Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * SuperH Timer Support - CMT
  3 *
  4 *  Copyright (C) 2008 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 20#include <linux/init.h>
 21#include <linux/platform_device.h>
 22#include <linux/spinlock.h>
 23#include <linux/interrupt.h>
 24#include <linux/ioport.h>
 25#include <linux/io.h>
 26#include <linux/clk.h>
 27#include <linux/irq.h>
 28#include <linux/err.h>
 29#include <linux/delay.h>
 30#include <linux/clocksource.h>
 31#include <linux/clockchips.h>
 32#include <linux/sh_timer.h>
 33#include <linux/slab.h>
 34#include <linux/module.h>
 35#include <linux/pm_domain.h>
 
 36
 37struct sh_cmt_priv {
 38	void __iomem *mapbase;
 
 39	struct clk *clk;
 40	unsigned long width; /* 16 or 32 bit version of hardware block */
 41	unsigned long overflow_bit;
 42	unsigned long clear_bits;
 43	struct irqaction irqaction;
 44	struct platform_device *pdev;
 45
 46	unsigned long flags;
 47	unsigned long match_value;
 48	unsigned long next_match_value;
 49	unsigned long max_match_value;
 50	unsigned long rate;
 51	raw_spinlock_t lock;
 52	struct clock_event_device ced;
 53	struct clocksource cs;
 54	unsigned long total_cycles;
 
 
 
 
 
 
 
 
 
 
 
 55};
 56
 57static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58
 59#define CMSTR -1 /* shared register */
 60#define CMCSR 0 /* channel register */
 61#define CMCNT 1 /* channel register */
 62#define CMCOR 2 /* channel register */
 63
 64static inline unsigned long sh_cmt_read(struct sh_cmt_priv *p, int reg_nr)
 65{
 66	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
 67	void __iomem *base = p->mapbase;
 68	unsigned long offs;
 69
 70	if (reg_nr == CMSTR) {
 71		offs = 0;
 72		base -= cfg->channel_offset;
 73	} else
 74		offs = reg_nr;
 75
 76	if (p->width == 16)
 77		offs <<= 1;
 78	else {
 79		offs <<= 2;
 80		if ((reg_nr == CMCNT) || (reg_nr == CMCOR))
 81			return ioread32(base + offs);
 82	}
 83
 84	return ioread16(base + offs);
 
 
 
 85}
 86
 87static inline void sh_cmt_write(struct sh_cmt_priv *p, int reg_nr,
 88				unsigned long value)
 89{
 90	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
 91	void __iomem *base = p->mapbase;
 92	unsigned long offs;
 93
 94	if (reg_nr == CMSTR) {
 95		offs = 0;
 96		base -= cfg->channel_offset;
 97	} else
 98		offs = reg_nr;
 99
100	if (p->width == 16)
101		offs <<= 1;
102	else {
103		offs <<= 2;
104		if ((reg_nr == CMCNT) || (reg_nr == CMCOR)) {
105			iowrite32(value, base + offs);
106			return;
107		}
108	}
109
110	iowrite16(value, base + offs);
 
 
 
111}
112
113static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
114					int *has_wrapped)
115{
116	unsigned long v1, v2, v3;
117	int o1, o2;
118
119	o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
120
121	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
122	do {
123		o2 = o1;
124		v1 = sh_cmt_read(p, CMCNT);
125		v2 = sh_cmt_read(p, CMCNT);
126		v3 = sh_cmt_read(p, CMCNT);
127		o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
128	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
129			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
130
131	*has_wrapped = o1;
132	return v2;
133}
134
 
135
136static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
137{
138	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
139	unsigned long flags, value;
140
141	/* start stop register shared by multiple timer channels */
142	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
143	value = sh_cmt_read(p, CMSTR);
144
145	if (start)
146		value |= 1 << cfg->timer_bit;
147	else
148		value &= ~(1 << cfg->timer_bit);
149
150	sh_cmt_write(p, CMSTR, value);
151	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
152}
153
154static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
155{
156	int k, ret;
157
 
 
 
158	/* enable clock */
159	ret = clk_enable(p->clk);
160	if (ret) {
161		dev_err(&p->pdev->dev, "cannot enable clock\n");
162		goto err0;
163	}
164
165	/* make sure channel is disabled */
166	sh_cmt_start_stop_ch(p, 0);
167
168	/* configure channel, periodic mode and maximum timeout */
169	if (p->width == 16) {
170		*rate = clk_get_rate(p->clk) / 512;
171		sh_cmt_write(p, CMCSR, 0x43);
172	} else {
173		*rate = clk_get_rate(p->clk) / 8;
174		sh_cmt_write(p, CMCSR, 0x01a4);
175	}
176
177	sh_cmt_write(p, CMCOR, 0xffffffff);
178	sh_cmt_write(p, CMCNT, 0);
179
180	/*
181	 * According to the sh73a0 user's manual, as CMCNT can be operated
182	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
183	 * modifying CMCNT register; two RCLK cycles are necessary before
184	 * this register is either read or any modification of the value
185	 * it holds is reflected in the LSI's actual operation.
186	 *
187	 * While at it, we're supposed to clear out the CMCNT as of this
188	 * moment, so make sure it's processed properly here.  This will
189	 * take RCLKx2 at maximum.
190	 */
191	for (k = 0; k < 100; k++) {
192		if (!sh_cmt_read(p, CMCNT))
193			break;
194		udelay(1);
195	}
196
197	if (sh_cmt_read(p, CMCNT)) {
198		dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
199		ret = -ETIMEDOUT;
200		goto err1;
201	}
202
203	/* enable channel */
204	sh_cmt_start_stop_ch(p, 1);
205	return 0;
206 err1:
207	/* stop clock */
208	clk_disable(p->clk);
209
210 err0:
211	return ret;
212}
213
214static void sh_cmt_disable(struct sh_cmt_priv *p)
215{
216	/* disable channel */
217	sh_cmt_start_stop_ch(p, 0);
218
219	/* disable interrupts in CMT block */
220	sh_cmt_write(p, CMCSR, 0);
221
222	/* stop clock */
223	clk_disable(p->clk);
 
