Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * SuperH Timer Support - CMT
  3 *
  4 *  Copyright (C) 2008 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 
 
 
 
 
 20#include <linux/init.h>
 21#include <linux/platform_device.h>
 22#include <linux/spinlock.h>
 23#include <linux/interrupt.h>
 24#include <linux/ioport.h>
 25#include <linux/io.h>
 26#include <linux/clk.h>
 
 27#include <linux/irq.h>
 28#include <linux/err.h>
 29#include <linux/delay.h>
 30#include <linux/clocksource.h>
 31#include <linux/clockchips.h>
 32#include <linux/sh_timer.h>
 33#include <linux/slab.h>
 34#include <linux/module.h>
 
 
 35#include <linux/pm_domain.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37struct sh_cmt_priv {
 38	void __iomem *mapbase;
 39	struct clk *clk;
 40	unsigned long width; /* 16 or 32 bit version of hardware block */
 41	unsigned long overflow_bit;
 42	unsigned long clear_bits;
 43	struct irqaction irqaction;
 44	struct platform_device *pdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45
 
 46	unsigned long flags;
 47	unsigned long match_value;
 48	unsigned long next_match_value;
 49	unsigned long max_match_value;
 50	unsigned long rate;
 51	raw_spinlock_t lock;
 52	struct clock_event_device ced;
 53	struct clocksource cs;
 54	unsigned long total_cycles;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55};
 56
 57static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58
 59#define CMSTR -1 /* shared register */
 60#define CMCSR 0 /* channel register */
 61#define CMCNT 1 /* channel register */
 62#define CMCOR 2 /* channel register */
 63
 64static inline unsigned long sh_cmt_read(struct sh_cmt_priv *p, int reg_nr)
 
 
 65{
 66	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
 67	void __iomem *base = p->mapbase;
 68	unsigned long offs;
 69
 70	if (reg_nr == CMSTR) {
 71		offs = 0;
 72		base -= cfg->channel_offset;
 73	} else
 74		offs = reg_nr;
 75
 76	if (p->width == 16)
 77		offs <<= 1;
 78	else {
 79		offs <<= 2;
 80		if ((reg_nr == CMCNT) || (reg_nr == CMCOR))
 81			return ioread32(base + offs);
 82	}
 83
 84	return ioread16(base + offs);
 85}
 86
 87static inline void sh_cmt_write(struct sh_cmt_priv *p, int reg_nr,
 88				unsigned long value)
 89{
 90	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
 91	void __iomem *base = p->mapbase;
 92	unsigned long offs;
 93
 94	if (reg_nr == CMSTR) {
 95		offs = 0;
 96		base -= cfg->channel_offset;
 97	} else
 98		offs = reg_nr;
 99
100	if (p->width == 16)
101		offs <<= 1;
102	else {
103		offs <<= 2;
104		if ((reg_nr == CMCNT) || (reg_nr == CMCOR)) {
105			iowrite32(value, base + offs);
106			return;
107		}
108	}
 
109
110	iowrite16(value, base + offs);
 
 
111}
112
113static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
114					int *has_wrapped)
115{
116	unsigned long v1, v2, v3;
117	int o1, o2;
118
119	o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
121	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
122	do {
123		o2 = o1;
124		v1 = sh_cmt_read(p, CMCNT);
125		v2 = sh_cmt_read(p, CMCNT);
126		v3 = sh_cmt_read(p, CMCNT);
127		o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
128	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
129			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
130
131	*has_wrapped = o1;
132	return v2;
133}
134
135
136static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
137{
138	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
139	unsigned long flags, value;
140
141	/* start stop register shared by multiple timer channels */
142	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
143	value = sh_cmt_read(p, CMSTR);
144
145	if (start)
146		value |= 1 << cfg->timer_bit;
147	else
148		value &= ~(1 << cfg->timer_bit);
149
150	sh_cmt_write(p, CMSTR, value);
151	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
152}
153
154static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
155{
156	int k, ret;
 
 
157
158	/* enable clock */
159	ret = clk_enable(p->clk);
160	if (ret) {
161		dev_err(&p->pdev->dev, "cannot enable clock\n");
 
162		goto err0;
163	}
164
165	/* make sure channel is disabled */
166	sh_cmt_start_stop_ch(p, 0);
167
168	/* configure channel, periodic mode and maximum timeout */
169	if (p->width == 16) {
170		*rate = clk_get_rate(p->clk) / 512;
171		sh_cmt_write(p, CMCSR, 0x43);
172	} else {
173		*rate = clk_get_rate(p->clk) / 8;
174		sh_cmt_write(p, CMCSR, 0x01a4);
175	}
176
177	sh_cmt_write(p, CMCOR, 0xffffffff);
178	sh_cmt_write(p, CMCNT, 0);
179
180	/*
181	 * According to the sh73a0 user's manual, as CMCNT can be operated
182	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
183	 * modifying CMCNT register; two RCLK cycles are necessary before
184	 * this register is either read or any modification of the value
185	 * it holds is reflected in the LSI's actual operation.
186	 *
187	 * While at it, we're supposed to clear out the CMCNT as of this
188	 * moment, so make sure it's processed properly here.  This will
189	 * take RCLKx2 at maximum.
190	 */
191	for (k = 0; k < 100; k++) {
192		if (!sh_cmt_read(p, CMCNT))
193			break;
194		udelay(1);
195	}
196
197	if (sh_cmt_read(p, CMCNT)) {
198		dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
 
 
 
 
199		ret = -ETIMEDOUT;
200		goto err1;
201	}
202
203	/* enable channel */
204	sh_cmt_start_stop_ch(p, 1);
205	return 0;
206 err1:
207	/* stop clock */
208	clk_disable(p->clk);
209
210 err0:
211	return ret;
212}
213
214static void sh_cmt_disable(struct sh_cmt_priv *p)
215{
216	/* disable channel */
217	sh_cmt_start_stop_ch(p, 0);
218
219	/* disable interrupts in CMT block */
220	sh_cmt_write(p, CMCSR, 0);
221
222	/* stop clock */
223	clk_disable(p->clk);
 
