Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * SuperH Timer Support - CMT
  3 *
  4 *  Copyright (C) 2008 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 
 
 
 
 
 20#include <linux/init.h>
 21#include <linux/platform_device.h>
 22#include <linux/spinlock.h>
 23#include <linux/interrupt.h>
 24#include <linux/ioport.h>
 25#include <linux/io.h>
 26#include <linux/clk.h>
 27#include <linux/irq.h>
 28#include <linux/err.h>
 29#include <linux/delay.h>
 30#include <linux/clocksource.h>
 31#include <linux/clockchips.h>
 32#include <linux/sh_timer.h>
 33#include <linux/slab.h>
 34#include <linux/module.h>
 
 
 
 35#include <linux/pm_domain.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37struct sh_cmt_priv {
 38	void __iomem *mapbase;
 39	struct clk *clk;
 40	unsigned long width; /* 16 or 32 bit version of hardware block */
 41	unsigned long overflow_bit;
 42	unsigned long clear_bits;
 43	struct irqaction irqaction;
 44	struct platform_device *pdev;
 
 
 
 
 
 
 
 
 45
 
 
 
 
 
 
 
 
 
 
 46	unsigned long flags;
 47	unsigned long match_value;
 48	unsigned long next_match_value;
 49	unsigned long max_match_value;
 50	unsigned long rate;
 51	raw_spinlock_t lock;
 52	struct clock_event_device ced;
 53	struct clocksource cs;
 54	unsigned long total_cycles;
 
 55};
 56
 57static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58
 59#define CMSTR -1 /* shared register */
 60#define CMCSR 0 /* channel register */
 61#define CMCNT 1 /* channel register */
 62#define CMCOR 2 /* channel register */
 63
 64static inline unsigned long sh_cmt_read(struct sh_cmt_priv *p, int reg_nr)
 
 
 65{
 66	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
 67	void __iomem *base = p->mapbase;
 68	unsigned long offs;
 69
 70	if (reg_nr == CMSTR) {
 71		offs = 0;
 72		base -= cfg->channel_offset;
 73	} else
 74		offs = reg_nr;
 75
 76	if (p->width == 16)
 77		offs <<= 1;
 78	else {
 79		offs <<= 2;
 80		if ((reg_nr == CMCNT) || (reg_nr == CMCOR))
 81			return ioread32(base + offs);
 82	}
 83
 84	return ioread16(base + offs);
 85}
 86
 87static inline void sh_cmt_write(struct sh_cmt_priv *p, int reg_nr,
 88				unsigned long value)
 89{
 90	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
 91	void __iomem *base = p->mapbase;
 92	unsigned long offs;
 93
 94	if (reg_nr == CMSTR) {
 95		offs = 0;
 96		base -= cfg->channel_offset;
 97	} else
 98		offs = reg_nr;
 99
100	if (p->width == 16)
101		offs <<= 1;
102	else {
103		offs <<= 2;
104		if ((reg_nr == CMCNT) || (reg_nr == CMCOR)) {
105			iowrite32(value, base + offs);
106			return;
107		}
108	}
109
110	iowrite16(value, base + offs);
 
 
 
 
 
111}
112
113static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
114					int *has_wrapped)
115{
116	unsigned long v1, v2, v3;
117	int o1, o2;
118
119	o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
121	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
122	do {
123		o2 = o1;
124		v1 = sh_cmt_read(p, CMCNT);
125		v2 = sh_cmt_read(p, CMCNT);
126		v3 = sh_cmt_read(p, CMCNT);
127		o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
128	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
129			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
130
131	*has_wrapped = o1;
132	return v2;
133}
134
135
136static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
137{
138	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
139	unsigned long flags, value;
140
141	/* start stop register shared by multiple timer channels */
142	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
143	value = sh_cmt_read(p, CMSTR);
144
145	if (start)
146		value |= 1 << cfg->timer_bit;
147	else
148		value &= ~(1 << cfg->timer_bit);
149
150	sh_cmt_write(p, CMSTR, value);
151	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
152}
153
154static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
155{
156	int k, ret;
157
 
 
158	/* enable clock */
159	ret = clk_enable(p->clk);
160	if (ret) {
161		dev_err(&p->pdev->dev, "cannot enable clock\n");
 
162		goto err0;
163	}
164
165	/* make sure channel is disabled */
166	sh_cmt_start_stop_ch(p, 0);
167
168	/* configure channel, periodic mode and maximum timeout */
169	if (p->width == 16) {
170		*rate = clk_get_rate(p->clk) / 512;
171		sh_cmt_write(p, CMCSR, 0x43);
172	} else {
173		*rate = clk_get_rate(p->clk) / 8;
174		sh_cmt_write(p, CMCSR, 0x01a4);
 
 
 
175	}
176
177	sh_cmt_write(p, CMCOR, 0xffffffff);
178	sh_cmt_write(p, CMCNT, 0);
179
180	/*
181	 * According to the sh73a0 user's manual, as CMCNT can be operated
182	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
183	 * modifying CMCNT register; two RCLK cycles are necessary before
184	 * this register is either read or any modification of the value
185	 * it holds is reflected in the LSI's actual operation.
186	 *
187	 * While at it, we're supposed to clear out the CMCNT as of this
188	 * moment, so make sure it's processed properly here.  This will
189	 * take RCLKx2 at maximum.
190	 */
191	for (k = 0; k < 100; k++) {
192		if (!sh_cmt_read(p, CMCNT))
193			break;
194		udelay(1);
195	}
196
197	if (sh_cmt_read(p, CMCNT)) {
198		dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
 
199		ret = -ETIMEDOUT;
200		goto err1;
201	}
202
203	/* enable channel */
204	sh_cmt_start_stop_ch(p, 1);
205	return 0;
206 err1:
207	/* stop clock */
208	clk_disable(p->clk);
209
210 err0:
211	return ret;
212}
213
214static void sh_cmt_disable(struct sh_cmt_priv *p)
215{
216	/* disable channel */
217	sh_cmt_start_stop_ch(p, 0);
218
219	/* disable interrupts in CMT block */
220	sh_cmt_write(p, CMCSR, 0);
221
222	/* stop clock */
223	clk_disable(p->clk);
 