 
 
224}
225
226/* private flags */
227#define FLAG_CLOCKEVENT (1 << 0)
228#define FLAG_CLOCKSOURCE (1 << 1)
229#define FLAG_REPROGRAM (1 << 2)
230#define FLAG_SKIPEVENT (1 << 3)
231#define FLAG_IRQCONTEXT (1 << 4)
232
233static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
234					      int absolute)
235{
236	unsigned long new_match;
237	unsigned long value = p->next_match_value;
238	unsigned long delay = 0;
239	unsigned long now = 0;
240	int has_wrapped;
241
242	now = sh_cmt_get_counter(p, &has_wrapped);
243	p->flags |= FLAG_REPROGRAM; /* force reprogram */
244
245	if (has_wrapped) {
246		/* we're competing with the interrupt handler.
247		 *  -> let the interrupt handler reprogram the timer.
248		 *  -> interrupt number two handles the event.
249		 */
250		p->flags |= FLAG_SKIPEVENT;
251		return;
252	}
253
254	if (absolute)
255		now = 0;
256
257	do {
258		/* reprogram the timer hardware,
259		 * but don't save the new match value yet.
260		 */
261		new_match = now + value + delay;
262		if (new_match > p->max_match_value)
263			new_match = p->max_match_value;
264
265		sh_cmt_write(p, CMCOR, new_match);
266
267		now = sh_cmt_get_counter(p, &has_wrapped);
268		if (has_wrapped && (new_match > p->match_value)) {
269			/* we are changing to a greater match value,
270			 * so this wrap must be caused by the counter
271			 * matching the old value.
272			 * -> first interrupt reprograms the timer.
273			 * -> interrupt number two handles the event.
274			 */
275			p->flags |= FLAG_SKIPEVENT;
276			break;
277		}
278
279		if (has_wrapped) {
280			/* we are changing to a smaller match value,
281			 * so the wrap must be caused by the counter
282			 * matching the new value.
283			 * -> save programmed match value.
284			 * -> let isr handle the event.
285			 */
286			p->match_value = new_match;
287			break;
288		}
289
290		/* be safe: verify hardware settings */
291		if (now < new_match) {
292			/* timer value is below match value, all good.
293			 * this makes sure we won't miss any match events.
294			 * -> save programmed match value.
295			 * -> let isr handle the event.
296			 */
297			p->match_value = new_match;
298			break;
299		}
300
301		/* the counter has reached a value greater
302		 * than our new match value. and since the
303		 * has_wrapped flag isn't set we must have
304		 * programmed a too close event.
305		 * -> increase delay and retry.
306		 */
307		if (delay)
308			delay <<= 1;
309		else
310			delay = 1;
311
312		if (!delay)
313			dev_warn(&p->pdev->dev, "too long delay\n");
314
315	} while (delay);
316}
317
318static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
319{
320	if (delta > p->max_match_value)
321		dev_warn(&p->pdev->dev, "delta out of range\n");
322
323	p->next_match_value = delta;
324	sh_cmt_clock_event_program_verify(p, 0);
325}
326
327static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
328{
329	unsigned long flags;
330
331	raw_spin_lock_irqsave(&p->lock, flags);
332	__sh_cmt_set_next(p, delta);
333	raw_spin_unlock_irqrestore(&p->lock, flags);
334}
335
336static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
337{
338	struct sh_cmt_priv *p = dev_id;
339
340	/* clear flags */
341	sh_cmt_write(p, CMCSR, sh_cmt_read(p, CMCSR) & p->clear_bits);
342
343	/* update clock source counter to begin with if enabled
344	 * the wrap flag should be cleared by the timer specific
345	 * isr before we end up here.
346	 */
347	if (p->flags & FLAG_CLOCKSOURCE)
348		p->total_cycles += p->match_value + 1;
349
350	if (!(p->flags & FLAG_REPROGRAM))
351		p->next_match_value = p->max_match_value;
352
353	p->flags |= FLAG_IRQCONTEXT;
354
355	if (p->flags & FLAG_CLOCKEVENT) {
356		if (!(p->flags & FLAG_SKIPEVENT)) {
357			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
358				p->next_match_value = p->max_match_value;
359				p->flags |= FLAG_REPROGRAM;
360			}
361
362			p->ced.event_handler(&p->ced);
363		}
364	}
365
366	p->flags &= ~FLAG_SKIPEVENT;
367
368	if (p->flags & FLAG_REPROGRAM) {
369		p->flags &= ~FLAG_REPROGRAM;
370		sh_cmt_clock_event_program_verify(p, 1);
371
372		if (p->flags & FLAG_CLOCKEVENT)
373			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
374			    || (p->match_value == p->next_match_value))
375				p->flags &= ~FLAG_REPROGRAM;
376	}
377
378	p->flags &= ~FLAG_IRQCONTEXT;
379
380	return IRQ_HANDLED;
381}
382
383static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
384{
385	int ret = 0;
386	unsigned long flags;
387
388	raw_spin_lock_irqsave(&p->lock, flags);
389
390	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
391		ret = sh_cmt_enable(p, &p->rate);
392
393	if (ret)
394		goto out;
395	p->flags |= flag;
396
397	/* setup timeout if no clockevent */
398	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
399		__sh_cmt_set_next(p, p->max_match_value);
400 out:
401	raw_spin_unlock_irqrestore(&p->lock, flags);
402
403	return ret;
404}
405
406static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
407{
408	unsigned long flags;
409	unsigned long f;
410
411	raw_spin_lock_irqsave(&p->lock, flags);
412
413	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
414	p->flags &= ~flag;
415
416	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
417		sh_cmt_disable(p);
418
419	/* adjust the timeout to maximum if only clocksource left */
420	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
421		__sh_cmt_set_next(p, p->max_match_value);
422
423	raw_spin_unlock_irqrestore(&p->lock, flags);
424}
425
426static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
427{
428	return container_of(cs, struct sh_cmt_priv, cs);
429}
430
431static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
432{
433	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
434	unsigned long flags, raw;
435	unsigned long value;
436	int has_wrapped;
437
438	raw_spin_lock_irqsave(&p->lock, flags);
439	value = p->total_cycles;
440	raw = sh_cmt_get_counter(p, &has_wrapped);
441
442	if (unlikely(has_wrapped))
443		raw += p->match_value + 1;
444	raw_spin_unlock_irqrestore(&p->lock, flags);
445
446	return value + raw;
447}
448
449static int sh_cmt_clocksource_enable(struct clocksource *cs)
450{
451	int ret;
452	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
453
 
