Loading...
1#include "builtin.h"
2#include "perf.h"
3
4#include "util/util.h"
5#include "util/evlist.h"
6#include "util/cache.h"
7#include "util/evsel.h"
8#include "util/symbol.h"
9#include "util/thread.h"
10#include "util/header.h"
11#include "util/session.h"
12#include "util/tool.h"
13
14#include "util/parse-options.h"
15#include "util/trace-event.h"
16
17#include "util/debug.h"
18
19#include <sys/prctl.h>
20#include <sys/resource.h>
21
22#include <semaphore.h>
23#include <pthread.h>
24#include <math.h>
25
26#define PR_SET_NAME 15 /* Set process name */
27#define MAX_CPUS 4096
28#define COMM_LEN 20
29#define SYM_LEN 129
30#define MAX_PID 65536
31
32struct sched_atom;
33
34struct task_desc {
35 unsigned long nr;
36 unsigned long pid;
37 char comm[COMM_LEN];
38
39 unsigned long nr_events;
40 unsigned long curr_event;
41 struct sched_atom **atoms;
42
43 pthread_t thread;
44 sem_t sleep_sem;
45
46 sem_t ready_for_work;
47 sem_t work_done_sem;
48
49 u64 cpu_usage;
50};
51
52enum sched_event_type {
53 SCHED_EVENT_RUN,
54 SCHED_EVENT_SLEEP,
55 SCHED_EVENT_WAKEUP,
56 SCHED_EVENT_MIGRATION,
57};
58
59struct sched_atom {
60 enum sched_event_type type;
61 int specific_wait;
62 u64 timestamp;
63 u64 duration;
64 unsigned long nr;
65 sem_t *wait_sem;
66 struct task_desc *wakee;
67};
68
69#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
70
71enum thread_state {
72 THREAD_SLEEPING = 0,
73 THREAD_WAIT_CPU,
74 THREAD_SCHED_IN,
75 THREAD_IGNORE
76};
77
78struct work_atom {
79 struct list_head list;
80 enum thread_state state;
81 u64 sched_out_time;
82 u64 wake_up_time;
83 u64 sched_in_time;
84 u64 runtime;
85};
86
87struct work_atoms {
88 struct list_head work_list;
89 struct thread *thread;
90 struct rb_node node;
91 u64 max_lat;
92 u64 max_lat_at;
93 u64 total_lat;
94 u64 nb_atoms;
95 u64 total_runtime;
96};
97
98typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
99
100struct perf_sched;
101
102struct trace_sched_handler {
103 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104 struct perf_sample *sample, struct machine *machine);
105
106 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107 struct perf_sample *sample, struct machine *machine);
108
109 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
111
112 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
113 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
114 struct machine *machine);
115
116 int (*migrate_task_event)(struct perf_sched *sched,
117 struct perf_evsel *evsel,
118 struct perf_sample *sample,
119 struct machine *machine);
120};
121
122struct perf_sched {
123 struct perf_tool tool;
124 const char *sort_order;
125 unsigned long nr_tasks;
126 struct task_desc *pid_to_task[MAX_PID];
127 struct task_desc **tasks;
128 const struct trace_sched_handler *tp_handler;
129 pthread_mutex_t start_work_mutex;
130 pthread_mutex_t work_done_wait_mutex;
131 int profile_cpu;
132/*
133 * Track the current task - that way we can know whether there's any
134 * weird events, such as a task being switched away that is not current.
