Linux Audio

Check our new training course

Loading...
v3.15
   1#include "builtin.h"
   2#include "perf.h"
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
  13
  14#include "util/parse-options.h"
  15#include "util/trace-event.h"
  16
  17#include "util/debug.h"
  18
  19#include <sys/prctl.h>
  20#include <sys/resource.h>
  21
  22#include <semaphore.h>
  23#include <pthread.h>
  24#include <math.h>
  25
 
 
 
 
 
 
 
  26#define PR_SET_NAME		15               /* Set process name */
  27#define MAX_CPUS		4096
 
 
 
 
  28#define COMM_LEN		20
  29#define SYM_LEN			129
 
  30#define MAX_PID			65536
  31
 
 
  32struct sched_atom;
  33
  34struct task_desc {
  35	unsigned long		nr;
  36	unsigned long		pid;
  37	char			comm[COMM_LEN];
  38
  39	unsigned long		nr_events;
  40	unsigned long		curr_event;
  41	struct sched_atom	**atoms;
  42
  43	pthread_t		thread;
  44	sem_t			sleep_sem;
  45
  46	sem_t			ready_for_work;
  47	sem_t			work_done_sem;
  48
  49	u64			cpu_usage;
  50};
  51
  52enum sched_event_type {
  53	SCHED_EVENT_RUN,
  54	SCHED_EVENT_SLEEP,
  55	SCHED_EVENT_WAKEUP,
  56	SCHED_EVENT_MIGRATION,
  57};
  58
  59struct sched_atom {
  60	enum sched_event_type	type;
  61	int			specific_wait;
  62	u64			timestamp;
  63	u64			duration;
  64	unsigned long		nr;
  65	sem_t			*wait_sem;
  66	struct task_desc	*wakee;
  67};
  68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  70
  71enum thread_state {
  72	THREAD_SLEEPING = 0,
  73	THREAD_WAIT_CPU,
  74	THREAD_SCHED_IN,
  75	THREAD_IGNORE
  76};
  77
  78struct work_atom {
  79	struct list_head	list;
  80	enum thread_state	state;
  81	u64			sched_out_time;
  82	u64			wake_up_time;
  83	u64			sched_in_time;
  84	u64			runtime;
  85};
  86
  87struct work_atoms {
  88	struct list_head	work_list;
  89	struct thread		*thread;
  90	struct rb_node		node;
  91	u64			max_lat;
  92	u64			max_lat_at;
  93	u64			total_lat;
  94	u64			nb_atoms;
  95	u64			total_runtime;
  96};
  97
  98typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
  99
 100struct perf_sched;
 101
 102struct trace_sched_handler {
 103	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 104			    struct perf_sample *sample, struct machine *machine);
 105
 106	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 107			     struct perf_sample *sample, struct machine *machine);
 108
 109	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 110			    struct perf_sample *sample, struct machine *machine);
 111
 112	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 113	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 114			  struct machine *machine);
 115
 116	int (*migrate_task_event)(struct perf_sched *sched,
 117				  struct perf_evsel *evsel,
 118				  struct perf_sample *sample,
 119				  struct machine *machine);
 120};
 121
 122struct perf_sched {
 123	struct perf_tool tool;
 124	const char	 *sort_order;
 125	unsigned long	 nr_tasks;
 126	struct task_desc *pid_to_task[MAX_PID];
 127	struct task_desc **tasks;
 128	const struct trace_sched_handler *tp_handler;
 129	pthread_mutex_t	 start_work_mutex;
 130	pthread_mutex_t	 work_done_wait_mutex;
 131	int		 profile_cpu;
 132/*
 133 * Track the current task - that way we can know whether there's any
 134 * weird events, such as a task being switched away that is not current.
 135 */
 136	int		 max_cpu;
 137	u32		 curr_pid[MAX_CPUS];
 138	struct thread	 *curr_thread[MAX_CPUS];
 139	char		 next_shortname1;
 140	char		 next_shortname2;
 141	unsigned int	 replay_repeat;
 142	unsigned long	 nr_run_events;
 143	unsigned long	 nr_sleep_events;
 144	unsigned long	 nr_wakeup_events;
 145	unsigned long	 nr_sleep_corrections;
 146	unsigned long	 nr_run_events_optimized;
 147	unsigned long	 targetless_wakeups;
 148	unsigned long	 multitarget_wakeups;
 149	unsigned long	 nr_runs;
 150	unsigned long	 nr_timestamps;
 151	unsigned long	 nr_unordered_timestamps;
 152	unsigned long	 nr_state_machine_bugs;
 153	unsigned long	 nr_context_switch_bugs;
 154	unsigned long	 nr_events;
 155	unsigned long	 nr_lost_chunks;
 156	unsigned long	 nr_lost_events;
 157	u64		 run_measurement_overhead;
 158	u64		 sleep_measurement_overhead;
 159	u64		 start_time;
 160	u64		 cpu_usage;
 161	u64		 runavg_cpu_usage;
 162	u64		 parent_cpu_usage;
 163	u64		 runavg_parent_cpu_usage;
 164	u64		 sum_runtime;
 165	u64		 sum_fluct;
 166	u64		 run_avg;
 167	u64		 all_runtime;
 168	u64		 all_count;
 169	u64		 cpu_last_switched[MAX_CPUS];
 170	struct rb_root	 atom_root, sorted_atom_root;
 171	struct list_head sort_list, cmp_pid;
 172};
 173
 174static u64 get_nsecs(void)
 175{
 176	struct timespec ts;
 177
 178	clock_gettime(CLOCK_MONOTONIC, &ts);
 179
 180	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 181}
 182
 183static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 184{
 185	u64 T0 = get_nsecs(), T1;
 186
 187	do {
 188		T1 = get_nsecs();
 189	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 190}
 191
 192static void sleep_nsecs(u64 nsecs)
 193{
 194	struct timespec ts;
 195
 196	ts.tv_nsec = nsecs % 999999999;
 197	ts.tv_sec = nsecs / 999999999;
 198
 199	nanosleep(&ts, NULL);
 200}
 201
 202static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 203{
 204	u64 T0, T1, delta, min_delta = 1000000000ULL;
 205	int i;
 206
 207	for (i = 0; i < 10; i++) {
 208		T0 = get_nsecs();
 209		burn_nsecs(sched, 0);
 210		T1 = get_nsecs();
 211		delta = T1-T0;
 212		min_delta = min(min_delta, delta);
 213	}
 214	sched->run_measurement_overhead = min_delta;
 215
 216	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 217}
 218
 219static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 220{
 221	u64 T0, T1, delta, min_delta = 1000000000ULL;
 222	int i;
 223
 224	for (i = 0; i < 10; i++) {
 225		T0 = get_nsecs();
 226		sleep_nsecs(10000);
 227		T1 = get_nsecs();
 228		delta = T1-T0;
 229		min_delta = min(min_delta, delta);
 230	}
 231	min_delta -= 10000;
 232	sched->sleep_measurement_overhead = min_delta;
 233
 234	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 235}
 236
 237static struct sched_atom *
 238get_new_event(struct task_desc *task, u64 timestamp)
 239{
 240	struct sched_atom *event = zalloc(sizeof(*event));
 241	unsigned long idx = task->nr_events;
 242	size_t size;
 243
 244	event->timestamp = timestamp;
 245	event->nr = idx;
 246
 247	task->nr_events++;
 248	size = sizeof(struct sched_atom *) * task->nr_events;
 249	task->atoms = realloc(task->atoms, size);
 250	BUG_ON(!task->atoms);
 251
 252	task->atoms[idx] = event;
 253
 254	return event;
 255}
 256
 257static struct sched_atom *last_event(struct task_desc *task)
 258{
 259	if (!task->nr_events)
 260		return NULL;
 261
 262	return task->atoms[task->nr_events - 1];
 263}
 264
 265static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 266				u64 timestamp, u64 duration)
 267{
 268	struct sched_atom *event, *curr_event = last_event(task);
 269
 270	/*
 271	 * optimize an existing RUN event by merging this one
 272	 * to it:
 273	 */
 274	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 275		sched->nr_run_events_optimized++;
 276		curr_event->duration += duration;
 277		return;
 278	}
 279
 280	event = get_new_event(task, timestamp);
 281
 282	event->type = SCHED_EVENT_RUN;
 283	event->duration = duration;
 284
 285	sched->nr_run_events++;
 286}
 287
 288static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 289				   u64 timestamp, struct task_desc *wakee)
 
 290{
 291	struct sched_atom *event, *wakee_event;
 292
 293	event = get_new_event(task, timestamp);
 294	event->type = SCHED_EVENT_WAKEUP;
 295	event->wakee = wakee;
 296
 297	wakee_event = last_event(wakee);
 298	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 299		sched->targetless_wakeups++;
 300		return;
 301	}
 302	if (wakee_event->wait_sem) {
 303		sched->multitarget_wakeups++;
 304		return;
 305	}
 306
 307	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 308	sem_init(wakee_event->wait_sem, 0, 0);
 309	wakee_event->specific_wait = 1;
 310	event->wait_sem = wakee_event->wait_sem;
 311
 312	sched->nr_wakeup_events++;
 313}
 314
 315static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 316				  u64 timestamp, u64 task_state __maybe_unused)
 
