Loading...
1/*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/init.h>
21#include <linux/platform_device.h>
22#include <linux/spinlock.h>
23#include <linux/interrupt.h>
24#include <linux/ioport.h>
25#include <linux/io.h>
26#include <linux/clk.h>
27#include <linux/irq.h>
28#include <linux/err.h>
29#include <linux/delay.h>
30#include <linux/clocksource.h>
31#include <linux/clockchips.h>
32#include <linux/sh_timer.h>
33#include <linux/slab.h>
34#include <linux/module.h>
35#include <linux/pm_domain.h>
36
37struct sh_cmt_priv {
38 void __iomem *mapbase;
39 struct clk *clk;
40 unsigned long width; /* 16 or 32 bit version of hardware block */
41 unsigned long overflow_bit;
42 unsigned long clear_bits;
43 struct irqaction irqaction;
44 struct platform_device *pdev;
45
46 unsigned long flags;
47 unsigned long match_value;
48 unsigned long next_match_value;
49 unsigned long max_match_value;
50 unsigned long rate;
51 raw_spinlock_t lock;
52 struct clock_event_device ced;
53 struct clocksource cs;
54 unsigned long total_cycles;
55};
56
57static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
58
59#define CMSTR -1 /* shared register */
60#define CMCSR 0 /* channel register */
61#define CMCNT 1 /* channel register */
62#define CMCOR 2 /* channel register */
63
64static inline unsigned long sh_cmt_read(struct sh_cmt_priv *p, int reg_nr)
65{
66 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
67 void __iomem *base = p->mapbase;
68 unsigned long offs;
69
70 if (reg_nr == CMSTR) {
71 offs = 0;
72 base -= cfg->channel_offset;
73 } else
74 offs = reg_nr;
75
76 if (p->width == 16)
77 offs <<= 1;
78 else {
79 offs <<= 2;
80 if ((reg_nr == CMCNT) || (reg_nr == CMCOR))
81 return ioread32(base + offs);
82 }
83
84 return ioread16(base + offs);
85}
86
87static inline void sh_cmt_write(struct sh_cmt_priv *p, int reg_nr,
88 unsigned long value)
89{
90 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
91 void __iomem *base = p->mapbase;
92 unsigned long offs;
93
94 if (reg_nr == CMSTR) {
95 offs = 0;
96 base -= cfg->channel_offset;
97 } else
98 offs = reg_nr;
99
100 if (p->width == 16)
101 offs <<= 1;
102 else {
103 offs <<= 2;
104 if ((reg_nr == CMCNT) || (reg_nr == CMCOR)) {
105 iowrite32(value, base + offs);
106 return;
107 }
108 }
109
110 iowrite16(value, base + offs);
111}
112
113static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
114 int *has_wrapped)
115{
116 unsigned long v1, v2, v3;
117 int o1, o2;
118
119 o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
120
121 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
122 do {
123 o2 = o1;
124 v1 = sh_cmt_read(p, CMCNT);
125 v2 = sh_cmt_read(p, CMCNT);
126 v3 = sh_cmt_read(p, CMCNT);
127 o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
128 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
129 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
130
131 *has_wrapped = o1;
132 return v2;
133}
134
135
136static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
137{
138 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
139 unsigned long flags, value;
140
141 /* start stop register shared by multiple timer channels */
142 raw_spin_lock_irqsave(&sh_cmt_lock, flags);
143 value = sh_cmt_read(p, CMSTR);
144
145 if (start)
146 value |= 1 << cfg->timer_bit;
147 else
148 value &= ~(1 << cfg->timer_bit);
149
150 sh_cmt_write(p, CMSTR, value);
151 raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
152}
153
154static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
155{
156 int k, ret;
157
158 /* enable clock */
159 ret = clk_enable(p->clk);
160 if (ret) {
161 dev_err(&p->pdev->dev, "cannot enable clock\n");
162 goto err0;
163 }
164
165 /* make sure channel is disabled */
166 sh_cmt_start_stop_ch(p, 0);
167
168 /* configure channel, periodic mode and maximum timeout */
169 if (p->width == 16) {
170 *rate = clk_get_rate(p->clk) / 512;
171 sh_cmt_write(p, CMCSR, 0x43);
172 } else {
173 *rate = clk_get_rate(p->clk) / 8;
174 sh_cmt_write(p, CMCSR, 0x01a4);
175 }
176
177 sh_cmt_write(p, CMCOR, 0xffffffff);
178 sh_cmt_write(p, CMCNT, 0);
179
180 /*
181 * According to the sh73a0 user's manual, as CMCNT can be operated
182 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
183 * modifying CMCNT register; two RCLK cycles are necessary before
184 * this register is either read or any modification of the value
185 * it holds is reflected in the LSI's actual operation.
186 *
187 * While at it, we're supposed to clear out the CMCNT as of this
188 * moment, so make sure it's processed properly here. This will
189 * take RCLKx2 at maximum.
190 */
191 for (k = 0; k < 100; k++) {
192 if (!sh_cmt_read(p, CMCNT))
193 break;
194 udelay(1);
195 }
196
197 if (sh_cmt_read(p, CMCNT)) {
198 dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
199 ret = -ETIMEDOUT;
200 goto err1;
201 }
202
203 /* enable channel */
204 sh_cmt_start_stop_ch(p, 1);
205 return 0;
206 err1:
207 /* stop clock */
208 clk_disable(p->clk);
209
210 err0:
211 return ret;
212}
213
214static void sh_cmt_disable(struct sh_cmt_priv *p)
215{
216 /* disable channel */
217 sh_cmt_start_stop_ch(p, 0);
218
219 /* disable interrupts in CMT block */
220 sh_cmt_write(p, CMCSR, 0);
221
222 /* stop clock */
223 clk_disable(p->clk);
224}
225
226/* private flags */
227#define FLAG_CLOCKEVENT (1 << 0)
228#define FLAG_CLOCKSOURCE (1 << 1)
229#define FLAG_REPROGRAM (1 << 2)
230#define FLAG_SKIPEVENT (1 << 3)
231#define FLAG_IRQCONTEXT (1 << 4)
232
233static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
234 int absolute)
235{
236 unsigned long new_match;
237 unsigned long value = p->next_match_value;
238 unsigned long delay = 0;
239 unsigned long now = 0;
240 int has_wrapped;
241
242 now = sh_cmt_get_counter(p, &has_wrapped);
243 p->flags |= FLAG_REPROGRAM; /* force reprogram */
244
245 if (has_wrapped) {
246 /* we're competing with the interrupt handler.