135 */
136 int max_cpu;
137 u32 curr_pid[MAX_CPUS];
138 struct thread *curr_thread[MAX_CPUS];
139 char next_shortname1;
140 char next_shortname2;
141 unsigned int replay_repeat;
142 unsigned long nr_run_events;
143 unsigned long nr_sleep_events;
144 unsigned long nr_wakeup_events;
145 unsigned long nr_sleep_corrections;
146 unsigned long nr_run_events_optimized;
147 unsigned long targetless_wakeups;
148 unsigned long multitarget_wakeups;
149 unsigned long nr_runs;
150 unsigned long nr_timestamps;
151 unsigned long nr_unordered_timestamps;
152 unsigned long nr_state_machine_bugs;
153 unsigned long nr_context_switch_bugs;
154 unsigned long nr_events;
155 unsigned long nr_lost_chunks;
156 unsigned long nr_lost_events;
157 u64 run_measurement_overhead;
158 u64 sleep_measurement_overhead;
159 u64 start_time;
160 u64 cpu_usage;
161 u64 runavg_cpu_usage;
162 u64 parent_cpu_usage;
163 u64 runavg_parent_cpu_usage;
164 u64 sum_runtime;
165 u64 sum_fluct;
166 u64 run_avg;
167 u64 all_runtime;
168 u64 all_count;
169 u64 cpu_last_switched[MAX_CPUS];
170 struct rb_root atom_root, sorted_atom_root;
171 struct list_head sort_list, cmp_pid;
172};
173
174static u64 get_nsecs(void)
175{
176 struct timespec ts;
177
178 clock_gettime(CLOCK_MONOTONIC, &ts);
179
180 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
181}
182
183static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
184{
185 u64 T0 = get_nsecs(), T1;
186
187 do {
188 T1 = get_nsecs();
189 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
190}
191
192static void sleep_nsecs(u64 nsecs)
193{
194 struct timespec ts;
195
196 ts.tv_nsec = nsecs % 999999999;
197 ts.tv_sec = nsecs / 999999999;
198
199 nanosleep(&ts, NULL);
200}
201
202static void calibrate_run_measurement_overhead(struct perf_sched *sched)
203{
204 u64 T0, T1, delta, min_delta = 1000000000ULL;
205 int i;
206
207 for (i = 0; i < 10; i++) {
208 T0 = get_nsecs();
209 burn_nsecs(sched, 0);
210 T1 = get_nsecs();
211 delta = T1-T0;
212 min_delta = min(min_delta, delta);
213 }
214 sched->run_measurement_overhead = min_delta;
215
216 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
217}
218
219static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
220{
221 u64 T0, T1, delta, min_delta = 1000000000ULL;
222 int i;
223
224 for (i = 0; i < 10; i++) {
225 T0 = get_nsecs();
226 sleep_nsecs(10000);
227 T1 = get_nsecs();
228 delta = T1-T0;
229 min_delta = min(min_delta, delta);
230 }
231 min_delta -= 10000;
232 sched->sleep_measurement_overhead = min_delta;
233
234 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
235}
236
237static struct sched_atom *
238get_new_event(struct task_desc *task, u64 timestamp)
239{
240 struct sched_atom *event = zalloc(sizeof(*event));
241 unsigned long idx = task->nr_events;
242 size_t size;
243
244 event->timestamp = timestamp;
245 event->nr = idx;
246
247 task->nr_events++;
248 size = sizeof(struct sched_atom *) * task->nr_events;
249 task->atoms = realloc(task->atoms, size);
250 BUG_ON(!task->atoms);
251
252 task->atoms[idx] = event;
253
254 return event;
255}
256
257static struct sched_atom *last_event(struct task_desc *task)
258{
259 if (!task->nr_events)
260 return NULL;
261
262 return task->atoms[task->nr_events - 1];
263}
264
265static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
266 u64 timestamp, u64 duration)
267{
268 struct sched_atom *event, *curr_event = last_event(task);
269
270 /*
271 * optimize an existing RUN event by merging this one
272 * to it:
273 */
274 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
275 sched->nr_run_events_optimized++;
276 curr_event->duration += duration;
277 return;
278 }
279
280 event = get_new_event(task, timestamp);
281
282 event->type = SCHED_EVENT_RUN;
283 event->duration = duration;
284
285 sched->nr_run_events++;
286}
287