 317{
 318	struct sched_atom *event = get_new_event(task, timestamp);
 319
 320	event->type = SCHED_EVENT_SLEEP;
 321
 322	sched->nr_sleep_events++;
 323}
 324
 325static struct task_desc *register_pid(struct perf_sched *sched,
 326				      unsigned long pid, const char *comm)
 327{
 328	struct task_desc *task;
 329
 330	BUG_ON(pid >= MAX_PID);
 331
 332	task = sched->pid_to_task[pid];
 333
 334	if (task)
 335		return task;
 336
 337	task = zalloc(sizeof(*task));
 338	task->pid = pid;
 339	task->nr = sched->nr_tasks;
 340	strcpy(task->comm, comm);
 341	/*
 342	 * every task starts in sleeping state - this gets ignored
 343	 * if there's no wakeup pointing to this sleep state:
 344	 */
 345	add_sched_event_sleep(sched, task, 0, 0);
 346
 347	sched->pid_to_task[pid] = task;
 348	sched->nr_tasks++;
 349	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
 350	BUG_ON(!sched->tasks);
 351	sched->tasks[task->nr] = task;
 352
 353	if (verbose)
 354		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 355
 356	return task;
 357}
 358
 359
 360static void print_task_traces(struct perf_sched *sched)
 361{
 362	struct task_desc *task;
 363	unsigned long i;
 364
 365	for (i = 0; i < sched->nr_tasks; i++) {
 366		task = sched->tasks[i];
 367		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 368			task->nr, task->comm, task->pid, task->nr_events);
 369	}
 370}
 371
 372static void add_cross_task_wakeups(struct perf_sched *sched)
 373{
 374	struct task_desc *task1, *task2;
 375	unsigned long i, j;
 376
 377	for (i = 0; i < sched->nr_tasks; i++) {
 378		task1 = sched->tasks[i];
 379		j = i + 1;
 380		if (j == sched->nr_tasks)
 381			j = 0;
 382		task2 = sched->tasks[j];
 383		add_sched_event_wakeup(sched, task1, 0, task2);
 384	}
 385}
 386
 387static void perf_sched__process_event(struct perf_sched *sched,
 388				      struct sched_atom *atom)
 389{
 390	int ret = 0;
 391
 392	switch (atom->type) {
 393		case SCHED_EVENT_RUN:
 394			burn_nsecs(sched, atom->duration);
 395			break;
 396		case SCHED_EVENT_SLEEP:
 397			if (atom->wait_sem)
 398				ret = sem_wait(atom->wait_sem);
 399			BUG_ON(ret);
 400			break;
 401		case SCHED_EVENT_WAKEUP:
 402			if (atom->wait_sem)
 403				ret = sem_post(atom->wait_sem);
 404			BUG_ON(ret);
 405			break;
 406		case SCHED_EVENT_MIGRATION:
 407			break;
 408		default:
 409			BUG_ON(1);
 410	}
 411}
 412
 413static u64 get_cpu_usage_nsec_parent(void)
 414{
 415	struct rusage ru;
 416	u64 sum;
 417	int err;
 418
 419	err = getrusage(RUSAGE_SELF, &ru);
 420	BUG_ON(err);
 421
 422	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 423	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 424
 425	return sum;
 426}
 427
 428static int self_open_counters(void)
 429{
 430	struct perf_event_attr attr;
 431	int fd;
 432
 433	memset(&attr, 0, sizeof(attr));
 434
 435	attr.type = PERF_TYPE_SOFTWARE;
 436	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 437
 438	fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
 439
 440	if (fd < 0)
 441		pr_err("Error: sys_perf_event_open() syscall returned "
 442		       "with %d (%s)\n", fd, strerror(errno));
 443	return fd;
 444}
 445
 446static u64 get_cpu_usage_nsec_self(int fd)
 447{
 448	u64 runtime;
 449	int ret;
 450
 451	ret = read(fd, &runtime, sizeof(runtime));
 452	BUG_ON(ret != sizeof(runtime));
 453
 454	return runtime;
 455}
 456
 457struct sched_thread_parms {
 458	struct task_desc  *task;
 459	struct perf_sched *sched;
 460};
 461
 462static void *thread_func(void *ctx)
 463{
 464	struct sched_thread_parms *parms = ctx;
 465	struct task_desc *this_task = parms->task;
 466	struct perf_sched *sched = parms->sched;
 467	u64 cpu_usage_0, cpu_usage_1;
 468	unsigned long i, ret;
 469	char comm2[22];
 470	int fd;
 471
 472	zfree(&parms);
 473
 474	sprintf(comm2, ":%s", this_task->comm);
 475	prctl(PR_SET_NAME, comm2);
 476	fd = self_open_counters();
 477	if (fd < 0)
 478		return NULL;
 479again:
 480	ret = sem_post(&this_task->ready_for_work);
 481	BUG_ON(ret);
 482	ret = pthread_mutex_lock(&sched->start_work_mutex);
 483	BUG_ON(ret);
 484	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 485	BUG_ON(ret);
 486
 487	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 488
 489	for (i = 0; i < this_task->nr_events; i++) {
 490		this_task->curr_event = i;
 491		perf_sched__process_event(sched, this_task->atoms[i]);
 492	}
 493
 494	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 495	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 496	ret = sem_post(&this_task->work_done_sem);
 497	BUG_ON(ret);
 498
 499	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 500	BUG_ON(ret);
 501	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 502	BUG_ON(ret);
 503
 504	goto again;
 505}
 506
 507static void create_tasks(struct perf_sched *sched)
 508{
 509	struct task_desc *task;
 510	pthread_attr_t attr;
 511	unsigned long i;
 512	int err;
 513
 514	err = pthread_attr_init(&attr);
 515	BUG_ON(err);
 516	err = pthread_attr_setstacksize(&attr,
 517			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 518	BUG_ON(err);
 519	err = pthread_mutex_lock(&sched->start_work_mutex);
 520	BUG_ON(err);
 521	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 522	BUG_ON(err);
 523	for (i = 0; i < sched->nr_tasks; i++) {
 524		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 525		BUG_ON(parms == NULL);
 526		parms->task = task = sched->tasks[i];
 527		parms->sched = sched;
 528		sem_init(&task->sleep_sem, 0, 0);
 529		sem_init(&task->ready_for_work, 0, 0);
 530		sem_init(&task->work_done_sem, 0, 0);
 531		task->curr_event = 0;
 532		err = pthread_create(&task->thread, &attr, thread_func, parms);
 533		BUG_ON(err);
 534	}
 535}
 536
 537static void wait_for_tasks(struct perf_sched *sched)
 538{
 539	u64 cpu_usage_0, cpu_usage_1;
 540	struct task_desc *task;
 541	unsigned long i, ret;
 542
 543	sched->start_time = get_nsecs();
 544	sched->cpu_usage = 0;
 545	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 546
 547	for (i = 0; i < sched->nr_tasks; i++) {
 548		task = sched->tasks[i];
 549		ret = sem_wait(&task->ready_for_work);
 550		BUG_ON(ret);
 551		sem_init(&task->ready_for_work, 0, 0);
 552	}
 553	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 554	BUG_ON(ret);
 555
 556	cpu_usage_0 = get_cpu_usage_nsec_parent();
 557
 558	pthread_mutex_unlock(&sched->start_work_mutex);
 559
 560	for (i = 0; i < sched->nr_tasks; i++) {
 561		task = sched->tasks[i];
 562		ret = sem_wait(&task->work_done_sem);
 563		BUG_ON(ret);
 564		sem_init(&task->work_done_sem, 0, 0);
 565		sched->cpu_usage += task->cpu_usage;
 566		task->cpu_usage = 0;
 567	}
 568
 569	cpu_usage_1 = get_cpu_usage_nsec_parent();
 570	if (!sched->runavg_cpu_usage)
 571		sched->runavg_cpu_usage = sched->cpu_usage;
 572	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
 573
 574	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 575	if (!sched->runavg_parent_cpu_usage)
 576		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 577	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
 578					 sched->parent_cpu_usage)/10;
 579
 580	ret = pthread_mutex_lock(&sched->start_work_mutex);
 581	BUG_ON(ret);
 582
 583	for (i = 0; i < sched->nr_tasks; i++) {
 584		task = sched->tasks[i];
 585		sem_init(&task->sleep_sem, 0, 0);
 586		task->curr_event = 0;
 587	}
 588}
 589
 590static void run_one_test(struct perf_sched *sched)
 591{
 592	u64 T0, T1, delta, avg_delta, fluct;
 593
 594	T0 = get_nsecs();
 595	wait_for_tasks(sched);
 596	T1 = get_nsecs();
 597
 598	delta = T1 - T0;
 599	sched->sum_runtime += delta;
 600	sched->nr_runs++;
 601
 602	avg_delta = sched->sum_runtime / sched->nr_runs;
 603	if (delta < avg_delta)
 604		fluct = avg_delta - delta;
 605	else
 606		fluct = delta - avg_delta;
 607	sched->sum_fluct += fluct;
 608	if (!sched->run_avg)
 609		sched->run_avg = delta;
 610	sched->run_avg = (sched->run_avg * 9 + delta) / 10;
 611
 612	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
 
 613
 614	printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
 
 615
 616	printf("cpu: %0.2f / %0.2f",
 617		(double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
 618
 619#if 0
 620	/*
 621	 * rusage statistics done by the parent, these are less
 622	 * accurate than the sched->sum_exec_runtime based statistics:
 623	 */
 624	printf(" [%0.2f / %0.2f]",
 625		(double)sched->parent_cpu_usage/1e6,
 626		(double)sched->runavg_parent_cpu_usage/1e6);
 627#endif
 628
 629	printf("\n");
 630
 631	if (sched->nr_sleep_corrections)
 632		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 633	sched->nr_sleep_corrections = 0;
 634}
 635
 636static void test_calibrations(struct perf_sched *sched)
 637{
 638	u64 T0, T1;
 639
 640	T0 = get_nsecs();
 641	burn_nsecs(sched, 1e6);
 642	T1 = get_nsecs();
 643
 644	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 645
 646	T0 = get_nsecs();
 647	sleep_nsecs(1e6);
 648	T1 = get_nsecs();
 649
 650	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 651}
 652
 653static int
 654replay_wakeup_event(struct perf_sched *sched,
 655		    struct perf_evsel *evsel, struct perf_sample *sample,
 656		    struct machine *machine __maybe_unused)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657{
 658	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 659	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 660	struct task_desc *waker, *wakee;
 661
 662	if (verbose) {
 663		printf("sched_wakeup event %p\n", evsel);
 664
 665		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 
 
 
 666	}
 667
 668	waker = register_pid(sched, sample->tid, "<unknown>");
 669	wakee = register_pid(sched, pid, comm);
 670
 671	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 672	return 0;
 673}
 674
 675static int replay_switch_event(struct perf_sched *sched,
 676			       struct perf_evsel *evsel,
 677			       struct perf_sample *sample,
 678			       struct machine *machine __maybe_unused)
 679{
 680	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 681		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 682	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 683		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 684	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 685	struct task_desc *prev, __maybe_unused *next;
 686	u64 timestamp0, timestamp = sample->time;
 687	int cpu = sample->cpu;
 688	s64 delta;
 689
 690	if (verbose)
 691		printf("sched_switch event %p\n", evsel);
 692
 693	if (cpu >= MAX_CPUS || cpu < 0)
 694		return 0;
 695
 696	timestamp0 = sched->cpu_last_switched[cpu];
 697	if (timestamp0)
 698		delta = timestamp - timestamp0;
 699	else
 700		delta = 0;
 701
 702	if (delta < 0) {
 703		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 704		return -1;
 705	}
 706
 707	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 708		 prev_comm, prev_pid, next_comm, next_pid, delta);
 709
 710	prev = register_pid(sched, prev_pid, prev_comm);
 711	next = register_pid(sched, next_pid, next_comm);
 
 
 
 
 712
 713	sched->cpu_last_switched[cpu] = timestamp;
 
 714
 715	add_sched_event_run(sched, prev, timestamp, delta);
 716	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 717
 718	return 0;
 
 719}
 720
 721static int replay_fork_event(struct perf_sched *sched,
 722			     union perf_event *event,
 723			     struct machine *machine)
 724{
 725	struct thread *child, *parent;
 726
 727	child = machine__findnew_thread(machine, event->fork.pid,
 728					event->fork.tid);
 729	parent = machine__findnew_thread(machine, event->fork.ppid,
 730					 event->fork.ptid);
 731
 732	if (child == NULL || parent == NULL) {
 733		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 734				 child, parent);
 735		return 0;
 736	}
 737
 
 
 
 
 
 
 
 738	if (verbose) {
 739		printf("fork event\n");
 740		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 741		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 742	}
 743
 744	register_pid(sched, parent->tid, thread__comm_str(parent));
 745	register_pid(sched, child->tid, thread__comm_str(child));
 746	return 0;
 747}
 748
 
 
 
 
 
 
 749struct sort_dimension {
 750	const char		*name;
 751	sort_fn_t		cmp;
 752	struct list_head	list;
 753};
 754
 
 
 755static int
 756thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 757{
 758	struct sort_dimension *sort;
 759	int ret = 0;
 760
 761	BUG_ON(list_empty(list));
 762
 763	list_for_each_entry(sort, list, list) {
 764		ret = sort->cmp(l, r);
 765		if (ret)
 766			return ret;
 767	}
 768
 769	return ret;
 770}
 771
 772static struct work_atoms *
 773thread_atoms_search(struct rb_root *root, struct thread *thread,
 774			 struct list_head *sort_list)
 775{
 776	struct rb_node *node = root->rb_node;
 777	struct work_atoms key = { .thread = thread };
 778
 779	while (node) {
 780		struct work_atoms *atoms;
 781		int cmp;
 782
 783		atoms = container_of(node, struct work_atoms, node);
 784
 785		cmp = thread_lat_cmp(sort_list, &key, atoms);
 786		if (cmp > 0)
 787			node = node->rb_left;
 788		else if (cmp < 0)
 789			node = node->rb_right;
 790		else {
 791			BUG_ON(thread != atoms->thread);
 792			return atoms;
 793		}
 794	}
 795	return NULL;
 796}
 797
 798static void
 799__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 800			 struct list_head *sort_list)
 801{
 802	struct rb_node **new = &(root->rb_node), *parent = NULL;
 803
 804	while (*new) {
 805		struct work_atoms *this;
 806		int cmp;
 807
 808		this = container_of(*new, struct work_atoms, node);
 809		parent = *new;
 810
 811		cmp = thread_lat_cmp(sort_list, data, this);
 812
 813		if (cmp > 0)
 814			new = &((*new)->rb_left);
 815		else
 816			new = &((*new)->rb_right);
 817	}
 818
 819	rb_link_node(&data->node, parent, new);
 820	rb_insert_color(&data->node, root);
 821}
 822
 823static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
 824{
 825	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 826	if (!atoms) {
 827		pr_err("No memory at %s\n", __func__);
 828		return -1;
 829	}
 830
 831	atoms->thread = thread;
 832	INIT_LIST_HEAD(&atoms->work_list);
 833	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
 834	return 0;
 835}
 836
 837static char sched_out_state(u64 prev_state)
 
 
 
 
 
 
 
 
 
 
 
 838{
 839	const char *str = TASK_STATE_TO_CHAR_STR;
 840
 841	return str[prev_state];
 842}
 843
 844static int
 845add_sched_out_event(struct work_atoms *atoms,
 846		    char run_state,
 847		    u64 timestamp)
 848{
 849	struct work_atom *atom = zalloc(sizeof(*atom));
 850	if (!atom) {
 851		pr_err("Non memory at %s", __func__);
 852		return -1;
 853	}
 854
 855	atom->sched_out_time = timestamp;
 856
 857	if (run_state == 'R') {
 858		atom->state = THREAD_WAIT_CPU;
 859		atom->wake_up_time = atom->sched_out_time;
 860	}
 861
 862	list_add_tail(&atom->list, &atoms->work_list);
 863	return 0;
 864}
 865
 866static void
 867add_runtime_event(struct work_atoms *atoms, u64 delta,
 868		  u64 timestamp __maybe_unused)
 869{
 870	struct work_atom *atom;
 871
 872	BUG_ON(list_empty(&atoms->work_list));
 873
 874	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 875
 876	atom->runtime += delta;
 877	atoms->total_runtime += delta;
 878}
 879
 880static void
 881add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 882{
 883	struct work_atom *atom;
 884	u64 delta;
 885
 886	if (list_empty(&atoms->work_list))
 887		return;
 888
 889	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 890
 891	if (atom->state != THREAD_WAIT_CPU)
 892		return;
 893
 894	if (timestamp < atom->wake_up_time) {
 895		atom->state = THREAD_IGNORE;
 896		return;
 897	}
 898
 899	atom->state = THREAD_SCHED_IN;
 900	atom->sched_in_time = timestamp;
 901
 902	delta = atom->sched_in_time - atom->wake_up_time;
 903	atoms->total_lat += delta;
 904	if (delta > atoms->max_lat) {
 905		atoms->max_lat = delta;
 906		atoms->max_lat_at = timestamp;
 907	}
 908	atoms->nb_atoms++;
 909}
 910
 911static int latency_switch_event(struct perf_sched *sched,
 912				struct perf_evsel *evsel,
 913				struct perf_sample *sample,
 914				struct machine *machine)
 915{
 916	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 917		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 918	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 919	struct work_atoms *out_events, *in_events;
 920	struct thread *sched_out, *sched_in;
 921	u64 timestamp0, timestamp = sample->time;
 922	int cpu = sample->cpu;
 923	s64 delta;
 924
 925	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 926
 927	timestamp0 = sched->cpu_last_switched[cpu];
 928	sched->cpu_last_switched[cpu] = timestamp;
 929	if (timestamp0)
 930		delta = timestamp - timestamp0;
 931	else
 932		delta = 0;
 933
 934	if (delta < 0) {
 935		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 936		return -1;
 937	}
 938
 939	sched_out = machine__findnew_thread(machine, 0, prev_pid);
 940	sched_in = machine__findnew_thread(machine, 0, next_pid);
 941
 942	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 943	if (!out_events) {
 944		if (thread_atoms_insert(sched, sched_out))
 945			return -1;
 946		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 947		if (!out_events) {
 948			pr_err("out-event: Internal tree error");
 949			return -1;
 950		}
 951	}
 952	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
 953		return -1;
 954
 955	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
 956	if (!in_events) {
 957		if (thread_atoms_insert(sched, sched_in))
 958			return -1;
 959		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
 960		if (!in_events) {
 961			pr_err("in-event: Internal tree error");
 962			return -1;
 963		}
 964		/*
 965		 * Take came in we have not heard about yet,
 966		 * add in an initial atom in runnable state:
 967		 */
 968		if (add_sched_out_event(in_events, 'R', timestamp))
 969			return -1;
 970	}
 971	add_sched_in_event(in_events, timestamp);
 972
 973	return 0;
 974}
 975
 976static int latency_runtime_event(struct perf_sched *sched,
 977				 struct perf_evsel *evsel,
 978				 struct perf_sample *sample,
 979				 struct machine *machine)
 