247 * -> let the interrupt handler reprogram the timer.
248 * -> interrupt number two handles the event.
249 */
250 p->flags |= FLAG_SKIPEVENT;
251 return;
252 }
253
254 if (absolute)
255 now = 0;
256
257 do {
258 /* reprogram the timer hardware,
259 * but don't save the new match value yet.
260 */
261 new_match = now + value + delay;
262 if (new_match > p->max_match_value)
263 new_match = p->max_match_value;
264
265 sh_cmt_write(p, CMCOR, new_match);
266
267 now = sh_cmt_get_counter(p, &has_wrapped);
268 if (has_wrapped && (new_match > p->match_value)) {
269 /* we are changing to a greater match value,
270 * so this wrap must be caused by the counter
271 * matching the old value.
272 * -> first interrupt reprograms the timer.
273 * -> interrupt number two handles the event.
274 */
275 p->flags |= FLAG_SKIPEVENT;
276 break;
277 }
278
279 if (has_wrapped) {
280 /* we are changing to a smaller match value,
281 * so the wrap must be caused by the counter
282 * matching the new value.
283 * -> save programmed match value.
284 * -> let isr handle the event.
285 */
286 p->match_value = new_match;
287 break;
288 }
289
290 /* be safe: verify hardware settings */
291 if (now < new_match) {
292 /* timer value is below match value, all good.
293 * this makes sure we won't miss any match events.
294 * -> save programmed match value.
295 * -> let isr handle the event.
296 */
297 p->match_value = new_match;
298 break;
299 }
300
301 /* the counter has reached a value greater
302 * than our new match value. and since the
303 * has_wrapped flag isn't set we must have
304 * programmed a too close event.
305 * -> increase delay and retry.
306 */
307 if (delay)
308 delay <<= 1;
309 else
310 delay = 1;
311
312 if (!delay)
313 dev_warn(&p->pdev->dev, "too long delay\n");
314
315 } while (delay);
316}
317
318static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
319{
320 if (delta > p->max_match_value)
321 dev_warn(&p->pdev->dev, "delta out of range\n");
322
323 p->next_match_value = delta;
324 sh_cmt_clock_event_program_verify(p, 0);
325}
326
327static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
328{
329 unsigned long flags;
330
331 raw_spin_lock_irqsave(&p->lock, flags);
332 __sh_cmt_set_next(p, delta);
333 raw_spin_unlock_irqrestore(&p->lock, flags);
334}
335
336static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
337{
338 struct sh_cmt_priv *p = dev_id;
339
340 /* clear flags */
341 sh_cmt_write(p, CMCSR, sh_cmt_read(p, CMCSR) & p->clear_bits);
342
343 /* update clock source counter to begin with if enabled
344 * the wrap flag should be cleared by the timer specific
345 * isr before we end up here.
346 */
347 if (p->flags & FLAG_CLOCKSOURCE)
348 p->total_cycles += p->match_value + 1;
349
350 if (!(p->flags & FLAG_REPROGRAM))
351 p->next_match_value = p->max_match_value;
352
353 p->flags |= FLAG_IRQCONTEXT;
354
355 if (p->flags & FLAG_CLOCKEVENT) {
356 if (!(p->flags & FLAG_SKIPEVENT)) {
357 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
358 p->next_match_value = p->max_match_value;
359 p->flags |= FLAG_REPROGRAM;
360 }
361
362 p->ced.event_handler(&p->ced);
363 }
364 }
365
366 p->flags &= ~FLAG_SKIPEVENT;
367
368 if (p->flags & FLAG_REPROGRAM) {
369 p->flags &= ~FLAG_REPROGRAM;
370 sh_cmt_clock_event_program_verify(p, 1);
371
372 if (p->flags & FLAG_CLOCKEVENT)
373 if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
374 || (p->match_value == p->next_match_value))
375 p->flags &= ~FLAG_REPROGRAM;
376 }
377
378 p->flags &= ~FLAG_IRQCONTEXT;
379
380 return IRQ_HANDLED;
381}
382
383static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
384{
385 int ret = 0;
386 unsigned long flags;
387
388 raw_spin_lock_irqsave(&p->lock, flags);
389
390 if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
391 ret = sh_cmt_enable(p, &p->rate);
392
393 if (ret)
394 goto out;
395 p->flags |= flag;
396
397 /* setup timeout if no clockevent */
398 if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
399 __sh_cmt_set_next(p, p->max_match_value);
400 out:
401 raw_spin_unlock_irqrestore(&p->lock, flags);
402
403 return ret;
404}
405
406static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
407{
408 unsigned long flags;
409 unsigned long f;
410
411 raw_spin_lock_irqsave(&p->lock, flags);
412
413 f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
414 p->flags &= ~flag;
415
416 if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
417 sh_cmt_disable(p);
418
419 /* adjust the timeout to maximum if only clocksource left */
420 if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
421 __sh_cmt_set_next(p, p->max_match_value);
422
423 raw_spin_unlock_irqrestore(&p->lock, flags);
424}
425
426static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
427{
428 return container_of(cs, struct sh_cmt_priv, cs);
429}
430
431static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
432{
433 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
434 unsigned long flags, raw;
435 unsigned long value;
436 int has_wrapped;
437
438 raw_spin_lock_irqsave(&p->lock, flags);
439 value = p->total_cycles;
440 raw = sh_cmt_get_counter(p, &has_wrapped);
441
442 if (unlikely(has_wrapped))
443 raw += p->match_value + 1;
444 raw_spin_unlock_irqrestore(&p->lock, flags);
445
446 return value + raw;
447}
448
449static int sh_cmt_clocksource_enable(struct clocksource *cs)
450{
451 int ret;
452 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
453
454 p->total_cycles = 0;
455
456 ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
457 if (!ret)
458 __clocksource_updatefreq_hz(cs, p->rate);
459 return ret;
460}
461
462static void sh_cmt_clocksource_disable(struct clocksource *cs)
463{
464 sh_cmt_stop(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
465}
466
467static void sh_cmt_clocksource_resume(struct clocksource *cs)
468{
469 sh_cmt_start(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
470}
471
472static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
