Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * SuperH Timer Support - CMT
  3 *
  4 *  Copyright (C) 2008 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 
 
 
 
 
 20#include <linux/init.h>
 21#include <linux/platform_device.h>
 22#include <linux/spinlock.h>
 23#include <linux/interrupt.h>
 24#include <linux/ioport.h>
 25#include <linux/io.h>
 26#include <linux/clk.h>
 27#include <linux/irq.h>
 28#include <linux/err.h>
 29#include <linux/delay.h>
 30#include <linux/clocksource.h>
 31#include <linux/clockchips.h>
 32#include <linux/sh_timer.h>
 33#include <linux/slab.h>
 34#include <linux/module.h>
 
 
 
 35#include <linux/pm_domain.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37struct sh_cmt_priv {
 38	void __iomem *mapbase;
 39	struct clk *clk;
 40	unsigned long width; /* 16 or 32 bit version of hardware block */
 41	unsigned long overflow_bit;
 42	unsigned long clear_bits;
 43	struct irqaction irqaction;
 44	struct platform_device *pdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45
 
 46	unsigned long flags;
 47	unsigned long match_value;
 48	unsigned long next_match_value;
 49	unsigned long max_match_value;
 50	unsigned long rate;
 51	raw_spinlock_t lock;
 52	struct clock_event_device ced;
 53	struct clocksource cs;
 54	unsigned long total_cycles;
 
 55};
 56
 57static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58
 59#define CMSTR -1 /* shared register */
 60#define CMCSR 0 /* channel register */
 61#define CMCNT 1 /* channel register */
 62#define CMCOR 2 /* channel register */
 63
 64static inline unsigned long sh_cmt_read(struct sh_cmt_priv *p, int reg_nr)
 65{
 66	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
 67	void __iomem *base = p->mapbase;
 68	unsigned long offs;
 69
 70	if (reg_nr == CMSTR) {
 71		offs = 0;
 72		base -= cfg->channel_offset;
 73	} else
 74		offs = reg_nr;
 75
 76	if (p->width == 16)
 77		offs <<= 1;
 78	else {
 79		offs <<= 2;
 80		if ((reg_nr == CMCNT) || (reg_nr == CMCOR))
 81			return ioread32(base + offs);
 82	}
 83
 84	return ioread16(base + offs);
 85}
 86
 87static inline void sh_cmt_write(struct sh_cmt_priv *p, int reg_nr,
 88				unsigned long value)
 89{
 90	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
 91	void __iomem *base = p->mapbase;
 92	unsigned long offs;
 93
 94	if (reg_nr == CMSTR) {
 95		offs = 0;
 96		base -= cfg->channel_offset;
 97	} else
 98		offs = reg_nr;
 99
100	if (p->width == 16)
101		offs <<= 1;
102	else {
103		offs <<= 2;
104		if ((reg_nr == CMCNT) || (reg_nr == CMCOR)) {
105			iowrite32(value, base + offs);
106			return;
107		}
108	}
109
110	iowrite16(value, base + offs);
 
 
111}
112
113static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
114					int *has_wrapped)
115{
116	unsigned long v1, v2, v3;
117	int o1, o2;
118
119	o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
121	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
122	do {
123		o2 = o1;
124		v1 = sh_cmt_read(p, CMCNT);
125		v2 = sh_cmt_read(p, CMCNT);
126		v3 = sh_cmt_read(p, CMCNT);
127		o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
128	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
129			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
130
131	*has_wrapped = o1;
132	return v2;
133}
134
135
136static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
137{
138	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
139	unsigned long flags, value;
140
141	/* start stop register shared by multiple timer channels */
142	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
143	value = sh_cmt_read(p, CMSTR);
144
145	if (start)
146		value |= 1 << cfg->timer_bit;
147	else
148		value &= ~(1 << cfg->timer_bit);
149
150	sh_cmt_write(p, CMSTR, value);
151	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
152}
153
154static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
155{
156	int k, ret;
157
 
 
 
158	/* enable clock */
159	ret = clk_enable(p->clk);
160	if (ret) {
161		dev_err(&p->pdev->dev, "cannot enable clock\n");
 
162		goto err0;
163	}
164
165	/* make sure channel is disabled */
166	sh_cmt_start_stop_ch(p, 0);
167
168	/* configure channel, periodic mode and maximum timeout */
169	if (p->width == 16) {
170		*rate = clk_get_rate(p->clk) / 512;
171		sh_cmt_write(p, CMCSR, 0x43);
172	} else {
173		*rate = clk_get_rate(p->clk) / 8;
174		sh_cmt_write(p, CMCSR, 0x01a4);
 
 
175	}
176
177	sh_cmt_write(p, CMCOR, 0xffffffff);
178	sh_cmt_write(p, CMCNT, 0);
179
180	/*
181	 * According to the sh73a0 user's manual, as CMCNT can be operated
182	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
183	 * modifying CMCNT register; two RCLK cycles are necessary before
184	 * this register is either read or any modification of the value
185	 * it holds is reflected in the LSI's actual operation.
186	 *
187	 * While at it, we're supposed to clear out the CMCNT as of this
188	 * moment, so make sure it's processed properly here.  This will
189	 * take RCLKx2 at maximum.
190	 */
191	for (k = 0; k < 100; k++) {
192		if (!sh_cmt_read(p, CMCNT))
193			break;
194		udelay(1);
195	}
196
197	if (sh_cmt_read(p, CMCNT)) {
198		dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
 
199		ret = -ETIMEDOUT;
200		goto err1;
201	}
202
203	/* enable channel */
204	sh_cmt_start_stop_ch(p, 1);
205	return 0;
206 err1:
207	/* stop clock */
208	clk_disable(p->clk);
209
210 err0:
211	return ret;
212}
213
214static void sh_cmt_disable(struct sh_cmt_priv *p)
215{
216	/* disable channel */
217	sh_cmt_start_stop_ch(p, 0);
218
219	/* disable interrupts in CMT block */
220	sh_cmt_write(p, CMCSR, 0);
221
222	/* stop clock */
223	clk_disable(p->clk);
 
 
 
