Linux Audio

Check our new training course

Loading...
v3.15
 
   1#include "builtin.h"
   2#include "perf.h"
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
 
 
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
 
 
 
 
 
 
 
  13
  14#include "util/parse-options.h"
 
  15#include "util/trace-event.h"
  16
  17#include "util/debug.h"
 
 
  18
 
 
 
  19#include <sys/prctl.h>
  20#include <sys/resource.h>
 
  21
 
  22#include <semaphore.h>
  23#include <pthread.h>
  24#include <math.h>
 
 
 
 
 
 
  25
  26#define PR_SET_NAME		15               /* Set process name */
  27#define MAX_CPUS		4096
  28#define COMM_LEN		20
  29#define SYM_LEN			129
  30#define MAX_PID			65536
 
 
 
  31
  32struct sched_atom;
  33
  34struct task_desc {
  35	unsigned long		nr;
  36	unsigned long		pid;
  37	char			comm[COMM_LEN];
  38
  39	unsigned long		nr_events;
  40	unsigned long		curr_event;
  41	struct sched_atom	**atoms;
  42
  43	pthread_t		thread;
  44	sem_t			sleep_sem;
  45
  46	sem_t			ready_for_work;
  47	sem_t			work_done_sem;
  48
  49	u64			cpu_usage;
  50};
  51
  52enum sched_event_type {
  53	SCHED_EVENT_RUN,
  54	SCHED_EVENT_SLEEP,
  55	SCHED_EVENT_WAKEUP,
  56	SCHED_EVENT_MIGRATION,
  57};
  58
  59struct sched_atom {
  60	enum sched_event_type	type;
  61	int			specific_wait;
  62	u64			timestamp;
  63	u64			duration;
  64	unsigned long		nr;
  65	sem_t			*wait_sem;
  66	struct task_desc	*wakee;
  67};
  68
  69#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  70
  71enum thread_state {
  72	THREAD_SLEEPING = 0,
  73	THREAD_WAIT_CPU,
  74	THREAD_SCHED_IN,
  75	THREAD_IGNORE
  76};
  77
  78struct work_atom {
  79	struct list_head	list;
  80	enum thread_state	state;
  81	u64			sched_out_time;
  82	u64			wake_up_time;
  83	u64			sched_in_time;
  84	u64			runtime;
  85};
  86
  87struct work_atoms {
  88	struct list_head	work_list;
  89	struct thread		*thread;
  90	struct rb_node		node;
  91	u64			max_lat;
  92	u64			max_lat_at;
 
  93	u64			total_lat;
  94	u64			nb_atoms;
  95	u64			total_runtime;
 
  96};
  97
  98typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
  99
 100struct perf_sched;
 101
 102struct trace_sched_handler {
 103	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 104			    struct perf_sample *sample, struct machine *machine);
 105
 106	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 107			     struct perf_sample *sample, struct machine *machine);
 108
 109	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 110			    struct perf_sample *sample, struct machine *machine);
 111
 112	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 113	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 114			  struct machine *machine);
 115
 116	int (*migrate_task_event)(struct perf_sched *sched,
 117				  struct perf_evsel *evsel,
 118				  struct perf_sample *sample,
 119				  struct machine *machine);
 120};
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122struct perf_sched {
 123	struct perf_tool tool;
 124	const char	 *sort_order;
 125	unsigned long	 nr_tasks;
 126	struct task_desc *pid_to_task[MAX_PID];
 127	struct task_desc **tasks;
 128	const struct trace_sched_handler *tp_handler;
 129	pthread_mutex_t	 start_work_mutex;
 130	pthread_mutex_t	 work_done_wait_mutex;
 131	int		 profile_cpu;
 132/*
 133 * Track the current task - that way we can know whether there's any
 134 * weird events, such as a task being switched away that is not current.
 135 */
 136	int		 max_cpu;
 137	u32		 curr_pid[MAX_CPUS];
 138	struct thread	 *curr_thread[MAX_CPUS];
 139	char		 next_shortname1;
 140	char		 next_shortname2;
 141	unsigned int	 replay_repeat;
 142	unsigned long	 nr_run_events;
 143	unsigned long	 nr_sleep_events;
 144	unsigned long	 nr_wakeup_events;
 145	unsigned long	 nr_sleep_corrections;
 146	unsigned long	 nr_run_events_optimized;
 147	unsigned long	 targetless_wakeups;
 148	unsigned long	 multitarget_wakeups;
 149	unsigned long	 nr_runs;
 150	unsigned long	 nr_timestamps;
 151	unsigned long	 nr_unordered_timestamps;
 152	unsigned long	 nr_state_machine_bugs;
 153	unsigned long	 nr_context_switch_bugs;
 154	unsigned long	 nr_events;
 155	unsigned long	 nr_lost_chunks;
 156	unsigned long	 nr_lost_events;
 157	u64		 run_measurement_overhead;
 158	u64		 sleep_measurement_overhead;
 159	u64		 start_time;
 160	u64		 cpu_usage;
 161	u64		 runavg_cpu_usage;
 162	u64		 parent_cpu_usage;
 163	u64		 runavg_parent_cpu_usage;
 164	u64		 sum_runtime;
 165	u64		 sum_fluct;
 166	u64		 run_avg;
 167	u64		 all_runtime;
 168	u64		 all_count;
 169	u64		 cpu_last_switched[MAX_CPUS];
 170	struct rb_root	 atom_root, sorted_atom_root;
 171	struct list_head sort_list, cmp_pid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172};
 173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174static u64 get_nsecs(void)
 175{
 176	struct timespec ts;
 177
 178	clock_gettime(CLOCK_MONOTONIC, &ts);
 179
 180	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 181}
 182
 183static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 184{
 185	u64 T0 = get_nsecs(), T1;
 186
 187	do {
 188		T1 = get_nsecs();
 189	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 190}
 191
 192static void sleep_nsecs(u64 nsecs)
 193{
 194	struct timespec ts;
 195
 196	ts.tv_nsec = nsecs % 999999999;
 197	ts.tv_sec = nsecs / 999999999;
 198
 199	nanosleep(&ts, NULL);
 200}
 201
 202static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 203{
 204	u64 T0, T1, delta, min_delta = 1000000000ULL;
 205	int i;
 206
 207	for (i = 0; i < 10; i++) {
 208		T0 = get_nsecs();
 209		burn_nsecs(sched, 0);
 210		T1 = get_nsecs();
 211		delta = T1-T0;
 212		min_delta = min(min_delta, delta);
 213	}
 214	sched->run_measurement_overhead = min_delta;
 215
 216	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 217}
 218
 219static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 220{
 221	u64 T0, T1, delta, min_delta = 1000000000ULL;
 222	int i;
 223
 224	for (i = 0; i < 10; i++) {
 225		T0 = get_nsecs();
 226		sleep_nsecs(10000);
 227		T1 = get_nsecs();
 228		delta = T1-T0;
 229		min_delta = min(min_delta, delta);
 230	}
 231	min_delta -= 10000;
 232	sched->sleep_measurement_overhead = min_delta;
 233
 234	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 235}
 236
 237static struct sched_atom *
 238get_new_event(struct task_desc *task, u64 timestamp)
 239{
 240	struct sched_atom *event = zalloc(sizeof(*event));
 241	unsigned long idx = task->nr_events;
 242	size_t size;
 243
 244	event->timestamp = timestamp;
 245	event->nr = idx;
 246
 247	task->nr_events++;
 248	size = sizeof(struct sched_atom *) * task->nr_events;
 249	task->atoms = realloc(task->atoms, size);
 250	BUG_ON(!task->atoms);
 251
 252	task->atoms[idx] = event;
 253
 254	return event;
 255}
 256
 257static struct sched_atom *last_event(struct task_desc *task)
 258{
 259	if (!task->nr_events)
 260		return NULL;
 261
 262	return task->atoms[task->nr_events - 1];
 263}
 264
 265static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 266				u64 timestamp, u64 duration)
 267{
 268	struct sched_atom *event, *curr_event = last_event(task);
 269
 270	/*
 271	 * optimize an existing RUN event by merging this one
 272	 * to it:
 273	 */
 274	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 275		sched->nr_run_events_optimized++;
 276		curr_event->duration += duration;
 277		return;
 278	}
 279
 280	event = get_new_event(task, timestamp);
 281
 282	event->type = SCHED_EVENT_RUN;
 283	event->duration = duration;
 284
 285	sched->nr_run_events++;
 286}
 287
 288static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 289				   u64 timestamp, struct task_desc *wakee)
 290{
 291	struct sched_atom *event, *wakee_event;
 292
 293	event = get_new_event(task, timestamp);
 294	event->type = SCHED_EVENT_WAKEUP;
 295	event->wakee = wakee;
 296
 297	wakee_event = last_event(wakee);
 298	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 299		sched->targetless_wakeups++;
 300		return;
 301	}
 302	if (wakee_event->wait_sem) {
 303		sched->multitarget_wakeups++;
 304		return;
 305	}
 306
 307	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 308	sem_init(wakee_event->wait_sem, 0, 0);
 309	wakee_event->specific_wait = 1;
 310	event->wait_sem = wakee_event->wait_sem;
 311
 312	sched->nr_wakeup_events++;
 313}
 314
 315static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 316				  u64 timestamp, u64 task_state __maybe_unused)
 317{
 318	struct sched_atom *event = get_new_event(task, timestamp);
 319
 320	event->type = SCHED_EVENT_SLEEP;
 321
 322	sched->nr_sleep_events++;
 323}
 324
 325static struct task_desc *register_pid(struct perf_sched *sched,
 326				      unsigned long pid, const char *comm)
 327{
 328	struct task_desc *task;
 
 329
 330	BUG_ON(pid >= MAX_PID);
 
 
 
 
 
 
 
 
 
 
 331
 332	task = sched->pid_to_task[pid];
 333
 334	if (task)
 335		return task;
 336
 337	task = zalloc(sizeof(*task));
 338	task->pid = pid;
 339	task->nr = sched->nr_tasks;
 340	strcpy(task->comm, comm);
 341	/*
 342	 * every task starts in sleeping state - this gets ignored
 343	 * if there's no wakeup pointing to this sleep state:
 344	 */
 345	add_sched_event_sleep(sched, task, 0, 0);
 346
 347	sched->pid_to_task[pid] = task;
 348	sched->nr_tasks++;
 349	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
 350	BUG_ON(!sched->tasks);
 351	sched->tasks[task->nr] = task;
 352
 353	if (verbose)
 354		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 355
 356	return task;
 357}
 358
 359
 360static void print_task_traces(struct perf_sched *sched)
 361{
 362	struct task_desc *task;
 363	unsigned long i;
 364
 365	for (i = 0; i < sched->nr_tasks; i++) {
 366		task = sched->tasks[i];
 367		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 368			task->nr, task->comm, task->pid, task->nr_events);
 369	}
 370}
 371
 372static void add_cross_task_wakeups(struct perf_sched *sched)
 373{
 374	struct task_desc *task1, *task2;
 375	unsigned long i, j;
 376
 377	for (i = 0; i < sched->nr_tasks; i++) {
 378		task1 = sched->tasks[i];
 379		j = i + 1;
 380		if (j == sched->nr_tasks)
 381			j = 0;
 382		task2 = sched->tasks[j];
 383		add_sched_event_wakeup(sched, task1, 0, task2);
 384	}
 385}
 386
 387static void perf_sched__process_event(struct perf_sched *sched,
 388				      struct sched_atom *atom)
 389{
 390	int ret = 0;
 391
 392	switch (atom->type) {
 393		case SCHED_EVENT_RUN:
 394			burn_nsecs(sched, atom->duration);
 395			break;
 396		case SCHED_EVENT_SLEEP:
 397			if (atom->wait_sem)
 398				ret = sem_wait(atom->wait_sem);
 399			BUG_ON(ret);
 400			break;
 401		case SCHED_EVENT_WAKEUP:
 402			if (atom->wait_sem)
 403				ret = sem_post(atom->wait_sem);
 404			BUG_ON(ret);
 405			break;
 406		case SCHED_EVENT_MIGRATION:
 407			break;
 408		default:
 409			BUG_ON(1);
 410	}
 411}
 412
 413static u64 get_cpu_usage_nsec_parent(void)
 414{
 415	struct rusage ru;
 416	u64 sum;
 417	int err;
 418
 419	err = getrusage(RUSAGE_SELF, &ru);
 420	BUG_ON(err);
 421
 422	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 423	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 424
 425	return sum;
 426}
 427
 428static int self_open_counters(void)
 429{
 430	struct perf_event_attr attr;
 
 431	int fd;
 
 
 432
 433	memset(&attr, 0, sizeof(attr));
 434
 435	attr.type = PERF_TYPE_SOFTWARE;
 436	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 437
 438	fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
 439
 440	if (fd < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441		pr_err("Error: sys_perf_event_open() syscall returned "
 442		       "with %d (%s)\n", fd, strerror(errno));
 
 
 
 443	return fd;
 444}
 445
 446static u64 get_cpu_usage_nsec_self(int fd)
 447{
 448	u64 runtime;
 449	int ret;
 450
 451	ret = read(fd, &runtime, sizeof(runtime));
 452	BUG_ON(ret != sizeof(runtime));
 453
 454	return runtime;
 455}
 456
 457struct sched_thread_parms {
 458	struct task_desc  *task;
 459	struct perf_sched *sched;
 
 460};
 461
 462static void *thread_func(void *ctx)
 463{
 464	struct sched_thread_parms *parms = ctx;
 465	struct task_desc *this_task = parms->task;
 466	struct perf_sched *sched = parms->sched;
 467	u64 cpu_usage_0, cpu_usage_1;
 468	unsigned long i, ret;
 469	char comm2[22];
 470	int fd;
 471
 472	zfree(&parms);
 473
 474	sprintf(comm2, ":%s", this_task->comm);
 475	prctl(PR_SET_NAME, comm2);
 476	fd = self_open_counters();
 477	if (fd < 0)
 478		return NULL;
 479again:
 480	ret = sem_post(&this_task->ready_for_work);
 481	BUG_ON(ret);
 482	ret = pthread_mutex_lock(&sched->start_work_mutex);
 483	BUG_ON(ret);
 484	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 485	BUG_ON(ret);
 486
 487	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 488
 489	for (i = 0; i < this_task->nr_events; i++) {
 490		this_task->curr_event = i;
 491		perf_sched__process_event(sched, this_task->atoms[i]);
 492	}
 493
 494	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 495	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 496	ret = sem_post(&this_task->work_done_sem);
 497	BUG_ON(ret);
 498
 499	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 500	BUG_ON(ret);
 501	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 502	BUG_ON(ret);
 503
 504	goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505}
 506
 507static void create_tasks(struct perf_sched *sched)
 
 
 508{
 509	struct task_desc *task;
 510	pthread_attr_t attr;
 511	unsigned long i;
 512	int err;
 513
 514	err = pthread_attr_init(&attr);
 515	BUG_ON(err);
 516	err = pthread_attr_setstacksize(&attr,
 517			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 518	BUG_ON(err);
 519	err = pthread_mutex_lock(&sched->start_work_mutex);
 520	BUG_ON(err);
 521	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 522	BUG_ON(err);
 
 
 523	for (i = 0; i < sched->nr_tasks; i++) {
 524		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 525		BUG_ON(parms == NULL);
 526		parms->task = task = sched->tasks[i];
 527		parms->sched = sched;
 
 528		sem_init(&task->sleep_sem, 0, 0);
 529		sem_init(&task->ready_for_work, 0, 0);
 530		sem_init(&task->work_done_sem, 0, 0);
 531		task->curr_event = 0;
 532		err = pthread_create(&task->thread, &attr, thread_func, parms);
 533		BUG_ON(err);
 534	}
 535}
 536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537static void wait_for_tasks(struct perf_sched *sched)
 
 
 538{
 539	u64 cpu_usage_0, cpu_usage_1;
 540	struct task_desc *task;
 541	unsigned long i, ret;
 542
 543	sched->start_time = get_nsecs();
 544	sched->cpu_usage = 0;
 545	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 546
 547	for (i = 0; i < sched->nr_tasks; i++) {
 548		task = sched->tasks[i];
 549		ret = sem_wait(&task->ready_for_work);
 550		BUG_ON(ret);
 551		sem_init(&task->ready_for_work, 0, 0);
 552	}
 553	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 554	BUG_ON(ret);
 555
 556	cpu_usage_0 = get_cpu_usage_nsec_parent();
 557
 558	pthread_mutex_unlock(&sched->start_work_mutex);
 559
 560	for (i = 0; i < sched->nr_tasks; i++) {
 561		task = sched->tasks[i];
 562		ret = sem_wait(&task->work_done_sem);
 563		BUG_ON(ret);
 564		sem_init(&task->work_done_sem, 0, 0);
 565		sched->cpu_usage += task->cpu_usage;
 566		task->cpu_usage = 0;
 567	}
 568
 569	cpu_usage_1 = get_cpu_usage_nsec_parent();
 570	if (!sched->runavg_cpu_usage)
 571		sched->runavg_cpu_usage = sched->cpu_usage;
 572	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
 573
 574	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 575	if (!sched->runavg_parent_cpu_usage)
 576		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 577	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
 578					 sched->parent_cpu_usage)/10;
 579
 580	ret = pthread_mutex_lock(&sched->start_work_mutex);
 581	BUG_ON(ret);
 582
 583	for (i = 0; i < sched->nr_tasks; i++) {
 584		task = sched->tasks[i];
 585		sem_init(&task->sleep_sem, 0, 0);
 586		task->curr_event = 0;
 587	}
 588}
 589
 590static void run_one_test(struct perf_sched *sched)
 