473 char *name, unsigned long rating)
474{
475 struct clocksource *cs = &p->cs;
476
477 cs->name = name;
478 cs->rating = rating;
479 cs->read = sh_cmt_clocksource_read;
480 cs->enable = sh_cmt_clocksource_enable;
481 cs->disable = sh_cmt_clocksource_disable;
482 cs->suspend = sh_cmt_clocksource_disable;
483 cs->resume = sh_cmt_clocksource_resume;
484 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
485 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
486
487 dev_info(&p->pdev->dev, "used as clock source\n");
488
489 /* Register with dummy 1 Hz value, gets updated in ->enable() */
490 clocksource_register_hz(cs, 1);
491 return 0;
492}
493
494static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
495{
496 return container_of(ced, struct sh_cmt_priv, ced);
497}
498
499static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
500{
501 struct clock_event_device *ced = &p->ced;
502
503 sh_cmt_start(p, FLAG_CLOCKEVENT);
504
505 /* TODO: calculate good shift from rate and counter bit width */
506
507 ced->shift = 32;
508 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
509 ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
510 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
511
512 if (periodic)
513 sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
514 else
515 sh_cmt_set_next(p, p->max_match_value);
516}
517
518static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
519 struct clock_event_device *ced)
520{
521 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
522
523 /* deal with old setting first */
524 switch (ced->mode) {
525 case CLOCK_EVT_MODE_PERIODIC:
526 case CLOCK_EVT_MODE_ONESHOT:
527 sh_cmt_stop(p, FLAG_CLOCKEVENT);
528 break;
529 default:
530 break;
531 }
532
533 switch (mode) {
534 case CLOCK_EVT_MODE_PERIODIC:
535 dev_info(&p->pdev->dev, "used for periodic clock events\n");
536 sh_cmt_clock_event_start(p, 1);
537 break;
538 case CLOCK_EVT_MODE_ONESHOT:
539 dev_info(&p->pdev->dev, "used for oneshot clock events\n");
540 sh_cmt_clock_event_start(p, 0);
541 break;
542 case CLOCK_EVT_MODE_SHUTDOWN:
543 case CLOCK_EVT_MODE_UNUSED:
544 sh_cmt_stop(p, FLAG_CLOCKEVENT);
545 break;
546 default:
547 break;
548 }
549}
550
551static int sh_cmt_clock_event_next(unsigned long delta,
552 struct clock_event_device *ced)
553{
554 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
555
556 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
557 if (likely(p->flags & FLAG_IRQCONTEXT))
558 p->next_match_value = delta - 1;
559 else
560 sh_cmt_set_next(p, delta - 1);
561
562 return 0;
563}
564
565static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
566 char *name, unsigned long rating)
567{
568 struct clock_event_device *ced = &p->ced;
569
570 memset(ced, 0, sizeof(*ced));
571
572 ced->name = name;
573 ced->features = CLOCK_EVT_FEAT_PERIODIC;
574 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
575 ced->rating = rating;
576 ced->cpumask = cpumask_of(0);
577 ced->set_next_event = sh_cmt_clock_event_next;
578 ced->set_mode = sh_cmt_clock_event_mode;
579
580 dev_info(&p->pdev->dev, "used for clock events\n");
581 clockevents_register_device(ced);
582}
583
584static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
585 unsigned long clockevent_rating,
586 unsigned long clocksource_rating)
587{
588 if (p->width == (sizeof(p->max_match_value) * 8))
589 p->max_match_value = ~0;
590 else
591 p->max_match_value = (1 << p->width) - 1;
592
593 p->match_value = p->max_match_value;
594 raw_spin_lock_init(&p->lock);
595
596 if (clockevent_rating)
597 sh_cmt_register_clockevent(p, name, clockevent_rating);
598
599 if (clocksource_rating)
600 sh_cmt_register_clocksource(p, name, clocksource_rating);
601
602 return 0;
603}
604
605static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
606{
607 struct sh_timer_config *cfg = pdev->dev.platform_data;
608 struct resource *res;
609 int irq, ret;
610 ret = -ENXIO;
611
612 memset(p, 0, sizeof(*p));
613 p->pdev = pdev;
614
615 if (!cfg) {
616 dev_err(&p->pdev->dev, "missing platform data\n");
617 goto err0;
618 }
619
620 platform_set_drvdata(pdev, p);
621
622 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
623 if (!res) {
624 dev_err(&p->pdev->dev, "failed to get I/O memory\n");
625 goto err0;
626 }
627
628 irq = platform_get_irq(p->pdev, 0);
629 if (irq < 0) {
630 dev_err(&p->pdev->dev, "failed to get irq\n");
631 goto err0;
632 }
633
634 /* map memory, let mapbase point to our channel */
635 p->mapbase = ioremap_nocache(res->start, resource_size(res));
636 if (p->mapbase == NULL) {
637 dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
638 goto err0;
639 }
640
641 /* request irq using setup_irq() (too early for request_irq()) */
642 p->irqaction.name = dev_name(&p->pdev->dev);
643 p->irqaction.handler = sh_cmt_interrupt;
644 p->irqaction.dev_id = p;
645 p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
646 IRQF_IRQPOLL | IRQF_NOBALANCING;
647
648 /* get hold of clock */
649 p->clk = clk_get(&p->pdev->dev, "cmt_fck");
650 if (IS_ERR(p->clk)) {
651 dev_err(&p->pdev->dev, "cannot get clock\n");
652 ret = PTR_ERR(p->clk);
653 goto err1;
654 }
655
656 if (resource_size(res) == 6) {
657 p->width = 16;
658 p->overflow_bit = 0x80;
659 p->clear_bits = ~0x80;
660 } else {
661 p->width = 32;
662 p->overflow_bit = 0x8000;
663 p->clear_bits = ~0xc000;
664 }
665
666 ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
667 cfg->clockevent_rating,
668 cfg->clocksource_rating);
669 if (ret) {
670 dev_err(&p->pdev->dev, "registration failed\n");
671 goto err1;
672 }
673
674 ret = setup_irq(irq, &p->irqaction);
675 if (ret) {
676 dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
677 goto err1;
678 }
679
680 return 0;
681
682err1:
683 iounmap(p->mapbase);
684err0:
685 return ret;
686}
687
688static int __devinit sh_cmt_probe(struct platform_device *pdev)
689{
690 struct sh_cmt_priv *p = platform_get_drvdata(pdev);
691 int ret;
692
693 if (!is_early_platform_device(pdev))
694 pm_genpd_dev_always_on(&pdev->dev, true);