224}
225
226/* private flags */
227#define FLAG_CLOCKEVENT (1 << 0)
228#define FLAG_CLOCKSOURCE (1 << 1)
229#define FLAG_REPROGRAM (1 << 2)
230#define FLAG_SKIPEVENT (1 << 3)
231#define FLAG_IRQCONTEXT (1 << 4)
232
233static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
234					      int absolute)
235{
236	unsigned long new_match;
237	unsigned long value = p->next_match_value;
238	unsigned long delay = 0;
239	unsigned long now = 0;
240	int has_wrapped;
241
242	now = sh_cmt_get_counter(p, &has_wrapped);
243	p->flags |= FLAG_REPROGRAM; /* force reprogram */
244
245	if (has_wrapped) {
246		/* we're competing with the interrupt handler.
247		 *  -> let the interrupt handler reprogram the timer.
248		 *  -> interrupt number two handles the event.
249		 */
250		p->flags |= FLAG_SKIPEVENT;
251		return;
252	}
253
254	if (absolute)
255		now = 0;
256
257	do {
258		/* reprogram the timer hardware,
259		 * but don't save the new match value yet.
260		 */
261		new_match = now + value + delay;
262		if (new_match > p->max_match_value)
263			new_match = p->max_match_value;
264
265		sh_cmt_write(p, CMCOR, new_match);
266
267		now = sh_cmt_get_counter(p, &has_wrapped);
268		if (has_wrapped && (new_match > p->match_value)) {
269			/* we are changing to a greater match value,
270			 * so this wrap must be caused by the counter
271			 * matching the old value.
272			 * -> first interrupt reprograms the timer.
273			 * -> interrupt number two handles the event.
274			 */
275			p->flags |= FLAG_SKIPEVENT;
276			break;
277		}
278
279		if (has_wrapped) {
280			/* we are changing to a smaller match value,
281			 * so the wrap must be caused by the counter
282			 * matching the new value.
283			 * -> save programmed match value.
284			 * -> let isr handle the event.
285			 */
286			p->match_value = new_match;
287			break;
288		}
289
290		/* be safe: verify hardware settings */
291		if (now < new_match) {
292			/* timer value is below match value, all good.
293			 * this makes sure we won't miss any match events.
294			 * -> save programmed match value.
295			 * -> let isr handle the event.
296			 */
297			p->match_value = new_match;
298			break;
299		}
300
301		/* the counter has reached a value greater
302		 * than our new match value. and since the
303		 * has_wrapped flag isn't set we must have
304		 * programmed a too close event.
305		 * -> increase delay and retry.
306		 */
307		if (delay)
308			delay <<= 1;
309		else
310			delay = 1;
311
312		if (!delay)
313			dev_warn(&p->pdev->dev, "too long delay\n");
 
314
315	} while (delay);
316}
317
318static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
319{
320	if (delta > p->max_match_value)
321		dev_warn(&p->pdev->dev, "delta out of range\n");
 
322
323	p->next_match_value = delta;
324	sh_cmt_clock_event_program_verify(p, 0);
325}
326
327static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
328{
329	unsigned long flags;
330
331	raw_spin_lock_irqsave(&p->lock, flags);
332	__sh_cmt_set_next(p, delta);
333	raw_spin_unlock_irqrestore(&p->lock, flags);
334}
335
336static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
337{
338	struct sh_cmt_priv *p = dev_id;
339
340	/* clear flags */
341	sh_cmt_write(p, CMCSR, sh_cmt_read(p, CMCSR) & p->clear_bits);
 
342
343	/* update clock source counter to begin with if enabled
344	 * the wrap flag should be cleared by the timer specific
345	 * isr before we end up here.
346	 */
347	if (p->flags & FLAG_CLOCKSOURCE)
348		p->total_cycles += p->match_value + 1;
349
350	if (!(p->flags & FLAG_REPROGRAM))
351		p->next_match_value = p->max_match_value;
352
353	p->flags |= FLAG_IRQCONTEXT;
354
355	if (p->flags & FLAG_CLOCKEVENT) {
356		if (!(p->flags & FLAG_SKIPEVENT)) {
357			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
358				p->next_match_value = p->max_match_value;
359				p->flags |= FLAG_REPROGRAM;
360			}
361
362			p->ced.event_handler(&p->ced);
363		}
364	}
365
366	p->flags &= ~FLAG_SKIPEVENT;
367
368	if (p->flags & FLAG_REPROGRAM) {
369		p->flags &= ~FLAG_REPROGRAM;
370		sh_cmt_clock_event_program_verify(p, 1);
371
372		if (p->flags & FLAG_CLOCKEVENT)
373			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
374			    || (p->match_value == p->next_match_value))
375				p->flags &= ~FLAG_REPROGRAM;
376	}
377
378	p->flags &= ~FLAG_IRQCONTEXT;
379
380	return IRQ_HANDLED;
381}
382
383static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
384{
385	int ret = 0;
386	unsigned long flags;
387
388	raw_spin_lock_irqsave(&p->lock, flags);
389
390	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
391		ret = sh_cmt_enable(p, &p->rate);
392
393	if (ret)
394		goto out;
395	p->flags |= flag;
396
397	/* setup timeout if no clockevent */
398	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
399		__sh_cmt_set_next(p, p->max_match_value);
400 out:
401	raw_spin_unlock_irqrestore(&p->lock, flags);
402
403	return ret;
404}
405
406static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
407{
408	unsigned long flags;
409	unsigned long f;
410
411	raw_spin_lock_irqsave(&p->lock, flags);
412
413	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
414	p->flags &= ~flag;
415
416	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
417		sh_cmt_disable(p);
418
419	/* adjust the timeout to maximum if only clocksource left */
420	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
421		__sh_cmt_set_next(p, p->max_match_value);
422
423	raw_spin_unlock_irqrestore(&p->lock, flags);
424}
425
426static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
427{
428	return container_of(cs, struct sh_cmt_priv, cs);
429}
430
431static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
432{
433	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
434	unsigned long flags, raw;
435	unsigned long value;
436	int has_wrapped;
437
438	raw_spin_lock_irqsave(&p->lock, flags);
439	value = p->total_cycles;
440	raw = sh_cmt_get_counter(p, &has_wrapped);
 
441
442	if (unlikely(has_wrapped))
443		raw += p->match_value + 1;
444	raw_spin_unlock_irqrestore(&p->lock, flags);
445
446	return value + raw;
447}
448
449static int sh_cmt_clocksource_enable(struct clocksource *cs)
450{
451	int ret;
452	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
 
 
453
454	p->total_cycles = 0;
455
456	ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
457	if (!ret)
458		__clocksource_updatefreq_hz(cs, p->rate);
 
459	return ret;
460}
461
462static void sh_cmt_clocksource_disable(struct clocksource *cs)
463{
464	sh_cmt_stop(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465}
466
467static void sh_cmt_clocksource_resume(struct clocksource *cs)
468{
469	sh_cmt_start(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
 
 
 
 
 