 
454	p->total_cycles = 0;
455
456	ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
457	if (!ret)
458		__clocksource_updatefreq_hz(cs, p->rate);
 
 
459	return ret;
460}
461
462static void sh_cmt_clocksource_disable(struct clocksource *cs)
463{
464	sh_cmt_stop(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
 
 
 
 
 
 
 
 
 
 
 
 
 
465}
466
467static void sh_cmt_clocksource_resume(struct clocksource *cs)
468{
469	sh_cmt_start(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
 
 
 
470}
471
472static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
473				       char *name, unsigned long rating)
474{
475	struct clocksource *cs = &p->cs;
476
477	cs->name = name;
478	cs->rating = rating;
479	cs->read = sh_cmt_clocksource_read;
480	cs->enable = sh_cmt_clocksource_enable;
481	cs->disable = sh_cmt_clocksource_disable;
482	cs->suspend = sh_cmt_clocksource_disable;
483	cs->resume = sh_cmt_clocksource_resume;
484	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
485	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
486
487	dev_info(&p->pdev->dev, "used as clock source\n");
488
489	/* Register with dummy 1 Hz value, gets updated in ->enable() */
490	clocksource_register_hz(cs, 1);
491	return 0;
492}
493
494static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
495{
496	return container_of(ced, struct sh_cmt_priv, ced);
497}
498
499static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
500{
501	struct clock_event_device *ced = &p->ced;
502
503	sh_cmt_start(p, FLAG_CLOCKEVENT);
504
505	/* TODO: calculate good shift from rate and counter bit width */
506
507	ced->shift = 32;
508	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
509	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
510	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
511
512	if (periodic)
513		sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
514	else
515		sh_cmt_set_next(p, p->max_match_value);
516}
517
518static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
519				    struct clock_event_device *ced)
520{
521	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
522
523	/* deal with old setting first */
524	switch (ced->mode) {
525	case CLOCK_EVT_MODE_PERIODIC:
526	case CLOCK_EVT_MODE_ONESHOT:
527		sh_cmt_stop(p, FLAG_CLOCKEVENT);
528		break;
529	default:
530		break;
531	}
532
533	switch (mode) {
534	case CLOCK_EVT_MODE_PERIODIC:
535		dev_info(&p->pdev->dev, "used for periodic clock events\n");
536		sh_cmt_clock_event_start(p, 1);
537		break;
538	case CLOCK_EVT_MODE_ONESHOT:
539		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
540		sh_cmt_clock_event_start(p, 0);
541		break;
542	case CLOCK_EVT_MODE_SHUTDOWN:
543	case CLOCK_EVT_MODE_UNUSED:
544		sh_cmt_stop(p, FLAG_CLOCKEVENT);
545		break;
546	default:
547		break;
548	}
549}
550
551static int sh_cmt_clock_event_next(unsigned long delta,
552				   struct clock_event_device *ced)
553{
554	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
555
556	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
557	if (likely(p->flags & FLAG_IRQCONTEXT))
558		p->next_match_value = delta - 1;
559	else
560		sh_cmt_set_next(p, delta - 1);
561
562	return 0;
563}
564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
566				       char *name, unsigned long rating)
567{
568	struct clock_event_device *ced = &p->ced;
569
570	memset(ced, 0, sizeof(*ced));
571
572	ced->name = name;
573	ced->features = CLOCK_EVT_FEAT_PERIODIC;
574	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
575	ced->rating = rating;
576	ced->cpumask = cpumask_of(0);
577	ced->set_next_event = sh_cmt_clock_event_next;
578	ced->set_mode = sh_cmt_clock_event_mode;
 
 
579
580	dev_info(&p->pdev->dev, "used for clock events\n");
581	clockevents_register_device(ced);
582}
583
584static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
585			   unsigned long clockevent_rating,
586			   unsigned long clocksource_rating)
587{
588	if (p->width == (sizeof(p->max_match_value) * 8))
589		p->max_match_value = ~0;
590	else
591		p->max_match_value = (1 << p->width) - 1;
592
593	p->match_value = p->max_match_value;
594	raw_spin_lock_init(&p->lock);
595
596	if (clockevent_rating)
597		sh_cmt_register_clockevent(p, name, clockevent_rating);
598
599	if (clocksource_rating)
600		sh_cmt_register_clocksource(p, name, clocksource_rating);
601
602	return 0;
603}
604
605static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
606{
607	struct sh_timer_config *cfg = pdev->dev.platform_data;
608	struct resource *res;
609	int irq, ret;
610	ret = -ENXIO;
611
612	memset(p, 0, sizeof(*p));
613	p->pdev = pdev;
614
615	if (!cfg) {
616		dev_err(&p->pdev->dev, "missing platform data\n");
617		goto err0;
618	}
619
620	platform_set_drvdata(pdev, p);
621
622	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
623	if (!res) {
624		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
625		goto err0;
626	}
627
 