288static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
289 u64 timestamp, struct task_desc *wakee)
290{
291 struct sched_atom *event, *wakee_event;
292
293 event = get_new_event(task, timestamp);
294 event->type = SCHED_EVENT_WAKEUP;
295 event->wakee = wakee;
296
297 wakee_event = last_event(wakee);
298 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
299 sched->targetless_wakeups++;
300 return;
301 }
302 if (wakee_event->wait_sem) {
303 sched->multitarget_wakeups++;
304 return;
305 }
306
307 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
308 sem_init(wakee_event->wait_sem, 0, 0);
309 wakee_event->specific_wait = 1;
310 event->wait_sem = wakee_event->wait_sem;
311
312 sched->nr_wakeup_events++;
313}
314
315static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
316 u64 timestamp, u64 task_state __maybe_unused)
317{
318 struct sched_atom *event = get_new_event(task, timestamp);
319
320 event->type = SCHED_EVENT_SLEEP;
321
322 sched->nr_sleep_events++;
323}
324
325static struct task_desc *register_pid(struct perf_sched *sched,
326 unsigned long pid, const char *comm)
327{
328 struct task_desc *task;
329
330 BUG_ON(pid >= MAX_PID);
331
332 task = sched->pid_to_task[pid];
333
334 if (task)
335 return task;
336
337 task = zalloc(sizeof(*task));
338 task->pid = pid;
339 task->nr = sched->nr_tasks;
340 strcpy(task->comm, comm);
341 /*
342 * every task starts in sleeping state - this gets ignored
343 * if there's no wakeup pointing to this sleep state:
344 */
345 add_sched_event_sleep(sched, task, 0, 0);
346
347 sched->pid_to_task[pid] = task;
348 sched->nr_tasks++;
349 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
350 BUG_ON(!sched->tasks);
351 sched->tasks[task->nr] = task;
352
353 if (verbose)
354 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
355
356 return task;
357}
358
359
360static void print_task_traces(struct perf_sched *sched)
361{
362 struct task_desc *task;
363 unsigned long i;
364
365 for (i = 0; i < sched->nr_tasks; i++) {
366 task = sched->tasks[i];
367 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368 task->nr, task->comm, task->pid, task->nr_events);
369 }
370}
371
372static void add_cross_task_wakeups(struct perf_sched *sched)
373{
374 struct task_desc *task1, *task2;
375 unsigned long i, j;
376
377 for (i = 0; i < sched->nr_tasks; i++) {
378 task1 = sched->tasks[i];
379 j = i + 1;
380 if (j == sched->nr_tasks)
381 j = 0;
382 task2 = sched->tasks[j];
383 add_sched_event_wakeup(sched, task1, 0, task2);
384 }
385}
386
387static void perf_sched__process_event(struct perf_sched *sched,
388 struct sched_atom *atom)
389{
390 int ret = 0;
391
392 switch (atom->type) {
393 case SCHED_EVENT_RUN:
394 burn_nsecs(sched, atom->duration);
395 break;
396 case SCHED_EVENT_SLEEP:
397 if (atom->wait_sem)
398 ret = sem_wait(atom->wait_sem);
399 BUG_ON(ret);
400 break;
401 case SCHED_EVENT_WAKEUP:
402 if (atom->wait_sem)
403 ret = sem_post(atom->wait_sem);
404 BUG_ON(ret);
405 break;
406 case SCHED_EVENT_MIGRATION:
407 break;
408 default:
409 BUG_ON(1);
410 }
411}
412
413static u64 get_cpu_usage_nsec_parent(void)
414{
415 struct rusage ru;
416 u64 sum;
417 int err;
418
419 err = getrusage(RUSAGE_SELF, &ru);
420 BUG_ON(err);
421
422 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
423 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
424
425 return sum;
426}
427
428static int self_open_counters(void)
429{
430 struct perf_event_attr attr;
431 int fd;
432
433 memset(&attr, 0, sizeof(attr));
434
435 attr.type = PERF_TYPE_SOFTWARE;
436 attr.config = PERF_COUNT_SW_TASK_CLOCK;
437
438 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
439
440 if (fd < 0)
441 pr_err("Error: sys_perf_event_open() syscall returned "
442 "with %d (%s)\n", fd, strerror(errno));
443 return fd;
444}
445
446static u64 get_cpu_usage_nsec_self(int fd)