 
470}
471
472static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
473				       char *name, unsigned long rating)
474{
475	struct clocksource *cs = &p->cs;
476
477	cs->name = name;
478	cs->rating = rating;
479	cs->read = sh_cmt_clocksource_read;
480	cs->enable = sh_cmt_clocksource_enable;
481	cs->disable = sh_cmt_clocksource_disable;
482	cs->suspend = sh_cmt_clocksource_disable;
483	cs->resume = sh_cmt_clocksource_resume;
484	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
485	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
486
487	dev_info(&p->pdev->dev, "used as clock source\n");
 
488
489	/* Register with dummy 1 Hz value, gets updated in ->enable() */
490	clocksource_register_hz(cs, 1);
491	return 0;
492}
493
494static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
495{
496	return container_of(ced, struct sh_cmt_priv, ced);
497}
498
499static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
500{
501	struct clock_event_device *ced = &p->ced;
502
503	sh_cmt_start(p, FLAG_CLOCKEVENT);
504
505	/* TODO: calculate good shift from rate and counter bit width */
506
507	ced->shift = 32;
508	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
509	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
510	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
511
512	if (periodic)
513		sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
514	else
515		sh_cmt_set_next(p, p->max_match_value);
516}
517
518static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
519				    struct clock_event_device *ced)
520{
521	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
 
 
 
 
 
 
 
 
 
522
523	/* deal with old setting first */
524	switch (ced->mode) {
525	case CLOCK_EVT_MODE_PERIODIC:
526	case CLOCK_EVT_MODE_ONESHOT:
527		sh_cmt_stop(p, FLAG_CLOCKEVENT);
528		break;
529	default:
530		break;
531	}
532
533	switch (mode) {
534	case CLOCK_EVT_MODE_PERIODIC:
535		dev_info(&p->pdev->dev, "used for periodic clock events\n");
536		sh_cmt_clock_event_start(p, 1);
537		break;
538	case CLOCK_EVT_MODE_ONESHOT:
539		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
540		sh_cmt_clock_event_start(p, 0);
541		break;
542	case CLOCK_EVT_MODE_SHUTDOWN:
543	case CLOCK_EVT_MODE_UNUSED:
544		sh_cmt_stop(p, FLAG_CLOCKEVENT);
545		break;
546	default:
547		break;
548	}
549}
550
551static int sh_cmt_clock_event_next(unsigned long delta,
552				   struct clock_event_device *ced)
553{
554	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
555
556	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
557	if (likely(p->flags & FLAG_IRQCONTEXT))
558		p->next_match_value = delta - 1;
559	else
560		sh_cmt_set_next(p, delta - 1);
561
562	return 0;
563}
564
565static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
566				       char *name, unsigned long rating)
567{
568	struct clock_event_device *ced = &p->ced;
569
570	memset(ced, 0, sizeof(*ced));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571
572	ced->name = name;
573	ced->features = CLOCK_EVT_FEAT_PERIODIC;
574	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
575	ced->rating = rating;
576	ced->cpumask = cpumask_of(0);
577	ced->set_next_event = sh_cmt_clock_event_next;
578	ced->set_mode = sh_cmt_clock_event_mode;
 
 
 
 
579
580	dev_info(&p->pdev->dev, "used for clock events\n");
 
 
 
 
 
 
 
 
 
581	clockevents_register_device(ced);
 
 
582}
583
584static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
585			   unsigned long clockevent_rating,
586			   unsigned long clocksource_rating)
587{
588	if (p->width == (sizeof(p->max_match_value) * 8))
589		p->max_match_value = ~0;
590	else
591		p->max_match_value = (1 << p->width) - 1;
592
593	p->match_value = p->max_match_value;
594	raw_spin_lock_init(&p->lock);
595
596	if (clockevent_rating)
597		sh_cmt_register_clockevent(p, name, clockevent_rating);
 
 
 
 
598
599	if (clocksource_rating)
600		sh_cmt_register_clocksource(p, name, clocksource_rating);
 
 
601
602	return 0;
603}
604
605static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
 
 
606{
607	struct sh_timer_config *cfg = pdev->dev.platform_data;
608	struct resource *res;
609	int irq, ret;
610	ret = -ENXIO;
611
612	memset(p, 0, sizeof(*p));
613	p->pdev = pdev;
 
614
615	if (!cfg) {
616		dev_err(&p->pdev->dev, "missing platform data\n");
617		goto err0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618	}
619
620	platform_set_drvdata(pdev, p);
 
 
 
 
 
 
621
622	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
623	if (!res) {
624		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
625		goto err0;
 
 
626	}
 
627
628	irq = platform_get_irq(p->pdev, 0);
629	if (irq < 0) {
630		dev_err(&p->pdev->dev, "failed to get irq\n");
631		goto err0;
632	}
633
634	/* map memory, let mapbase point to our channel */
635	p->mapbase = ioremap_nocache(res->start, resource_size(res));
636	if (p->mapbase == NULL) {
637		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
638		goto err0;
 
 
 
639	}
640
641	/* request irq using setup_irq() (too early for request_irq()) */
642	p->irqaction.name = dev_name(&p->pdev->dev);
643	p->irqaction.handler = sh_cmt_interrupt;
644	p->irqaction.dev_id = p;
645	p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
646			     IRQF_IRQPOLL  | IRQF_NOBALANCING;
647
648	/* get hold of clock */
649	p->clk = clk_get(&p->pdev->dev, "cmt_fck");
650	if (IS_ERR(p->clk)) {
651		dev_err(&p->pdev->dev, "cannot get clock\n");
652		ret = PTR_ERR(p->clk);
653		goto err1;
654	}
655
656	if (resource_size(res) == 6) {
657		p->width = 16;
658		p->overflow_bit = 0x80;
659		p->clear_bits = ~0x80;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660	} else {
661		p->width = 32;
662		p->overflow_bit = 0x8000;
663		p->clear_bits = ~0xc000;
664	}
665
666	ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
667			      cfg->clockevent_rating,
668			      cfg->clocksource_rating);
669	if (ret) {
670		dev_err(&p->pdev->dev, "registration failed\n");
671		goto err1;
672	}
673
674	ret = setup_irq(irq, &p->irqaction);
675	if (ret) {
676		dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
677		goto err1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
678	}
679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
680	return 0;
681
682err1:
683	iounmap(p->mapbase);
684err0:
 
 
 
 
685	return ret;
686}
687
688static int __devinit sh_cmt_probe(struct platform_device *pdev)
689{
690	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
691	int ret;
692
693	if (!is_early_platform_device(pdev))
694		pm_genpd_dev_always_on(&pdev->dev, true);
 
