 
2195		}
2196		gfs2_setbit(&rbm, false, new_state);
2197		gfs2_rbm_incr(&rbm);
2198	}
2199
2200	return rbm.rgd;
2201}
2202
2203/**
2204 * gfs2_rgrp_dump - print out an rgrp
2205 * @seq: The iterator
2206 * @gl: The glock in question
2207 *
2208 */
2209
2210void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2211{
2212	struct gfs2_rgrpd *rgd = gl->gl_object;
2213	struct gfs2_blkreserv *trs;
2214	const struct rb_node *n;
2215
2216	if (rgd == NULL)
2217		return;
2218	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2219		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2220		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2221		       rgd->rd_reserved, rgd->rd_extfail_pt);
2222	spin_lock(&rgd->rd_rsspin);
2223	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2224		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2225		dump_rs(seq, trs);
2226	}
2227	spin_unlock(&rgd->rd_rsspin);
2228}
2229
2230static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2231{
2232	struct gfs2_sbd *sdp = rgd->rd_sbd;
2233	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2234		(unsigned long long)rgd->rd_addr);
2235	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2236	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2237	rgd->rd_flags |= GFS2_RDF_ERROR;
2238}
2239
2240/**
2241 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2242 * @ip: The inode we have just allocated blocks for
2243 * @rbm: The start of the allocated blocks
2244 * @len: The extent length
2245 *
2246 * Adjusts a reservation after an allocation has taken place. If the
2247 * reservation does not match the allocation, or if it is now empty
2248 * then it is removed.
2249 */
2250
2251static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2252				    const struct gfs2_rbm *rbm, unsigned len)
2253{
2254	struct gfs2_blkreserv *rs = &ip->i_res;
2255	struct gfs2_rgrpd *rgd = rbm->rgd;
2256	unsigned rlen;
2257	u64 block;
2258	int ret;
2259
2260	spin_lock(&rgd->rd_rsspin);
2261	if (gfs2_rs_active(rs)) {
2262		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2263			block = gfs2_rbm_to_block(rbm);
2264			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2265			rlen = min(rs->rs_free, len);
2266			rs->rs_free -= rlen;
2267			rgd->rd_reserved -= rlen;
2268			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2269			if (rs->rs_free && !ret)
2270				goto out;
2271			/* We used up our block reservation, so we should
2272			   reserve more blocks next time. */
2273			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2274		}
2275		__rs_deltree(rs);
2276	}
2277out:
2278	spin_unlock(&rgd->rd_rsspin);
2279}
2280
2281/**
2282 * gfs2_set_alloc_start - Set starting point for block allocation
2283 * @rbm: The rbm which will be set to the required location
2284 * @ip: The gfs2 inode
2285 * @dinode: Flag to say if allocation includes a new inode
2286 *
2287 * This sets the starting point from the reservation if one is active
2288 * otherwise it falls back to guessing a start point based on the
2289 * inode's goal block or the last allocation point in the rgrp.
2290 */
2291
2292static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2293				 const struct gfs2_inode *ip, bool dinode)
2294{
2295	u64 goal;
2296
2297	if (gfs2_rs_active(&ip->i_res)) {
2298		*rbm = ip->i_res.rs_rbm;
2299		return;
2300	}
2301
2302	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2303		goal = ip->i_goal;
2304	else
2305		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2306
2307	gfs2_rbm_from_block(rbm, goal);
2308}
2309
2310/**
2311 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2312 * @ip: the inode to allocate the block for
2313 * @bn: Used to return the starting block number
2314 * @nblocks: requested number of blocks/extent length (value/result)
2315 * @dinode: 1 if we're allocating a dinode block, else 0
2316 * @generation: the generation number of the inode
2317 *
2318 * Returns: 0 or error
2319 */
2320
2321int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2322		      bool dinode, u64 *generation)
2323{
2324	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2325	struct buffer_head *dibh;
2326	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2327	unsigned int ndata;
 
2328	u64 block; /* block, within the file system scope */
2329	int error;
 
2330
2331	gfs2_set_alloc_start(&rbm, ip, dinode);
2332	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL);
 