 
224}
225
226/* private flags */
227#define FLAG_CLOCKEVENT (1 << 0)
228#define FLAG_CLOCKSOURCE (1 << 1)
229#define FLAG_REPROGRAM (1 << 2)
230#define FLAG_SKIPEVENT (1 << 3)
231#define FLAG_IRQCONTEXT (1 << 4)
232
233static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
234					      int absolute)
235{
236	unsigned long new_match;
237	unsigned long value = p->next_match_value;
238	unsigned long delay = 0;
239	unsigned long now = 0;
240	int has_wrapped;
241
242	now = sh_cmt_get_counter(p, &has_wrapped);
243	p->flags |= FLAG_REPROGRAM; /* force reprogram */
244
245	if (has_wrapped) {
246		/* we're competing with the interrupt handler.
247		 *  -> let the interrupt handler reprogram the timer.
248		 *  -> interrupt number two handles the event.
249		 */
250		p->flags |= FLAG_SKIPEVENT;
251		return;
252	}
253
254	if (absolute)
255		now = 0;
256
257	do {
258		/* reprogram the timer hardware,
259		 * but don't save the new match value yet.
260		 */
261		new_match = now + value + delay;
262		if (new_match > p->max_match_value)
263			new_match = p->max_match_value;
264
265		sh_cmt_write(p, CMCOR, new_match);
266
267		now = sh_cmt_get_counter(p, &has_wrapped);
268		if (has_wrapped && (new_match > p->match_value)) {
269			/* we are changing to a greater match value,
270			 * so this wrap must be caused by the counter
271			 * matching the old value.
272			 * -> first interrupt reprograms the timer.
273			 * -> interrupt number two handles the event.
274			 */
275			p->flags |= FLAG_SKIPEVENT;
276			break;
277		}
278
279		if (has_wrapped) {
280			/* we are changing to a smaller match value,
281			 * so the wrap must be caused by the counter
282			 * matching the new value.
283			 * -> save programmed match value.
284			 * -> let isr handle the event.
285			 */
286			p->match_value = new_match;
287			break;
288		}
289
290		/* be safe: verify hardware settings */
291		if (now < new_match) {
292			/* timer value is below match value, all good.
293			 * this makes sure we won't miss any match events.
294			 * -> save programmed match value.
295			 * -> let isr handle the event.
296			 */
297			p->match_value = new_match;
298			break;
299		}
300
301		/* the counter has reached a value greater
302		 * than our new match value. and since the
303		 * has_wrapped flag isn't set we must have
304		 * programmed a too close event.
305		 * -> increase delay and retry.
306		 */
307		if (delay)
308			delay <<= 1;
309		else
310			delay = 1;
311
312		if (!delay)
313			dev_warn(&p->pdev->dev, "too long delay\n");
 
314
315	} while (delay);
316}
317
318static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
319{
320	if (delta > p->max_match_value)
321		dev_warn(&p->pdev->dev, "delta out of range\n");
 
322
323	p->next_match_value = delta;
324	sh_cmt_clock_event_program_verify(p, 0);
325}
326
327static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
328{
329	unsigned long flags;
330
331	raw_spin_lock_irqsave(&p->lock, flags);
332	__sh_cmt_set_next(p, delta);
333	raw_spin_unlock_irqrestore(&p->lock, flags);
334}
335
336static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
337{
338	struct sh_cmt_priv *p = dev_id;
339
340	/* clear flags */
341	sh_cmt_write(p, CMCSR, sh_cmt_read(p, CMCSR) & p->clear_bits);
 
342
343	/* update clock source counter to begin with if enabled
344	 * the wrap flag should be cleared by the timer specific
345	 * isr before we end up here.
346	 */
347	if (p->flags & FLAG_CLOCKSOURCE)
348		p->total_cycles += p->match_value + 1;
349
350	if (!(p->flags & FLAG_REPROGRAM))
351		p->next_match_value = p->max_match_value;
352
353	p->flags |= FLAG_IRQCONTEXT;
354
355	if (p->flags & FLAG_CLOCKEVENT) {
356		if (!(p->flags & FLAG_SKIPEVENT)) {
357			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
358				p->next_match_value = p->max_match_value;
359				p->flags |= FLAG_REPROGRAM;
360			}
361
362			p->ced.event_handler(&p->ced);
363		}
364	}
365
366	p->flags &= ~FLAG_SKIPEVENT;
367
368	if (p->flags & FLAG_REPROGRAM) {
369		p->flags &= ~FLAG_REPROGRAM;
370		sh_cmt_clock_event_program_verify(p, 1);
371
372		if (p->flags & FLAG_CLOCKEVENT)
373			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
374			    || (p->match_value == p->next_match_value))
375				p->flags &= ~FLAG_REPROGRAM;
376	}
377
378	p->flags &= ~FLAG_IRQCONTEXT;
379
380	return IRQ_HANDLED;
381}
382
383static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
384{
385	int ret = 0;
386	unsigned long flags;
387
388	raw_spin_lock_irqsave(&p->lock, flags);
 
389
390	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
391		ret = sh_cmt_enable(p, &p->rate);
 
 
 
 
 
392
393	if (ret)
394		goto out;
395	p->flags |= flag;
396
397	/* setup timeout if no clockevent */
398	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
399		__sh_cmt_set_next(p, p->max_match_value);
 
400 out:
401	raw_spin_unlock_irqrestore(&p->lock, flags);
402
403	return ret;
404}
405
406static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
407{
408	unsigned long flags;
409	unsigned long f;
410
411	raw_spin_lock_irqsave(&p->lock, flags);
412
413	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
414	p->flags &= ~flag;
415
416	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
417		sh_cmt_disable(p);
 
 
 
418
419	/* adjust the timeout to maximum if only clocksource left */
420	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
421		__sh_cmt_set_next(p, p->max_match_value);
 
 
422
423	raw_spin_unlock_irqrestore(&p->lock, flags);
 
424}
425
426static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
427{
428	return container_of(cs, struct sh_cmt_priv, cs);
429}
430
431static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
432{
433	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
434	unsigned long flags, raw;
435	unsigned long value;
436	int has_wrapped;
 
 
 
437
438	raw_spin_lock_irqsave(&p->lock, flags);
439	value = p->total_cycles;
440	raw = sh_cmt_get_counter(p, &has_wrapped);
441
442	if (unlikely(has_wrapped))
443		raw += p->match_value + 1;
444	raw_spin_unlock_irqrestore(&p->lock, flags);
445
446	return value + raw;
 
 
 
447}
448
449static int sh_cmt_clocksource_enable(struct clocksource *cs)
450{
451	int ret;
452	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
 
 
453
454	p->total_cycles = 0;
455
456	ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
457	if (!ret)
458		__clocksource_updatefreq_hz(cs, p->rate);
 
459	return ret;
460}
461
462static void sh_cmt_clocksource_disable(struct clocksource *cs)
463{
464	sh_cmt_stop(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465}
466
467static void sh_cmt_clocksource_resume(struct clocksource *cs)
468{
469	sh_cmt_start(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
 
 
 
 
 