 
695
696	if (p) {
697		dev_info(&pdev->dev, "kept as earlytimer\n");
698		return 0;
699	}
700
701	p = kmalloc(sizeof(*p), GFP_KERNEL);
702	if (p == NULL) {
703		dev_err(&pdev->dev, "failed to allocate driver data\n");
704		return -ENOMEM;
705	}
706
707	ret = sh_cmt_setup(p, pdev);
708	if (ret) {
709		kfree(p);
710		platform_set_drvdata(pdev, NULL);
 
711	}
712	return ret;
 
 
 
 
 
 
 
 
 
713}
714
715static int __devexit sh_cmt_remove(struct platform_device *pdev)
716{
717	return -EBUSY; /* cannot unregister clockevent and clocksource */
718}
719
720static struct platform_driver sh_cmt_device_driver = {
721	.probe		= sh_cmt_probe,
722	.remove		= __devexit_p(sh_cmt_remove),
723	.driver		= {
724		.name	= "sh_cmt",
725	}
 
 
726};
727
728static int __init sh_cmt_init(void)
729{
730	return platform_driver_register(&sh_cmt_device_driver);
731}
732
733static void __exit sh_cmt_exit(void)
734{
735	platform_driver_unregister(&sh_cmt_device_driver);
736}
737
738early_platform_init("earlytimer", &sh_cmt_device_driver);
739module_init(sh_cmt_init);
740module_exit(sh_cmt_exit);
741
742MODULE_AUTHOR("Magnus Damm");
743MODULE_DESCRIPTION("SuperH CMT Timer Driver");
744MODULE_LICENSE("GPL v2");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
 
 
  14#include <linux/interrupt.h>
 
  15#include <linux/io.h>
  16#include <linux/ioport.h>
  17#include <linux/irq.h>
 
 
 
 
 
 
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28struct sh_cmt_device;
  29
  30/*
  31 * The CMT comes in 5 different identified flavours, depending not only on the
  32 * SoC but also on the particular instance. The following table lists the main
  33 * characteristics of those flavours.
  34 *
  35 *			16B	32B	32B-F	48B	R-Car Gen2
  36 * -----------------------------------------------------------------------------
  37 * Channels		2	1/4	1	6	2/8
  38 * Control Width	16	16	16	16	32
  39 * Counter Width	16	32	32	32/48	32/48
  40 * Shared Start/Stop	Y	Y	Y	Y	N
  41 *
  42 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  43 * located in the channel registers block. All other versions have a shared
  44 * start/stop register located in the global space.
  45 *
  46 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  47 * infers the start/stop bit position in the control register and the channel
  48 * registers block address. Some CMT instances have a subset of channels
  49 * available, in which case the index in the documentation doesn't match the
  50 * "real" index as implemented in hardware. This is for instance the case with
  51 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  52 * in the documentation but using start/stop bit 5 and having its registers
  53 * block at 0x60.
  54 *
  55 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  56 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  57 */
  58
  59enum sh_cmt_model {
  60	SH_CMT_16BIT,
  61	SH_CMT_32BIT,
  62	SH_CMT_48BIT,
  63	SH_CMT0_RCAR_GEN2,
  64	SH_CMT1_RCAR_GEN2,
  65};
  66
  67struct sh_cmt_info {
  68	enum sh_cmt_model model;
  69
  70	unsigned int channels_mask;
  71
 
 
 
  72	unsigned long width; /* 16 or 32 bit version of hardware block */
  73	u32 overflow_bit;
  74	u32 clear_bits;
  75
  76	/* callbacks for CMSTR and CMCSR access */
  77	u32 (*read_control)(void __iomem *base, unsigned long offs);
  78	void (*write_control)(void __iomem *base, unsigned long offs,
  79			      u32 value);
  80
  81	/* callbacks for CMCNT and CMCOR access */
  82	u32 (*read_count)(void __iomem *base, unsigned long offs);
  83	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  84};
  85
  86struct sh_cmt_channel {
  87	struct sh_cmt_device *cmt;
  88
  89	unsigned int index;	/* Index in the documentation */
  90	unsigned int hwidx;	/* Real hardware index */
  91
  92	void __iomem *iostart;
  93	void __iomem *ioctrl;
  94
  95	unsigned int timer_bit;
  96	unsigned long flags;
  97	u32 match_value;
  98	u32 next_match_value;
  99	u32 max_match_value;
 
 100	raw_spinlock_t lock;
 101	struct clock_event_device ced;
 102	struct clocksource cs;
 103	u64 total_cycles;
 104	bool cs_enabled;
 105};
 106
 107struct sh_cmt_device {
 108	struct platform_device *pdev;
 109
 110	const struct sh_cmt_info *info;
 111
 112	void __iomem *mapbase;
 113	struct clk *clk;
 114	unsigned long rate;
 115
 116	raw_spinlock_t lock; /* Protect the shared start/stop register */
 117
 118	struct sh_cmt_channel *channels;
 119	unsigned int num_channels;
 120	unsigned int hw_channels;
 121
 122	bool has_clockevent;
 123	bool has_clocksource;
 124};
 125
 126#define SH_CMT16_CMCSR_CMF		(1 << 7)
 127#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 128#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 129#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 130#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 131#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 132#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 133
 134#define SH_CMT32_CMCSR_CMF		(1 << 15)
 135#define SH_CMT32_CMCSR_OVF		(1 << 14)
 136#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 137#define SH_CMT32_CMCSR_STTF		(1 << 12)
 138#define SH_CMT32_CMCSR_STPF		(1 << 11)
 139#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 140#define SH_CMT32_CMCSR_CMS		(1 << 9)
 141#define SH_CMT32_CMCSR_CMM		(1 << 8)
 142#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 143#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 144#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 145#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 146#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 147#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 148#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 149#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 150#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 151#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 152#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 153
 154static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 155{
 156	return ioread16(base + (offs << 1));
 157}
 158
 159static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 160{
 161	return ioread32(base + (offs << 2));
 162}
 163
 164static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 165{
 166	iowrite16(value, base + (offs << 1));
 167}
 168
 169static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 170{
 171	iowrite32(value, base + (offs << 2));
 172}
 173
 174static const struct sh_cmt_info sh_cmt_info[] = {
 175	[SH_CMT_16BIT] = {
 176		.model = SH_CMT_16BIT,
 177		.width = 16,
 178		.overflow_bit = SH_CMT16_CMCSR_CMF,
 179		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 180		.read_control = sh_cmt_read16,
 181		.write_control = sh_cmt_write16,
 182		.read_count = sh_cmt_read16,
 183		.write_count = sh_cmt_write16,
 184	},
 185	[SH_CMT_32BIT] = {
 186		.model = SH_CMT_32BIT,
 187		.width = 32,
 188		.overflow_bit = SH_CMT32_CMCSR_CMF,
 189		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 190		.read_control = sh_cmt_read16,
 191		.write_control = sh_cmt_write16,
 192		.read_count = sh_cmt_read32,
 193		.write_count = sh_cmt_write32,
 194	},
 195	[SH_CMT_48BIT] = {
 196		.model = SH_CMT_48BIT,
 197		.channels_mask = 0x3f,
 198		.width = 32,
 199		.overflow_bit = SH_CMT32_CMCSR_CMF,
 200		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 201		.read_control = sh_cmt_read32,
 202		.write_control = sh_cmt_write32,
 203		.read_count = sh_cmt_read32,
 204		.write_count = sh_cmt_write32,
 205	},
 206	[SH_CMT0_RCAR_GEN2] = {
 207		.model = SH_CMT0_RCAR_GEN2,
 208		.channels_mask = 0x60,
 209		.width = 32,
 210		.overflow_bit = SH_CMT32_CMCSR_CMF,
 211		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 212		.read_control = sh_cmt_read32,
 213		.write_control = sh_cmt_write32,
 214		.read_count = sh_cmt_read32,
 215		.write_count = sh_cmt_write32,
 216	},
 217	[SH_CMT1_RCAR_GEN2] = {
 218		.model = SH_CMT1_RCAR_GEN2,
 219		.channels_mask = 0xff,
 220		.width = 32,
 221		.overflow_bit = SH_CMT32_CMCSR_CMF,
 222		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 223		.read_control = sh_cmt_read32,
 224		.write_control = sh_cmt_write32,
 225		.read_count = sh_cmt_read32,
 226		.write_count = sh_cmt_write32,
 227	},
 228};
 229
 