 
224}
225
226/* private flags */
227#define FLAG_CLOCKEVENT (1 << 0)
228#define FLAG_CLOCKSOURCE (1 << 1)
229#define FLAG_REPROGRAM (1 << 2)
230#define FLAG_SKIPEVENT (1 << 3)
231#define FLAG_IRQCONTEXT (1 << 4)
232
233static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
234					      int absolute)
235{
236	unsigned long new_match;
237	unsigned long value = p->next_match_value;
238	unsigned long delay = 0;
239	unsigned long now = 0;
240	int has_wrapped;
241
242	now = sh_cmt_get_counter(p, &has_wrapped);
243	p->flags |= FLAG_REPROGRAM; /* force reprogram */
244
245	if (has_wrapped) {
246		/* we're competing with the interrupt handler.
247		 *  -> let the interrupt handler reprogram the timer.
248		 *  -> interrupt number two handles the event.
249		 */
250		p->flags |= FLAG_SKIPEVENT;
251		return;
252	}
253
254	if (absolute)
255		now = 0;
256
257	do {
258		/* reprogram the timer hardware,
259		 * but don't save the new match value yet.
260		 */
261		new_match = now + value + delay;
262		if (new_match > p->max_match_value)
263			new_match = p->max_match_value;
264
265		sh_cmt_write(p, CMCOR, new_match);
266
267		now = sh_cmt_get_counter(p, &has_wrapped);
268		if (has_wrapped && (new_match > p->match_value)) {
269			/* we are changing to a greater match value,
270			 * so this wrap must be caused by the counter
271			 * matching the old value.
272			 * -> first interrupt reprograms the timer.
273			 * -> interrupt number two handles the event.
274			 */
275			p->flags |= FLAG_SKIPEVENT;
276			break;
277		}
278
279		if (has_wrapped) {
280			/* we are changing to a smaller match value,
281			 * so the wrap must be caused by the counter
282			 * matching the new value.
283			 * -> save programmed match value.
284			 * -> let isr handle the event.
285			 */
286			p->match_value = new_match;
287			break;
288		}
289
290		/* be safe: verify hardware settings */
291		if (now < new_match) {
292			/* timer value is below match value, all good.
293			 * this makes sure we won't miss any match events.
294			 * -> save programmed match value.
295			 * -> let isr handle the event.
296			 */
297			p->match_value = new_match;
298			break;
299		}
300
301		/* the counter has reached a value greater
302		 * than our new match value. and since the
303		 * has_wrapped flag isn't set we must have
304		 * programmed a too close event.
305		 * -> increase delay and retry.
306		 */
307		if (delay)
308			delay <<= 1;
309		else
310			delay = 1;
311
312		if (!delay)
313			dev_warn(&p->pdev->dev, "too long delay\n");
 
314
315	} while (delay);
316}
317
318static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
319{
320	if (delta > p->max_match_value)
321		dev_warn(&p->pdev->dev, "delta out of range\n");
 
322
323	p->next_match_value = delta;
324	sh_cmt_clock_event_program_verify(p, 0);
325}
326
327static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
328{
329	unsigned long flags;
330
331	raw_spin_lock_irqsave(&p->lock, flags);
332	__sh_cmt_set_next(p, delta);
333	raw_spin_unlock_irqrestore(&p->lock, flags);
334}
335
336static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
337{
338	struct sh_cmt_priv *p = dev_id;
 
339
340	/* clear flags */
341	sh_cmt_write(p, CMCSR, sh_cmt_read(p, CMCSR) & p->clear_bits);
 
342
343	/* update clock source counter to begin with if enabled
344	 * the wrap flag should be cleared by the timer specific
345	 * isr before we end up here.
346	 */
347	if (p->flags & FLAG_CLOCKSOURCE)
348		p->total_cycles += p->match_value + 1;
349
350	if (!(p->flags & FLAG_REPROGRAM))
351		p->next_match_value = p->max_match_value;
352
353	p->flags |= FLAG_IRQCONTEXT;
354
355	if (p->flags & FLAG_CLOCKEVENT) {
356		if (!(p->flags & FLAG_SKIPEVENT)) {
357			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
358				p->next_match_value = p->max_match_value;
359				p->flags |= FLAG_REPROGRAM;
360			}
361
362			p->ced.event_handler(&p->ced);
363		}
364	}
365
366	p->flags &= ~FLAG_SKIPEVENT;
 
 
367
368	if (p->flags & FLAG_REPROGRAM) {
369		p->flags &= ~FLAG_REPROGRAM;
370		sh_cmt_clock_event_program_verify(p, 1);
371
372		if (p->flags & FLAG_CLOCKEVENT)
373			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
374			    || (p->match_value == p->next_match_value))
375				p->flags &= ~FLAG_REPROGRAM;
376	}
377
378	p->flags &= ~FLAG_IRQCONTEXT;
 
 
379
380	return IRQ_HANDLED;
381}
382
383static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
384{
385	int ret = 0;
386	unsigned long flags;
387
388	raw_spin_lock_irqsave(&p->lock, flags);
 
 
 
389
390	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
391		ret = sh_cmt_enable(p, &p->rate);
 
 
 
392
393	if (ret)
394		goto out;
395	p->flags |= flag;
396
397	/* setup timeout if no clockevent */
398	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
399		__sh_cmt_set_next(p, p->max_match_value);
 
400 out:
401	raw_spin_unlock_irqrestore(&p->lock, flags);
402
403	return ret;
404}
405
406static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
407{
408	unsigned long flags;
409	unsigned long f;
410
411	raw_spin_lock_irqsave(&p->lock, flags);
412
413	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
414	p->flags &= ~flag;
415
416	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
417		sh_cmt_disable(p);
 
 
 
418
419	/* adjust the timeout to maximum if only clocksource left */
420	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
421		__sh_cmt_set_next(p, p->max_match_value);
 
 
422
423	raw_spin_unlock_irqrestore(&p->lock, flags);
 
424}
425
426static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
427{
428	return container_of(cs, struct sh_cmt_priv, cs);
429}
430
431static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
432{
433	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
434	unsigned long flags, raw;
435	unsigned long value;
436	int has_wrapped;
437
438	raw_spin_lock_irqsave(&p->lock, flags);
439	value = p->total_cycles;
440	raw = sh_cmt_get_counter(p, &has_wrapped);
 
441
442	if (unlikely(has_wrapped))
443		raw += p->match_value + 1;
444	raw_spin_unlock_irqrestore(&p->lock, flags);
445
446	return value + raw;
 
 
 
 
 
 
 
447}
448
449static int sh_cmt_clocksource_enable(struct clocksource *cs)
450{
451	int ret;
452	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
 
 
453
454	p->total_cycles = 0;
455
456	ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
457	if (!ret)
458		__clocksource_updatefreq_hz(cs, p->rate);
 
459	return ret;
460}
461
462static void sh_cmt_clocksource_disable(struct clocksource *cs)
463{
464	sh_cmt_stop(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465}
466
467static void sh_cmt_clocksource_resume(struct clocksource *cs)
468{
469	sh_cmt_start(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
 
 
 
 
 
 
470}
471
472static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
473				       char *name, unsigned long rating)
474{
475	struct clocksource *cs = &p->cs;
476
477	cs->name = name;
478	cs->rating = rating;
479	cs->read = sh_cmt_clocksource_read;
480	cs->enable = sh_cmt_clocksource_enable;
481	cs->disable = sh_cmt_clocksource_disable;
482	cs->suspend = sh_cmt_clocksource_disable;
483	cs->resume = sh_cmt_clocksource_resume;
484	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
485	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
486
487	dev_info(&p->pdev->dev, "used as clock source\n");
 