 
470}
471
472static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
473				       char *name, unsigned long rating)
474{
475	struct clocksource *cs = &p->cs;
476
477	cs->name = name;
478	cs->rating = rating;
479	cs->read = sh_cmt_clocksource_read;
480	cs->enable = sh_cmt_clocksource_enable;
481	cs->disable = sh_cmt_clocksource_disable;
482	cs->suspend = sh_cmt_clocksource_disable;
483	cs->resume = sh_cmt_clocksource_resume;
484	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
485	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
486
487	dev_info(&p->pdev->dev, "used as clock source\n");
 
488
489	/* Register with dummy 1 Hz value, gets updated in ->enable() */
490	clocksource_register_hz(cs, 1);
491	return 0;
492}
493
494static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
495{
496	return container_of(ced, struct sh_cmt_priv, ced);
497}
498
499static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
500{
501	struct clock_event_device *ced = &p->ced;
502
503	sh_cmt_start(p, FLAG_CLOCKEVENT);
504
505	/* TODO: calculate good shift from rate and counter bit width */
506
507	ced->shift = 32;
508	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
509	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
510	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
511
512	if (periodic)
513		sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
514	else
515		sh_cmt_set_next(p, p->max_match_value);
 
 
 
 
 
 
 
 
516}
517
518static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
519				    struct clock_event_device *ced)
520{
521	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
522
523	/* deal with old setting first */
524	switch (ced->mode) {
525	case CLOCK_EVT_MODE_PERIODIC:
526	case CLOCK_EVT_MODE_ONESHOT:
527		sh_cmt_stop(p, FLAG_CLOCKEVENT);
528		break;
529	default:
530		break;
531	}
532
533	switch (mode) {
534	case CLOCK_EVT_MODE_PERIODIC:
535		dev_info(&p->pdev->dev, "used for periodic clock events\n");
536		sh_cmt_clock_event_start(p, 1);
537		break;
538	case CLOCK_EVT_MODE_ONESHOT:
539		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
540		sh_cmt_clock_event_start(p, 0);
541		break;
542	case CLOCK_EVT_MODE_SHUTDOWN:
543	case CLOCK_EVT_MODE_UNUSED:
544		sh_cmt_stop(p, FLAG_CLOCKEVENT);
545		break;
546	default:
547		break;
548	}
549}
550
551static int sh_cmt_clock_event_next(unsigned long delta,
552				   struct clock_event_device *ced)
553{
554	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
555
556	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
557	if (likely(p->flags & FLAG_IRQCONTEXT))
558		p->next_match_value = delta - 1;
559	else
560		sh_cmt_set_next(p, delta - 1);
561
562	return 0;
563}
564
565static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
566				       char *name, unsigned long rating)
 
 
 
 
 
 
 
567{
568	struct clock_event_device *ced = &p->ced;
569
570	memset(ced, 0, sizeof(*ced));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571
572	ced->name = name;
573	ced->features = CLOCK_EVT_FEAT_PERIODIC;
574	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
575	ced->rating = rating;
576	ced->cpumask = cpumask_of(0);
577	ced->set_next_event = sh_cmt_clock_event_next;
578	ced->set_mode = sh_cmt_clock_event_mode;
 
 
 
 
579
580	dev_info(&p->pdev->dev, "used for clock events\n");
 
 
 
 
 
 
 
 
 
581	clockevents_register_device(ced);
 
 
582}
583
584static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
585			   unsigned long clockevent_rating,
586			   unsigned long clocksource_rating)
587{
588	if (p->width == (sizeof(p->max_match_value) * 8))
589		p->max_match_value = ~0;
590	else
591		p->max_match_value = (1 << p->width) - 1;
592
593	p->match_value = p->max_match_value;
594	raw_spin_lock_init(&p->lock);
595
596	if (clockevent_rating)
597		sh_cmt_register_clockevent(p, name, clockevent_rating);
 
 
 
 
598
599	if (clocksource_rating)
600		sh_cmt_register_clocksource(p, name, clocksource_rating);
 
 
601
602	return 0;
603}
604
605static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
 
 
606{
607	struct sh_timer_config *cfg = pdev->dev.platform_data;
608	struct resource *res;
609	int irq, ret;
610	ret = -ENXIO;
611
612	memset(p, 0, sizeof(*p));
613	p->pdev = pdev;
 
614
615	if (!cfg) {
616		dev_err(&p->pdev->dev, "missing platform data\n");
617		goto err0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618	}
619
620	platform_set_drvdata(pdev, p);
 
 
 
621
622	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
623	if (!res) {
624		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
625		goto err0;
626	}
627
628	irq = platform_get_irq(p->pdev, 0);
629	if (irq < 0) {
630		dev_err(&p->pdev->dev, "failed to get irq\n");
631		goto err0;
 
 
632	}
 
633
634	/* map memory, let mapbase point to our channel */
635	p->mapbase = ioremap_nocache(res->start, resource_size(res));
636	if (p->mapbase == NULL) {
637		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
638		goto err0;
 
 
 
 
 
 
639	}
640
641	/* request irq using setup_irq() (too early for request_irq()) */
642	p->irqaction.name = dev_name(&p->pdev->dev);
643	p->irqaction.handler = sh_cmt_interrupt;
644	p->irqaction.dev_id = p;
645	p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
646			     IRQF_IRQPOLL  | IRQF_NOBALANCING;
647
648	/* get hold of clock */
649	p->clk = clk_get(&p->pdev->dev, "cmt_fck");
650	if (IS_ERR(p->clk)) {
651		dev_err(&p->pdev->dev, "cannot get clock\n");
652		ret = PTR_ERR(p->clk);
653		goto err1;
654	}
655
656	if (resource_size(res) == 6) {
657		p->width = 16;
658		p->overflow_bit = 0x80;
659		p->clear_bits = ~0x80;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660	} else {
661		p->width = 32;
662		p->overflow_bit = 0x8000;
663		p->clear_bits = ~0xc000;
664	}
665
666	ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
667			      cfg->clockevent_rating,
668			      cfg->clocksource_rating);
669	if (ret) {
670		dev_err(&p->pdev->dev, "registration failed\n");
671		goto err1;
672	}
673
674	ret = setup_irq(irq, &p->irqaction);
675	if (ret) {
676		dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
677		goto err1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
678	}
679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
680	return 0;
681
682err1:
683	iounmap(p->mapbase);
684err0:
 
 
 
 
 
 
685	return ret;
686}
687
688static int __devinit sh_cmt_probe(struct platform_device *pdev)
689{
690	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
691	int ret;
692
693	if (!is_early_platform_device(pdev))
694		pm_genpd_dev_always_on(&pdev->dev, true);
 
 
695
696	if (p) {
697		dev_info(&pdev->dev, "kept as earlytimer\n");
698		return 0;
699	}
700
701	p = kmalloc(sizeof(*p), GFP_KERNEL);
702	if (p == NULL) {
703		dev_err(&pdev->dev, "failed to allocate driver data\n");
704		return -ENOMEM;
705	}
706
707	ret = sh_cmt_setup(p, pdev);
708	if (ret) {
709		kfree(p);
710		platform_set_drvdata(pdev, NULL);
 