 230#define CMCSR 0 /* channel register */
 231#define CMCNT 1 /* channel register */
 232#define CMCOR 2 /* channel register */
 233
 234static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 235{
 236	if (ch->iostart)
 237		return ch->cmt->info->read_control(ch->iostart, 0);
 238	else
 239		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 240}
 241
 242static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 243{
 244	if (ch->iostart)
 245		ch->cmt->info->write_control(ch->iostart, 0, value);
 246	else
 247		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 248}
 249
 250static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 251{
 252	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 253}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254
 255static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 256{
 257	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 258}
 259
 260static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 
 261{
 262	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 263}
 264
 265static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 266{
 267	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 268}
 269
 270static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 271{
 272	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 273}
 274
 275static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 276{
 277	u32 v1, v2, v3;
 278	u32 o1, o2;
 279
 280	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 281
 282	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 283	do {
 284		o2 = o1;
 285		v1 = sh_cmt_read_cmcnt(ch);
 286		v2 = sh_cmt_read_cmcnt(ch);
 287		v3 = sh_cmt_read_cmcnt(ch);
 288		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 289	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 290			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 291
 292	*has_wrapped = o1;
 293	return v2;
 294}
 295
 296static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 
 297{
 298	unsigned long flags;
 299	u32 value;
 300
 301	/* start stop register shared by multiple timer channels */
 302	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 303	value = sh_cmt_read_cmstr(ch);
 304
 305	if (start)
 306		value |= 1 << ch->timer_bit;
 307	else
 308		value &= ~(1 << ch->timer_bit);
 309
 310	sh_cmt_write_cmstr(ch, value);
 311	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 312}
 313
 314static int sh_cmt_enable(struct sh_cmt_channel *ch)
 315{
 316	int k, ret;
 317
 318	pm_runtime_get_sync(&ch->cmt->pdev->dev);
 319	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 320
 321	/* enable clock */
 322	ret = clk_enable(ch->cmt->clk);
 323	if (ret) {
 324		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 325			ch->index);
 326		goto err0;
 327	}
 328
 329	/* make sure channel is disabled */
 330	sh_cmt_start_stop_ch(ch, 0);
 331
 332	/* configure channel, periodic mode and maximum timeout */
 333	if (ch->cmt->info->width == 16) {
 334		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 335				   SH_CMT16_CMCSR_CKS512);
 336	} else {
 337		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 338				   SH_CMT32_CMCSR_CMTOUT_IE |
 339				   SH_CMT32_CMCSR_CMR_IRQ |
 340				   SH_CMT32_CMCSR_CKS_RCLK8);
 341	}
 342
 343	sh_cmt_write_cmcor(ch, 0xffffffff);
 344	sh_cmt_write_cmcnt(ch, 0);
 345
 346	/*
 347	 * According to the sh73a0 user's manual, as CMCNT can be operated
 348	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 349	 * modifying CMCNT register; two RCLK cycles are necessary before
 350	 * this register is either read or any modification of the value
 351	 * it holds is reflected in the LSI's actual operation.
 352	 *
 353	 * While at it, we're supposed to clear out the CMCNT as of this
 354	 * moment, so make sure it's processed properly here.  This will
 355	 * take RCLKx2 at maximum.
 356	 */
 357	for (k = 0; k < 100; k++) {
 358		if (!sh_cmt_read_cmcnt(ch))
 359			break;
 360		udelay(1);
 361	}
 362
 363	if (sh_cmt_read_cmcnt(ch)) {
 364		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 365			ch->index);
 366		ret = -ETIMEDOUT;
 367		goto err1;
 368	}
 369
 370	/* enable channel */
 371	sh_cmt_start_stop_ch(ch, 1);
 372	return 0;
 373 err1:
 374	/* stop clock */
 375	clk_disable(ch->cmt->clk);
 376
 377 err0:
 378	return ret;
 379}
 380
 381static void sh_cmt_disable(struct sh_cmt_channel *ch)
 382{
 383	/* disable channel */
 384	sh_cmt_start_stop_ch(ch, 0);
 385
 386	/* disable interrupts in CMT block */
 387	sh_cmt_write_cmcsr(ch, 0);
 388
 389	/* stop clock */
 390	clk_disable(ch->cmt->clk);
 391
 392	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 393	pm_runtime_put(&ch->cmt->pdev->dev);
 394}
 395
 396/* private flags */
 397#define FLAG_CLOCKEVENT (1 << 0)
 398#define FLAG_CLOCKSOURCE (1 << 1)
 399#define FLAG_REPROGRAM (1 << 2)
 400#define FLAG_SKIPEVENT (1 << 3)
 401#define FLAG_IRQCONTEXT (1 << 4)
 402
 403static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 404					      int absolute)
 405{
 406	u32 value = ch->next_match_value;
 407	u32 new_match;
 408	u32 delay = 0;
 409	u32 now = 0;
 410	u32 has_wrapped;
 411
 412	now = sh_cmt_get_counter(ch, &has_wrapped);
 413	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 414
 415	if (has_wrapped) {
 416		/* we're competing with the interrupt handler.
 417		 *  -> let the interrupt handler reprogram the timer.
 418		 *  -> interrupt number two handles the event.
 419		 */
 420		ch->flags |= FLAG_SKIPEVENT;
 421		return;
 422	}
 423
 424	if (absolute)
 425		now = 0;
 426
 427	do {
 428		/* reprogram the timer hardware,
 429		 * but don't save the new match value yet.
 430		 */
 431		new_match = now + value + delay;
 432		if (new_match > ch->max_match_value)
 433			new_match = ch->max_match_value;
 434
 435		sh_cmt_write_cmcor(ch, new_match);
 436
 437		now = sh_cmt_get_counter(ch, &has_wrapped);
 438		if (has_wrapped && (new_match > ch->match_value)) {
 439			/* we are changing to a greater match value,
 440			 * so this wrap must be caused by the counter
 441			 * matching the old value.
 442			 * -> first interrupt reprograms the timer.
 443			 * -> interrupt number two handles the event.
 444			 */
 445			ch->flags |= FLAG_SKIPEVENT;
 446			break;
 447		}
 448
 449		if (has_wrapped) {
 450			/* we are changing to a smaller match value,
 451			 * so the wrap must be caused by the counter
 452			 * matching the new value.
 453			 * -> save programmed match value.