447{
448 u64 runtime;
449 int ret;
450
451 ret = read(fd, &runtime, sizeof(runtime));
452 BUG_ON(ret != sizeof(runtime));
453
454 return runtime;
455}
456
457struct sched_thread_parms {
458 struct task_desc *task;
459 struct perf_sched *sched;
460};
461
462static void *thread_func(void *ctx)
463{
464 struct sched_thread_parms *parms = ctx;
465 struct task_desc *this_task = parms->task;
466 struct perf_sched *sched = parms->sched;
467 u64 cpu_usage_0, cpu_usage_1;
468 unsigned long i, ret;
469 char comm2[22];
470 int fd;
471
472 zfree(&parms);
473
474 sprintf(comm2, ":%s", this_task->comm);
475 prctl(PR_SET_NAME, comm2);
476 fd = self_open_counters();
477 if (fd < 0)
478 return NULL;
479again:
480 ret = sem_post(&this_task->ready_for_work);
481 BUG_ON(ret);
482 ret = pthread_mutex_lock(&sched->start_work_mutex);
483 BUG_ON(ret);
484 ret = pthread_mutex_unlock(&sched->start_work_mutex);
485 BUG_ON(ret);
486
487 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
488
489 for (i = 0; i < this_task->nr_events; i++) {
490 this_task->curr_event = i;
491 perf_sched__process_event(sched, this_task->atoms[i]);
492 }
493
494 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
495 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
496 ret = sem_post(&this_task->work_done_sem);
497 BUG_ON(ret);
498
499 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
500 BUG_ON(ret);
501 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
502 BUG_ON(ret);
503
504 goto again;
505}
506
507static void create_tasks(struct perf_sched *sched)
508{
509 struct task_desc *task;
510 pthread_attr_t attr;
511 unsigned long i;
512 int err;
513
514 err = pthread_attr_init(&attr);
515 BUG_ON(err);
516 err = pthread_attr_setstacksize(&attr,
517 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
518 BUG_ON(err);
519 err = pthread_mutex_lock(&sched->start_work_mutex);
520 BUG_ON(err);
521 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
522 BUG_ON(err);
523 for (i = 0; i < sched->nr_tasks; i++) {
524 struct sched_thread_parms *parms = malloc(sizeof(*parms));
525 BUG_ON(parms == NULL);
526 parms->task = task = sched->tasks[i];
527 parms->sched = sched;
528 sem_init(&task->sleep_sem, 0, 0);
529 sem_init(&task->ready_for_work, 0, 0);
530 sem_init(&task->work_done_sem, 0, 0);
531 task->curr_event = 0;
532 err = pthread_create(&task->thread, &attr, thread_func, parms);
533 BUG_ON(err);
534 }
535}
536
537static void wait_for_tasks(struct perf_sched *sched)
538{
539 u64 cpu_usage_0, cpu_usage_1;
540 struct task_desc *task;
541 unsigned long i, ret;
542
543 sched->start_time = get_nsecs();
544 sched->cpu_usage = 0;
545 pthread_mutex_unlock(&sched->work_done_wait_mutex);
546
547 for (i = 0; i < sched->nr_tasks; i++) {
548 task = sched->tasks[i];
549 ret = sem_wait(&task->ready_for_work);
550 BUG_ON(ret);
551 sem_init(&task->ready_for_work, 0, 0);
552 }
553 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
554 BUG_ON(ret);
555
556 cpu_usage_0 = get_cpu_usage_nsec_parent();
557
558 pthread_mutex_unlock(&sched->start_work_mutex);
559
560 for (i = 0; i < sched->nr_tasks; i++) {
561 task = sched->tasks[i];
562 ret = sem_wait(&task->work_done_sem);
563 BUG_ON(ret);
564 sem_init(&task->work_done_sem, 0, 0);
565 sched->cpu_usage += task->cpu_usage;
566 task->cpu_usage = 0;
567 }
568
569 cpu_usage_1 = get_cpu_usage_nsec_parent();
570 if (!sched->runavg_cpu_usage)
571 sched->runavg_cpu_usage = sched->cpu_usage;
572 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
573
574 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
575 if (!sched->runavg_parent_cpu_usage)
576 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
577 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
578 sched->parent_cpu_usage)/10;
579
580 ret = pthread_mutex_lock(&sched->start_work_mutex);
581 BUG_ON(ret);