 
 591{
 592	u64 T0, T1, delta, avg_delta, fluct;
 593
 594	T0 = get_nsecs();
 595	wait_for_tasks(sched);
 596	T1 = get_nsecs();
 597
 598	delta = T1 - T0;
 599	sched->sum_runtime += delta;
 600	sched->nr_runs++;
 601
 602	avg_delta = sched->sum_runtime / sched->nr_runs;
 603	if (delta < avg_delta)
 604		fluct = avg_delta - delta;
 605	else
 606		fluct = delta - avg_delta;
 607	sched->sum_fluct += fluct;
 608	if (!sched->run_avg)
 609		sched->run_avg = delta;
 610	sched->run_avg = (sched->run_avg * 9 + delta) / 10;
 611
 612	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
 613
 614	printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
 615
 616	printf("cpu: %0.2f / %0.2f",
 617		(double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
 618
 619#if 0
 620	/*
 621	 * rusage statistics done by the parent, these are less
 622	 * accurate than the sched->sum_exec_runtime based statistics:
 623	 */
 624	printf(" [%0.2f / %0.2f]",
 625		(double)sched->parent_cpu_usage/1e6,
 626		(double)sched->runavg_parent_cpu_usage/1e6);
 627#endif
 628
 629	printf("\n");
 630
 631	if (sched->nr_sleep_corrections)
 632		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 633	sched->nr_sleep_corrections = 0;
 634}
 635
 636static void test_calibrations(struct perf_sched *sched)
 637{
 638	u64 T0, T1;
 639
 640	T0 = get_nsecs();
 641	burn_nsecs(sched, 1e6);
 642	T1 = get_nsecs();
 643
 644	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 645
 646	T0 = get_nsecs();
 647	sleep_nsecs(1e6);
 648	T1 = get_nsecs();
 649
 650	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 651}
 652
 653static int
 654replay_wakeup_event(struct perf_sched *sched,
 655		    struct perf_evsel *evsel, struct perf_sample *sample,
 656		    struct machine *machine __maybe_unused)
 657{
 658	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 659	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 660	struct task_desc *waker, *wakee;
 661
 662	if (verbose) {
 663		printf("sched_wakeup event %p\n", evsel);
 664
 665		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 666	}
 667
 668	waker = register_pid(sched, sample->tid, "<unknown>");
 669	wakee = register_pid(sched, pid, comm);
 670
 671	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 672	return 0;
 673}
 674
 675static int replay_switch_event(struct perf_sched *sched,
 676			       struct perf_evsel *evsel,
 677			       struct perf_sample *sample,
 678			       struct machine *machine __maybe_unused)
 679{
 680	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 681		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 682	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 683		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 684	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 685	struct task_desc *prev, __maybe_unused *next;
 686	u64 timestamp0, timestamp = sample->time;
 687	int cpu = sample->cpu;
 688	s64 delta;
 689
 690	if (verbose)
 691		printf("sched_switch event %p\n", evsel);
 692
 693	if (cpu >= MAX_CPUS || cpu < 0)
 694		return 0;
 695
 696	timestamp0 = sched->cpu_last_switched[cpu];
 697	if (timestamp0)
 698		delta = timestamp - timestamp0;
 699	else
 700		delta = 0;
 701
 702	if (delta < 0) {
 703		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 704		return -1;
 705	}
 706
 707	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 708		 prev_comm, prev_pid, next_comm, next_pid, delta);
 709
 710	prev = register_pid(sched, prev_pid, prev_comm);
 711	next = register_pid(sched, next_pid, next_comm);
 712
 713	sched->cpu_last_switched[cpu] = timestamp;
 714
 715	add_sched_event_run(sched, prev, timestamp, delta);
 716	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 717
 718	return 0;
 719}
 720
 721static int replay_fork_event(struct perf_sched *sched,
 722			     union perf_event *event,
 723			     struct machine *machine)
 724{
 725	struct thread *child, *parent;
 726
 727	child = machine__findnew_thread(machine, event->fork.pid,
 728					event->fork.tid);
 729	parent = machine__findnew_thread(machine, event->fork.ppid,
 730					 event->fork.ptid);
 731
 732	if (child == NULL || parent == NULL) {
 733		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 734				 child, parent);
 735		return 0;
 736	}
 737
 738	if (verbose) {
 739		printf("fork event\n");
 740		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 741		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 742	}
 743
 744	register_pid(sched, parent->tid, thread__comm_str(parent));
 745	register_pid(sched, child->tid, thread__comm_str(child));
 
 
 
 746	return 0;
 747}
 748
 749struct sort_dimension {
 750	const char		*name;
 751	sort_fn_t		cmp;
 752	struct list_head	list;
 753};
 754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755static int
 756thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 757{
 758	struct sort_dimension *sort;
 759	int ret = 0;
 760
 761	BUG_ON(list_empty(list));
 762
 763	list_for_each_entry(sort, list, list) {
 764		ret = sort->cmp(l, r);
 765		if (ret)
 766			return ret;
 767	}
 768
 769	return ret;
 770}
 771
 772static struct work_atoms *
 773thread_atoms_search(struct rb_root *root, struct thread *thread,
 774			 struct list_head *sort_list)
 775{
 776	struct rb_node *node = root->rb_node;
 777	struct work_atoms key = { .thread = thread };
 778
 779	while (node) {
 780		struct work_atoms *atoms;
 781		int cmp;
 782
 783		atoms = container_of(node, struct work_atoms, node);
 784
 785		cmp = thread_lat_cmp(sort_list, &key, atoms);
 786		if (cmp > 0)
 787			node = node->rb_left;
 788		else if (cmp < 0)
 789			node = node->rb_right;
 790		else {
 791			BUG_ON(thread != atoms->thread);
 792			return atoms;
 793		}
 794	}
 795	return NULL;
 796}
 797
 798static void
 799__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 800			 struct list_head *sort_list)
 801{
 802	struct rb_node **new = &(root->rb_node), *parent = NULL;
 
 803
 804	while (*new) {
 805		struct work_atoms *this;
 806		int cmp;
 807
 808		this = container_of(*new, struct work_atoms, node);
 809		parent = *new;
 810
 811		cmp = thread_lat_cmp(sort_list, data, this);
 812
 813		if (cmp > 0)
 814			new = &((*new)->rb_left);
 815		else
 816			new = &((*new)->rb_right);
 
 
 817	}
 818
 819	rb_link_node(&data->node, parent, new);
 820	rb_insert_color(&data->node, root);
 821}
 822
 823static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
 824{
 825	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 826	if (!atoms) {
 827		pr_err("No memory at %s\n", __func__);
 828		return -1;
 829	}
 830
 831	atoms->thread = thread;
 832	INIT_LIST_HEAD(&atoms->work_list);
 833	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
 834	return 0;
 835}
 836
 837static char sched_out_state(u64 prev_state)
 838{
 839	const char *str = TASK_STATE_TO_CHAR_STR;
 840
 841	return str[prev_state];
 842}
 843
 844static int
 845add_sched_out_event(struct work_atoms *atoms,
 846		    char run_state,
 847		    u64 timestamp)
 848{
 849	struct work_atom *atom = zalloc(sizeof(*atom));
 850	if (!atom) {
 851		pr_err("Non memory at %s", __func__);
 852		return -1;
 853	}
 854
 855	atom->sched_out_time = timestamp;
 856
 857	if (run_state == 'R') {
 858		atom->state = THREAD_WAIT_CPU;
 859		atom->wake_up_time = atom->sched_out_time;
 860	}
 861
 862	list_add_tail(&atom->list, &atoms->work_list);
 863	return 0;
 864}
 865
 866static void
 867add_runtime_event(struct work_atoms *atoms, u64 delta,
 868		  u64 timestamp __maybe_unused)
 869{
 870	struct work_atom *atom;
 871
 872	BUG_ON(list_empty(&atoms->work_list));
 873
 874	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 875
 876	atom->runtime += delta;
 877	atoms->total_runtime += delta;
 878}
 879
 880static void
 881add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 882{
 883	struct work_atom *atom;
 884	u64 delta;
 885
 886	if (list_empty(&atoms->work_list))
 887		return;
 888
 889	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 890
 891	if (atom->state != THREAD_WAIT_CPU)
 892		return;
 893
 894	if (timestamp < atom->wake_up_time) {
 895		atom->state = THREAD_IGNORE;
 896		return;
 897	}
 898
 899	atom->state = THREAD_SCHED_IN;
 900	atom->sched_in_time = timestamp;
 901
 902	delta = atom->sched_in_time - atom->wake_up_time;
 903	atoms->total_lat += delta;
 904	if (delta > atoms->max_lat) {
 905		atoms->max_lat = delta;
 906		atoms->max_lat_at = timestamp;
 
 907	}
 908	atoms->nb_atoms++;
 909}
 910
 911static int latency_switch_event(struct perf_sched *sched,
 912				struct perf_evsel *evsel,
 913				struct perf_sample *sample,
 914				struct machine *machine)
 915{
 916	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 917		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 918	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 919	struct work_atoms *out_events, *in_events;
 920	struct thread *sched_out, *sched_in;
 921	u64 timestamp0, timestamp = sample->time;
 922	int cpu = sample->cpu;
 923	s64 delta;
 924
 925	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 926
 927	timestamp0 = sched->cpu_last_switched[cpu];
 928	sched->cpu_last_switched[cpu] = timestamp;
 929	if (timestamp0)
 930		delta = timestamp - timestamp0;
 931	else
 932		delta = 0;
 933
 934	if (delta < 0) {
 935		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 936		return -1;
 937	}
 938
 939	sched_out = machine__findnew_thread(machine, 0, prev_pid);
 940	sched_in = machine__findnew_thread(machine, 0, next_pid);
 
 
 941
 942	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 943	if (!out_events) {
 944		if (thread_atoms_insert(sched, sched_out))
 945			return -1;
 946		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 947		if (!out_events) {
 948			pr_err("out-event: Internal tree error");
 949			return -1;
 950		}
 951	}
 952	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
 953		return -1;
 954
 955	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
 956	if (!in_events) {
 957		if (thread_atoms_insert(sched, sched_in))
 958			return -1;
 959		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
 960		if (!in_events) {
 961			pr_err("in-event: Internal tree error");
 962			return -1;
 963		}
 964		/*
 965		 * Take came in we have not heard about yet,
 966		 * add in an initial atom in runnable state:
 967		 */
 968		if (add_sched_out_event(in_events, 'R', timestamp))
 969			return -1;
 970	}
 971	add_sched_in_event(in_events, timestamp);
 972
 973	return 0;
 
 
 
 974}
 975
 976static int latency_runtime_event(struct perf_sched *sched,
 977				 struct perf_evsel *evsel,
 978				 struct perf_sample *sample,
 979				 struct machine *machine)
 980{
 981	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
 982	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
 983	struct thread *thread = machine__findnew_thread(machine, 0, pid);
 984	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
 985	u64 timestamp = sample->time;
 986	int cpu = sample->cpu;
 
 
 
 987
 988	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 989	if (!atoms) {
 990		if (thread_atoms_insert(sched, thread))
 991			return -1;
 992		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
 993		if (!atoms) {
 994			pr_err("in-event: Internal tree error");
 995			return -1;
 996		}
 997		if (add_sched_out_event(atoms, 'R', timestamp))
 998			return -1;
 999	}
1000
1001	add_runtime_event(atoms, runtime, timestamp);
1002	return 0;
 
 
 
1003}
1004
1005static int latency_wakeup_event(struct perf_sched *sched,
1006				struct perf_evsel *evsel,
1007				struct perf_sample *sample,
1008				struct machine *machine)
1009{
1010	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid"),
1011		  success = perf_evsel__intval(evsel, sample, "success");
1012	struct work_atoms *atoms;
1013	struct work_atom *atom;
1014	struct thread *wakee;
1015	u64 timestamp = sample->time;
 
1016
1017	/* Note for later, it may be interesting to observe the failing cases */
1018	if (!success)
1019		return 0;
1020
1021	wakee = machine__findnew_thread(machine, 0, pid);
1022	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1023	if (!atoms) {
1024		if (thread_atoms_insert(sched, wakee))
1025			return -1;
1026		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1027		if (!atoms) {
1028			pr_err("wakeup-event: Internal tree error");
1029			return -1;
1030		}
1031		if (add_sched_out_event(atoms, 'S', timestamp))
1032			return -1;
1033	}
1034
1035	BUG_ON(list_empty(&atoms->work_list));
1036
1037	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1038
1039	/*
 
 
 
 
 
 
1040	 * You WILL be missing events if you've recorded only
1041	 * one CPU, or are only looking at only one, so don't
1042	 * make useless noise.
1043	 */
1044	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1045		sched->nr_state_machine_bugs++;
1046
1047	sched->nr_timestamps++;
1048	if (atom->sched_out_time > timestamp) {
1049		sched->nr_unordered_timestamps++;
1050		return 0;
1051	}
1052
1053	atom->state = THREAD_WAIT_CPU;
1054	atom->wake_up_time = timestamp;
1055	return 0;
 
 
 
 
1056}
1057
1058static int latency_migrate_task_event(struct perf_sched *sched,
1059				      struct perf_evsel *evsel,
1060				      struct perf_sample *sample,
1061				      struct machine *machine)
1062{
1063	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1064	u64 timestamp = sample->time;
1065	struct work_atoms *atoms;
1066	struct work_atom *atom;
1067	struct thread *migrant;
 
1068
1069	/*
1070	 * Only need to worry about migration when profiling one CPU.
1071	 */
1072	if (sched->profile_cpu == -1)
1073		return 0;
1074
1075	migrant = machine__findnew_thread(machine, 0, pid);
 
 
1076	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1077	if (!atoms) {
1078		if (thread_atoms_insert(sched, migrant))
1079			return -1;
1080		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1081		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1082		if (!atoms) {
1083			pr_err("migration-event: Internal tree error");
1084			return -1;
1085		}
1086		if (add_sched_out_event(atoms, 'R', timestamp))
1087			return -1;
1088	}
1089
1090	BUG_ON(list_empty(&atoms->work_list));
1091
1092	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1093	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1094
1095	sched->nr_timestamps++;
1096
1097	if (atom->sched_out_time > timestamp)
1098		sched->nr_unordered_timestamps++;
1099
1100	return 0;
 
 
1101}
1102
1103static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1104{
1105	int i;
1106	int ret;
1107	u64 avg;
 
1108
1109	if (!work_list->nb_atoms)
1110		return;
1111	/*
1112	 * Ignore idle threads:
1113	 */
1114	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1115		return;
1116
1117	sched->all_runtime += work_list->total_runtime;
1118	sched->all_count   += work_list->nb_atoms;
1119
1120	ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
 
 
 
 
 
 
1121
1122	for (i = 0; i < 24 - ret; i++)
1123		printf(" ");
1124
1125	avg = work_list->total_lat / work_list->nb_atoms;
 
 
1126
1127	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1128	      (double)work_list->total_runtime / 1e6,
1129		 work_list->nb_atoms, (double)avg / 1e6,
1130		 (double)work_list->max_lat / 1e6,
1131		 (double)work_list->max_lat_at / 1e9);
1132}
1133
1134static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1135{
1136	if (l->thread->tid < r->thread->tid)
 
 
 
 
 
 
1137		return -1;
1138	if (l->thread->tid > r->thread->tid)
1139		return 1;
1140
1141	return 0;
1142}
1143
1144static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1145{
1146	u64 avgl, avgr;
1147
1148	if (!l->nb_atoms)
1149		return -1;
1150
1151	if (!r->nb_atoms)
1152		return 1;
1153
1154	avgl = l->total_lat / l->nb_atoms;
1155	avgr = r->total_lat / r->nb_atoms;
1156
1157	if (avgl < avgr)
1158		return -1;
1159	if (avgl > avgr)
1160		return 1;
1161
1162	return 0;
1163}
1164
1165static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1166{
1167	if (l->max_lat < r->max_lat)
1168		return -1;
1169	if (l->max_lat > r->max_lat)
1170		return 1;
1171
1172	return 0;
1173}
1174
1175static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1176{
1177	if (l->nb_atoms < r->nb_atoms)
1178		return -1;
1179	if (l->nb_atoms > r->nb_atoms)
1180		return 1;
1181
1182	return 0;
1183}
1184
1185static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1186{
1187	if (l->total_runtime < r->total_runtime)
1188		return -1;
1189	if (l->total_runtime > r->total_runtime)
1190		return 1;
1191
1192	return 0;
1193}
1194
1195static int sort_dimension__add(const char *tok, struct list_head *list)
1196{
1197	size_t i;
1198	static struct sort_dimension avg_sort_dimension = {
1199		.name = "avg",
1200		.cmp  = avg_cmp,
1201	};
1202	static struct sort_dimension max_sort_dimension = {
1203		.name = "max",
1204		.cmp  = max_cmp,
1205	};
1206	static struct sort_dimension pid_sort_dimension = {
1207		.name = "pid",
1208		.cmp  = pid_cmp,
1209	};
1210	static struct sort_dimension runtime_sort_dimension = {
1211		.name = "runtime",
1212		.cmp  = runtime_cmp,
1213	};
1214	static struct sort_dimension switch_sort_dimension = {
1215		.name = "switch",
1216		.cmp  = switch_cmp,
1217	};
1218	struct sort_dimension *available_sorts[] = {
1219		&pid_sort_dimension,
1220		&avg_sort_dimension,
1221		&max_sort_dimension,
1222		&switch_sort_dimension,
1223		&runtime_sort_dimension,
1224	};
1225
1226	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1227		if (!strcmp(available_sorts[i]->name, tok)) {
1228			list_add_tail(&available_sorts[i]->list, list);
1229
1230			return 0;
1231		}
1232	}
1233
1234	return -1;
1235}
1236
1237static void perf_sched__sort_lat(struct perf_sched *sched)
1238{
1239	struct rb_node *node;
1240
 
1241	for (;;) {
1242		struct work_atoms *data;
1243		node = rb_first(&sched->atom_root);
1244		if (!node)
1245			break;
1246
1247		rb_erase(node, &sched->atom_root);
1248		data = rb_entry(node, struct work_atoms, node);
1249		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1250	}
 
 
 
 
1251}
1252
1253static int process_sched_wakeup_event(struct perf_tool *tool,
1254				      struct perf_evsel *evsel,
1255				      struct perf_sample *sample,
1256				      struct machine *machine)
1257{
1258	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1259
1260	if (sched->tp_handler->wakeup_event)
1261		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1262
1263	return 0;
1264}
1265
1266static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267			    struct perf_sample *sample, struct machine *machine)
1268{
1269	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1270		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1271	struct thread *sched_out __maybe_unused, *sched_in;
1272	int new_shortname;
1273	u64 timestamp0, timestamp = sample->time;
1274	s64 delta;
1275	int cpu, this_cpu = sample->cpu;
 
 
 
 
 
 
 
1276
1277	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1278
1279	if (this_cpu > sched->max_cpu)
1280		sched->max_cpu = this_cpu;
1281
1282	timestamp0 = sched->cpu_last_switched[this_cpu];
1283	sched->cpu_last_switched[this_cpu] = timestamp;
 
 
 
 
 
 
 
 
 
1284	if (timestamp0)
1285		delta = timestamp - timestamp0;
1286	else
1287		delta = 0;
1288
1289	if (delta < 0) {
1290		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1291		return -1;
1292	}
1293
1294	sched_out = machine__findnew_thread(machine, 0, prev_pid);
1295	sched_in = machine__findnew_thread(machine, 0, next_pid);
 
1296
1297	sched->curr_thread[this_cpu] = sched_in;
 
 
 
 
 
 
1298
1299	printf("  ");
1300
1301	new_shortname = 0;
1302	if (!sched_in->shortname[0]) {
1303		sched_in->shortname[0] = sched->next_shortname1;
1304		sched_in->shortname[1] = sched->next_shortname2;
1305
1306		if (sched->next_shortname1 < 'Z') {
1307			sched->next_shortname1++;
 
 
1308		} else {
1309			sched->next_shortname1='A';
1310			if (sched->next_shortname2 < '9') {
1311				sched->next_shortname2++;
 
 
1312			} else {
1313				sched->next_shortname2='0';
 
 
 
 
1314			}
1315		}
1316		new_shortname = 1;
1317	}
1318
1319	for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1320		if (cpu != this_cpu)
1321			printf(" ");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322		else
1323			printf("*");
1324
1325		if (sched->curr_thread[cpu]) {
1326			if (sched->curr_thread[cpu]->tid)
1327				printf("%2s ", sched->curr_thread[cpu]->shortname);
1328			else
1329				printf(".  ");
 
 
1330		} else
1331			printf("   ");
1332	}
1333
1334	printf("  %12.6f secs ", (double)timestamp/1e9);
1335	if (new_shortname) {
1336		printf("%s => %s:%d\n",
1337		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1338	} else {
1339		printf("\n");
 
 
 
 
 
 
 
 
1340	}
1341
 
 
 
 
 
 
 