 454			 * -> let isr handle the event.
 455			 */
 456			ch->match_value = new_match;
 457			break;
 458		}
 459
 460		/* be safe: verify hardware settings */
 461		if (now < new_match) {
 462			/* timer value is below match value, all good.
 463			 * this makes sure we won't miss any match events.
 464			 * -> save programmed match value.
 465			 * -> let isr handle the event.
 466			 */
 467			ch->match_value = new_match;
 468			break;
 469		}
 470
 471		/* the counter has reached a value greater
 472		 * than our new match value. and since the
 473		 * has_wrapped flag isn't set we must have
 474		 * programmed a too close event.
 475		 * -> increase delay and retry.
 476		 */
 477		if (delay)
 478			delay <<= 1;
 479		else
 480			delay = 1;
 481
 482		if (!delay)
 483			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 484				 ch->index);
 485
 486	} while (delay);
 487}
 488
 489static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 490{
 491	if (delta > ch->max_match_value)
 492		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 493			 ch->index);
 494
 495	ch->next_match_value = delta;
 496	sh_cmt_clock_event_program_verify(ch, 0);
 497}
 498
 499static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 500{
 501	unsigned long flags;
 502
 503	raw_spin_lock_irqsave(&ch->lock, flags);
 504	__sh_cmt_set_next(ch, delta);
 505	raw_spin_unlock_irqrestore(&ch->lock, flags);
 506}
 507
 508static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 509{
 510	struct sh_cmt_channel *ch = dev_id;
 511
 512	/* clear flags */
 513	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 514			   ch->cmt->info->clear_bits);
 515
 516	/* update clock source counter to begin with if enabled
 517	 * the wrap flag should be cleared by the timer specific
 518	 * isr before we end up here.
 519	 */
 520	if (ch->flags & FLAG_CLOCKSOURCE)
 521		ch->total_cycles += ch->match_value + 1;
 522
 523	if (!(ch->flags & FLAG_REPROGRAM))
 524		ch->next_match_value = ch->max_match_value;
 525
 526	ch->flags |= FLAG_IRQCONTEXT;
 527
 528	if (ch->flags & FLAG_CLOCKEVENT) {
 529		if (!(ch->flags & FLAG_SKIPEVENT)) {
 530			if (clockevent_state_oneshot(&ch->ced)) {
 531				ch->next_match_value = ch->max_match_value;
 532				ch->flags |= FLAG_REPROGRAM;
 533			}
 534
 535			ch->ced.event_handler(&ch->ced);
 536		}
 537	}
 538
 539	ch->flags &= ~FLAG_SKIPEVENT;
 540
 541	if (ch->flags & FLAG_REPROGRAM) {
 542		ch->flags &= ~FLAG_REPROGRAM;
 543		sh_cmt_clock_event_program_verify(ch, 1);
 544
 545		if (ch->flags & FLAG_CLOCKEVENT)
 546			if ((clockevent_state_shutdown(&ch->ced))
 547			    || (ch->match_value == ch->next_match_value))
 548				ch->flags &= ~FLAG_REPROGRAM;
 549	}
 550
 551	ch->flags &= ~FLAG_IRQCONTEXT;
 552
 553	return IRQ_HANDLED;
 554}
 555
 556static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 557{
 558	int ret = 0;
 559	unsigned long flags;
 560
 561	raw_spin_lock_irqsave(&ch->lock, flags);
 562
 563	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 564		ret = sh_cmt_enable(ch);
 565
 566	if (ret)
 567		goto out;
 568	ch->flags |= flag;
 569
 570	/* setup timeout if no clockevent */
 571	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 572		__sh_cmt_set_next(ch, ch->max_match_value);
 573 out:
 574	raw_spin_unlock_irqrestore(&ch->lock, flags);
 575
 576	return ret;
 577}
 578
 579static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 580{
 581	unsigned long flags;
 582	unsigned long f;
 583
 584	raw_spin_lock_irqsave(&ch->lock, flags);
 585
 586	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 587	ch->flags &= ~flag;
 588
 589	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 590		sh_cmt_disable(ch);
 591
 592	/* adjust the timeout to maximum if only clocksource left */
 593	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 594		__sh_cmt_set_next(ch, ch->max_match_value);
 595
 596	raw_spin_unlock_irqrestore(&ch->lock, flags);
 597}
 598
 599static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 600{
 601	return container_of(cs, struct sh_cmt_channel, cs);
 602}
 603
 604static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 605{
 606	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 607	unsigned long flags;
 608	u32 has_wrapped;
 609	u64 value;
 610	u32 raw;
 611
 612	raw_spin_lock_irqsave(&ch->lock, flags);
 613	value = ch->total_cycles;
 614	raw = sh_cmt_get_counter(ch, &has_wrapped);
 615
 616	if (unlikely(has_wrapped))
 617		raw += ch->match_value + 1;
 618	raw_spin_unlock_irqrestore(&ch->lock, flags);
 619
 620	return value + raw;
 621}
 622
 623static int sh_cmt_clocksource_enable(struct clocksource *cs)
 624{
 625	int ret;
 626	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 627
 628	WARN_ON(ch->cs_enabled);
 629
 630	ch->total_cycles = 0;
 631
 632	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 633	if (!ret)
 634		ch->cs_enabled = true;
 635
 636	return ret;
 637}
 638
 639static void sh_cmt_clocksource_disable(struct clocksource *cs)
 640{
 641	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 642
 643	WARN_ON(!ch->cs_enabled);
 644
 645	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 646	ch->cs_enabled = false;
 647}
 648
 649static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 650{
 651	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 652
 653	if (!ch->cs_enabled)
 654		return;
 655
 656	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 657	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 658}
 659
 660static void sh_cmt_clocksource_resume(struct clocksource *cs)
 661{
 662	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 663
 664	if (!ch->cs_enabled)
 665		return;
 666
 667	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 668	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 669}
 670
 671static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 672				       const char *name)
 673{
 674	struct clocksource *cs = &ch->cs;
 675
 676	cs->name = name;
 677	cs->rating = 125;
 678	cs->read = sh_cmt_clocksource_read;
 679	cs->enable = sh_cmt_clocksource_enable;
 680	cs->disable = sh_cmt_clocksource_disable;
 681	cs->suspend = sh_cmt_clocksource_suspend;
 682	cs->resume = sh_cmt_clocksource_resume;
 683	cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
 684	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 685
 686	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 687		 ch->index);
 688
 689	clocksource_register_hz(cs, ch->cmt->rate);
 