582
583 for (i = 0; i < sched->nr_tasks; i++) {
584 task = sched->tasks[i];
585 sem_init(&task->sleep_sem, 0, 0);
586 task->curr_event = 0;
587 }
588}
589
590static void run_one_test(struct perf_sched *sched)
591{
592 u64 T0, T1, delta, avg_delta, fluct;
593
594 T0 = get_nsecs();
595 wait_for_tasks(sched);
596 T1 = get_nsecs();
597
598 delta = T1 - T0;
599 sched->sum_runtime += delta;
600 sched->nr_runs++;
601
602 avg_delta = sched->sum_runtime / sched->nr_runs;
603 if (delta < avg_delta)
604 fluct = avg_delta - delta;
605 else
606 fluct = delta - avg_delta;
607 sched->sum_fluct += fluct;
608 if (!sched->run_avg)
609 sched->run_avg = delta;
610 sched->run_avg = (sched->run_avg * 9 + delta) / 10;
611
612 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
613
614 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
615
616 printf("cpu: %0.2f / %0.2f",
617 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
618
619#if 0
620 /*
621 * rusage statistics done by the parent, these are less
622 * accurate than the sched->sum_exec_runtime based statistics:
623 */
624 printf(" [%0.2f / %0.2f]",
625 (double)sched->parent_cpu_usage/1e6,
626 (double)sched->runavg_parent_cpu_usage/1e6);
627#endif
628
629 printf("\n");
630
631 if (sched->nr_sleep_corrections)
632 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
633 sched->nr_sleep_corrections = 0;
634}
635
636static void test_calibrations(struct perf_sched *sched)
637{
638 u64 T0, T1;
639
640 T0 = get_nsecs();
641 burn_nsecs(sched, 1e6);
642 T1 = get_nsecs();
643
644 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
645
646 T0 = get_nsecs();
647 sleep_nsecs(1e6);
648 T1 = get_nsecs();
649
650 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
651}
652
653static int
654replay_wakeup_event(struct perf_sched *sched,
655 struct perf_evsel *evsel, struct perf_sample *sample,
656 struct machine *machine __maybe_unused)
657{
658 const char *comm = perf_evsel__strval(evsel, sample, "comm");
659 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
660 struct task_desc *waker, *wakee;
661
662 if (verbose) {
663 printf("sched_wakeup event %p\n", evsel);
664
665 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
666 }
667
668 waker = register_pid(sched, sample->tid, "<unknown>");
669 wakee = register_pid(sched, pid, comm);
670
671 add_sched_event_wakeup(sched, waker, sample->time, wakee);
672 return 0;
673}
674
675static int replay_switch_event(struct perf_sched *sched,
676 struct perf_evsel *evsel,
677 struct perf_sample *sample,
678 struct machine *machine __maybe_unused)
679{
680 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
681 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
682 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
683 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
684 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
685 struct task_desc *prev, __maybe_unused *next;
686 u64 timestamp0, timestamp = sample->time;
687 int cpu = sample->cpu;
688 s64 delta;
689
690 if (verbose)
691 printf("sched_switch event %p\n", evsel);
692
693 if (cpu >= MAX_CPUS || cpu < 0)
694 return 0;
695
696 timestamp0 = sched->cpu_last_switched[cpu];
697 if (timestamp0)
698 delta = timestamp - timestamp0;
699 else
700 delta = 0;
701
702 if (delta < 0) {
703 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
704 return -1;
705 }
706
707 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
708 prev_comm, prev_pid, next_comm, next_pid, delta);
709
710 prev = register_pid(sched, prev_pid, prev_comm);
711 next = register_pid(sched, next_pid, next_comm);
712
713 sched->cpu_last_switched[cpu] = timestamp;
714
715 add_sched_event_run(sched, prev, timestamp, delta);
716 add_sched_event_sleep(sched, prev, timestamp, prev_state);
717
718 return 0;
719}
720
721static int replay_fork_event(struct perf_sched *sched,