 
 
 980{
 981	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
 982	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
 983	struct thread *thread = machine__findnew_thread(machine, 0, pid);
 984	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
 985	u64 timestamp = sample->time;
 986	int cpu = sample->cpu;
 987
 988	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 989	if (!atoms) {
 990		if (thread_atoms_insert(sched, thread))
 991			return -1;
 992		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
 993		if (!atoms) {
 994			pr_err("in-event: Internal tree error");
 995			return -1;
 996		}
 997		if (add_sched_out_event(atoms, 'R', timestamp))
 998			return -1;
 999	}
1000
1001	add_runtime_event(atoms, runtime, timestamp);
1002	return 0;
1003}
1004
1005static int latency_wakeup_event(struct perf_sched *sched,
1006				struct perf_evsel *evsel,
1007				struct perf_sample *sample,
1008				struct machine *machine)
 
 
 
1009{
1010	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid"),
1011		  success = perf_evsel__intval(evsel, sample, "success");
1012	struct work_atoms *atoms;
1013	struct work_atom *atom;
1014	struct thread *wakee;
1015	u64 timestamp = sample->time;
1016
1017	/* Note for later, it may be interesting to observe the failing cases */
1018	if (!success)
1019		return 0;
1020
1021	wakee = machine__findnew_thread(machine, 0, pid);
1022	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1023	if (!atoms) {
1024		if (thread_atoms_insert(sched, wakee))
1025			return -1;
1026		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1027		if (!atoms) {
1028			pr_err("wakeup-event: Internal tree error");
1029			return -1;
1030		}
1031		if (add_sched_out_event(atoms, 'S', timestamp))
1032			return -1;
1033	}
1034
1035	BUG_ON(list_empty(&atoms->work_list));
1036
1037	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1038
1039	/*
1040	 * You WILL be missing events if you've recorded only
1041	 * one CPU, or are only looking at only one, so don't
1042	 * make useless noise.
1043	 */
1044	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1045		sched->nr_state_machine_bugs++;
1046
1047	sched->nr_timestamps++;
1048	if (atom->sched_out_time > timestamp) {
1049		sched->nr_unordered_timestamps++;
1050		return 0;
1051	}
1052
1053	atom->state = THREAD_WAIT_CPU;
1054	atom->wake_up_time = timestamp;
1055	return 0;
1056}
1057
1058static int latency_migrate_task_event(struct perf_sched *sched,
1059				      struct perf_evsel *evsel,
1060				      struct perf_sample *sample,
1061				      struct machine *machine)
 
 
 
1062{
1063	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1064	u64 timestamp = sample->time;
1065	struct work_atoms *atoms;
1066	struct work_atom *atom;
1067	struct thread *migrant;
1068
1069	/*
1070	 * Only need to worry about migration when profiling one CPU.
1071	 */
1072	if (sched->profile_cpu == -1)
1073		return 0;
1074
1075	migrant = machine__findnew_thread(machine, 0, pid);
1076	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1077	if (!atoms) {
1078		if (thread_atoms_insert(sched, migrant))
1079			return -1;
1080		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1081		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1082		if (!atoms) {
1083			pr_err("migration-event: Internal tree error");
1084			return -1;
1085		}
1086		if (add_sched_out_event(atoms, 'R', timestamp))
1087			return -1;
1088	}
1089
1090	BUG_ON(list_empty(&atoms->work_list));
1091
1092	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1093	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1094
1095	sched->nr_timestamps++;
1096
1097	if (atom->sched_out_time > timestamp)
1098		sched->nr_unordered_timestamps++;
1099
1100	return 0;
1101}
1102
1103static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
 
 
 
 
 
 
 
 
1104{
1105	int i;
1106	int ret;
1107	u64 avg;
1108
1109	if (!work_list->nb_atoms)
1110		return;
1111	/*
1112	 * Ignore idle threads:
1113	 */
1114	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1115		return;
1116
1117	sched->all_runtime += work_list->total_runtime;
1118	sched->all_count   += work_list->nb_atoms;
1119
1120	ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1121
1122	for (i = 0; i < 24 - ret; i++)
1123		printf(" ");
1124
1125	avg = work_list->total_lat / work_list->nb_atoms;
1126
1127	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1128	      (double)work_list->total_runtime / 1e6,
1129		 work_list->nb_atoms, (double)avg / 1e6,
1130		 (double)work_list->max_lat / 1e6,
1131		 (double)work_list->max_lat_at / 1e9);
1132}
1133
1134static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1135{
1136	if (l->thread->tid < r->thread->tid)
1137		return -1;
1138	if (l->thread->tid > r->thread->tid)
1139		return 1;
1140
1141	return 0;
1142}
1143
 
 
 
 
 
1144static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1145{
1146	u64 avgl, avgr;
1147
1148	if (!l->nb_atoms)
1149		return -1;
1150
1151	if (!r->nb_atoms)
1152		return 1;
1153
1154	avgl = l->total_lat / l->nb_atoms;
1155	avgr = r->total_lat / r->nb_atoms;
1156
1157	if (avgl < avgr)
1158		return -1;
1159	if (avgl > avgr)
1160		return 1;
1161
1162	return 0;
1163}
1164
 
 
 
 
 
1165static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1166{
1167	if (l->max_lat < r->max_lat)
1168		return -1;
1169	if (l->max_lat > r->max_lat)
1170		return 1;
1171
1172	return 0;
1173}
1174
 
 
 
 
 
1175static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1176{
1177	if (l->nb_atoms < r->nb_atoms)
1178		return -1;
1179	if (l->nb_atoms > r->nb_atoms)
1180		return 1;
1181
1182	return 0;
1183}
1184
 
 
 
 
 
1185static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1186{
1187	if (l->total_runtime < r->total_runtime)
1188		return -1;
1189	if (l->total_runtime > r->total_runtime)
1190		return 1;
1191
1192	return 0;
1193}
1194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195static int sort_dimension__add(const char *tok, struct list_head *list)
1196{
1197	size_t i;
1198	static struct sort_dimension avg_sort_dimension = {
1199		.name = "avg",
1200		.cmp  = avg_cmp,
1201	};
1202	static struct sort_dimension max_sort_dimension = {
1203		.name = "max",
1204		.cmp  = max_cmp,
1205	};
1206	static struct sort_dimension pid_sort_dimension = {
1207		.name = "pid",
1208		.cmp  = pid_cmp,
1209	};
1210	static struct sort_dimension runtime_sort_dimension = {
1211		.name = "runtime",
1212		.cmp  = runtime_cmp,
1213	};
1214	static struct sort_dimension switch_sort_dimension = {
1215		.name = "switch",
1216		.cmp  = switch_cmp,
1217	};
1218	struct sort_dimension *available_sorts[] = {
1219		&pid_sort_dimension,
1220		&avg_sort_dimension,
1221		&max_sort_dimension,
1222		&switch_sort_dimension,
1223		&runtime_sort_dimension,
1224	};
1225
1226	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1227		if (!strcmp(available_sorts[i]->name, tok)) {
1228			list_add_tail(&available_sorts[i]->list, list);
1229
1230			return 0;
1231		}
1232	}
1233
1234	return -1;
1235}
1236
1237static void perf_sched__sort_lat(struct perf_sched *sched)
 
 
1238{
1239	struct rb_node *node;
1240
1241	for (;;) {
1242		struct work_atoms *data;
1243		node = rb_first(&sched->atom_root);
1244		if (!node)
1245			break;
1246
1247		rb_erase(node, &sched->atom_root);
1248		data = rb_entry(node, struct work_atoms, node);
1249		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1250	}
1251}
1252
1253static int process_sched_wakeup_event(struct perf_tool *tool,
1254				      struct perf_evsel *evsel,
1255				      struct perf_sample *sample,
1256				      struct machine *machine)
1257{
1258	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1259
1260	if (sched->tp_handler->wakeup_event)
1261		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1262
1263	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264}
1265
1266static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1267			    struct perf_sample *sample, struct machine *machine)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1268{
1269	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1270		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1271	struct thread *sched_out __maybe_unused, *sched_in;
1272	int new_shortname;
1273	u64 timestamp0, timestamp = sample->time;
1274	s64 delta;
1275	int cpu, this_cpu = sample->cpu;
1276
1277	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1278
1279	if (this_cpu > sched->max_cpu)
1280		sched->max_cpu = this_cpu;
1281
1282	timestamp0 = sched->cpu_last_switched[this_cpu];
1283	sched->cpu_last_switched[this_cpu] = timestamp;
1284	if (timestamp0)
1285		delta = timestamp - timestamp0;
1286	else
1287		delta = 0;
1288
1289	if (delta < 0) {
1290		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1291		return -1;
1292	}
1293
1294	sched_out = machine__findnew_thread(machine, 0, prev_pid);
1295	sched_in = machine__findnew_thread(machine, 0, next_pid);
1296
1297	sched->curr_thread[this_cpu] = sched_in;
 
 
 
1298
1299	printf("  ");
1300
1301	new_shortname = 0;
1302	if (!sched_in->shortname[0]) {
1303		sched_in->shortname[0] = sched->next_shortname1;
1304		sched_in->shortname[1] = sched->next_shortname2;
1305
1306		if (sched->next_shortname1 < 'Z') {
1307			sched->next_shortname1++;
1308		} else {
1309			sched->next_shortname1='A';
1310			if (sched->next_shortname2 < '9') {
1311				sched->next_shortname2++;
1312			} else {
1313				sched->next_shortname2='0';
1314			}
1315		}
1316		new_shortname = 1;
1317	}
1318
1319	for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1320		if (cpu != this_cpu)
1321			printf(" ");
1322		else
1323			printf("*");
1324
1325		if (sched->curr_thread[cpu]) {
1326			if (sched->curr_thread[cpu]->tid)
1327				printf("%2s ", sched->curr_thread[cpu]->shortname);
1328			else
1329				printf(".  ");
1330		} else
1331			printf("   ");
1332	}
1333
1334	printf("  %12.6f secs ", (double)timestamp/1e9);
1335	if (new_shortname) {
1336		printf("%s => %s:%d\n",
1337		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1338	} else {
1339		printf("\n");
1340	}
1341
1342	return 0;
1343}
1344
1345static int process_sched_switch_event(struct perf_tool *tool,
1346				      struct perf_evsel *evsel,
1347				      struct perf_sample *sample,
1348				      struct machine *machine)
1349{
1350	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1351	int this_cpu = sample->cpu, err = 0;
1352	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1353	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 
 
 
 
 
 
 
 
 
 
 
1354
1355	if (sched->curr_pid[this_cpu] != (u32)-1) {
1356		/*
1357		 * Are we trying to switch away a PID that is
1358		 * not current?
1359		 */
1360		if (sched->curr_pid[this_cpu] != prev_pid)
1361			sched->nr_context_switch_bugs++;
1362	}
 
 
 
1363
1364	if (sched->tp_handler->switch_event)
1365		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1366
1367	sched->curr_pid[this_cpu] = next_pid;
1368	return err;
1369}
1370
1371static int process_sched_runtime_event(struct perf_tool *tool,
1372				       struct perf_evsel *evsel,
1373				       struct perf_sample *sample,
1374				       struct machine *machine)
1375{
1376	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1377
1378	if (sched->tp_handler->runtime_event)
1379		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1380
1381	return 0;
 
 
 
 
 
 
 
1382}
1383
1384static int perf_sched__process_fork_event(struct perf_tool *tool,
1385					  union perf_event *event,
1386					  struct perf_sample *sample,
1387					  struct machine *machine)
1388{
1389	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1390
1391	/* run the fork event through the perf machineruy */
1392	perf_event__process_fork(tool, event, sample, machine);
1393
1394	/* and then run additional processing needed for this command */
1395	if (sched->tp_handler->fork_event)
1396		return sched->tp_handler->fork_event(sched, event, machine);
 
 
 
 
 
 
 
 
1397
1398	return 0;
 
 
 
 
 
 
 
 
1399}
1400
1401static int process_sched_migrate_task_event(struct perf_tool *tool,
1402					    struct perf_evsel *evsel,
1403					    struct perf_sample *sample,
1404					    struct machine *machine)
 
 
1405{
1406	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
 
1407
1408	if (sched->tp_handler->migrate_task_event)
1409		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1410
1411	return 0;
 
 
 
 
 
 
 