 
 
 
 
 
 
 
 
 
2333
2334	if (error == -ENOSPC) {
2335		gfs2_set_alloc_start(&rbm, ip, dinode);
2336		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false,
2337				      NULL);
2338	}
2339
2340	/* Since all blocks are reserved in advance, this shouldn't happen */
2341	if (error) {
2342		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2343			(unsigned long long)ip->i_no_addr, error, *nblocks,
2344			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2345			rbm.rgd->rd_extfail_pt);
2346		goto rgrp_error;
2347	}
2348
2349	gfs2_alloc_extent(&rbm, dinode, nblocks);
2350	block = gfs2_rbm_to_block(&rbm);
2351	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2352	if (gfs2_rs_active(&ip->i_res))
2353		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2354	ndata = *nblocks;
2355	if (dinode)
2356		ndata--;
2357
2358	if (!dinode) {
2359		ip->i_goal = block + ndata - 1;
2360		error = gfs2_meta_inode_buffer(ip, &dibh);
2361		if (error == 0) {
2362			struct gfs2_dinode *di =
2363				(struct gfs2_dinode *)dibh->b_data;
2364			gfs2_trans_add_meta(ip->i_gl, dibh);
2365			di->di_goal_meta = di->di_goal_data =
2366				cpu_to_be64(ip->i_goal);
2367			brelse(dibh);
2368		}
2369	}
2370	if (rbm.rgd->rd_free < *nblocks) {
2371		pr_warn("nblocks=%u\n", *nblocks);
2372		goto rgrp_error;
2373	}
2374
2375	rbm.rgd->rd_free -= *nblocks;
2376	if (dinode) {
2377		rbm.rgd->rd_dinodes++;
2378		*generation = rbm.rgd->rd_igeneration++;
2379		if (*generation == 0)
2380			*generation = rbm.rgd->rd_igeneration++;
2381	}
2382
2383	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2384	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2385	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2386
2387	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2388	if (dinode)
2389		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2390
2391	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
 
 
 
 
 