488
489	/* Register with dummy 1 Hz value, gets updated in ->enable() */
490	clocksource_register_hz(cs, 1);
491	return 0;
492}
493
494static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
495{
496	return container_of(ced, struct sh_cmt_priv, ced);
497}
498
499static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
500{
501	struct clock_event_device *ced = &p->ced;
502
503	sh_cmt_start(p, FLAG_CLOCKEVENT);
504
505	/* TODO: calculate good shift from rate and counter bit width */
506
507	ced->shift = 32;
508	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
509	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
510	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
511
512	if (periodic)
513		sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
514	else
515		sh_cmt_set_next(p, p->max_match_value);
 
 
 
 
 
 
 
 
516}
517
518static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
519				    struct clock_event_device *ced)
520{
521	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
522
523	/* deal with old setting first */
524	switch (ced->mode) {
525	case CLOCK_EVT_MODE_PERIODIC:
526	case CLOCK_EVT_MODE_ONESHOT:
527		sh_cmt_stop(p, FLAG_CLOCKEVENT);
528		break;
529	default:
530		break;
531	}
532
533	switch (mode) {
534	case CLOCK_EVT_MODE_PERIODIC:
535		dev_info(&p->pdev->dev, "used for periodic clock events\n");
536		sh_cmt_clock_event_start(p, 1);
537		break;
538	case CLOCK_EVT_MODE_ONESHOT:
539		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
540		sh_cmt_clock_event_start(p, 0);
541		break;
542	case CLOCK_EVT_MODE_SHUTDOWN:
543	case CLOCK_EVT_MODE_UNUSED:
544		sh_cmt_stop(p, FLAG_CLOCKEVENT);
545		break;
546	default:
547		break;
548	}
549}
550
551static int sh_cmt_clock_event_next(unsigned long delta,
552				   struct clock_event_device *ced)
553{
554	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
 
 
 
 
 
555
556	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
557	if (likely(p->flags & FLAG_IRQCONTEXT))
558		p->next_match_value = delta - 1;
559	else
560		sh_cmt_set_next(p, delta - 1);
 
 
561
562	return 0;
563}
564
565static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
566				       char *name, unsigned long rating)
 
 
 
 
 
 
 
567{
568	struct clock_event_device *ced = &p->ced;
 
 
 
 
 
 
 
 
 
 
 
569
570	memset(ced, 0, sizeof(*ced));
 
 
 
 
 
 
 
 
 
 
 
571
572	ced->name = name;
573	ced->features = CLOCK_EVT_FEAT_PERIODIC;
574	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
575	ced->rating = rating;
576	ced->cpumask = cpumask_of(0);
577	ced->set_next_event = sh_cmt_clock_event_next;
578	ced->set_mode = sh_cmt_clock_event_mode;
 
 
 
 
579
580	dev_info(&p->pdev->dev, "used for clock events\n");
 
 
 
 
 
 
 
 
 
581	clockevents_register_device(ced);
 
 
582}
583
584static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
585			   unsigned long clockevent_rating,
586			   unsigned long clocksource_rating)
587{
588	if (p->width == (sizeof(p->max_match_value) * 8))
589		p->max_match_value = ~0;
590	else
591		p->max_match_value = (1 << p->width) - 1;
592
593	p->match_value = p->max_match_value;
594	raw_spin_lock_init(&p->lock);
595
596	if (clockevent_rating)
597		sh_cmt_register_clockevent(p, name, clockevent_rating);
 
 
 
 
598
599	if (clocksource_rating)
600		sh_cmt_register_clocksource(p, name, clocksource_rating);
 
 
601
602	return 0;
603}
604
605static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
 
 
606{
607	struct sh_timer_config *cfg = pdev->dev.platform_data;
608	struct resource *res;
609	int irq, ret;
610	ret = -ENXIO;
611
612	memset(p, 0, sizeof(*p));
613	p->pdev = pdev;
 
614
615	if (!cfg) {
616		dev_err(&p->pdev->dev, "missing platform data\n");
617		goto err0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618	}
619
620	platform_set_drvdata(pdev, p);
 
 
 
621
622	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
623	if (!res) {
624		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
625		goto err0;
626	}
627
628	irq = platform_get_irq(p->pdev, 0);
629	if (irq < 0) {
630		dev_err(&p->pdev->dev, "failed to get irq\n");
631		goto err0;
 
 
632	}
 
633
634	/* map memory, let mapbase point to our channel */
635	p->mapbase = ioremap_nocache(res->start, resource_size(res));
636	if (p->mapbase == NULL) {
637		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
638		goto err0;
 
 
 
 
 
 
639	}
640
641	/* request irq using setup_irq() (too early for request_irq()) */
642	p->irqaction.name = dev_name(&p->pdev->dev);
643	p->irqaction.handler = sh_cmt_interrupt;
644	p->irqaction.dev_id = p;
645	p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
646			     IRQF_IRQPOLL  | IRQF_NOBALANCING;
647
648	/* get hold of clock */
649	p->clk = clk_get(&p->pdev->dev, "cmt_fck");
650	if (IS_ERR(p->clk)) {
651		dev_err(&p->pdev->dev, "cannot get clock\n");
652		ret = PTR_ERR(p->clk);
653		goto err1;
654	}
655
656	if (resource_size(res) == 6) {
657		p->width = 16;
658		p->overflow_bit = 0x80;
659		p->clear_bits = ~0x80;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660	} else {
661		p->width = 32;
662		p->overflow_bit = 0x8000;
663		p->clear_bits = ~0xc000;
664	}
665
666	ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
667			      cfg->clockevent_rating,
668			      cfg->clocksource_rating);
669	if (ret) {
670		dev_err(&p->pdev->dev, "registration failed\n");
671		goto err1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672	}
673
674	ret = setup_irq(irq, &p->irqaction);
675	if (ret) {
676		dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
677		goto err1;
 
 
 
 
 
 
 
 
 
 
 
678	}
679
 
 
 
 
680	return 0;
681
682err1:
683	iounmap(p->mapbase);
684err0:
 
 
 
 
 
 
685	return ret;
686}
687
688static int __devinit sh_cmt_probe(struct platform_device *pdev)
689{
690	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
691	int ret;
692
693	if (!is_early_platform_device(pdev))
694		pm_genpd_dev_always_on(&pdev->dev, true);
 
 
695
696	if (p) {
697		dev_info(&pdev->dev, "kept as earlytimer\n");
698		return 0;
699	}
700
701	p = kmalloc(sizeof(*p), GFP_KERNEL);
702	if (p == NULL) {
703		dev_err(&pdev->dev, "failed to allocate driver data\n");
704		return -ENOMEM;
705	}
706
707	ret = sh_cmt_setup(p, pdev);
708	if (ret) {
709		kfree(p);
710		platform_set_drvdata(pdev, NULL);
 