 
1412}
1413
1414typedef int (*tracepoint_handler)(struct perf_tool *tool,
1415				  struct perf_evsel *evsel,
1416				  struct perf_sample *sample,
1417				  struct machine *machine);
1418
1419static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1420						 union perf_event *event __maybe_unused,
1421						 struct perf_sample *sample,
1422						 struct perf_evsel *evsel,
1423						 struct machine *machine)
1424{
1425	int err = 0;
 
 
 
 
 
 
1426
1427	evsel->hists.stats.total_period += sample->period;
1428	hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1429
1430	if (evsel->handler != NULL) {
1431		tracepoint_handler f = evsel->handler;
1432		err = f(tool, evsel, sample, machine);
 
 
 
 
1433	}
1434
1435	return err;
1436}
1437
1438static int perf_sched__read_events(struct perf_sched *sched,
1439				   struct perf_session **psession)
 
 
 
 
 
 
 
1440{
 
1441	const struct perf_evsel_str_handler handlers[] = {
1442		{ "sched:sched_switch",	      process_sched_switch_event, },
1443		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1444		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1445		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
 
 
1446		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1447	};
1448	struct perf_session *session;
1449	struct perf_data_file file = {
1450		.path = input_name,
1451		.mode = PERF_DATA_MODE_READ,
1452	};
1453
1454	session = perf_session__new(&file, false, &sched->tool);
1455	if (session == NULL) {
1456		pr_debug("No Memory for session\n");
1457		return -1;
1458	}
1459
1460	if (perf_session__set_tracepoints_handlers(session, handlers))
1461		goto out_delete;
1462
1463	if (perf_session__has_traces(session, "record -R")) {
1464		int err = perf_session__process_events(session, &sched->tool);
1465		if (err) {
1466			pr_err("Failed to process events, error %d", err);
1467			goto out_delete;
1468		}
1469
1470		sched->nr_events      = session->stats.nr_events[0];
1471		sched->nr_lost_events = session->stats.total_lost;
1472		sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1473	}
1474
1475	if (psession)
1476		*psession = session;
1477	else
1478		perf_session__delete(session);
1479
1480	return 0;
1481
1482out_delete:
1483	perf_session__delete(session);
1484	return -1;
1485}
1486
1487static void print_bad_events(struct perf_sched *sched)
1488{
1489	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1490		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1491			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1492			sched->nr_unordered_timestamps, sched->nr_timestamps);
1493	}
1494	if (sched->nr_lost_events && sched->nr_events) {
1495		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1496			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1497			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1498	}
1499	if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1500		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1501			(double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1502			sched->nr_state_machine_bugs, sched->nr_timestamps);
1503		if (sched->nr_lost_events)
1504			printf(" (due to lost events?)");
1505		printf("\n");
1506	}
1507	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1508		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1509			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1510			sched->nr_context_switch_bugs, sched->nr_timestamps);
1511		if (sched->nr_lost_events)
1512			printf(" (due to lost events?)");
1513		printf("\n");
1514	}
1515}
1516
1517static int perf_sched__lat(struct perf_sched *sched)
1518{
1519	struct rb_node *next;
1520	struct perf_session *session;
1521
1522	setup_pager();
 
 
1523
1524	/* save session -- references to threads are held in work_list */
1525	if (perf_sched__read_events(sched, &session))
1526		return -1;
1527
1528	perf_sched__sort_lat(sched);
1529
1530	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1531	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1532	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1533
1534	next = rb_first(&sched->sorted_atom_root);
1535
1536	while (next) {
1537		struct work_atoms *work_list;
1538
1539		work_list = rb_entry(next, struct work_atoms, node);
1540		output_lat_thread(sched, work_list);
1541		next = rb_next(next);
1542	}
1543
1544	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1545	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1546		(double)sched->all_runtime / 1e6, sched->all_count);
1547
1548	printf(" ---------------------------------------------------\n");
1549
1550	print_bad_events(sched);
1551	printf("\n");
1552
1553	perf_session__delete(session);
1554	return 0;
1555}
1556
1557static int perf_sched__map(struct perf_sched *sched)
 
 
 
 
 
 
 
1558{
1559	sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1560
1561	setup_pager();
1562	if (perf_sched__read_events(sched, NULL))
1563		return -1;
1564	print_bad_events(sched);
1565	return 0;
1566}
1567
1568static int perf_sched__replay(struct perf_sched *sched)
1569{
1570	unsigned long i;
1571
1572	calibrate_run_measurement_overhead(sched);
1573	calibrate_sleep_measurement_overhead(sched);
1574
1575	test_calibrations(sched);
1576
1577	if (perf_sched__read_events(sched, NULL))
1578		return -1;
1579
1580	printf("nr_run_events:        %ld\n", sched->nr_run_events);
1581	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1582	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1583
1584	if (sched->targetless_wakeups)
1585		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1586	if (sched->multitarget_wakeups)
1587		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1588	if (sched->nr_run_events_optimized)
1589		printf("run atoms optimized: %ld\n",
1590			sched->nr_run_events_optimized);
1591
1592	print_task_traces(sched);
1593	add_cross_task_wakeups(sched);
1594
1595	create_tasks(sched);
1596	printf("------------------------------------------------------------\n");
1597	for (i = 0; i < sched->replay_repeat; i++)
1598		run_one_test(sched);
1599
1600	return 0;
1601}
1602
1603static void setup_sorting(struct perf_sched *sched, const struct option *options,
1604			  const char * const usage_msg[])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605{
1606	char *tmp, *tok, *str = strdup(sched->sort_order);
1607
1608	for (tok = strtok_r(str, ", ", &tmp);
1609			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1610		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1611			error("Unknown --sort key: `%s'", tok);
1612			usage_with_options(usage_msg, options);
1613		}
1614	}
1615
1616	free(str);
1617
1618	sort_dimension__add("pid", &sched->cmp_pid);
1619}
1620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621static int __cmd_record(int argc, const char **argv)
1622{
1623	unsigned int rec_argc, i, j;
1624	const char **rec_argv;
1625	const char * const record_args[] = {
1626		"record",
1627		"-a",
1628		"-R",
1629		"-m", "1024",
1630		"-c", "1",
1631		"-e", "sched:sched_switch",
1632		"-e", "sched:sched_stat_wait",
1633		"-e", "sched:sched_stat_sleep",
1634		"-e", "sched:sched_stat_iowait",
1635		"-e", "sched:sched_stat_runtime",
1636		"-e", "sched:sched_process_fork",
1637		"-e", "sched:sched_wakeup",
1638		"-e", "sched:sched_migrate_task",
1639	};
1640
1641	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1642	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1643
1644	if (rec_argv == NULL)
1645		return -ENOMEM;
1646
1647	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1648		rec_argv[i] = strdup(record_args[i]);
1649
1650	for (j = 1; j < (unsigned int)argc; j++, i++)
1651		rec_argv[i] = argv[j];
1652
1653	BUG_ON(i != rec_argc);
1654
1655	return cmd_record(i, rec_argv, NULL);
1656}
1657
1658int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1659{
1660	const char default_sort_order[] = "avg, max, switch, runtime";
1661	struct perf_sched sched = {
1662		.tool = {
1663			.sample		 = perf_sched__process_tracepoint_sample,
1664			.comm		 = perf_event__process_comm,
1665			.lost		 = perf_event__process_lost,
1666			.fork		 = perf_sched__process_fork_event,
1667			.ordered_samples = true,
1668		},
1669		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
1670		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
1671		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1672		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1673		.sort_order	      = default_sort_order,
1674		.replay_repeat	      = 10,
1675		.profile_cpu	      = -1,
1676		.next_shortname1      = 'A',
1677		.next_shortname2      = '0',
1678	};
1679	const struct option latency_options[] = {
1680	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1681		   "sort by key(s): runtime, switch, avg, max"),
1682	OPT_INCR('v', "verbose", &verbose,
1683		    "be more verbose (show symbol address, etc)"),
1684	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1685		    "CPU to profile on"),
1686	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1687		    "dump raw trace in ASCII"),
1688	OPT_END()
1689	};
1690	const struct option replay_options[] = {
1691	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1692		     "repeat the workload replay N times (-1: infinite)"),
1693	OPT_INCR('v', "verbose", &verbose,
1694		    "be more verbose (show symbol address, etc)"),
1695	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1696		    "dump raw trace in ASCII"),
1697	OPT_END()
1698	};
1699	const struct option sched_options[] = {
1700	OPT_STRING('i', "input", &input_name, "file",
1701		    "input file name"),
1702	OPT_INCR('v', "verbose", &verbose,
1703		    "be more verbose (show symbol address, etc)"),
1704	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1705		    "dump raw trace in ASCII"),
1706	OPT_END()
1707	};
1708	const char * const latency_usage[] = {
1709		"perf sched latency [<options>]",
1710		NULL
1711	};
1712	const char * const replay_usage[] = {
1713		"perf sched replay [<options>]",
1714		NULL
1715	};
1716	const char * const sched_usage[] = {
1717		"perf sched [<options>] {record|latency|map|replay|script}",
1718		NULL
1719	};
1720	struct trace_sched_handler lat_ops  = {
1721		.wakeup_event	    = latency_wakeup_event,
1722		.switch_event	    = latency_switch_event,
1723		.runtime_event	    = latency_runtime_event,
1724		.migrate_task_event = latency_migrate_task_event,
1725	};
1726	struct trace_sched_handler map_ops  = {
1727		.switch_event	    = map_switch_event,
1728	};
1729	struct trace_sched_handler replay_ops  = {
1730		.wakeup_event	    = replay_wakeup_event,
1731		.switch_event	    = replay_switch_event,
1732		.fork_event	    = replay_fork_event,
1733	};
1734	unsigned int i;
1735
1736	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1737		sched.curr_pid[i] = -1;
1738
1739	argc = parse_options(argc, argv, sched_options, sched_usage,
1740			     PARSE_OPT_STOP_AT_NON_OPTION);
1741	if (!argc)
1742		usage_with_options(sched_usage, sched_options);
1743
1744	/*
1745	 * Aliased to 'perf script' for now:
1746	 */
1747	if (!strcmp(argv[0], "script"))
1748		return cmd_script(argc, argv, prefix);
1749
1750	symbol__init();
1751	if (!strncmp(argv[0], "rec", 3)) {
1752		return __cmd_record(argc, argv);
1753	} else if (!strncmp(argv[0], "lat", 3)) {
1754		sched.tp_handler = &lat_ops;
1755		if (argc > 1) {
1756			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1757			if (argc)
1758				usage_with_options(latency_usage, latency_options);
1759		}
1760		setup_sorting(&sched, latency_options, latency_usage);
1761		return perf_sched__lat(&sched);
1762	} else if (!strcmp(argv[0], "map")) {
1763		sched.tp_handler = &map_ops;
1764		setup_sorting(&sched, latency_options, latency_usage);
1765		return perf_sched__map(&sched);
1766	} else if (!strncmp(argv[0], "rep", 3)) {
1767		sched.tp_handler = &replay_ops;
1768		if (argc) {
1769			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1770			if (argc)
1771				usage_with_options(replay_usage, replay_options);
1772		}
1773		return perf_sched__replay(&sched);
1774	} else {
1775		usage_with_options(sched_usage, sched_options);
1776	}
1777
1778	return 0;
1779}
v3.5.6
   1#include "builtin.h"
   2#include "perf.h"
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
  13
  14#include "util/parse-options.h"
  15#include "util/trace-event.h"
  16
  17#include "util/debug.h"
  18
  19#include <sys/prctl.h>
  20#include <sys/resource.h>
  21
  22#include <semaphore.h>
  23#include <pthread.h>
  24#include <math.h>
  25
  26static const char		*input_name;
  27
  28static char			default_sort_order[] = "avg, max, switch, runtime";
  29static const char		*sort_order = default_sort_order;
  30
  31static int			profile_cpu = -1;
  32
  33#define PR_SET_NAME		15               /* Set process name */
  34#define MAX_CPUS		4096
  35
  36static u64			run_measurement_overhead;
  37static u64			sleep_measurement_overhead;
  38
  39#define COMM_LEN		20
  40#define SYM_LEN			129
  41
  42#define MAX_PID			65536
  43
  44static unsigned long		nr_tasks;
  45
  46struct sched_atom;
  47
  48struct task_desc {
  49	unsigned long		nr;
  50	unsigned long		pid;
  51	char			comm[COMM_LEN];
  52
  53	unsigned long		nr_events;
  54	unsigned long		curr_event;
  55	struct sched_atom	**atoms;
  56
  57	pthread_t		thread;
  58	sem_t			sleep_sem;
  59
  60	sem_t			ready_for_work;
  61	sem_t			work_done_sem;
  62
  63	u64			cpu_usage;
  64};
  65
  66enum sched_event_type {
  67	SCHED_EVENT_RUN,
  68	SCHED_EVENT_SLEEP,
  69	SCHED_EVENT_WAKEUP,
  70	SCHED_EVENT_MIGRATION,
  71};
  72
  73struct sched_atom {
  74	enum sched_event_type	type;
  75	int			specific_wait;
  76	u64			timestamp;
  77	u64			duration;
  78	unsigned long		nr;
  79	sem_t			*wait_sem;
  80	struct task_desc	*wakee;
  81};
  82
  83static struct task_desc		*pid_to_task[MAX_PID];
  84
  85static struct task_desc		**tasks;
  86
  87static pthread_mutex_t		start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  88static u64			start_time;
  89
  90static pthread_mutex_t		work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  91
  92static unsigned long		nr_run_events;
  93static unsigned long		nr_sleep_events;
  94static unsigned long		nr_wakeup_events;
  95
  96static unsigned long		nr_sleep_corrections;
  97static unsigned long		nr_run_events_optimized;
  98
  99static unsigned long		targetless_wakeups;
 100static unsigned long		multitarget_wakeups;
 101
 102static u64			cpu_usage;
 103static u64			runavg_cpu_usage;
 104static u64			parent_cpu_usage;
 105static u64			runavg_parent_cpu_usage;
 106
 107static unsigned long		nr_runs;
 108static u64			sum_runtime;
 109static u64			sum_fluct;
 110static u64			run_avg;
 111
 112static unsigned int		replay_repeat = 10;
 113static unsigned long		nr_timestamps;
 114static unsigned long		nr_unordered_timestamps;
 115static unsigned long		nr_state_machine_bugs;
 116static unsigned long		nr_context_switch_bugs;
 117static unsigned long		nr_events;
 118static unsigned long		nr_lost_chunks;
 119static unsigned long		nr_lost_events;
 120
 121#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
 122
 123enum thread_state {
 124	THREAD_SLEEPING = 0,
 125	THREAD_WAIT_CPU,
 126	THREAD_SCHED_IN,
 127	THREAD_IGNORE
 128};
 129
 130struct work_atom {
 131	struct list_head	list;
 132	enum thread_state	state;
 133	u64			sched_out_time;
 134	u64			wake_up_time;
 135	u64			sched_in_time;
 136	u64			runtime;
 137};
 138
 139struct work_atoms {
 140	struct list_head	work_list;
 141	struct thread		*thread;
 142	struct rb_node		node;
 143	u64			max_lat;
 144	u64			max_lat_at;
 145	u64			total_lat;
 146	u64			nb_atoms;
 147	u64			total_runtime;
 148};
 149
 150typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 151
 152static struct rb_root		atom_root, sorted_atom_root;
 
