Linux Audio

Check our new training course

Loading...
v3.15
   1#include "builtin.h"
   2#include "perf.h"
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
 
 
 
 
 
 
  13
  14#include "util/parse-options.h"
  15#include "util/trace-event.h"
  16
  17#include "util/debug.h"
  18
 
  19#include <sys/prctl.h>
  20#include <sys/resource.h>
  21
  22#include <semaphore.h>
  23#include <pthread.h>
  24#include <math.h>
 
 
  25
  26#define PR_SET_NAME		15               /* Set process name */
  27#define MAX_CPUS		4096
  28#define COMM_LEN		20
  29#define SYM_LEN			129
  30#define MAX_PID			65536
  31
  32struct sched_atom;
  33
  34struct task_desc {
  35	unsigned long		nr;
  36	unsigned long		pid;
  37	char			comm[COMM_LEN];
  38
  39	unsigned long		nr_events;
  40	unsigned long		curr_event;
  41	struct sched_atom	**atoms;
  42
  43	pthread_t		thread;
  44	sem_t			sleep_sem;
  45
  46	sem_t			ready_for_work;
  47	sem_t			work_done_sem;
  48
  49	u64			cpu_usage;
  50};
  51
  52enum sched_event_type {
  53	SCHED_EVENT_RUN,
  54	SCHED_EVENT_SLEEP,
  55	SCHED_EVENT_WAKEUP,
  56	SCHED_EVENT_MIGRATION,
  57};
  58
  59struct sched_atom {
  60	enum sched_event_type	type;
  61	int			specific_wait;
  62	u64			timestamp;
  63	u64			duration;
  64	unsigned long		nr;
  65	sem_t			*wait_sem;
  66	struct task_desc	*wakee;
  67};
  68
  69#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  70
  71enum thread_state {
  72	THREAD_SLEEPING = 0,
  73	THREAD_WAIT_CPU,
  74	THREAD_SCHED_IN,
  75	THREAD_IGNORE
  76};
  77
  78struct work_atom {
  79	struct list_head	list;
  80	enum thread_state	state;
  81	u64			sched_out_time;
  82	u64			wake_up_time;
  83	u64			sched_in_time;
  84	u64			runtime;
  85};
  86
  87struct work_atoms {
  88	struct list_head	work_list;
  89	struct thread		*thread;
  90	struct rb_node		node;
  91	u64			max_lat;
  92	u64			max_lat_at;
  93	u64			total_lat;
  94	u64			nb_atoms;
  95	u64			total_runtime;
 
  96};
  97
  98typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
  99
 100struct perf_sched;
 101
 102struct trace_sched_handler {
 103	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 104			    struct perf_sample *sample, struct machine *machine);
 105
 106	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 107			     struct perf_sample *sample, struct machine *machine);
 108
 109	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 110			    struct perf_sample *sample, struct machine *machine);
 111
 112	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 113	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 114			  struct machine *machine);
 115
 116	int (*migrate_task_event)(struct perf_sched *sched,
 117				  struct perf_evsel *evsel,
 118				  struct perf_sample *sample,
 119				  struct machine *machine);
 120};
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122struct perf_sched {
 123	struct perf_tool tool;
 124	const char	 *sort_order;
 125	unsigned long	 nr_tasks;
 126	struct task_desc *pid_to_task[MAX_PID];
 127	struct task_desc **tasks;
 128	const struct trace_sched_handler *tp_handler;
 129	pthread_mutex_t	 start_work_mutex;
 130	pthread_mutex_t	 work_done_wait_mutex;
 131	int		 profile_cpu;
 132/*
 133 * Track the current task - that way we can know whether there's any
 134 * weird events, such as a task being switched away that is not current.
 135 */
 136	int		 max_cpu;
 137	u32		 curr_pid[MAX_CPUS];
 138	struct thread	 *curr_thread[MAX_CPUS];
 139	char		 next_shortname1;
 140	char		 next_shortname2;
 141	unsigned int	 replay_repeat;
 142	unsigned long	 nr_run_events;
 143	unsigned long	 nr_sleep_events;
 144	unsigned long	 nr_wakeup_events;
 145	unsigned long	 nr_sleep_corrections;
 146	unsigned long	 nr_run_events_optimized;
 147	unsigned long	 targetless_wakeups;
 148	unsigned long	 multitarget_wakeups;
 149	unsigned long	 nr_runs;
 150	unsigned long	 nr_timestamps;
 151	unsigned long	 nr_unordered_timestamps;
 152	unsigned long	 nr_state_machine_bugs;
 153	unsigned long	 nr_context_switch_bugs;
 154	unsigned long	 nr_events;
 155	unsigned long	 nr_lost_chunks;
 156	unsigned long	 nr_lost_events;
 157	u64		 run_measurement_overhead;
 158	u64		 sleep_measurement_overhead;
 159	u64		 start_time;
 160	u64		 cpu_usage;
 161	u64		 runavg_cpu_usage;
 162	u64		 parent_cpu_usage;
 163	u64		 runavg_parent_cpu_usage;
 164	u64		 sum_runtime;
 165	u64		 sum_fluct;
 166	u64		 run_avg;
 167	u64		 all_runtime;
 168	u64		 all_count;
 169	u64		 cpu_last_switched[MAX_CPUS];
 170	struct rb_root	 atom_root, sorted_atom_root;
 171	struct list_head sort_list, cmp_pid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172};
 173
 
 
 
 
 
 174static u64 get_nsecs(void)
 175{
 176	struct timespec ts;
 177
 178	clock_gettime(CLOCK_MONOTONIC, &ts);
 179
 180	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 181}
 182
 183static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 184{
 185	u64 T0 = get_nsecs(), T1;
 186
 187	do {
 188		T1 = get_nsecs();
 189	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 190}
 191
 192static void sleep_nsecs(u64 nsecs)
 193{
 194	struct timespec ts;
 195
 196	ts.tv_nsec = nsecs % 999999999;
 197	ts.tv_sec = nsecs / 999999999;
 198
 199	nanosleep(&ts, NULL);
 200}
 201
 202static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 203{
 204	u64 T0, T1, delta, min_delta = 1000000000ULL;
 205	int i;
 206
 207	for (i = 0; i < 10; i++) {
 208		T0 = get_nsecs();
 209		burn_nsecs(sched, 0);
 210		T1 = get_nsecs();
 211		delta = T1-T0;
 212		min_delta = min(min_delta, delta);
 213	}
 214	sched->run_measurement_overhead = min_delta;
 215
 216	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 217}
 218
 219static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 220{
 221	u64 T0, T1, delta, min_delta = 1000000000ULL;
 222	int i;
 223
 224	for (i = 0; i < 10; i++) {
 225		T0 = get_nsecs();
 226		sleep_nsecs(10000);
 227		T1 = get_nsecs();
 228		delta = T1-T0;
 229		min_delta = min(min_delta, delta);
 230	}
 231	min_delta -= 10000;
 232	sched->sleep_measurement_overhead = min_delta;
 233
 234	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 235}
 236
 237static struct sched_atom *
 238get_new_event(struct task_desc *task, u64 timestamp)
 239{
 240	struct sched_atom *event = zalloc(sizeof(*event));
 241	unsigned long idx = task->nr_events;
 242	size_t size;
 243
 244	event->timestamp = timestamp;
 245	event->nr = idx;
 246
 247	task->nr_events++;
 248	size = sizeof(struct sched_atom *) * task->nr_events;
 249	task->atoms = realloc(task->atoms, size);
 250	BUG_ON(!task->atoms);
 251
 252	task->atoms[idx] = event;
 253
 254	return event;
 255}
 256
 257static struct sched_atom *last_event(struct task_desc *task)
 258{
 259	if (!task->nr_events)
 260		return NULL;
 261
 262	return task->atoms[task->nr_events - 1];
 263}
 264
 265static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 266				u64 timestamp, u64 duration)
 267{
 268	struct sched_atom *event, *curr_event = last_event(task);
 269
 270	/*
 271	 * optimize an existing RUN event by merging this one
 272	 * to it:
 273	 */
 274	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 275		sched->nr_run_events_optimized++;
 276		curr_event->duration += duration;
 277		return;
 278	}
 279
 280	event = get_new_event(task, timestamp);
 281
 282	event->type = SCHED_EVENT_RUN;
 283	event->duration = duration;
 284
 285	sched->nr_run_events++;
 286}
 287
 288static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 289				   u64 timestamp, struct task_desc *wakee)
 290{
 291	struct sched_atom *event, *wakee_event;
 292
 293	event = get_new_event(task, timestamp);
 294	event->type = SCHED_EVENT_WAKEUP;
 295	event->wakee = wakee;
 296
 297	wakee_event = last_event(wakee);
 298	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 299		sched->targetless_wakeups++;
 300		return;
 301	}
 302	if (wakee_event->wait_sem) {
 303		sched->multitarget_wakeups++;
 304		return;
 305	}
 306
 307	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 308	sem_init(wakee_event->wait_sem, 0, 0);
 309	wakee_event->specific_wait = 1;
 310	event->wait_sem = wakee_event->wait_sem;
 311
 312	sched->nr_wakeup_events++;
 313}
 314
 315static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 316				  u64 timestamp, u64 task_state __maybe_unused)
 317{
 318	struct sched_atom *event = get_new_event(task, timestamp);
 319
 320	event->type = SCHED_EVENT_SLEEP;
 321
 322	sched->nr_sleep_events++;
 323}
 324
 325static struct task_desc *register_pid(struct perf_sched *sched,
 326				      unsigned long pid, const char *comm)
 327{
 328	struct task_desc *task;
 
 329
 330	BUG_ON(pid >= MAX_PID);
 
 
 
 
 
 
 
 
 
 
 331
 332	task = sched->pid_to_task[pid];
 333
 334	if (task)
 335		return task;
 336
 337	task = zalloc(sizeof(*task));
 338	task->pid = pid;
 339	task->nr = sched->nr_tasks;
 340	strcpy(task->comm, comm);
 341	/*
 342	 * every task starts in sleeping state - this gets ignored
 343	 * if there's no wakeup pointing to this sleep state:
 344	 */
 345	add_sched_event_sleep(sched, task, 0, 0);
 346
 347	sched->pid_to_task[pid] = task;
 348	sched->nr_tasks++;
 349	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
 350	BUG_ON(!sched->tasks);
 351	sched->tasks[task->nr] = task;
 352
 353	if (verbose)
 354		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 355
 356	return task;
 357}
 358
 359
 360static void print_task_traces(struct perf_sched *sched)
 361{
 362	struct task_desc *task;
 363	unsigned long i;
 364
 365	for (i = 0; i < sched->nr_tasks; i++) {
 366		task = sched->tasks[i];
 367		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 368			task->nr, task->comm, task->pid, task->nr_events);
 369	}
 370}
 371
 372static void add_cross_task_wakeups(struct perf_sched *sched)
 373{
 374	struct task_desc *task1, *task2;
 375	unsigned long i, j;
 376
 377	for (i = 0; i < sched->nr_tasks; i++) {
 378		task1 = sched->tasks[i];
 379		j = i + 1;
 380		if (j == sched->nr_tasks)
 381			j = 0;
 382		task2 = sched->tasks[j];
 383		add_sched_event_wakeup(sched, task1, 0, task2);
 384	}
 385}
 386
 387static void perf_sched__process_event(struct perf_sched *sched,
 388				      struct sched_atom *atom)
 389{
 390	int ret = 0;
 391
 392	switch (atom->type) {
 393		case SCHED_EVENT_RUN:
 394			burn_nsecs(sched, atom->duration);
 395			break;
 396		case SCHED_EVENT_SLEEP:
 397			if (atom->wait_sem)
 398				ret = sem_wait(atom->wait_sem);
 399			BUG_ON(ret);
 400			break;
 401		case SCHED_EVENT_WAKEUP:
 402			if (atom->wait_sem)
 403				ret = sem_post(atom->wait_sem);
 404			BUG_ON(ret);
 405			break;
 406		case SCHED_EVENT_MIGRATION:
 407			break;
 408		default:
 409			BUG_ON(1);
 410	}
 411}
 412
 413static u64 get_cpu_usage_nsec_parent(void)
 414{
 415	struct rusage ru;
 416	u64 sum;
 417	int err;
 418
 419	err = getrusage(RUSAGE_SELF, &ru);
 420	BUG_ON(err);
 421
 422	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 423	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 424
 425	return sum;
 426}
 427
 428static int self_open_counters(void)
 429{
 430	struct perf_event_attr attr;
 
 431	int fd;
 
 
 432
 433	memset(&attr, 0, sizeof(attr));
 434
 435	attr.type = PERF_TYPE_SOFTWARE;
 436	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 437
 438	fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
 439
 440	if (fd < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441		pr_err("Error: sys_perf_event_open() syscall returned "
 442		       "with %d (%s)\n", fd, strerror(errno));
 
 
 
 443	return fd;
 444}
 445
 446static u64 get_cpu_usage_nsec_self(int fd)
 447{
 448	u64 runtime;
 449	int ret;
 450
 451	ret = read(fd, &runtime, sizeof(runtime));
 452	BUG_ON(ret != sizeof(runtime));
 453
 454	return runtime;
 455}
 456
 457struct sched_thread_parms {
 458	struct task_desc  *task;
 459	struct perf_sched *sched;
 
 460};
 461
 462static void *thread_func(void *ctx)
 463{
 464	struct sched_thread_parms *parms = ctx;
 465	struct task_desc *this_task = parms->task;
 466	struct perf_sched *sched = parms->sched;
 467	u64 cpu_usage_0, cpu_usage_1;
 468	unsigned long i, ret;
 469	char comm2[22];
 470	int fd;
 471
 472	zfree(&parms);
 473
 474	sprintf(comm2, ":%s", this_task->comm);
 475	prctl(PR_SET_NAME, comm2);
 476	fd = self_open_counters();
 477	if (fd < 0)
 478		return NULL;
 479again:
 480	ret = sem_post(&this_task->ready_for_work);
 481	BUG_ON(ret);
 482	ret = pthread_mutex_lock(&sched->start_work_mutex);
 483	BUG_ON(ret);
 484	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 485	BUG_ON(ret);
 486
 487	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 488
 489	for (i = 0; i < this_task->nr_events; i++) {
 490		this_task->curr_event = i;
 491		perf_sched__process_event(sched, this_task->atoms[i]);
 492	}
 493
 494	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 495	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 496	ret = sem_post(&this_task->work_done_sem);
 497	BUG_ON(ret);
 498
 499	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 500	BUG_ON(ret);
 501	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 502	BUG_ON(ret);
 503
 504	goto again;
 505}
 506
 507static void create_tasks(struct perf_sched *sched)
 508{
 509	struct task_desc *task;
 510	pthread_attr_t attr;
 511	unsigned long i;
 512	int err;
 513
 514	err = pthread_attr_init(&attr);
 515	BUG_ON(err);
 516	err = pthread_attr_setstacksize(&attr,
 517			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 518	BUG_ON(err);
 519	err = pthread_mutex_lock(&sched->start_work_mutex);
 520	BUG_ON(err);
 521	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 522	BUG_ON(err);
 523	for (i = 0; i < sched->nr_tasks; i++) {
 524		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 525		BUG_ON(parms == NULL);
 526		parms->task = task = sched->tasks[i];
 527		parms->sched = sched;
 