 
1342	return 0;
1343}
1344
1345static int process_sched_switch_event(struct perf_tool *tool,
1346				      struct perf_evsel *evsel,
1347				      struct perf_sample *sample,
1348				      struct machine *machine)
1349{
1350	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1351	int this_cpu = sample->cpu, err = 0;
1352	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1353	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1354
1355	if (sched->curr_pid[this_cpu] != (u32)-1) {
1356		/*
1357		 * Are we trying to switch away a PID that is
1358		 * not current?
1359		 */
1360		if (sched->curr_pid[this_cpu] != prev_pid)
1361			sched->nr_context_switch_bugs++;
1362	}
1363
1364	if (sched->tp_handler->switch_event)
1365		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1366
1367	sched->curr_pid[this_cpu] = next_pid;
1368	return err;
1369}
1370
1371static int process_sched_runtime_event(struct perf_tool *tool,
1372				       struct perf_evsel *evsel,
1373				       struct perf_sample *sample,
1374				       struct machine *machine)
1375{
1376	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1377
1378	if (sched->tp_handler->runtime_event)
1379		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1380
1381	return 0;
1382}
1383
1384static int perf_sched__process_fork_event(struct perf_tool *tool,
1385					  union perf_event *event,
1386					  struct perf_sample *sample,
1387					  struct machine *machine)
1388{
1389	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1390
1391	/* run the fork event through the perf machineruy */
1392	perf_event__process_fork(tool, event, sample, machine);
1393
1394	/* and then run additional processing needed for this command */
1395	if (sched->tp_handler->fork_event)
1396		return sched->tp_handler->fork_event(sched, event, machine);
1397
1398	return 0;
1399}
1400
1401static int process_sched_migrate_task_event(struct perf_tool *tool,
1402					    struct perf_evsel *evsel,
1403					    struct perf_sample *sample,
1404					    struct machine *machine)
1405{
1406	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1407
1408	if (sched->tp_handler->migrate_task_event)
1409		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1410
1411	return 0;
1412}
1413
1414typedef int (*tracepoint_handler)(struct perf_tool *tool,
1415				  struct perf_evsel *evsel,
1416				  struct perf_sample *sample,
1417				  struct machine *machine);
1418
1419static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1420						 union perf_event *event __maybe_unused,
1421						 struct perf_sample *sample,
1422						 struct perf_evsel *evsel,
1423						 struct machine *machine)
1424{
1425	int err = 0;
1426
1427	evsel->hists.stats.total_period += sample->period;
1428	hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1429
1430	if (evsel->handler != NULL) {
1431		tracepoint_handler f = evsel->handler;
1432		err = f(tool, evsel, sample, machine);
1433	}
1434
1435	return err;
1436}
1437
1438static int perf_sched__read_events(struct perf_sched *sched,
1439				   struct perf_session **psession)
 
 
1440{
1441	const struct perf_evsel_str_handler handlers[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442		{ "sched:sched_switch",	      process_sched_switch_event, },
1443		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1444		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
 
1445		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1446		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1447	};
1448	struct perf_session *session;
1449	struct perf_data_file file = {
1450		.path = input_name,
1451		.mode = PERF_DATA_MODE_READ,
 
1452	};
 
1453
1454	session = perf_session__new(&file, false, &sched->tool);
1455	if (session == NULL) {
1456		pr_debug("No Memory for session\n");
1457		return -1;
1458	}
1459
 
 
 
 
 
 
1460	if (perf_session__set_tracepoints_handlers(session, handlers))
1461		goto out_delete;
1462
1463	if (perf_session__has_traces(session, "record -R")) {
1464		int err = perf_session__process_events(session, &sched->tool);
1465		if (err) {
1466			pr_err("Failed to process events, error %d", err);
1467			goto out_delete;
1468		}
1469
1470		sched->nr_events      = session->stats.nr_events[0];
1471		sched->nr_lost_events = session->stats.total_lost;
1472		sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473	}
1474
1475	if (psession)
1476		*psession = session;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477	else
1478		perf_session__delete(session);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479
1480	return 0;
 
1481
1482out_delete:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483	perf_session__delete(session);
1484	return -1;
 
1485}
1486
 
1487static void print_bad_events(struct perf_sched *sched)
1488{
1489	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1490		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1491			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1492			sched->nr_unordered_timestamps, sched->nr_timestamps);
1493	}
1494	if (sched->nr_lost_events && sched->nr_events) {
1495		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1496			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1497			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1498	}
1499	if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1500		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1501			(double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1502			sched->nr_state_machine_bugs, sched->nr_timestamps);
1503		if (sched->nr_lost_events)
1504			printf(" (due to lost events?)");
1505		printf("\n");
1506	}
1507	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1508		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1509			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1510			sched->nr_context_switch_bugs, sched->nr_timestamps);
1511		if (sched->nr_lost_events)
1512			printf(" (due to lost events?)");
1513		printf("\n");
1514	}
1515}
1516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517static int perf_sched__lat(struct perf_sched *sched)
1518{
 
1519	struct rb_node *next;
1520	struct perf_session *session;
1521
1522	setup_pager();
1523
1524	/* save session -- references to threads are held in work_list */
1525	if (perf_sched__read_events(sched, &session))
1526		return -1;
 
 
1527
 
1528	perf_sched__sort_lat(sched);
1529
1530	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1531	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1532	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1533
1534	next = rb_first(&sched->sorted_atom_root);
1535
1536	while (next) {
1537		struct work_atoms *work_list;
1538
1539		work_list = rb_entry(next, struct work_atoms, node);
1540		output_lat_thread(sched, work_list);
1541		next = rb_next(next);
 
1542	}
1543
1544	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1545	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1546		(double)sched->all_runtime / 1e6, sched->all_count);
1547
1548	printf(" ---------------------------------------------------\n");
1549
1550	print_bad_events(sched);
1551	printf("\n");
1552
1553	perf_session__delete(session);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554	return 0;
1555}
1556
1557static int perf_sched__map(struct perf_sched *sched)
1558{
1559	sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560
1561	setup_pager();
1562	if (perf_sched__read_events(sched, NULL))
1563		return -1;
 
 
1564	print_bad_events(sched);
1565	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1566}
1567
1568static int perf_sched__replay(struct perf_sched *sched)
1569{
 
1570	unsigned long i;
1571
 
 
 
 
 
 
 
1572	calibrate_run_measurement_overhead(sched);
1573	calibrate_sleep_measurement_overhead(sched);
1574
1575	test_calibrations(sched);
1576
1577	if (perf_sched__read_events(sched, NULL))
1578		return -1;
 
1579
1580	printf("nr_run_events:        %ld\n", sched->nr_run_events);
1581	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1582	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1583
1584	if (sched->targetless_wakeups)
1585		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1586	if (sched->multitarget_wakeups)
1587		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1588	if (sched->nr_run_events_optimized)
1589		printf("run atoms optimized: %ld\n",
1590			sched->nr_run_events_optimized);
1591
1592	print_task_traces(sched);
1593	add_cross_task_wakeups(sched);
1594
 
1595	create_tasks(sched);
1596	printf("------------------------------------------------------------\n");
1597	for (i = 0; i < sched->replay_repeat; i++)
1598		run_one_test(sched);
1599
1600	return 0;
 
 
 
 
 
 
 
 
 
1601}
1602
1603static void setup_sorting(struct perf_sched *sched, const struct option *options,
1604			  const char * const usage_msg[])
1605{
1606	char *tmp, *tok, *str = strdup(sched->sort_order);
1607
1608	for (tok = strtok_r(str, ", ", &tmp);
1609			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1610		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1611			error("Unknown --sort key: `%s'", tok);
1612			usage_with_options(usage_msg, options);
1613		}
1614	}
1615
1616	free(str);
1617
1618	sort_dimension__add("pid", &sched->cmp_pid);
1619}
1620
 
 
 
 
 
 
 
 
 
 
1621static int __cmd_record(int argc, const char **argv)
1622{
1623	unsigned int rec_argc, i, j;
1624	const char **rec_argv;
 
1625	const char * const record_args[] = {
1626		"record",
1627		"-a",
1628		"-R",
1629		"-m", "1024",
1630		"-c", "1",
1631		"-e", "sched:sched_switch",
1632		"-e", "sched:sched_stat_wait",
1633		"-e", "sched:sched_stat_sleep",
1634		"-e", "sched:sched_stat_iowait",
1635		"-e", "sched:sched_stat_runtime",
1636		"-e", "sched:sched_process_fork",
1637		"-e", "sched:sched_wakeup",
1638		"-e", "sched:sched_migrate_task",
1639	};
1640
1641	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1642	rec_argv = calloc(rec_argc + 1, sizeof(char *));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643
 
 
 
 
 
 
1644	if (rec_argv == NULL)
1645		return -ENOMEM;
 
 
 
 
 
1646
1647	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1648		rec_argv[i] = strdup(record_args[i]);
1649
 
 
 
 
 
 
 
 
 
 
1650	for (j = 1; j < (unsigned int)argc; j++, i++)
1651		rec_argv[i] = argv[j];
1652
1653	BUG_ON(i != rec_argc);
1654
1655	return cmd_record(i, rec_argv, NULL);
 
 
 
 
 
 
 
 
1656}
1657
1658int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1659{
1660	const char default_sort_order[] = "avg, max, switch, runtime";
1661	struct perf_sched sched = {
1662		.tool = {
1663			.sample		 = perf_sched__process_tracepoint_sample,
1664			.comm		 = perf_event__process_comm,
 
1665			.lost		 = perf_event__process_lost,
1666			.fork		 = perf_sched__process_fork_event,
1667			.ordered_samples = true,
1668		},
1669		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
1670		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
1671		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1672		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1673		.sort_order	      = default_sort_order,
1674		.replay_repeat	      = 10,
1675		.profile_cpu	      = -1,
1676		.next_shortname1      = 'A',
1677		.next_shortname2      = '0',
 
 
 
1678	};
1679	const struct option latency_options[] = {
1680	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1681		   "sort by key(s): runtime, switch, avg, max"),
1682	OPT_INCR('v', "verbose", &verbose,
1683		    "be more verbose (show symbol address, etc)"),
1684	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1685		    "CPU to profile on"),
1686	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1687		    "dump raw trace in ASCII"),
 
1688	OPT_END()
1689	};
 
 
 
 
 
 
 
 
 
1690	const struct option replay_options[] = {
1691	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1692		     "repeat the workload replay N times (-1: infinite)"),
1693	OPT_INCR('v', "verbose", &verbose,
1694		    "be more verbose (show symbol address, etc)"),
1695	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1696		    "dump raw trace in ASCII"),
1697	OPT_END()
1698	};
1699	const struct option sched_options[] = {
1700	OPT_STRING('i', "input", &input_name, "file",
1701		    "input file name"),
1702	OPT_INCR('v', "verbose", &verbose,
1703		    "be more verbose (show symbol address, etc)"),
1704	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1705		    "dump raw trace in ASCII"),
1706	OPT_END()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707	};
 
1708	const char * const latency_usage[] = {
1709		"perf sched latency [<options>]",
1710		NULL
1711	};
1712	const char * const replay_usage[] = {
1713		"perf sched replay [<options>]",
1714		NULL
1715	};
1716	const char * const sched_usage[] = {
1717		"perf sched [<options>] {record|latency|map|replay|script}",
 
 
 
 
 
 
 
 
 
 
 
1718		NULL
1719	};
1720	struct trace_sched_handler lat_ops  = {
1721		.wakeup_event	    = latency_wakeup_event,
1722		.switch_event	    = latency_switch_event,
1723		.runtime_event	    = latency_runtime_event,
1724		.migrate_task_event = latency_migrate_task_event,
1725	};
1726	struct trace_sched_handler map_ops  = {
1727		.switch_event	    = map_switch_event,
1728	};
1729	struct trace_sched_handler replay_ops  = {
1730		.wakeup_event	    = replay_wakeup_event,
1731		.switch_event	    = replay_switch_event,
1732		.fork_event	    = replay_fork_event,
1733	};
1734	unsigned int i;
1735
1736	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1737		sched.curr_pid[i] = -1;
1738
1739	argc = parse_options(argc, argv, sched_options, sched_usage,
1740			     PARSE_OPT_STOP_AT_NON_OPTION);
1741	if (!argc)
1742		usage_with_options(sched_usage, sched_options);
1743
1744	/*
1745	 * Aliased to 'perf script' for now:
1746	 */
1747	if (!strcmp(argv[0], "script"))
1748		return cmd_script(argc, argv, prefix);
1749
1750	symbol__init();
1751	if (!strncmp(argv[0], "rec", 3)) {
1752		return __cmd_record(argc, argv);
1753	} else if (!strncmp(argv[0], "lat", 3)) {
1754		sched.tp_handler = &lat_ops;
1755		if (argc > 1) {
1756			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1757			if (argc)
1758				usage_with_options(latency_usage, latency_options);
1759		}
1760		setup_sorting(&sched, latency_options, latency_usage);
1761		return perf_sched__lat(&sched);
1762	} else if (!strcmp(argv[0], "map")) {
 
 
 
 
 
1763		sched.tp_handler = &map_ops;
1764		setup_sorting(&sched, latency_options, latency_usage);
1765		return perf_sched__map(&sched);
1766	} else if (!strncmp(argv[0], "rep", 3)) {
1767		sched.tp_handler = &replay_ops;
1768		if (argc) {
1769			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1770			if (argc)
1771				usage_with_options(replay_usage, replay_options);
1772		}
1773		return perf_sched__replay(&sched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774	} else {
1775		usage_with_options(sched_usage, sched_options);
1776	}
1777
1778	return 0;
1779}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf-sys.h"
   4
   5#include "util/cpumap.h"
   6#include "util/evlist.h"
 
   7#include "util/evsel.h"
   8#include "util/evsel_fprintf.h"
   9#include "util/mutex.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29#include "util/util.h"
  30
  31#include <linux/kernel.h>
  32#include <linux/log2.h>
  33#include <linux/zalloc.h>
  34#include <sys/prctl.h>
  35#include <sys/resource.h>
  36#include <inttypes.h>
  37
  38#include <errno.h>
  39#include <semaphore.h>
  40#include <pthread.h>
  41#include <math.h>
  42#include <api/fs/fs.h>
  43#include <perf/cpumap.h>
  44#include <linux/time64.h>
  45#include <linux/err.h>
  46
  47#include <linux/ctype.h>
  48
  49#define PR_SET_NAME		15               /* Set process name */
  50#define MAX_CPUS		4096
  51#define COMM_LEN		20
  52#define SYM_LEN			129
  53#define MAX_PID			1024000
  54
  55static const char *cpu_list;
  56static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  57
  58struct sched_atom;
  59
  60struct task_desc {
  61	unsigned long		nr;
  62	unsigned long		pid;
  63	char			comm[COMM_LEN];
  64
  65	unsigned long		nr_events;
  66	unsigned long		curr_event;
  67	struct sched_atom	**atoms;
  68
  69	pthread_t		thread;
  70	sem_t			sleep_sem;
  71
  72	sem_t			ready_for_work;
  73	sem_t			work_done_sem;
  74
  75	u64			cpu_usage;
  76};
  77
  78enum sched_event_type {
  79	SCHED_EVENT_RUN,
  80	SCHED_EVENT_SLEEP,
  81	SCHED_EVENT_WAKEUP,
  82	SCHED_EVENT_MIGRATION,
  83};
  84
  85struct sched_atom {
  86	enum sched_event_type	type;
  87	int			specific_wait;
  88	u64			timestamp;
  89	u64			duration;
  90	unsigned long		nr;
  91	sem_t			*wait_sem;
  92	struct task_desc	*wakee;
  93};
  94
 
 
  95enum thread_state {
  96	THREAD_SLEEPING = 0,
  97	THREAD_WAIT_CPU,
  98	THREAD_SCHED_IN,
  99	THREAD_IGNORE
 100};
 101
 102struct work_atom {
 103	struct list_head	list;
 104	enum thread_state	state;
 105	u64			sched_out_time;
 106	u64			wake_up_time;
 107	u64			sched_in_time;
 108	u64			runtime;
 109};
 110
 111struct work_atoms {
 112	struct list_head	work_list;
 113	struct thread		*thread;
 114	struct rb_node		node;
 115	u64			max_lat;
 116	u64			max_lat_start;
 117	u64			max_lat_end;
 118	u64			total_lat;
 119	u64			nb_atoms;
 120	u64			total_runtime;
 121	int			num_merged;
 122};
 123
 124typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 125
 126struct perf_sched;
 127
 128struct trace_sched_handler {
 129	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 130			    struct perf_sample *sample, struct machine *machine);
 131
 132	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 133			     struct perf_sample *sample, struct machine *machine);
 134
 135	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 136			    struct perf_sample *sample, struct machine *machine);
 137
 138	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 139	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 140			  struct machine *machine);
 141
 142	int (*migrate_task_event)(struct perf_sched *sched,
 143				  struct evsel *evsel,
 144				  struct perf_sample *sample,
 145				  struct machine *machine);
 146};
 147
 148#define COLOR_PIDS PERF_COLOR_BLUE
 149#define COLOR_CPUS PERF_COLOR_BG_RED
 150
 151struct perf_sched_map {
 152	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 153	struct perf_cpu		*comp_cpus;
 154	bool			 comp;
 155	struct perf_thread_map *color_pids;
 156	const char		*color_pids_str;
 157	struct perf_cpu_map	*color_cpus;
 158	const char		*color_cpus_str;
 159	struct perf_cpu_map	*cpus;
 160	const char		*cpus_str;
 161};
 162
 163struct perf_sched {
 164	struct perf_tool tool;
 165	const char	 *sort_order;
 166	unsigned long	 nr_tasks;
 167	struct task_desc **pid_to_task;
 168	struct task_desc **tasks;
 169	const struct trace_sched_handler *tp_handler;
 170	struct mutex	 start_work_mutex;
 171	struct mutex	 work_done_wait_mutex;
 172	int		 profile_cpu;
 173/*
 174 * Track the current task - that way we can know whether there's any
 175 * weird events, such as a task being switched away that is not current.
 176 */
 177	struct perf_cpu	 max_cpu;
 178	u32		 *curr_pid;
 179	struct thread	 **curr_thread;
 180	char		 next_shortname1;
 181	char		 next_shortname2;
 182	unsigned int	 replay_repeat;
 183	unsigned long	 nr_run_events;
 184	unsigned long	 nr_sleep_events;
 185	unsigned long	 nr_wakeup_events;
 186	unsigned long	 nr_sleep_corrections;
 187	unsigned long	 nr_run_events_optimized;
 188	unsigned long	 targetless_wakeups;
 189	unsigned long	 multitarget_wakeups;
 190	unsigned long	 nr_runs;
 191	unsigned long	 nr_timestamps;
 192	unsigned long	 nr_unordered_timestamps;
 