 
 
 
 153
 154static u64			all_runtime;
 155static u64			all_count;
 156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158static u64 get_nsecs(void)
 159{
 160	struct timespec ts;
 161
 162	clock_gettime(CLOCK_MONOTONIC, &ts);
 163
 164	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 165}
 166
 167static void burn_nsecs(u64 nsecs)
 168{
 169	u64 T0 = get_nsecs(), T1;
 170
 171	do {
 172		T1 = get_nsecs();
 173	} while (T1 + run_measurement_overhead < T0 + nsecs);
 174}
 175
 176static void sleep_nsecs(u64 nsecs)
 177{
 178	struct timespec ts;
 179
 180	ts.tv_nsec = nsecs % 999999999;
 181	ts.tv_sec = nsecs / 999999999;
 182
 183	nanosleep(&ts, NULL);
 184}
 185
 186static void calibrate_run_measurement_overhead(void)
 187{
 188	u64 T0, T1, delta, min_delta = 1000000000ULL;
 189	int i;
 190
 191	for (i = 0; i < 10; i++) {
 192		T0 = get_nsecs();
 193		burn_nsecs(0);
 194		T1 = get_nsecs();
 195		delta = T1-T0;
 196		min_delta = min(min_delta, delta);
 197	}
 198	run_measurement_overhead = min_delta;
 199
 200	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 201}
 202
 203static void calibrate_sleep_measurement_overhead(void)
 204{
 205	u64 T0, T1, delta, min_delta = 1000000000ULL;
 206	int i;
 207
 208	for (i = 0; i < 10; i++) {
 209		T0 = get_nsecs();
 210		sleep_nsecs(10000);
 211		T1 = get_nsecs();
 212		delta = T1-T0;
 213		min_delta = min(min_delta, delta);
 214	}
 215	min_delta -= 10000;
 216	sleep_measurement_overhead = min_delta;
 217
 218	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 219}
 220
 221static struct sched_atom *
 222get_new_event(struct task_desc *task, u64 timestamp)
 223{
 224	struct sched_atom *event = zalloc(sizeof(*event));
 225	unsigned long idx = task->nr_events;
 226	size_t size;
 227
 228	event->timestamp = timestamp;
 229	event->nr = idx;
 230
 231	task->nr_events++;
 232	size = sizeof(struct sched_atom *) * task->nr_events;
 233	task->atoms = realloc(task->atoms, size);
 234	BUG_ON(!task->atoms);
 235
 236	task->atoms[idx] = event;
 237
 238	return event;
 239}
 240
 241static struct sched_atom *last_event(struct task_desc *task)
 242{
 243	if (!task->nr_events)
 244		return NULL;
 245
 246	return task->atoms[task->nr_events - 1];
 247}
 248
 249static void
 250add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
 251{
 252	struct sched_atom *event, *curr_event = last_event(task);
 253
 254	/*
 255	 * optimize an existing RUN event by merging this one
 256	 * to it:
 257	 */
 258	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 259		nr_run_events_optimized++;
 260		curr_event->duration += duration;
 261		return;
 262	}
 263
 264	event = get_new_event(task, timestamp);
 265
 266	event->type = SCHED_EVENT_RUN;
 267	event->duration = duration;
 268
 269	nr_run_events++;
 270}
 271
 272static void
 273add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
 274		       struct task_desc *wakee)
 275{
 276	struct sched_atom *event, *wakee_event;
 277
 278	event = get_new_event(task, timestamp);
 279	event->type = SCHED_EVENT_WAKEUP;
 280	event->wakee = wakee;
 281
 282	wakee_event = last_event(wakee);
 283	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 284		targetless_wakeups++;
 285		return;
 286	}
 287	if (wakee_event->wait_sem) {
 288		multitarget_wakeups++;
 289		return;
 290	}
 291
 292	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 293	sem_init(wakee_event->wait_sem, 0, 0);
 294	wakee_event->specific_wait = 1;
 295	event->wait_sem = wakee_event->wait_sem;
 296
 297	nr_wakeup_events++;
 298}
 299
 300static void
 301add_sched_event_sleep(struct task_desc *task, u64 timestamp,
 302		      u64 task_state __used)
 303{
 304	struct sched_atom *event = get_new_event(task, timestamp);
 305
 306	event->type = SCHED_EVENT_SLEEP;
 307
 308	nr_sleep_events++;
 309}
 310
 311static struct task_desc *register_pid(unsigned long pid, const char *comm)
 
 312{
 313	struct task_desc *task;
 314
 315	BUG_ON(pid >= MAX_PID);
 316
 317	task = pid_to_task[pid];
 318
 319	if (task)
 320		return task;
 321
 322	task = zalloc(sizeof(*task));
 323	task->pid = pid;
 324	task->nr = nr_tasks;
 325	strcpy(task->comm, comm);
 326	/*
 327	 * every task starts in sleeping state - this gets ignored
 328	 * if there's no wakeup pointing to this sleep state:
 329	 */
 330	add_sched_event_sleep(task, 0, 0);
 331
 332	pid_to_task[pid] = task;
 333	nr_tasks++;
 334	tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
 335	BUG_ON(!tasks);
 336	tasks[task->nr] = task;
 337
 338	if (verbose)
 339		printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
 340
 341	return task;
 342}
 343
 344
 345static void print_task_traces(void)
 346{
 347	struct task_desc *task;
 348	unsigned long i;
 349
 350	for (i = 0; i < nr_tasks; i++) {
 351		task = tasks[i];
 352		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 353			task->nr, task->comm, task->pid, task->nr_events);
 354	}
 355}
 356
 357static void add_cross_task_wakeups(void)
 358{
 359	struct task_desc *task1, *task2;
 360	unsigned long i, j;
 361
 362	for (i = 0; i < nr_tasks; i++) {
 363		task1 = tasks[i];
 364		j = i + 1;
 365		if (j == nr_tasks)
 366			j = 0;
 367		task2 = tasks[j];
 368		add_sched_event_wakeup(task1, 0, task2);
 369	}
 370}
 371
 372static void
 373process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
 374{
 375	int ret = 0;
 376
 377	switch (atom->type) {
 378		case SCHED_EVENT_RUN:
 379			burn_nsecs(atom->duration);
 380			break;
 381		case SCHED_EVENT_SLEEP:
 382			if (atom->wait_sem)
 383				ret = sem_wait(atom->wait_sem);
 384			BUG_ON(ret);
 385			break;
 386		case SCHED_EVENT_WAKEUP:
 387			if (atom->wait_sem)
 388				ret = sem_post(atom->wait_sem);
 389			BUG_ON(ret);
 390			break;
 391		case SCHED_EVENT_MIGRATION:
 392			break;
 393		default:
 394			BUG_ON(1);
 395	}
 396}
 397
 398static u64 get_cpu_usage_nsec_parent(void)
 399{
 400	struct rusage ru;
 401	u64 sum;
 402	int err;
 403
 404	err = getrusage(RUSAGE_SELF, &ru);
 405	BUG_ON(err);
 406
 407	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 408	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 409
 410	return sum;
 411}
 412
 413static int self_open_counters(void)
 414{
 415	struct perf_event_attr attr;
 416	int fd;
 417
 418	memset(&attr, 0, sizeof(attr));
 419
 420	attr.type = PERF_TYPE_SOFTWARE;
 421	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 422
 423	fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
 424
 425	if (fd < 0)
 426		die("Error: sys_perf_event_open() syscall returned"
 427		    "with %d (%s)\n", fd, strerror(errno));
 428	return fd;
 429}
 430
 431static u64 get_cpu_usage_nsec_self(int fd)
 432{
 433	u64 runtime;
 434	int ret;
 435
 436	ret = read(fd, &runtime, sizeof(runtime));
 437	BUG_ON(ret != sizeof(runtime));
 438
 439	return runtime;
 440}
 441
 
 
 
 
 
 442static void *thread_func(void *ctx)
 443{
 444	struct task_desc *this_task = ctx;
 
 
 445	u64 cpu_usage_0, cpu_usage_1;
 446	unsigned long i, ret;
 447	char comm2[22];
 448	int fd;
 449
 
 
 450	sprintf(comm2, ":%s", this_task->comm);
 451	prctl(PR_SET_NAME, comm2);
 452	fd = self_open_counters();
 453
 
 454again:
 455	ret = sem_post(&this_task->ready_for_work);
 456	BUG_ON(ret);
 457	ret = pthread_mutex_lock(&start_work_mutex);
 458	BUG_ON(ret);
 459	ret = pthread_mutex_unlock(&start_work_mutex);
 460	BUG_ON(ret);
 461
 462	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 463
 464	for (i = 0; i < this_task->nr_events; i++) {
 465		this_task->curr_event = i;
 466		process_sched_event(this_task, this_task->atoms[i]);
 467	}
 468
 469	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 470	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 471	ret = sem_post(&this_task->work_done_sem);
 472	BUG_ON(ret);
 473
 474	ret = pthread_mutex_lock(&work_done_wait_mutex);
 475	BUG_ON(ret);
 476	ret = pthread_mutex_unlock(&work_done_wait_mutex);
 477	BUG_ON(ret);
 478
 479	goto again;
 480}
 481
 482static void create_tasks(void)
 483{
 484	struct task_desc *task;
 485	pthread_attr_t attr;
 486	unsigned long i;
 487	int err;
 488
 489	err = pthread_attr_init(&attr);
 490	BUG_ON(err);
 491	err = pthread_attr_setstacksize(&attr,
 492			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 493	BUG_ON(err);
 494	err = pthread_mutex_lock(&start_work_mutex);
 495	BUG_ON(err);
 496	err = pthread_mutex_lock(&work_done_wait_mutex);
 497	BUG_ON(err);
 498	for (i = 0; i < nr_tasks; i++) {
 499		task = tasks[i];
 
 
 