 690	return 0;
 691}
 692
 693static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 694{
 695	return container_of(ced, struct sh_cmt_channel, ced);
 696}
 697
 698static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 699{
 700	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 
 
 
 
 
 
 
 
 
 701
 702	if (periodic)
 703		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 704	else
 705		sh_cmt_set_next(ch, ch->max_match_value);
 706}
 707
 708static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 
 709{
 710	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 711
 712	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 713	return 0;
 714}
 715
 716static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 717					int periodic)
 718{
 719	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 720
 721	/* deal with old setting first */
 722	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 723		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 
 
 
 
 
 
 724
 725	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 726		 ch->index, periodic ? "periodic" : "oneshot");
 727	sh_cmt_clock_event_start(ch, periodic);
 728	return 0;
 729}
 730
 731static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 732{
 733	return sh_cmt_clock_event_set_state(ced, 0);
 734}
 735
 736static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 737{
 738	return sh_cmt_clock_event_set_state(ced, 1);
 
 
 739}
 740
 741static int sh_cmt_clock_event_next(unsigned long delta,
 742				   struct clock_event_device *ced)
 743{
 744	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 745
 746	BUG_ON(!clockevent_state_oneshot(ced));
 747	if (likely(ch->flags & FLAG_IRQCONTEXT))
 748		ch->next_match_value = delta - 1;
 749	else
 750		sh_cmt_set_next(ch, delta - 1);
 751
 752	return 0;
 753}
 754
 755static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 
 756{
 757	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 758
 759	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 760	clk_unprepare(ch->cmt->clk);
 761}
 762
 763static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 764{
 765	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 766
 767	clk_prepare(ch->cmt->clk);
 768	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 769}
 770
 771static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 772				      const char *name)
 773{
 774	struct clock_event_device *ced = &ch->ced;
 775	int irq;
 776	int ret;
 777
 778	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 779	if (irq < 0)
 780		return irq;
 781
 782	ret = request_irq(irq, sh_cmt_interrupt,
 783			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 784			  dev_name(&ch->cmt->pdev->dev), ch);
 785	if (ret) {
 786		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 787			ch->index, irq);
 788		return ret;
 789	}
 790
 791	ced->name = name;
 792	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 793	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 794	ced->rating = 125;
 795	ced->cpumask = cpu_possible_mask;
 796	ced->set_next_event = sh_cmt_clock_event_next;
 797	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 798	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 799	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 800	ced->suspend = sh_cmt_clock_event_suspend;
 801	ced->resume = sh_cmt_clock_event_resume;
 802
 803	/* TODO: calculate good shift from rate and counter bit width */
 804	ced->shift = 32;
 805	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 806	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 807	ced->max_delta_ticks = ch->max_match_value;
 808	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 809	ced->min_delta_ticks = 0x1f;
 810
 811	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 812		 ch->index);
 813	clockevents_register_device(ced);
 814
 815	return 0;
 816}
 817
 818static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 819			   bool clockevent, bool clocksource)
 
 820{
 821	int ret;
 
 
 
 
 
 
 822
 823	if (clockevent) {
 824		ch->cmt->has_clockevent = true;
 825		ret = sh_cmt_register_clockevent(ch, name);
 826		if (ret < 0)
 827			return ret;
 828	}
 829
 830	if (clocksource) {
 831		ch->cmt->has_clocksource = true;
 832		sh_cmt_register_clocksource(ch, name);
 833	}
 834
 835	return 0;
 836}
 837
 838static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 839				unsigned int hwidx, bool clockevent,
 840				bool clocksource, struct sh_cmt_device *cmt)
 841{
 842	int ret;
 
 
 
 843
 844	/* Skip unused channels. */
 845	if (!clockevent && !clocksource)
 846		return 0;
 847
 848	ch->cmt = cmt;
 849	ch->index = index;
 850	ch->hwidx = hwidx;
 851	ch->timer_bit = hwidx;
 852
 853	/*
 854	 * Compute the address of the channel control register block. For the
 855	 * timers with a per-channel start/stop register, compute its address
 856	 * as well.
 857	 */
 858	switch (cmt->info->model) {
 859	case SH_CMT_16BIT:
 860		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 861		break;
 862	case SH_CMT_32BIT:
 863	case SH_CMT_48BIT:
 864		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 865		break;
 866	case SH_CMT0_RCAR_GEN2:
 867	case SH_CMT1_RCAR_GEN2:
 868		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 869		ch->ioctrl = ch->iostart + 0x10;
 870		ch->timer_bit = 0;
 871		break;
 872	}
 873
 874	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 875		ch->max_match_value = ~0;
 876	else
 877		ch->max_match_value = (1 << cmt->info->width) - 1;
 878
 879	ch->match_value = ch->max_match_value;
 880	raw_spin_lock_init(&ch->lock);
 881
 882	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 883			      clockevent, clocksource);
 884	if (ret) {
 885		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 886			ch->index);
 887		return ret;
 888	}
 889	ch->cs_enabled = false;
 890
 891	return 0;
 892}
 
 
 
 893
 894static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 895{
 896	struct resource *mem;
 897
 898	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 899	if (!mem) {
 900		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 901		return -ENXIO;
 902	}
 903
 904	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 905	if (cmt->mapbase == NULL) {
 906		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 907		return -ENXIO;
 