 
 
628	irq = platform_get_irq(p->pdev, 0);
629	if (irq < 0) {
630		dev_err(&p->pdev->dev, "failed to get irq\n");
631		goto err0;
632	}
633
634	/* map memory, let mapbase point to our channel */
635	p->mapbase = ioremap_nocache(res->start, resource_size(res));
636	if (p->mapbase == NULL) {
637		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
638		goto err0;
639	}
640
 
 
 
 
 
 
 
 
 
641	/* request irq using setup_irq() (too early for request_irq()) */
642	p->irqaction.name = dev_name(&p->pdev->dev);
643	p->irqaction.handler = sh_cmt_interrupt;
644	p->irqaction.dev_id = p;
645	p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
646			     IRQF_IRQPOLL  | IRQF_NOBALANCING;
647
648	/* get hold of clock */
649	p->clk = clk_get(&p->pdev->dev, "cmt_fck");
650	if (IS_ERR(p->clk)) {
651		dev_err(&p->pdev->dev, "cannot get clock\n");
652		ret = PTR_ERR(p->clk);
653		goto err1;
 
 
 
 
 
 
 
 
 
 
 
 
 
654	}
655
656	if (resource_size(res) == 6) {
657		p->width = 16;
 
 
658		p->overflow_bit = 0x80;
659		p->clear_bits = ~0x80;
660	} else {
661		p->width = 32;
 
 
662		p->overflow_bit = 0x8000;
663		p->clear_bits = ~0xc000;
664	}
665
 
 
 
 
 
 
 
 
666	ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
667			      cfg->clockevent_rating,
668			      cfg->clocksource_rating);
669	if (ret) {
670		dev_err(&p->pdev->dev, "registration failed\n");
671		goto err1;
672	}
 
673
674	ret = setup_irq(irq, &p->irqaction);
675	if (ret) {
676		dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
677		goto err1;
678	}
679
680	return 0;
681
 
 
 
 
 
 
 
682err1:
683	iounmap(p->mapbase);
684err0:
685	return ret;
686}
687
688static int __devinit sh_cmt_probe(struct platform_device *pdev)
689{
690	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
 
691	int ret;
692
693	if (!is_early_platform_device(pdev))
694		pm_genpd_dev_always_on(&pdev->dev, true);
 
 
695
696	if (p) {
697		dev_info(&pdev->dev, "kept as earlytimer\n");
698		return 0;
699	}
700
701	p = kmalloc(sizeof(*p), GFP_KERNEL);
702	if (p == NULL) {
703		dev_err(&pdev->dev, "failed to allocate driver data\n");
704		return -ENOMEM;
705	}
706
707	ret = sh_cmt_setup(p, pdev);
708	if (ret) {
709		kfree(p);
710		platform_set_drvdata(pdev, NULL);
 
711	}
712	return ret;
 
 
 
 
 
 
 
 
 
713}
714
715static int __devexit sh_cmt_remove(struct platform_device *pdev)
716{
717	return -EBUSY; /* cannot unregister clockevent and clocksource */
718}
719
720static struct platform_driver sh_cmt_device_driver = {
721	.probe		= sh_cmt_probe,
722	.remove		= __devexit_p(sh_cmt_remove),
723	.driver		= {
724		.name	= "sh_cmt",
725	}
726};
727
728static int __init sh_cmt_init(void)
729{
730	return platform_driver_register(&sh_cmt_device_driver);
731}
732
733static void __exit sh_cmt_exit(void)
734{
735	platform_driver_unregister(&sh_cmt_device_driver);
736}
737
738early_platform_init("earlytimer", &sh_cmt_device_driver);
739module_init(sh_cmt_init);
740module_exit(sh_cmt_exit);
741
742MODULE_AUTHOR("Magnus Damm");
743MODULE_DESCRIPTION("SuperH CMT Timer Driver");
744MODULE_LICENSE("GPL v2");
v3.15
  1/*
  2 * SuperH Timer Support - CMT
  3 *
  4 *  Copyright (C) 2008 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 20#include <linux/init.h>
 21#include <linux/platform_device.h>
 22#include <linux/spinlock.h>
 23#include <linux/interrupt.h>
 24#include <linux/ioport.h>
 25#include <linux/io.h>
 26#include <linux/clk.h>
 27#include <linux/irq.h>
 28#include <linux/err.h>
 29#include <linux/delay.h>
 30#include <linux/clocksource.h>
 31#include <linux/clockchips.h>
 32#include <linux/sh_timer.h>
 33#include <linux/slab.h>
 34#include <linux/module.h>
 35#include <linux/pm_domain.h>
 36#include <linux/pm_runtime.h>
 37
 38struct sh_cmt_priv {
 39	void __iomem *mapbase;
 40	void __iomem *mapbase_str;
 41	struct clk *clk;
 42	unsigned long width; /* 16 or 32 bit version of hardware block */
 43	unsigned long overflow_bit;
 44	unsigned long clear_bits;
 45	struct irqaction irqaction;
 46	struct platform_device *pdev;
 47
 48	unsigned long flags;
 49	unsigned long match_value;
 50	unsigned long next_match_value;
 51	unsigned long max_match_value;
 52	unsigned long rate;
 53	raw_spinlock_t lock;
 54	struct clock_event_device ced;
 55	struct clocksource cs;
 56	unsigned long total_cycles;
 57	bool cs_enabled;
 58
 59	/* callbacks for CMSTR and CMCSR access */
 60	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
 61	void (*write_control)(void __iomem *base, unsigned long offs,
 62			      unsigned long value);
 63
 64	/* callbacks for CMCNT and CMCOR access */
 65	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
 66	void (*write_count)(void __iomem *base, unsigned long offs,
 67			    unsigned long value);
 68};
 69
 70/* Examples of supported CMT timer register layouts and I/O access widths:
 71 *
 72 * "16-bit counter and 16-bit control" as found on sh7263:
 73 * CMSTR 0xfffec000 16-bit
 74 * CMCSR 0xfffec002 16-bit
 75 * CMCNT 0xfffec004 16-bit
 76 * CMCOR 0xfffec006 16-bit
 77 *
 78 * "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
 79 * CMSTR 0xffca0000 16-bit
 80 * CMCSR 0xffca0060 16-bit
 81 * CMCNT 0xffca0064 32-bit
 82 * CMCOR 0xffca0068 32-bit
 83 *
 84 * "32-bit counter and 32-bit control" as found on r8a73a4 and r8a7790:
 85 * CMSTR 0xffca0500 32-bit
 86 * CMCSR 0xffca0510 32-bit
 87 * CMCNT 0xffca0514 32-bit
 88 * CMCOR 0xffca0518 32-bit
 89 */
 90
 91static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 92{
 93	return ioread16(base + (offs << 1));
 94}
 95
 96static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 97{
 98	return ioread32(base + (offs << 2));
 99}
100
101static void sh_cmt_write16(void __iomem *base, unsigned long offs,
102			   unsigned long value)
103{
104	iowrite16(value, base + (offs << 1));
105}
106
107static void sh_cmt_write32(void __iomem *base, unsigned long offs,
108			   unsigned long value)
109{
110	iowrite32(value, base + (offs << 2));
111}
112
 