 500		sem_init(&task->sleep_sem, 0, 0);
 501		sem_init(&task->ready_for_work, 0, 0);
 502		sem_init(&task->work_done_sem, 0, 0);
 503		task->curr_event = 0;
 504		err = pthread_create(&task->thread, &attr, thread_func, task);
 505		BUG_ON(err);
 506	}
 507}
 508
 509static void wait_for_tasks(void)
 510{
 511	u64 cpu_usage_0, cpu_usage_1;
 512	struct task_desc *task;
 513	unsigned long i, ret;
 514
 515	start_time = get_nsecs();
 516	cpu_usage = 0;
 517	pthread_mutex_unlock(&work_done_wait_mutex);
 518
 519	for (i = 0; i < nr_tasks; i++) {
 520		task = tasks[i];
 521		ret = sem_wait(&task->ready_for_work);
 522		BUG_ON(ret);
 523		sem_init(&task->ready_for_work, 0, 0);
 524	}
 525	ret = pthread_mutex_lock(&work_done_wait_mutex);
 526	BUG_ON(ret);
 527
 528	cpu_usage_0 = get_cpu_usage_nsec_parent();
 529
 530	pthread_mutex_unlock(&start_work_mutex);
 531
 532	for (i = 0; i < nr_tasks; i++) {
 533		task = tasks[i];
 534		ret = sem_wait(&task->work_done_sem);
 535		BUG_ON(ret);
 536		sem_init(&task->work_done_sem, 0, 0);
 537		cpu_usage += task->cpu_usage;
 538		task->cpu_usage = 0;
 539	}
 540
 541	cpu_usage_1 = get_cpu_usage_nsec_parent();
 542	if (!runavg_cpu_usage)
 543		runavg_cpu_usage = cpu_usage;
 544	runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
 545
 546	parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 547	if (!runavg_parent_cpu_usage)
 548		runavg_parent_cpu_usage = parent_cpu_usage;
 549	runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
 550				   parent_cpu_usage)/10;
 551
 552	ret = pthread_mutex_lock(&start_work_mutex);
 553	BUG_ON(ret);
 554
 555	for (i = 0; i < nr_tasks; i++) {
 556		task = tasks[i];
 557		sem_init(&task->sleep_sem, 0, 0);
 558		task->curr_event = 0;
 559	}
 560}
 561
 562static void run_one_test(void)
 563{
 564	u64 T0, T1, delta, avg_delta, fluct;
 565
 566	T0 = get_nsecs();
 567	wait_for_tasks();
 568	T1 = get_nsecs();
 569
 570	delta = T1 - T0;
 571	sum_runtime += delta;
 572	nr_runs++;
 573
 574	avg_delta = sum_runtime / nr_runs;
 575	if (delta < avg_delta)
 576		fluct = avg_delta - delta;
 577	else
 578		fluct = delta - avg_delta;
 579	sum_fluct += fluct;
 580	if (!run_avg)
 581		run_avg = delta;
 582	run_avg = (run_avg*9 + delta)/10;
 583
 584	printf("#%-3ld: %0.3f, ",
 585		nr_runs, (double)delta/1000000.0);
 586
 587	printf("ravg: %0.2f, ",
 588		(double)run_avg/1e6);
 589
 590	printf("cpu: %0.2f / %0.2f",
 591		(double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
 592
 593#if 0
 594	/*
 595	 * rusage statistics done by the parent, these are less
 596	 * accurate than the sum_exec_runtime based statistics:
 597	 */
 598	printf(" [%0.2f / %0.2f]",
 599		(double)parent_cpu_usage/1e6,
 600		(double)runavg_parent_cpu_usage/1e6);
 601#endif
 602
 603	printf("\n");
 604
 605	if (nr_sleep_corrections)
 606		printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
 607	nr_sleep_corrections = 0;
 608}
 609
 610static void test_calibrations(void)
 611{
 612	u64 T0, T1;
 613
 614	T0 = get_nsecs();
 615	burn_nsecs(1e6);
 616	T1 = get_nsecs();
 617
 618	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 619
 620	T0 = get_nsecs();
 621	sleep_nsecs(1e6);
 622	T1 = get_nsecs();
 623
 624	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 625}
 626
 627#define FILL_FIELD(ptr, field, event, data)	\
 628	ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
 629
 630#define FILL_ARRAY(ptr, array, event, data)			\
 631do {								\
 632	void *__array = raw_field_ptr(event, #array, data);	\
 633	memcpy(ptr.array, __array, sizeof(ptr.array));	\
 634} while(0)
 635
 636#define FILL_COMMON_FIELDS(ptr, event, data)			\
 637do {								\
 638	FILL_FIELD(ptr, common_type, event, data);		\
 639	FILL_FIELD(ptr, common_flags, event, data);		\
 640	FILL_FIELD(ptr, common_preempt_count, event, data);	\
 641	FILL_FIELD(ptr, common_pid, event, data);		\
 642	FILL_FIELD(ptr, common_tgid, event, data);		\
 643} while (0)
 644
 645
 646
 647struct trace_switch_event {
 648	u32 size;
 649
 650	u16 common_type;
 651	u8 common_flags;
 652	u8 common_preempt_count;
 653	u32 common_pid;
 654	u32 common_tgid;
 655
 656	char prev_comm[16];
 657	u32 prev_pid;
 658	u32 prev_prio;
 659	u64 prev_state;
 660	char next_comm[16];
 661	u32 next_pid;
 662	u32 next_prio;
 663};
 664
 665struct trace_runtime_event {
 666	u32 size;
 667
 668	u16 common_type;
 669	u8 common_flags;
 670	u8 common_preempt_count;
 671	u32 common_pid;
 672	u32 common_tgid;
 673
 674	char comm[16];
 675	u32 pid;
 676	u64 runtime;
 677	u64 vruntime;
 678};
 679
 680struct trace_wakeup_event {
 681	u32 size;
 682
 683	u16 common_type;
 684	u8 common_flags;
 685	u8 common_preempt_count;
 686	u32 common_pid;
 687	u32 common_tgid;
 688
 689	char comm[16];
 690	u32 pid;
 691
 692	u32 prio;
 693	u32 success;
 694	u32 cpu;
 695};
 696
 697struct trace_fork_event {
 698	u32 size;
 699
 700	u16 common_type;
 701	u8 common_flags;
 702	u8 common_preempt_count;
 703	u32 common_pid;
 704	u32 common_tgid;
 705
 706	char parent_comm[16];
 707	u32 parent_pid;
 708	char child_comm[16];
 709	u32 child_pid;
 710};
 711
 712struct trace_migrate_task_event {
 713	u32 size;
 714
 715	u16 common_type;
 716	u8 common_flags;
 717	u8 common_preempt_count;
 718	u32 common_pid;
 719	u32 common_tgid;
 720
 721	char comm[16];
 722	u32 pid;
 723
 724	u32 prio;
 725	u32 cpu;
 726};
 727
 728struct trace_sched_handler {
 729	void (*switch_event)(struct trace_switch_event *,
 730			     struct machine *,
 731			     struct event_format *,
 732			     int cpu,
 733			     u64 timestamp,
 734			     struct thread *thread);
 735
 736	void (*runtime_event)(struct trace_runtime_event *,
 737			      struct machine *,
 738			      struct event_format *,
 739			      int cpu,
 740			      u64 timestamp,
 741			      struct thread *thread);
 742
 743	void (*wakeup_event)(struct trace_wakeup_event *,
 744			     struct machine *,
 745			     struct event_format *,
 746			     int cpu,
 747			     u64 timestamp,
 748			     struct thread *thread);
 749
 750	void (*fork_event)(struct trace_fork_event *,
 751			   struct event_format *,
 752			   int cpu,
 753			   u64 timestamp,
 754			   struct thread *thread);
 755
 756	void (*migrate_task_event)(struct trace_migrate_task_event *,
 757			   struct machine *machine,
 758			   struct event_format *,
 759			   int cpu,
 760			   u64 timestamp,
 761			   struct thread *thread);
 762};
 763
 764
 765static void
 766replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
 767		    struct machine *machine __used,
 768		    struct event_format *event,
 769		    int cpu __used,
 770		    u64 timestamp __used,
 771		    struct thread *thread __used)
 772{
 
 
 773	struct task_desc *waker, *wakee;
 774
 775	if (verbose) {
 776		printf("sched_wakeup event %p\n", event);
 777
 778		printf(" ... pid %d woke up %s/%d\n",
 779			wakeup_event->common_pid,
 780			wakeup_event->comm,
 781			wakeup_event->pid);
 782	}
 783
 784	waker = register_pid(wakeup_event->common_pid, "<unknown>");
 785	wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
 786
 787	add_sched_event_wakeup(waker, timestamp, wakee);
 
 788}
 789
 790static u64 cpu_last_switched[MAX_CPUS];
 791
 792static void
 793replay_switch_event(struct trace_switch_event *switch_event,
 794		    struct machine *machine __used,
 795		    struct event_format *event,
 796		    int cpu,
 797		    u64 timestamp,
 798		    struct thread *thread __used)
 799{
 800	struct task_desc *prev, __used *next;
 801	u64 timestamp0;
 
 802	s64 delta;
 803
 804	if (verbose)
 805		printf("sched_switch event %p\n", event);
 806
 807	if (cpu >= MAX_CPUS || cpu < 0)
 808		return;
 809
 810	timestamp0 = cpu_last_switched[cpu];
 811	if (timestamp0)
 812		delta = timestamp - timestamp0;
 813	else
 814		delta = 0;
 815
 816	if (delta < 0)
 817		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 
 
 
 
 
 818
 819	if (verbose) {
 820		printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 821			switch_event->prev_comm, switch_event->prev_pid,
 822			switch_event->next_comm, switch_event->next_pid,
 823			delta);
 824	}
 825
 826	prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
 827	next = register_pid(switch_event->next_pid, switch_event->next_comm);
 828
 829	cpu_last_switched[cpu] = timestamp;
 
 830
 831	add_sched_event_run(prev, timestamp, delta);
 832	add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
 833}
 834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836static void
 837replay_fork_event(struct trace_fork_event *fork_event,
 838		  struct event_format *event,
 839		  int cpu __used,
 840		  u64 timestamp __used,
 841		  struct thread *thread __used)
 842{
 843	if (verbose) {
 844		printf("sched_fork event %p\n", event);
 845		printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
 846		printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
 847	}
 848	register_pid(fork_event->parent_pid, fork_event->parent_comm);
 849	register_pid(fork_event->child_pid, fork_event->child_comm);
 
 
 850}
 851
 852static struct trace_sched_handler replay_ops  = {
 853	.wakeup_event		= replay_wakeup_event,
 854	.switch_event		= replay_switch_event,
 855	.fork_event		= replay_fork_event,
 856};
 857
 858struct sort_dimension {
 859	const char		*name;
 860	sort_fn_t		cmp;
 861	struct list_head	list;
 862};
 863
 864static LIST_HEAD(cmp_pid);
 865
 866static int
 867thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 868{
 869	struct sort_dimension *sort;
 870	int ret = 0;
 871
 872	BUG_ON(list_empty(list));
 873
 874	list_for_each_entry(sort, list, list) {
 875		ret = sort->cmp(l, r);
 876		if (ret)
 877			return ret;
 878	}
 879
 880	return ret;
 881}
 882
 883static struct work_atoms *
 884thread_atoms_search(struct rb_root *root, struct thread *thread,
 885			 struct list_head *sort_list)
 886{
 887	struct rb_node *node = root->rb_node;
 888	struct work_atoms key = { .thread = thread };
 889
 890	while (node) {
 891		struct work_atoms *atoms;
 892		int cmp;
 893
 894		atoms = container_of(node, struct work_atoms, node);
 895
 896		cmp = thread_lat_cmp(sort_list, &key, atoms);
 897		if (cmp > 0)
 898			node = node->rb_left;
 899		else if (cmp < 0)
 900			node = node->rb_right;
 901		else {
 902			BUG_ON(thread != atoms->thread);
 903			return atoms;
 904		}
 905	}
 906	return NULL;
 907}
 908
 909static void
 910__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 911			 struct list_head *sort_list)
 912{
 913	struct rb_node **new = &(root->rb_node), *parent = NULL;
 914
 915	while (*new) {
 916		struct work_atoms *this;
 917		int cmp;
 918
 919		this = container_of(*new, struct work_atoms, node);
 920		parent = *new;
 921
 922		cmp = thread_lat_cmp(sort_list, data, this);
 923
 924		if (cmp > 0)
 925			new = &((*new)->rb_left);
 926		else
 927			new = &((*new)->rb_right);
 928	}
 929
 930	rb_link_node(&data->node, parent, new);
 931	rb_insert_color(&data->node, root);
 932}
 933
 934static void thread_atoms_insert(struct thread *thread)
 935{
 936	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 937	if (!atoms)
 938		die("No memory");
 
 
 939
 940	atoms->thread = thread;
 941	INIT_LIST_HEAD(&atoms->work_list);
 942	__thread_latency_insert(&atom_root, atoms, &cmp_pid);
 
 943}
 944
 945static void
 946latency_fork_event(struct trace_fork_event *fork_event __used,
 947		   struct event_format *event __used,
 948		   int cpu __used,
 949		   u64 timestamp __used,
 950		   struct thread *thread __used)
 951{
 952	/* should insert the newcomer */
 953}
 954
 955__used
 956static char sched_out_state(struct trace_switch_event *switch_event)
 957{
 958	const char *str = TASK_STATE_TO_CHAR_STR;
 959
 960	return str[switch_event->prev_state];
 961}
 962
 963static void
 964add_sched_out_event(struct work_atoms *atoms,
 965		    char run_state,
 966		    u64 timestamp)
 967{
 968	struct work_atom *atom = zalloc(sizeof(*atom));
 969	if (!atom)
 970		die("Non memory");
 
 
 971
 972	atom->sched_out_time = timestamp;
 973
 974	if (run_state == 'R') {
 975		atom->state = THREAD_WAIT_CPU;
 976		atom->wake_up_time = atom->sched_out_time;
 977	}
 978
 979	list_add_tail(&atom->list, &atoms->work_list);
 
 980}
 981
 982static void
 983add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
 
 984{
 985	struct work_atom *atom;
 986
 987	BUG_ON(list_empty(&atoms->work_list));
 988
 989	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 990
 991	atom->runtime += delta;
 992	atoms->total_runtime += delta;
 993}
 994
 995static void
 996add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 997{
 998	struct work_atom *atom;
 999	u64 delta;
1000
1001	if (list_empty(&atoms->work_list))
1002		return;
1003
1004	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1005
1006	if (atom->state != THREAD_WAIT_CPU)
1007		return;
1008
1009	if (timestamp < atom->wake_up_time) {
1010		atom->state = THREAD_IGNORE;
1011		return;
1012	}
1013
1014	atom->state = THREAD_SCHED_IN;
1015	atom->sched_in_time = timestamp;
1016
1017	delta = atom->sched_in_time - atom->wake_up_time;
1018	atoms->total_lat += delta;
1019	if (delta > atoms->max_lat) {
1020		atoms->max_lat = delta;
1021		atoms->max_lat_at = timestamp;
1022	}
1023	atoms->nb_atoms++;
1024}
1025
1026static void
1027latency_switch_event(struct trace_switch_event *switch_event,
1028		     struct machine *machine,
1029		     struct event_format *event __used,
1030		     int cpu,
1031		     u64 timestamp,
1032		     struct thread *thread __used)
1033{
1034	struct work_atoms *out_events, *in_events;
1035	struct thread *sched_out, *sched_in;
1036	u64 timestamp0;
 
1037	s64 delta;
1038
1039	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040
1041	timestamp0 = cpu_last_switched[cpu];
1042	cpu_last_switched[cpu] = timestamp;
1043	if (timestamp0)
1044		delta = timestamp - timestamp0;
1045	else
1046		delta = 0;
1047
1048	if (delta < 0)
1049		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1050
 