 
 
 
 
 
 
 
 
 908	}
 909
 910	return 0;
 911}
 912
 913static const struct platform_device_id sh_cmt_id_table[] = {
 914	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 915	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 916	{ }
 917};
 918MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 919
 920static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 921	{
 922		/* deprecated, preserved for backward compatibility */
 923		.compatible = "renesas,cmt-48",
 924		.data = &sh_cmt_info[SH_CMT_48BIT]
 925	},
 926	{
 927		/* deprecated, preserved for backward compatibility */
 928		.compatible = "renesas,cmt-48-gen2",
 929		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 930	},
 931	{
 932		.compatible = "renesas,r8a7740-cmt1",
 933		.data = &sh_cmt_info[SH_CMT_48BIT]
 934	},
 935	{
 936		.compatible = "renesas,sh73a0-cmt1",
 937		.data = &sh_cmt_info[SH_CMT_48BIT]
 938	},
 939	{
 940		.compatible = "renesas,rcar-gen2-cmt0",
 941		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 942	},
 943	{
 944		.compatible = "renesas,rcar-gen2-cmt1",
 945		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 946	},
 947	{
 948		.compatible = "renesas,rcar-gen3-cmt0",
 949		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 950	},
 951	{
 952		.compatible = "renesas,rcar-gen3-cmt1",
 953		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 954	},
 955	{ }
 956};
 957MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 958
 959static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 960{
 961	unsigned int mask;
 962	unsigned int i;
 963	int ret;
 964
 965	cmt->pdev = pdev;
 966	raw_spin_lock_init(&cmt->lock);
 967
 968	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 969		cmt->info = of_device_get_match_data(&pdev->dev);
 970		cmt->hw_channels = cmt->info->channels_mask;
 971	} else if (pdev->dev.platform_data) {
 972		struct sh_timer_config *cfg = pdev->dev.platform_data;
 973		const struct platform_device_id *id = pdev->id_entry;
 974
 975		cmt->info = (const struct sh_cmt_info *)id->driver_data;
 976		cmt->hw_channels = cfg->channels_mask;
 977	} else {
 978		dev_err(&cmt->pdev->dev, "missing platform data\n");
 979		return -ENXIO;
 
 980	}
 981
 982	/* Get hold of clock. */
 983	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 984	if (IS_ERR(cmt->clk)) {
 985		dev_err(&cmt->pdev->dev, "cannot get clock\n");
 986		return PTR_ERR(cmt->clk);
 
 987	}
 988
 989	ret = clk_prepare(cmt->clk);
 990	if (ret < 0)
 991		goto err_clk_put;
 992
 993	/* Determine clock rate. */
 994	ret = clk_enable(cmt->clk);
 995	if (ret < 0)
 996		goto err_clk_unprepare;
 997
 998	if (cmt->info->width == 16)
 999		cmt->rate = clk_get_rate(cmt->clk) / 512;
1000	else
1001		cmt->rate = clk_get_rate(cmt->clk) / 8;
1002
1003	clk_disable(cmt->clk);
1004
1005	/* Map the memory resource(s). */
1006	ret = sh_cmt_map_memory(cmt);
1007	if (ret < 0)
1008		goto err_clk_unprepare;
1009
1010	/* Allocate and setup the channels. */
1011	cmt->num_channels = hweight8(cmt->hw_channels);
1012	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1013				GFP_KERNEL);
1014	if (cmt->channels == NULL) {
1015		ret = -ENOMEM;
1016		goto err_unmap;
1017	}
1018
1019	/*
1020	 * Use the first channel as a clock event device and the second channel
1021	 * as a clock source. If only one channel is available use it for both.
1022	 */
1023	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1024		unsigned int hwidx = ffs(mask) - 1;
1025		bool clocksource = i == 1 || cmt->num_channels == 1;
1026		bool clockevent = i == 0;
1027
1028		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1029					   clockevent, clocksource, cmt);
1030		if (ret < 0)
1031			goto err_unmap;
1032
1033		mask &= ~(1 << hwidx);
1034	}
1035
1036	platform_set_drvdata(pdev, cmt);
1037
1038	return 0;
1039
1040err_unmap:
1041	kfree(cmt->channels);
1042	iounmap(cmt->mapbase);
1043err_clk_unprepare:
1044	clk_unprepare(cmt->clk);
1045err_clk_put:
1046	clk_put(cmt->clk);
1047	return ret;
1048}
1049
1050static int sh_cmt_probe(struct platform_device *pdev)
1051{
1052	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1053	int ret;
1054
1055	if (!is_early_platform_device(pdev)) {
1056		pm_runtime_set_active(&pdev->dev);
1057		pm_runtime_enable(&pdev->dev);
1058	}
1059
1060	if (cmt) {
1061		dev_info(&pdev->dev, "kept as earlytimer\n");
1062		goto out;
1063	}
1064
1065	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1066	if (cmt == NULL)
 
1067		return -ENOMEM;
 
1068
1069	ret = sh_cmt_setup(cmt, pdev);
1070	if (ret) {
1071		kfree(cmt);
1072		pm_runtime_idle(&pdev->dev);
1073		return ret;
1074	}
1075	if (is_early_platform_device(pdev))
1076		return 0;
1077
1078 out:
1079	if (cmt->has_clockevent || cmt->has_clocksource)
1080		pm_runtime_irq_safe(&pdev->dev);
1081	else
1082		pm_runtime_idle(&pdev->dev);
1083
1084	return 0;
1085}
1086
1087static int sh_cmt_remove(struct platform_device *pdev)
1088{
1089	return -EBUSY; /* cannot unregister clockevent and clocksource */
1090}
1091
1092static struct platform_driver sh_cmt_device_driver = {
1093	.probe		= sh_cmt_probe,
1094	.remove		= sh_cmt_remove,
1095	.driver		= {
1096		.name	= "sh_cmt",
1097		.of_match_table = of_match_ptr(sh_cmt_of_table),
1098	},
1099	.id_table	= sh_cmt_id_table,
1100};
1101
1102static int __init sh_cmt_init(void)
1103{
1104	return platform_driver_register(&sh_cmt_device_driver);
1105}
1106
1107static void __exit sh_cmt_exit(void)
1108{
1109	platform_driver_unregister(&sh_cmt_device_driver);
1110}
1111
1112early_platform_init("earlytimer", &sh_cmt_device_driver);
1113subsys_initcall(sh_cmt_init);
1114module_exit(sh_cmt_exit);
1115
1116MODULE_AUTHOR("Magnus Damm");
1117MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1118MODULE_LICENSE("GPL v2");