113#define CMCSR 0 /* channel register */
114#define CMCNT 1 /* channel register */
115#define CMCOR 2 /* channel register */
116
117static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
118{
119	return p->read_control(p->mapbase_str, 0);
120}
 
121
122static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
123{
124	return p->read_control(p->mapbase, CMCSR);
125}
 
126
127static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
128{
129	return p->read_count(p->mapbase, CMCNT);
130}
 
 
 
131
132static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
133				      unsigned long value)
134{
135	p->write_control(p->mapbase_str, 0, value);
136}
137
138static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
139				      unsigned long value)
140{
141	p->write_control(p->mapbase, CMCSR, value);
142}
 
143
144static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
145				      unsigned long value)
146{
147	p->write_count(p->mapbase, CMCNT, value);
148}
 
 
 
 
 
 
 
 
 
 
149
150static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
151				      unsigned long value)
152{
153	p->write_count(p->mapbase, CMCOR, value);
154}
155
156static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
157					int *has_wrapped)
158{
159	unsigned long v1, v2, v3;
160	int o1, o2;
161
162	o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
163
164	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
165	do {
166		o2 = o1;
167		v1 = sh_cmt_read_cmcnt(p);
168		v2 = sh_cmt_read_cmcnt(p);
169		v3 = sh_cmt_read_cmcnt(p);
170		o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
171	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
172			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
173
174	*has_wrapped = o1;
175	return v2;
176}
177
178static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
179
180static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
181{
182	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
183	unsigned long flags, value;
184
185	/* start stop register shared by multiple timer channels */
186	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
187	value = sh_cmt_read_cmstr(p);
188
189	if (start)
190		value |= 1 << cfg->timer_bit;
191	else
192		value &= ~(1 << cfg->timer_bit);
193
194	sh_cmt_write_cmstr(p, value);
195	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
196}
197
198static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
199{
200	int k, ret;
201
202	pm_runtime_get_sync(&p->pdev->dev);
203	dev_pm_syscore_device(&p->pdev->dev, true);
204
205	/* enable clock */
206	ret = clk_enable(p->clk);
207	if (ret) {
208		dev_err(&p->pdev->dev, "cannot enable clock\n");
209		goto err0;
210	}
211
212	/* make sure channel is disabled */
213	sh_cmt_start_stop_ch(p, 0);
214
215	/* configure channel, periodic mode and maximum timeout */
216	if (p->width == 16) {
217		*rate = clk_get_rate(p->clk) / 512;
218		sh_cmt_write_cmcsr(p, 0x43);
219	} else {
220		*rate = clk_get_rate(p->clk) / 8;
221		sh_cmt_write_cmcsr(p, 0x01a4);
222	}
223
224	sh_cmt_write_cmcor(p, 0xffffffff);
225	sh_cmt_write_cmcnt(p, 0);
226
227	/*
228	 * According to the sh73a0 user's manual, as CMCNT can be operated
229	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
230	 * modifying CMCNT register; two RCLK cycles are necessary before
231	 * this register is either read or any modification of the value
232	 * it holds is reflected in the LSI's actual operation.
233	 *
234	 * While at it, we're supposed to clear out the CMCNT as of this
235	 * moment, so make sure it's processed properly here.  This will
236	 * take RCLKx2 at maximum.
237	 */
238	for (k = 0; k < 100; k++) {
239		if (!sh_cmt_read_cmcnt(p))
240			break;
241		udelay(1);
242	}
243
244	if (sh_cmt_read_cmcnt(p)) {
245		dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
246		ret = -ETIMEDOUT;
247		goto err1;
248	}
249
250	/* enable channel */
251	sh_cmt_start_stop_ch(p, 1);
252	return 0;
253 err1:
254	/* stop clock */
255	clk_disable(p->clk);
256
257 err0:
258	return ret;
259}
260
261static void sh_cmt_disable(struct sh_cmt_priv *p)
262{
263	/* disable channel */
264	sh_cmt_start_stop_ch(p, 0);
265
266	/* disable interrupts in CMT block */
267	sh_cmt_write_cmcsr(p, 0);
268
269	/* stop clock */
270	clk_disable(p->clk);
271
272	dev_pm_syscore_device(&p->pdev->dev, false);
273	pm_runtime_put(&p->pdev->dev);
274}
275
276/* private flags */
277#define FLAG_CLOCKEVENT (1 << 0)
278#define FLAG_CLOCKSOURCE (1 << 1)
279#define FLAG_REPROGRAM (1 << 2)
280#define FLAG_SKIPEVENT (1 << 3)
281#define FLAG_IRQCONTEXT (1 << 4)
282
283static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
284					      int absolute)
285{
286	unsigned long new_match;
287	unsigned long value = p->next_match_value;
288	unsigned long delay = 0;
289	unsigned long now = 0;
290	int has_wrapped;
291
292	now = sh_cmt_get_counter(p, &has_wrapped);
293	p->flags |= FLAG_REPROGRAM; /* force reprogram */
294
295	if (has_wrapped) {
296		/* we're competing with the interrupt handler.
297		 *  -> let the interrupt handler reprogram the timer.
298		 *  -> interrupt number two handles the event.
299		 */
300		p->flags |= FLAG_SKIPEVENT;