695
696 if (p) {
697 dev_info(&pdev->dev, "kept as earlytimer\n");
698 return 0;
699 }
700
701 p = kmalloc(sizeof(*p), GFP_KERNEL);
702 if (p == NULL) {
703 dev_err(&pdev->dev, "failed to allocate driver data\n");
704 return -ENOMEM;
705 }
706
707 ret = sh_cmt_setup(p, pdev);
708 if (ret) {
709 kfree(p);
710 platform_set_drvdata(pdev, NULL);
711 }
712 return ret;
713}
714
715static int __devexit sh_cmt_remove(struct platform_device *pdev)
716{
717 return -EBUSY; /* cannot unregister clockevent and clocksource */
718}
719
720static struct platform_driver sh_cmt_device_driver = {
721 .probe = sh_cmt_probe,
722 .remove = __devexit_p(sh_cmt_remove),
723 .driver = {
724 .name = "sh_cmt",
725 }
726};
727
728static int __init sh_cmt_init(void)
729{
730 return platform_driver_register(&sh_cmt_device_driver);
731}
732
733static void __exit sh_cmt_exit(void)
734{
735 platform_driver_unregister(&sh_cmt_device_driver);
736}
737
738early_platform_init("earlytimer", &sh_cmt_device_driver);
739module_init(sh_cmt_init);
740module_exit(sh_cmt_exit);
741
742MODULE_AUTHOR("Magnus Damm");
743MODULE_DESCRIPTION("SuperH CMT Timer Driver");
744MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
6 */
7
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/ioport.h>
17#include <linux/irq.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21#include <linux/platform_device.h>
22#include <linux/pm_domain.h>
23#include <linux/pm_runtime.h>
24#include <linux/sh_timer.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
27
28#ifdef CONFIG_SUPERH
29#include <asm/platform_early.h>
30#endif
31
32struct sh_cmt_device;
33
34/*
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
38 *
39 * 16B 32B 32B-F 48B R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
45 *
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
49 *
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
57 * block at 0x60.
58 *
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61 */
62
63enum sh_cmt_model {
64 SH_CMT_16BIT,
65 SH_CMT_32BIT,
66 SH_CMT_48BIT,
67 SH_CMT0_RCAR_GEN2,
68 SH_CMT1_RCAR_GEN2,
69};
70
71struct sh_cmt_info {
72 enum sh_cmt_model model;
73
74 unsigned int channels_mask;
75
76 unsigned long width; /* 16 or 32 bit version of hardware block */
77 u32 overflow_bit;
78 u32 clear_bits;
79
80 /* callbacks for CMSTR and CMCSR access */
81 u32 (*read_control)(void __iomem *base, unsigned long offs);
82 void (*write_control)(void __iomem *base, unsigned long offs,
83 u32 value);
84
85 /* callbacks for CMCNT and CMCOR access */
86 u32 (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88};
89
90struct sh_cmt_channel {
91 struct sh_cmt_device *cmt;
92
93 unsigned int index; /* Index in the documentation */
94 unsigned int hwidx; /* Real hardware index */
95
96 void __iomem *iostart;
97 void __iomem *ioctrl;
98
99 unsigned int timer_bit;
100 unsigned long flags;
101 u32 match_value;
102 u32 next_match_value;
103 u32 max_match_value;
104 raw_spinlock_t lock;
105 struct clock_event_device ced;
106 struct clocksource cs;
107 u64 total_cycles;
108 bool cs_enabled;
109};
110
111struct sh_cmt_device {
112 struct platform_device *pdev;
113
114 const struct sh_cmt_info *info;
115
116 void __iomem *mapbase;
117 struct clk *clk;
118 unsigned long rate;
119
120 raw_spinlock_t lock; /* Protect the shared start/stop register */
121
122 struct sh_cmt_channel *channels;
123 unsigned int num_channels;
124 unsigned int hw_channels;
125
126 bool has_clockevent;
127 bool has_clocksource;
128};
129
130#define SH_CMT16_CMCSR_CMF (1 << 7)
131#define SH_CMT16_CMCSR_CMIE (1 << 6)
132#define SH_CMT16_CMCSR_CKS8 (0 << 0)
133#define SH_CMT16_CMCSR_CKS32 (1 << 0)
134#define SH_CMT16_CMCSR_CKS128 (2 << 0)
135#define SH_CMT16_CMCSR_CKS512 (3 << 0)
136#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
137
138#define SH_CMT32_CMCSR_CMF (1 << 15)
139#define SH_CMT32_CMCSR_OVF (1 << 14)
140#define SH_CMT32_CMCSR_WRFLG (1 << 13)
141#define SH_CMT32_CMCSR_STTF (1 << 12)
142#define SH_CMT32_CMCSR_STPF (1 << 11)
143#define SH_CMT32_CMCSR_SSIE (1 << 10)
144#define SH_CMT32_CMCSR_CMS (1 << 9)
145#define SH_CMT32_CMCSR_CMM (1 << 8)
146#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
147#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
148#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
149#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
150#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
151#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
152#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
153#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
154#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
156#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
157
158static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159{
160 return ioread16(base + (offs << 1));
161}
162
163static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164{
165 return ioread32(base + (offs << 2));
166}
167
168static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169{
170 iowrite16(value, base + (offs << 1));
171}
172
173static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174{
175 iowrite32(value, base + (offs << 2));
176}
177
178static const struct sh_cmt_info sh_cmt_info[] = {
179 [SH_CMT_16BIT] = {
180 .model = SH_CMT_16BIT,
181 .width = 16,
182 .overflow_bit = SH_CMT16_CMCSR_CMF,
183 .clear_bits = ~SH_CMT16_CMCSR_CMF,
184 .read_control = sh_cmt_read16,
185 .write_control = sh_cmt_write16,
186 .read_count = sh_cmt_read16,
187 .write_count = sh_cmt_write16,
188 },
189 [SH_CMT_32BIT] = {
190 .model = SH_CMT_32BIT,
191 .width = 32,
192 .overflow_bit = SH_CMT32_CMCSR_CMF,
193 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194 .read_control = sh_cmt_read16,
195 .write_control = sh_cmt_write16,
196 .read_count = sh_cmt_read32,
197 .write_count = sh_cmt_write32,
198 },
199 [SH_CMT_48BIT] = {
200 .model = SH_CMT_48BIT,
201 .channels_mask = 0x3f,
202 .width = 32,
203 .overflow_bit = SH_CMT32_CMCSR_CMF,