 193	unsigned long	 nr_context_switch_bugs;
 194	unsigned long	 nr_events;
 195	unsigned long	 nr_lost_chunks;
 196	unsigned long	 nr_lost_events;
 197	u64		 run_measurement_overhead;
 198	u64		 sleep_measurement_overhead;
 199	u64		 start_time;
 200	u64		 cpu_usage;
 201	u64		 runavg_cpu_usage;
 202	u64		 parent_cpu_usage;
 203	u64		 runavg_parent_cpu_usage;
 204	u64		 sum_runtime;
 205	u64		 sum_fluct;
 206	u64		 run_avg;
 207	u64		 all_runtime;
 208	u64		 all_count;
 209	u64		 *cpu_last_switched;
 210	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 211	struct list_head sort_list, cmp_pid;
 212	bool force;
 213	bool skip_merge;
 214	struct perf_sched_map map;
 215
 216	/* options for timehist command */
 217	bool		summary;
 218	bool		summary_only;
 219	bool		idle_hist;
 220	bool		show_callchain;
 221	unsigned int	max_stack;
 222	bool		show_cpu_visual;
 223	bool		show_wakeups;
 224	bool		show_next;
 225	bool		show_migrations;
 226	bool		show_state;
 227	u64		skipped_samples;
 228	const char	*time_str;
 229	struct perf_time_interval ptime;
 230	struct perf_time_interval hist_time;
 231	volatile bool   thread_funcs_exit;
 232};
 233
 234/* per thread run time data */
 235struct thread_runtime {
 236	u64 last_time;      /* time of previous sched in/out event */
 237	u64 dt_run;         /* run time */
 238	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 239	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 240	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 241	u64 dt_delay;       /* time between wakeup and sched-in */
 242	u64 ready_to_run;   /* time of wakeup */
 243
 244	struct stats run_stats;
 245	u64 total_run_time;
 246	u64 total_sleep_time;
 247	u64 total_iowait_time;
 248	u64 total_preempt_time;
 249	u64 total_delay_time;
 250
 251	char last_state;
 252
 253	char shortname[3];
 254	bool comm_changed;
 255
 256	u64 migrations;
 257};
 258
 259/* per event run time data */
 260struct evsel_runtime {
 261	u64 *last_time; /* time this event was last seen per cpu */
 262	u32 ncpu;       /* highest cpu slot allocated */
 263};
 264
 265/* per cpu idle time data */
 266struct idle_thread_runtime {
 267	struct thread_runtime	tr;
 268	struct thread		*last_thread;
 269	struct rb_root_cached	sorted_root;
 270	struct callchain_root	callchain;
 271	struct callchain_cursor	cursor;
 272};
 273
 274/* track idle times per cpu */
 275static struct thread **idle_threads;
 276static int idle_max_cpu;
 277static char idle_comm[] = "<idle>";
 278
 279static u64 get_nsecs(void)
 280{
 281	struct timespec ts;
 282
 283	clock_gettime(CLOCK_MONOTONIC, &ts);
 284
 285	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 286}
 287
 288static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 289{
 290	u64 T0 = get_nsecs(), T1;
 291
 292	do {
 293		T1 = get_nsecs();
 294	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 295}
 296
 297static void sleep_nsecs(u64 nsecs)
 298{
 299	struct timespec ts;
 300
 301	ts.tv_nsec = nsecs % 999999999;
 302	ts.tv_sec = nsecs / 999999999;
 303
 304	nanosleep(&ts, NULL);
 305}
 306
 307static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 308{
 309	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 310	int i;
 311
 312	for (i = 0; i < 10; i++) {
 313		T0 = get_nsecs();
 314		burn_nsecs(sched, 0);
 315		T1 = get_nsecs();
 316		delta = T1-T0;
 317		min_delta = min(min_delta, delta);
 318	}
 319	sched->run_measurement_overhead = min_delta;
 320
 321	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 322}
 323
 324static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 325{
 326	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 327	int i;
 328
 329	for (i = 0; i < 10; i++) {
 330		T0 = get_nsecs();
 331		sleep_nsecs(10000);
 332		T1 = get_nsecs();
 333		delta = T1-T0;
 334		min_delta = min(min_delta, delta);
 335	}
 336	min_delta -= 10000;
 337	sched->sleep_measurement_overhead = min_delta;
 338
 339	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 340}
 341
 342static struct sched_atom *
 343get_new_event(struct task_desc *task, u64 timestamp)
 344{
 345	struct sched_atom *event = zalloc(sizeof(*event));
 346	unsigned long idx = task->nr_events;
 347	size_t size;
 348
 349	event->timestamp = timestamp;
 350	event->nr = idx;
 351
 352	task->nr_events++;
 353	size = sizeof(struct sched_atom *) * task->nr_events;
 354	task->atoms = realloc(task->atoms, size);
 355	BUG_ON(!task->atoms);
 356
 357	task->atoms[idx] = event;
 358
 359	return event;
 360}
 361
 362static struct sched_atom *last_event(struct task_desc *task)
 363{
 364	if (!task->nr_events)
 365		return NULL;
 366
 367	return task->atoms[task->nr_events - 1];
 368}
 369
 370static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 371				u64 timestamp, u64 duration)
 372{
 373	struct sched_atom *event, *curr_event = last_event(task);
 374
 375	/*
 376	 * optimize an existing RUN event by merging this one
 377	 * to it:
 378	 */
 379	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 380		sched->nr_run_events_optimized++;
 381		curr_event->duration += duration;
 382		return;
 383	}
 384
 385	event = get_new_event(task, timestamp);
 386
 387	event->type = SCHED_EVENT_RUN;
 388	event->duration = duration;
 389
 390	sched->nr_run_events++;
 391}
 392
 393static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 394				   u64 timestamp, struct task_desc *wakee)
 395{
 396	struct sched_atom *event, *wakee_event;
 397
 398	event = get_new_event(task, timestamp);
 399	event->type = SCHED_EVENT_WAKEUP;
 400	event->wakee = wakee;
 401
 402	wakee_event = last_event(wakee);
 403	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 404		sched->targetless_wakeups++;
 405		return;
 406	}
 407	if (wakee_event->wait_sem) {
 408		sched->multitarget_wakeups++;
 409		return;
 410	}
 411
 412	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 413	sem_init(wakee_event->wait_sem, 0, 0);
 414	wakee_event->specific_wait = 1;
 415	event->wait_sem = wakee_event->wait_sem;
 416
 417	sched->nr_wakeup_events++;
 418}
 419
 420static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 421				  u64 timestamp, const char task_state __maybe_unused)
 422{
 423	struct sched_atom *event = get_new_event(task, timestamp);
 424
 425	event->type = SCHED_EVENT_SLEEP;
 426
 427	sched->nr_sleep_events++;
 428}
 429
 430static struct task_desc *register_pid(struct perf_sched *sched,
 431				      unsigned long pid, const char *comm)
 432{
 433	struct task_desc *task;
 434	static int pid_max;
 435
 436	if (sched->pid_to_task == NULL) {
 437		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 438			pid_max = MAX_PID;
 439		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 440	}
 441	if (pid >= (unsigned long)pid_max) {
 442		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 443			sizeof(struct task_desc *))) == NULL);
 444		while (pid >= (unsigned long)pid_max)
 445			sched->pid_to_task[pid_max++] = NULL;
 446	}
 447
 448	task = sched->pid_to_task[pid];
 449
 450	if (task)
 451		return task;
 452
 453	task = zalloc(sizeof(*task));
 454	task->pid = pid;
 455	task->nr = sched->nr_tasks;
 456	strcpy(task->comm, comm);
 457	/*
 458	 * every task starts in sleeping state - this gets ignored
 459	 * if there's no wakeup pointing to this sleep state:
 460	 */
 461	add_sched_event_sleep(sched, task, 0, 0);
 462
 463	sched->pid_to_task[pid] = task;
 464	sched->nr_tasks++;
 465	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 466	BUG_ON(!sched->tasks);
 467	sched->tasks[task->nr] = task;
 468
 469	if (verbose > 0)
 470		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 471
 472	return task;
 473}
 474
 475
 476static void print_task_traces(struct perf_sched *sched)
 477{
 478	struct task_desc *task;
 479	unsigned long i;
 480
 481	for (i = 0; i < sched->nr_tasks; i++) {
 482		task = sched->tasks[i];
 483		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 484			task->nr, task->comm, task->pid, task->nr_events);
 485	}
 486}
 487
 488static void add_cross_task_wakeups(struct perf_sched *sched)
 489{
 490	struct task_desc *task1, *task2;
 491	unsigned long i, j;
 492
 493	for (i = 0; i < sched->nr_tasks; i++) {
 494		task1 = sched->tasks[i];
 495		j = i + 1;
 496		if (j == sched->nr_tasks)
 497			j = 0;
 498		task2 = sched->tasks[j];
 499		add_sched_event_wakeup(sched, task1, 0, task2);
 500	}
 501}
 502
 503static void perf_sched__process_event(struct perf_sched *sched,
 504				      struct sched_atom *atom)
 505{
 506	int ret = 0;
 507
 508	switch (atom->type) {
 509		case SCHED_EVENT_RUN:
 510			burn_nsecs(sched, atom->duration);
 511			break;
 512		case SCHED_EVENT_SLEEP:
 513			if (atom->wait_sem)
 514				ret = sem_wait(atom->wait_sem);
 515			BUG_ON(ret);
 516			break;
 517		case SCHED_EVENT_WAKEUP:
 518			if (atom->wait_sem)
 519				ret = sem_post(atom->wait_sem);
 520			BUG_ON(ret);
 521			break;
 522		case SCHED_EVENT_MIGRATION:
 523			break;
 524		default:
 525			BUG_ON(1);
 526	}
 527}
 528
 529static u64 get_cpu_usage_nsec_parent(void)
 530{
 531	struct rusage ru;
 532	u64 sum;
 533	int err;
 534
 535	err = getrusage(RUSAGE_SELF, &ru);
 536	BUG_ON(err);
 537
 538	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 539	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 540
 541	return sum;
 542}
 543
 544static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 545{
 546	struct perf_event_attr attr;
 547	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 548	int fd;
 549	struct rlimit limit;
 550	bool need_privilege = false;
 551
 552	memset(&attr, 0, sizeof(attr));
 553
 554	attr.type = PERF_TYPE_SOFTWARE;
 555	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 556
 557force_again:
 558	fd = sys_perf_event_open(&attr, 0, -1, -1,
 559				 perf_event_open_cloexec_flag());
 560
 561	if (fd < 0) {
 562		if (errno == EMFILE) {
 563			if (sched->force) {
 564				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 565				limit.rlim_cur += sched->nr_tasks - cur_task;
 566				if (limit.rlim_cur > limit.rlim_max) {
 567					limit.rlim_max = limit.rlim_cur;
 568					need_privilege = true;
 569				}
 570				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 571					if (need_privilege && errno == EPERM)
 572						strcpy(info, "Need privilege\n");
 573				} else
 574					goto force_again;
 575			} else
 576				strcpy(info, "Have a try with -f option\n");
 577		}
 578		pr_err("Error: sys_perf_event_open() syscall returned "
 579		       "with %d (%s)\n%s", fd,
 580		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 581		exit(EXIT_FAILURE);
 582	}
 583	return fd;
 584}
 585
 586static u64 get_cpu_usage_nsec_self(int fd)
 587{
 588	u64 runtime;
 589	int ret;
 590
 591	ret = read(fd, &runtime, sizeof(runtime));
 592	BUG_ON(ret != sizeof(runtime));
 593
 594	return runtime;
 595}
 596
 597struct sched_thread_parms {
 598	struct task_desc  *task;
 599	struct perf_sched *sched;
 600	int fd;
 601};
 602
 603static void *thread_func(void *ctx)
 604{
 605	struct sched_thread_parms *parms = ctx;
 606	struct task_desc *this_task = parms->task;
 607	struct perf_sched *sched = parms->sched;
 608	u64 cpu_usage_0, cpu_usage_1;
 609	unsigned long i, ret;
 610	char comm2[22];
 611	int fd = parms->fd;
 612
 613	zfree(&parms);
 614
 615	sprintf(comm2, ":%s", this_task->comm);
 616	prctl(PR_SET_NAME, comm2);
 
 617	if (fd < 0)
 618		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619
 620	while (!sched->thread_funcs_exit) {
 621		ret = sem_post(&this_task->ready_for_work);
 622		BUG_ON(ret);
 623		mutex_lock(&sched->start_work_mutex);
 624		mutex_unlock(&sched->start_work_mutex);
 625
 626		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 627
 628		for (i = 0; i < this_task->nr_events; i++) {
 629			this_task->curr_event = i;
 630			perf_sched__process_event(sched, this_task->atoms[i]);
 631		}
 632
 633		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 634		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 635		ret = sem_post(&this_task->work_done_sem);
 636		BUG_ON(ret);
 637
 638		mutex_lock(&sched->work_done_wait_mutex);
 639		mutex_unlock(&sched->work_done_wait_mutex);
 640	}
 641	return NULL;
 642}
 643
 644static void create_tasks(struct perf_sched *sched)
 645	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
 646	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
 647{
 648	struct task_desc *task;
 649	pthread_attr_t attr;
 650	unsigned long i;
 651	int err;
 652
 653	err = pthread_attr_init(&attr);
 654	BUG_ON(err);
 655	err = pthread_attr_setstacksize(&attr,
 656			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 
 
 
 
 657	BUG_ON(err);
 658	mutex_lock(&sched->start_work_mutex);
 659	mutex_lock(&sched->work_done_wait_mutex);
 660	for (i = 0; i < sched->nr_tasks; i++) {
 661		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 662		BUG_ON(parms == NULL);
 663		parms->task = task = sched->tasks[i];
 664		parms->sched = sched;
 665		parms->fd = self_open_counters(sched, i);
 666		sem_init(&task->sleep_sem, 0, 0);
 667		sem_init(&task->ready_for_work, 0, 0);
 668		sem_init(&task->work_done_sem, 0, 0);
 669		task->curr_event = 0;
 670		err = pthread_create(&task->thread, &attr, thread_func, parms);
 671		BUG_ON(err);
 672	}
 673}
 674
 675static void destroy_tasks(struct perf_sched *sched)
 676	UNLOCK_FUNCTION(sched->start_work_mutex)
 677	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
 678{
 679	struct task_desc *task;
 680	unsigned long i;
 681	int err;
 682
 683	mutex_unlock(&sched->start_work_mutex);
 684	mutex_unlock(&sched->work_done_wait_mutex);
 685	/* Get rid of threads so they won't be upset by mutex destrunction */
 686	for (i = 0; i < sched->nr_tasks; i++) {
 687		task = sched->tasks[i];
 688		err = pthread_join(task->thread, NULL);
 689		BUG_ON(err);
 690		sem_destroy(&task->sleep_sem);
 691		sem_destroy(&task->ready_for_work);
 692		sem_destroy(&task->work_done_sem);
 693	}
 694}
 695
 696static void wait_for_tasks(struct perf_sched *sched)
 697	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 698	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 699{
 700	u64 cpu_usage_0, cpu_usage_1;
 701	struct task_desc *task;
 702	unsigned long i, ret;
 703
 704	sched->start_time = get_nsecs();
 705	sched->cpu_usage = 0;
 706	mutex_unlock(&sched->work_done_wait_mutex);
 707
 708	for (i = 0; i < sched->nr_tasks; i++) {
 709		task = sched->tasks[i];
 710		ret = sem_wait(&task->ready_for_work);
 711		BUG_ON(ret);
 712		sem_init(&task->ready_for_work, 0, 0);
 713	}
 714	mutex_lock(&sched->work_done_wait_mutex);
 
 715
 716	cpu_usage_0 = get_cpu_usage_nsec_parent();
 717
 718	mutex_unlock(&sched->start_work_mutex);
 719
 720	for (i = 0; i < sched->nr_tasks; i++) {
 721		task = sched->tasks[i];
 722		ret = sem_wait(&task->work_done_sem);
 723		BUG_ON(ret);
 724		sem_init(&task->work_done_sem, 0, 0);
 725		sched->cpu_usage += task->cpu_usage;
 726		task->cpu_usage = 0;
 727	}
 728
 729	cpu_usage_1 = get_cpu_usage_nsec_parent();
 730	if (!sched->runavg_cpu_usage)
 731		sched->runavg_cpu_usage = sched->cpu_usage;
 732	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 733
 734	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 735	if (!sched->runavg_parent_cpu_usage)
 736		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 737	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 738					 sched->parent_cpu_usage)/sched->replay_repeat;
 739
 740	mutex_lock(&sched->start_work_mutex);
 
 741
 742	for (i = 0; i < sched->nr_tasks; i++) {
 743		task = sched->tasks[i];
 744		sem_init(&task->sleep_sem, 0, 0);
 745		task->curr_event = 0;
 746	}
 747}
 748
 749static void run_one_test(struct perf_sched *sched)
 750	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 751	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 752{
 753	u64 T0, T1, delta, avg_delta, fluct;
 754
 755	T0 = get_nsecs();
 756	wait_for_tasks(sched);
 757	T1 = get_nsecs();
 758
 759	delta = T1 - T0;
 760	sched->sum_runtime += delta;
 761	sched->nr_runs++;
 762
 763	avg_delta = sched->sum_runtime / sched->nr_runs;
 764	if (delta < avg_delta)
 765		fluct = avg_delta - delta;
 766	else
 767		fluct = delta - avg_delta;
 768	sched->sum_fluct += fluct;
 769	if (!sched->run_avg)
 770		sched->run_avg = delta;
 771	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 772
 773	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 774
 775	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 776
 777	printf("cpu: %0.2f / %0.2f",
 778		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 779
 780#if 0
 781	/*
 782	 * rusage statistics done by the parent, these are less
 783	 * accurate than the sched->sum_exec_runtime based statistics:
 784	 */
 785	printf(" [%0.2f / %0.2f]",
 786		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 787		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 788#endif
 789
 790	printf("\n");
 791
 792	if (sched->nr_sleep_corrections)
 793		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 794	sched->nr_sleep_corrections = 0;
 795}
 796
 797static void test_calibrations(struct perf_sched *sched)
 798{
 799	u64 T0, T1;
 800
 801	T0 = get_nsecs();
 802	burn_nsecs(sched, NSEC_PER_MSEC);
 803	T1 = get_nsecs();
 804
 805	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 806
 807	T0 = get_nsecs();
 808	sleep_nsecs(NSEC_PER_MSEC);
 809	T1 = get_nsecs();
 810
 811	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 812}
 813
 814static int
 815replay_wakeup_event(struct perf_sched *sched,
 816		    struct evsel *evsel, struct perf_sample *sample,
 817		    struct machine *machine __maybe_unused)
 818{
 819	const char *comm = evsel__strval(evsel, sample, "comm");
 820	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 821	struct task_desc *waker, *wakee;
 822
 823	if (verbose > 0) {
 824		printf("sched_wakeup event %p\n", evsel);
 825
 826		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 827	}
 828
 829	waker = register_pid(sched, sample->tid, "<unknown>");
 830	wakee = register_pid(sched, pid, comm);
 831
 832	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 833	return 0;
 834}
 835
 836static int replay_switch_event(struct perf_sched *sched,
 837			       struct evsel *evsel,
 838			       struct perf_sample *sample,
 839			       struct machine *machine __maybe_unused)
 840{
 841	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 842		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 843	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 844		  next_pid = evsel__intval(evsel, sample, "next_pid");
 845	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
 846	struct task_desc *prev, __maybe_unused *next;
 847	u64 timestamp0, timestamp = sample->time;
 848	int cpu = sample->cpu;
 849	s64 delta;
 850
 851	if (verbose > 0)
 852		printf("sched_switch event %p\n", evsel);
 853
 854	if (cpu >= MAX_CPUS || cpu < 0)
 855		return 0;
 856
 857	timestamp0 = sched->cpu_last_switched[cpu];
 858	if (timestamp0)
 859		delta = timestamp - timestamp0;
 860	else
 861		delta = 0;
 862
 863	if (delta < 0) {
 864		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 865		return -1;
 866	}
 867
 868	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 869		 prev_comm, prev_pid, next_comm, next_pid, delta);
 870
 871	prev = register_pid(sched, prev_pid, prev_comm);
 872	next = register_pid(sched, next_pid, next_comm);
 873
 874	sched->cpu_last_switched[cpu] = timestamp;
 875
 876	add_sched_event_run(sched, prev, timestamp, delta);
 877	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 878
 879	return 0;
 880}
 881
 882static int replay_fork_event(struct perf_sched *sched,
 883			     union perf_event *event,
 884			     struct machine *machine)
 885{
 886	struct thread *child, *parent;
 887
 888	child = machine__findnew_thread(machine, event->fork.pid,
 889					event->fork.tid);
 890	parent = machine__findnew_thread(machine, event->fork.ppid,
 891					 event->fork.ptid);
 892
 893	if (child == NULL || parent == NULL) {
 894		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 895				 child, parent);
 896		goto out_put;
 897	}
 898
 899	if (verbose > 0) {
 900		printf("fork event\n");
 901		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
 902		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
 903	}
 904
 905	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
 906	register_pid(sched, thread__tid(child), thread__comm_str(child));
 907out_put:
 908	thread__put(child);
 909	thread__put(parent);
 910	return 0;
 911}
 912
 913struct sort_dimension {
 914	const char		*name;
 915	sort_fn_t		cmp;
 916	struct list_head	list;
 917};
 918
 919/*
 920 * handle runtime stats saved per thread
 921 */
 922static struct thread_runtime *thread__init_runtime(struct thread *thread)
 923{
 924	struct thread_runtime *r;
 925
 926	r = zalloc(sizeof(struct thread_runtime));
 927	if (!r)
 928		return NULL;
 929
 930	init_stats(&r->run_stats);
 931	thread__set_priv(thread, r);
 932
 933	return r;
 934}
 935
 936static struct thread_runtime *thread__get_runtime(struct thread *thread)
 937{
 938	struct thread_runtime *tr;
 939
 940	tr = thread__priv(thread);
 941	if (tr == NULL) {
 942		tr = thread__init_runtime(thread);
 943		if (tr == NULL)
 944			pr_debug("Failed to malloc memory for runtime data.\n");
 945	}
 946
 947	return tr;
 948}
 949
 950static int
 951thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 952{
 953	struct sort_dimension *sort;
 954	int ret = 0;
 955
 956	BUG_ON(list_empty(list));
 957
 958	list_for_each_entry(sort, list, list) {
 959		ret = sort->cmp(l, r);
 960		if (ret)
 961			return ret;
 962	}
 963
 964	return ret;
 965}
 966
 967static struct work_atoms *
 968thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 969			 struct list_head *sort_list)
 970{
 971	struct rb_node *node = root->rb_root.rb_node;
 972	struct work_atoms key = { .thread = thread };
 973
 974	while (node) {
 975		struct work_atoms *atoms;
 976		int cmp;
 977
 978		atoms = container_of(node, struct work_atoms, node);
 979
 980		cmp = thread_lat_cmp(sort_list, &key, atoms);
 981		if (cmp > 0)
 982			node = node->rb_left;
 983		else if (cmp < 0)
 984			node = node->rb_right;
 985		else {
 986			BUG_ON(thread != atoms->thread);
 987			return atoms;
 988		}
 989	}
 990	return NULL;
 991}
 992
 993static void
 994__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 995			 struct list_head *sort_list)
 996{
 997	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 998	bool leftmost = true;
 999
1000	while (*new) {
1001		struct work_atoms *this;
1002		int cmp;
1003
1004		this = container_of(*new, struct work_atoms, node);
1005		parent = *new;
1006
1007		cmp = thread_lat_cmp(sort_list, data, this);
1008
1009		if (cmp > 0)
1010			new = &((*new)->rb_left);
1011		else {
1012			new = &((*new)->rb_right);
1013			leftmost = false;
1014		}
1015	}
1016
1017	rb_link_node(&data->node, parent, new);
1018	rb_insert_color_cached(&data->node, root, leftmost);
1019}
1020
1021static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1022{
1023	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1024	if (!atoms) {
1025		pr_err("No memory at %s\n", __func__);
1026		return -1;
1027	}
1028
1029	atoms->thread = thread__get(thread);
1030	INIT_LIST_HEAD(&atoms->work_list);
1031	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1032	return 0;
1033}
1034
 