301		return;
302	}
303
304	if (absolute)
305		now = 0;
306
307	do {
308		/* reprogram the timer hardware,
309		 * but don't save the new match value yet.
310		 */
311		new_match = now + value + delay;
312		if (new_match > p->max_match_value)
313			new_match = p->max_match_value;
314
315		sh_cmt_write_cmcor(p, new_match);
316
317		now = sh_cmt_get_counter(p, &has_wrapped);
318		if (has_wrapped && (new_match > p->match_value)) {
319			/* we are changing to a greater match value,
320			 * so this wrap must be caused by the counter
321			 * matching the old value.
322			 * -> first interrupt reprograms the timer.
323			 * -> interrupt number two handles the event.
324			 */
325			p->flags |= FLAG_SKIPEVENT;
326			break;
327		}
328
329		if (has_wrapped) {
330			/* we are changing to a smaller match value,
331			 * so the wrap must be caused by the counter
332			 * matching the new value.
333			 * -> save programmed match value.
334			 * -> let isr handle the event.
335			 */
336			p->match_value = new_match;
337			break;
338		}
339
340		/* be safe: verify hardware settings */
341		if (now < new_match) {
342			/* timer value is below match value, all good.
343			 * this makes sure we won't miss any match events.
344			 * -> save programmed match value.
345			 * -> let isr handle the event.
346			 */
347			p->match_value = new_match;
348			break;
349		}
350
351		/* the counter has reached a value greater
352		 * than our new match value. and since the
353		 * has_wrapped flag isn't set we must have
354		 * programmed a too close event.
355		 * -> increase delay and retry.
356		 */
357		if (delay)
358			delay <<= 1;
359		else
360			delay = 1;
361
362		if (!delay)
363			dev_warn(&p->pdev->dev, "too long delay\n");
364
365	} while (delay);
366}
367
368static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
369{
370	if (delta > p->max_match_value)
371		dev_warn(&p->pdev->dev, "delta out of range\n");
372
373	p->next_match_value = delta;
374	sh_cmt_clock_event_program_verify(p, 0);
375}
376
377static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
378{
379	unsigned long flags;
380
381	raw_spin_lock_irqsave(&p->lock, flags);
382	__sh_cmt_set_next(p, delta);
383	raw_spin_unlock_irqrestore(&p->lock, flags);
384}
385
386static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
387{
388	struct sh_cmt_priv *p = dev_id;
389
390	/* clear flags */
391	sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
392
393	/* update clock source counter to begin with if enabled
394	 * the wrap flag should be cleared by the timer specific
395	 * isr before we end up here.
396	 */
397	if (p->flags & FLAG_CLOCKSOURCE)
398		p->total_cycles += p->match_value + 1;
399
400	if (!(p->flags & FLAG_REPROGRAM))
401		p->next_match_value = p->max_match_value;
402
403	p->flags |= FLAG_IRQCONTEXT;
404
405	if (p->flags & FLAG_CLOCKEVENT) {
406		if (!(p->flags & FLAG_SKIPEVENT)) {
407			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
408				p->next_match_value = p->max_match_value;
409				p->flags |= FLAG_REPROGRAM;
410			}
411
412			p->ced.event_handler(&p->ced);
413		}
414	}
415
416	p->flags &= ~FLAG_SKIPEVENT;
417
418	if (p->flags & FLAG_REPROGRAM) {
419		p->flags &= ~FLAG_REPROGRAM;
420		sh_cmt_clock_event_program_verify(p, 1);
421
422		if (p->flags & FLAG_CLOCKEVENT)
423			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
424			    || (p->match_value == p->next_match_value))
425				p->flags &= ~FLAG_REPROGRAM;
426	}
427
428	p->flags &= ~FLAG_IRQCONTEXT;
429
430	return IRQ_HANDLED;
431}
432
433static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
434{
435	int ret = 0;
436	unsigned long flags;
437
438	raw_spin_lock_irqsave(&p->lock, flags);
439
440	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
441		ret = sh_cmt_enable(p, &p->rate);
442
443	if (ret)
444		goto out;
445	p->flags |= flag;
446
447	/* setup timeout if no clockevent */
448	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
449		__sh_cmt_set_next(p, p->max_match_value);
450 out:
451	raw_spin_unlock_irqrestore(&p->lock, flags);
452
453	return ret;
454}
455
456static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
457{
458	unsigned long flags;
459	unsigned long f;
460
461	raw_spin_lock_irqsave(&p->lock, flags);
462
463	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
464	p->flags &= ~flag;
465
466	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
467		sh_cmt_disable(p);
468
469	/* adjust the timeout to maximum if only clocksource left */
470	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
471		__sh_cmt_set_next(p, p->max_match_value);
472
473	raw_spin_unlock_irqrestore(&p->lock, flags);
474}
475
476static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
477{
478	return container_of(cs, struct sh_cmt_priv, cs);
479}
480
481static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
482{
483	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
484	unsigned long flags, raw;
485	unsigned long value;
486	int has_wrapped;
487
488	raw_spin_lock_irqsave(&p->lock, flags);
489	value = p->total_cycles;
490	raw = sh_cmt_get_counter(p, &has_wrapped);
491
492	if (unlikely(has_wrapped))