 528		sem_init(&task->sleep_sem, 0, 0);
 529		sem_init(&task->ready_for_work, 0, 0);
 530		sem_init(&task->work_done_sem, 0, 0);
 531		task->curr_event = 0;
 532		err = pthread_create(&task->thread, &attr, thread_func, parms);
 533		BUG_ON(err);
 534	}
 535}
 536
 537static void wait_for_tasks(struct perf_sched *sched)
 538{
 539	u64 cpu_usage_0, cpu_usage_1;
 540	struct task_desc *task;
 541	unsigned long i, ret;
 542
 543	sched->start_time = get_nsecs();
 544	sched->cpu_usage = 0;
 545	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 546
 547	for (i = 0; i < sched->nr_tasks; i++) {
 548		task = sched->tasks[i];
 549		ret = sem_wait(&task->ready_for_work);
 550		BUG_ON(ret);
 551		sem_init(&task->ready_for_work, 0, 0);
 552	}
 553	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 554	BUG_ON(ret);
 555
 556	cpu_usage_0 = get_cpu_usage_nsec_parent();
 557
 558	pthread_mutex_unlock(&sched->start_work_mutex);
 559
 560	for (i = 0; i < sched->nr_tasks; i++) {
 561		task = sched->tasks[i];
 562		ret = sem_wait(&task->work_done_sem);
 563		BUG_ON(ret);
 564		sem_init(&task->work_done_sem, 0, 0);
 565		sched->cpu_usage += task->cpu_usage;
 566		task->cpu_usage = 0;
 567	}
 568
 569	cpu_usage_1 = get_cpu_usage_nsec_parent();
 570	if (!sched->runavg_cpu_usage)
 571		sched->runavg_cpu_usage = sched->cpu_usage;
 572	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
 573
 574	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 575	if (!sched->runavg_parent_cpu_usage)
 576		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 577	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
 578					 sched->parent_cpu_usage)/10;
 579
 580	ret = pthread_mutex_lock(&sched->start_work_mutex);
 581	BUG_ON(ret);
 582
 583	for (i = 0; i < sched->nr_tasks; i++) {
 584		task = sched->tasks[i];
 585		sem_init(&task->sleep_sem, 0, 0);
 586		task->curr_event = 0;
 587	}
 588}
 589
 590static void run_one_test(struct perf_sched *sched)
 591{
 592	u64 T0, T1, delta, avg_delta, fluct;
 593
 594	T0 = get_nsecs();
 595	wait_for_tasks(sched);
 596	T1 = get_nsecs();
 597
 598	delta = T1 - T0;
 599	sched->sum_runtime += delta;
 600	sched->nr_runs++;
 601
 602	avg_delta = sched->sum_runtime / sched->nr_runs;
 603	if (delta < avg_delta)
 604		fluct = avg_delta - delta;
 605	else
 606		fluct = delta - avg_delta;
 607	sched->sum_fluct += fluct;
 608	if (!sched->run_avg)
 609		sched->run_avg = delta;
 610	sched->run_avg = (sched->run_avg * 9 + delta) / 10;
 611
 612	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
 613
 614	printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
 615
 616	printf("cpu: %0.2f / %0.2f",
 617		(double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
 618
 619#if 0
 620	/*
 621	 * rusage statistics done by the parent, these are less
 622	 * accurate than the sched->sum_exec_runtime based statistics:
 623	 */
 624	printf(" [%0.2f / %0.2f]",
 625		(double)sched->parent_cpu_usage/1e6,
 626		(double)sched->runavg_parent_cpu_usage/1e6);
 627#endif
 628
 629	printf("\n");
 630
 631	if (sched->nr_sleep_corrections)
 632		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 633	sched->nr_sleep_corrections = 0;
 634}
 635
 636static void test_calibrations(struct perf_sched *sched)
 637{
 638	u64 T0, T1;
 639
 640	T0 = get_nsecs();
 641	burn_nsecs(sched, 1e6);
 642	T1 = get_nsecs();
 643
 644	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 645
 646	T0 = get_nsecs();
 647	sleep_nsecs(1e6);
 648	T1 = get_nsecs();
 649
 650	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 651}
 652
 653static int
 654replay_wakeup_event(struct perf_sched *sched,
 655		    struct perf_evsel *evsel, struct perf_sample *sample,
 656		    struct machine *machine __maybe_unused)
 657{
 658	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 659	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 660	struct task_desc *waker, *wakee;
 661
 662	if (verbose) {
 663		printf("sched_wakeup event %p\n", evsel);
 664
 665		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 666	}
 667
 668	waker = register_pid(sched, sample->tid, "<unknown>");
 669	wakee = register_pid(sched, pid, comm);
 670
 671	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 672	return 0;
 673}
 674
 675static int replay_switch_event(struct perf_sched *sched,
 676			       struct perf_evsel *evsel,
 677			       struct perf_sample *sample,
 678			       struct machine *machine __maybe_unused)
 679{
 680	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 681		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 682	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 683		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 684	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 685	struct task_desc *prev, __maybe_unused *next;
 686	u64 timestamp0, timestamp = sample->time;
 687	int cpu = sample->cpu;
 688	s64 delta;
 689
 690	if (verbose)
 691		printf("sched_switch event %p\n", evsel);
 692
 693	if (cpu >= MAX_CPUS || cpu < 0)
 694		return 0;
 695
 696	timestamp0 = sched->cpu_last_switched[cpu];
 697	if (timestamp0)
 698		delta = timestamp - timestamp0;
 699	else
 700		delta = 0;
 701
 702	if (delta < 0) {
 703		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 704		return -1;
 705	}
 706
 707	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 708		 prev_comm, prev_pid, next_comm, next_pid, delta);
 709
 710	prev = register_pid(sched, prev_pid, prev_comm);
 711	next = register_pid(sched, next_pid, next_comm);
 712
 713	sched->cpu_last_switched[cpu] = timestamp;
 714
 715	add_sched_event_run(sched, prev, timestamp, delta);
 716	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 717
 718	return 0;
 719}
 720
 721static int replay_fork_event(struct perf_sched *sched,
 722			     union perf_event *event,
 723			     struct machine *machine)
 724{
 725	struct thread *child, *parent;
 726
 727	child = machine__findnew_thread(machine, event->fork.pid,
 728					event->fork.tid);
 729	parent = machine__findnew_thread(machine, event->fork.ppid,
 730					 event->fork.ptid);
 731
 732	if (child == NULL || parent == NULL) {
 733		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 734				 child, parent);
 735		return 0;
 736	}
 737
 738	if (verbose) {
 739		printf("fork event\n");
 740		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 741		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 742	}
 743
 744	register_pid(sched, parent->tid, thread__comm_str(parent));
 745	register_pid(sched, child->tid, thread__comm_str(child));
 
 
 
 746	return 0;
 747}
 748
 749struct sort_dimension {
 750	const char		*name;
 751	sort_fn_t		cmp;
 752	struct list_head	list;
 753};
 754
 755static int
 756thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 757{
 758	struct sort_dimension *sort;
 759	int ret = 0;
 760
 761	BUG_ON(list_empty(list));
 762
 763	list_for_each_entry(sort, list, list) {
 764		ret = sort->cmp(l, r);
 765		if (ret)
 766			return ret;
 767	}
 768
 769	return ret;
 770}
 771
 772static struct work_atoms *
 773thread_atoms_search(struct rb_root *root, struct thread *thread,
 774			 struct list_head *sort_list)
 775{
 776	struct rb_node *node = root->rb_node;
 777	struct work_atoms key = { .thread = thread };
 778
 779	while (node) {
 780		struct work_atoms *atoms;
 781		int cmp;
 782
 783		atoms = container_of(node, struct work_atoms, node);
 784
 785		cmp = thread_lat_cmp(sort_list, &key, atoms);
 786		if (cmp > 0)
 787			node = node->rb_left;
 788		else if (cmp < 0)
 789			node = node->rb_right;
 790		else {
 791			BUG_ON(thread != atoms->thread);
 792			return atoms;
 793		}
 794	}
 795	return NULL;
 796}
 797
 798static void
 799__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 800			 struct list_head *sort_list)
 801{
 802	struct rb_node **new = &(root->rb_node), *parent = NULL;
 803
 804	while (*new) {
 805		struct work_atoms *this;
 806		int cmp;
 807
 808		this = container_of(*new, struct work_atoms, node);
 809		parent = *new;
 810
 811		cmp = thread_lat_cmp(sort_list, data, this);
 812
 813		if (cmp > 0)
 814			new = &((*new)->rb_left);
 815		else
 816			new = &((*new)->rb_right);
 817	}
 818
 819	rb_link_node(&data->node, parent, new);
 820	rb_insert_color(&data->node, root);
 821}
 822
 823static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
 824{
 825	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 826	if (!atoms) {
 827		pr_err("No memory at %s\n", __func__);
 828		return -1;
 829	}
 830
 831	atoms->thread = thread;
 832	INIT_LIST_HEAD(&atoms->work_list);
 833	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
 834	return 0;
 835}
 836
 837static char sched_out_state(u64 prev_state)
 838{
 839	const char *str = TASK_STATE_TO_CHAR_STR;
 840
 841	return str[prev_state];
 842}
 843
 844static int
 845add_sched_out_event(struct work_atoms *atoms,
 846		    char run_state,
 847		    u64 timestamp)
 848{
 849	struct work_atom *atom = zalloc(sizeof(*atom));
 850	if (!atom) {
 851		pr_err("Non memory at %s", __func__);
 852		return -1;
 853	}
 854
 855	atom->sched_out_time = timestamp;
 856
 857	if (run_state == 'R') {
 858		atom->state = THREAD_WAIT_CPU;
 859		atom->wake_up_time = atom->sched_out_time;
 860	}
 861
 862	list_add_tail(&atom->list, &atoms->work_list);
 863	return 0;
 864}
 865
 866static void
 867add_runtime_event(struct work_atoms *atoms, u64 delta,
 868		  u64 timestamp __maybe_unused)
 869{
 870	struct work_atom *atom;
 871
 872	BUG_ON(list_empty(&atoms->work_list));
 873
 874	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 875
 876	atom->runtime += delta;
 877	atoms->total_runtime += delta;
 878}
 879
 880static void
 881add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 882{
 883	struct work_atom *atom;
 884	u64 delta;
 885
 886	if (list_empty(&atoms->work_list))
 887		return;
 888
 889	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 890
 891	if (atom->state != THREAD_WAIT_CPU)
 892		return;
 893
 894	if (timestamp < atom->wake_up_time) {
 895		atom->state = THREAD_IGNORE;
 896		return;
 897	}
 898
 899	atom->state = THREAD_SCHED_IN;
 900	atom->sched_in_time = timestamp;
 901
 902	delta = atom->sched_in_time - atom->wake_up_time;
 903	atoms->total_lat += delta;
 904	if (delta > atoms->max_lat) {
 905		atoms->max_lat = delta;
 906		atoms->max_lat_at = timestamp;
 907	}
 908	atoms->nb_atoms++;
 909}
 910
 911static int latency_switch_event(struct perf_sched *sched,
 912				struct perf_evsel *evsel,
 913				struct perf_sample *sample,
 914				struct machine *machine)
 915{
 916	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 917		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 918	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 919	struct work_atoms *out_events, *in_events;
 920	struct thread *sched_out, *sched_in;
 921	u64 timestamp0, timestamp = sample->time;
 922	int cpu = sample->cpu;
 923	s64 delta;
 924
 925	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 926
 927	timestamp0 = sched->cpu_last_switched[cpu];
 928	sched->cpu_last_switched[cpu] = timestamp;
 929	if (timestamp0)
 930		delta = timestamp - timestamp0;
 931	else
 932		delta = 0;
 933
 934	if (delta < 0) {
 935		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 936		return -1;
 937	}
 938
 939	sched_out = machine__findnew_thread(machine, 0, prev_pid);
 940	sched_in = machine__findnew_thread(machine, 0, next_pid);
 
 
 941
 942	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 943	if (!out_events) {
 944		if (thread_atoms_insert(sched, sched_out))
 945			return -1;
 946		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 947		if (!out_events) {
 948			pr_err("out-event: Internal tree error");
 949			return -1;
 950		}
 951	}
 952	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
 953		return -1;
 954
 955	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
 956	if (!in_events) {
 957		if (thread_atoms_insert(sched, sched_in))
 958			return -1;
 959		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
 960		if (!in_events) {
 961			pr_err("in-event: Internal tree error");
 962			return -1;
 963		}
 964		/*
 965		 * Take came in we have not heard about yet,
 966		 * add in an initial atom in runnable state:
 967		 */
 968		if (add_sched_out_event(in_events, 'R', timestamp))
 969			return -1;
 970	}
 971	add_sched_in_event(in_events, timestamp);
 972
 973	return 0;
 
 
 
 974}
 975
 976static int latency_runtime_event(struct perf_sched *sched,
 977				 struct perf_evsel *evsel,
 978				 struct perf_sample *sample,
 979				 struct machine *machine)
 980{
 981	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
 982	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
 983	struct thread *thread = machine__findnew_thread(machine, 0, pid);
 984	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
 985	u64 timestamp = sample->time;
 986	int cpu = sample->cpu;
 
 
 
 987
 988	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 989	if (!atoms) {
 990		if (thread_atoms_insert(sched, thread))
 991			return -1;
 992		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
 993		if (!atoms) {
 994			pr_err("in-event: Internal tree error");
 995			return -1;
 996		}
 997		if (add_sched_out_event(atoms, 'R', timestamp))
 998			return -1;
 999	}
1000
1001	add_runtime_event(atoms, runtime, timestamp);
1002	return 0;
 
 
 
1003}
1004
1005static int latency_wakeup_event(struct perf_sched *sched,
1006				struct perf_evsel *evsel,
1007				struct perf_sample *sample,
1008				struct machine *machine)
1009{
1010	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid"),
1011		  success = perf_evsel__intval(evsel, sample, "success");
1012	struct work_atoms *atoms;
1013	struct work_atom *atom;
1014	struct thread *wakee;
1015	u64 timestamp = sample->time;
 
1016
1017	/* Note for later, it may be interesting to observe the failing cases */
1018	if (!success)
1019		return 0;
1020
1021	wakee = machine__findnew_thread(machine, 0, pid);
1022	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1023	if (!atoms) {
1024		if (thread_atoms_insert(sched, wakee))
1025			return -1;
1026		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1027		if (!atoms) {
1028			pr_err("wakeup-event: Internal tree error");
1029			return -1;
1030		}
1031		if (add_sched_out_event(atoms, 'S', timestamp))
1032			return -1;
1033	}
1034
1035	BUG_ON(list_empty(&atoms->work_list));
1036
1037	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1038
1039	/*
 
 
 
 
 
 
1040	 * You WILL be missing events if you've recorded only
1041	 * one CPU, or are only looking at only one, so don't
1042	 * make useless noise.
1043	 */
1044	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1045		sched->nr_state_machine_bugs++;
1046
1047	sched->nr_timestamps++;
1048	if (atom->sched_out_time > timestamp) {
1049		sched->nr_unordered_timestamps++;
1050		return 0;
1051	}
1052
1053	atom->state = THREAD_WAIT_CPU;
1054	atom->wake_up_time = timestamp;
1055	return 0;
 
 
 
 
1056}
1057
1058static int latency_migrate_task_event(struct perf_sched *sched,
1059				      struct perf_evsel *evsel,
1060				      struct perf_sample *sample,
1061				      struct machine *machine)
1062{
1063	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1064	u64 timestamp = sample->time;
1065	struct work_atoms *atoms;
1066	struct work_atom *atom;
1067	struct thread *migrant;
 
1068
1069	/*
1070	 * Only need to worry about migration when profiling one CPU.
1071	 */
1072	if (sched->profile_cpu == -1)
1073		return 0;
1074
1075	migrant = machine__findnew_thread(machine, 0, pid);
 
 
1076	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1077	if (!atoms) {
1078		if (thread_atoms_insert(sched, migrant))
1079			return -1;
1080		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1081		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1082		if (!atoms) {
1083			pr_err("migration-event: Internal tree error");
1084			return -1;
1085		}
1086		if (add_sched_out_event(atoms, 'R', timestamp))
1087			return -1;
1088	}
1089
1090	BUG_ON(list_empty(&atoms->work_list));
1091
1092	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1093	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1094
1095	sched->nr_timestamps++;
1096
1097	if (atom->sched_out_time > timestamp)
1098		sched->nr_unordered_timestamps++;
1099
1100	return 0;
 
 
1101}
1102
1103static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1104{
1105	int i;
1106	int ret;
1107	u64 avg;
 
1108
1109	if (!work_list->nb_atoms)
1110		return;
1111	/*
1112	 * Ignore idle threads:
1113	 */
1114	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1115		return;
1116
1117	sched->all_runtime += work_list->total_runtime;
1118	sched->all_count   += work_list->nb_atoms;
1119
1120	ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
 
 
 
1121
1122	for (i = 0; i < 24 - ret; i++)
1123		printf(" ");
1124
1125	avg = work_list->total_lat / work_list->nb_atoms;
 
1126
1127	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1128	      (double)work_list->total_runtime / 1e6,
1129		 work_list->nb_atoms, (double)avg / 1e6,
1130		 (double)work_list->max_lat / 1e6,
1131		 (double)work_list->max_lat_at / 1e9);
1132}
1133
1134static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1135{
 
 
1136	if (l->thread->tid < r->thread->tid)
1137		return -1;
1138	if (l->thread->tid > r->thread->tid)
1139		return 1;
1140
1141	return 0;
1142}
1143
1144static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1145{
1146	u64 avgl, avgr;
1147
1148	if (!l->nb_atoms)
1149		return -1;
1150
1151	if (!r->nb_atoms)
1152		return 1;
1153
1154	avgl = l->total_lat / l->nb_atoms;
1155	avgr = r->total_lat / r->nb_atoms;
1156
1157	if (avgl < avgr)
1158		return -1;
1159	if (avgl > avgr)
1160		return 1;
1161
1162	return 0;
1163}
1164
1165static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1166{
1167	if (l->max_lat < r->max_lat)
1168		return -1;
1169	if (l->max_lat > r->max_lat)
1170		return 1;
1171
1172	return 0;
1173}
1174
1175static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1176{
1177	if (l->nb_atoms < r->nb_atoms)
1178		return -1;
1179	if (l->nb_atoms > r->nb_atoms)
1180		return 1;
1181
1182	return 0;
1183}
1184
1185static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1186{
1187	if (l->total_runtime < r->total_runtime)
1188		return -1;
1189	if (l->total_runtime > r->total_runtime)
1190		return 1;
1191
1192	return 0;
1193}
1194
1195static int sort_dimension__add(const char *tok, struct list_head *list)
1196{
1197	size_t i;
1198	static struct sort_dimension avg_sort_dimension = {
1199		.name = "avg",
1200		.cmp  = avg_cmp,
1201	};
1202	static struct sort_dimension max_sort_dimension = {
1203		.name = "max",
1204		.cmp  = max_cmp,
1205	};
1206	static struct sort_dimension pid_sort_dimension = {
1207		.name = "pid",
1208		.cmp  = pid_cmp,
1209	};
1210	static struct sort_dimension runtime_sort_dimension = {
1211		.name = "runtime",
1212		.cmp  = runtime_cmp,
1213	};
1214	static struct sort_dimension switch_sort_dimension = {
1215		.name = "switch",
1216		.cmp  = switch_cmp,
1217	};
1218	struct sort_dimension *available_sorts[] = {
1219		&pid_sort_dimension,
1220		&avg_sort_dimension,
1221		&max_sort_dimension,
1222		&switch_sort_dimension,
1223		&runtime_sort_dimension,
1224	};
1225
1226	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1227		if (!strcmp(available_sorts[i]->name, tok)) {
1228			list_add_tail(&available_sorts[i]->list, list);
1229
1230			return 0;
1231		}
1232	}
1233
1234	return -1;
1235}
1236
1237static void perf_sched__sort_lat(struct perf_sched *sched)
1238{
1239	struct rb_node *node;
1240
 
1241	for (;;) {
1242		struct work_atoms *data;
1243		node = rb_first(&sched->atom_root);
1244		if (!node)
1245			break;
1246
1247		rb_erase(node, &sched->atom_root);
1248		data = rb_entry(node, struct work_atoms, node);
1249		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1250	}
 
 
 
 
1251}
1252
1253static int process_sched_wakeup_event(struct perf_tool *tool,
1254				      struct perf_evsel *evsel,
1255				      struct perf_sample *sample,
1256				      struct machine *machine)
1257{
1258	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1259
1260	if (sched->tp_handler->wakeup_event)
1261		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1262
1263	return 0;
1264}
1265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1267			    struct perf_sample *sample, struct machine *machine)
1268{
1269	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1270		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1271	struct thread *sched_out __maybe_unused, *sched_in;
1272	int new_shortname;
1273	u64 timestamp0, timestamp = sample->time;
1274	s64 delta;
1275	int cpu, this_cpu = sample->cpu;
 
 
 
 
1276
1277	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1278
1279	if (this_cpu > sched->max_cpu)
1280		sched->max_cpu = this_cpu;
1281
 
 
 
 
 
 
 
 
 
1282	timestamp0 = sched->cpu_last_switched[this_cpu];
1283	sched->cpu_last_switched[this_cpu] = timestamp;
1284	if (timestamp0)
1285		delta = timestamp - timestamp0;
1286	else
1287		delta = 0;
1288
1289	if (delta < 0) {
1290		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1291		return -1;
1292	}
1293
1294	sched_out = machine__findnew_thread(machine, 0, prev_pid);
1295	sched_in = machine__findnew_thread(machine, 0, next_pid);
 