204 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205 .read_control = sh_cmt_read32,
206 .write_control = sh_cmt_write32,
207 .read_count = sh_cmt_read32,
208 .write_count = sh_cmt_write32,
209 },
210 [SH_CMT0_RCAR_GEN2] = {
211 .model = SH_CMT0_RCAR_GEN2,
212 .channels_mask = 0x60,
213 .width = 32,
214 .overflow_bit = SH_CMT32_CMCSR_CMF,
215 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 .read_control = sh_cmt_read32,
217 .write_control = sh_cmt_write32,
218 .read_count = sh_cmt_read32,
219 .write_count = sh_cmt_write32,
220 },
221 [SH_CMT1_RCAR_GEN2] = {
222 .model = SH_CMT1_RCAR_GEN2,
223 .channels_mask = 0xff,
224 .width = 32,
225 .overflow_bit = SH_CMT32_CMCSR_CMF,
226 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227 .read_control = sh_cmt_read32,
228 .write_control = sh_cmt_write32,
229 .read_count = sh_cmt_read32,
230 .write_count = sh_cmt_write32,
231 },
232};
233
234#define CMCSR 0 /* channel register */
235#define CMCNT 1 /* channel register */
236#define CMCOR 2 /* channel register */
237
238static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
239{
240 if (ch->iostart)
241 return ch->cmt->info->read_control(ch->iostart, 0);
242 else
243 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
244}
245
246static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
247{
248 if (ch->iostart)
249 ch->cmt->info->write_control(ch->iostart, 0, value);
250 else
251 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252}
253
254static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255{
256 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257}
258
259static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
260{
261 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
262}
263
264static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
265{
266 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
267}
268
269static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
270{
271 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
272}
273
274static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
275{
276 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
277}
278
279static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
280{
281 u32 v1, v2, v3;
282 u32 o1, o2;
283
284 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
285
286 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
287 do {
288 o2 = o1;
289 v1 = sh_cmt_read_cmcnt(ch);
290 v2 = sh_cmt_read_cmcnt(ch);
291 v3 = sh_cmt_read_cmcnt(ch);
292 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
293 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
294 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
295
296 *has_wrapped = o1;
297 return v2;
298}
299
300static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
301{
302 unsigned long flags;
303 u32 value;
304
305 /* start stop register shared by multiple timer channels */
306 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
307 value = sh_cmt_read_cmstr(ch);
308
309 if (start)
310 value |= 1 << ch->timer_bit;
311 else
312 value &= ~(1 << ch->timer_bit);
313
314 sh_cmt_write_cmstr(ch, value);
315 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
316}
317
318static int sh_cmt_enable(struct sh_cmt_channel *ch)
319{
320 int k, ret;
321
322 pm_runtime_get_sync(&ch->cmt->pdev->dev);
323 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
324
325 /* enable clock */
326 ret = clk_enable(ch->cmt->clk);
327 if (ret) {
328 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
329 ch->index);
330 goto err0;
331 }
332
333 /* make sure channel is disabled */
334 sh_cmt_start_stop_ch(ch, 0);
335
336 /* configure channel, periodic mode and maximum timeout */
337 if (ch->cmt->info->width == 16) {
338 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
339 SH_CMT16_CMCSR_CKS512);
340 } else {
341 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
342 SH_CMT32_CMCSR_CMTOUT_IE |
343 SH_CMT32_CMCSR_CMR_IRQ |
344 SH_CMT32_CMCSR_CKS_RCLK8);
345 }
346
347 sh_cmt_write_cmcor(ch, 0xffffffff);
348 sh_cmt_write_cmcnt(ch, 0);
349
350 /*
351 * According to the sh73a0 user's manual, as CMCNT can be operated
352 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
353 * modifying CMCNT register; two RCLK cycles are necessary before
354 * this register is either read or any modification of the value
355 * it holds is reflected in the LSI's actual operation.
356 *
357 * While at it, we're supposed to clear out the CMCNT as of this
358 * moment, so make sure it's processed properly here. This will
359 * take RCLKx2 at maximum.
360 */
361 for (k = 0; k < 100; k++) {
362 if (!sh_cmt_read_cmcnt(ch))
363 break;
364 udelay(1);
365 }
366
367 if (sh_cmt_read_cmcnt(ch)) {
368 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
369 ch->index);
370 ret = -ETIMEDOUT;
371 goto err1;
372 }
373
374 /* enable channel */
375 sh_cmt_start_stop_ch(ch, 1);
376 return 0;
377 err1:
378 /* stop clock */
379 clk_disable(ch->cmt->clk);
380
381 err0:
382 return ret;
383}
384
385static void sh_cmt_disable(struct sh_cmt_channel *ch)
386{
387 /* disable channel */
388 sh_cmt_start_stop_ch(ch, 0);
389
390 /* disable interrupts in CMT block */
391 sh_cmt_write_cmcsr(ch, 0);
392
393 /* stop clock */
394 clk_disable(ch->cmt->clk);
395
396 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
397 pm_runtime_put(&ch->cmt->pdev->dev);
398}
399
400/* private flags */
401#define FLAG_CLOCKEVENT (1 << 0)
402#define FLAG_CLOCKSOURCE (1 << 1)
403#define FLAG_REPROGRAM (1 << 2)
404#define FLAG_SKIPEVENT (1 << 3)
405#define FLAG_IRQCONTEXT (1 << 4)
406
407static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
408 int absolute)
409{
410 u32 value = ch->next_match_value;
411 u32 new_match;
412 u32 delay = 0;
413 u32 now = 0;
414 u32 has_wrapped;
415
416 now = sh_cmt_get_counter(ch, &has_wrapped);
417 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
418
419 if (has_wrapped) {
420 /* we're competing with the interrupt handler.