493		raw += p->match_value + 1;
494	raw_spin_unlock_irqrestore(&p->lock, flags);
495
496	return value + raw;
497}
498
499static int sh_cmt_clocksource_enable(struct clocksource *cs)
500{
501	int ret;
502	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
503
504	WARN_ON(p->cs_enabled);
505
506	p->total_cycles = 0;
507
508	ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
509	if (!ret) {
510		__clocksource_updatefreq_hz(cs, p->rate);
511		p->cs_enabled = true;
512	}
513	return ret;
514}
515
516static void sh_cmt_clocksource_disable(struct clocksource *cs)
517{
518	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
519
520	WARN_ON(!p->cs_enabled);
521
522	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
523	p->cs_enabled = false;
524}
525
526static void sh_cmt_clocksource_suspend(struct clocksource *cs)
527{
528	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
529
530	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
531	pm_genpd_syscore_poweroff(&p->pdev->dev);
532}
533
534static void sh_cmt_clocksource_resume(struct clocksource *cs)
535{
536	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
537
538	pm_genpd_syscore_poweron(&p->pdev->dev);
539	sh_cmt_start(p, FLAG_CLOCKSOURCE);
540}
541
542static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
543				       char *name, unsigned long rating)
544{
545	struct clocksource *cs = &p->cs;
546
547	cs->name = name;
548	cs->rating = rating;
549	cs->read = sh_cmt_clocksource_read;
550	cs->enable = sh_cmt_clocksource_enable;
551	cs->disable = sh_cmt_clocksource_disable;
552	cs->suspend = sh_cmt_clocksource_suspend;
553	cs->resume = sh_cmt_clocksource_resume;
554	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
555	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
556
557	dev_info(&p->pdev->dev, "used as clock source\n");
558
559	/* Register with dummy 1 Hz value, gets updated in ->enable() */
560	clocksource_register_hz(cs, 1);
561	return 0;
562}
563
564static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
565{
566	return container_of(ced, struct sh_cmt_priv, ced);
567}
568
569static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
570{
571	struct clock_event_device *ced = &p->ced;
572
573	sh_cmt_start(p, FLAG_CLOCKEVENT);
574
575	/* TODO: calculate good shift from rate and counter bit width */
576
577	ced->shift = 32;
578	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
579	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
580	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
581
582	if (periodic)
583		sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
584	else
585		sh_cmt_set_next(p, p->max_match_value);
586}
587
588static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
589				    struct clock_event_device *ced)
590{
591	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
592
593	/* deal with old setting first */
594	switch (ced->mode) {
595	case CLOCK_EVT_MODE_PERIODIC:
596	case CLOCK_EVT_MODE_ONESHOT:
597		sh_cmt_stop(p, FLAG_CLOCKEVENT);
598		break;
599	default:
600		break;
601	}
602
603	switch (mode) {
604	case CLOCK_EVT_MODE_PERIODIC:
605		dev_info(&p->pdev->dev, "used for periodic clock events\n");
606		sh_cmt_clock_event_start(p, 1);
607		break;
608	case CLOCK_EVT_MODE_ONESHOT:
609		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
610		sh_cmt_clock_event_start(p, 0);
611		break;
612	case CLOCK_EVT_MODE_SHUTDOWN:
613	case CLOCK_EVT_MODE_UNUSED:
614		sh_cmt_stop(p, FLAG_CLOCKEVENT);
615		break;
616	default:
617		break;
618	}
619}
620
621static int sh_cmt_clock_event_next(unsigned long delta,
622				   struct clock_event_device *ced)
623{
624	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
625
626	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
627	if (likely(p->flags & FLAG_IRQCONTEXT))
628		p->next_match_value = delta - 1;
629	else
630		sh_cmt_set_next(p, delta - 1);
631
632	return 0;
633}
634
635static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
636{
637	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
638
639	pm_genpd_syscore_poweroff(&p->pdev->dev);
640	clk_unprepare(p->clk);
641}
642
643static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
644{
645	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
646
647	clk_prepare(p->clk);
648	pm_genpd_syscore_poweron(&p->pdev->dev);
649}
650
651static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
652				       char *name, unsigned long rating)
653{
654	struct clock_event_device *ced = &p->ced;
655
656	memset(ced, 0, sizeof(*ced));
657
658	ced->name = name;
659	ced->features = CLOCK_EVT_FEAT_PERIODIC;
660	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
661	ced->rating = rating;
662	ced->cpumask = cpumask_of(0);
663	ced->set_next_event = sh_cmt_clock_event_next;
664	ced->set_mode = sh_cmt_clock_event_mode;
665	ced->suspend = sh_cmt_clock_event_suspend;
666	ced->resume = sh_cmt_clock_event_resume;
667
668	dev_info(&p->pdev->dev, "used for clock events\n");
669	clockevents_register_device(ced);
670}
671
672static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
673			   unsigned long clockevent_rating,
674			   unsigned long clocksource_rating)
675{
 