1296
1297	sched->curr_thread[this_cpu] = sched_in;
1298
1299	printf("  ");
1300
1301	new_shortname = 0;
1302	if (!sched_in->shortname[0]) {
1303		sched_in->shortname[0] = sched->next_shortname1;
1304		sched_in->shortname[1] = sched->next_shortname2;
1305
1306		if (sched->next_shortname1 < 'Z') {
1307			sched->next_shortname1++;
 
 
1308		} else {
1309			sched->next_shortname1='A';
1310			if (sched->next_shortname2 < '9') {
1311				sched->next_shortname2++;
 
 
1312			} else {
1313				sched->next_shortname2='0';
 
 
 
 
1314			}
1315		}
1316		new_shortname = 1;
1317	}
1318
1319	for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320		if (cpu != this_cpu)
1321			printf(" ");
1322		else
1323			printf("*");
1324
1325		if (sched->curr_thread[cpu]) {
1326			if (sched->curr_thread[cpu]->tid)
1327				printf("%2s ", sched->curr_thread[cpu]->shortname);
1328			else
1329				printf(".  ");
1330		} else
1331			printf("   ");
1332	}
1333
1334	printf("  %12.6f secs ", (double)timestamp/1e9);
1335	if (new_shortname) {
1336		printf("%s => %s:%d\n",
 
 
 
 
 
 
 
 
 
1337		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1338	} else {
1339		printf("\n");
1340	}
1341
 
 
 
 
 
 
 
 
1342	return 0;
1343}
1344
1345static int process_sched_switch_event(struct perf_tool *tool,
1346				      struct perf_evsel *evsel,
1347				      struct perf_sample *sample,
1348				      struct machine *machine)
1349{
1350	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1351	int this_cpu = sample->cpu, err = 0;
1352	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1353	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1354
1355	if (sched->curr_pid[this_cpu] != (u32)-1) {
1356		/*
1357		 * Are we trying to switch away a PID that is
1358		 * not current?
1359		 */
1360		if (sched->curr_pid[this_cpu] != prev_pid)
1361			sched->nr_context_switch_bugs++;
1362	}
1363
1364	if (sched->tp_handler->switch_event)
1365		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1366
1367	sched->curr_pid[this_cpu] = next_pid;
1368	return err;
1369}
1370
1371static int process_sched_runtime_event(struct perf_tool *tool,
1372				       struct perf_evsel *evsel,
1373				       struct perf_sample *sample,
1374				       struct machine *machine)
1375{
1376	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1377
1378	if (sched->tp_handler->runtime_event)
1379		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1380
1381	return 0;
1382}
1383
1384static int perf_sched__process_fork_event(struct perf_tool *tool,
1385					  union perf_event *event,
1386					  struct perf_sample *sample,
1387					  struct machine *machine)
1388{
1389	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1390
1391	/* run the fork event through the perf machineruy */
1392	perf_event__process_fork(tool, event, sample, machine);
1393
1394	/* and then run additional processing needed for this command */
1395	if (sched->tp_handler->fork_event)
1396		return sched->tp_handler->fork_event(sched, event, machine);
1397
1398	return 0;
1399}
1400
1401static int process_sched_migrate_task_event(struct perf_tool *tool,
1402					    struct perf_evsel *evsel,
1403					    struct perf_sample *sample,
1404					    struct machine *machine)
1405{
1406	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1407
1408	if (sched->tp_handler->migrate_task_event)
1409		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1410
1411	return 0;
1412}
1413
1414typedef int (*tracepoint_handler)(struct perf_tool *tool,
1415				  struct perf_evsel *evsel,
1416				  struct perf_sample *sample,
1417				  struct machine *machine);
1418
1419static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1420						 union perf_event *event __maybe_unused,
1421						 struct perf_sample *sample,
1422						 struct perf_evsel *evsel,
1423						 struct machine *machine)
1424{
1425	int err = 0;
1426
1427	evsel->hists.stats.total_period += sample->period;
1428	hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1429
1430	if (evsel->handler != NULL) {
1431		tracepoint_handler f = evsel->handler;
1432		err = f(tool, evsel, sample, machine);
1433	}
1434
1435	return err;
1436}
1437
1438static int perf_sched__read_events(struct perf_sched *sched,
1439				   struct perf_session **psession)
1440{
1441	const struct perf_evsel_str_handler handlers[] = {
1442		{ "sched:sched_switch",	      process_sched_switch_event, },
1443		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1444		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1445		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1446		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1447	};
1448	struct perf_session *session;
1449	struct perf_data_file file = {
1450		.path = input_name,
1451		.mode = PERF_DATA_MODE_READ,
 
1452	};
 
1453
1454	session = perf_session__new(&file, false, &sched->tool);
1455	if (session == NULL) {
1456		pr_debug("No Memory for session\n");
1457		return -1;
1458	}
1459
 
 
1460	if (perf_session__set_tracepoints_handlers(session, handlers))
1461		goto out_delete;
1462
1463	if (perf_session__has_traces(session, "record -R")) {
1464		int err = perf_session__process_events(session, &sched->tool);
1465		if (err) {
1466			pr_err("Failed to process events, error %d", err);
1467			goto out_delete;
1468		}
1469
1470		sched->nr_events      = session->stats.nr_events[0];
1471		sched->nr_lost_events = session->stats.total_lost;
1472		sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1473	}
1474
1475	if (psession)
1476		*psession = session;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477	else
1478		perf_session__delete(session);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479
1480	return 0;
 
1481
1482out_delete:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483	perf_session__delete(session);
1484	return -1;
 
1485}
1486
 
1487static void print_bad_events(struct perf_sched *sched)
1488{
1489	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1490		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1491			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1492			sched->nr_unordered_timestamps, sched->nr_timestamps);
1493	}
1494	if (sched->nr_lost_events && sched->nr_events) {
1495		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1496			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1497			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1498	}
1499	if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1500		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1501			(double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1502			sched->nr_state_machine_bugs, sched->nr_timestamps);
1503		if (sched->nr_lost_events)
1504			printf(" (due to lost events?)");
1505		printf("\n");
1506	}
1507	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1508		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1509			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1510			sched->nr_context_switch_bugs, sched->nr_timestamps);
1511		if (sched->nr_lost_events)
1512			printf(" (due to lost events?)");
1513		printf("\n");
1514	}
1515}
1516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517static int perf_sched__lat(struct perf_sched *sched)
1518{
1519	struct rb_node *next;
1520	struct perf_session *session;
1521
1522	setup_pager();
1523
1524	/* save session -- references to threads are held in work_list */
1525	if (perf_sched__read_events(sched, &session))
1526		return -1;
1527
 
1528	perf_sched__sort_lat(sched);
1529
1530	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1531	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1532	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1533
1534	next = rb_first(&sched->sorted_atom_root);
1535
1536	while (next) {
1537		struct work_atoms *work_list;
1538
1539		work_list = rb_entry(next, struct work_atoms, node);
1540		output_lat_thread(sched, work_list);
1541		next = rb_next(next);
 
1542	}
1543
1544	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1545	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1546		(double)sched->all_runtime / 1e6, sched->all_count);
1547
1548	printf(" ---------------------------------------------------\n");
1549
1550	print_bad_events(sched);
1551	printf("\n");
1552
1553	perf_session__delete(session);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554	return 0;
1555}
1556
1557static int perf_sched__map(struct perf_sched *sched)
1558{
1559	sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
 
 
 
 
 
 
 
1560
1561	setup_pager();
1562	if (perf_sched__read_events(sched, NULL))
1563		return -1;
1564	print_bad_events(sched);
1565	return 0;
1566}
1567
1568static int perf_sched__replay(struct perf_sched *sched)
1569{
1570	unsigned long i;
1571
1572	calibrate_run_measurement_overhead(sched);
1573	calibrate_sleep_measurement_overhead(sched);
1574
1575	test_calibrations(sched);
1576
1577	if (perf_sched__read_events(sched, NULL))
1578		return -1;
1579
1580	printf("nr_run_events:        %ld\n", sched->nr_run_events);
1581	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1582	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1583
1584	if (sched->targetless_wakeups)
1585		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1586	if (sched->multitarget_wakeups)
1587		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1588	if (sched->nr_run_events_optimized)
1589		printf("run atoms optimized: %ld\n",
1590			sched->nr_run_events_optimized);
1591
1592	print_task_traces(sched);
1593	add_cross_task_wakeups(sched);
1594
1595	create_tasks(sched);
1596	printf("------------------------------------------------------------\n");
1597	for (i = 0; i < sched->replay_repeat; i++)
1598		run_one_test(sched);
1599
1600	return 0;
1601}
1602
1603static void setup_sorting(struct perf_sched *sched, const struct option *options,
1604			  const char * const usage_msg[])
1605{
1606	char *tmp, *tok, *str = strdup(sched->sort_order);
1607
1608	for (tok = strtok_r(str, ", ", &tmp);
1609			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1610		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1611			error("Unknown --sort key: `%s'", tok);
1612			usage_with_options(usage_msg, options);
1613		}
1614	}
1615
1616	free(str);
1617
1618	sort_dimension__add("pid", &sched->cmp_pid);
1619}
1620
1621static int __cmd_record(int argc, const char **argv)
1622{
1623	unsigned int rec_argc, i, j;
1624	const char **rec_argv;
1625	const char * const record_args[] = {
1626		"record",
1627		"-a",
1628		"-R",
1629		"-m", "1024",
1630		"-c", "1",
1631		"-e", "sched:sched_switch",
1632		"-e", "sched:sched_stat_wait",
1633		"-e", "sched:sched_stat_sleep",
1634		"-e", "sched:sched_stat_iowait",
1635		"-e", "sched:sched_stat_runtime",
1636		"-e", "sched:sched_process_fork",
1637		"-e", "sched:sched_wakeup",
 
1638		"-e", "sched:sched_migrate_task",
1639	};
1640
1641	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1642	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1643
1644	if (rec_argv == NULL)
1645		return -ENOMEM;
1646
1647	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1648		rec_argv[i] = strdup(record_args[i]);
1649
1650	for (j = 1; j < (unsigned int)argc; j++, i++)
1651		rec_argv[i] = argv[j];
1652
1653	BUG_ON(i != rec_argc);
1654
1655	return cmd_record(i, rec_argv, NULL);
1656}
1657
1658int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1659{
1660	const char default_sort_order[] = "avg, max, switch, runtime";
1661	struct perf_sched sched = {
1662		.tool = {
1663			.sample		 = perf_sched__process_tracepoint_sample,
1664			.comm		 = perf_event__process_comm,
1665			.lost		 = perf_event__process_lost,
1666			.fork		 = perf_sched__process_fork_event,
1667			.ordered_samples = true,
1668		},
1669		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
1670		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
1671		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1672		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1673		.sort_order	      = default_sort_order,
1674		.replay_repeat	      = 10,
1675		.profile_cpu	      = -1,
1676		.next_shortname1      = 'A',
1677		.next_shortname2      = '0',
 
 
 
1678	};
1679	const struct option latency_options[] = {
1680	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1681		   "sort by key(s): runtime, switch, avg, max"),
1682	OPT_INCR('v', "verbose", &verbose,
1683		    "be more verbose (show symbol address, etc)"),
1684	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1685		    "CPU to profile on"),
1686	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1687		    "dump raw trace in ASCII"),
 
1688	OPT_END()
1689	};
 
 
 
 
 
 
 
 
 
1690	const struct option replay_options[] = {
1691	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1692		     "repeat the workload replay N times (-1: infinite)"),
1693	OPT_INCR('v', "verbose", &verbose,
1694		    "be more verbose (show symbol address, etc)"),
1695	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1696		    "dump raw trace in ASCII"),
1697	OPT_END()
1698	};
1699	const struct option sched_options[] = {
1700	OPT_STRING('i', "input", &input_name, "file",
1701		    "input file name"),
1702	OPT_INCR('v', "verbose", &verbose,
1703		    "be more verbose (show symbol address, etc)"),
1704	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1705		    "dump raw trace in ASCII"),
1706	OPT_END()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707	};
 
1708	const char * const latency_usage[] = {
1709		"perf sched latency [<options>]",
1710		NULL
1711	};
1712	const char * const replay_usage[] = {
1713		"perf sched replay [<options>]",
1714		NULL
1715	};
1716	const char * const sched_usage[] = {
1717		"perf sched [<options>] {record|latency|map|replay|script}",
 
 
 
 
 
 
 
 
 
 
 
1718		NULL
1719	};
1720	struct trace_sched_handler lat_ops  = {
1721		.wakeup_event	    = latency_wakeup_event,
1722		.switch_event	    = latency_switch_event,
1723		.runtime_event	    = latency_runtime_event,
1724		.migrate_task_event = latency_migrate_task_event,
1725	};
1726	struct trace_sched_handler map_ops  = {
1727		.switch_event	    = map_switch_event,
1728	};
1729	struct trace_sched_handler replay_ops  = {
1730		.wakeup_event	    = replay_wakeup_event,
1731		.switch_event	    = replay_switch_event,
1732		.fork_event	    = replay_fork_event,
1733	};
1734	unsigned int i;
1735
1736	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1737		sched.curr_pid[i] = -1;
1738
1739	argc = parse_options(argc, argv, sched_options, sched_usage,
1740			     PARSE_OPT_STOP_AT_NON_OPTION);
1741	if (!argc)
1742		usage_with_options(sched_usage, sched_options);
1743
1744	/*
1745	 * Aliased to 'perf script' for now:
1746	 */
1747	if (!strcmp(argv[0], "script"))
1748		return cmd_script(argc, argv, prefix);
1749
1750	symbol__init();
1751	if (!strncmp(argv[0], "rec", 3)) {
1752		return __cmd_record(argc, argv);
1753	} else if (!strncmp(argv[0], "lat", 3)) {
1754		sched.tp_handler = &lat_ops;
1755		if (argc > 1) {
1756			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1757			if (argc)
1758				usage_with_options(latency_usage, latency_options);
1759		}
1760		setup_sorting(&sched, latency_options, latency_usage);
1761		return perf_sched__lat(&sched);
1762	} else if (!strcmp(argv[0], "map")) {
 
 
 
 
 
1763		sched.tp_handler = &map_ops;
1764		setup_sorting(&sched, latency_options, latency_usage);
1765		return perf_sched__map(&sched);
1766	} else if (!strncmp(argv[0], "rep", 3)) {
1767		sched.tp_handler = &replay_ops;
1768		if (argc) {
1769			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1770			if (argc)
1771				usage_with_options(replay_usage, replay_options);
1772		}
1773		return perf_sched__replay(&sched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774	} else {
1775		usage_with_options(sched_usage, sched_options);
1776	}
1777
1778	return 0;
1779}
v4.10.11
   1#include "builtin.h"
   2#include "perf.h"
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
  13#include "util/cloexec.h"
  14#include "util/thread_map.h"
  15#include "util/color.h"
  16#include "util/stat.h"
  17#include "util/callchain.h"
  18#include "util/time-utils.h"
  19
  20#include <subcmd/parse-options.h>
  21#include "util/trace-event.h"
  22
  23#include "util/debug.h"
  24
  25#include <linux/log2.h>
  26#include <sys/prctl.h>
  27#include <sys/resource.h>
  28
  29#include <semaphore.h>
  30#include <pthread.h>
  31#include <math.h>
  32#include <api/fs/fs.h>
  33#include <linux/time64.h>
  34
  35#define PR_SET_NAME		15               /* Set process name */
  36#define MAX_CPUS		4096
  37#define COMM_LEN		20
  38#define SYM_LEN			129
  39#define MAX_PID			1024000
  40
  41struct sched_atom;
  42
  43struct task_desc {
  44	unsigned long		nr;
  45	unsigned long		pid;
  46	char			comm[COMM_LEN];
  47
  48	unsigned long		nr_events;
  49	unsigned long		curr_event;
  50	struct sched_atom	**atoms;
  51
  52	pthread_t		thread;
  53	sem_t			sleep_sem;
  54
  55	sem_t			ready_for_work;
  56	sem_t			work_done_sem;
  57
  58	u64			cpu_usage;
  59};
  60
  61enum sched_event_type {
  62	SCHED_EVENT_RUN,
  63	SCHED_EVENT_SLEEP,
  64	SCHED_EVENT_WAKEUP,
  65	SCHED_EVENT_MIGRATION,
  66};
  67
  68struct sched_atom {
  69	enum sched_event_type	type;
  70	int			specific_wait;
  71	u64			timestamp;
  72	u64			duration;
  73	unsigned long		nr;
  74	sem_t			*wait_sem;
  75	struct task_desc	*wakee;
  76};
  77
  78#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  79
  80enum thread_state {
  81	THREAD_SLEEPING = 0,
  82	THREAD_WAIT_CPU,
  83	THREAD_SCHED_IN,
  84	THREAD_IGNORE
  85};
  86
  87struct work_atom {
  88	struct list_head	list;
  89	enum thread_state	state;
  90	u64			sched_out_time;
  91	u64			wake_up_time;
  92	u64			sched_in_time;
  93	u64			runtime;
  94};
  95
  96struct work_atoms {
  97	struct list_head	work_list;
  98	struct thread		*thread;
  99	struct rb_node		node;
 100	u64			max_lat;
 101	u64			max_lat_at;
 102	u64			total_lat;
 103	u64			nb_atoms;
 104	u64			total_runtime;
 105	int			num_merged;
 106};
 107
 108typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 109
 110struct perf_sched;
 111
 112struct trace_sched_handler {
 113	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 114			    struct perf_sample *sample, struct machine *machine);
 115
 116	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 117			     struct perf_sample *sample, struct machine *machine);
 118
 119	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 120			    struct perf_sample *sample, struct machine *machine);
 121
 122	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 123	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 124			  struct machine *machine);
 125
 126	int (*migrate_task_event)(struct perf_sched *sched,
 127				  struct perf_evsel *evsel,
 128				  struct perf_sample *sample,
 129				  struct machine *machine);
 130};
 131
 132#define COLOR_PIDS PERF_COLOR_BLUE
 133#define COLOR_CPUS PERF_COLOR_BG_RED
 134
 135struct perf_sched_map {
 136	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 137	int			*comp_cpus;
 138	bool			 comp;
 139	struct thread_map	*color_pids;
 140	const char		*color_pids_str;
 141	struct cpu_map		*color_cpus;
 142	const char		*color_cpus_str;
 143	struct cpu_map		*cpus;
 144	const char		*cpus_str;
 145};
 146
 147struct perf_sched {
 148	struct perf_tool tool;
 149	const char	 *sort_order;
 150	unsigned long	 nr_tasks;
 151	struct task_desc **pid_to_task;
 152	struct task_desc **tasks;
 153	const struct trace_sched_handler *tp_handler;
 154	pthread_mutex_t	 start_work_mutex;
 155	pthread_mutex_t	 work_done_wait_mutex;
 156	int		 profile_cpu;
 157/*
 158 * Track the current task - that way we can know whether there's any
 159 * weird events, such as a task being switched away that is not current.
 160 */
 161	int		 max_cpu;
 162	u32		 curr_pid[MAX_CPUS];
 163	struct thread	 *curr_thread[MAX_CPUS];
 164	char		 next_shortname1;
 165	char		 next_shortname2;
 166	unsigned int	 replay_repeat;
 167	unsigned long	 nr_run_events;
 168	unsigned long	 nr_sleep_events;
 169	unsigned long	 nr_wakeup_events;
 170	unsigned long	 nr_sleep_corrections;
 171	unsigned long	 nr_run_events_optimized;
 172	unsigned long	 targetless_wakeups;
 173	unsigned long	 multitarget_wakeups;
 174	unsigned long	 nr_runs;
 175	unsigned long	 nr_timestamps;
 176	unsigned long	 nr_unordered_timestamps;
 