 
 
 
 
 
 
1035static int
1036add_sched_out_event(struct work_atoms *atoms,
1037		    char run_state,
1038		    u64 timestamp)
1039{
1040	struct work_atom *atom = zalloc(sizeof(*atom));
1041	if (!atom) {
1042		pr_err("Non memory at %s", __func__);
1043		return -1;
1044	}
1045
1046	atom->sched_out_time = timestamp;
1047
1048	if (run_state == 'R') {
1049		atom->state = THREAD_WAIT_CPU;
1050		atom->wake_up_time = atom->sched_out_time;
1051	}
1052
1053	list_add_tail(&atom->list, &atoms->work_list);
1054	return 0;
1055}
1056
1057static void
1058add_runtime_event(struct work_atoms *atoms, u64 delta,
1059		  u64 timestamp __maybe_unused)
1060{
1061	struct work_atom *atom;
1062
1063	BUG_ON(list_empty(&atoms->work_list));
1064
1065	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1066
1067	atom->runtime += delta;
1068	atoms->total_runtime += delta;
1069}
1070
1071static void
1072add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1073{
1074	struct work_atom *atom;
1075	u64 delta;
1076
1077	if (list_empty(&atoms->work_list))
1078		return;
1079
1080	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1081
1082	if (atom->state != THREAD_WAIT_CPU)
1083		return;
1084
1085	if (timestamp < atom->wake_up_time) {
1086		atom->state = THREAD_IGNORE;
1087		return;
1088	}
1089
1090	atom->state = THREAD_SCHED_IN;
1091	atom->sched_in_time = timestamp;
1092
1093	delta = atom->sched_in_time - atom->wake_up_time;
1094	atoms->total_lat += delta;
1095	if (delta > atoms->max_lat) {
1096		atoms->max_lat = delta;
1097		atoms->max_lat_start = atom->wake_up_time;
1098		atoms->max_lat_end = timestamp;
1099	}
1100	atoms->nb_atoms++;
1101}
1102
1103static int latency_switch_event(struct perf_sched *sched,
1104				struct evsel *evsel,
1105				struct perf_sample *sample,
1106				struct machine *machine)
1107{
1108	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1109		  next_pid = evsel__intval(evsel, sample, "next_pid");
1110	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1111	struct work_atoms *out_events, *in_events;
1112	struct thread *sched_out, *sched_in;
1113	u64 timestamp0, timestamp = sample->time;
1114	int cpu = sample->cpu, err = -1;
1115	s64 delta;
1116
1117	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1118
1119	timestamp0 = sched->cpu_last_switched[cpu];
1120	sched->cpu_last_switched[cpu] = timestamp;
1121	if (timestamp0)
1122		delta = timestamp - timestamp0;
1123	else
1124		delta = 0;
1125
1126	if (delta < 0) {
1127		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1128		return -1;
1129	}
1130
1131	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1132	sched_in = machine__findnew_thread(machine, -1, next_pid);
1133	if (sched_out == NULL || sched_in == NULL)
1134		goto out_put;
1135
1136	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1137	if (!out_events) {
1138		if (thread_atoms_insert(sched, sched_out))
1139			goto out_put;
1140		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1141		if (!out_events) {
1142			pr_err("out-event: Internal tree error");
1143			goto out_put;
1144		}
1145	}
1146	if (add_sched_out_event(out_events, prev_state, timestamp))
1147		return -1;
1148
1149	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1150	if (!in_events) {
1151		if (thread_atoms_insert(sched, sched_in))
1152			goto out_put;
1153		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1154		if (!in_events) {
1155			pr_err("in-event: Internal tree error");
1156			goto out_put;
1157		}
1158		/*
1159		 * Take came in we have not heard about yet,
1160		 * add in an initial atom in runnable state:
1161		 */
1162		if (add_sched_out_event(in_events, 'R', timestamp))
1163			goto out_put;
1164	}
1165	add_sched_in_event(in_events, timestamp);
1166	err = 0;
1167out_put:
1168	thread__put(sched_out);
1169	thread__put(sched_in);
1170	return err;
1171}
1172
1173static int latency_runtime_event(struct perf_sched *sched,
1174				 struct evsel *evsel,
1175				 struct perf_sample *sample,
1176				 struct machine *machine)
1177{
1178	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1179	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1180	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1181	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1182	u64 timestamp = sample->time;
1183	int cpu = sample->cpu, err = -1;
1184
1185	if (thread == NULL)
1186		return -1;
1187
1188	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1189	if (!atoms) {
1190		if (thread_atoms_insert(sched, thread))
1191			goto out_put;
1192		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1193		if (!atoms) {
1194			pr_err("in-event: Internal tree error");
1195			goto out_put;
1196		}
1197		if (add_sched_out_event(atoms, 'R', timestamp))
1198			goto out_put;
1199	}
1200
1201	add_runtime_event(atoms, runtime, timestamp);
1202	err = 0;
1203out_put:
1204	thread__put(thread);
1205	return err;
1206}
1207
1208static int latency_wakeup_event(struct perf_sched *sched,
1209				struct evsel *evsel,
1210				struct perf_sample *sample,
1211				struct machine *machine)
1212{
1213	const u32 pid	  = evsel__intval(evsel, sample, "pid");
 
1214	struct work_atoms *atoms;
1215	struct work_atom *atom;
1216	struct thread *wakee;
1217	u64 timestamp = sample->time;
1218	int err = -1;
1219
1220	wakee = machine__findnew_thread(machine, -1, pid);
1221	if (wakee == NULL)
1222		return -1;
 
 
1223	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1224	if (!atoms) {
1225		if (thread_atoms_insert(sched, wakee))
1226			goto out_put;
1227		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1228		if (!atoms) {
1229			pr_err("wakeup-event: Internal tree error");
1230			goto out_put;
1231		}
1232		if (add_sched_out_event(atoms, 'S', timestamp))
1233			goto out_put;
1234	}
1235
1236	BUG_ON(list_empty(&atoms->work_list));
1237
1238	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1239
1240	/*
1241	 * As we do not guarantee the wakeup event happens when
1242	 * task is out of run queue, also may happen when task is
1243	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1244	 * then we should not set the ->wake_up_time when wake up a
1245	 * task which is on run queue.
1246	 *
1247	 * You WILL be missing events if you've recorded only
1248	 * one CPU, or are only looking at only one, so don't
1249	 * skip in this case.
1250	 */
1251	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1252		goto out_ok;
1253
1254	sched->nr_timestamps++;
1255	if (atom->sched_out_time > timestamp) {
1256		sched->nr_unordered_timestamps++;
1257		goto out_ok;
1258	}
1259
1260	atom->state = THREAD_WAIT_CPU;
1261	atom->wake_up_time = timestamp;
1262out_ok:
1263	err = 0;
1264out_put:
1265	thread__put(wakee);
1266	return err;
1267}
1268
1269static int latency_migrate_task_event(struct perf_sched *sched,
1270				      struct evsel *evsel,
1271				      struct perf_sample *sample,
1272				      struct machine *machine)
1273{
1274	const u32 pid = evsel__intval(evsel, sample, "pid");
1275	u64 timestamp = sample->time;
1276	struct work_atoms *atoms;
1277	struct work_atom *atom;
1278	struct thread *migrant;
1279	int err = -1;
1280
1281	/*
1282	 * Only need to worry about migration when profiling one CPU.
1283	 */
1284	if (sched->profile_cpu == -1)
1285		return 0;
1286
1287	migrant = machine__findnew_thread(machine, -1, pid);
1288	if (migrant == NULL)
1289		return -1;
1290	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1291	if (!atoms) {
1292		if (thread_atoms_insert(sched, migrant))
1293			goto out_put;
1294		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1295		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1296		if (!atoms) {
1297			pr_err("migration-event: Internal tree error");
1298			goto out_put;
1299		}
1300		if (add_sched_out_event(atoms, 'R', timestamp))
1301			goto out_put;
1302	}
1303
1304	BUG_ON(list_empty(&atoms->work_list));
1305
1306	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1307	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1308
1309	sched->nr_timestamps++;
1310
1311	if (atom->sched_out_time > timestamp)
1312		sched->nr_unordered_timestamps++;
1313	err = 0;
1314out_put:
1315	thread__put(migrant);
1316	return err;
1317}
1318
1319static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1320{
1321	int i;
1322	int ret;
1323	u64 avg;
1324	char max_lat_start[32], max_lat_end[32];
1325
1326	if (!work_list->nb_atoms)
1327		return;
1328	/*
1329	 * Ignore idle threads:
1330	 */
1331	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1332		return;
1333
1334	sched->all_runtime += work_list->total_runtime;
1335	sched->all_count   += work_list->nb_atoms;
1336
1337	if (work_list->num_merged > 1) {
1338		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1339			     work_list->num_merged);
1340	} else {
1341		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1342			     thread__tid(work_list->thread));
1343	}
1344
1345	for (i = 0; i < 24 - ret; i++)
1346		printf(" ");
1347
1348	avg = work_list->total_lat / work_list->nb_atoms;
1349	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1350	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1351
1352	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1353	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1354		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1355		 (double)work_list->max_lat / NSEC_PER_MSEC,
1356		 max_lat_start, max_lat_end);
1357}
1358
1359static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1360{
1361	pid_t l_tid, r_tid;
1362
1363	if (RC_CHK_EQUAL(l->thread, r->thread))
1364		return 0;
1365	l_tid = thread__tid(l->thread);
1366	r_tid = thread__tid(r->thread);
1367	if (l_tid < r_tid)
1368		return -1;
1369	if (l_tid > r_tid)
1370		return 1;
1371	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
 
1372}
1373
1374static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1375{
1376	u64 avgl, avgr;
1377
1378	if (!l->nb_atoms)
1379		return -1;
1380
1381	if (!r->nb_atoms)
1382		return 1;
1383
1384	avgl = l->total_lat / l->nb_atoms;
1385	avgr = r->total_lat / r->nb_atoms;
1386
1387	if (avgl < avgr)
1388		return -1;
1389	if (avgl > avgr)
1390		return 1;
1391
1392	return 0;
1393}
1394
1395static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397	if (l->max_lat < r->max_lat)
1398		return -1;
1399	if (l->max_lat > r->max_lat)
1400		return 1;
1401
1402	return 0;
1403}
1404
1405static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407	if (l->nb_atoms < r->nb_atoms)
1408		return -1;
1409	if (l->nb_atoms > r->nb_atoms)
1410		return 1;
1411
1412	return 0;
1413}
1414
1415static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1416{
1417	if (l->total_runtime < r->total_runtime)
1418		return -1;
1419	if (l->total_runtime > r->total_runtime)
1420		return 1;
1421
1422	return 0;
1423}
1424
1425static int sort_dimension__add(const char *tok, struct list_head *list)
1426{
1427	size_t i;
1428	static struct sort_dimension avg_sort_dimension = {
1429		.name = "avg",
1430		.cmp  = avg_cmp,
1431	};
1432	static struct sort_dimension max_sort_dimension = {
1433		.name = "max",
1434		.cmp  = max_cmp,
1435	};
1436	static struct sort_dimension pid_sort_dimension = {
1437		.name = "pid",
1438		.cmp  = pid_cmp,
1439	};
1440	static struct sort_dimension runtime_sort_dimension = {
1441		.name = "runtime",
1442		.cmp  = runtime_cmp,
1443	};
1444	static struct sort_dimension switch_sort_dimension = {
1445		.name = "switch",
1446		.cmp  = switch_cmp,
1447	};
1448	struct sort_dimension *available_sorts[] = {
1449		&pid_sort_dimension,
1450		&avg_sort_dimension,
1451		&max_sort_dimension,
1452		&switch_sort_dimension,
1453		&runtime_sort_dimension,
1454	};
1455
1456	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1457		if (!strcmp(available_sorts[i]->name, tok)) {
1458			list_add_tail(&available_sorts[i]->list, list);
1459
1460			return 0;
1461		}
1462	}
1463
1464	return -1;
1465}
1466
1467static void perf_sched__sort_lat(struct perf_sched *sched)
1468{
1469	struct rb_node *node;
1470	struct rb_root_cached *root = &sched->atom_root;
1471again:
1472	for (;;) {
1473		struct work_atoms *data;
1474		node = rb_first_cached(root);
1475		if (!node)
1476			break;
1477
1478		rb_erase_cached(node, root);
1479		data = rb_entry(node, struct work_atoms, node);
1480		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1481	}
1482	if (root == &sched->atom_root) {
1483		root = &sched->merged_atom_root;
1484		goto again;
1485	}
1486}
1487
1488static int process_sched_wakeup_event(struct perf_tool *tool,
1489				      struct evsel *evsel,
1490				      struct perf_sample *sample,
1491				      struct machine *machine)
1492{
1493	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1494
1495	if (sched->tp_handler->wakeup_event)
1496		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1497
1498	return 0;
1499}
1500
1501static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
1502				      struct evsel *evsel __maybe_unused,
1503				      struct perf_sample *sample __maybe_unused,
1504				      struct machine *machine __maybe_unused)
1505{
1506	return 0;
1507}
1508
1509union map_priv {
1510	void	*ptr;
1511	bool	 color;
1512};
1513
1514static bool thread__has_color(struct thread *thread)
1515{
1516	union map_priv priv = {
1517		.ptr = thread__priv(thread),
1518	};
1519
1520	return priv.color;
1521}
1522
1523static struct thread*
1524map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1525{
1526	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1527	union map_priv priv = {
1528		.color = false,
1529	};
1530
1531	if (!sched->map.color_pids || !thread || thread__priv(thread))
1532		return thread;
1533
1534	if (thread_map__has(sched->map.color_pids, tid))
1535		priv.color = true;
1536
1537	thread__set_priv(thread, priv.ptr);
1538	return thread;
1539}
1540
1541static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1542			    struct perf_sample *sample, struct machine *machine)
1543{
1544	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1545	struct thread *sched_in;
1546	struct thread_runtime *tr;
1547	int new_shortname;
1548	u64 timestamp0, timestamp = sample->time;
1549	s64 delta;
1550	int i;
1551	struct perf_cpu this_cpu = {
1552		.cpu = sample->cpu,
1553	};
1554	int cpus_nr;
1555	bool new_cpu = false;
1556	const char *color = PERF_COLOR_NORMAL;
1557	char stimestamp[32];
1558
1559	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1560
1561	if (this_cpu.cpu > sched->max_cpu.cpu)
1562		sched->max_cpu = this_cpu;
1563
1564	if (sched->map.comp) {
1565		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1566		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1567			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1568			new_cpu = true;
1569		}
1570	} else
1571		cpus_nr = sched->max_cpu.cpu;
1572
1573	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1574	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1575	if (timestamp0)
1576		delta = timestamp - timestamp0;
1577	else
1578		delta = 0;
1579
1580	if (delta < 0) {
1581		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1582		return -1;
1583	}
1584
1585	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1586	if (sched_in == NULL)
1587		return -1;
1588
1589	tr = thread__get_runtime(sched_in);
1590	if (tr == NULL) {
1591		thread__put(sched_in);
1592		return -1;
1593	}
1594
1595	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1596
1597	printf("  ");
1598
1599	new_shortname = 0;
1600	if (!tr->shortname[0]) {
1601		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1602			/*
1603			 * Don't allocate a letter-number for swapper:0
1604			 * as a shortname. Instead, we use '.' for it.
1605			 */
1606			tr->shortname[0] = '.';
1607			tr->shortname[1] = ' ';
1608		} else {
1609			tr->shortname[0] = sched->next_shortname1;
1610			tr->shortname[1] = sched->next_shortname2;
1611
1612			if (sched->next_shortname1 < 'Z') {
1613				sched->next_shortname1++;
1614			} else {
1615				sched->next_shortname1 = 'A';
1616				if (sched->next_shortname2 < '9')
1617					sched->next_shortname2++;
1618				else
1619					sched->next_shortname2 = '0';
1620			}
1621		}
1622		new_shortname = 1;
1623	}
1624
1625	for (i = 0; i < cpus_nr; i++) {
1626		struct perf_cpu cpu = {
1627			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1628		};
1629		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1630		struct thread_runtime *curr_tr;
1631		const char *pid_color = color;
1632		const char *cpu_color = color;
1633
1634		if (curr_thread && thread__has_color(curr_thread))
1635			pid_color = COLOR_PIDS;
1636
1637		if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1638			continue;
1639
1640		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1641			cpu_color = COLOR_CPUS;
1642
1643		if (cpu.cpu != this_cpu.cpu)
1644			color_fprintf(stdout, color, " ");
1645		else
1646			color_fprintf(stdout, cpu_color, "*");
1647
1648		if (sched->curr_thread[cpu.cpu]) {
1649			curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1650			if (curr_tr == NULL) {
1651				thread__put(sched_in);
1652				return -1;
1653			}
1654			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1655		} else
1656			color_fprintf(stdout, color, "   ");
1657	}
1658
1659	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1660		goto out;
1661
1662	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1663	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1664	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1665		const char *pid_color = color;
1666
1667		if (thread__has_color(sched_in))
1668			pid_color = COLOR_PIDS;
1669
1670		color_fprintf(stdout, pid_color, "%s => %s:%d",
1671			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1672		tr->comm_changed = false;
1673	}
1674
1675	if (sched->map.comp && new_cpu)
1676		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1677
1678out:
1679	color_fprintf(stdout, color, "\n");
1680
1681	thread__put(sched_in);
1682
1683	return 0;
1684}
1685
1686static int process_sched_switch_event(struct perf_tool *tool,
1687				      struct evsel *evsel,
1688				      struct perf_sample *sample,
1689				      struct machine *machine)
1690{
1691	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1692	int this_cpu = sample->cpu, err = 0;
1693	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1694	    next_pid = evsel__intval(evsel, sample, "next_pid");
1695
1696	if (sched->curr_pid[this_cpu] != (u32)-1) {
1697		/*
1698		 * Are we trying to switch away a PID that is
1699		 * not current?
1700		 */
1701		if (sched->curr_pid[this_cpu] != prev_pid)
1702			sched->nr_context_switch_bugs++;
1703	}
1704
1705	if (sched->tp_handler->switch_event)
1706		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1707
1708	sched->curr_pid[this_cpu] = next_pid;
1709	return err;
1710}
1711
1712static int process_sched_runtime_event(struct perf_tool *tool,
1713				       struct evsel *evsel,
1714				       struct perf_sample *sample,
1715				       struct machine *machine)
1716{
1717	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1718
1719	if (sched->tp_handler->runtime_event)
1720		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1721
1722	return 0;
1723}
1724
1725static int perf_sched__process_fork_event(struct perf_tool *tool,
1726					  union perf_event *event,
1727					  struct perf_sample *sample,
1728					  struct machine *machine)
1729{
1730	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1731
1732	/* run the fork event through the perf machinery */
1733	perf_event__process_fork(tool, event, sample, machine);
1734
1735	/* and then run additional processing needed for this command */
1736	if (sched->tp_handler->fork_event)
1737		return sched->tp_handler->fork_event(sched, event, machine);
1738
1739	return 0;
1740}
1741
1742static int process_sched_migrate_task_event(struct perf_tool *tool,
1743					    struct evsel *evsel,
1744					    struct perf_sample *sample,
1745					    struct machine *machine)
1746{
1747	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1748
1749	if (sched->tp_handler->migrate_task_event)
1750		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1751
1752	return 0;
1753}
1754
1755typedef int (*tracepoint_handler)(struct perf_tool *tool,
1756				  struct evsel *evsel,
1757				  struct perf_sample *sample,
1758				  struct machine *machine);
1759
1760static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1761						 union perf_event *event __maybe_unused,
1762						 struct perf_sample *sample,
1763						 struct evsel *evsel,
1764						 struct machine *machine)
1765{
1766	int err = 0;
1767
 