421 * -> let the interrupt handler reprogram the timer.
422 * -> interrupt number two handles the event.
423 */
424 ch->flags |= FLAG_SKIPEVENT;
425 return;
426 }
427
428 if (absolute)
429 now = 0;
430
431 do {
432 /* reprogram the timer hardware,
433 * but don't save the new match value yet.
434 */
435 new_match = now + value + delay;
436 if (new_match > ch->max_match_value)
437 new_match = ch->max_match_value;
438
439 sh_cmt_write_cmcor(ch, new_match);
440
441 now = sh_cmt_get_counter(ch, &has_wrapped);
442 if (has_wrapped && (new_match > ch->match_value)) {
443 /* we are changing to a greater match value,
444 * so this wrap must be caused by the counter
445 * matching the old value.
446 * -> first interrupt reprograms the timer.
447 * -> interrupt number two handles the event.
448 */
449 ch->flags |= FLAG_SKIPEVENT;
450 break;
451 }
452
453 if (has_wrapped) {
454 /* we are changing to a smaller match value,
455 * so the wrap must be caused by the counter
456 * matching the new value.
457 * -> save programmed match value.
458 * -> let isr handle the event.
459 */
460 ch->match_value = new_match;
461 break;
462 }
463
464 /* be safe: verify hardware settings */
465 if (now < new_match) {
466 /* timer value is below match value, all good.
467 * this makes sure we won't miss any match events.
468 * -> save programmed match value.
469 * -> let isr handle the event.
470 */
471 ch->match_value = new_match;
472 break;
473 }
474
475 /* the counter has reached a value greater
476 * than our new match value. and since the
477 * has_wrapped flag isn't set we must have
478 * programmed a too close event.
479 * -> increase delay and retry.
480 */
481 if (delay)
482 delay <<= 1;
483 else
484 delay = 1;
485
486 if (!delay)
487 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
488 ch->index);
489
490 } while (delay);
491}
492
493static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
494{
495 if (delta > ch->max_match_value)
496 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
497 ch->index);
498
499 ch->next_match_value = delta;
500 sh_cmt_clock_event_program_verify(ch, 0);
501}
502
503static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
504{
505 unsigned long flags;
506
507 raw_spin_lock_irqsave(&ch->lock, flags);
508 __sh_cmt_set_next(ch, delta);
509 raw_spin_unlock_irqrestore(&ch->lock, flags);
510}
511
512static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
513{
514 struct sh_cmt_channel *ch = dev_id;
515
516 /* clear flags */
517 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
518 ch->cmt->info->clear_bits);
519
520 /* update clock source counter to begin with if enabled
521 * the wrap flag should be cleared by the timer specific
522 * isr before we end up here.
523 */
524 if (ch->flags & FLAG_CLOCKSOURCE)
525 ch->total_cycles += ch->match_value + 1;
526
527 if (!(ch->flags & FLAG_REPROGRAM))
528 ch->next_match_value = ch->max_match_value;
529
530 ch->flags |= FLAG_IRQCONTEXT;
531
532 if (ch->flags & FLAG_CLOCKEVENT) {
533 if (!(ch->flags & FLAG_SKIPEVENT)) {
534 if (clockevent_state_oneshot(&ch->ced)) {
535 ch->next_match_value = ch->max_match_value;
536 ch->flags |= FLAG_REPROGRAM;
537 }
538
539 ch->ced.event_handler(&ch->ced);
540 }
541 }
542
543 ch->flags &= ~FLAG_SKIPEVENT;
544
545 if (ch->flags & FLAG_REPROGRAM) {
546 ch->flags &= ~FLAG_REPROGRAM;
547 sh_cmt_clock_event_program_verify(ch, 1);
548
549 if (ch->flags & FLAG_CLOCKEVENT)
550 if ((clockevent_state_shutdown(&ch->ced))
551 || (ch->match_value == ch->next_match_value))
552 ch->flags &= ~FLAG_REPROGRAM;
553 }
554
555 ch->flags &= ~FLAG_IRQCONTEXT;
556
557 return IRQ_HANDLED;
558}
559
560static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
561{
562 int ret = 0;
563 unsigned long flags;
564
565 raw_spin_lock_irqsave(&ch->lock, flags);
566
567 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
568 ret = sh_cmt_enable(ch);
569
570 if (ret)
571 goto out;
572 ch->flags |= flag;
573
574 /* setup timeout if no clockevent */
575 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
576 __sh_cmt_set_next(ch, ch->max_match_value);
577 out:
578 raw_spin_unlock_irqrestore(&ch->lock, flags);
579
580 return ret;
581}
582
583static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
584{
585 unsigned long flags;
586 unsigned long f;
587
588 raw_spin_lock_irqsave(&ch->lock, flags);
589
590 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
591 ch->flags &= ~flag;
592
593 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
594 sh_cmt_disable(ch);
595
596 /* adjust the timeout to maximum if only clocksource left */
597 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
598 __sh_cmt_set_next(ch, ch->max_match_value);
599
600 raw_spin_unlock_irqrestore(&ch->lock, flags);
601}
602
603static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
604{
605 return container_of(cs, struct sh_cmt_channel, cs);
606}
607
608static u64 sh_cmt_clocksource_read(struct clocksource *cs)
609{
610 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
611 unsigned long flags;
612 u32 has_wrapped;
613 u64 value;
614 u32 raw;
615
616 raw_spin_lock_irqsave(&ch->lock, flags);
617 value = ch->total_cycles;
618 raw = sh_cmt_get_counter(ch, &has_wrapped);
619
620 if (unlikely(has_wrapped))
621 raw += ch->match_value + 1;
622 raw_spin_unlock_irqrestore(&ch->lock, flags);
623
624 return value + raw;
625}
626
627static int sh_cmt_clocksource_enable(struct clocksource *cs)
628{
629 int ret;
630 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
631
632 WARN_ON(ch->cs_enabled);
633
634 ch->total_cycles = 0;
635
636 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
637 if (!ret)
638 ch->cs_enabled = true;
639
640 return ret;
641}
642
643static void sh_cmt_clocksource_disable(struct clocksource *cs)
644{
645 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
646
647 WARN_ON(!ch->cs_enabled);
648
649 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