711	}
712	return ret;
 
 
 
 
 
 
 
 
 
713}
714
715static int __devexit sh_cmt_remove(struct platform_device *pdev)
716{
717	return -EBUSY; /* cannot unregister clockevent and clocksource */
718}
719
720static struct platform_driver sh_cmt_device_driver = {
721	.probe		= sh_cmt_probe,
722	.remove		= __devexit_p(sh_cmt_remove),
723	.driver		= {
724		.name	= "sh_cmt",
725	}
 
 
726};
727
728static int __init sh_cmt_init(void)
729{
730	return platform_driver_register(&sh_cmt_device_driver);
731}
732
733static void __exit sh_cmt_exit(void)
734{
735	platform_driver_unregister(&sh_cmt_device_driver);
736}
737
738early_platform_init("earlytimer", &sh_cmt_device_driver);
739module_init(sh_cmt_init);
 
 
 
740module_exit(sh_cmt_exit);
741
742MODULE_AUTHOR("Magnus Damm");
743MODULE_DESCRIPTION("SuperH CMT Timer Driver");
744MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
 
 
  14#include <linux/interrupt.h>
 
  15#include <linux/io.h>
  16#include <linux/ioport.h>
  17#include <linux/irq.h>
 
 
 
 
 
 
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28#ifdef CONFIG_SUPERH
  29#include <asm/platform_early.h>
  30#endif
  31
  32struct sh_cmt_device;
  33
  34/*
  35 * The CMT comes in 5 different identified flavours, depending not only on the
  36 * SoC but also on the particular instance. The following table lists the main
  37 * characteristics of those flavours.
  38 *
  39 *			16B	32B	32B-F	48B	R-Car Gen2
  40 * -----------------------------------------------------------------------------
  41 * Channels		2	1/4	1	6	2/8
  42 * Control Width	16	16	16	16	32
  43 * Counter Width	16	32	32	32/48	32/48
  44 * Shared Start/Stop	Y	Y	Y	Y	N
  45 *
  46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  47 * located in the channel registers block. All other versions have a shared
  48 * start/stop register located in the global space.
  49 *
  50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  51 * infers the start/stop bit position in the control register and the channel
  52 * registers block address. Some CMT instances have a subset of channels
  53 * available, in which case the index in the documentation doesn't match the
  54 * "real" index as implemented in hardware. This is for instance the case with
  55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  56 * in the documentation but using start/stop bit 5 and having its registers
  57 * block at 0x60.
  58 *
  59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  61 */
  62
  63enum sh_cmt_model {
  64	SH_CMT_16BIT,
  65	SH_CMT_32BIT,
  66	SH_CMT_48BIT,
  67	SH_CMT0_RCAR_GEN2,
  68	SH_CMT1_RCAR_GEN2,
  69};
  70
  71struct sh_cmt_info {
  72	enum sh_cmt_model model;
  73
  74	unsigned int channels_mask;
  75
 
 
 
  76	unsigned long width; /* 16 or 32 bit version of hardware block */
  77	u32 overflow_bit;
  78	u32 clear_bits;
  79
  80	/* callbacks for CMSTR and CMCSR access */
  81	u32 (*read_control)(void __iomem *base, unsigned long offs);
  82	void (*write_control)(void __iomem *base, unsigned long offs,
  83			      u32 value);
  84
  85	/* callbacks for CMCNT and CMCOR access */
  86	u32 (*read_count)(void __iomem *base, unsigned long offs);
  87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  88};
  89
  90struct sh_cmt_channel {
  91	struct sh_cmt_device *cmt;
  92
  93	unsigned int index;	/* Index in the documentation */
  94	unsigned int hwidx;	/* Real hardware index */
  95
  96	void __iomem *iostart;
  97	void __iomem *ioctrl;
  98
  99	unsigned int timer_bit;
 100	unsigned long flags;
 101	u32 match_value;
 102	u32 next_match_value;
 103	u32 max_match_value;
 
 104	raw_spinlock_t lock;
 105	struct clock_event_device ced;
 106	struct clocksource cs;
 107	u64 total_cycles;
 108	bool cs_enabled;
 109};
 110
 111struct sh_cmt_device {
 112	struct platform_device *pdev;
 113
 114	const struct sh_cmt_info *info;
 115
 116	void __iomem *mapbase;
 117	struct clk *clk;
 118	unsigned long rate;
 119
 120	raw_spinlock_t lock; /* Protect the shared start/stop register */
 121
 122	struct sh_cmt_channel *channels;
 123	unsigned int num_channels;
 124	unsigned int hw_channels;
 125
 126	bool has_clockevent;
 127	bool has_clocksource;
 128};
 129
 130#define SH_CMT16_CMCSR_CMF		(1 << 7)
 131#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 132#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 133#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 134#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 135#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 136#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 137
 138#define SH_CMT32_CMCSR_CMF		(1 << 15)
 139#define SH_CMT32_CMCSR_OVF		(1 << 14)
 140#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 141#define SH_CMT32_CMCSR_STTF		(1 << 12)
 142#define SH_CMT32_CMCSR_STPF		(1 << 11)
 143#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 144#define SH_CMT32_CMCSR_CMS		(1 << 9)
 145#define SH_CMT32_CMCSR_CMM		(1 << 8)
 146#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 147#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 148#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 149#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 150#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 151#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 152#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 153#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 154#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 156#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 157
 158static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 159{
 160	return ioread16(base + (offs << 1));
 161}
 162
 163static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 164{
 165	return ioread32(base + (offs << 2));
 166}
 167
 168static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 169{
 170	iowrite16(value, base + (offs << 1));
 171}
 172
 173static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 174{
 175	iowrite32(value, base + (offs << 2));
 176}
 177
 178static const struct sh_cmt_info sh_cmt_info[] = {
 179	[SH_CMT_16BIT] = {
 180		.model = SH_CMT_16BIT,
 181		.width = 16,
 182		.overflow_bit = SH_CMT16_CMCSR_CMF,
 183		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 184		.read_control = sh_cmt_read16,
 185		.write_control = sh_cmt_write16,
 186		.read_count = sh_cmt_read16,
 187		.write_count = sh_cmt_write16,
 188	},
 189	[SH_CMT_32BIT] = {
 190		.model = SH_CMT_32BIT,
 191		.width = 32,
 192		.overflow_bit = SH_CMT32_CMCSR_CMF,
 193		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 194		.read_control = sh_cmt_read16,
 195		.write_control = sh_cmt_write16,
 196		.read_count = sh_cmt_read32,
 197		.write_count = sh_cmt_write32,
 198	},
 199	[SH_CMT_48BIT] = {
 200		.model = SH_CMT_48BIT,
 201		.channels_mask = 0x3f,
 202		.width = 32,
 203		.overflow_bit = SH_CMT32_CMCSR_CMF,
 204		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 205		.read_control = sh_cmt_read32,
 206		.write_control = sh_cmt_write32,
 207		.read_count = sh_cmt_read32,
 208		.write_count = sh_cmt_write32,
 209	},
 210	[SH_CMT0_RCAR_GEN2] = {
 211		.model = SH_CMT0_RCAR_GEN2,
 212		.channels_mask = 0x60,
 213		.width = 32,
 214		.overflow_bit = SH_CMT32_CMCSR_CMF,
 215		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 216		.read_control = sh_cmt_read32,
 217		.write_control = sh_cmt_write32,
 218		.read_count = sh_cmt_read32,
 219		.write_count = sh_cmt_write32,
 220	},
 221	[SH_CMT1_RCAR_GEN2] = {
 222		.model = SH_CMT1_RCAR_GEN2,
 223		.channels_mask = 0xff,
 224		.width = 32,
 225		.overflow_bit = SH_CMT32_CMCSR_CMF,
 226		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 227		.read_control = sh_cmt_read32,
 228		.write_control = sh_cmt_write32,
 229		.read_count = sh_cmt_read32,
 230		.write_count = sh_cmt_write32,
 231	},
 232};
 233
 