 177	unsigned long	 nr_context_switch_bugs;
 178	unsigned long	 nr_events;
 179	unsigned long	 nr_lost_chunks;
 180	unsigned long	 nr_lost_events;
 181	u64		 run_measurement_overhead;
 182	u64		 sleep_measurement_overhead;
 183	u64		 start_time;
 184	u64		 cpu_usage;
 185	u64		 runavg_cpu_usage;
 186	u64		 parent_cpu_usage;
 187	u64		 runavg_parent_cpu_usage;
 188	u64		 sum_runtime;
 189	u64		 sum_fluct;
 190	u64		 run_avg;
 191	u64		 all_runtime;
 192	u64		 all_count;
 193	u64		 cpu_last_switched[MAX_CPUS];
 194	struct rb_root	 atom_root, sorted_atom_root, merged_atom_root;
 195	struct list_head sort_list, cmp_pid;
 196	bool force;
 197	bool skip_merge;
 198	struct perf_sched_map map;
 199
 200	/* options for timehist command */
 201	bool		summary;
 202	bool		summary_only;
 203	bool		idle_hist;
 204	bool		show_callchain;
 205	unsigned int	max_stack;
 206	bool		show_cpu_visual;
 207	bool		show_wakeups;
 208	bool		show_migrations;
 209	u64		skipped_samples;
 210	const char	*time_str;
 211	struct perf_time_interval ptime;
 212	struct perf_time_interval hist_time;
 213};
 214
 215/* per thread run time data */
 216struct thread_runtime {
 217	u64 last_time;      /* time of previous sched in/out event */
 218	u64 dt_run;         /* run time */
 219	u64 dt_wait;        /* time between CPU access (off cpu) */
 220	u64 dt_delay;       /* time between wakeup and sched-in */
 221	u64 ready_to_run;   /* time of wakeup */
 222
 223	struct stats run_stats;
 224	u64 total_run_time;
 225
 226	u64 migrations;
 227};
 228
 229/* per event run time data */
 230struct evsel_runtime {
 231	u64 *last_time; /* time this event was last seen per cpu */
 232	u32 ncpu;       /* highest cpu slot allocated */
 233};
 234
 235/* per cpu idle time data */
 236struct idle_thread_runtime {
 237	struct thread_runtime	tr;
 238	struct thread		*last_thread;
 239	struct rb_root		sorted_root;
 240	struct callchain_root	callchain;
 241	struct callchain_cursor	cursor;
 242};
 243
 244/* track idle times per cpu */
 245static struct thread **idle_threads;
 246static int idle_max_cpu;
 247static char idle_comm[] = "<idle>";
 248
 249static u64 get_nsecs(void)
 250{
 251	struct timespec ts;
 252
 253	clock_gettime(CLOCK_MONOTONIC, &ts);
 254
 255	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 256}
 257
 258static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 259{
 260	u64 T0 = get_nsecs(), T1;
 261
 262	do {
 263		T1 = get_nsecs();
 264	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 265}
 266
 267static void sleep_nsecs(u64 nsecs)
 268{
 269	struct timespec ts;
 270
 271	ts.tv_nsec = nsecs % 999999999;
 272	ts.tv_sec = nsecs / 999999999;
 273
 274	nanosleep(&ts, NULL);
 275}
 276
 277static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 278{
 279	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 280	int i;
 281
 282	for (i = 0; i < 10; i++) {
 283		T0 = get_nsecs();
 284		burn_nsecs(sched, 0);
 285		T1 = get_nsecs();
 286		delta = T1-T0;
 287		min_delta = min(min_delta, delta);
 288	}
 289	sched->run_measurement_overhead = min_delta;
 290
 291	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 292}
 293
 294static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 295{
 296	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 297	int i;
 298
 299	for (i = 0; i < 10; i++) {
 300		T0 = get_nsecs();
 301		sleep_nsecs(10000);
 302		T1 = get_nsecs();
 303		delta = T1-T0;
 304		min_delta = min(min_delta, delta);
 305	}
 306	min_delta -= 10000;
 307	sched->sleep_measurement_overhead = min_delta;
 308
 309	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 310}
 311
 312static struct sched_atom *
 313get_new_event(struct task_desc *task, u64 timestamp)
 314{
 315	struct sched_atom *event = zalloc(sizeof(*event));
 316	unsigned long idx = task->nr_events;
 317	size_t size;
 318
 319	event->timestamp = timestamp;
 320	event->nr = idx;
 321
 322	task->nr_events++;
 323	size = sizeof(struct sched_atom *) * task->nr_events;
 324	task->atoms = realloc(task->atoms, size);
 325	BUG_ON(!task->atoms);
 326
 327	task->atoms[idx] = event;
 328
 329	return event;
 330}
 331
 332static struct sched_atom *last_event(struct task_desc *task)
 333{
 334	if (!task->nr_events)
 335		return NULL;
 336
 337	return task->atoms[task->nr_events - 1];
 338}
 339
 340static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 341				u64 timestamp, u64 duration)
 342{
 343	struct sched_atom *event, *curr_event = last_event(task);
 344
 345	/*
 346	 * optimize an existing RUN event by merging this one
 347	 * to it:
 348	 */
 349	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 350		sched->nr_run_events_optimized++;
 351		curr_event->duration += duration;
 352		return;
 353	}
 354
 355	event = get_new_event(task, timestamp);
 356
 357	event->type = SCHED_EVENT_RUN;
 358	event->duration = duration;
 359
 360	sched->nr_run_events++;
 361}
 362
 363static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 364				   u64 timestamp, struct task_desc *wakee)
 365{
 366	struct sched_atom *event, *wakee_event;
 367
 368	event = get_new_event(task, timestamp);
 369	event->type = SCHED_EVENT_WAKEUP;
 370	event->wakee = wakee;
 371
 372	wakee_event = last_event(wakee);
 373	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 374		sched->targetless_wakeups++;
 375		return;
 376	}
 377	if (wakee_event->wait_sem) {
 378		sched->multitarget_wakeups++;
 379		return;
 380	}
 381
 382	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 383	sem_init(wakee_event->wait_sem, 0, 0);
 384	wakee_event->specific_wait = 1;
 385	event->wait_sem = wakee_event->wait_sem;
 386
 387	sched->nr_wakeup_events++;
 388}
 389
 390static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 391				  u64 timestamp, u64 task_state __maybe_unused)
 392{
 393	struct sched_atom *event = get_new_event(task, timestamp);
 394
 395	event->type = SCHED_EVENT_SLEEP;
 396
 397	sched->nr_sleep_events++;
 398}
 399
 400static struct task_desc *register_pid(struct perf_sched *sched,
 401				      unsigned long pid, const char *comm)
 402{
 403	struct task_desc *task;
 404	static int pid_max;
 405
 406	if (sched->pid_to_task == NULL) {
 407		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 408			pid_max = MAX_PID;
 409		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 410	}
 411	if (pid >= (unsigned long)pid_max) {
 412		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 413			sizeof(struct task_desc *))) == NULL);
 414		while (pid >= (unsigned long)pid_max)
 415			sched->pid_to_task[pid_max++] = NULL;
 416	}
 417
 418	task = sched->pid_to_task[pid];
 419
 420	if (task)
 421		return task;
 422
 423	task = zalloc(sizeof(*task));
 424	task->pid = pid;
 425	task->nr = sched->nr_tasks;
 426	strcpy(task->comm, comm);
 427	/*
 428	 * every task starts in sleeping state - this gets ignored
 429	 * if there's no wakeup pointing to this sleep state:
 430	 */
 431	add_sched_event_sleep(sched, task, 0, 0);
 432
 433	sched->pid_to_task[pid] = task;
 434	sched->nr_tasks++;
 435	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 436	BUG_ON(!sched->tasks);
 437	sched->tasks[task->nr] = task;
 438
 439	if (verbose)
 440		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 441
 442	return task;
 443}
 444
 445
 446static void print_task_traces(struct perf_sched *sched)
 447{
 448	struct task_desc *task;
 449	unsigned long i;
 450
 451	for (i = 0; i < sched->nr_tasks; i++) {
 452		task = sched->tasks[i];
 453		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 454			task->nr, task->comm, task->pid, task->nr_events);
 455	}
 456}
 457
 458static void add_cross_task_wakeups(struct perf_sched *sched)
 459{
 460	struct task_desc *task1, *task2;
 461	unsigned long i, j;
 462
 463	for (i = 0; i < sched->nr_tasks; i++) {
 464		task1 = sched->tasks[i];
 465		j = i + 1;
 466		if (j == sched->nr_tasks)
 467			j = 0;
 468		task2 = sched->tasks[j];
 469		add_sched_event_wakeup(sched, task1, 0, task2);
 470	}
 471}
 472
 473static void perf_sched__process_event(struct perf_sched *sched,
 474				      struct sched_atom *atom)
 475{
 476	int ret = 0;
 477
 478	switch (atom->type) {
 479		case SCHED_EVENT_RUN:
 480			burn_nsecs(sched, atom->duration);
 481			break;
 482		case SCHED_EVENT_SLEEP:
 483			if (atom->wait_sem)
 484				ret = sem_wait(atom->wait_sem);
 485			BUG_ON(ret);
 486			break;
 487		case SCHED_EVENT_WAKEUP:
 488			if (atom->wait_sem)
 489				ret = sem_post(atom->wait_sem);
 490			BUG_ON(ret);
 491			break;
 492		case SCHED_EVENT_MIGRATION:
 493			break;
 494		default:
 495			BUG_ON(1);
 496	}
 497}
 498
 499static u64 get_cpu_usage_nsec_parent(void)
 500{
 501	struct rusage ru;
 502	u64 sum;
 503	int err;
 504
 505	err = getrusage(RUSAGE_SELF, &ru);
 506	BUG_ON(err);
 507
 508	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 509	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 510
 511	return sum;
 512}
 513
 514static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 515{
 516	struct perf_event_attr attr;
 517	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 518	int fd;
 519	struct rlimit limit;
 520	bool need_privilege = false;
 521
 522	memset(&attr, 0, sizeof(attr));
 523
 524	attr.type = PERF_TYPE_SOFTWARE;
 525	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 526
 527force_again:
 528	fd = sys_perf_event_open(&attr, 0, -1, -1,
 529				 perf_event_open_cloexec_flag());
 530
 531	if (fd < 0) {
 532		if (errno == EMFILE) {
 533			if (sched->force) {
 534				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 535				limit.rlim_cur += sched->nr_tasks - cur_task;
 536				if (limit.rlim_cur > limit.rlim_max) {
 537					limit.rlim_max = limit.rlim_cur;
 538					need_privilege = true;
 539				}
 540				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 541					if (need_privilege && errno == EPERM)
 542						strcpy(info, "Need privilege\n");
 543				} else
 544					goto force_again;
 545			} else
 546				strcpy(info, "Have a try with -f option\n");
 547		}
 548		pr_err("Error: sys_perf_event_open() syscall returned "
 549		       "with %d (%s)\n%s", fd,
 550		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 551		exit(EXIT_FAILURE);
 552	}
 553	return fd;
 554}
 555
 556static u64 get_cpu_usage_nsec_self(int fd)
 557{
 558	u64 runtime;
 559	int ret;
 560
 561	ret = read(fd, &runtime, sizeof(runtime));
 562	BUG_ON(ret != sizeof(runtime));
 563
 564	return runtime;
 565}
 566
 567struct sched_thread_parms {
 568	struct task_desc  *task;
 569	struct perf_sched *sched;
 570	int fd;
 571};
 572
 573static void *thread_func(void *ctx)
 574{
 575	struct sched_thread_parms *parms = ctx;
 576	struct task_desc *this_task = parms->task;
 577	struct perf_sched *sched = parms->sched;
 578	u64 cpu_usage_0, cpu_usage_1;
 579	unsigned long i, ret;
 580	char comm2[22];
 581	int fd = parms->fd;
 582
 583	zfree(&parms);
 584
 585	sprintf(comm2, ":%s", this_task->comm);
 586	prctl(PR_SET_NAME, comm2);
 