650 ch->cs_enabled = false;
651}
652
653static void sh_cmt_clocksource_suspend(struct clocksource *cs)
654{
655 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
656
657 if (!ch->cs_enabled)
658 return;
659
660 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
661 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
662}
663
664static void sh_cmt_clocksource_resume(struct clocksource *cs)
665{
666 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
667
668 if (!ch->cs_enabled)
669 return;
670
671 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
672 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
673}
674
675static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
676 const char *name)
677{
678 struct clocksource *cs = &ch->cs;
679
680 cs->name = name;
681 cs->rating = 125;
682 cs->read = sh_cmt_clocksource_read;
683 cs->enable = sh_cmt_clocksource_enable;
684 cs->disable = sh_cmt_clocksource_disable;
685 cs->suspend = sh_cmt_clocksource_suspend;
686 cs->resume = sh_cmt_clocksource_resume;
687 cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
688 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
689
690 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
691 ch->index);
692
693 clocksource_register_hz(cs, ch->cmt->rate);
694 return 0;
695}
696
697static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
698{
699 return container_of(ced, struct sh_cmt_channel, ced);
700}
701
702static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
703{
704 sh_cmt_start(ch, FLAG_CLOCKEVENT);
705
706 if (periodic)
707 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
708 else
709 sh_cmt_set_next(ch, ch->max_match_value);
710}
711
712static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
713{
714 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
715
716 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
717 return 0;
718}
719
720static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
721 int periodic)
722{
723 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
724
725 /* deal with old setting first */
726 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
727 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
728
729 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
730 ch->index, periodic ? "periodic" : "oneshot");
731 sh_cmt_clock_event_start(ch, periodic);
732 return 0;
733}
734
735static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
736{
737 return sh_cmt_clock_event_set_state(ced, 0);
738}
739
740static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
741{
742 return sh_cmt_clock_event_set_state(ced, 1);
743}
744
745static int sh_cmt_clock_event_next(unsigned long delta,
746 struct clock_event_device *ced)
747{
748 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
749
750 BUG_ON(!clockevent_state_oneshot(ced));
751 if (likely(ch->flags & FLAG_IRQCONTEXT))
752 ch->next_match_value = delta - 1;
753 else
754 sh_cmt_set_next(ch, delta - 1);
755
756 return 0;
757}
758
759static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
760{
761 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
762
763 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
764 clk_unprepare(ch->cmt->clk);
765}
766
767static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
768{
769 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
770
771 clk_prepare(ch->cmt->clk);
772 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
773}
774
775static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
776 const char *name)
777{
778 struct clock_event_device *ced = &ch->ced;
779 int irq;
780 int ret;
781
782 irq = platform_get_irq(ch->cmt->pdev, ch->index);
783 if (irq < 0)
784 return irq;
785
786 ret = request_irq(irq, sh_cmt_interrupt,
787 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
788 dev_name(&ch->cmt->pdev->dev), ch);
789 if (ret) {
790 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
791 ch->index, irq);
792 return ret;
793 }
794
795 ced->name = name;
796 ced->features = CLOCK_EVT_FEAT_PERIODIC;
797 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
798 ced->rating = 125;
799 ced->cpumask = cpu_possible_mask;
800 ced->set_next_event = sh_cmt_clock_event_next;
801 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
802 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
803 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
804 ced->suspend = sh_cmt_clock_event_suspend;
805 ced->resume = sh_cmt_clock_event_resume;
806
807 /* TODO: calculate good shift from rate and counter bit width */
808 ced->shift = 32;
809 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
810 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
811 ced->max_delta_ticks = ch->max_match_value;
812 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
813 ced->min_delta_ticks = 0x1f;
814
815 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
816 ch->index);
817 clockevents_register_device(ced);
818
819 return 0;
820}
821
822static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
823 bool clockevent, bool clocksource)
824{
825 int ret;
826
827 if (clockevent) {
828 ch->cmt->has_clockevent = true;
829 ret = sh_cmt_register_clockevent(ch, name);
830 if (ret < 0)
831 return ret;
832 }
833
834 if (clocksource) {
835 ch->cmt->has_clocksource = true;
836 sh_cmt_register_clocksource(ch, name);
837 }
838
839 return 0;
840}
841
842static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
843 unsigned int hwidx, bool clockevent,
844 bool clocksource, struct sh_cmt_device *cmt)
845{
846 int ret;
847
848 /* Skip unused channels. */
849 if (!clockevent && !clocksource)
850 return 0;
851
852 ch->cmt = cmt;
853 ch->index = index;
854 ch->hwidx = hwidx;
855 ch->timer_bit = hwidx;
856
857 /*
858 * Compute the address of the channel control register block. For the
859 * timers with a per-channel start/stop register, compute its address
860 * as well.