 
2392
2393	rbm.rgd->rd_free_clone -= *nblocks;
2394	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2395			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2396	*bn = block;
2397	return 0;
2398
2399rgrp_error:
2400	gfs2_rgrp_error(rbm.rgd);
2401	return -EIO;
2402}
2403
2404/**
2405 * __gfs2_free_blocks - free a contiguous run of block(s)
2406 * @ip: the inode these blocks are being freed from
2407 * @bstart: first block of a run of contiguous blocks
2408 * @blen: the length of the block run
2409 * @meta: 1 if the blocks represent metadata
2410 *
2411 */
2412
2413void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2414{
2415	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2416	struct gfs2_rgrpd *rgd;
2417
2418	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2419	if (!rgd)
2420		return;
2421	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2422	rgd->rd_free += blen;
2423	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2424	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2425	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2426	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2427
2428	/* Directories keep their data in the metadata address space */
2429	if (meta || ip->i_depth)
2430		gfs2_meta_wipe(ip, bstart, blen);
2431}
2432
2433/**
2434 * gfs2_free_meta - free a contiguous run of data block(s)
2435 * @ip: the inode these blocks are being freed from
2436 * @bstart: first block of a run of contiguous blocks
2437 * @blen: the length of the block run
2438 *
2439 */
2440
2441void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2442{
2443	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2444
2445	__gfs2_free_blocks(ip, bstart, blen, 1);
2446	gfs2_statfs_change(sdp, 0, +blen, 0);
2447	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2448}
2449
2450void gfs2_unlink_di(struct inode *inode)
2451{
2452	struct gfs2_inode *ip = GFS2_I(inode);
2453	struct gfs2_sbd *sdp = GFS2_SB(inode);
2454	struct gfs2_rgrpd *rgd;
2455	u64 blkno = ip->i_no_addr;
2456
2457	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2458	if (!rgd)
2459		return;
2460	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2461	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2462	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2463	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2464	update_rgrp_lvb_unlinked(rgd, 1);
2465}
2466
2467static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2468{
2469	struct gfs2_sbd *sdp = rgd->rd_sbd;
2470	struct gfs2_rgrpd *tmp_rgd;
2471
2472	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2473	if (!tmp_rgd)
2474		return;
2475	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2476
2477	if (!rgd->rd_dinodes)
2478		gfs2_consist_rgrpd(rgd);
2479	rgd->rd_dinodes--;
2480	rgd->rd_free++;
2481
2482	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2483	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2484	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2485	update_rgrp_lvb_unlinked(rgd, -1);
2486
2487	gfs2_statfs_change(sdp, 0, +1, -1);
2488}
2489
2490
2491void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2492{
2493	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2494	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2495	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2496	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2497}
2498
2499/**
2500 * gfs2_check_blk_type - Check the type of a block
2501 * @sdp: The superblock
2502 * @no_addr: The block number to check
2503 * @type: The block type we are looking for
2504 *
2505 * Returns: 0 if the block type matches the expected type
2506 *          -ESTALE if it doesn't match
2507 *          or -ve errno if something went wrong while checking
2508 */
2509
2510int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2511{
2512	struct gfs2_rgrpd *rgd;
2513	struct gfs2_holder rgd_gh;
2514	int error = -EINVAL;
2515
2516	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2517	if (!rgd)
2518		goto fail;
2519
2520	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2521	if (error)
2522		goto fail;
2523
2524	if (gfs2_get_block_type(rgd, no_addr) != type)
2525		error = -ESTALE;
2526
2527	gfs2_glock_dq_uninit(&rgd_gh);
2528fail:
2529	return error;
2530}
2531
2532/**
2533 * gfs2_rlist_add - add a RG to a list of RGs
2534 * @ip: the inode
2535 * @rlist: the list of resource groups
2536 * @block: the block
2537 *
2538 * Figure out what RG a block belongs to and add that RG to the list
2539 *
2540 * FIXME: Don't use NOFAIL
2541 *
2542 */
2543
2544void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2545		    u64 block)
2546{
2547	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2548	struct gfs2_rgrpd *rgd;
2549	struct gfs2_rgrpd **tmp;
2550	unsigned int new_space;
2551	unsigned int x;
2552
2553	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2554		return;
2555
2556	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2557		rgd = ip->i_rgd;
2558	else
2559		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2560	if (!rgd) {
2561		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2562		return;
2563	}
2564	ip->i_rgd = rgd;
2565
2566	for (x = 0; x < rlist->rl_rgrps; x++)
2567		if (rlist->rl_rgd[x] == rgd)
2568			return;
2569
2570	if (rlist->rl_rgrps == rlist->rl_space) {
2571		new_space = rlist->rl_space + 10;
2572
2573		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2574			      GFP_NOFS | __GFP_NOFAIL);
2575
2576		if (rlist->rl_rgd) {
2577			memcpy(tmp, rlist->rl_rgd,
2578			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2579			kfree(rlist->rl_rgd);
2580		}
2581
2582		rlist->rl_space = new_space;
2583		rlist->rl_rgd = tmp;
2584	}
2585
2586	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2587}
2588
2589/**
2590 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2591 *      and initialize an array of glock holders for them
2592 * @rlist: the list of resource groups
2593 * @state: the lock state to acquire the RG lock in
2594 *
2595 * FIXME: Don't use NOFAIL
2596 *
2597 */
2598
2599void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2600{
2601	unsigned int x;
2602
2603	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2604				GFP_NOFS | __GFP_NOFAIL);
2605	for (x = 0; x < rlist->rl_rgrps; x++)
2606		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2607				state, 0,
2608				&rlist->rl_ghs[x]);
2609}
2610
2611/**
2612 * gfs2_rlist_free - free a resource group list
2613 * @rlist: the list of resource groups
2614 *
2615 */
2616
2617void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2618{
2619	unsigned int x;
2620
2621	kfree(rlist->rl_rgd);
2622
2623	if (rlist->rl_ghs) {
2624		for (x = 0; x < rlist->rl_rgrps; x++)
2625			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2626		kfree(rlist->rl_ghs);
2627		rlist->rl_ghs = NULL;
2628	}
2629}
2630