 
 
1768	if (evsel->handler != NULL) {
1769		tracepoint_handler f = evsel->handler;
1770		err = f(tool, evsel, sample, machine);
1771	}
1772
1773	return err;
1774}
1775
1776static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1777				    union perf_event *event,
1778				    struct perf_sample *sample,
1779				    struct machine *machine)
1780{
1781	struct thread *thread;
1782	struct thread_runtime *tr;
1783	int err;
1784
1785	err = perf_event__process_comm(tool, event, sample, machine);
1786	if (err)
1787		return err;
1788
1789	thread = machine__find_thread(machine, sample->pid, sample->tid);
1790	if (!thread) {
1791		pr_err("Internal error: can't find thread\n");
1792		return -1;
1793	}
1794
1795	tr = thread__get_runtime(thread);
1796	if (tr == NULL) {
1797		thread__put(thread);
1798		return -1;
1799	}
1800
1801	tr->comm_changed = true;
1802	thread__put(thread);
1803
1804	return 0;
1805}
1806
1807static int perf_sched__read_events(struct perf_sched *sched)
1808{
1809	struct evsel_str_handler handlers[] = {
1810		{ "sched:sched_switch",	      process_sched_switch_event, },
1811		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1812		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1813		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1814		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1815		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1816	};
1817	struct perf_session *session;
1818	struct perf_data data = {
1819		.path  = input_name,
1820		.mode  = PERF_DATA_MODE_READ,
1821		.force = sched->force,
1822	};
1823	int rc = -1;
1824
1825	session = perf_session__new(&data, &sched->tool);
1826	if (IS_ERR(session)) {
1827		pr_debug("Error creating perf session");
1828		return PTR_ERR(session);
1829	}
1830
1831	symbol__init(&session->header.env);
1832
1833	/* prefer sched_waking if it is captured */
1834	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1835		handlers[2].handler = process_sched_wakeup_ignore;
1836
1837	if (perf_session__set_tracepoints_handlers(session, handlers))
1838		goto out_delete;
1839
1840	if (perf_session__has_traces(session, "record -R")) {
1841		int err = perf_session__process_events(session);
1842		if (err) {
1843			pr_err("Failed to process events, error %d", err);
1844			goto out_delete;
1845		}
1846
1847		sched->nr_events      = session->evlist->stats.nr_events[0];
1848		sched->nr_lost_events = session->evlist->stats.total_lost;
1849		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1850	}
1851
1852	rc = 0;
1853out_delete:
1854	perf_session__delete(session);
1855	return rc;
1856}
1857
1858/*
1859 * scheduling times are printed as msec.usec
1860 */
1861static inline void print_sched_time(unsigned long long nsecs, int width)
1862{
1863	unsigned long msecs;
1864	unsigned long usecs;
1865
1866	msecs  = nsecs / NSEC_PER_MSEC;
1867	nsecs -= msecs * NSEC_PER_MSEC;
1868	usecs  = nsecs / NSEC_PER_USEC;
1869	printf("%*lu.%03lu ", width, msecs, usecs);
1870}
1871
1872/*
1873 * returns runtime data for event, allocating memory for it the
1874 * first time it is used.
1875 */
1876static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1877{
1878	struct evsel_runtime *r = evsel->priv;
1879
1880	if (r == NULL) {
1881		r = zalloc(sizeof(struct evsel_runtime));
1882		evsel->priv = r;
1883	}
1884
1885	return r;
1886}
1887
1888/*
1889 * save last time event was seen per cpu
1890 */
1891static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1892{
1893	struct evsel_runtime *r = evsel__get_runtime(evsel);
1894
1895	if (r == NULL)
1896		return;
1897
1898	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1899		int i, n = __roundup_pow_of_two(cpu+1);
1900		void *p = r->last_time;
1901
1902		p = realloc(r->last_time, n * sizeof(u64));
1903		if (!p)
1904			return;
1905
1906		r->last_time = p;
1907		for (i = r->ncpu; i < n; ++i)
1908			r->last_time[i] = (u64) 0;
1909
1910		r->ncpu = n;
1911	}
1912
1913	r->last_time[cpu] = timestamp;
1914}
1915
1916/* returns last time this event was seen on the given cpu */
1917static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1918{
1919	struct evsel_runtime *r = evsel__get_runtime(evsel);
1920
1921	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1922		return 0;
1923
1924	return r->last_time[cpu];
1925}
1926
1927static int comm_width = 30;
1928
1929static char *timehist_get_commstr(struct thread *thread)
1930{
1931	static char str[32];
1932	const char *comm = thread__comm_str(thread);
1933	pid_t tid = thread__tid(thread);
1934	pid_t pid = thread__pid(thread);
1935	int n;
1936
1937	if (pid == 0)
1938		n = scnprintf(str, sizeof(str), "%s", comm);
1939
1940	else if (tid != pid)
1941		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1942
1943	else
1944		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1945
1946	if (n > comm_width)
1947		comm_width = n;
1948
1949	return str;
1950}
1951
1952static void timehist_header(struct perf_sched *sched)
1953{
1954	u32 ncpus = sched->max_cpu.cpu + 1;
1955	u32 i, j;
1956
1957	printf("%15s %6s ", "time", "cpu");
1958
1959	if (sched->show_cpu_visual) {
1960		printf(" ");
1961		for (i = 0, j = 0; i < ncpus; ++i) {
1962			printf("%x", j++);
1963			if (j > 15)
1964				j = 0;
1965		}
1966		printf(" ");
1967	}
1968
1969	printf(" %-*s  %9s  %9s  %9s", comm_width,
1970		"task name", "wait time", "sch delay", "run time");
1971
1972	if (sched->show_state)
1973		printf("  %s", "state");
1974
1975	printf("\n");
1976
1977	/*
1978	 * units row
1979	 */
1980	printf("%15s %-6s ", "", "");
1981
1982	if (sched->show_cpu_visual)
1983		printf(" %*s ", ncpus, "");
1984
1985	printf(" %-*s  %9s  %9s  %9s", comm_width,
1986	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1987
1988	if (sched->show_state)
1989		printf("  %5s", "");
1990
1991	printf("\n");
1992
1993	/*
1994	 * separator
1995	 */
1996	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1997
1998	if (sched->show_cpu_visual)
1999		printf(" %.*s ", ncpus, graph_dotted_line);
2000
2001	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
2002		graph_dotted_line, graph_dotted_line, graph_dotted_line,
2003		graph_dotted_line);
2004
2005	if (sched->show_state)
2006		printf("  %.5s", graph_dotted_line);
2007
2008	printf("\n");
2009}
2010
2011static void timehist_print_sample(struct perf_sched *sched,
2012				  struct evsel *evsel,
2013				  struct perf_sample *sample,
2014				  struct addr_location *al,
2015				  struct thread *thread,
2016				  u64 t, const char state)
2017{
2018	struct thread_runtime *tr = thread__priv(thread);
2019	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2020	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2021	u32 max_cpus = sched->max_cpu.cpu + 1;
2022	char tstr[64];
2023	char nstr[30];
2024	u64 wait_time;
2025
2026	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2027		return;
2028
2029	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2030	printf("%15s [%04d] ", tstr, sample->cpu);
2031
2032	if (sched->show_cpu_visual) {
2033		u32 i;
2034		char c;
2035
2036		printf(" ");
2037		for (i = 0; i < max_cpus; ++i) {
2038			/* flag idle times with 'i'; others are sched events */
2039			if (i == sample->cpu)
2040				c = (thread__tid(thread) == 0) ? 'i' : 's';
2041			else
2042				c = ' ';
2043			printf("%c", c);
2044		}
2045		printf(" ");
2046	}
2047
2048	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2049
2050	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2051	print_sched_time(wait_time, 6);
2052
2053	print_sched_time(tr->dt_delay, 6);
2054	print_sched_time(tr->dt_run, 6);
2055
2056	if (sched->show_state)
2057		printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2058
2059	if (sched->show_next) {
2060		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2061		printf(" %-*s", comm_width, nstr);
2062	}
2063
2064	if (sched->show_wakeups && !sched->show_next)
2065		printf("  %-*s", comm_width, "");
2066
2067	if (thread__tid(thread) == 0)
2068		goto out;
2069
2070	if (sched->show_callchain)
2071		printf("  ");
2072
2073	sample__fprintf_sym(sample, al, 0,
2074			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2075			    EVSEL__PRINT_CALLCHAIN_ARROW |
2076			    EVSEL__PRINT_SKIP_IGNORED,
2077			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2078
2079out:
2080	printf("\n");
2081}
2082
2083/*
2084 * Explanation of delta-time stats:
2085 *
2086 *            t = time of current schedule out event
2087 *        tprev = time of previous sched out event
2088 *                also time of schedule-in event for current task
2089 *    last_time = time of last sched change event for current task
2090 *                (i.e, time process was last scheduled out)
2091 * ready_to_run = time of wakeup for current task
2092 *
2093 * -----|------------|------------|------------|------
2094 *    last         ready        tprev          t
2095 *    time         to run
2096 *
2097 *      |-------- dt_wait --------|
2098 *                   |- dt_delay -|-- dt_run --|
2099 *
2100 *   dt_run = run time of current task
2101 *  dt_wait = time between last schedule out event for task and tprev
2102 *            represents time spent off the cpu
2103 * dt_delay = time between wakeup and schedule-in of task
2104 */
2105
2106static void timehist_update_runtime_stats(struct thread_runtime *r,
2107					 u64 t, u64 tprev)
2108{
2109	r->dt_delay   = 0;
2110	r->dt_sleep   = 0;
2111	r->dt_iowait  = 0;
2112	r->dt_preempt = 0;
2113	r->dt_run     = 0;
2114
2115	if (tprev) {
2116		r->dt_run = t - tprev;
2117		if (r->ready_to_run) {
2118			if (r->ready_to_run > tprev)
2119				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2120			else
2121				r->dt_delay = tprev - r->ready_to_run;
2122		}
2123
2124		if (r->last_time > tprev)
2125			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2126		else if (r->last_time) {
2127			u64 dt_wait = tprev - r->last_time;
2128
2129			if (r->last_state == 'R')
2130				r->dt_preempt = dt_wait;
2131			else if (r->last_state == 'D')
2132				r->dt_iowait = dt_wait;
2133			else
2134				r->dt_sleep = dt_wait;
2135		}
2136	}
2137
2138	update_stats(&r->run_stats, r->dt_run);
2139
2140	r->total_run_time     += r->dt_run;
2141	r->total_delay_time   += r->dt_delay;
2142	r->total_sleep_time   += r->dt_sleep;
2143	r->total_iowait_time  += r->dt_iowait;
2144	r->total_preempt_time += r->dt_preempt;
2145}
2146
2147static bool is_idle_sample(struct perf_sample *sample,
2148			   struct evsel *evsel)
2149{
2150	/* pid 0 == swapper == idle task */
2151	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2152		return evsel__intval(evsel, sample, "prev_pid") == 0;
2153
2154	return sample->pid == 0;
2155}
2156
2157static void save_task_callchain(struct perf_sched *sched,
2158				struct perf_sample *sample,
2159				struct evsel *evsel,
2160				struct machine *machine)
2161{
2162	struct callchain_cursor *cursor;
2163	struct thread *thread;
2164
2165	/* want main thread for process - has maps */
2166	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2167	if (thread == NULL) {
2168		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2169		return;
2170	}
2171
2172	if (!sched->show_callchain || sample->callchain == NULL)
2173		return;
2174
2175	cursor = get_tls_callchain_cursor();
2176
2177	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2178				      NULL, NULL, sched->max_stack + 2) != 0) {
2179		if (verbose > 0)
2180			pr_err("Failed to resolve callchain. Skipping\n");
2181
2182		return;
2183	}
2184
2185	callchain_cursor_commit(cursor);
2186
2187	while (true) {
2188		struct callchain_cursor_node *node;
2189		struct symbol *sym;
2190
2191		node = callchain_cursor_current(cursor);
2192		if (node == NULL)
2193			break;
2194
2195		sym = node->ms.sym;
2196		if (sym) {
2197			if (!strcmp(sym->name, "schedule") ||
2198			    !strcmp(sym->name, "__schedule") ||
2199			    !strcmp(sym->name, "preempt_schedule"))
2200				sym->ignore = 1;
2201		}
2202
2203		callchain_cursor_advance(cursor);
2204	}
2205}
2206
2207static int init_idle_thread(struct thread *thread)
2208{
2209	struct idle_thread_runtime *itr;
2210
2211	thread__set_comm(thread, idle_comm, 0);
2212
2213	itr = zalloc(sizeof(*itr));
2214	if (itr == NULL)
2215		return -ENOMEM;
2216
2217	init_stats(&itr->tr.run_stats);
2218	callchain_init(&itr->callchain);
2219	callchain_cursor_reset(&itr->cursor);
2220	thread__set_priv(thread, itr);
2221
2222	return 0;
2223}
2224
2225/*
2226 * Track idle stats per cpu by maintaining a local thread
2227 * struct for the idle task on each cpu.
2228 */
2229static int init_idle_threads(int ncpu)
2230{
2231	int i, ret;
2232
2233	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2234	if (!idle_threads)
2235		return -ENOMEM;
2236
2237	idle_max_cpu = ncpu;
2238
2239	/* allocate the actual thread struct if needed */
2240	for (i = 0; i < ncpu; ++i) {
2241		idle_threads[i] = thread__new(0, 0);
2242		if (idle_threads[i] == NULL)
2243			return -ENOMEM;
2244
2245		ret = init_idle_thread(idle_threads[i]);
2246		if (ret < 0)
2247			return ret;
2248	}
2249
2250	return 0;
2251}
2252
2253static void free_idle_threads(void)
2254{
2255	int i;
2256
2257	if (idle_threads == NULL)
2258		return;
2259
2260	for (i = 0; i < idle_max_cpu; ++i) {
2261		if ((idle_threads[i]))
2262			thread__delete(idle_threads[i]);
2263	}
2264
2265	free(idle_threads);
2266}
2267
2268static struct thread *get_idle_thread(int cpu)
2269{
2270	/*
2271	 * expand/allocate array of pointers to local thread
2272	 * structs if needed
2273	 */
2274	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2275		int i, j = __roundup_pow_of_two(cpu+1);
2276		void *p;
2277
2278		p = realloc(idle_threads, j * sizeof(struct thread *));
2279		if (!p)
2280			return NULL;
2281
2282		idle_threads = (struct thread **) p;
2283		for (i = idle_max_cpu; i < j; ++i)
2284			idle_threads[i] = NULL;
2285
2286		idle_max_cpu = j;
2287	}
2288
2289	/* allocate a new thread struct if needed */
2290	if (idle_threads[cpu] == NULL) {
2291		idle_threads[cpu] = thread__new(0, 0);
2292
2293		if (idle_threads[cpu]) {
2294			if (init_idle_thread(idle_threads[cpu]) < 0)
2295				return NULL;
2296		}
2297	}
2298
2299	return idle_threads[cpu];
2300}
2301
2302static void save_idle_callchain(struct perf_sched *sched,
2303				struct idle_thread_runtime *itr,
2304				struct perf_sample *sample)
2305{
2306	struct callchain_cursor *cursor;
2307
2308	if (!sched->show_callchain || sample->callchain == NULL)
2309		return;
2310
2311	cursor = get_tls_callchain_cursor();
2312	if (cursor == NULL)
2313		return;
2314
2315	callchain_cursor__copy(&itr->cursor, cursor);
2316}
2317
2318static struct thread *timehist_get_thread(struct perf_sched *sched,
2319					  struct perf_sample *sample,
2320					  struct machine *machine,
2321					  struct evsel *evsel)
2322{
2323	struct thread *thread;
2324
2325	if (is_idle_sample(sample, evsel)) {
2326		thread = get_idle_thread(sample->cpu);
2327		if (thread == NULL)
2328			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2329
2330	} else {
2331		/* there were samples with tid 0 but non-zero pid */
2332		thread = machine__findnew_thread(machine, sample->pid,
2333						 sample->tid ?: sample->pid);
2334		if (thread == NULL) {
2335			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2336				 sample->tid);
2337		}
2338
2339		save_task_callchain(sched, sample, evsel, machine);
2340		if (sched->idle_hist) {
2341			struct thread *idle;
2342			struct idle_thread_runtime *itr;
2343
2344			idle = get_idle_thread(sample->cpu);
2345			if (idle == NULL) {
2346				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2347				return NULL;
2348			}
2349
2350			itr = thread__priv(idle);
2351			if (itr == NULL)
2352				return NULL;
2353
2354			itr->last_thread = thread;
2355
2356			/* copy task callchain when entering to idle */
2357			if (evsel__intval(evsel, sample, "next_pid") == 0)
2358				save_idle_callchain(sched, itr, sample);
2359		}
2360	}
2361
2362	return thread;
2363}
2364
2365static bool timehist_skip_sample(struct perf_sched *sched,
2366				 struct thread *thread,
2367				 struct evsel *evsel,
2368				 struct perf_sample *sample)
2369{
2370	bool rc = false;
2371
2372	if (thread__is_filtered(thread)) {
2373		rc = true;
2374		sched->skipped_samples++;
2375	}
2376
2377	if (sched->idle_hist) {
2378		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2379			rc = true;
2380		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2381			 evsel__intval(evsel, sample, "next_pid") != 0)
2382			rc = true;
2383	}
2384
2385	return rc;
2386}
2387
2388static void timehist_print_wakeup_event(struct perf_sched *sched,
2389					struct evsel *evsel,
2390					struct perf_sample *sample,
2391					struct machine *machine,
2392					struct thread *awakened)
2393{
2394	struct thread *thread;
2395	char tstr[64];
2396
2397	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2398	if (thread == NULL)
2399		return;
2400
2401	/* show wakeup unless both awakee and awaker are filtered */
2402	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2403	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2404		return;
2405	}
2406
2407	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2408	printf("%15s [%04d] ", tstr, sample->cpu);
2409	if (sched->show_cpu_visual)
2410		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2411
2412	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2413
2414	/* dt spacer */
2415	printf("  %9s  %9s  %9s ", "", "", "");
2416
2417	printf("awakened: %s", timehist_get_commstr(awakened));
2418
2419	printf("\n");
2420}
2421
2422static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2423					union perf_event *event __maybe_unused,
2424					struct evsel *evsel __maybe_unused,
2425					struct perf_sample *sample __maybe_unused,
2426					struct machine *machine __maybe_unused)
2427{
2428	return 0;
2429}
2430
2431static int timehist_sched_wakeup_event(struct perf_tool *tool,
2432				       union perf_event *event __maybe_unused,
2433				       struct evsel *evsel,
2434				       struct perf_sample *sample,
2435				       struct machine *machine)
2436{
2437	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2438	struct thread *thread;
2439	struct thread_runtime *tr = NULL;
2440	/* want pid of awakened task not pid in sample */
2441	const u32 pid = evsel__intval(evsel, sample, "pid");
2442
2443	thread = machine__findnew_thread(machine, 0, pid);
2444	if (thread == NULL)
2445		return -1;
2446
2447	tr = thread__get_runtime(thread);
2448	if (tr == NULL)
2449		return -1;
2450
2451	if (tr->ready_to_run == 0)
2452		tr->ready_to_run = sample->time;
2453
2454	/* show wakeups if requested */
2455	if (sched->show_wakeups &&
2456	    !perf_time__skip_sample(&sched->ptime, sample->time))
2457		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2458
2459	return 0;
2460}
2461
2462static void timehist_print_migration_event(struct perf_sched *sched,
2463					struct evsel *evsel,
2464					struct perf_sample *sample,
2465					struct machine *machine,