 587	if (fd < 0)
 588		return NULL;
 589again:
 590	ret = sem_post(&this_task->ready_for_work);
 591	BUG_ON(ret);
 592	ret = pthread_mutex_lock(&sched->start_work_mutex);
 593	BUG_ON(ret);
 594	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 595	BUG_ON(ret);
 596
 597	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 598
 599	for (i = 0; i < this_task->nr_events; i++) {
 600		this_task->curr_event = i;
 601		perf_sched__process_event(sched, this_task->atoms[i]);
 602	}
 603
 604	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 605	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 606	ret = sem_post(&this_task->work_done_sem);
 607	BUG_ON(ret);
 608
 609	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 610	BUG_ON(ret);
 611	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 612	BUG_ON(ret);
 613
 614	goto again;
 615}
 616
 617static void create_tasks(struct perf_sched *sched)
 618{
 619	struct task_desc *task;
 620	pthread_attr_t attr;
 621	unsigned long i;
 622	int err;
 623
 624	err = pthread_attr_init(&attr);
 625	BUG_ON(err);
 626	err = pthread_attr_setstacksize(&attr,
 627			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 628	BUG_ON(err);
 629	err = pthread_mutex_lock(&sched->start_work_mutex);
 630	BUG_ON(err);
 631	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 632	BUG_ON(err);
 633	for (i = 0; i < sched->nr_tasks; i++) {
 634		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 635		BUG_ON(parms == NULL);
 636		parms->task = task = sched->tasks[i];
 637		parms->sched = sched;
 638		parms->fd = self_open_counters(sched, i);
 639		sem_init(&task->sleep_sem, 0, 0);
 640		sem_init(&task->ready_for_work, 0, 0);
 641		sem_init(&task->work_done_sem, 0, 0);
 642		task->curr_event = 0;
 643		err = pthread_create(&task->thread, &attr, thread_func, parms);
 644		BUG_ON(err);
 645	}
 646}
 647
 648static void wait_for_tasks(struct perf_sched *sched)
 649{
 650	u64 cpu_usage_0, cpu_usage_1;
 651	struct task_desc *task;
 652	unsigned long i, ret;
 653
 654	sched->start_time = get_nsecs();
 655	sched->cpu_usage = 0;
 656	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 657
 658	for (i = 0; i < sched->nr_tasks; i++) {
 659		task = sched->tasks[i];
 660		ret = sem_wait(&task->ready_for_work);
 661		BUG_ON(ret);
 662		sem_init(&task->ready_for_work, 0, 0);
 663	}
 664	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 665	BUG_ON(ret);
 666
 667	cpu_usage_0 = get_cpu_usage_nsec_parent();
 668
 669	pthread_mutex_unlock(&sched->start_work_mutex);
 670
 671	for (i = 0; i < sched->nr_tasks; i++) {
 672		task = sched->tasks[i];
 673		ret = sem_wait(&task->work_done_sem);
 674		BUG_ON(ret);
 675		sem_init(&task->work_done_sem, 0, 0);
 676		sched->cpu_usage += task->cpu_usage;
 677		task->cpu_usage = 0;
 678	}
 679
 680	cpu_usage_1 = get_cpu_usage_nsec_parent();
 681	if (!sched->runavg_cpu_usage)
 682		sched->runavg_cpu_usage = sched->cpu_usage;
 683	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 684
 685	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 686	if (!sched->runavg_parent_cpu_usage)
 687		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 688	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 689					 sched->parent_cpu_usage)/sched->replay_repeat;
 690
 691	ret = pthread_mutex_lock(&sched->start_work_mutex);
 692	BUG_ON(ret);
 693
 694	for (i = 0; i < sched->nr_tasks; i++) {
 695		task = sched->tasks[i];
 696		sem_init(&task->sleep_sem, 0, 0);
 697		task->curr_event = 0;
 698	}
 699}
 700
 701static void run_one_test(struct perf_sched *sched)
 702{
 703	u64 T0, T1, delta, avg_delta, fluct;
 704
 705	T0 = get_nsecs();
 706	wait_for_tasks(sched);
 707	T1 = get_nsecs();
 708
 709	delta = T1 - T0;
 710	sched->sum_runtime += delta;
 711	sched->nr_runs++;
 712
 713	avg_delta = sched->sum_runtime / sched->nr_runs;
 714	if (delta < avg_delta)
 715		fluct = avg_delta - delta;
 716	else
 717		fluct = delta - avg_delta;
 718	sched->sum_fluct += fluct;
 719	if (!sched->run_avg)
 720		sched->run_avg = delta;
 721	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 722
 723	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 724
 725	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 726
 727	printf("cpu: %0.2f / %0.2f",
 728		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 729
 730#if 0
 731	/*
 732	 * rusage statistics done by the parent, these are less
 733	 * accurate than the sched->sum_exec_runtime based statistics:
 734	 */
 735	printf(" [%0.2f / %0.2f]",
 736		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 737		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 738#endif
 739
 740	printf("\n");
 741
 742	if (sched->nr_sleep_corrections)
 743		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 744	sched->nr_sleep_corrections = 0;
 745}
 746
 747static void test_calibrations(struct perf_sched *sched)
 748{
 749	u64 T0, T1;
 750
 751	T0 = get_nsecs();
 752	burn_nsecs(sched, NSEC_PER_MSEC);
 753	T1 = get_nsecs();
 754
 755	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 756
 757	T0 = get_nsecs();
 758	sleep_nsecs(NSEC_PER_MSEC);
 759	T1 = get_nsecs();
 760
 761	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 762}
 763
 764static int
 765replay_wakeup_event(struct perf_sched *sched,
 766		    struct perf_evsel *evsel, struct perf_sample *sample,
 767		    struct machine *machine __maybe_unused)
 768{
 769	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 770	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 771	struct task_desc *waker, *wakee;
 772
 773	if (verbose) {
 774		printf("sched_wakeup event %p\n", evsel);
 775
 776		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 777	}
 778
 779	waker = register_pid(sched, sample->tid, "<unknown>");
 780	wakee = register_pid(sched, pid, comm);
 781
 782	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 783	return 0;
 784}
 785
 786static int replay_switch_event(struct perf_sched *sched,
 787			       struct perf_evsel *evsel,
 788			       struct perf_sample *sample,
 789			       struct machine *machine __maybe_unused)
 790{
 791	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 792		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 793	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 794		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 795	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 796	struct task_desc *prev, __maybe_unused *next;
 797	u64 timestamp0, timestamp = sample->time;
 798	int cpu = sample->cpu;
 799	s64 delta;
 800
 801	if (verbose)
 802		printf("sched_switch event %p\n", evsel);
 803
 804	if (cpu >= MAX_CPUS || cpu < 0)
 805		return 0;
 806
 807	timestamp0 = sched->cpu_last_switched[cpu];
 808	if (timestamp0)
 809		delta = timestamp - timestamp0;
 810	else
 811		delta = 0;
 812
 813	if (delta < 0) {
 814		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 815		return -1;
 816	}
 817
 818	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 819		 prev_comm, prev_pid, next_comm, next_pid, delta);
 820
 821	prev = register_pid(sched, prev_pid, prev_comm);
 822	next = register_pid(sched, next_pid, next_comm);
 823
 824	sched->cpu_last_switched[cpu] = timestamp;
 825
 826	add_sched_event_run(sched, prev, timestamp, delta);
 827	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 828
 829	return 0;
 830}
 831
 832static int replay_fork_event(struct perf_sched *sched,
 833			     union perf_event *event,
 834			     struct machine *machine)
 835{
 836	struct thread *child, *parent;
 837
 838	child = machine__findnew_thread(machine, event->fork.pid,
 839					event->fork.tid);
 840	parent = machine__findnew_thread(machine, event->fork.ppid,
 841					 event->fork.ptid);
 842
 843	if (child == NULL || parent == NULL) {
 844		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 845				 child, parent);
 846		goto out_put;
 847	}
 848
 849	if (verbose) {
 850		printf("fork event\n");
 851		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 852		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 853	}
 854
 855	register_pid(sched, parent->tid, thread__comm_str(parent));
 856	register_pid(sched, child->tid, thread__comm_str(child));
 857out_put:
 858	thread__put(child);
 859	thread__put(parent);
 860	return 0;
 861}
 862
 863struct sort_dimension {
 864	const char		*name;
 865	sort_fn_t		cmp;
 866	struct list_head	list;
 867};
 868
 869static int
 870thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 871{
 872	struct sort_dimension *sort;
 873	int ret = 0;
 874
 875	BUG_ON(list_empty(list));
 876
 877	list_for_each_entry(sort, list, list) {
 878		ret = sort->cmp(l, r);
 879		if (ret)
 880			return ret;
 881	}
 882
 883	return ret;
 884}
 885
 886static struct work_atoms *
 887thread_atoms_search(struct rb_root *root, struct thread *thread,
 888			 struct list_head *sort_list)
 889{
 890	struct rb_node *node = root->rb_node;
 891	struct work_atoms key = { .thread = thread };
 892
 893	while (node) {
 894		struct work_atoms *atoms;
 895		int cmp;
 896
 897		atoms = container_of(node, struct work_atoms, node);
 898
 899		cmp = thread_lat_cmp(sort_list, &key, atoms);
 900		if (cmp > 0)
 901			node = node->rb_left;
 902		else if (cmp < 0)
 903			node = node->rb_right;
 904		else {
 905			BUG_ON(thread != atoms->thread);
 906			return atoms;
 907		}
 908	}
 909	return NULL;
 910}
 911
 912static void
 913__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 914			 struct list_head *sort_list)
 915{
 916	struct rb_node **new = &(root->rb_node), *parent = NULL;
 917
 918	while (*new) {
 919		struct work_atoms *this;
 920		int cmp;
 921
 922		this = container_of(*new, struct work_atoms, node);
 923		parent = *new;
 924
 925		cmp = thread_lat_cmp(sort_list, data, this);
 926
 927		if (cmp > 0)
 928			new = &((*new)->rb_left);
 929		else
 930			new = &((*new)->rb_right);
 931	}
 932
 933	rb_link_node(&data->node, parent, new);
 934	rb_insert_color(&data->node, root);
 935}
 936
 937static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
 938{
 939	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 940	if (!atoms) {
 941		pr_err("No memory at %s\n", __func__);
 942		return -1;
 943	}
 944
 945	atoms->thread = thread__get(thread);
 946	INIT_LIST_HEAD(&atoms->work_list);
 947	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
 948	return 0;
 949}
 950
 951static char sched_out_state(u64 prev_state)
 952{
 953	const char *str = TASK_STATE_TO_CHAR_STR;
 954
 955	return str[prev_state];
 956}
 957
 958static int
 959add_sched_out_event(struct work_atoms *atoms,
 960		    char run_state,
 961		    u64 timestamp)
 962{
 963	struct work_atom *atom = zalloc(sizeof(*atom));
 964	if (!atom) {
 965		pr_err("Non memory at %s", __func__);
 966		return -1;
 967	}
 968
 969	atom->sched_out_time = timestamp;
 970
 971	if (run_state == 'R') {
 972		atom->state = THREAD_WAIT_CPU;
 973		atom->wake_up_time = atom->sched_out_time;
 974	}
 975
 976	list_add_tail(&atom->list, &atoms->work_list);
 977	return 0;
 978}
 979
 980static void
 981add_runtime_event(struct work_atoms *atoms, u64 delta,
 982		  u64 timestamp __maybe_unused)
 983{
 984	struct work_atom *atom;
 985
 986	BUG_ON(list_empty(&atoms->work_list));
 987
 988	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 989
 990	atom->runtime += delta;
 991	atoms->total_runtime += delta;
 992}
 993
 994static void
 995add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 996{
 997	struct work_atom *atom;
 998	u64 delta;
 999
1000	if (list_empty(&atoms->work_list))
1001		return;
1002
1003	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1004
1005	if (atom->state != THREAD_WAIT_CPU)
1006		return;
1007
1008	if (timestamp < atom->wake_up_time) {
1009		atom->state = THREAD_IGNORE;
1010		return;
1011	}
1012
1013	atom->state = THREAD_SCHED_IN;
1014	atom->sched_in_time = timestamp;
1015
1016	delta = atom->sched_in_time - atom->wake_up_time;
1017	atoms->total_lat += delta;
1018	if (delta > atoms->max_lat) {
1019		atoms->max_lat = delta;
1020		atoms->max_lat_at = timestamp;
1021	}
1022	atoms->nb_atoms++;
1023}
1024
1025static int latency_switch_event(struct perf_sched *sched,
1026				struct perf_evsel *evsel,
1027				struct perf_sample *sample,
1028				struct machine *machine)
1029{
1030	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1031		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1032	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1033	struct work_atoms *out_events, *in_events;
1034	struct thread *sched_out, *sched_in;
1035	u64 timestamp0, timestamp = sample->time;
1036	int cpu = sample->cpu, err = -1;
1037	s64 delta;
1038
1039	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040
1041	timestamp0 = sched->cpu_last_switched[cpu];
1042	sched->cpu_last_switched[cpu] = timestamp;
1043	if (timestamp0)
1044		delta = timestamp - timestamp0;
1045	else
1046		delta = 0;
1047
1048	if (delta < 0) {
1049		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1050		return -1;
1051	}
1052
1053	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1054	sched_in = machine__findnew_thread(machine, -1, next_pid);
1055	if (sched_out == NULL || sched_in == NULL)
1056		goto out_put;
1057
1058	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1059	if (!out_events) {
1060		if (thread_atoms_insert(sched, sched_out))
1061			goto out_put;
1062		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1063		if (!out_events) {
1064			pr_err("out-event: Internal tree error");
1065			goto out_put;
1066		}
1067	}
1068	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1069		return -1;
1070
1071	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1072	if (!in_events) {
1073		if (thread_atoms_insert(sched, sched_in))
1074			goto out_put;
1075		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1076		if (!in_events) {
1077			pr_err("in-event: Internal tree error");
1078			goto out_put;
1079		}
1080		/*
1081		 * Take came in we have not heard about yet,
1082		 * add in an initial atom in runnable state:
1083		 */
1084		if (add_sched_out_event(in_events, 'R', timestamp))
1085			goto out_put;
1086	}
1087	add_sched_in_event(in_events, timestamp);
1088	err = 0;
1089out_put:
1090	thread__put(sched_out);
1091	thread__put(sched_in);
1092	return err;
1093}
1094
1095static int latency_runtime_event(struct perf_sched *sched,
1096				 struct perf_evsel *evsel,
1097				 struct perf_sample *sample,
1098				 struct machine *machine)
1099{
1100	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1101	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1102	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1103	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1104	u64 timestamp = sample->time;
1105	int cpu = sample->cpu, err = -1;
1106
1107	if (thread == NULL)
1108		return -1;
1109
1110	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1111	if (!atoms) {
1112		if (thread_atoms_insert(sched, thread))
1113			goto out_put;
1114		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1115		if (!atoms) {
1116			pr_err("in-event: Internal tree error");
1117			goto out_put;
1118		}
1119		if (add_sched_out_event(atoms, 'R', timestamp))
1120			goto out_put;
1121	}
1122
1123	add_runtime_event(atoms, runtime, timestamp);
1124	err = 0;
1125out_put:
1126	thread__put(thread);
1127	return err;
1128}
1129
1130static int latency_wakeup_event(struct perf_sched *sched,
1131				struct perf_evsel *evsel,
1132				struct perf_sample *sample,
1133				struct machine *machine)
1134{
1135	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
 
1136	struct work_atoms *atoms;
1137	struct work_atom *atom;
1138	struct thread *wakee;
1139	u64 timestamp = sample->time;
1140	int err = -1;
1141
1142	wakee = machine__findnew_thread(machine, -1, pid);
1143	if (wakee == NULL)
1144		return -1;
 
 
1145	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1146	if (!atoms) {
1147		if (thread_atoms_insert(sched, wakee))
1148			goto out_put;
1149		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1150		if (!atoms) {
1151			pr_err("wakeup-event: Internal tree error");
1152			goto out_put;
1153		}
1154		if (add_sched_out_event(atoms, 'S', timestamp))
1155			goto out_put;
1156	}
1157
1158	BUG_ON(list_empty(&atoms->work_list));
1159
1160	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1161
1162	/*
1163	 * As we do not guarantee the wakeup event happens when
1164	 * task is out of run queue, also may happen when task is
1165	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1166	 * then we should not set the ->wake_up_time when wake up a
1167	 * task which is on run queue.
1168	 *
1169	 * You WILL be missing events if you've recorded only
1170	 * one CPU, or are only looking at only one, so don't
1171	 * skip in this case.
1172	 */
1173	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1174		goto out_ok;
1175
1176	sched->nr_timestamps++;
1177	if (atom->sched_out_time > timestamp) {
1178		sched->nr_unordered_timestamps++;
1179		goto out_ok;
1180	}
1181
1182	atom->state = THREAD_WAIT_CPU;
1183	atom->wake_up_time = timestamp;
1184out_ok:
1185	err = 0;
1186out_put:
1187	thread__put(wakee);
1188	return err;
1189}
1190
1191static int latency_migrate_task_event(struct perf_sched *sched,
1192				      struct perf_evsel *evsel,
1193				      struct perf_sample *sample,
1194				      struct machine *machine)
1195{
1196	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1197	u64 timestamp = sample->time;
1198	struct work_atoms *atoms;
1199	struct work_atom *atom;
1200	struct thread *migrant;
1201	int err = -1;
1202
1203	/*
1204	 * Only need to worry about migration when profiling one CPU.
1205	 */
1206	if (sched->profile_cpu == -1)
1207		return 0;
1208
1209	migrant = machine__findnew_thread(machine, -1, pid);
1210	if (migrant == NULL)
1211		return -1;
1212	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1213	if (!atoms) {
1214		if (thread_atoms_insert(sched, migrant))
1215			goto out_put;
1216		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1217		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1218		if (!atoms) {
1219			pr_err("migration-event: Internal tree error");
1220			goto out_put;
1221		}
1222		if (add_sched_out_event(atoms, 'R', timestamp))
1223			goto out_put;
1224	}
1225
1226	BUG_ON(list_empty(&atoms->work_list));
1227
1228	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1229	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1230
1231	sched->nr_timestamps++;
1232
1233	if (atom->sched_out_time > timestamp)
1234		sched->nr_unordered_timestamps++;
1235	err = 0;
1236out_put:
1237	thread__put(migrant);
1238	return err;
1239}
1240
1241static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1242{
1243	int i;
1244	int ret;
1245	u64 avg;
1246	char max_lat_at[32];
1247
1248	if (!work_list->nb_atoms)
1249		return;
1250	/*
1251	 * Ignore idle threads:
1252	 */
1253	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1254		return;
1255
1256	sched->all_runtime += work_list->total_runtime;
1257	sched->all_count   += work_list->nb_atoms;
1258
1259	if (work_list->num_merged > 1)
1260		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1261	else
1262		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1263
1264	for (i = 0; i < 24 - ret; i++)
1265		printf(" ");
1266
1267	avg = work_list->total_lat / work_list->nb_atoms;
1268	timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1269
1270	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1271	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1272		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1273		 (double)work_list->max_lat / NSEC_PER_MSEC,
1274		 max_lat_at);
1275}
1276
1277static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1278{
1279	if (l->thread == r->thread)
1280		return 0;
1281	if (l->thread->tid < r->thread->tid)
1282		return -1;
1283	if (l->thread->tid > r->thread->tid)
1284		return 1;
1285	return (int)(l->thread - r->thread);
 
1286}
1287
1288static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1289{
1290	u64 avgl, avgr;
1291
1292	if (!l->nb_atoms)
1293		return -1;
1294
1295	if (!r->nb_atoms)
1296		return 1;
1297
1298	avgl = l->total_lat / l->nb_atoms;
1299	avgr = r->total_lat / r->nb_atoms;
1300
1301	if (avgl < avgr)
1302		return -1;
1303	if (avgl > avgr)
1304		return 1;
1305
1306	return 0;
1307}
1308
1309static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1310{
1311	if (l->max_lat < r->max_lat)
1312		return -1;
1313	if (l->max_lat > r->max_lat)
1314		return 1;
1315
1316	return 0;
1317}
1318
1319static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1320{
1321	if (l->nb_atoms < r->nb_atoms)
1322		return -1;
1323	if (l->nb_atoms > r->nb_atoms)
1324		return 1;
1325
1326	return 0;
1327}
1328
1329static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1330{
1331	if (l->total_runtime < r->total_runtime)
1332		return -1;
1333	if (l->total_runtime > r->total_runtime)
1334		return 1;
1335
1336	return 0;
1337}
1338
1339static int sort_dimension__add(const char *tok, struct list_head *list)
1340{
1341	size_t i;
1342	static struct sort_dimension avg_sort_dimension = {
1343		.name = "avg",
1344		.cmp  = avg_cmp,
1345	};
1346	static struct sort_dimension max_sort_dimension = {
1347		.name = "max",
1348		.cmp  = max_cmp,
1349	};
1350	static struct sort_dimension pid_sort_dimension = {
1351		.name = "pid",
1352		.cmp  = pid_cmp,
1353	};
1354	static struct sort_dimension runtime_sort_dimension = {
1355		.name = "runtime",
1356		.cmp  = runtime_cmp,
1357	};
1358	static struct sort_dimension switch_sort_dimension = {
1359		.name = "switch",
1360		.cmp  = switch_cmp,
1361	};
1362	struct sort_dimension *available_sorts[] = {
1363		&pid_sort_dimension,
1364		&avg_sort_dimension,
1365		&max_sort_dimension,
1366		&switch_sort_dimension,
1367		&runtime_sort_dimension,
1368	};
1369
1370	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1371		if (!strcmp(available_sorts[i]->name, tok)) {
1372			list_add_tail(&available_sorts[i]->list, list);
1373
1374			return 0;
1375		}
1376	}
1377
1378	return -1;
1379}
1380
1381static void perf_sched__sort_lat(struct perf_sched *sched)
1382{
1383	struct rb_node *node;
1384	struct rb_root *root = &sched->atom_root;
1385again:
1386	for (;;) {
1387		struct work_atoms *data;
1388		node = rb_first(root);
1389		if (!node)
1390			break;
1391
1392		rb_erase(node, root);
1393		data = rb_entry(node, struct work_atoms, node);
1394		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1395	}
1396	if (root == &sched->atom_root) {
1397		root = &sched->merged_atom_root;
1398		goto again;
1399	}
1400}
1401
1402static int process_sched_wakeup_event(struct perf_tool *tool,
1403				      struct perf_evsel *evsel,
1404				      struct perf_sample *sample,
1405				      struct machine *machine)
1406{
1407	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1408
1409	if (sched->tp_handler->wakeup_event)
1410		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1411
1412	return 0;
1413}
1414
1415union map_priv {
1416	void	*ptr;
1417	bool	 color;
1418};
1419
1420static bool thread__has_color(struct thread *thread)
1421{
1422	union map_priv priv = {
1423		.ptr = thread__priv(thread),
1424	};
1425
1426	return priv.color;
1427}
1428
1429static struct thread*
1430map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1431{
1432	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1433	union map_priv priv = {
1434		.color = false,
1435	};
1436
1437	if (!sched->map.color_pids || !thread || thread__priv(thread))
1438		return thread;
1439
1440	if (thread_map__has(sched->map.color_pids, tid))
1441		priv.color = true;
1442
1443	thread__set_priv(thread, priv.ptr);
1444	return thread;
1445}
1446
1447static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1448			    struct perf_sample *sample, struct machine *machine)
1449{
1450	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1451	struct thread *sched_in;
 