711	}
712	return ret;
713}
714
715static int __devexit sh_cmt_remove(struct platform_device *pdev)
716{
717	return -EBUSY; /* cannot unregister clockevent and clocksource */
 
 
 
 
718}
719
720static struct platform_driver sh_cmt_device_driver = {
721	.probe		= sh_cmt_probe,
722	.remove		= __devexit_p(sh_cmt_remove),
723	.driver		= {
724		.name	= "sh_cmt",
725	}
 
 
 
726};
727
728static int __init sh_cmt_init(void)
729{
730	return platform_driver_register(&sh_cmt_device_driver);
731}
732
733static void __exit sh_cmt_exit(void)
734{
735	platform_driver_unregister(&sh_cmt_device_driver);
736}
737
738early_platform_init("earlytimer", &sh_cmt_device_driver);
739module_init(sh_cmt_init);
 
 
 
740module_exit(sh_cmt_exit);
741
742MODULE_AUTHOR("Magnus Damm");
743MODULE_DESCRIPTION("SuperH CMT Timer Driver");
744MODULE_LICENSE("GPL v2");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
 
 
  14#include <linux/interrupt.h>
 
  15#include <linux/io.h>
  16#include <linux/iopoll.h>
  17#include <linux/ioport.h>
  18#include <linux/irq.h>
 
 
 
 
 
 
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28#ifdef CONFIG_SUPERH
  29#include <asm/platform_early.h>
  30#endif
  31
  32struct sh_cmt_device;
  33
  34/*
  35 * The CMT comes in 5 different identified flavours, depending not only on the
  36 * SoC but also on the particular instance. The following table lists the main
  37 * characteristics of those flavours.
  38 *
  39 *			16B	32B	32B-F	48B	R-Car Gen2
  40 * -----------------------------------------------------------------------------
  41 * Channels		2	1/4	1	6	2/8
  42 * Control Width	16	16	16	16	32
  43 * Counter Width	16	32	32	32/48	32/48
  44 * Shared Start/Stop	Y	Y	Y	Y	N
  45 *
  46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  47 * located in the channel registers block. All other versions have a shared
  48 * start/stop register located in the global space.
  49 *
  50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  51 * infers the start/stop bit position in the control register and the channel
  52 * registers block address. Some CMT instances have a subset of channels
  53 * available, in which case the index in the documentation doesn't match the
  54 * "real" index as implemented in hardware. This is for instance the case with
  55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  56 * in the documentation but using start/stop bit 5 and having its registers
  57 * block at 0x60.
  58 *
  59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  61 */
  62
  63enum sh_cmt_model {
  64	SH_CMT_16BIT,
  65	SH_CMT_32BIT,
  66	SH_CMT_48BIT,
  67	SH_CMT0_RCAR_GEN2,
  68	SH_CMT1_RCAR_GEN2,
  69};
  70
  71struct sh_cmt_info {
  72	enum sh_cmt_model model;
  73
  74	unsigned int channels_mask;
  75
 
 
 
  76	unsigned long width; /* 16 or 32 bit version of hardware block */
  77	u32 overflow_bit;
  78	u32 clear_bits;
  79
  80	/* callbacks for CMSTR and CMCSR access */
  81	u32 (*read_control)(void __iomem *base, unsigned long offs);
  82	void (*write_control)(void __iomem *base, unsigned long offs,
  83			      u32 value);
  84
  85	/* callbacks for CMCNT and CMCOR access */
  86	u32 (*read_count)(void __iomem *base, unsigned long offs);
  87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  88};
  89
  90struct sh_cmt_channel {
  91	struct sh_cmt_device *cmt;
  92
  93	unsigned int index;	/* Index in the documentation */
  94	unsigned int hwidx;	/* Real hardware index */
  95
  96	void __iomem *iostart;
  97	void __iomem *ioctrl;
  98
  99	unsigned int timer_bit;
 100	unsigned long flags;
 101	u32 match_value;
 102	u32 next_match_value;
 103	u32 max_match_value;
 
 104	raw_spinlock_t lock;
 105	struct clock_event_device ced;
 106	struct clocksource cs;
 107	u64 total_cycles;
 108	bool cs_enabled;
 109};
 110
 111struct sh_cmt_device {
 112	struct platform_device *pdev;
 113
 114	const struct sh_cmt_info *info;
 115
 116	void __iomem *mapbase;
 117	struct clk *clk;
 118	unsigned long rate;
 119	unsigned int reg_delay;
 120
 121	raw_spinlock_t lock; /* Protect the shared start/stop register */
 122
 123	struct sh_cmt_channel *channels;
 124	unsigned int num_channels;
 125	unsigned int hw_channels;
 126
 127	bool has_clockevent;
 128	bool has_clocksource;
 129};
 130
 131#define SH_CMT16_CMCSR_CMF		(1 << 7)
 132#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 133#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 134#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 135#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 136#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 137#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 138
 139#define SH_CMT32_CMCSR_CMF		(1 << 15)
 140#define SH_CMT32_CMCSR_OVF		(1 << 14)
 141#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 142#define SH_CMT32_CMCSR_STTF		(1 << 12)
 143#define SH_CMT32_CMCSR_STPF		(1 << 11)
 144#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 145#define SH_CMT32_CMCSR_CMS		(1 << 9)
 146#define SH_CMT32_CMCSR_CMM		(1 << 8)
 147#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 148#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 149#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 150#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 151#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 152#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 153#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 154#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 157#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 158
 159static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 160{
 161	return ioread16(base + (offs << 1));
 162}
 163
 164static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 165{
 166	return ioread32(base + (offs << 2));
 167}
 168
 169static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 170{
 171	iowrite16(value, base + (offs << 1));
 172}
 173
 174static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 175{
 176	iowrite32(value, base + (offs << 2));
 177}
 178
 179static const struct sh_cmt_info sh_cmt_info[] = {
 180	[SH_CMT_16BIT] = {
 181		.model = SH_CMT_16BIT,
 182		.width = 16,
 183		.overflow_bit = SH_CMT16_CMCSR_CMF,
 184		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 185		.read_control = sh_cmt_read16,
 186		.write_control = sh_cmt_write16,
 187		.read_count = sh_cmt_read16,
 188		.write_count = sh_cmt_write16,
 189	},
 190	[SH_CMT_32BIT] = {
 191		.model = SH_CMT_32BIT,
 192		.width = 32,
 193		.overflow_bit = SH_CMT32_CMCSR_CMF,
 194		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 195		.read_control = sh_cmt_read16,
 196		.write_control = sh_cmt_write16,
 197		.read_count = sh_cmt_read32,
 198		.write_count = sh_cmt_write32,
 199	},
 200	[SH_CMT_48BIT] = {
 201		.model = SH_CMT_48BIT,
 202		.channels_mask = 0x3f,
 203		.width = 32,
 204		.overflow_bit = SH_CMT32_CMCSR_CMF,
 205		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 206		.read_control = sh_cmt_read32,
 207		.write_control = sh_cmt_write32,
 208		.read_count = sh_cmt_read32,
 209		.write_count = sh_cmt_write32,
 210	},
 211	[SH_CMT0_RCAR_GEN2] = {
 212		.model = SH_CMT0_RCAR_GEN2,
 213		.channels_mask = 0x60,
 214		.width = 32,
 215		.overflow_bit = SH_CMT32_CMCSR_CMF,
 216		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 217		.read_control = sh_cmt_read32,
 218		.write_control = sh_cmt_write32,
 219		.read_count = sh_cmt_read32,
 220		.write_count = sh_cmt_write32,
 221	},
 222	[SH_CMT1_RCAR_GEN2] = {
 223		.model = SH_CMT1_RCAR_GEN2,
 224		.channels_mask = 0xff,
 225		.width = 32,
 226		.overflow_bit = SH_CMT32_CMCSR_CMF,
 227		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 228		.read_control = sh_cmt_read32,
 229		.write_control = sh_cmt_write32,
 230		.read_count = sh_cmt_read32,
 231		.write_count = sh_cmt_write32,
 232	},
 233};
 234
 