2466					struct thread *migrated)
2467{
2468	struct thread *thread;
2469	char tstr[64];
2470	u32 max_cpus;
2471	u32 ocpu, dcpu;
2472
2473	if (sched->summary_only)
2474		return;
2475
2476	max_cpus = sched->max_cpu.cpu + 1;
2477	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2478	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2479
2480	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2481	if (thread == NULL)
2482		return;
2483
2484	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2485	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2486		return;
2487	}
2488
2489	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2490	printf("%15s [%04d] ", tstr, sample->cpu);
2491
2492	if (sched->show_cpu_visual) {
2493		u32 i;
2494		char c;
2495
2496		printf("  ");
2497		for (i = 0; i < max_cpus; ++i) {
2498			c = (i == sample->cpu) ? 'm' : ' ';
2499			printf("%c", c);
2500		}
2501		printf("  ");
2502	}
2503
2504	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2505
2506	/* dt spacer */
2507	printf("  %9s  %9s  %9s ", "", "", "");
2508
2509	printf("migrated: %s", timehist_get_commstr(migrated));
2510	printf(" cpu %d => %d", ocpu, dcpu);
2511
2512	printf("\n");
2513}
2514
2515static int timehist_migrate_task_event(struct perf_tool *tool,
2516				       union perf_event *event __maybe_unused,
2517				       struct evsel *evsel,
2518				       struct perf_sample *sample,
2519				       struct machine *machine)
2520{
2521	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2522	struct thread *thread;
2523	struct thread_runtime *tr = NULL;
2524	/* want pid of migrated task not pid in sample */
2525	const u32 pid = evsel__intval(evsel, sample, "pid");
2526
2527	thread = machine__findnew_thread(machine, 0, pid);
2528	if (thread == NULL)
2529		return -1;
2530
2531	tr = thread__get_runtime(thread);
2532	if (tr == NULL)
2533		return -1;
2534
2535	tr->migrations++;
2536
2537	/* show migrations if requested */
2538	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2539
2540	return 0;
2541}
2542
2543static int timehist_sched_change_event(struct perf_tool *tool,
2544				       union perf_event *event,
2545				       struct evsel *evsel,
2546				       struct perf_sample *sample,
2547				       struct machine *machine)
2548{
2549	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2550	struct perf_time_interval *ptime = &sched->ptime;
2551	struct addr_location al;
2552	struct thread *thread;
2553	struct thread_runtime *tr = NULL;
2554	u64 tprev, t = sample->time;
2555	int rc = 0;
2556	const char state = evsel__taskstate(evsel, sample, "prev_state");
2557
2558	addr_location__init(&al);
2559	if (machine__resolve(machine, &al, sample) < 0) {
2560		pr_err("problem processing %d event. skipping it\n",
2561		       event->header.type);
2562		rc = -1;
2563		goto out;
2564	}
2565
2566	thread = timehist_get_thread(sched, sample, machine, evsel);
2567	if (thread == NULL) {
2568		rc = -1;
2569		goto out;
2570	}
2571
2572	if (timehist_skip_sample(sched, thread, evsel, sample))
2573		goto out;
2574
2575	tr = thread__get_runtime(thread);
2576	if (tr == NULL) {
2577		rc = -1;
2578		goto out;
2579	}
2580
2581	tprev = evsel__get_time(evsel, sample->cpu);
2582
2583	/*
2584	 * If start time given:
2585	 * - sample time is under window user cares about - skip sample
2586	 * - tprev is under window user cares about  - reset to start of window
2587	 */
2588	if (ptime->start && ptime->start > t)
2589		goto out;
2590
2591	if (tprev && ptime->start > tprev)
2592		tprev = ptime->start;
2593
2594	/*
2595	 * If end time given:
2596	 * - previous sched event is out of window - we are done
2597	 * - sample time is beyond window user cares about - reset it
2598	 *   to close out stats for time window interest
2599	 */
2600	if (ptime->end) {
2601		if (tprev > ptime->end)
2602			goto out;
2603
2604		if (t > ptime->end)
2605			t = ptime->end;
2606	}
2607
2608	if (!sched->idle_hist || thread__tid(thread) == 0) {
2609		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2610			timehist_update_runtime_stats(tr, t, tprev);
2611
2612		if (sched->idle_hist) {
2613			struct idle_thread_runtime *itr = (void *)tr;
2614			struct thread_runtime *last_tr;
2615
2616			BUG_ON(thread__tid(thread) != 0);
2617
2618			if (itr->last_thread == NULL)
2619				goto out;
2620
2621			/* add current idle time as last thread's runtime */
2622			last_tr = thread__get_runtime(itr->last_thread);
2623			if (last_tr == NULL)
2624				goto out;
2625
2626			timehist_update_runtime_stats(last_tr, t, tprev);
2627			/*
2628			 * remove delta time of last thread as it's not updated
2629			 * and otherwise it will show an invalid value next
2630			 * time.  we only care total run time and run stat.
2631			 */
2632			last_tr->dt_run = 0;
2633			last_tr->dt_delay = 0;
2634			last_tr->dt_sleep = 0;
2635			last_tr->dt_iowait = 0;
2636			last_tr->dt_preempt = 0;
2637
2638			if (itr->cursor.nr)
2639				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2640
2641			itr->last_thread = NULL;
2642		}
2643	}
2644
2645	if (!sched->summary_only)
2646		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2647
2648out:
2649	if (sched->hist_time.start == 0 && t >= ptime->start)
2650		sched->hist_time.start = t;
2651	if (ptime->end == 0 || t <= ptime->end)
2652		sched->hist_time.end = t;
2653
2654	if (tr) {
2655		/* time of this sched_switch event becomes last time task seen */
2656		tr->last_time = sample->time;
2657
2658		/* last state is used to determine where to account wait time */
2659		tr->last_state = state;
2660
2661		/* sched out event for task so reset ready to run time */
2662		tr->ready_to_run = 0;
2663	}
2664
2665	evsel__save_time(evsel, sample->time, sample->cpu);
2666
2667	addr_location__exit(&al);
2668	return rc;
2669}
2670
2671static int timehist_sched_switch_event(struct perf_tool *tool,
2672			     union perf_event *event,
2673			     struct evsel *evsel,
2674			     struct perf_sample *sample,
2675			     struct machine *machine __maybe_unused)
2676{
2677	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2678}
2679
2680static int process_lost(struct perf_tool *tool __maybe_unused,
2681			union perf_event *event,
2682			struct perf_sample *sample,
2683			struct machine *machine __maybe_unused)
2684{
2685	char tstr[64];
2686
2687	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2688	printf("%15s ", tstr);
2689	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2690
2691	return 0;
2692}
2693
2694
2695static void print_thread_runtime(struct thread *t,
2696				 struct thread_runtime *r)
2697{
2698	double mean = avg_stats(&r->run_stats);
2699	float stddev;
2700
2701	printf("%*s   %5d  %9" PRIu64 " ",
2702	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2703	       (u64) r->run_stats.n);
2704
2705	print_sched_time(r->total_run_time, 8);
2706	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2707	print_sched_time(r->run_stats.min, 6);
2708	printf(" ");
2709	print_sched_time((u64) mean, 6);
2710	printf(" ");
2711	print_sched_time(r->run_stats.max, 6);
2712	printf("  ");
2713	printf("%5.2f", stddev);
2714	printf("   %5" PRIu64, r->migrations);
2715	printf("\n");
2716}
2717
2718static void print_thread_waittime(struct thread *t,
2719				  struct thread_runtime *r)
2720{
2721	printf("%*s   %5d  %9" PRIu64 " ",
2722	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2723	       (u64) r->run_stats.n);
2724
2725	print_sched_time(r->total_run_time, 8);
2726	print_sched_time(r->total_sleep_time, 6);
2727	printf(" ");
2728	print_sched_time(r->total_iowait_time, 6);
2729	printf(" ");
2730	print_sched_time(r->total_preempt_time, 6);
2731	printf(" ");
2732	print_sched_time(r->total_delay_time, 6);
2733	printf("\n");
2734}
2735
2736struct total_run_stats {
2737	struct perf_sched *sched;
2738	u64  sched_count;
2739	u64  task_count;
2740	u64  total_run_time;
2741};
2742
2743static int show_thread_runtime(struct thread *t, void *priv)
2744{
2745	struct total_run_stats *stats = priv;
2746	struct thread_runtime *r;
2747
2748	if (thread__is_filtered(t))
2749		return 0;
2750
2751	r = thread__priv(t);
2752	if (r && r->run_stats.n) {
2753		stats->task_count++;
2754		stats->sched_count += r->run_stats.n;
2755		stats->total_run_time += r->total_run_time;
2756
2757		if (stats->sched->show_state)
2758			print_thread_waittime(t, r);
2759		else
2760			print_thread_runtime(t, r);
2761	}
2762
2763	return 0;
2764}
2765
2766static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2767{
2768	const char *sep = " <- ";
2769	struct callchain_list *chain;
2770	size_t ret = 0;
2771	char bf[1024];
2772	bool first;
2773
2774	if (node == NULL)
2775		return 0;
2776
2777	ret = callchain__fprintf_folded(fp, node->parent);
2778	first = (ret == 0);
2779
2780	list_for_each_entry(chain, &node->val, list) {
2781		if (chain->ip >= PERF_CONTEXT_MAX)
2782			continue;
2783		if (chain->ms.sym && chain->ms.sym->ignore)
2784			continue;
2785		ret += fprintf(fp, "%s%s", first ? "" : sep,
2786			       callchain_list__sym_name(chain, bf, sizeof(bf),
2787							false));
2788		first = false;
2789	}
2790
2791	return ret;
2792}
2793
2794static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2795{
2796	size_t ret = 0;
2797	FILE *fp = stdout;
2798	struct callchain_node *chain;
2799	struct rb_node *rb_node = rb_first_cached(root);
2800
2801	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2802	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2803	       graph_dotted_line);
2804
2805	while (rb_node) {
2806		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2807		rb_node = rb_next(rb_node);
2808
2809		ret += fprintf(fp, "  ");
2810		print_sched_time(chain->hit, 12);
2811		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2812		ret += fprintf(fp, " %8d  ", chain->count);
2813		ret += callchain__fprintf_folded(fp, chain);
2814		ret += fprintf(fp, "\n");
2815	}
2816
2817	return ret;
2818}
2819
2820static void timehist_print_summary(struct perf_sched *sched,
2821				   struct perf_session *session)
2822{
2823	struct machine *m = &session->machines.host;
2824	struct total_run_stats totals;
2825	u64 task_count;
2826	struct thread *t;
2827	struct thread_runtime *r;
2828	int i;
2829	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2830
2831	memset(&totals, 0, sizeof(totals));
2832	totals.sched = sched;
2833
2834	if (sched->idle_hist) {
2835		printf("\nIdle-time summary\n");
2836		printf("%*s  parent  sched-out  ", comm_width, "comm");
2837		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2838	} else if (sched->show_state) {
2839		printf("\nWait-time summary\n");
2840		printf("%*s  parent   sched-in  ", comm_width, "comm");
2841		printf("   run-time      sleep      iowait     preempt       delay\n");
2842	} else {
2843		printf("\nRuntime summary\n");
2844		printf("%*s  parent   sched-in  ", comm_width, "comm");
2845		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2846	}
2847	printf("%*s            (count)  ", comm_width, "");
2848	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2849	       sched->show_state ? "(msec)" : "%");
2850	printf("%.117s\n", graph_dotted_line);
2851
2852	machine__for_each_thread(m, show_thread_runtime, &totals);
2853	task_count = totals.task_count;
2854	if (!task_count)
2855		printf("<no still running tasks>\n");
2856
2857	/* CPU idle stats not tracked when samples were skipped */
2858	if (sched->skipped_samples && !sched->idle_hist)
2859		return;
2860
2861	printf("\nIdle stats:\n");
2862	for (i = 0; i < idle_max_cpu; ++i) {
2863		if (cpu_list && !test_bit(i, cpu_bitmap))
2864			continue;
2865
2866		t = idle_threads[i];
2867		if (!t)
2868			continue;
2869
2870		r = thread__priv(t);
2871		if (r && r->run_stats.n) {
2872			totals.sched_count += r->run_stats.n;
2873			printf("    CPU %2d idle for ", i);
2874			print_sched_time(r->total_run_time, 6);
2875			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2876		} else
2877			printf("    CPU %2d idle entire time window\n", i);
2878	}
2879
2880	if (sched->idle_hist && sched->show_callchain) {
2881		callchain_param.mode  = CHAIN_FOLDED;
2882		callchain_param.value = CCVAL_PERIOD;
2883
2884		callchain_register_param(&callchain_param);
2885
2886		printf("\nIdle stats by callchain:\n");
2887		for (i = 0; i < idle_max_cpu; ++i) {
2888			struct idle_thread_runtime *itr;
2889
2890			t = idle_threads[i];
2891			if (!t)
2892				continue;
2893
2894			itr = thread__priv(t);
2895			if (itr == NULL)
2896				continue;
2897
2898			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2899					     0, &callchain_param);
2900
2901			printf("  CPU %2d:", i);
2902			print_sched_time(itr->tr.total_run_time, 6);
2903			printf(" msec\n");
2904			timehist_print_idlehist_callchain(&itr->sorted_root);
2905			printf("\n");
2906		}
2907	}
2908
2909	printf("\n"
2910	       "    Total number of unique tasks: %" PRIu64 "\n"
2911	       "Total number of context switches: %" PRIu64 "\n",
2912	       totals.task_count, totals.sched_count);
2913
2914	printf("           Total run time (msec): ");
2915	print_sched_time(totals.total_run_time, 2);
2916	printf("\n");
2917
2918	printf("    Total scheduling time (msec): ");
2919	print_sched_time(hist_time, 2);
2920	printf(" (x %d)\n", sched->max_cpu.cpu);
2921}
2922
2923typedef int (*sched_handler)(struct perf_tool *tool,
2924			  union perf_event *event,
2925			  struct evsel *evsel,
2926			  struct perf_sample *sample,
2927			  struct machine *machine);
2928
2929static int perf_timehist__process_sample(struct perf_tool *tool,
2930					 union perf_event *event,
2931					 struct perf_sample *sample,
2932					 struct evsel *evsel,
2933					 struct machine *machine)
2934{
2935	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2936	int err = 0;
2937	struct perf_cpu this_cpu = {
2938		.cpu = sample->cpu,
2939	};
2940
2941	if (this_cpu.cpu > sched->max_cpu.cpu)
2942		sched->max_cpu = this_cpu;
2943
2944	if (evsel->handler != NULL) {
2945		sched_handler f = evsel->handler;
2946
2947		err = f(tool, event, evsel, sample, machine);
2948	}
2949
2950	return err;
2951}
2952
2953static int timehist_check_attr(struct perf_sched *sched,
2954			       struct evlist *evlist)
2955{
2956	struct evsel *evsel;
2957	struct evsel_runtime *er;
2958
2959	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2960		er = evsel__get_runtime(evsel);
2961		if (er == NULL) {
2962			pr_err("Failed to allocate memory for evsel runtime data\n");
2963			return -1;
2964		}
2965
2966		/* only need to save callchain related to sched_switch event */
2967		if (sched->show_callchain &&
2968		    evsel__name_is(evsel, "sched:sched_switch") &&
2969		    !evsel__has_callchain(evsel)) {
2970			pr_info("Samples of sched_switch event do not have callchains.\n");
2971			sched->show_callchain = 0;
2972			symbol_conf.use_callchain = 0;
2973		}
2974	}
2975
2976	return 0;
2977}
2978
2979static int perf_sched__timehist(struct perf_sched *sched)
2980{
2981	struct evsel_str_handler handlers[] = {
2982		{ "sched:sched_switch",       timehist_sched_switch_event, },
2983		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2984		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
2985		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2986	};
2987	const struct evsel_str_handler migrate_handlers[] = {
2988		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2989	};
2990	struct perf_data data = {
2991		.path  = input_name,
2992		.mode  = PERF_DATA_MODE_READ,
2993		.force = sched->force,
2994	};
2995
2996	struct perf_session *session;
2997	struct evlist *evlist;
2998	int err = -1;
2999
3000	/*
3001	 * event handlers for timehist option
3002	 */
3003	sched->tool.sample	 = perf_timehist__process_sample;
3004	sched->tool.mmap	 = perf_event__process_mmap;
3005	sched->tool.comm	 = perf_event__process_comm;
3006	sched->tool.exit	 = perf_event__process_exit;
3007	sched->tool.fork	 = perf_event__process_fork;
3008	sched->tool.lost	 = process_lost;
3009	sched->tool.attr	 = perf_event__process_attr;
3010	sched->tool.tracing_data = perf_event__process_tracing_data;
3011	sched->tool.build_id	 = perf_event__process_build_id;
3012
3013	sched->tool.ordered_events = true;
3014	sched->tool.ordering_requires_timestamps = true;
3015
3016	symbol_conf.use_callchain = sched->show_callchain;
3017
3018	session = perf_session__new(&data, &sched->tool);
3019	if (IS_ERR(session))
3020		return PTR_ERR(session);
3021
3022	if (cpu_list) {
3023		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3024		if (err < 0)
3025			goto out;
3026	}
3027
3028	evlist = session->evlist;
3029
3030	symbol__init(&session->header.env);
3031
3032	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3033		pr_err("Invalid time string\n");
3034		return -EINVAL;
3035	}
3036
3037	if (timehist_check_attr(sched, evlist) != 0)
3038		goto out;
3039
3040	setup_pager();
3041
3042	/* prefer sched_waking if it is captured */
3043	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3044		handlers[1].handler = timehist_sched_wakeup_ignore;
3045
3046	/* setup per-evsel handlers */
3047	if (perf_session__set_tracepoints_handlers(session, handlers))
3048		goto out;
3049
3050	/* sched_switch event at a minimum needs to exist */
3051	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3052		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3053		goto out;
3054	}
3055
3056	if (sched->show_migrations &&
3057	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3058		goto out;
3059
3060	/* pre-allocate struct for per-CPU idle stats */
3061	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3062	if (sched->max_cpu.cpu == 0)
3063		sched->max_cpu.cpu = 4;
3064	if (init_idle_threads(sched->max_cpu.cpu))
3065		goto out;
3066
3067	/* summary_only implies summary option, but don't overwrite summary if set */
3068	if (sched->summary_only)
3069		sched->summary = sched->summary_only;
3070
3071	if (!sched->summary_only)
3072		timehist_header(sched);
3073
3074	err = perf_session__process_events(session);
3075	if (err) {
3076		pr_err("Failed to process events, error %d", err);
3077		goto out;
3078	}
3079
3080	sched->nr_events      = evlist->stats.nr_events[0];
3081	sched->nr_lost_events = evlist->stats.total_lost;
3082	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3083
3084	if (sched->summary)
3085		timehist_print_summary(sched, session);
3086
3087out:
3088	free_idle_threads();
3089	perf_session__delete(session);
3090
3091	return err;
3092}
3093
3094
3095static void print_bad_events(struct perf_sched *sched)
3096{
3097	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3098		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3099			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3100			sched->nr_unordered_timestamps, sched->nr_timestamps);
3101	}
3102	if (sched->nr_lost_events && sched->nr_events) {
3103		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3104			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3105			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3106	}
 