1452	int new_shortname;
1453	u64 timestamp0, timestamp = sample->time;
1454	s64 delta;
1455	int i, this_cpu = sample->cpu;
1456	int cpus_nr;
1457	bool new_cpu = false;
1458	const char *color = PERF_COLOR_NORMAL;
1459	char stimestamp[32];
1460
1461	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1462
1463	if (this_cpu > sched->max_cpu)
1464		sched->max_cpu = this_cpu;
1465
1466	if (sched->map.comp) {
1467		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1468		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1469			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1470			new_cpu = true;
1471		}
1472	} else
1473		cpus_nr = sched->max_cpu;
1474
1475	timestamp0 = sched->cpu_last_switched[this_cpu];
1476	sched->cpu_last_switched[this_cpu] = timestamp;
1477	if (timestamp0)
1478		delta = timestamp - timestamp0;
1479	else
1480		delta = 0;
1481
1482	if (delta < 0) {
1483		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1484		return -1;
1485	}
1486
1487	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1488	if (sched_in == NULL)
1489		return -1;
1490
1491	sched->curr_thread[this_cpu] = thread__get(sched_in);
1492
1493	printf("  ");
1494
1495	new_shortname = 0;
1496	if (!sched_in->shortname[0]) {
1497		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1498			/*
1499			 * Don't allocate a letter-number for swapper:0
1500			 * as a shortname. Instead, we use '.' for it.
1501			 */
1502			sched_in->shortname[0] = '.';
1503			sched_in->shortname[1] = ' ';
1504		} else {
1505			sched_in->shortname[0] = sched->next_shortname1;
1506			sched_in->shortname[1] = sched->next_shortname2;
1507
1508			if (sched->next_shortname1 < 'Z') {
1509				sched->next_shortname1++;
1510			} else {
1511				sched->next_shortname1 = 'A';
1512				if (sched->next_shortname2 < '9')
1513					sched->next_shortname2++;
1514				else
1515					sched->next_shortname2 = '0';
1516			}
1517		}
1518		new_shortname = 1;
1519	}
1520
1521	for (i = 0; i < cpus_nr; i++) {
1522		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1523		struct thread *curr_thread = sched->curr_thread[cpu];
1524		const char *pid_color = color;
1525		const char *cpu_color = color;
1526
1527		if (curr_thread && thread__has_color(curr_thread))
1528			pid_color = COLOR_PIDS;
1529
1530		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1531			continue;
1532
1533		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1534			cpu_color = COLOR_CPUS;
1535
1536		if (cpu != this_cpu)
1537			color_fprintf(stdout, color, " ");
1538		else
1539			color_fprintf(stdout, cpu_color, "*");
1540
1541		if (sched->curr_thread[cpu])
1542			color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1543		else
1544			color_fprintf(stdout, color, "   ");
 
 
 
1545	}
1546
1547	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1548		goto out;
1549
1550	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1551	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1552	if (new_shortname || (verbose && sched_in->tid)) {
1553		const char *pid_color = color;
1554
1555		if (thread__has_color(sched_in))
1556			pid_color = COLOR_PIDS;
1557
1558		color_fprintf(stdout, pid_color, "%s => %s:%d",
1559		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
 
 
1560	}
1561
1562	if (sched->map.comp && new_cpu)
1563		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1564
1565out:
1566	color_fprintf(stdout, color, "\n");
1567
1568	thread__put(sched_in);
1569
1570	return 0;
1571}
1572
1573static int process_sched_switch_event(struct perf_tool *tool,
1574				      struct perf_evsel *evsel,
1575				      struct perf_sample *sample,
1576				      struct machine *machine)
1577{
1578	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1579	int this_cpu = sample->cpu, err = 0;
1580	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1581	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1582
1583	if (sched->curr_pid[this_cpu] != (u32)-1) {
1584		/*
1585		 * Are we trying to switch away a PID that is
1586		 * not current?
1587		 */
1588		if (sched->curr_pid[this_cpu] != prev_pid)
1589			sched->nr_context_switch_bugs++;
1590	}
1591
1592	if (sched->tp_handler->switch_event)
1593		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1594
1595	sched->curr_pid[this_cpu] = next_pid;
1596	return err;
1597}
1598
1599static int process_sched_runtime_event(struct perf_tool *tool,
1600				       struct perf_evsel *evsel,
1601				       struct perf_sample *sample,
1602				       struct machine *machine)
1603{
1604	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1605
1606	if (sched->tp_handler->runtime_event)
1607		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1608
1609	return 0;
1610}
1611
1612static int perf_sched__process_fork_event(struct perf_tool *tool,
1613					  union perf_event *event,
1614					  struct perf_sample *sample,
1615					  struct machine *machine)
1616{
1617	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1618
1619	/* run the fork event through the perf machineruy */
1620	perf_event__process_fork(tool, event, sample, machine);
1621
1622	/* and then run additional processing needed for this command */
1623	if (sched->tp_handler->fork_event)
1624		return sched->tp_handler->fork_event(sched, event, machine);
1625
1626	return 0;
1627}
1628
1629static int process_sched_migrate_task_event(struct perf_tool *tool,
1630					    struct perf_evsel *evsel,
1631					    struct perf_sample *sample,
1632					    struct machine *machine)
1633{
1634	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1635
1636	if (sched->tp_handler->migrate_task_event)
1637		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1638
1639	return 0;
1640}
1641
1642typedef int (*tracepoint_handler)(struct perf_tool *tool,
1643				  struct perf_evsel *evsel,
1644				  struct perf_sample *sample,
1645				  struct machine *machine);
1646
1647static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1648						 union perf_event *event __maybe_unused,
1649						 struct perf_sample *sample,
1650						 struct perf_evsel *evsel,
1651						 struct machine *machine)
1652{
1653	int err = 0;
1654
 
 
 
1655	if (evsel->handler != NULL) {
1656		tracepoint_handler f = evsel->handler;
1657		err = f(tool, evsel, sample, machine);
1658	}
1659
1660	return err;
1661}
1662
1663static int perf_sched__read_events(struct perf_sched *sched)
 