 234#define CMCSR 0 /* channel register */
 235#define CMCNT 1 /* channel register */
 236#define CMCOR 2 /* channel register */
 237
 238#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
 239
 240static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 241{
 242	if (ch->iostart)
 243		return ch->cmt->info->read_control(ch->iostart, 0);
 244	else
 245		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 246}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 247
 248static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 249{
 250	if (ch->iostart)
 251		ch->cmt->info->write_control(ch->iostart, 0, value);
 252	else
 253		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 254}
 255
 256static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 
 257{
 258	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 259}
 260
 261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 262{
 263	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 264}
 265
 266static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 267{
 268	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 269}
 270
 271static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 272{
 273	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 274}
 275
 276static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 277{
 278	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 279}
 280
 281static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 282{
 283	u32 v1, v2, v3;
 284	u32 o1, o2;
 285
 286	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 287
 288	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 289	do {
 290		o2 = o1;
 291		v1 = sh_cmt_read_cmcnt(ch);
 292		v2 = sh_cmt_read_cmcnt(ch);
 293		v3 = sh_cmt_read_cmcnt(ch);
 294		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 295	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 296			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 297
 298	*has_wrapped = o1;
 299	return v2;
 300}
 301
 302static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 
 303{
 304	unsigned long flags;
 305	u32 value;
 306
 307	/* start stop register shared by multiple timer channels */
 308	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 309	value = sh_cmt_read_cmstr(ch);
 310
 311	if (start)
 312		value |= 1 << ch->timer_bit;
 313	else
 314		value &= ~(1 << ch->timer_bit);
 315
 316	sh_cmt_write_cmstr(ch, value);
 317	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 318}
 319
 320static int sh_cmt_enable(struct sh_cmt_channel *ch)
 321{
 322	int k, ret;
 323
 324	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 325
 326	/* enable clock */
 327	ret = clk_enable(ch->cmt->clk);
 328	if (ret) {
 329		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 330			ch->index);
 331		goto err0;
 332	}
 333
 334	/* make sure channel is disabled */
 335	sh_cmt_start_stop_ch(ch, 0);
 336
 337	/* configure channel, periodic mode and maximum timeout */
 338	if (ch->cmt->info->width == 16) {
 339		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 340				   SH_CMT16_CMCSR_CKS512);
 341	} else {
 342		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
 343			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
 344		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
 345				   SH_CMT32_CMCSR_CMR_IRQ |
 346				   SH_CMT32_CMCSR_CKS_RCLK8);
 347	}
 348
 349	sh_cmt_write_cmcor(ch, 0xffffffff);
 350	sh_cmt_write_cmcnt(ch, 0);
 351
 352	/*
 353	 * According to the sh73a0 user's manual, as CMCNT can be operated
 354	 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
 355	 * modifying CMCNT register; two RCLK cycles are necessary before
 356	 * this register is either read or any modification of the value
 357	 * it holds is reflected in the LSI's actual operation.
 358	 *
 359	 * While at it, we're supposed to clear out the CMCNT as of this
 360	 * moment, so make sure it's processed properly here.  This will
 361	 * take RCLKx2 at maximum.
 362	 */
 363	for (k = 0; k < 100; k++) {
 364		if (!sh_cmt_read_cmcnt(ch))
 365			break;
 366		udelay(1);
 367	}
 368
 369	if (sh_cmt_read_cmcnt(ch)) {
 370		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 371			ch->index);
 372		ret = -ETIMEDOUT;
 373		goto err1;
 374	}
 375
 376	/* enable channel */
 377	sh_cmt_start_stop_ch(ch, 1);
 378	return 0;
 379 err1:
 380	/* stop clock */
 381	clk_disable(ch->cmt->clk);
 382
 383 err0:
 384	return ret;
 385}
 386
 387static void sh_cmt_disable(struct sh_cmt_channel *ch)
 388{
 389	/* disable channel */
 390	sh_cmt_start_stop_ch(ch, 0);
 391
 392	/* disable interrupts in CMT block */
 393	sh_cmt_write_cmcsr(ch, 0);
 394
 395	/* stop clock */
 396	clk_disable(ch->cmt->clk);
 397
 398	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 399}
 400
 401/* private flags */
 402#define FLAG_CLOCKEVENT (1 << 0)
 403#define FLAG_CLOCKSOURCE (1 << 1)
 404#define FLAG_REPROGRAM (1 << 2)
 405#define FLAG_SKIPEVENT (1 << 3)
 406#define FLAG_IRQCONTEXT (1 << 4)
 407
 408static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 409					      int absolute)
 410{
 411	u32 value = ch->next_match_value;
 412	u32 new_match;
 413	u32 delay = 0;
 414	u32 now = 0;
 415	u32 has_wrapped;
 416
 417	now = sh_cmt_get_counter(ch, &has_wrapped);
 418	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 419
 420	if (has_wrapped) {
 421		/* we're competing with the interrupt handler.
 422		 *  -> let the interrupt handler reprogram the timer.
 423		 *  -> interrupt number two handles the event.
 424		 */
 425		ch->flags |= FLAG_SKIPEVENT;
 426		return;
 427	}
 428
 429	if (absolute)
 430		now = 0;
 431
 432	do {
 433		/* reprogram the timer hardware,
 434		 * but don't save the new match value yet.
 435		 */
 436		new_match = now + value + delay;
 437		if (new_match > ch->max_match_value)
 438			new_match = ch->max_match_value;
 439
 440		sh_cmt_write_cmcor(ch, new_match);
 441
 442		now = sh_cmt_get_counter(ch, &has_wrapped);
 443		if (has_wrapped && (new_match > ch->match_value)) {
 444			/* we are changing to a greater match value,
 445			 * so this wrap must be caused by the counter
 446			 * matching the old value.
 447			 * -> first interrupt reprograms the timer.
 448			 * -> interrupt number two handles the event.
 449			 */
 450			ch->flags |= FLAG_SKIPEVENT;
 451			break;
 452		}
 453
 454		if (has_wrapped) {
 455			/* we are changing to a smaller match value,
 456			 * so the wrap must be caused by the counter
 457			 * matching the new value.
 458			 * -> save programmed match value.
 459			 * -> let isr handle the event.
 460			 */
 461			ch->match_value = new_match;
 462			break;
 463		}
 464
 465		/* be safe: verify hardware settings */
 466		if (now < new_match) {
 467			/* timer value is below match value, all good.