861 */
862 switch (cmt->info->model) {
863 case SH_CMT_16BIT:
864 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
865 break;
866 case SH_CMT_32BIT:
867 case SH_CMT_48BIT:
868 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
869 break;
870 case SH_CMT0_RCAR_GEN2:
871 case SH_CMT1_RCAR_GEN2:
872 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
873 ch->ioctrl = ch->iostart + 0x10;
874 ch->timer_bit = 0;
875 break;
876 }
877
878 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
879 ch->max_match_value = ~0;
880 else
881 ch->max_match_value = (1 << cmt->info->width) - 1;
882
883 ch->match_value = ch->max_match_value;
884 raw_spin_lock_init(&ch->lock);
885
886 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
887 clockevent, clocksource);
888 if (ret) {
889 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
890 ch->index);
891 return ret;
892 }
893 ch->cs_enabled = false;
894
895 return 0;
896}
897
898static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
899{
900 struct resource *mem;
901
902 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
903 if (!mem) {
904 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
905 return -ENXIO;
906 }
907
908 cmt->mapbase = ioremap(mem->start, resource_size(mem));
909 if (cmt->mapbase == NULL) {
910 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
911 return -ENXIO;
912 }
913
914 return 0;
915}
916
917static const struct platform_device_id sh_cmt_id_table[] = {
918 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
919 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
920 { }
921};
922MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
923
924static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
925 {
926 /* deprecated, preserved for backward compatibility */
927 .compatible = "renesas,cmt-48",
928 .data = &sh_cmt_info[SH_CMT_48BIT]
929 },
930 {
931 /* deprecated, preserved for backward compatibility */
932 .compatible = "renesas,cmt-48-gen2",
933 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
934 },
935 {
936 .compatible = "renesas,r8a7740-cmt1",
937 .data = &sh_cmt_info[SH_CMT_48BIT]
938 },
939 {
940 .compatible = "renesas,sh73a0-cmt1",
941 .data = &sh_cmt_info[SH_CMT_48BIT]
942 },
943 {
944 .compatible = "renesas,rcar-gen2-cmt0",
945 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
946 },
947 {
948 .compatible = "renesas,rcar-gen2-cmt1",
949 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
950 },
951 {
952 .compatible = "renesas,rcar-gen3-cmt0",
953 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
954 },
955 {
956 .compatible = "renesas,rcar-gen3-cmt1",
957 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
958 },
959 { }
960};
961MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
962
963static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
964{
965 unsigned int mask;
966 unsigned int i;
967 int ret;
968
969 cmt->pdev = pdev;
970 raw_spin_lock_init(&cmt->lock);
971
972 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
973 cmt->info = of_device_get_match_data(&pdev->dev);
974 cmt->hw_channels = cmt->info->channels_mask;
975 } else if (pdev->dev.platform_data) {
976 struct sh_timer_config *cfg = pdev->dev.platform_data;
977 const struct platform_device_id *id = pdev->id_entry;
978
979 cmt->info = (const struct sh_cmt_info *)id->driver_data;
980 cmt->hw_channels = cfg->channels_mask;
981 } else {
982 dev_err(&cmt->pdev->dev, "missing platform data\n");
983 return -ENXIO;
984 }
985
986 /* Get hold of clock. */
987 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
988 if (IS_ERR(cmt->clk)) {
989 dev_err(&cmt->pdev->dev, "cannot get clock\n");
990 return PTR_ERR(cmt->clk);
991 }
992
993 ret = clk_prepare(cmt->clk);
994 if (ret < 0)
995 goto err_clk_put;
996
997 /* Determine clock rate. */
998 ret = clk_enable(cmt->clk);
999 if (ret < 0)
1000 goto err_clk_unprepare;
1001
1002 if (cmt->info->width == 16)
1003 cmt->rate = clk_get_rate(cmt->clk) / 512;
1004 else
1005 cmt->rate = clk_get_rate(cmt->clk) / 8;
1006
1007 clk_disable(cmt->clk);
1008
1009 /* Map the memory resource(s). */
1010 ret = sh_cmt_map_memory(cmt);
1011 if (ret < 0)
1012 goto err_clk_unprepare;
1013
1014 /* Allocate and setup the channels. */
1015 cmt->num_channels = hweight8(cmt->hw_channels);
1016 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1017 GFP_KERNEL);
1018 if (cmt->channels == NULL) {
1019 ret = -ENOMEM;
1020 goto err_unmap;
1021 }
1022
1023 /*
1024 * Use the first channel as a clock event device and the second channel
1025 * as a clock source. If only one channel is available use it for both.
1026 */
1027 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1028 unsigned int hwidx = ffs(mask) - 1;
1029 bool clocksource = i == 1 || cmt->num_channels == 1;
1030 bool clockevent = i == 0;
1031
1032 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1033 clockevent, clocksource, cmt);
1034 if (ret < 0)
1035 goto err_unmap;
1036
1037 mask &= ~(1 << hwidx);
1038 }
1039
1040 platform_set_drvdata(pdev, cmt);
1041
1042 return 0;
1043
1044err_unmap:
1045 kfree(cmt->channels);
1046 iounmap(cmt->mapbase);
1047err_clk_unprepare:
1048 clk_unprepare(cmt->clk);
1049err_clk_put:
1050 clk_put(cmt->clk);
1051 return ret;
1052}
1053
1054static int sh_cmt_probe(struct platform_device *pdev)
1055{
1056 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1057 int ret;
1058
1059 if (!is_sh_early_platform_device(pdev)) {
1060 pm_runtime_set_active(&pdev->dev);
1061 pm_runtime_enable(&pdev->dev);
1062 }
1063
1064 if (cmt) {
1065 dev_info(&pdev->dev, "kept as earlytimer\n");
1066 goto out;
1067 }
1068
1069 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1070 if (cmt == NULL)
1071 return -ENOMEM;
1072
1073 ret = sh_cmt_setup(cmt, pdev);
1074 if (ret) {
1075 kfree(cmt);
1076 pm_runtime_idle(&pdev->dev);
1077 return ret;
1078 }
1079 if (is_sh_early_platform_device(pdev))
1080 return 0;
1081
1082 out:
1083 if (cmt->has_clockevent || cmt->has_clocksource)
1084 pm_runtime_irq_safe(&pdev->dev);
1085 else
1086 pm_runtime_idle(&pdev->dev);
1087
1088 return 0;
1089}
1090
1091static int sh_cmt_remove(struct platform_device *pdev)
1092{
1093 return -EBUSY; /* cannot unregister clockevent and clocksource */
1094}
1095
1096static struct platform_driver sh_cmt_device_driver = {
1097 .probe = sh_cmt_probe,
1098 .remove = sh_cmt_remove,
1099 .driver = {
1100 .name = "sh_cmt",
1101 .of_match_table = of_match_ptr(sh_cmt_of_table),
1102 },
1103 .id_table = sh_cmt_id_table,
1104};
1105
1106static int __init sh_cmt_init(void)
1107{
1108 return platform_driver_register(&sh_cmt_device_driver);
1109}
1110
1111static void __exit sh_cmt_exit(void)
1112{
1113 platform_driver_unregister(&sh_cmt_device_driver);
1114}
1115
1116#ifdef CONFIG_SUPERH
1117sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1118#endif
1119
1120subsys_initcall(sh_cmt_init);
1121module_exit(sh_cmt_exit);
1122
1123MODULE_AUTHOR("Magnus Damm");
1124MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1125MODULE_LICENSE("GPL v2");