1664{
1665	const struct perf_evsel_str_handler handlers[] = {
1666		{ "sched:sched_switch",	      process_sched_switch_event, },
1667		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1668		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1669		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1670		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1671	};
1672	struct perf_session *session;
1673	struct perf_data_file file = {
1674		.path = input_name,
1675		.mode = PERF_DATA_MODE_READ,
1676		.force = sched->force,
1677	};
1678	int rc = -1;
1679
1680	session = perf_session__new(&file, false, &sched->tool);
1681	if (session == NULL) {
1682		pr_debug("No Memory for session\n");
1683		return -1;
1684	}
1685
1686	symbol__init(&session->header.env);
1687
1688	if (perf_session__set_tracepoints_handlers(session, handlers))
1689		goto out_delete;
1690
1691	if (perf_session__has_traces(session, "record -R")) {
1692		int err = perf_session__process_events(session);
1693		if (err) {
1694			pr_err("Failed to process events, error %d", err);
1695			goto out_delete;
1696		}
1697
1698		sched->nr_events      = session->evlist->stats.nr_events[0];
1699		sched->nr_lost_events = session->evlist->stats.total_lost;
1700		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1701	}
1702
1703	rc = 0;
1704out_delete:
1705	perf_session__delete(session);
1706	return rc;
1707}
1708
1709/*
1710 * scheduling times are printed as msec.usec
1711 */
1712static inline void print_sched_time(unsigned long long nsecs, int width)
1713{
1714	unsigned long msecs;
1715	unsigned long usecs;
1716
1717	msecs  = nsecs / NSEC_PER_MSEC;
1718	nsecs -= msecs * NSEC_PER_MSEC;
1719	usecs  = nsecs / NSEC_PER_USEC;
1720	printf("%*lu.%03lu ", width, msecs, usecs);
1721}
1722
1723/*
1724 * returns runtime data for event, allocating memory for it the
1725 * first time it is used.
1726 */
1727static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1728{
1729	struct evsel_runtime *r = evsel->priv;
1730
1731	if (r == NULL) {
1732		r = zalloc(sizeof(struct evsel_runtime));
1733		evsel->priv = r;
1734	}
1735
1736	return r;
1737}
1738
1739/*
1740 * save last time event was seen per cpu
1741 */
1742static void perf_evsel__save_time(struct perf_evsel *evsel,
1743				  u64 timestamp, u32 cpu)
1744{
1745	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1746
1747	if (r == NULL)
1748		return;
1749
1750	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1751		int i, n = __roundup_pow_of_two(cpu+1);
1752		void *p = r->last_time;
1753
1754		p = realloc(r->last_time, n * sizeof(u64));
1755		if (!p)
1756			return;
1757
1758		r->last_time = p;
1759		for (i = r->ncpu; i < n; ++i)
1760			r->last_time[i] = (u64) 0;
1761
1762		r->ncpu = n;
1763	}
1764
1765	r->last_time[cpu] = timestamp;
1766}
1767
1768/* returns last time this event was seen on the given cpu */
1769static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1770{
1771	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1772
1773	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1774		return 0;
1775
1776	return r->last_time[cpu];
1777}
1778
1779static int comm_width = 30;
1780
1781static char *timehist_get_commstr(struct thread *thread)
1782{
1783	static char str[32];
1784	const char *comm = thread__comm_str(thread);
1785	pid_t tid = thread->tid;
1786	pid_t pid = thread->pid_;
1787	int n;
1788
1789	if (pid == 0)
1790		n = scnprintf(str, sizeof(str), "%s", comm);
1791
1792	else if (tid != pid)
1793		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1794
1795	else
1796		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1797
1798	if (n > comm_width)
1799		comm_width = n;
1800
1801	return str;
1802}
1803
1804static void timehist_header(struct perf_sched *sched)
1805{
1806	u32 ncpus = sched->max_cpu + 1;
1807	u32 i, j;
1808
1809	printf("%15s %6s ", "time", "cpu");
1810
1811	if (sched->show_cpu_visual) {
1812		printf(" ");
1813		for (i = 0, j = 0; i < ncpus; ++i) {
1814			printf("%x", j++);
1815			if (j > 15)
1816				j = 0;
1817		}
1818		printf(" ");
1819	}
1820
1821	printf(" %-*s  %9s  %9s  %9s", comm_width,
1822		"task name", "wait time", "sch delay", "run time");
1823
1824	printf("\n");
1825
1826	/*
1827	 * units row
1828	 */
1829	printf("%15s %-6s ", "", "");
1830
1831	if (sched->show_cpu_visual)
1832		printf(" %*s ", ncpus, "");
1833
1834	printf(" %-*s  %9s  %9s  %9s\n", comm_width,
1835	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1836
1837	/*
1838	 * separator
1839	 */
1840	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1841
1842	if (sched->show_cpu_visual)
1843		printf(" %.*s ", ncpus, graph_dotted_line);
1844
1845	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1846		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1847		graph_dotted_line);
1848
1849	printf("\n");
1850}
1851
1852static void timehist_print_sample(struct perf_sched *sched,
1853				  struct perf_sample *sample,
1854				  struct addr_location *al,
1855				  struct thread *thread,
1856				  u64 t)
1857{
1858	struct thread_runtime *tr = thread__priv(thread);
1859	u32 max_cpus = sched->max_cpu + 1;
1860	char tstr[64];
1861
1862	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1863	printf("%15s [%04d] ", tstr, sample->cpu);
1864
1865	if (sched->show_cpu_visual) {
1866		u32 i;
1867		char c;
1868
1869		printf(" ");
1870		for (i = 0; i < max_cpus; ++i) {
1871			/* flag idle times with 'i'; others are sched events */
1872			if (i == sample->cpu)
1873				c = (thread->tid == 0) ? 'i' : 's';
1874			else
1875				c = ' ';
1876			printf("%c", c);
1877		}
1878		printf(" ");
1879	}
1880
1881	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
1882
1883	print_sched_time(tr->dt_wait, 6);
1884	print_sched_time(tr->dt_delay, 6);
1885	print_sched_time(tr->dt_run, 6);
1886
1887	if (sched->show_wakeups)
1888		printf("  %-*s", comm_width, "");
1889
1890	if (thread->tid == 0)
1891		goto out;
1892
1893	if (sched->show_callchain)
1894		printf("  ");
1895
1896	sample__fprintf_sym(sample, al, 0,
1897			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1898			    EVSEL__PRINT_CALLCHAIN_ARROW |
1899			    EVSEL__PRINT_SKIP_IGNORED,
1900			    &callchain_cursor, stdout);
1901
1902out:
1903	printf("\n");
1904}
1905
1906/*
1907 * Explanation of delta-time stats:
1908 *
1909 *            t = time of current schedule out event
1910 *        tprev = time of previous sched out event
1911 *                also time of schedule-in event for current task
1912 *    last_time = time of last sched change event for current task
1913 *                (i.e, time process was last scheduled out)
1914 * ready_to_run = time of wakeup for current task
1915 *
1916 * -----|------------|------------|------------|------
1917 *    last         ready        tprev          t
1918 *    time         to run
1919 *
1920 *      |-------- dt_wait --------|
1921 *                   |- dt_delay -|-- dt_run --|
1922 *
1923 *   dt_run = run time of current task
1924 *  dt_wait = time between last schedule out event for task and tprev
1925 *            represents time spent off the cpu
1926 * dt_delay = time between wakeup and schedule-in of task
1927 */
1928
1929static void timehist_update_runtime_stats(struct thread_runtime *r,
1930					 u64 t, u64 tprev)
1931{
1932	r->dt_delay   = 0;
1933	r->dt_wait    = 0;
1934	r->dt_run     = 0;
1935	if (tprev) {
1936		r->dt_run = t - tprev;
1937		if (r->ready_to_run) {
1938			if (r->ready_to_run > tprev)
1939				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
1940			else
1941				r->dt_delay = tprev - r->ready_to_run;
1942		}
1943
1944		if (r->last_time > tprev)
1945			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
1946		else if (r->last_time)
1947			r->dt_wait = tprev - r->last_time;
1948	}
1949
1950	update_stats(&r->run_stats, r->dt_run);
1951	r->total_run_time += r->dt_run;
1952}
1953
1954static bool is_idle_sample(struct perf_sample *sample,
1955			   struct perf_evsel *evsel)
1956{
1957	/* pid 0 == swapper == idle task */
1958	if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
1959		return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
1960
1961	return sample->pid == 0;
1962}
1963
1964static void save_task_callchain(struct perf_sched *sched,
1965				struct perf_sample *sample,
1966				struct perf_evsel *evsel,
1967				struct machine *machine)
1968{
1969	struct callchain_cursor *cursor = &callchain_cursor;
1970	struct thread *thread;
1971
1972	/* want main thread for process - has maps */
1973	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
1974	if (thread == NULL) {
1975		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
1976		return;
1977	}
1978
1979	if (!symbol_conf.use_callchain || sample->callchain == NULL)
1980		return;
1981
1982	if (thread__resolve_callchain(thread, cursor, evsel, sample,
1983				      NULL, NULL, sched->max_stack + 2) != 0) {
1984		if (verbose)
1985			error("Failed to resolve callchain. Skipping\n");
1986
1987		return;
1988	}
1989
1990	callchain_cursor_commit(cursor);
1991
1992	while (true) {
1993		struct callchain_cursor_node *node;
1994		struct symbol *sym;
1995
1996		node = callchain_cursor_current(cursor);
1997		if (node == NULL)
1998			break;
1999
2000		sym = node->sym;
2001		if (sym && sym->name) {
2002			if (!strcmp(sym->name, "schedule") ||
2003			    !strcmp(sym->name, "__schedule") ||
2004			    !strcmp(sym->name, "preempt_schedule"))
2005				sym->ignore = 1;
2006		}
2007
2008		callchain_cursor_advance(cursor);
2009	}
2010}
2011
2012static int init_idle_thread(struct thread *thread)
2013{
2014	struct idle_thread_runtime *itr;
2015
2016	thread__set_comm(thread, idle_comm, 0);
2017
2018	itr = zalloc(sizeof(*itr));
2019	if (itr == NULL)
2020		return -ENOMEM;
2021
2022	init_stats(&itr->tr.run_stats);
2023	callchain_init(&itr->callchain);
2024	callchain_cursor_reset(&itr->cursor);
2025	thread__set_priv(thread, itr);
2026
2027	return 0;
2028}
2029
2030/*
2031 * Track idle stats per cpu by maintaining a local thread
2032 * struct for the idle task on each cpu.
2033 */
2034static int init_idle_threads(int ncpu)
2035{
2036	int i, ret;
2037
2038	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2039	if (!idle_threads)
2040		return -ENOMEM;
2041
2042	idle_max_cpu = ncpu;
2043
2044	/* allocate the actual thread struct if needed */
2045	for (i = 0; i < ncpu; ++i) {
2046		idle_threads[i] = thread__new(0, 0);
2047		if (idle_threads[i] == NULL)
2048			return -ENOMEM;
2049
2050		ret = init_idle_thread(idle_threads[i]);
2051		if (ret < 0)
2052			return ret;
2053	}
2054
2055	return 0;
2056}
2057
2058static void free_idle_threads(void)
2059{
2060	int i;
2061
2062	if (idle_threads == NULL)
2063		return;
2064
2065	for (i = 0; i < idle_max_cpu; ++i) {
2066		if ((idle_threads[i]))
2067			thread__delete(idle_threads[i]);
2068	}
2069
2070	free(idle_threads);
2071}
2072
2073static struct thread *get_idle_thread(int cpu)
2074{
2075	/*
2076	 * expand/allocate array of pointers to local thread
2077	 * structs if needed
2078	 */
2079	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2080		int i, j = __roundup_pow_of_two(cpu+1);
2081		void *p;
2082
2083		p = realloc(idle_threads, j * sizeof(struct thread *));
2084		if (!p)
2085			return NULL;
2086
2087		idle_threads = (struct thread **) p;
2088		for (i = idle_max_cpu; i < j; ++i)
2089			idle_threads[i] = NULL;
2090
2091		idle_max_cpu = j;
2092	}
2093
2094	/* allocate a new thread struct if needed */
2095	if (idle_threads[cpu] == NULL) {
2096		idle_threads[cpu] = thread__new(0, 0);
2097
2098		if (idle_threads[cpu]) {
2099			if (init_idle_thread(idle_threads[cpu]) < 0)
2100				return NULL;
2101		}
2102	}
2103
2104	return idle_threads[cpu];
2105}
2106
2107static void save_idle_callchain(struct idle_thread_runtime *itr,
2108				struct perf_sample *sample)
2109{
2110	if (!symbol_conf.use_callchain || sample->callchain == NULL)
2111		return;
2112
2113	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2114}
2115
2116/*
2117 * handle runtime stats saved per thread
2118 */
2119static struct thread_runtime *thread__init_runtime(struct thread *thread)
2120{
2121	struct thread_runtime *r;
2122
2123	r = zalloc(sizeof(struct thread_runtime));
2124	if (!r)
2125		return NULL;
2126
2127	init_stats(&r->run_stats);
2128	thread__set_priv(thread, r);
2129
2130	return r;
2131}
2132
2133static struct thread_runtime *thread__get_runtime(struct thread *thread)
2134{
2135	struct thread_runtime *tr;
2136
2137	tr = thread__priv(thread);
2138	if (tr == NULL) {
2139		tr = thread__init_runtime(thread);
2140		if (tr == NULL)
2141			pr_debug("Failed to malloc memory for runtime data.\n");
2142	}
2143
2144	return tr;
2145}
2146
2147static struct thread *timehist_get_thread(struct perf_sched *sched,
2148					  struct perf_sample *sample,
2149					  struct machine *machine,
2150					  struct perf_evsel *evsel)
2151{
2152	struct thread *thread;
2153
2154	if (is_idle_sample(sample, evsel)) {
2155		thread = get_idle_thread(sample->cpu);
2156		if (thread == NULL)
2157			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2158
2159	} else {
2160		/* there were samples with tid 0 but non-zero pid */
2161		thread = machine__findnew_thread(machine, sample->pid,
2162						 sample->tid ?: sample->pid);
2163		if (thread == NULL) {
2164			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2165				 sample->tid);
2166		}
2167
2168		save_task_callchain(sched, sample, evsel, machine);
2169		if (sched->idle_hist) {
2170			struct thread *idle;
2171			struct idle_thread_runtime *itr;
2172
2173			idle = get_idle_thread(sample->cpu);
2174			if (idle == NULL) {
2175				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2176				return NULL;
2177			}
2178
2179			itr = thread__priv(idle);
2180			if (itr == NULL)
2181				return NULL;
2182
2183			itr->last_thread = thread;
2184
2185			/* copy task callchain when entering to idle */
2186			if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2187				save_idle_callchain(itr, sample);
2188		}
2189	}
2190
2191	return thread;
2192}
2193
2194static bool timehist_skip_sample(struct perf_sched *sched,
2195				 struct thread *thread,
2196				 struct perf_evsel *evsel,
2197				 struct perf_sample *sample)
2198{
2199	bool rc = false;
2200
2201	if (thread__is_filtered(thread)) {
2202		rc = true;
2203		sched->skipped_samples++;
2204	}
2205
2206	if (sched->idle_hist) {
2207		if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2208			rc = true;
2209		else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2210			 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2211			rc = true;
2212	}
2213
2214	return rc;
2215}
2216
2217static void timehist_print_wakeup_event(struct perf_sched *sched,
2218					struct perf_evsel *evsel,
2219					struct perf_sample *sample,
2220					struct machine *machine,
2221					struct thread *awakened)
2222{
2223	struct thread *thread;
2224	char tstr[64];
2225
2226	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2227	if (thread == NULL)
2228		return;
2229
2230	/* show wakeup unless both awakee and awaker are filtered */
2231	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2232	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2233		return;
2234	}
2235
2236	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2237	printf("%15s [%04d] ", tstr, sample->cpu);
2238	if (sched->show_cpu_visual)
2239		printf(" %*s ", sched->max_cpu + 1, "");
2240
2241	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2242
2243	/* dt spacer */
2244	printf("  %9s  %9s  %9s ", "", "", "");
2245
2246	printf("awakened: %s", timehist_get_commstr(awakened));
2247
2248	printf("\n");
2249}
2250
2251static int timehist_sched_wakeup_event(struct perf_tool *tool,
2252				       union perf_event *event __maybe_unused,
2253				       struct perf_evsel *evsel,
2254				       struct perf_sample *sample,
2255				       struct machine *machine)
2256{
2257	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2258	struct thread *thread;
2259	struct thread_runtime *tr = NULL;
2260	/* want pid of awakened task not pid in sample */
2261	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2262
2263	thread = machine__findnew_thread(machine, 0, pid);
2264	if (thread == NULL)
2265		return -1;
2266
2267	tr = thread__get_runtime(thread);
2268	if (tr == NULL)
2269		return -1;
2270
2271	if (tr->ready_to_run == 0)
2272		tr->ready_to_run = sample->time;
2273
2274	/* show wakeups if requested */
2275	if (sched->show_wakeups &&
2276	    !perf_time__skip_sample(&sched->ptime, sample->time))
2277		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2278
2279	return 0;
2280}
2281
2282static void timehist_print_migration_event(struct perf_sched *sched,
2283					struct perf_evsel *evsel,
2284					struct perf_sample *sample,
2285					struct machine *machine,
2286					struct thread *migrated)
2287{
2288	struct thread *thread;
2289	char tstr[64];
2290	u32 max_cpus = sched->max_cpu + 1;
2291	u32 ocpu, dcpu;
2292
2293	if (sched->summary_only)
2294		return;
2295
2296	max_cpus = sched->max_cpu + 1;
2297	ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2298	dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2299
2300	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2301	if (thread == NULL)
2302		return;
2303
2304	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2305	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2306		return;
2307	}
2308
2309	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2310	printf("%15s [%04d] ", tstr, sample->cpu);
2311
2312	if (sched->show_cpu_visual) {
2313		u32 i;
2314		char c;
2315
2316		printf("  ");
2317		for (i = 0; i < max_cpus; ++i) {
2318			c = (i == sample->cpu) ? 'm' : ' ';
2319			printf("%c", c);
2320		}
2321		printf("  ");
2322	}
2323
2324	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2325
2326	/* dt spacer */
2327	printf("  %9s  %9s  %9s ", "", "", "");
2328
2329	printf("migrated: %s", timehist_get_commstr(migrated));
2330	printf(" cpu %d => %d", ocpu, dcpu);
2331
2332	printf("\n");
2333}
2334
2335static int timehist_migrate_task_event(struct perf_tool *tool,
2336				       union perf_event *event __maybe_unused,
2337				       struct perf_evsel *evsel,
2338				       struct perf_sample *sample,
2339				       struct machine *machine)
2340{
2341	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2342	struct thread *thread;
2343	struct thread_runtime *tr = NULL;
2344	/* want pid of migrated task not pid in sample */
2345	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2346
2347	thread = machine__findnew_thread(machine, 0, pid);
2348	if (thread == NULL)
2349		return -1;
2350
2351	tr = thread__get_runtime(thread);
2352	if (tr == NULL)
2353		return -1;
2354
2355	tr->migrations++;
2356
2357	/* show migrations if requested */
2358	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2359
2360	return 0;
2361}
2362
2363static int timehist_sched_change_event(struct perf_tool *tool,
2364				       union perf_event *event,
2365				       struct perf_evsel *evsel,
2366				       struct perf_sample *sample,
2367				       struct machine *machine)
2368{
2369	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2370	struct perf_time_interval *ptime = &sched->ptime;
2371	struct addr_location al;
2372	struct thread *thread;
2373	struct thread_runtime *tr = NULL;
2374	u64 tprev, t = sample->time;
2375	int rc = 0;
2376
2377	if (machine__resolve(machine, &al, sample) < 0) {
2378		pr_err("problem processing %d event. skipping it\n",
2379		       event->header.type);
2380		rc = -1;
2381		goto out;
2382	}
2383
2384	thread = timehist_get_thread(sched, sample, machine, evsel);
2385	if (thread == NULL) {
2386		rc = -1;
2387		goto out;
2388	}
2389
2390	if (timehist_skip_sample(sched, thread, evsel, sample))
2391		goto out;
2392
2393	tr = thread__get_runtime(thread);
2394	if (tr == NULL) {
2395		rc = -1;
2396		goto out;
2397	}
2398
2399	tprev = perf_evsel__get_time(evsel, sample->cpu);
2400
2401	/*
2402	 * If start time given:
2403	 * - sample time is under window user cares about - skip sample
2404	 * - tprev is under window user cares about  - reset to start of window
2405	 */
2406	if (ptime->start && ptime->start > t)
2407		goto out;
2408
2409	if (tprev && ptime->start > tprev)
2410		tprev = ptime->start;
2411
2412	/*
2413	 * If end time given:
2414	 * - previous sched event is out of window - we are done
2415	 * - sample time is beyond window user cares about - reset it
2416	 *   to close out stats for time window interest
2417	 */
2418	if (ptime->end) {
2419		if (tprev > ptime->end)
2420			goto out;
2421
2422		if (t > ptime->end)
2423			t = ptime->end;
2424	}
2425
2426	if (!sched->idle_hist || thread->tid == 0) {
2427		timehist_update_runtime_stats(tr, t, tprev);
2428
2429		if (sched->idle_hist) {
2430			struct idle_thread_runtime *itr = (void *)tr;
2431			struct thread_runtime *last_tr;
2432
2433			BUG_ON(thread->tid != 0);
2434
2435			if (itr->last_thread == NULL)
2436				goto out;
2437
2438			/* add current idle time as last thread's runtime */
2439			last_tr = thread__get_runtime(itr->last_thread);
2440			if (last_tr == NULL)
2441				goto out;
2442
2443			timehist_update_runtime_stats(last_tr, t, tprev);
2444			/*
2445			 * remove delta time of last thread as it's not updated
2446			 * and otherwise it will show an invalid value next
2447			 * time.  we only care total run time and run stat.
2448			 */
2449			last_tr->dt_run = 0;
2450			last_tr->dt_wait = 0;
2451			last_tr->dt_delay = 0;
2452
2453			if (itr->cursor.nr)
2454				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2455
2456			itr->last_thread = NULL;
2457		}
2458	}
2459
2460	if (!sched->summary_only)
2461		timehist_print_sample(sched, sample, &al, thread, t);
2462
2463out:
2464	if (sched->hist_time.start == 0 && t >= ptime->start)
2465		sched->hist_time.start = t;
2466	if (ptime->end == 0 || t <= ptime->end)
2467		sched->hist_time.end = t;
2468
2469	if (tr) {
2470		/* time of this sched_switch event becomes last time task seen */
2471		tr->last_time = sample->time;
2472
2473		/* sched out event for task so reset ready to run time */
2474		tr->ready_to_run = 0;
2475	}
2476
2477	perf_evsel__save_time(evsel, sample->time, sample->cpu);
2478
2479	return rc;
2480}
2481
2482static int timehist_sched_switch_event(struct perf_tool *tool,
2483			     union perf_event *event,
2484			     struct perf_evsel *evsel,
2485			     struct perf_sample *sample,
2486			     struct machine *machine __maybe_unused)
2487{
2488	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2489}
2490
2491static int process_lost(struct perf_tool *tool __maybe_unused,
2492			union perf_event *event,
2493			struct perf_sample *sample,
2494			struct machine *machine __maybe_unused)
2495{
2496	char tstr[64];
2497
2498	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2499	printf("%15s ", tstr);
2500	printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2501
2502	return 0;
2503}
2504
2505
2506static void print_thread_runtime(struct thread *t,
2507				 struct thread_runtime *r)
2508{
2509	double mean = avg_stats(&r->run_stats);
2510	float stddev;
2511
2512	printf("%*s   %5d  %9" PRIu64 " ",
2513	       comm_width, timehist_get_commstr(t), t->ppid,
2514	       (u64) r->run_stats.n);
2515
2516	print_sched_time(r->total_run_time, 8);
2517	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2518	print_sched_time(r->run_stats.min, 6);
2519	printf(" ");
2520	print_sched_time((u64) mean, 6);
2521	printf(" ");
2522	print_sched_time(r->run_stats.max, 6);
2523	printf("  ");
2524	printf("%5.2f", stddev);
2525	printf("   %5" PRIu64, r->migrations);
2526	printf("\n");
2527}
2528
2529struct total_run_stats {
2530	u64  sched_count;
2531	u64  task_count;
2532	u64  total_run_time;
2533};
2534
2535static int __show_thread_runtime(struct thread *t, void *priv)
2536{
2537	struct total_run_stats *stats = priv;
2538	struct thread_runtime *r;
2539
2540	if (thread__is_filtered(t))
2541		return 0;
2542
2543	r = thread__priv(t);
2544	if (r && r->run_stats.n) {
2545		stats->task_count++;
2546		stats->sched_count += r->run_stats.n;
2547		stats->total_run_time += r->total_run_time;
2548		print_thread_runtime(t, r);
2549	}
2550
2551	return 0;
2552}
2553
2554static int show_thread_runtime(struct thread *t, void *priv)
2555{
2556	if (t->dead)
2557		return 0;
2558
2559	return __show_thread_runtime(t, priv);
2560}
2561
2562static int show_deadthread_runtime(struct thread *t, void *priv)
2563{
2564	if (!t->dead)
2565		return 0;
2566
2567	return __show_thread_runtime(t, priv);
2568}
2569
2570static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2571{
2572	const char *sep = " <- ";
2573	struct callchain_list *chain;
2574	size_t ret = 0;
2575	char bf[1024];
2576	bool first;
2577
2578	if (node == NULL)
2579		return 0;
2580
2581	ret = callchain__fprintf_folded(fp, node->parent);
2582	first = (ret == 0);
2583
2584	list_for_each_entry(chain, &node->val, list) {
2585		if (chain->ip >= PERF_CONTEXT_MAX)
2586			continue;
2587		if (chain->ms.sym && chain->ms.sym->ignore)
2588			continue;
2589		ret += fprintf(fp, "%s%s", first ? "" : sep,
2590			       callchain_list__sym_name(chain, bf, sizeof(bf),
2591							false));
2592		first = false;
2593	}
2594
2595	return ret;
2596}
2597
2598static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2599{
2600	size_t ret = 0;
2601	FILE *fp = stdout;
2602	struct callchain_node *chain;
2603	struct rb_node *rb_node = rb_first(root);
2604
2605	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2606	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2607	       graph_dotted_line);
2608
2609	while (rb_node) {
2610		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2611		rb_node = rb_next(rb_node);
2612
2613		ret += fprintf(fp, "  ");
2614		print_sched_time(chain->hit, 12);
2615		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2616		ret += fprintf(fp, " %8d  ", chain->count);
2617		ret += callchain__fprintf_folded(fp, chain);
2618		ret += fprintf(fp, "\n");
2619	}
2620
2621	return ret;
2622}
2623
2624static void timehist_print_summary(struct perf_sched *sched,
2625				   struct perf_session *session)
2626{
2627	struct machine *m = &session->machines.host;
2628	struct total_run_stats totals;
2629	u64 task_count;
2630	struct thread *t;
2631	struct thread_runtime *r;
2632	int i;
2633	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2634
2635	memset(&totals, 0, sizeof(totals));
2636
2637	if (sched->idle_hist) {
2638		printf("\nIdle-time summary\n");
2639		printf("%*s  parent  sched-out  ", comm_width, "comm");
2640		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2641	} else {
2642		printf("\nRuntime summary\n");
2643		printf("%*s  parent   sched-in  ", comm_width, "comm");
2644		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2645	}
2646	printf("%*s            (count)  ", comm_width, "");
2647	printf("     (msec)     (msec)      (msec)      (msec)       %%\n");
2648	printf("%.117s\n", graph_dotted_line);
2649
2650	machine__for_each_thread(m, show_thread_runtime, &totals);
2651	task_count = totals.task_count;
2652	if (!task_count)
2653		printf("<no still running tasks>\n");
2654
2655	printf("\nTerminated tasks:\n");
2656	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2657	if (task_count == totals.task_count)
2658		printf("<no terminated tasks>\n");
2659
2660	/* CPU idle stats not tracked when samples were skipped */
2661	if (sched->skipped_samples && !sched->idle_hist)
2662		return;
2663
2664	printf("\nIdle stats:\n");
2665	for (i = 0; i < idle_max_cpu; ++i) {
2666		t = idle_threads[i];
2667		if (!t)
2668			continue;
2669
2670		r = thread__priv(t);
2671		if (r && r->run_stats.n) {
2672			totals.sched_count += r->run_stats.n;
2673			printf("    CPU %2d idle for ", i);
2674			print_sched_time(r->total_run_time, 6);
2675			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2676		} else
2677			printf("    CPU %2d idle entire time window\n", i);
2678	}
2679
2680	if (sched->idle_hist && symbol_conf.use_callchain) {
2681		callchain_param.mode  = CHAIN_FOLDED;
2682		callchain_param.value = CCVAL_PERIOD;
2683
2684		callchain_register_param(&callchain_param);
2685
2686		printf("\nIdle stats by callchain:\n");
2687		for (i = 0; i < idle_max_cpu; ++i) {
2688			struct idle_thread_runtime *itr;
2689
2690			t = idle_threads[i];
2691			if (!t)
2692				continue;
2693
2694			itr = thread__priv(t);
2695			if (itr == NULL)
2696				continue;
2697
2698			callchain_param.sort(&itr->sorted_root, &itr->callchain,
2699					     0, &callchain_param);
2700
2701			printf("  CPU %2d:", i);
2702			print_sched_time(itr->tr.total_run_time, 6);
2703			printf(" msec\n");
2704			timehist_print_idlehist_callchain(&itr->sorted_root);
2705			printf("\n");
2706		}
2707	}
2708
2709	printf("\n"
2710	       "    Total number of unique tasks: %" PRIu64 "\n"
2711	       "Total number of context switches: %" PRIu64 "\n",
2712	       totals.task_count, totals.sched_count);
2713
2714	printf("           Total run time (msec): ");
2715	print_sched_time(totals.total_run_time, 2);
2716	printf("\n");
2717
2718	printf("    Total scheduling time (msec): ");
2719	print_sched_time(hist_time, 2);
2720	printf(" (x %d)\n", sched->max_cpu);
2721}
2722
2723typedef int (*sched_handler)(struct perf_tool *tool,
2724			  union perf_event *event,
2725			  struct perf_evsel *evsel,
2726			  struct perf_sample *sample,
2727			  struct machine *machine);
2728
2729static int perf_timehist__process_sample(struct perf_tool *tool,
2730					 union perf_event *event,
2731					 struct perf_sample *sample,
2732					 struct perf_evsel *evsel,
2733					 struct machine *machine)
2734{
2735	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2736	int err = 0;
2737	int this_cpu = sample->cpu;
2738
2739	if (this_cpu > sched->max_cpu)
2740		sched->max_cpu = this_cpu;
2741
2742	if (evsel->handler != NULL) {
2743		sched_handler f = evsel->handler;
2744
2745		err = f(tool, event, evsel, sample, machine);
2746	}
2747
2748	return err;
2749}
2750
2751static int timehist_check_attr(struct perf_sched *sched,
2752			       struct perf_evlist *evlist)
2753{
2754	struct perf_evsel *evsel;
2755	struct evsel_runtime *er;
2756
2757	list_for_each_entry(evsel, &evlist->entries, node) {
2758		er = perf_evsel__get_runtime(evsel);
2759		if (er == NULL) {
2760			pr_err("Failed to allocate memory for evsel runtime data\n");
2761			return -1;
2762		}
2763
2764		if (sched->show_callchain &&
2765		    !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2766			pr_info("Samples do not have callchains.\n");
2767			sched->show_callchain = 0;
2768			symbol_conf.use_callchain = 0;
2769		}
2770	}
2771
2772	return 0;
2773}
2774
2775static int perf_sched__timehist(struct perf_sched *sched)
2776{
2777	const struct perf_evsel_str_handler handlers[] = {
2778		{ "sched:sched_switch",       timehist_sched_switch_event, },
2779		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2780		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2781	};
2782	const struct perf_evsel_str_handler migrate_handlers[] = {
2783		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2784	};
2785	struct perf_data_file file = {
2786		.path = input_name,
2787		.mode = PERF_DATA_MODE_READ,
2788		.force = sched->force,
2789	};
2790
2791	struct perf_session *session;
2792	struct perf_evlist *evlist;
2793	int err = -1;
2794
2795	/*
2796	 * event handlers for timehist option
2797	 */
2798	sched->tool.sample	 = perf_timehist__process_sample;
2799	sched->tool.mmap	 = perf_event__process_mmap;
2800	sched->tool.comm	 = perf_event__process_comm;
2801	sched->tool.exit	 = perf_event__process_exit;
2802	sched->tool.fork	 = perf_event__process_fork;
2803	sched->tool.lost	 = process_lost;
2804	sched->tool.attr	 = perf_event__process_attr;
2805	sched->tool.tracing_data = perf_event__process_tracing_data;
2806	sched->tool.build_id	 = perf_event__process_build_id;
2807
2808	sched->tool.ordered_events = true;
2809	sched->tool.ordering_requires_timestamps = true;
2810
2811	symbol_conf.use_callchain = sched->show_callchain;
2812
2813	session = perf_session__new(&file, false, &sched->tool);
2814	if (session == NULL)
2815		return -ENOMEM;
2816
2817	evlist = session->evlist;
2818
2819	symbol__init(&session->header.env);
2820
2821	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2822		pr_err("Invalid time string\n");
2823		return -EINVAL;
2824	}
2825
2826	if (timehist_check_attr(sched, evlist) != 0)
2827		goto out;
2828
2829	setup_pager();
2830
2831	/* setup per-evsel handlers */
2832	if (perf_session__set_tracepoints_handlers(session, handlers))
2833		goto out;
2834
2835	/* sched_switch event at a minimum needs to exist */
2836	if (!perf_evlist__find_tracepoint_by_name(session->evlist,
2837						  "sched:sched_switch")) {
2838		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2839		goto out;
2840	}
2841
2842	if (sched->show_migrations &&
2843	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
2844		goto out;
2845
2846	/* pre-allocate struct for per-CPU idle stats */
2847	sched->max_cpu = session->header.env.nr_cpus_online;
2848	if (sched->max_cpu == 0)
2849		sched->max_cpu = 4;
2850	if (init_idle_threads(sched->max_cpu))
2851		goto out;
2852
2853	/* summary_only implies summary option, but don't overwrite summary if set */
2854	if (sched->summary_only)
2855		sched->summary = sched->summary_only;
2856
2857	if (!sched->summary_only)
2858		timehist_header(sched);
2859
2860	err = perf_session__process_events(session);
2861	if (err) {
2862		pr_err("Failed to process events, error %d", err);
2863		goto out;
2864	}
2865
2866	sched->nr_events      = evlist->stats.nr_events[0];
2867	sched->nr_lost_events = evlist->stats.total_lost;
2868	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
2869
2870	if (sched->summary)
2871		timehist_print_summary(sched, session);
2872
2873out:
2874	free_idle_threads();
2875	perf_session__delete(session);
2876
2877	return err;
2878}
2879
2880
2881static void print_bad_events(struct perf_sched *sched)
2882{
2883	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
2884		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
2885			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
2886			sched->nr_unordered_timestamps, sched->nr_timestamps);
2887	}
2888	if (sched->nr_lost_events && sched->nr_events) {
2889		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
2890			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
2891			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
2892	}
 