 468			 * this makes sure we won't miss any match events.
 469			 * -> save programmed match value.
 470			 * -> let isr handle the event.
 471			 */
 472			ch->match_value = new_match;
 473			break;
 474		}
 475
 476		/* the counter has reached a value greater
 477		 * than our new match value. and since the
 478		 * has_wrapped flag isn't set we must have
 479		 * programmed a too close event.
 480		 * -> increase delay and retry.
 481		 */
 482		if (delay)
 483			delay <<= 1;
 484		else
 485			delay = 1;
 486
 487		if (!delay)
 488			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 489				 ch->index);
 490
 491	} while (delay);
 492}
 493
 494static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 495{
 496	if (delta > ch->max_match_value)
 497		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 498			 ch->index);
 499
 500	ch->next_match_value = delta;
 501	sh_cmt_clock_event_program_verify(ch, 0);
 502}
 503
 504static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 505{
 506	unsigned long flags;
 507
 508	raw_spin_lock_irqsave(&ch->lock, flags);
 509	__sh_cmt_set_next(ch, delta);
 510	raw_spin_unlock_irqrestore(&ch->lock, flags);
 511}
 512
 513static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 514{
 515	struct sh_cmt_channel *ch = dev_id;
 516
 517	/* clear flags */
 518	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 519			   ch->cmt->info->clear_bits);
 520
 521	/* update clock source counter to begin with if enabled
 522	 * the wrap flag should be cleared by the timer specific
 523	 * isr before we end up here.
 524	 */
 525	if (ch->flags & FLAG_CLOCKSOURCE)
 526		ch->total_cycles += ch->match_value + 1;
 527
 528	if (!(ch->flags & FLAG_REPROGRAM))
 529		ch->next_match_value = ch->max_match_value;
 530
 531	ch->flags |= FLAG_IRQCONTEXT;
 532
 533	if (ch->flags & FLAG_CLOCKEVENT) {
 534		if (!(ch->flags & FLAG_SKIPEVENT)) {
 535			if (clockevent_state_oneshot(&ch->ced)) {
 536				ch->next_match_value = ch->max_match_value;
 537				ch->flags |= FLAG_REPROGRAM;
 538			}
 539
 540			ch->ced.event_handler(&ch->ced);
 541		}
 542	}
 543
 544	ch->flags &= ~FLAG_SKIPEVENT;
 545
 546	if (ch->flags & FLAG_REPROGRAM) {
 547		ch->flags &= ~FLAG_REPROGRAM;
 548		sh_cmt_clock_event_program_verify(ch, 1);
 549
 550		if (ch->flags & FLAG_CLOCKEVENT)
 551			if ((clockevent_state_shutdown(&ch->ced))
 552			    || (ch->match_value == ch->next_match_value))
 553				ch->flags &= ~FLAG_REPROGRAM;
 554	}
 555
 556	ch->flags &= ~FLAG_IRQCONTEXT;
 557
 558	return IRQ_HANDLED;
 559}
 560
 561static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 562{
 563	int ret = 0;
 564	unsigned long flags;
 565
 566	if (flag & FLAG_CLOCKSOURCE)
 567		pm_runtime_get_sync(&ch->cmt->pdev->dev);
 568
 569	raw_spin_lock_irqsave(&ch->lock, flags);
 570
 571	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 572		if (flag & FLAG_CLOCKEVENT)
 573			pm_runtime_get_sync(&ch->cmt->pdev->dev);
 574		ret = sh_cmt_enable(ch);
 575	}
 576
 577	if (ret)
 578		goto out;
 579	ch->flags |= flag;
 580
 581	/* setup timeout if no clockevent */
 582	if (ch->cmt->num_channels == 1 &&
 583	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
 584		__sh_cmt_set_next(ch, ch->max_match_value);
 585 out:
 586	raw_spin_unlock_irqrestore(&ch->lock, flags);
 587
 588	return ret;
 589}
 590
 591static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 592{
 593	unsigned long flags;
 594	unsigned long f;
 595
 596	raw_spin_lock_irqsave(&ch->lock, flags);
 597
 598	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 599	ch->flags &= ~flag;
 600
 601	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 602		sh_cmt_disable(ch);
 603		if (flag & FLAG_CLOCKEVENT)
 604			pm_runtime_put(&ch->cmt->pdev->dev);
 605	}
 606
 607	/* adjust the timeout to maximum if only clocksource left */
 608	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 609		__sh_cmt_set_next(ch, ch->max_match_value);
 610
 611	raw_spin_unlock_irqrestore(&ch->lock, flags);
 612
 613	if (flag & FLAG_CLOCKSOURCE)
 614		pm_runtime_put(&ch->cmt->pdev->dev);
 615}
 616
 617static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 618{
 619	return container_of(cs, struct sh_cmt_channel, cs);
 620}
 621
 622static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 623{
 624	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 625	u32 has_wrapped;
 626
 627	if (ch->cmt->num_channels == 1) {
 628		unsigned long flags;
 629		u64 value;
 630		u32 raw;
 631
 632		raw_spin_lock_irqsave(&ch->lock, flags);
 633		value = ch->total_cycles;
 634		raw = sh_cmt_get_counter(ch, &has_wrapped);
 635
 636		if (unlikely(has_wrapped))
 637			raw += ch->match_value + 1;
 638		raw_spin_unlock_irqrestore(&ch->lock, flags);
 639
 640		return value + raw;
 641	}
 642
 643	return sh_cmt_get_counter(ch, &has_wrapped);
 644}
 645
 646static int sh_cmt_clocksource_enable(struct clocksource *cs)
 647{
 648	int ret;
 649	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 650
 651	WARN_ON(ch->cs_enabled);
 652
 653	ch->total_cycles = 0;
 654
 655	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 656	if (!ret)
 657		ch->cs_enabled = true;
 658
 659	return ret;
 660}
 661
 662static void sh_cmt_clocksource_disable(struct clocksource *cs)
 663{
 664	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 665
 666	WARN_ON(!ch->cs_enabled);
 667
 668	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 669	ch->cs_enabled = false;
 670}
 671
 672static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 673{
 674	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 675
 676	if (!ch->cs_enabled)
 677		return;
 678
 679	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 680	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 681}
 682
 683static void sh_cmt_clocksource_resume(struct clocksource *cs)
 684{
 685	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 686
 687	if (!ch->cs_enabled)
 688		return;
 689
 690	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 691	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 692}
 693
 694static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 695				       const char *name)
 696{
 697	struct clocksource *cs = &ch->cs;
 698
 699	cs->name = name;
 700	cs->rating = 125;
 701	cs->read = sh_cmt_clocksource_read;
 702	cs->enable = sh_cmt_clocksource_enable;
 703	cs->disable = sh_cmt_clocksource_disable;
 704	cs->suspend = sh_cmt_clocksource_suspend;
 705	cs->resume = sh_cmt_clocksource_resume;
 706	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
 707	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 708
 709	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 710		 ch->index);
 711
 712	clocksource_register_hz(cs, ch->cmt->rate);
 