 
 
 
 
 
 
 
676	if (clockevent_rating)
677		sh_cmt_register_clockevent(p, name, clockevent_rating);
678
679	if (clocksource_rating)
680		sh_cmt_register_clocksource(p, name, clocksource_rating);
681
682	return 0;
683}
684
685static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
686{
687	struct sh_timer_config *cfg = pdev->dev.platform_data;
688	struct resource *res, *res2;
689	int irq, ret;
690	ret = -ENXIO;
691
692	memset(p, 0, sizeof(*p));
693	p->pdev = pdev;
694
695	if (!cfg) {
696		dev_err(&p->pdev->dev, "missing platform data\n");
697		goto err0;
698	}
699
 
 
700	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
701	if (!res) {
702		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
703		goto err0;
704	}
705
706	/* optional resource for the shared timer start/stop register */
707	res2 = platform_get_resource(p->pdev, IORESOURCE_MEM, 1);
708
709	irq = platform_get_irq(p->pdev, 0);
710	if (irq < 0) {
711		dev_err(&p->pdev->dev, "failed to get irq\n");
712		goto err0;
713	}
714
715	/* map memory, let mapbase point to our channel */
716	p->mapbase = ioremap_nocache(res->start, resource_size(res));
717	if (p->mapbase == NULL) {
718		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
719		goto err0;
720	}
721
722	/* map second resource for CMSTR */
723	p->mapbase_str = ioremap_nocache(res2 ? res2->start :
724					 res->start - cfg->channel_offset,
725					 res2 ? resource_size(res2) : 2);
726	if (p->mapbase_str == NULL) {
727		dev_err(&p->pdev->dev, "failed to remap I/O second memory\n");
728		goto err1;
729	}
730
731	/* request irq using setup_irq() (too early for request_irq()) */
732	p->irqaction.name = dev_name(&p->pdev->dev);
733	p->irqaction.handler = sh_cmt_interrupt;
734	p->irqaction.dev_id = p;
735	p->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING;
 
736
737	/* get hold of clock */
738	p->clk = clk_get(&p->pdev->dev, "cmt_fck");
739	if (IS_ERR(p->clk)) {
740		dev_err(&p->pdev->dev, "cannot get clock\n");
741		ret = PTR_ERR(p->clk);
742		goto err2;
743	}
744
745	ret = clk_prepare(p->clk);
746	if (ret < 0)
747		goto err3;
748
749	if (res2 && (resource_size(res2) == 4)) {
750		/* assume both CMSTR and CMCSR to be 32-bit */
751		p->read_control = sh_cmt_read32;
752		p->write_control = sh_cmt_write32;
753	} else {
754		p->read_control = sh_cmt_read16;
755		p->write_control = sh_cmt_write16;
756	}
757
758	if (resource_size(res) == 6) {
759		p->width = 16;
760		p->read_count = sh_cmt_read16;
761		p->write_count = sh_cmt_write16;
762		p->overflow_bit = 0x80;
763		p->clear_bits = ~0x80;
764	} else {
765		p->width = 32;
766		p->read_count = sh_cmt_read32;
767		p->write_count = sh_cmt_write32;
768		p->overflow_bit = 0x8000;
769		p->clear_bits = ~0xc000;
770	}
771
772	if (p->width == (sizeof(p->max_match_value) * 8))
773		p->max_match_value = ~0;
774	else
775		p->max_match_value = (1 << p->width) - 1;
776
777	p->match_value = p->max_match_value;
778	raw_spin_lock_init(&p->lock);
779
780	ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
781			      cfg->clockevent_rating,
782			      cfg->clocksource_rating);
783	if (ret) {
784		dev_err(&p->pdev->dev, "registration failed\n");
785		goto err4;
786	}
787	p->cs_enabled = false;
788
789	ret = setup_irq(irq, &p->irqaction);
790	if (ret) {
791		dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
792		goto err4;
793	}
794
795	platform_set_drvdata(pdev, p);
796
797	return 0;
798err4:
799	clk_unprepare(p->clk);
800err3:
801	clk_put(p->clk);
802err2:
803	iounmap(p->mapbase_str);
804err1:
805	iounmap(p->mapbase);
806err0:
807	return ret;
808}
809
810static int sh_cmt_probe(struct platform_device *pdev)
811{
812	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
813	struct sh_timer_config *cfg = pdev->dev.platform_data;
814	int ret;
815
816	if (!is_early_platform_device(pdev)) {
817		pm_runtime_set_active(&pdev->dev);
818		pm_runtime_enable(&pdev->dev);
819	}
820
821	if (p) {
822		dev_info(&pdev->dev, "kept as earlytimer\n");
823		goto out;
824	}
825
826	p = kmalloc(sizeof(*p), GFP_KERNEL);
827	if (p == NULL) {
828		dev_err(&pdev->dev, "failed to allocate driver data\n");
829		return -ENOMEM;
830	}
831
832	ret = sh_cmt_setup(p, pdev);
833	if (ret) {
834		kfree(p);
835		pm_runtime_idle(&pdev->dev);
836		return ret;
837	}
838	if (is_early_platform_device(pdev))
839		return 0;
840
841 out:
842	if (cfg->clockevent_rating || cfg->clocksource_rating)
843		pm_runtime_irq_safe(&pdev->dev);
844	else
845		pm_runtime_idle(&pdev->dev);
846
847	return 0;
848}
849
850static int sh_cmt_remove(struct platform_device *pdev)
851{
852	return -EBUSY; /* cannot unregister clockevent and clocksource */
853}
854
855static struct platform_driver sh_cmt_device_driver = {
856	.probe		= sh_cmt_probe,
857	.remove		= sh_cmt_remove,
858	.driver		= {
859		.name	= "sh_cmt",
860	}
861};
862
863static int __init sh_cmt_init(void)
864{
865	return platform_driver_register(&sh_cmt_device_driver);
866}
867
868static void __exit sh_cmt_exit(void)
869{
870	platform_driver_unregister(&sh_cmt_device_driver);
871}
872
873early_platform_init("earlytimer", &sh_cmt_device_driver);
874subsys_initcall(sh_cmt_init);
875module_exit(sh_cmt_exit);
876
877MODULE_AUTHOR("Magnus Damm");
878MODULE_DESCRIPTION("SuperH CMT Timer Driver");
879MODULE_LICENSE("GPL v2");