1051
1052	sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1053	sched_in = machine__findnew_thread(machine, switch_event->next_pid);
1054
1055	out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1056	if (!out_events) {
1057		thread_atoms_insert(sched_out);
1058		out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1059		if (!out_events)
1060			die("out-event: Internal tree error");
 
 
 
1061	}
1062	add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
 
1063
1064	in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1065	if (!in_events) {
1066		thread_atoms_insert(sched_in);
1067		in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1068		if (!in_events)
1069			die("in-event: Internal tree error");
 
 
 
1070		/*
1071		 * Take came in we have not heard about yet,
1072		 * add in an initial atom in runnable state:
1073		 */
1074		add_sched_out_event(in_events, 'R', timestamp);
 
1075	}
1076	add_sched_in_event(in_events, timestamp);
 
 
1077}
1078
1079static void
1080latency_runtime_event(struct trace_runtime_event *runtime_event,
1081		     struct machine *machine,
1082		     struct event_format *event __used,
1083		     int cpu,
1084		     u64 timestamp,
1085		     struct thread *this_thread __used)
1086{
1087	struct thread *thread = machine__findnew_thread(machine, runtime_event->pid);
1088	struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
 
 
 
 
1089
1090	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1091	if (!atoms) {
1092		thread_atoms_insert(thread);
1093		atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1094		if (!atoms)
1095			die("in-event: Internal tree error");
1096		add_sched_out_event(atoms, 'R', timestamp);
 
 
 
 
1097	}
1098
1099	add_runtime_event(atoms, runtime_event->runtime, timestamp);
 
1100}
1101
1102static void
1103latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1104		     struct machine *machine,
1105		     struct event_format *__event __used,
1106		     int cpu __used,
1107		     u64 timestamp,
1108		     struct thread *thread __used)
1109{
 
 
1110	struct work_atoms *atoms;
1111	struct work_atom *atom;
1112	struct thread *wakee;
 
1113
1114	/* Note for later, it may be interesting to observe the failing cases */
1115	if (!wakeup_event->success)
1116		return;
1117
1118	wakee = machine__findnew_thread(machine, wakeup_event->pid);
1119	atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1120	if (!atoms) {
1121		thread_atoms_insert(wakee);
1122		atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1123		if (!atoms)
1124			die("wakeup-event: Internal tree error");
1125		add_sched_out_event(atoms, 'S', timestamp);
 
 
 
 
1126	}
1127
1128	BUG_ON(list_empty(&atoms->work_list));
1129
1130	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1131
1132	/*
1133	 * You WILL be missing events if you've recorded only
1134	 * one CPU, or are only looking at only one, so don't
1135	 * make useless noise.
1136	 */
1137	if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1138		nr_state_machine_bugs++;
1139
1140	nr_timestamps++;
1141	if (atom->sched_out_time > timestamp) {
1142		nr_unordered_timestamps++;
1143		return;
1144	}
1145
1146	atom->state = THREAD_WAIT_CPU;
1147	atom->wake_up_time = timestamp;
 
1148}
1149
1150static void
1151latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1152		     struct machine *machine,
1153		     struct event_format *__event __used,
1154		     int cpu __used,
1155		     u64 timestamp,
1156		     struct thread *thread __used)
1157{
 
 
1158	struct work_atoms *atoms;
1159	struct work_atom *atom;
1160	struct thread *migrant;
1161
1162	/*
1163	 * Only need to worry about migration when profiling one CPU.
1164	 */
1165	if (profile_cpu == -1)
1166		return;
1167
1168	migrant = machine__findnew_thread(machine, migrate_task_event->pid);
1169	atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1170	if (!atoms) {
1171		thread_atoms_insert(migrant);
1172		register_pid(migrant->pid, migrant->comm);
1173		atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1174		if (!atoms)
1175			die("migration-event: Internal tree error");
1176		add_sched_out_event(atoms, 'R', timestamp);
 
 
 
 
1177	}
1178
1179	BUG_ON(list_empty(&atoms->work_list));
1180
1181	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1182	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1183
1184	nr_timestamps++;
1185
1186	if (atom->sched_out_time > timestamp)
1187		nr_unordered_timestamps++;
 
 
1188}
1189
1190static struct trace_sched_handler lat_ops  = {
1191	.wakeup_event		= latency_wakeup_event,
1192	.switch_event		= latency_switch_event,
1193	.runtime_event		= latency_runtime_event,
1194	.fork_event		= latency_fork_event,
1195	.migrate_task_event	= latency_migrate_task_event,
1196};
1197
1198static void output_lat_thread(struct work_atoms *work_list)
1199{
1200	int i;
1201	int ret;
1202	u64 avg;
1203
1204	if (!work_list->nb_atoms)
1205		return;
1206	/*
1207	 * Ignore idle threads:
1208	 */
1209	if (!strcmp(work_list->thread->comm, "swapper"))
1210		return;
1211
1212	all_runtime += work_list->total_runtime;
1213	all_count += work_list->nb_atoms;
1214
1215	ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1216
1217	for (i = 0; i < 24 - ret; i++)
1218		printf(" ");
1219
1220	avg = work_list->total_lat / work_list->nb_atoms;
1221
1222	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1223	      (double)work_list->total_runtime / 1e6,
1224		 work_list->nb_atoms, (double)avg / 1e6,
1225		 (double)work_list->max_lat / 1e6,
1226		 (double)work_list->max_lat_at / 1e9);
1227}
1228
1229static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1230{
1231	if (l->thread->pid < r->thread->pid)
1232		return -1;
1233	if (l->thread->pid > r->thread->pid)
1234		return 1;
1235
1236	return 0;
1237}
1238
1239static struct sort_dimension pid_sort_dimension = {
1240	.name			= "pid",
1241	.cmp			= pid_cmp,
1242};
1243
1244static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1245{
1246	u64 avgl, avgr;
1247
1248	if (!l->nb_atoms)
1249		return -1;
1250
1251	if (!r->nb_atoms)
1252		return 1;
1253
1254	avgl = l->total_lat / l->nb_atoms;
1255	avgr = r->total_lat / r->nb_atoms;
1256
1257	if (avgl < avgr)
1258		return -1;
1259	if (avgl > avgr)
1260		return 1;
1261
1262	return 0;
1263}
1264
1265static struct sort_dimension avg_sort_dimension = {
1266	.name			= "avg",
1267	.cmp			= avg_cmp,
1268};
1269
1270static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1271{
1272	if (l->max_lat < r->max_lat)
1273		return -1;
1274	if (l->max_lat > r->max_lat)
1275		return 1;
1276
1277	return 0;
1278}
1279
1280static struct sort_dimension max_sort_dimension = {
1281	.name			= "max",
1282	.cmp			= max_cmp,
1283};
1284
1285static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1286{
1287	if (l->nb_atoms < r->nb_atoms)
1288		return -1;
1289	if (l->nb_atoms > r->nb_atoms)
1290		return 1;
1291
1292	return 0;
1293}
1294
1295static struct sort_dimension switch_sort_dimension = {
1296	.name			= "switch",
1297	.cmp			= switch_cmp,
1298};
1299
1300static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1301{
1302	if (l->total_runtime < r->total_runtime)
1303		return -1;
1304	if (l->total_runtime > r->total_runtime)
1305		return 1;
1306
1307	return 0;
1308}
1309
1310static struct sort_dimension runtime_sort_dimension = {
1311	.name			= "runtime",
1312	.cmp			= runtime_cmp,
1313};
1314
1315static struct sort_dimension *available_sorts[] = {
1316	&pid_sort_dimension,
1317	&avg_sort_dimension,
1318	&max_sort_dimension,
1319	&switch_sort_dimension,
1320	&runtime_sort_dimension,
1321};
1322
1323#define NB_AVAILABLE_SORTS	(int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1324
1325static LIST_HEAD(sort_list);
1326
1327static int sort_dimension__add(const char *tok, struct list_head *list)
1328{
1329	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330
1331	for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1332		if (!strcmp(available_sorts[i]->name, tok)) {
1333			list_add_tail(&available_sorts[i]->list, list);
1334
1335			return 0;
1336		}
1337	}
1338
1339	return -1;
1340}
1341
1342static void setup_sorting(void);
1343
1344static void sort_lat(void)
1345{
1346	struct rb_node *node;
1347
1348	for (;;) {
1349		struct work_atoms *data;
1350		node = rb_first(&atom_root);
1351		if (!node)
1352			break;
1353
1354		rb_erase(node, &atom_root);
1355		data = rb_entry(node, struct work_atoms, node);
1356		__thread_latency_insert(&sorted_atom_root, data, &sort_list);
1357	}
1358}
1359
1360static struct trace_sched_handler *trace_handler;
 
 
 
 
 
 
 
 
1361
1362static void
1363process_sched_wakeup_event(struct perf_tool *tool __used,
1364			   struct event_format *event,
1365			   struct perf_sample *sample,
1366			   struct machine *machine,
1367			   struct thread *thread)
1368{
1369	void *data = sample->raw_data;
1370	struct trace_wakeup_event wakeup_event;
1371
1372	FILL_COMMON_FIELDS(wakeup_event, event, data);
1373
1374	FILL_ARRAY(wakeup_event, comm, event, data);
1375	FILL_FIELD(wakeup_event, pid, event, data);
1376	FILL_FIELD(wakeup_event, prio, event, data);
1377	FILL_FIELD(wakeup_event, success, event, data);
1378	FILL_FIELD(wakeup_event, cpu, event, data);
1379
1380	if (trace_handler->wakeup_event)
1381		trace_handler->wakeup_event(&wakeup_event, machine, event,
1382					    sample->cpu, sample->time, thread);
1383}
1384
1385/*
1386 * Track the current task - that way we can know whether there's any
1387 * weird events, such as a task being switched away that is not current.
1388 */
1389static int max_cpu;
1390
1391static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1392
1393static struct thread *curr_thread[MAX_CPUS];
1394
1395static char next_shortname1 = 'A';
1396static char next_shortname2 = '0';
1397
1398static void
1399map_switch_event(struct trace_switch_event *switch_event,
1400		 struct machine *machine,
1401		 struct event_format *event __used,
1402		 int this_cpu,
1403		 u64 timestamp,
1404		 struct thread *thread __used)
1405{
1406	struct thread *sched_out __used, *sched_in;
 
 
1407	int new_shortname;
1408	u64 timestamp0;
1409	s64 delta;
1410	int cpu;
1411
1412	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1413
1414	if (this_cpu > max_cpu)
1415		max_cpu = this_cpu;
1416
1417	timestamp0 = cpu_last_switched[this_cpu];
1418	cpu_last_switched[this_cpu] = timestamp;
1419	if (timestamp0)
1420		delta = timestamp - timestamp0;
1421	else
1422		delta = 0;
1423
1424	if (delta < 0)
1425		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 
 
1426
 
 
1427
1428	sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1429	sched_in = machine__findnew_thread(machine, switch_event->next_pid);
1430
1431	curr_thread[this_cpu] = sched_in;
1432
1433	printf("  ");
1434
1435	new_shortname = 0;
1436	if (!sched_in->shortname[0]) {
1437		sched_in->shortname[0] = next_shortname1;
1438		sched_in->shortname[1] = next_shortname2;
1439
1440		if (next_shortname1 < 'Z') {
1441			next_shortname1++;
1442		} else {
1443			next_shortname1='A';
1444			if (next_shortname2 < '9') {
1445				next_shortname2++;
1446			} else {
1447				next_shortname2='0';
1448			}
1449		}
1450		new_shortname = 1;
1451	}
1452
1453	for (cpu = 0; cpu <= max_cpu; cpu++) {
1454		if (cpu != this_cpu)
1455			printf(" ");
1456		else
1457			printf("*");
1458
1459		if (curr_thread[cpu]) {
1460			if (curr_thread[cpu]->pid)
1461				printf("%2s ", curr_thread[cpu]->shortname);
1462			else
1463				printf(".  ");
1464		} else
1465			printf("   ");
1466	}
1467
1468	printf("  %12.6f secs ", (double)timestamp/1e9);
1469	if (new_shortname) {
1470		printf("%s => %s:%d\n",
1471			sched_in->shortname, sched_in->comm, sched_in->pid);
1472	} else {
1473		printf("\n");
1474	}
 
 
1475}
1476
1477static void
1478process_sched_switch_event(struct perf_tool *tool __used,
1479			   struct event_format *event,
1480			   struct perf_sample *sample,
1481			   struct machine *machine,
1482			   struct thread *thread)
1483{
1484	int this_cpu = sample->cpu;
1485	void *data = sample->raw_data;
1486	struct trace_switch_event switch_event;
1487
1488	FILL_COMMON_FIELDS(switch_event, event, data);
1489
1490	FILL_ARRAY(switch_event, prev_comm, event, data);
1491	FILL_FIELD(switch_event, prev_pid, event, data);
1492	FILL_FIELD(switch_event, prev_prio, event, data);
1493	FILL_FIELD(switch_event, prev_state, event, data);
1494	FILL_ARRAY(switch_event, next_comm, event, data);
1495	FILL_FIELD(switch_event, next_pid, event, data);
1496	FILL_FIELD(switch_event, next_prio, event, data);
1497
1498	if (curr_pid[this_cpu] != (u32)-1) {
1499		/*
1500		 * Are we trying to switch away a PID that is
1501		 * not current?
1502		 */
1503		if (curr_pid[this_cpu] != switch_event.prev_pid)
1504			nr_context_switch_bugs++;
1505	}
1506	if (trace_handler->switch_event)
1507		trace_handler->switch_event(&switch_event, machine, event,
1508					    this_cpu, sample->time, thread);
1509
1510	curr_pid[this_cpu] = switch_event.next_pid;
 