 235#define CMCSR 0 /* channel register */
 236#define CMCNT 1 /* channel register */
 237#define CMCOR 2 /* channel register */
 238
 239#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
 240
 241static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 242{
 243	if (ch->iostart)
 244		return ch->cmt->info->read_control(ch->iostart, 0);
 245	else
 246		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 247}
 248
 249static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 250{
 251	u32 old_value = sh_cmt_read_cmstr(ch);
 252
 253	if (value != old_value) {
 254		if (ch->iostart) {
 255			ch->cmt->info->write_control(ch->iostart, 0, value);
 256			udelay(ch->cmt->reg_delay);
 257		} else {
 258			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 259			udelay(ch->cmt->reg_delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260		}
 261	}
 262}
 263
 264static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 265{
 266	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 267}
 268
 269static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 
 270{
 271	u32 old_value = sh_cmt_read_cmcsr(ch);
 
 272
 273	if (value != old_value) {
 274		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 275		udelay(ch->cmt->reg_delay);
 276	}
 277}
 278
 279static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 280{
 281	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 282}
 283
 284static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 285{
 286	/* Tests showed that we need to wait 3 clocks here */
 287	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
 288	u32 reg;
 289
 290	if (ch->cmt->info->model > SH_CMT_16BIT) {
 291		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
 292						   !(reg & SH_CMT32_CMCSR_WRFLG),
 293						   1, cmcnt_delay, false, ch);
 294		if (ret < 0)
 295			return ret;
 296	}
 297
 298	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 299	udelay(cmcnt_delay);
 300	return 0;
 301}
 302
 303static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 304{
 305	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
 306
 307	if (value != old_value) {
 308		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 309		udelay(ch->cmt->reg_delay);
 310	}
 311}
 312
 313static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 314{
 315	u32 v1, v2, v3;
 316	u32 o1, o2;
 317
 318	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 319
 320	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 321	do {
 322		o2 = o1;
 323		v1 = sh_cmt_read_cmcnt(ch);
 324		v2 = sh_cmt_read_cmcnt(ch);
 325		v3 = sh_cmt_read_cmcnt(ch);
 326		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 327	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 328			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 329
 330	*has_wrapped = o1;
 331	return v2;
 332}
 333
 334static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 
 335{
 336	unsigned long flags;
 337	u32 value;
 338
 339	/* start stop register shared by multiple timer channels */
 340	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 341	value = sh_cmt_read_cmstr(ch);
 342
 343	if (start)
 344		value |= 1 << ch->timer_bit;
 345	else
 346		value &= ~(1 << ch->timer_bit);
 347
 348	sh_cmt_write_cmstr(ch, value);
 349	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 350}
 351
 352static int sh_cmt_enable(struct sh_cmt_channel *ch)
 353{
 354	int ret;
 355
 356	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 357
 358	/* enable clock */
 359	ret = clk_enable(ch->cmt->clk);
 360	if (ret) {
 361		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 362			ch->index);
 363		goto err0;
 364	}
 365
 366	/* make sure channel is disabled */
 367	sh_cmt_start_stop_ch(ch, 0);
 368
 369	/* configure channel, periodic mode and maximum timeout */
 370	if (ch->cmt->info->width == 16) {
 371		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 372				   SH_CMT16_CMCSR_CKS512);
 373	} else {
 374		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
 375			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
 376		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
 377				   SH_CMT32_CMCSR_CMR_IRQ |
 378				   SH_CMT32_CMCSR_CKS_RCLK8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379	}
 380
 381	sh_cmt_write_cmcor(ch, 0xffffffff);
 382	ret = sh_cmt_write_cmcnt(ch, 0);
 383
 384	if (ret || sh_cmt_read_cmcnt(ch)) {
 385		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 386			ch->index);
 387		ret = -ETIMEDOUT;
 388		goto err1;
 389	}
 390
 391	/* enable channel */
 392	sh_cmt_start_stop_ch(ch, 1);
 393	return 0;
 394 err1:
 395	/* stop clock */
 396	clk_disable(ch->cmt->clk);
 397
 398 err0:
 399	return ret;
 400}
 401
 402static void sh_cmt_disable(struct sh_cmt_channel *ch)
 403{
 404	/* disable channel */
 405	sh_cmt_start_stop_ch(ch, 0);
 406
 407	/* disable interrupts in CMT block */
 408	sh_cmt_write_cmcsr(ch, 0);
 409
 410	/* stop clock */
 411	clk_disable(ch->cmt->clk);
 412
 413	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 414}
 415
 416/* private flags */
 417#define FLAG_CLOCKEVENT (1 << 0)
 418#define FLAG_CLOCKSOURCE (1 << 1)
 419#define FLAG_REPROGRAM (1 << 2)
 420#define FLAG_SKIPEVENT (1 << 3)
 421#define FLAG_IRQCONTEXT (1 << 4)
 422
 423static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 424					      int absolute)
 425{
 426	u32 value = ch->next_match_value;
 427	u32 new_match;
 428	u32 delay = 0;
 429	u32 now = 0;
 430	u32 has_wrapped;
 431
 432	now = sh_cmt_get_counter(ch, &has_wrapped);
 433	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 434
 435	if (has_wrapped) {
 436		/* we're competing with the interrupt handler.
 437		 *  -> let the interrupt handler reprogram the timer.
 438		 *  -> interrupt number two handles the event.