 
 
 
 
 
 
 
3107	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3108		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3109			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3110			sched->nr_context_switch_bugs, sched->nr_timestamps);
3111		if (sched->nr_lost_events)
3112			printf(" (due to lost events?)");
3113		printf("\n");
3114	}
3115}
3116
3117static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3118{
3119	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3120	struct work_atoms *this;
3121	const char *comm = thread__comm_str(data->thread), *this_comm;
3122	bool leftmost = true;
3123
3124	while (*new) {
3125		int cmp;
3126
3127		this = container_of(*new, struct work_atoms, node);
3128		parent = *new;
3129
3130		this_comm = thread__comm_str(this->thread);
3131		cmp = strcmp(comm, this_comm);
3132		if (cmp > 0) {
3133			new = &((*new)->rb_left);
3134		} else if (cmp < 0) {
3135			new = &((*new)->rb_right);
3136			leftmost = false;
3137		} else {
3138			this->num_merged++;
3139			this->total_runtime += data->total_runtime;
3140			this->nb_atoms += data->nb_atoms;
3141			this->total_lat += data->total_lat;
3142			list_splice(&data->work_list, &this->work_list);
3143			if (this->max_lat < data->max_lat) {
3144				this->max_lat = data->max_lat;
3145				this->max_lat_start = data->max_lat_start;
3146				this->max_lat_end = data->max_lat_end;
3147			}
3148			zfree(&data);
3149			return;
3150		}
3151	}
3152
3153	data->num_merged++;
3154	rb_link_node(&data->node, parent, new);
3155	rb_insert_color_cached(&data->node, root, leftmost);
3156}
3157
3158static void perf_sched__merge_lat(struct perf_sched *sched)
3159{
3160	struct work_atoms *data;
3161	struct rb_node *node;
3162
3163	if (sched->skip_merge)
3164		return;
3165
3166	while ((node = rb_first_cached(&sched->atom_root))) {
3167		rb_erase_cached(node, &sched->atom_root);
3168		data = rb_entry(node, struct work_atoms, node);
3169		__merge_work_atoms(&sched->merged_atom_root, data);
3170	}
3171}
3172
3173static int setup_cpus_switch_event(struct perf_sched *sched)
3174{
3175	unsigned int i;
3176
3177	sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3178	if (!sched->cpu_last_switched)
3179		return -1;
3180
3181	sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3182	if (!sched->curr_pid) {
3183		zfree(&sched->cpu_last_switched);
3184		return -1;
3185	}
3186
3187	for (i = 0; i < MAX_CPUS; i++)
3188		sched->curr_pid[i] = -1;
3189
3190	return 0;
3191}
3192
3193static void free_cpus_switch_event(struct perf_sched *sched)
3194{
3195	zfree(&sched->curr_pid);
3196	zfree(&sched->cpu_last_switched);
3197}
3198
3199static int perf_sched__lat(struct perf_sched *sched)
3200{
3201	int rc = -1;
3202	struct rb_node *next;
 
3203
3204	setup_pager();
3205
3206	if (setup_cpus_switch_event(sched))
3207		return rc;
3208
3209	if (perf_sched__read_events(sched))
3210		goto out_free_cpus_switch_event;
3211
3212	perf_sched__merge_lat(sched);
3213	perf_sched__sort_lat(sched);
3214
3215	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3216	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3217	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3218
3219	next = rb_first_cached(&sched->sorted_atom_root);
3220
3221	while (next) {
3222		struct work_atoms *work_list;
3223
3224		work_list = rb_entry(next, struct work_atoms, node);
3225		output_lat_thread(sched, work_list);
3226		next = rb_next(next);
3227		thread__zput(work_list->thread);
3228	}
3229
3230	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3231	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3232		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3233
3234	printf(" ---------------------------------------------------\n");
3235
3236	print_bad_events(sched);
3237	printf("\n");
3238
3239	rc = 0;
3240
3241out_free_cpus_switch_event:
3242	free_cpus_switch_event(sched);
3243	return rc;
3244}
3245
3246static int setup_map_cpus(struct perf_sched *sched)
3247{
3248	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3249
3250	if (sched->map.comp) {
3251		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3252		if (!sched->map.comp_cpus)
3253			return -1;
3254	}
3255
3256	if (sched->map.cpus_str) {
3257		sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3258		if (!sched->map.cpus) {
3259			pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3260			zfree(&sched->map.comp_cpus);
3261			return -1;
3262		}
3263	}
3264
3265	return 0;
3266}
3267
3268static int setup_color_pids(struct perf_sched *sched)
3269{
3270	struct perf_thread_map *map;
3271
3272	if (!sched->map.color_pids_str)
3273		return 0;
3274
3275	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3276	if (!map) {
3277		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3278		return -1;
3279	}
3280
3281	sched->map.color_pids = map;
3282	return 0;
3283}
3284
3285static int setup_color_cpus(struct perf_sched *sched)
3286{
3287	struct perf_cpu_map *map;
3288
3289	if (!sched->map.color_cpus_str)
3290		return 0;
3291
3292	map = perf_cpu_map__new(sched->map.color_cpus_str);
3293	if (!map) {
3294		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3295		return -1;
3296	}
3297
3298	sched->map.color_cpus = map;
3299	return 0;
3300}
3301
3302static int perf_sched__map(struct perf_sched *sched)
3303{
3304	int rc = -1;
3305
3306	sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3307	if (!sched->curr_thread)
3308		return rc;
3309
3310	if (setup_cpus_switch_event(sched))
3311		goto out_free_curr_thread;
3312
3313	if (setup_map_cpus(sched))
3314		goto out_free_cpus_switch_event;
3315
3316	if (setup_color_pids(sched))
3317		goto out_put_map_cpus;
3318
3319	if (setup_color_cpus(sched))
3320		goto out_put_color_pids;
3321
3322	setup_pager();
3323	if (perf_sched__read_events(sched))
3324		goto out_put_color_cpus;
3325
3326	rc = 0;
3327	print_bad_events(sched);
3328
3329out_put_color_cpus:
3330	perf_cpu_map__put(sched->map.color_cpus);
3331
3332out_put_color_pids:
3333	perf_thread_map__put(sched->map.color_pids);
3334
3335out_put_map_cpus:
3336	zfree(&sched->map.comp_cpus);
3337	perf_cpu_map__put(sched->map.cpus);
3338
3339out_free_cpus_switch_event:
3340	free_cpus_switch_event(sched);
3341
3342out_free_curr_thread:
3343	zfree(&sched->curr_thread);
3344	return rc;
3345}
3346
3347static int perf_sched__replay(struct perf_sched *sched)
3348{
3349	int ret;
3350	unsigned long i;
3351
3352	mutex_init(&sched->start_work_mutex);
3353	mutex_init(&sched->work_done_wait_mutex);
3354
3355	ret = setup_cpus_switch_event(sched);
3356	if (ret)
3357		goto out_mutex_destroy;
3358
3359	calibrate_run_measurement_overhead(sched);
3360	calibrate_sleep_measurement_overhead(sched);
3361
3362	test_calibrations(sched);
3363
3364	ret = perf_sched__read_events(sched);
3365	if (ret)
3366		goto out_free_cpus_switch_event;
3367
3368	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3369	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3370	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3371
3372	if (sched->targetless_wakeups)
3373		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3374	if (sched->multitarget_wakeups)
3375		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3376	if (sched->nr_run_events_optimized)
3377		printf("run atoms optimized: %ld\n",
3378			sched->nr_run_events_optimized);
3379
3380	print_task_traces(sched);
3381	add_cross_task_wakeups(sched);
3382
3383	sched->thread_funcs_exit = false;
3384	create_tasks(sched);
3385	printf("------------------------------------------------------------\n");
3386	for (i = 0; i < sched->replay_repeat; i++)
3387		run_one_test(sched);
3388
3389	sched->thread_funcs_exit = true;
3390	destroy_tasks(sched);
3391
3392out_free_cpus_switch_event:
3393	free_cpus_switch_event(sched);
3394
3395out_mutex_destroy:
3396	mutex_destroy(&sched->start_work_mutex);
3397	mutex_destroy(&sched->work_done_wait_mutex);
3398	return ret;
3399}
3400
3401static void setup_sorting(struct perf_sched *sched, const struct option *options,
3402			  const char * const usage_msg[])
3403{
3404	char *tmp, *tok, *str = strdup(sched->sort_order);
3405
3406	for (tok = strtok_r(str, ", ", &tmp);
3407			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3408		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3409			usage_with_options_msg(usage_msg, options,
3410					"Unknown --sort key: `%s'", tok);
3411		}
3412	}
3413
3414	free(str);
3415
3416	sort_dimension__add("pid", &sched->cmp_pid);
3417}
3418
3419static bool schedstat_events_exposed(void)
3420{
3421	/*
3422	 * Select "sched:sched_stat_wait" event to check
3423	 * whether schedstat tracepoints are exposed.
3424	 */
3425	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3426		false : true;
3427}
3428
3429static int __cmd_record(int argc, const char **argv)
3430{
3431	unsigned int rec_argc, i, j;
3432	char **rec_argv;
3433	const char **rec_argv_copy;
3434	const char * const record_args[] = {
3435		"record",
3436		"-a",
3437		"-R",
3438		"-m", "1024",
3439		"-c", "1",
3440		"-e", "sched:sched_switch",
 
 
 
3441		"-e", "sched:sched_stat_runtime",
3442		"-e", "sched:sched_process_fork",
3443		"-e", "sched:sched_wakeup_new",
3444		"-e", "sched:sched_migrate_task",
3445	};
3446
3447	/*
3448	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3449	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3450	 * to prevent "perf sched record" execution failure, determine
3451	 * whether to record schedstat events according to actual situation.
3452	 */
3453	const char * const schedstat_args[] = {
3454		"-e", "sched:sched_stat_wait",
3455		"-e", "sched:sched_stat_sleep",
3456		"-e", "sched:sched_stat_iowait",
3457	};
3458	unsigned int schedstat_argc = schedstat_events_exposed() ?
3459		ARRAY_SIZE(schedstat_args) : 0;
3460
3461	struct tep_event *waking_event;
3462	int ret;
3463
3464	/*
3465	 * +2 for either "-e", "sched:sched_wakeup" or
3466	 * "-e", "sched:sched_waking"
3467	 */
3468	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3469	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3470	if (rec_argv == NULL)
3471		return -ENOMEM;
3472	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3473	if (rec_argv_copy == NULL) {
3474		free(rec_argv);
3475		return -ENOMEM;
3476	}
3477
3478	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3479		rec_argv[i] = strdup(record_args[i]);
3480
3481	rec_argv[i++] = strdup("-e");
3482	waking_event = trace_event__tp_format("sched", "sched_waking");
3483	if (!IS_ERR(waking_event))
3484		rec_argv[i++] = strdup("sched:sched_waking");
3485	else
3486		rec_argv[i++] = strdup("sched:sched_wakeup");
3487
3488	for (j = 0; j < schedstat_argc; j++)
3489		rec_argv[i++] = strdup(schedstat_args[j]);
3490
3491	for (j = 1; j < (unsigned int)argc; j++, i++)
3492		rec_argv[i] = strdup(argv[j]);
3493
3494	BUG_ON(i != rec_argc);
3495
3496	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3497	ret = cmd_record(rec_argc, rec_argv_copy);
3498
3499	for (i = 0; i < rec_argc; i++)
3500		free(rec_argv[i]);
3501	free(rec_argv);
3502	free(rec_argv_copy);
3503
3504	return ret;
3505}
3506
3507int cmd_sched(int argc, const char **argv)
3508{
3509	static const char default_sort_order[] = "avg, max, switch, runtime";
3510	struct perf_sched sched = {
3511		.tool = {
3512			.sample		 = perf_sched__process_tracepoint_sample,
3513			.comm		 = perf_sched__process_comm,
3514			.namespaces	 = perf_event__process_namespaces,
3515			.lost		 = perf_event__process_lost,
3516			.fork		 = perf_sched__process_fork_event,
3517			.ordered_events = true,
3518		},
3519		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3520		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
 
 
3521		.sort_order	      = default_sort_order,
3522		.replay_repeat	      = 10,
3523		.profile_cpu	      = -1,
3524		.next_shortname1      = 'A',
3525		.next_shortname2      = '0',
3526		.skip_merge           = 0,
3527		.show_callchain	      = 1,
3528		.max_stack            = 5,
3529	};
3530	const struct option sched_options[] = {
3531	OPT_STRING('i', "input", &input_name, "file",
3532		    "input file name"),
3533	OPT_INCR('v', "verbose", &verbose,
3534		    "be more verbose (show symbol address, etc)"),
 
 
3535	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3536		    "dump raw trace in ASCII"),
3537	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3538	OPT_END()
3539	};
3540	const struct option latency_options[] = {
3541	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3542		   "sort by key(s): runtime, switch, avg, max"),
3543	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3544		    "CPU to profile on"),
3545	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3546		    "latency stats per pid instead of per comm"),
3547	OPT_PARENT(sched_options)
3548	};
3549	const struct option replay_options[] = {
3550	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3551		     "repeat the workload replay N times (-1: infinite)"),
3552	OPT_PARENT(sched_options)
 
 
 
 
3553	};
3554	const struct option map_options[] = {
3555	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3556		    "map output in compact mode"),
3557	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3558		   "highlight given pids in map"),
3559	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3560                    "highlight given CPUs in map"),
3561	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3562                    "display given CPUs in map"),
3563	OPT_PARENT(sched_options)
3564	};
3565	const struct option timehist_options[] = {
3566	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3567		   "file", "vmlinux pathname"),
3568	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3569		   "file", "kallsyms pathname"),
3570	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3571		    "Display call chains if present (default on)"),
3572	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3573		   "Maximum number of functions to display backtrace."),
3574	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3575		    "Look for files with symbols relative to this directory"),
3576	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3577		    "Show only syscall summary with statistics"),
3578	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3579		    "Show all syscalls and summary with statistics"),
3580	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3581	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3582	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3583	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3584	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3585	OPT_STRING(0, "time", &sched.time_str, "str",
3586		   "Time span for analysis (start,stop)"),
3587	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3588	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3589		   "analyze events only for given process id(s)"),
3590	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3591		   "analyze events only for given thread id(s)"),
3592	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3593	OPT_PARENT(sched_options)
3594	};
3595
3596	const char * const latency_usage[] = {
3597		"perf sched latency [<options>]",
3598		NULL
3599	};
3600	const char * const replay_usage[] = {
3601		"perf sched replay [<options>]",
3602		NULL
3603	};
3604	const char * const map_usage[] = {
3605		"perf sched map [<options>]",
3606		NULL
3607	};
3608	const char * const timehist_usage[] = {
3609		"perf sched timehist [<options>]",
3610		NULL
3611	};
3612	const char *const sched_subcommands[] = { "record", "latency", "map",
3613						  "replay", "script",
3614						  "timehist", NULL };
3615	const char *sched_usage[] = {
3616		NULL,
3617		NULL
3618	};
3619	struct trace_sched_handler lat_ops  = {
3620		.wakeup_event	    = latency_wakeup_event,
3621		.switch_event	    = latency_switch_event,
3622		.runtime_event	    = latency_runtime_event,
3623		.migrate_task_event = latency_migrate_task_event,
3624	};
3625	struct trace_sched_handler map_ops  = {
3626		.switch_event	    = map_switch_event,
3627	};
3628	struct trace_sched_handler replay_ops  = {
3629		.wakeup_event	    = replay_wakeup_event,
3630		.switch_event	    = replay_switch_event,
3631		.fork_event	    = replay_fork_event,
3632	};
3633	int ret;
 
 
 
3634
3635	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3636					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3637	if (!argc)
3638		usage_with_options(sched_usage, sched_options);
3639
3640	/*
3641	 * Aliased to 'perf script' for now:
3642	 */
3643	if (!strcmp(argv[0], "script")) {
3644		return cmd_script(argc, argv);
3645	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
 
 
3646		return __cmd_record(argc, argv);
3647	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3648		sched.tp_handler = &lat_ops;
3649		if (argc > 1) {
3650			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3651			if (argc)
3652				usage_with_options(latency_usage, latency_options);
3653		}
3654		setup_sorting(&sched, latency_options, latency_usage);
3655		return perf_sched__lat(&sched);
3656	} else if (!strcmp(argv[0], "map")) {
3657		if (argc) {
3658			argc = parse_options(argc, argv, map_options, map_usage, 0);
3659			if (argc)
3660				usage_with_options(map_usage, map_options);
3661		}
3662		sched.tp_handler = &map_ops;
3663		setup_sorting(&sched, latency_options, latency_usage);
3664		return perf_sched__map(&sched);
3665	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3666		sched.tp_handler = &replay_ops;
3667		if (argc) {
3668			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3669			if (argc)
3670				usage_with_options(replay_usage, replay_options);
3671		}
3672		return perf_sched__replay(&sched);
3673	} else if (!strcmp(argv[0], "timehist")) {
3674		if (argc) {
3675			argc = parse_options(argc, argv, timehist_options,
3676					     timehist_usage, 0);
3677			if (argc)
3678				usage_with_options(timehist_usage, timehist_options);
3679		}
3680		if ((sched.show_wakeups || sched.show_next) &&
3681		    sched.summary_only) {
3682			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3683			parse_options_usage(timehist_usage, timehist_options, "s", true);
3684			if (sched.show_wakeups)
3685				parse_options_usage(NULL, timehist_options, "w", true);
3686			if (sched.show_next)
3687				parse_options_usage(NULL, timehist_options, "n", true);
3688			return -EINVAL;
3689		}
3690		ret = symbol__validate_sym_arguments();
3691		if (ret)
3692			return ret;
3693
3694		return perf_sched__timehist(&sched);
3695	} else {
3696		usage_with_options(sched_usage, sched_options);
3697	}
3698
3699	return 0;
3700}