 
 
 
1511}
1512
1513static void
1514process_sched_runtime_event(struct perf_tool *tool __used,
1515			    struct event_format *event,
1516			    struct perf_sample *sample,
1517			    struct machine *machine,
1518			    struct thread *thread)
1519{
1520	void *data = sample->raw_data;
1521	struct trace_runtime_event runtime_event;
1522
1523	FILL_ARRAY(runtime_event, comm, event, data);
1524	FILL_FIELD(runtime_event, pid, event, data);
1525	FILL_FIELD(runtime_event, runtime, event, data);
1526	FILL_FIELD(runtime_event, vruntime, event, data);
1527
1528	if (trace_handler->runtime_event)
1529		trace_handler->runtime_event(&runtime_event, machine, event,
1530					     sample->cpu, sample->time, thread);
1531}
1532
1533static void
1534process_sched_fork_event(struct perf_tool *tool __used,
1535			 struct event_format *event,
1536			 struct perf_sample *sample,
1537			 struct machine *machine __used,
1538			 struct thread *thread)
1539{
1540	void *data = sample->raw_data;
1541	struct trace_fork_event fork_event;
1542
1543	FILL_COMMON_FIELDS(fork_event, event, data);
1544
1545	FILL_ARRAY(fork_event, parent_comm, event, data);
1546	FILL_FIELD(fork_event, parent_pid, event, data);
1547	FILL_ARRAY(fork_event, child_comm, event, data);
1548	FILL_FIELD(fork_event, child_pid, event, data);
1549
1550	if (trace_handler->fork_event)
1551		trace_handler->fork_event(&fork_event, event,
1552					  sample->cpu, sample->time, thread);
1553}
1554
1555static void
1556process_sched_exit_event(struct perf_tool *tool __used,
1557			 struct event_format *event,
1558			 struct perf_sample *sample __used,
1559			 struct machine *machine __used,
1560			 struct thread *thread __used)
1561{
1562	if (verbose)
1563		printf("sched_exit event %p\n", event);
1564}
1565
1566static void
1567process_sched_migrate_task_event(struct perf_tool *tool __used,
1568				 struct event_format *event,
1569				 struct perf_sample *sample,
1570				 struct machine *machine,
1571				 struct thread *thread)
1572{
1573	void *data = sample->raw_data;
1574	struct trace_migrate_task_event migrate_task_event;
1575
1576	FILL_COMMON_FIELDS(migrate_task_event, event, data);
 
1577
1578	FILL_ARRAY(migrate_task_event, comm, event, data);
1579	FILL_FIELD(migrate_task_event, pid, event, data);
1580	FILL_FIELD(migrate_task_event, prio, event, data);
1581	FILL_FIELD(migrate_task_event, cpu, event, data);
1582
1583	if (trace_handler->migrate_task_event)
1584		trace_handler->migrate_task_event(&migrate_task_event, machine,
1585						  event, sample->cpu,
1586						  sample->time, thread);
1587}
1588
1589typedef void (*tracepoint_handler)(struct perf_tool *tool, struct event_format *event,
1590				   struct perf_sample *sample,
1591				   struct machine *machine,
1592				   struct thread *thread);
1593
1594static int perf_sched__process_tracepoint_sample(struct perf_tool *tool,
1595						 union perf_event *event __used,
1596						 struct perf_sample *sample,
1597						 struct perf_evsel *evsel,
1598						 struct machine *machine)
1599{
1600	struct thread *thread = machine__findnew_thread(machine, sample->pid);
1601
1602	if (thread == NULL) {
1603		pr_debug("problem processing %s event, skipping it.\n",
1604			 evsel->name);
1605		return -1;
1606	}
1607
1608	evsel->hists.stats.total_period += sample->period;
1609	hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1610
1611	if (evsel->handler.func != NULL) {
1612		tracepoint_handler f = evsel->handler.func;
1613
1614		if (evsel->handler.data == NULL)
1615			evsel->handler.data = trace_find_event(evsel->attr.config);
1616
1617		f(tool, evsel->handler.data, sample, machine, thread);
1618	}
1619
1620	return 0;
1621}
1622
1623static struct perf_tool perf_sched = {
1624	.sample			= perf_sched__process_tracepoint_sample,
1625	.comm			= perf_event__process_comm,
1626	.lost			= perf_event__process_lost,
1627	.fork			= perf_event__process_task,
1628	.ordered_samples	= true,
1629};
1630
1631static void read_events(bool destroy, struct perf_session **psession)
1632{
1633	int err = -EINVAL;
1634	const struct perf_evsel_str_handler handlers[] = {
1635		{ "sched:sched_switch",	      process_sched_switch_event, },
1636		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1637		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1638		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1639		{ "sched:sched_process_fork", process_sched_fork_event, },
1640		{ "sched:sched_process_exit", process_sched_exit_event, },
1641		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1642	};
1643	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644							 0, false, &perf_sched);
1645	if (session == NULL)
1646		die("No Memory");
 
 
 
 
 
 
 
1647
1648	err = perf_evlist__set_tracepoints_handlers_array(session->evlist, handlers);
1649	assert(err == 0);
1650
1651	if (perf_session__has_traces(session, "record -R")) {
1652		err = perf_session__process_events(session, &perf_sched);
1653		if (err)
1654			die("Failed to process events, error %d", err);
 
 
1655
1656		nr_events      = session->hists.stats.nr_events[0];
1657		nr_lost_events = session->hists.stats.total_lost;
1658		nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1659	}
1660
1661	if (destroy)
 
 
1662		perf_session__delete(session);
1663
1664	if (psession)
1665		*psession = session;
 
 
 
1666}
1667
1668static void print_bad_events(void)
1669{
1670	if (nr_unordered_timestamps && nr_timestamps) {
1671		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1672			(double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1673			nr_unordered_timestamps, nr_timestamps);
1674	}
1675	if (nr_lost_events && nr_events) {
1676		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1677			(double)nr_lost_events/(double)nr_events*100.0,
1678			nr_lost_events, nr_events, nr_lost_chunks);
1679	}
1680	if (nr_state_machine_bugs && nr_timestamps) {
1681		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1682			(double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1683			nr_state_machine_bugs, nr_timestamps);
1684		if (nr_lost_events)
1685			printf(" (due to lost events?)");
1686		printf("\n");
1687	}
1688	if (nr_context_switch_bugs && nr_timestamps) {
1689		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1690			(double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1691			nr_context_switch_bugs, nr_timestamps);
1692		if (nr_lost_events)
1693			printf(" (due to lost events?)");
1694		printf("\n");
1695	}
1696}
1697
1698static void __cmd_lat(void)
1699{
1700	struct rb_node *next;
1701	struct perf_session *session;
1702
1703	setup_pager();
1704	read_events(false, &session);
1705	sort_lat();
1706
1707	printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1708	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1709	printf(" ---------------------------------------------------------------------------------------------------------------\n");
 
 
1710
1711	next = rb_first(&sorted_atom_root);
 
 
 
 
1712
1713	while (next) {
1714		struct work_atoms *work_list;
1715
1716		work_list = rb_entry(next, struct work_atoms, node);
1717		output_lat_thread(work_list);
1718		next = rb_next(next);
1719	}
1720
1721	printf(" -----------------------------------------------------------------------------------------\n");
1722	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1723		(double)all_runtime/1e6, all_count);
1724
1725	printf(" ---------------------------------------------------\n");
1726
1727	print_bad_events();
1728	printf("\n");
1729
1730	perf_session__delete(session);
 
1731}
1732
1733static struct trace_sched_handler map_ops  = {
1734	.wakeup_event		= NULL,
1735	.switch_event		= map_switch_event,
1736	.runtime_event		= NULL,
1737	.fork_event		= NULL,
1738};
1739
1740static void __cmd_map(void)
1741{
1742	max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1743
1744	setup_pager();
1745	read_events(true, NULL);
1746	print_bad_events();
 
 
1747}
1748
1749static void __cmd_replay(void)
1750{
1751	unsigned long i;
1752
1753	calibrate_run_measurement_overhead();
1754	calibrate_sleep_measurement_overhead();
1755
1756	test_calibrations();
1757
1758	read_events(true, NULL);
 
1759
1760	printf("nr_run_events:        %ld\n", nr_run_events);
1761	printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1762	printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1763
1764	if (targetless_wakeups)
1765		printf("target-less wakeups:  %ld\n", targetless_wakeups);
1766	if (multitarget_wakeups)
1767		printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1768	if (nr_run_events_optimized)
1769		printf("run atoms optimized: %ld\n",
1770			nr_run_events_optimized);
1771
1772	print_task_traces();
1773	add_cross_task_wakeups();
1774
1775	create_tasks();
1776	printf("------------------------------------------------------------\n");
1777	for (i = 0; i < replay_repeat; i++)
1778		run_one_test();
 
 
1779}
1780
1781
1782static const char * const sched_usage[] = {
1783	"perf sched [<options>] {record|latency|map|replay|script}",
1784	NULL
1785};
1786
1787static const struct option sched_options[] = {
1788	OPT_STRING('i', "input", &input_name, "file",
1789		    "input file name"),
1790	OPT_INCR('v', "verbose", &verbose,
1791		    "be more verbose (show symbol address, etc)"),
1792	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1793		    "dump raw trace in ASCII"),
1794	OPT_END()
1795};
1796
1797static const char * const latency_usage[] = {
1798	"perf sched latency [<options>]",
1799	NULL
1800};
1801
1802static const struct option latency_options[] = {
1803	OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1804		   "sort by key(s): runtime, switch, avg, max"),
1805	OPT_INCR('v', "verbose", &verbose,
1806		    "be more verbose (show symbol address, etc)"),
1807	OPT_INTEGER('C', "CPU", &profile_cpu,
1808		    "CPU to profile on"),
1809	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810		    "dump raw trace in ASCII"),
1811	OPT_END()
1812};
1813
1814static const char * const replay_usage[] = {
1815	"perf sched replay [<options>]",
1816	NULL
1817};
1818
1819static const struct option replay_options[] = {
1820	OPT_UINTEGER('r', "repeat", &replay_repeat,
1821		     "repeat the workload replay N times (-1: infinite)"),
1822	OPT_INCR('v', "verbose", &verbose,
1823		    "be more verbose (show symbol address, etc)"),
1824	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1825		    "dump raw trace in ASCII"),
1826	OPT_END()
1827};
1828
1829static void setup_sorting(void)
1830{
1831	char *tmp, *tok, *str = strdup(sort_order);
1832
1833	for (tok = strtok_r(str, ", ", &tmp);
1834			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1835		if (sort_dimension__add(tok, &sort_list) < 0) {
1836			error("Unknown --sort key: `%s'", tok);
1837			usage_with_options(latency_usage, latency_options);
1838		}
1839	}
1840
1841	free(str);
1842
1843	sort_dimension__add("pid", &cmp_pid);
1844}
1845
1846static const char *record_args[] = {
1847	"record",
1848	"-a",
1849	"-R",
1850	"-f",
1851	"-m", "1024",
1852	"-c", "1",
1853	"-e", "sched:sched_switch",
1854	"-e", "sched:sched_stat_wait",
1855	"-e", "sched:sched_stat_sleep",
1856	"-e", "sched:sched_stat_iowait",
1857	"-e", "sched:sched_stat_runtime",
1858	"-e", "sched:sched_process_exit",
1859	"-e", "sched:sched_process_fork",
1860	"-e", "sched:sched_wakeup",
1861	"-e", "sched:sched_migrate_task",
1862};
1863
1864static int __cmd_record(int argc, const char **argv)
1865{
1866	unsigned int rec_argc, i, j;
1867	const char **rec_argv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868
1869	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1870	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1871
1872	if (rec_argv == NULL)
1873		return -ENOMEM;
1874
1875	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1876		rec_argv[i] = strdup(record_args[i]);
1877
1878	for (j = 1; j < (unsigned int)argc; j++, i++)
1879		rec_argv[i] = argv[j];
1880
1881	BUG_ON(i != rec_argc);
1882
1883	return cmd_record(i, rec_argv, NULL);
1884}
1885
1886int cmd_sched(int argc, const char **argv, const char *prefix __used)
1887{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888	argc = parse_options(argc, argv, sched_options, sched_usage,
1889			     PARSE_OPT_STOP_AT_NON_OPTION);
1890	if (!argc)
1891		usage_with_options(sched_usage, sched_options);
1892
1893	/*
1894	 * Aliased to 'perf script' for now:
1895	 */
1896	if (!strcmp(argv[0], "script"))
1897		return cmd_script(argc, argv, prefix);
1898
1899	symbol__init();
1900	if (!strncmp(argv[0], "rec", 3)) {
1901		return __cmd_record(argc, argv);
1902	} else if (!strncmp(argv[0], "lat", 3)) {
1903		trace_handler = &lat_ops;
1904		if (argc > 1) {
1905			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1906			if (argc)
1907				usage_with_options(latency_usage, latency_options);
1908		}
1909		setup_sorting();
1910		__cmd_lat();
1911	} else if (!strcmp(argv[0], "map")) {
1912		trace_handler = &map_ops;
1913		setup_sorting();
1914		__cmd_map();
1915	} else if (!strncmp(argv[0], "rep", 3)) {
1916		trace_handler = &replay_ops;
1917		if (argc) {
1918			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1919			if (argc)
1920				usage_with_options(replay_usage, replay_options);
1921		}
1922		__cmd_replay();
1923	} else {
1924		usage_with_options(sched_usage, sched_options);
1925	}
1926
1927	return 0;
1928}