 439		 */
 440		ch->flags |= FLAG_SKIPEVENT;
 441		return;
 442	}
 443
 444	if (absolute)
 445		now = 0;
 446
 447	do {
 448		/* reprogram the timer hardware,
 449		 * but don't save the new match value yet.
 450		 */
 451		new_match = now + value + delay;
 452		if (new_match > ch->max_match_value)
 453			new_match = ch->max_match_value;
 454
 455		sh_cmt_write_cmcor(ch, new_match);
 456
 457		now = sh_cmt_get_counter(ch, &has_wrapped);
 458		if (has_wrapped && (new_match > ch->match_value)) {
 459			/* we are changing to a greater match value,
 460			 * so this wrap must be caused by the counter
 461			 * matching the old value.
 462			 * -> first interrupt reprograms the timer.
 463			 * -> interrupt number two handles the event.
 464			 */
 465			ch->flags |= FLAG_SKIPEVENT;
 466			break;
 467		}
 468
 469		if (has_wrapped) {
 470			/* we are changing to a smaller match value,
 471			 * so the wrap must be caused by the counter
 472			 * matching the new value.
 473			 * -> save programmed match value.
 474			 * -> let isr handle the event.
 475			 */
 476			ch->match_value = new_match;
 477			break;
 478		}
 479
 480		/* be safe: verify hardware settings */
 481		if (now < new_match) {
 482			/* timer value is below match value, all good.
 483			 * this makes sure we won't miss any match events.
 484			 * -> save programmed match value.
 485			 * -> let isr handle the event.
 486			 */
 487			ch->match_value = new_match;
 488			break;
 489		}
 490
 491		/* the counter has reached a value greater
 492		 * than our new match value. and since the
 493		 * has_wrapped flag isn't set we must have
 494		 * programmed a too close event.
 495		 * -> increase delay and retry.
 496		 */
 497		if (delay)
 498			delay <<= 1;
 499		else
 500			delay = 1;
 501
 502		if (!delay)
 503			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 504				 ch->index);
 505
 506	} while (delay);
 507}
 508
 509static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 510{
 511	if (delta > ch->max_match_value)
 512		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 513			 ch->index);
 514
 515	ch->next_match_value = delta;
 516	sh_cmt_clock_event_program_verify(ch, 0);
 517}
 518
 519static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 520{
 521	unsigned long flags;
 522
 523	raw_spin_lock_irqsave(&ch->lock, flags);
 524	__sh_cmt_set_next(ch, delta);
 525	raw_spin_unlock_irqrestore(&ch->lock, flags);
 526}
 527
 528static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 529{
 530	struct sh_cmt_channel *ch = dev_id;
 531	unsigned long flags;
 532
 533	/* clear flags */
 534	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 535			   ch->cmt->info->clear_bits);
 536
 537	/* update clock source counter to begin with if enabled
 538	 * the wrap flag should be cleared by the timer specific
 539	 * isr before we end up here.
 540	 */
 541	if (ch->flags & FLAG_CLOCKSOURCE)
 542		ch->total_cycles += ch->match_value + 1;
 543
 544	if (!(ch->flags & FLAG_REPROGRAM))
 545		ch->next_match_value = ch->max_match_value;
 546
 547	ch->flags |= FLAG_IRQCONTEXT;
 548
 549	if (ch->flags & FLAG_CLOCKEVENT) {
 550		if (!(ch->flags & FLAG_SKIPEVENT)) {
 551			if (clockevent_state_oneshot(&ch->ced)) {
 552				ch->next_match_value = ch->max_match_value;
 553				ch->flags |= FLAG_REPROGRAM;
 554			}
 555
 556			ch->ced.event_handler(&ch->ced);
 557		}
 558	}
 559
 560	ch->flags &= ~FLAG_SKIPEVENT;
 561
 562	raw_spin_lock_irqsave(&ch->lock, flags);
 563
 564	if (ch->flags & FLAG_REPROGRAM) {
 565		ch->flags &= ~FLAG_REPROGRAM;
 566		sh_cmt_clock_event_program_verify(ch, 1);
 567
 568		if (ch->flags & FLAG_CLOCKEVENT)
 569			if ((clockevent_state_shutdown(&ch->ced))
 570			    || (ch->match_value == ch->next_match_value))
 571				ch->flags &= ~FLAG_REPROGRAM;
 572	}
 573
 574	ch->flags &= ~FLAG_IRQCONTEXT;
 575
 576	raw_spin_unlock_irqrestore(&ch->lock, flags);
 577
 578	return IRQ_HANDLED;
 579}
 580
 581static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 582{
 583	int ret = 0;
 584	unsigned long flags;
 585
 586	if (flag & FLAG_CLOCKSOURCE)
 587		pm_runtime_get_sync(&ch->cmt->pdev->dev);
 588
 589	raw_spin_lock_irqsave(&ch->lock, flags);
 590
 591	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 592		if (flag & FLAG_CLOCKEVENT)
 593			pm_runtime_get_sync(&ch->cmt->pdev->dev);
 594		ret = sh_cmt_enable(ch);
 595	}
 596
 597	if (ret)
 598		goto out;
 599	ch->flags |= flag;
 600
 601	/* setup timeout if no clockevent */
 602	if (ch->cmt->num_channels == 1 &&
 603	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
 604		__sh_cmt_set_next(ch, ch->max_match_value);
 605 out:
 606	raw_spin_unlock_irqrestore(&ch->lock, flags);
 607
 608	return ret;
 609}
 610
 611static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 612{
 613	unsigned long flags;
 614	unsigned long f;
 615
 616	raw_spin_lock_irqsave(&ch->lock, flags);
 617
 618	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 619	ch->flags &= ~flag;
 620
 621	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 622		sh_cmt_disable(ch);
 623		if (flag & FLAG_CLOCKEVENT)
 624			pm_runtime_put(&ch->cmt->pdev->dev);
 625	}
 626
 627	/* adjust the timeout to maximum if only clocksource left */
 628	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 629		__sh_cmt_set_next(ch, ch->max_match_value);
 630
 631	raw_spin_unlock_irqrestore(&ch->lock, flags);
 632
 633	if (flag & FLAG_CLOCKSOURCE)
 634		pm_runtime_put(&ch->cmt->pdev->dev);
 635}
 636
 637static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 638{
 639	return container_of(cs, struct sh_cmt_channel, cs);
 640}
 641
 642static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 643{
 644	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 645	u32 has_wrapped;
 