 
 
 
 
 
 
 
2893	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
2894		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
2895			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
2896			sched->nr_context_switch_bugs, sched->nr_timestamps);
2897		if (sched->nr_lost_events)
2898			printf(" (due to lost events?)");
2899		printf("\n");
2900	}
2901}
2902
2903static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
2904{
2905	struct rb_node **new = &(root->rb_node), *parent = NULL;
2906	struct work_atoms *this;
2907	const char *comm = thread__comm_str(data->thread), *this_comm;
2908
2909	while (*new) {
2910		int cmp;
2911
2912		this = container_of(*new, struct work_atoms, node);
2913		parent = *new;
2914
2915		this_comm = thread__comm_str(this->thread);
2916		cmp = strcmp(comm, this_comm);
2917		if (cmp > 0) {
2918			new = &((*new)->rb_left);
2919		} else if (cmp < 0) {
2920			new = &((*new)->rb_right);
2921		} else {
2922			this->num_merged++;
2923			this->total_runtime += data->total_runtime;
2924			this->nb_atoms += data->nb_atoms;
2925			this->total_lat += data->total_lat;
2926			list_splice(&data->work_list, &this->work_list);
2927			if (this->max_lat < data->max_lat) {
2928				this->max_lat = data->max_lat;
2929				this->max_lat_at = data->max_lat_at;
2930			}
2931			zfree(&data);
2932			return;
2933		}
2934	}
2935
2936	data->num_merged++;
2937	rb_link_node(&data->node, parent, new);
2938	rb_insert_color(&data->node, root);
2939}
2940
2941static void perf_sched__merge_lat(struct perf_sched *sched)
2942{
2943	struct work_atoms *data;
2944	struct rb_node *node;
2945
2946	if (sched->skip_merge)
2947		return;
2948
2949	while ((node = rb_first(&sched->atom_root))) {
2950		rb_erase(node, &sched->atom_root);
2951		data = rb_entry(node, struct work_atoms, node);
2952		__merge_work_atoms(&sched->merged_atom_root, data);
2953	}
2954}
2955
2956static int perf_sched__lat(struct perf_sched *sched)
2957{
2958	struct rb_node *next;
 
2959
2960	setup_pager();
2961
2962	if (perf_sched__read_events(sched))
 
2963		return -1;
2964
2965	perf_sched__merge_lat(sched);
2966	perf_sched__sort_lat(sched);
2967
2968	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
2969	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
2970	printf(" -----------------------------------------------------------------------------------------------------------------\n");
2971
2972	next = rb_first(&sched->sorted_atom_root);
2973
2974	while (next) {
2975		struct work_atoms *work_list;
2976
2977		work_list = rb_entry(next, struct work_atoms, node);
2978		output_lat_thread(sched, work_list);
2979		next = rb_next(next);
2980		thread__zput(work_list->thread);
2981	}
2982
2983	printf(" -----------------------------------------------------------------------------------------------------------------\n");
2984	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
2985		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
2986
2987	printf(" ---------------------------------------------------\n");
2988
2989	print_bad_events(sched);
2990	printf("\n");
2991
2992	return 0;
2993}
2994
2995static int setup_map_cpus(struct perf_sched *sched)
2996{
2997	struct cpu_map *map;
2998
2999	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3000
3001	if (sched->map.comp) {
3002		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3003		if (!sched->map.comp_cpus)
3004			return -1;
3005	}
3006
3007	if (!sched->map.cpus_str)
3008		return 0;
3009
3010	map = cpu_map__new(sched->map.cpus_str);
3011	if (!map) {
3012		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3013		return -1;
3014	}
3015
3016	sched->map.cpus = map;
3017	return 0;
3018}
3019
3020static int setup_color_pids(struct perf_sched *sched)
3021{
3022	struct thread_map *map;
3023
3024	if (!sched->map.color_pids_str)
3025		return 0;
3026
3027	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3028	if (!map) {
3029		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3030		return -1;
3031	}
3032
3033	sched->map.color_pids = map;
3034	return 0;
3035}
3036
3037static int setup_color_cpus(struct perf_sched *sched)
3038{
3039	struct cpu_map *map;
3040
3041	if (!sched->map.color_cpus_str)
3042		return 0;
3043
3044	map = cpu_map__new(sched->map.color_cpus_str);
3045	if (!map) {
3046		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3047		return -1;
3048	}
3049
3050	sched->map.color_cpus = map;
3051	return 0;
3052}
3053
3054static int perf_sched__map(struct perf_sched *sched)
3055{
3056	if (setup_map_cpus(sched))
3057		return -1;
3058
3059	if (setup_color_pids(sched))
3060		return -1;
3061
3062	if (setup_color_cpus(sched))
3063		return -1;
3064
3065	setup_pager();
3066	if (perf_sched__read_events(sched))
3067		return -1;
3068	print_bad_events(sched);
3069	return 0;
3070}
3071
3072static int perf_sched__replay(struct perf_sched *sched)
3073{
3074	unsigned long i;
3075
3076	calibrate_run_measurement_overhead(sched);
3077	calibrate_sleep_measurement_overhead(sched);
3078
3079	test_calibrations(sched);
3080
3081	if (perf_sched__read_events(sched))
3082		return -1;
3083
3084	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3085	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3086	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3087
3088	if (sched->targetless_wakeups)
3089		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3090	if (sched->multitarget_wakeups)
3091		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3092	if (sched->nr_run_events_optimized)
3093		printf("run atoms optimized: %ld\n",
3094			sched->nr_run_events_optimized);
3095
3096	print_task_traces(sched);
3097	add_cross_task_wakeups(sched);
3098
3099	create_tasks(sched);
3100	printf("------------------------------------------------------------\n");
3101	for (i = 0; i < sched->replay_repeat; i++)
3102		run_one_test(sched);
3103
3104	return 0;
3105}
3106
3107static void setup_sorting(struct perf_sched *sched, const struct option *options,
3108			  const char * const usage_msg[])
3109{
3110	char *tmp, *tok, *str = strdup(sched->sort_order);
3111
3112	for (tok = strtok_r(str, ", ", &tmp);
3113			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3114		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3115			usage_with_options_msg(usage_msg, options,
3116					"Unknown --sort key: `%s'", tok);
3117		}
3118	}
3119
3120	free(str);
3121
3122	sort_dimension__add("pid", &sched->cmp_pid);
3123}
3124
3125static int __cmd_record(int argc, const char **argv)
3126{
3127	unsigned int rec_argc, i, j;
3128	const char **rec_argv;
3129	const char * const record_args[] = {
3130		"record",
3131		"-a",
3132		"-R",
3133		"-m", "1024",
3134		"-c", "1",
3135		"-e", "sched:sched_switch",
3136		"-e", "sched:sched_stat_wait",
3137		"-e", "sched:sched_stat_sleep",
3138		"-e", "sched:sched_stat_iowait",
3139		"-e", "sched:sched_stat_runtime",
3140		"-e", "sched:sched_process_fork",
3141		"-e", "sched:sched_wakeup",
3142		"-e", "sched:sched_wakeup_new",
3143		"-e", "sched:sched_migrate_task",
3144	};
3145
3146	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3147	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3148
3149	if (rec_argv == NULL)
3150		return -ENOMEM;
3151
3152	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3153		rec_argv[i] = strdup(record_args[i]);
3154
3155	for (j = 1; j < (unsigned int)argc; j++, i++)
3156		rec_argv[i] = argv[j];
3157
3158	BUG_ON(i != rec_argc);
3159
3160	return cmd_record(i, rec_argv, NULL);
3161}
3162
3163int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
3164{
3165	const char default_sort_order[] = "avg, max, switch, runtime";
3166	struct perf_sched sched = {
3167		.tool = {
3168			.sample		 = perf_sched__process_tracepoint_sample,
3169			.comm		 = perf_event__process_comm,
3170			.lost		 = perf_event__process_lost,
3171			.fork		 = perf_sched__process_fork_event,
3172			.ordered_events = true,
3173		},
3174		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3175		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3176		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3177		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3178		.sort_order	      = default_sort_order,
3179		.replay_repeat	      = 10,
3180		.profile_cpu	      = -1,
3181		.next_shortname1      = 'A',
3182		.next_shortname2      = '0',
3183		.skip_merge           = 0,
3184		.show_callchain	      = 1,
3185		.max_stack            = 5,
3186	};
3187	const struct option sched_options[] = {
3188	OPT_STRING('i', "input", &input_name, "file",
3189		    "input file name"),
3190	OPT_INCR('v', "verbose", &verbose,
3191		    "be more verbose (show symbol address, etc)"),
 
 
3192	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3193		    "dump raw trace in ASCII"),
3194	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3195	OPT_END()
3196	};
3197	const struct option latency_options[] = {
3198	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3199		   "sort by key(s): runtime, switch, avg, max"),
3200	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3201		    "CPU to profile on"),
3202	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3203		    "latency stats per pid instead of per comm"),
3204	OPT_PARENT(sched_options)
3205	};
3206	const struct option replay_options[] = {
3207	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3208		     "repeat the workload replay N times (-1: infinite)"),
3209	OPT_PARENT(sched_options)
 
 
 
 
3210	};
3211	const struct option map_options[] = {
3212	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3213		    "map output in compact mode"),
3214	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3215		   "highlight given pids in map"),
3216	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3217                    "highlight given CPUs in map"),
3218	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3219                    "display given CPUs in map"),
3220	OPT_PARENT(sched_options)
3221	};
3222	const struct option timehist_options[] = {
3223	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3224		   "file", "vmlinux pathname"),
3225	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3226		   "file", "kallsyms pathname"),
3227	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3228		    "Display call chains if present (default on)"),
3229	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3230		   "Maximum number of functions to display backtrace."),
3231	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3232		    "Look for files with symbols relative to this directory"),
3233	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3234		    "Show only syscall summary with statistics"),
3235	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3236		    "Show all syscalls and summary with statistics"),
3237	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3238	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3239	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3240	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3241	OPT_STRING(0, "time", &sched.time_str, "str",
3242		   "Time span for analysis (start,stop)"),
3243	OPT_PARENT(sched_options)
3244	};
3245
3246	const char * const latency_usage[] = {
3247		"perf sched latency [<options>]",
3248		NULL
3249	};
3250	const char * const replay_usage[] = {
3251		"perf sched replay [<options>]",
3252		NULL
3253	};
3254	const char * const map_usage[] = {
3255		"perf sched map [<options>]",
3256		NULL
3257	};
3258	const char * const timehist_usage[] = {
3259		"perf sched timehist [<options>]",
3260		NULL
3261	};
3262	const char *const sched_subcommands[] = { "record", "latency", "map",
3263						  "replay", "script",
3264						  "timehist", NULL };
3265	const char *sched_usage[] = {
3266		NULL,
3267		NULL
3268	};
3269	struct trace_sched_handler lat_ops  = {
3270		.wakeup_event	    = latency_wakeup_event,
3271		.switch_event	    = latency_switch_event,
3272		.runtime_event	    = latency_runtime_event,
3273		.migrate_task_event = latency_migrate_task_event,
3274	};
3275	struct trace_sched_handler map_ops  = {
3276		.switch_event	    = map_switch_event,
3277	};
3278	struct trace_sched_handler replay_ops  = {
3279		.wakeup_event	    = replay_wakeup_event,
3280		.switch_event	    = replay_switch_event,
3281		.fork_event	    = replay_fork_event,
3282	};
3283	unsigned int i;
3284
3285	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3286		sched.curr_pid[i] = -1;
3287
3288	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3289					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3290	if (!argc)
3291		usage_with_options(sched_usage, sched_options);
3292
3293	/*
3294	 * Aliased to 'perf script' for now:
3295	 */
3296	if (!strcmp(argv[0], "script"))
3297		return cmd_script(argc, argv, prefix);
3298
 
3299	if (!strncmp(argv[0], "rec", 3)) {
3300		return __cmd_record(argc, argv);
3301	} else if (!strncmp(argv[0], "lat", 3)) {
3302		sched.tp_handler = &lat_ops;
3303		if (argc > 1) {
3304			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3305			if (argc)
3306				usage_with_options(latency_usage, latency_options);
3307		}
3308		setup_sorting(&sched, latency_options, latency_usage);
3309		return perf_sched__lat(&sched);
3310	} else if (!strcmp(argv[0], "map")) {
3311		if (argc) {
3312			argc = parse_options(argc, argv, map_options, map_usage, 0);
3313			if (argc)
3314				usage_with_options(map_usage, map_options);
3315		}
3316		sched.tp_handler = &map_ops;
3317		setup_sorting(&sched, latency_options, latency_usage);
3318		return perf_sched__map(&sched);
3319	} else if (!strncmp(argv[0], "rep", 3)) {
3320		sched.tp_handler = &replay_ops;
3321		if (argc) {
3322			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3323			if (argc)
3324				usage_with_options(replay_usage, replay_options);
3325		}
3326		return perf_sched__replay(&sched);
3327	} else if (!strcmp(argv[0], "timehist")) {
3328		if (argc) {
3329			argc = parse_options(argc, argv, timehist_options,
3330					     timehist_usage, 0);
3331			if (argc)
3332				usage_with_options(timehist_usage, timehist_options);
3333		}
3334		if (sched.show_wakeups && sched.summary_only) {
3335			pr_err(" Error: -s and -w are mutually exclusive.\n");
3336			parse_options_usage(timehist_usage, timehist_options, "s", true);
3337			parse_options_usage(NULL, timehist_options, "w", true);
3338			return -EINVAL;
3339		}
3340
3341		return perf_sched__timehist(&sched);
3342	} else {
3343		usage_with_options(sched_usage, sched_options);
3344	}
3345
3346	return 0;
3347}