 713	return 0;
 714}
 715
 716static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 717{
 718	return container_of(ced, struct sh_cmt_channel, ced);
 719}
 720
 721static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 722{
 723	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 
 
 
 
 
 
 
 
 
 724
 725	if (periodic)
 726		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 727	else
 728		sh_cmt_set_next(ch, ch->max_match_value);
 729}
 730
 731static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 732{
 733	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 734
 735	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 736	return 0;
 737}
 738
 739static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 740					int periodic)
 741{
 742	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 743
 744	/* deal with old setting first */
 745	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 746		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 
 
 
 
 
 
 747
 748	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 749		 ch->index, periodic ? "periodic" : "oneshot");
 750	sh_cmt_clock_event_start(ch, periodic);
 751	return 0;
 752}
 753
 754static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 755{
 756	return sh_cmt_clock_event_set_state(ced, 0);
 757}
 758
 759static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 760{
 761	return sh_cmt_clock_event_set_state(ced, 1);
 
 
 762}
 763
 764static int sh_cmt_clock_event_next(unsigned long delta,
 765				   struct clock_event_device *ced)
 766{
 767	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 768
 769	BUG_ON(!clockevent_state_oneshot(ced));
 770	if (likely(ch->flags & FLAG_IRQCONTEXT))
 771		ch->next_match_value = delta - 1;
 772	else
 773		sh_cmt_set_next(ch, delta - 1);
 774
 775	return 0;
 776}
 777
 778static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 779{
 780	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 781
 782	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 783	clk_unprepare(ch->cmt->clk);
 784}
 785
 786static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 787{
 788	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 789
 790	clk_prepare(ch->cmt->clk);
 791	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 792}
 793
 794static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 795				      const char *name)
 796{
 797	struct clock_event_device *ced = &ch->ced;
 798	int irq;
 799	int ret;
 800
 801	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 802	if (irq < 0)
 803		return irq;
 804
 805	ret = request_irq(irq, sh_cmt_interrupt,
 806			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 807			  dev_name(&ch->cmt->pdev->dev), ch);
 808	if (ret) {
 809		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 810			ch->index, irq);
 811		return ret;
 812	}
 813
 814	ced->name = name;
 815	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 816	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 817	ced->rating = 125;
 818	ced->cpumask = cpu_possible_mask;
 819	ced->set_next_event = sh_cmt_clock_event_next;
 820	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 821	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 822	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 823	ced->suspend = sh_cmt_clock_event_suspend;
 824	ced->resume = sh_cmt_clock_event_resume;
 825
 826	/* TODO: calculate good shift from rate and counter bit width */
 827	ced->shift = 32;
 828	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 829	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 830	ced->max_delta_ticks = ch->max_match_value;
 831	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 832	ced->min_delta_ticks = 0x1f;
 833
 834	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 835		 ch->index);
 836	clockevents_register_device(ced);
 837
 838	return 0;
 839}
 840
 841static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 842			   bool clockevent, bool clocksource)
 
 843{
 844	int ret;
 
 
 
 
 
 
 845
 846	if (clockevent) {
 847		ch->cmt->has_clockevent = true;
 848		ret = sh_cmt_register_clockevent(ch, name);
 849		if (ret < 0)
 850			return ret;
 851	}
 852
 853	if (clocksource) {
 854		ch->cmt->has_clocksource = true;
 855		sh_cmt_register_clocksource(ch, name);
 856	}
 857
 858	return 0;
 859}
 860
 861static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 862				unsigned int hwidx, bool clockevent,
 863				bool clocksource, struct sh_cmt_device *cmt)
 864{
 865	u32 value;
 866	int ret;
 
 
 867
 868	/* Skip unused channels. */
 869	if (!clockevent && !clocksource)
 870		return 0;
 871
 872	ch->cmt = cmt;
 873	ch->index = index;
 874	ch->hwidx = hwidx;
 875	ch->timer_bit = hwidx;
 876
 877	/*
 878	 * Compute the address of the channel control register block. For the
 879	 * timers with a per-channel start/stop register, compute its address
 880	 * as well.
 881	 */
 882	switch (cmt->info->model) {
 883	case SH_CMT_16BIT:
 884		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 885		break;
 886	case SH_CMT_32BIT:
 887	case SH_CMT_48BIT:
 888		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 889		break;
 890	case SH_CMT0_RCAR_GEN2:
 891	case SH_CMT1_RCAR_GEN2:
 892		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 893		ch->ioctrl = ch->iostart + 0x10;
 894		ch->timer_bit = 0;
 895
 896		/* Enable the clock supply to the channel */
 897		value = ioread32(cmt->mapbase + CMCLKE);
 898		value |= BIT(hwidx);
 899		iowrite32(value, cmt->mapbase + CMCLKE);
 900		break;
 901	}
 902
 903	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 904		ch->max_match_value = ~0;
 905	else
 906		ch->max_match_value = (1 << cmt->info->width) - 1;
 907
 908	ch->match_value = ch->max_match_value;
 909	raw_spin_lock_init(&ch->lock);
 
 
 
 910
 911	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 912			      clockevent, clocksource);
 913	if (ret) {
 914		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 915			ch->index);
 916		return ret;
 917	}
 918	ch->cs_enabled = false;
 919
 920	return 0;
 921}
 922
 923static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 924{
 925	struct resource *mem;
 926
 927	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 928	if (!mem) {
 929		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 930		return -ENXIO;
 931	}
 932
 933	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 934	if (cmt->mapbase == NULL) {
 935		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 936		return -ENXIO;
 