 
 646
 647	if (ch->cmt->num_channels == 1) {
 648		unsigned long flags;
 649		u64 value;
 650		u32 raw;
 651
 652		raw_spin_lock_irqsave(&ch->lock, flags);
 653		value = ch->total_cycles;
 654		raw = sh_cmt_get_counter(ch, &has_wrapped);
 655
 656		if (unlikely(has_wrapped))
 657			raw += ch->match_value + 1;
 658		raw_spin_unlock_irqrestore(&ch->lock, flags);
 659
 660		return value + raw;
 661	}
 662
 663	return sh_cmt_get_counter(ch, &has_wrapped);
 664}
 665
 666static int sh_cmt_clocksource_enable(struct clocksource *cs)
 667{
 668	int ret;
 669	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 670
 671	WARN_ON(ch->cs_enabled);
 672
 673	ch->total_cycles = 0;
 674
 675	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 676	if (!ret)
 677		ch->cs_enabled = true;
 678
 679	return ret;
 680}
 681
 682static void sh_cmt_clocksource_disable(struct clocksource *cs)
 683{
 684	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 685
 686	WARN_ON(!ch->cs_enabled);
 687
 688	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 689	ch->cs_enabled = false;
 690}
 691
 692static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 693{
 694	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 695
 696	if (!ch->cs_enabled)
 697		return;
 698
 699	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 700	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 701}
 702
 703static void sh_cmt_clocksource_resume(struct clocksource *cs)
 704{
 705	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 706
 707	if (!ch->cs_enabled)
 708		return;
 709
 710	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 711	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 712}
 713
 714static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 715				       const char *name)
 716{
 717	struct clocksource *cs = &ch->cs;
 718
 719	cs->name = name;
 720	cs->rating = 125;
 721	cs->read = sh_cmt_clocksource_read;
 722	cs->enable = sh_cmt_clocksource_enable;
 723	cs->disable = sh_cmt_clocksource_disable;
 724	cs->suspend = sh_cmt_clocksource_suspend;
 725	cs->resume = sh_cmt_clocksource_resume;
 726	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
 727	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 728
 729	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 730		 ch->index);
 731
 732	clocksource_register_hz(cs, ch->cmt->rate);
 
 733	return 0;
 734}
 735
 736static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 737{
 738	return container_of(ced, struct sh_cmt_channel, ced);
 739}
 740
 741static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 742{
 743	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 
 
 
 
 
 
 
 
 
 744
 745	if (periodic)
 746		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 747	else
 748		sh_cmt_set_next(ch, ch->max_match_value);
 749}
 750
 751static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 752{
 753	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 754
 755	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 756	return 0;
 757}
 758
 759static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 760					int periodic)
 761{
 762	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 763
 764	/* deal with old setting first */
 765	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 766		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 
 
 
 
 
 
 767
 768	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 769		 ch->index, periodic ? "periodic" : "oneshot");
 770	sh_cmt_clock_event_start(ch, periodic);
 771	return 0;
 772}
 773
 774static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 775{
 776	return sh_cmt_clock_event_set_state(ced, 0);
 777}
 778
 779static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 780{
 781	return sh_cmt_clock_event_set_state(ced, 1);
 
 
 782}
 783
 784static int sh_cmt_clock_event_next(unsigned long delta,
 785				   struct clock_event_device *ced)
 786{
 787	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 788	unsigned long flags;
 789
 790	BUG_ON(!clockevent_state_oneshot(ced));
 791
 792	raw_spin_lock_irqsave(&ch->lock, flags);
 793
 794	if (likely(ch->flags & FLAG_IRQCONTEXT))
 795		ch->next_match_value = delta - 1;
 
 796	else
 797		__sh_cmt_set_next(ch, delta - 1);
 798
 799	raw_spin_unlock_irqrestore(&ch->lock, flags);
 800
 801	return 0;
 802}
 803
 804static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 805{
 806	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 807
 808	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 809	clk_unprepare(ch->cmt->clk);
 810}
 811
 812static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 813{
 814	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 815
 816	clk_prepare(ch->cmt->clk);
 817	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 818}
 819
 820static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 821				      const char *name)
 822{
 823	struct clock_event_device *ced = &ch->ced;
 824	int irq;
 825	int ret;
 826
 827	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 828	if (irq < 0)
 829		return irq;
 830
 831	ret = request_irq(irq, sh_cmt_interrupt,
 832			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 833			  dev_name(&ch->cmt->pdev->dev), ch);
 834	if (ret) {
 835		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 836			ch->index, irq);
 837		return ret;
 838	}
 839
 840	ced->name = name;
 841	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 842	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 843	ced->rating = 125;
 844	ced->cpumask = cpu_possible_mask;
 845	ced->set_next_event = sh_cmt_clock_event_next;
 846	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 847	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 848	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 849	ced->suspend = sh_cmt_clock_event_suspend;
 850	ced->resume = sh_cmt_clock_event_resume;
 851
 852	/* TODO: calculate good shift from rate and counter bit width */
 853	ced->shift = 32;
 854	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 855	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 856	ced->max_delta_ticks = ch->max_match_value;
 857	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 858	ced->min_delta_ticks = 0x1f;
 859
 860	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 861		 ch->index);
 862	clockevents_register_device(ced);
 863
 864	return 0;
 865}
 866
 867static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 868			   bool clockevent, bool clocksource)
 
 869{
 870	int ret;
 
 
 
 
 
 
 871
 872	if (clockevent) {
 873		ch->cmt->has_clockevent = true;
 874		ret = sh_cmt_register_clockevent(ch, name);
 875		if (ret < 0)
 876			return ret;
 877	}
 878
 879	if (clocksource) {
 880		ch->cmt->has_clocksource = true;
 881		sh_cmt_register_clocksource(ch, name);
 882	}
 883
 884	return 0;
 885}
 886
 887static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 888				unsigned int hwidx, bool clockevent,
 889				bool clocksource, struct sh_cmt_device *cmt)
 890{
 891	u32 value;
 892	int ret;
 
 
 893
 894	/* Skip unused channels. */
 895	if (!clockevent && !clocksource)
 896		return 0;
 897
 898	ch->cmt = cmt;
 899	ch->index = index;
 900	ch->hwidx = hwidx;
 901	ch->timer_bit = hwidx;
 902
 903	/*
 904	 * Compute the address of the channel control register block. For the
 905	 * timers with a per-channel start/stop register, compute its address
 906	 * as well.
 907	 */
 908	switch (cmt->info->model) {
 909	case SH_CMT_16BIT:
 910		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 911		break;
 912	case SH_CMT_32BIT:
 913	case SH_CMT_48BIT:
 914		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 915		break;
 916	case SH_CMT0_RCAR_GEN2:
 917	case SH_CMT1_RCAR_GEN2:
 918		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 919		ch->ioctrl = ch->iostart + 0x10;
 920		ch->timer_bit = 0;
 921
 922		/* Enable the clock supply to the channel */
 923		value = ioread32(cmt->mapbase + CMCLKE);
 924		value |= BIT(hwidx);
 925		iowrite32(value, cmt->mapbase + CMCLKE);
 926		break;
 927	}
 928
 929	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 930		ch->max_match_value = ~0;
 931	else
 932		ch->max_match_value = (1 << cmt->info->width) - 1;
 933
 934	ch->match_value = ch->max_match_value;
 935	raw_spin_lock_init(&ch->lock);
 
 
 
 936
 937	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 938			      clockevent, clocksource);
 939	if (ret) {
 940		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 941			ch->index);
 942		return ret;
 943	}
 944	ch->cs_enabled = false;
 945
 946	return 0;
 947}
 948
 949static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 950{
 951	struct resource *mem;
 952
 953	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 954	if (!mem) {
 955		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 956		return -ENXIO;
 957	}
 958
 959	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 960	if (cmt->mapbase == NULL) {
 961		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 962		return -ENXIO;
 
 
 
 
 
 
 
 
 
 963	}
 964
 965	return 0;
 966}
 967
 968static const struct platform_device_id sh_cmt_id_table[] = {
 969	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 970	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 971	{ }
 972};
 973MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 974
 975static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 976	{
 977		/* deprecated, preserved for backward compatibility */
 978		.compatible = "renesas,cmt-48",
 979		.data = &sh_cmt_info[SH_CMT_48BIT]
 980	},
 981	{
 982		/* deprecated, preserved for backward compatibility */
 983		.compatible = "renesas,cmt-48-gen2",
 984		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 985	},
 986	{
 987		.compatible = "renesas,r8a7740-cmt1",
 988		.data = &sh_cmt_info[SH_CMT_48BIT]
 989	},
 990	{
 991		.compatible = "renesas,sh73a0-cmt1",
 992		.data = &sh_cmt_info[SH_CMT_48BIT]
 993	},
 994	{
 995		.compatible = "renesas,rcar-gen2-cmt0",
 996		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 997	},
 998	{
 999		.compatible = "renesas,rcar-gen2-cmt1",
1000		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1001	},
1002	{
1003		.compatible = "renesas,rcar-gen3-cmt0",
1004		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1005	},
1006	{
1007		.compatible = "renesas,rcar-gen3-cmt1",
1008		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1009	},
1010	{
1011		.compatible = "renesas,rcar-gen4-cmt0",
1012		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1013	},
1014	{
1015		.compatible = "renesas,rcar-gen4-cmt1",
1016		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1017	},
1018	{ }
1019};
1020MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1021
1022static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1023{
1024	unsigned int mask, i;
1025	unsigned long rate;
1026	int ret;
1027
1028	cmt->pdev = pdev;
1029	raw_spin_lock_init(&cmt->lock);
1030
1031	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1032		cmt->info = of_device_get_match_data(&pdev->dev);
1033		cmt->hw_channels = cmt->info->channels_mask;
1034	} else if (pdev->dev.platform_data) {
1035		struct sh_timer_config *cfg = pdev->dev.platform_data;
1036		const struct platform_device_id *id = pdev->id_entry;
1037
1038		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1039		cmt->hw_channels = cfg->channels_mask;
1040	} else {
1041		dev_err(&cmt->pdev->dev, "missing platform data\n");
1042		return -ENXIO;
 
1043	}
1044
1045	/* Get hold of clock. */
1046	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1047	if (IS_ERR(cmt->clk)) {
1048		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1049		return PTR_ERR(cmt->clk);
1050	}
1051
1052	ret = clk_prepare(cmt->clk);
1053	if (ret < 0)
1054		goto err_clk_put;
1055
1056	/* Determine clock rate. */
1057	ret = clk_enable(cmt->clk);
1058	if (ret < 0)
1059		goto err_clk_unprepare;
1060
1061	rate = clk_get_rate(cmt->clk);
1062	if (!rate) {
1063		ret = -EINVAL;
1064		goto err_clk_disable;
1065	}
1066
1067	/* We shall wait 2 input clks after register writes */
1068	if (cmt->info->model >= SH_CMT_48BIT)
1069		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1070	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1071
1072	/* Map the memory resource(s). */
1073	ret = sh_cmt_map_memory(cmt);
1074	if (ret < 0)
1075		goto err_clk_disable;
1076
1077	/* Allocate and setup the channels. */
1078	cmt->num_channels = hweight8(cmt->hw_channels);
1079	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1080				GFP_KERNEL);
1081	if (cmt->channels == NULL) {
1082		ret = -ENOMEM;
1083		goto err_unmap;
1084	}
1085
1086	/*
1087	 * Use the first channel as a clock event device and the second channel
1088	 * as a clock source. If only one channel is available use it for both.
1089	 */
1090	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1091		unsigned int hwidx = ffs(mask) - 1;
1092		bool clocksource = i == 1 || cmt->num_channels == 1;
1093		bool clockevent = i == 0;
1094
1095		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1096					   clockevent, clocksource, cmt);
1097		if (ret < 0)
1098			goto err_unmap;
1099
1100		mask &= ~(1 << hwidx);
1101	}
1102
1103	clk_disable(cmt->clk);
1104
1105	platform_set_drvdata(pdev, cmt);
1106
1107	return 0;
1108
1109err_unmap:
1110	kfree(cmt->channels);
1111	iounmap(cmt->mapbase);
1112err_clk_disable:
1113	clk_disable(cmt->clk);
1114err_clk_unprepare:
1115	clk_unprepare(cmt->clk);
1116err_clk_put:
1117	clk_put(cmt->clk);
1118	return ret;
1119}
1120
1121static int sh_cmt_probe(struct platform_device *pdev)
1122{
1123	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1124	int ret;
1125
1126	if (!is_sh_early_platform_device(pdev)) {
1127		pm_runtime_set_active(&pdev->dev);
1128		pm_runtime_enable(&pdev->dev);
1129	}
1130
1131	if (cmt) {
1132		dev_info(&pdev->dev, "kept as earlytimer\n");
1133		goto out;
1134	}
1135
1136	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1137	if (cmt == NULL)
 
1138		return -ENOMEM;
 
1139
1140	ret = sh_cmt_setup(cmt, pdev);
1141	if (ret) {
1142		kfree(cmt);
1143		pm_runtime_idle(&pdev->dev);
1144		return ret;
1145	}
1146	if (is_sh_early_platform_device(pdev))
1147		return 0;
1148
1149 out:
1150	if (cmt->has_clockevent || cmt->has_clocksource)
1151		pm_runtime_irq_safe(&pdev->dev);
1152	else
1153		pm_runtime_idle(&pdev->dev);
1154
1155	return 0;
1156}
1157
1158static struct platform_driver sh_cmt_device_driver = {
1159	.probe		= sh_cmt_probe,
 
1160	.driver		= {
1161		.name	= "sh_cmt",
1162		.of_match_table = of_match_ptr(sh_cmt_of_table),
1163		.suppress_bind_attrs = true,
1164	},
1165	.id_table	= sh_cmt_id_table,
1166};
1167
1168static int __init sh_cmt_init(void)
1169{
1170	return platform_driver_register(&sh_cmt_device_driver);
1171}
1172
1173static void __exit sh_cmt_exit(void)
1174{
1175	platform_driver_unregister(&sh_cmt_device_driver);
1176}
1177
1178#ifdef CONFIG_SUPERH
1179sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1180#endif
1181
1182subsys_initcall(sh_cmt_init);
1183module_exit(sh_cmt_exit);
1184
1185MODULE_AUTHOR("Magnus Damm");
1186MODULE_DESCRIPTION("SuperH CMT Timer Driver");