 
 
 
 
 
 
 
 
 937	}
 938
 939	return 0;
 940}
 941
 942static const struct platform_device_id sh_cmt_id_table[] = {
 943	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 944	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 945	{ }
 946};
 947MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 948
 949static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 950	{
 951		/* deprecated, preserved for backward compatibility */
 952		.compatible = "renesas,cmt-48",
 953		.data = &sh_cmt_info[SH_CMT_48BIT]
 954	},
 955	{
 956		/* deprecated, preserved for backward compatibility */
 957		.compatible = "renesas,cmt-48-gen2",
 958		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 959	},
 960	{
 961		.compatible = "renesas,r8a7740-cmt1",
 962		.data = &sh_cmt_info[SH_CMT_48BIT]
 963	},
 964	{
 965		.compatible = "renesas,sh73a0-cmt1",
 966		.data = &sh_cmt_info[SH_CMT_48BIT]
 967	},
 968	{
 969		.compatible = "renesas,rcar-gen2-cmt0",
 970		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 971	},
 972	{
 973		.compatible = "renesas,rcar-gen2-cmt1",
 974		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 975	},
 976	{
 977		.compatible = "renesas,rcar-gen3-cmt0",
 978		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 979	},
 980	{
 981		.compatible = "renesas,rcar-gen3-cmt1",
 982		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 983	},
 984	{ }
 985};
 986MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 987
 988static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 989{
 990	unsigned int mask;
 991	unsigned int i;
 992	int ret;
 993
 994	cmt->pdev = pdev;
 995	raw_spin_lock_init(&cmt->lock);
 996
 997	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 998		cmt->info = of_device_get_match_data(&pdev->dev);
 999		cmt->hw_channels = cmt->info->channels_mask;
1000	} else if (pdev->dev.platform_data) {
1001		struct sh_timer_config *cfg = pdev->dev.platform_data;
1002		const struct platform_device_id *id = pdev->id_entry;
1003
1004		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1005		cmt->hw_channels = cfg->channels_mask;
1006	} else {
1007		dev_err(&cmt->pdev->dev, "missing platform data\n");
1008		return -ENXIO;
 
1009	}
1010
1011	/* Get hold of clock. */
1012	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1013	if (IS_ERR(cmt->clk)) {
1014		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1015		return PTR_ERR(cmt->clk);
 
1016	}
1017
1018	ret = clk_prepare(cmt->clk);
1019	if (ret < 0)
1020		goto err_clk_put;
1021
1022	/* Determine clock rate. */
1023	ret = clk_enable(cmt->clk);
1024	if (ret < 0)
1025		goto err_clk_unprepare;
1026
1027	if (cmt->info->width == 16)
1028		cmt->rate = clk_get_rate(cmt->clk) / 512;
1029	else
1030		cmt->rate = clk_get_rate(cmt->clk) / 8;
1031
1032	/* Map the memory resource(s). */
1033	ret = sh_cmt_map_memory(cmt);
1034	if (ret < 0)
1035		goto err_clk_disable;
1036
1037	/* Allocate and setup the channels. */
1038	cmt->num_channels = hweight8(cmt->hw_channels);
1039	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1040				GFP_KERNEL);
1041	if (cmt->channels == NULL) {
1042		ret = -ENOMEM;
1043		goto err_unmap;
1044	}
1045
1046	/*
1047	 * Use the first channel as a clock event device and the second channel
1048	 * as a clock source. If only one channel is available use it for both.
1049	 */
1050	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1051		unsigned int hwidx = ffs(mask) - 1;
1052		bool clocksource = i == 1 || cmt->num_channels == 1;
1053		bool clockevent = i == 0;
1054
1055		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1056					   clockevent, clocksource, cmt);
1057		if (ret < 0)
1058			goto err_unmap;
1059
1060		mask &= ~(1 << hwidx);
1061	}
1062
1063	clk_disable(cmt->clk);
1064
1065	platform_set_drvdata(pdev, cmt);
1066
1067	return 0;
1068
1069err_unmap:
1070	kfree(cmt->channels);
1071	iounmap(cmt->mapbase);
1072err_clk_disable:
1073	clk_disable(cmt->clk);
1074err_clk_unprepare:
1075	clk_unprepare(cmt->clk);
1076err_clk_put:
1077	clk_put(cmt->clk);
1078	return ret;
1079}
1080
1081static int sh_cmt_probe(struct platform_device *pdev)
1082{
1083	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1084	int ret;
1085
1086	if (!is_sh_early_platform_device(pdev)) {
1087		pm_runtime_set_active(&pdev->dev);
1088		pm_runtime_enable(&pdev->dev);
1089	}
1090
1091	if (cmt) {
1092		dev_info(&pdev->dev, "kept as earlytimer\n");
1093		goto out;
1094	}
1095
1096	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1097	if (cmt == NULL)
 
1098		return -ENOMEM;
 
1099
1100	ret = sh_cmt_setup(cmt, pdev);
1101	if (ret) {
1102		kfree(cmt);
1103		pm_runtime_idle(&pdev->dev);
1104		return ret;
1105	}
1106	if (is_sh_early_platform_device(pdev))
1107		return 0;
1108
1109 out:
1110	if (cmt->has_clockevent || cmt->has_clocksource)
1111		pm_runtime_irq_safe(&pdev->dev);
1112	else
1113		pm_runtime_idle(&pdev->dev);
1114
1115	return 0;
1116}
1117
1118static int sh_cmt_remove(struct platform_device *pdev)
1119{
1120	return -EBUSY; /* cannot unregister clockevent and clocksource */
1121}
1122
1123static struct platform_driver sh_cmt_device_driver = {
1124	.probe		= sh_cmt_probe,
1125	.remove		= sh_cmt_remove,
1126	.driver		= {
1127		.name	= "sh_cmt",
1128		.of_match_table = of_match_ptr(sh_cmt_of_table),
1129	},
1130	.id_table	= sh_cmt_id_table,
1131};
1132
1133static int __init sh_cmt_init(void)
1134{
1135	return platform_driver_register(&sh_cmt_device_driver);
1136}
1137
1138static void __exit sh_cmt_exit(void)
1139{
1140	platform_driver_unregister(&sh_cmt_device_driver);
1141}
1142
1143#ifdef CONFIG_SUPERH
1144sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1145#endif
1146
1147subsys_initcall(sh_cmt_init);
1148module_exit(sh_cmt_exit);
1149
1150MODULE_AUTHOR("Magnus Damm");
1151MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1152MODULE_LICENSE("GPL v2");