722 union perf_event *event,
723 struct machine *machine)
724{
725 struct thread *child, *parent;
726
727 child = machine__findnew_thread(machine, event->fork.pid,
728 event->fork.tid);
729 parent = machine__findnew_thread(machine, event->fork.ppid,
730 event->fork.ptid);
731
732 if (child == NULL || parent == NULL) {
733 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
734 child, parent);
735 return 0;
736 }
737
738 if (verbose) {
739 printf("fork event\n");
740 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
741 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
742 }
743
744 register_pid(sched, parent->tid, thread__comm_str(parent));
745 register_pid(sched, child->tid, thread__comm_str(child));
746 return 0;
747}
748
749struct sort_dimension {
750 const char *name;
751 sort_fn_t cmp;
752 struct list_head list;
753};
754
755static int
756thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
757{
758 struct sort_dimension *sort;
759 int ret = 0;
760
761 BUG_ON(list_empty(list));
762
763 list_for_each_entry(sort, list, list) {
764 ret = sort->cmp(l, r);
765 if (ret)
766 return ret;
767 }
768
769 return ret;
770}
771
772static struct work_atoms *
773thread_atoms_search(struct rb_root *root, struct thread *thread,
774 struct list_head *sort_list)
775{
776 struct rb_node *node = root->rb_node;
777 struct work_atoms key = { .thread = thread };
778
779 while (node) {
780 struct work_atoms *atoms;
781 int cmp;
782
783 atoms = container_of(node, struct work_atoms, node);
784
785 cmp = thread_lat_cmp(sort_list, &key, atoms);
786 if (cmp > 0)
787 node = node->rb_left;
788 else if (cmp < 0)
789 node = node->rb_right;
790 else {
791 BUG_ON(thread != atoms->thread);
792 return atoms;
793 }
794 }
795 return NULL;
796}
797
798static void
799__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
800 struct list_head *sort_list)
801{
802 struct rb_node **new = &(root->rb_node), *parent = NULL;
803
804 while (*new) {
805 struct work_atoms *this;
806 int cmp;
807
808 this = container_of(*new, struct work_atoms, node);
809 parent = *new;
810
811 cmp = thread_lat_cmp(sort_list, data, this);
812
813 if (cmp > 0)
814 new = &((*new)->rb_left);
815 else
816 new = &((*new)->rb_right);
817 }
818
819 rb_link_node(&data->node, parent, new);
820 rb_insert_color(&data->node, root);
821}
822
823static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
824{
825 struct work_atoms *atoms = zalloc(sizeof(*atoms));
826 if (!atoms) {
827 pr_err("No memory at %s\n", __func__);
828 return -1;
829 }
830
831 atoms->thread = thread;
832 INIT_LIST_HEAD(&atoms->work_list);
833 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
834 return 0;
835}
836
837static char sched_out_state(u64 prev_state)
838{
839 const char *str = TASK_STATE_TO_CHAR_STR;
840
841 return str[prev_state];
842}
843
844static int
845add_sched_out_event(struct work_atoms *atoms,
846 char run_state,
847 u64 timestamp)
848{
849 struct work_atom *atom = zalloc(sizeof(*atom));
850 if (!atom) {
851 pr_err("Non memory at %s", __func__);
852 return -1;
853 }
854
855 atom->sched_out_time = timestamp;
856
857 if (run_state == 'R') {
858 atom->state = THREAD_WAIT_CPU;
859 atom->wake_up_time = atom->sched_out_time;
860 }
861
862 list_add_tail(&atom->list, &atoms->work_list);
863 return 0;
864}
865
866static void
867add_runtime_event(struct work_atoms *atoms, u64 delta,
868 u64 timestamp __maybe_unused)
869{
870 struct work_atom *atom;
871
872 BUG_ON(list_empty(&atoms->work_list));
873
874 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
875
876 atom->runtime += delta;
877 atoms->total_runtime += delta;
878}
879
880static void
881add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
882{
883 struct work_atom *atom;
884 u64 delta;
885
886 if (list_empty(&atoms->work_list))
887 return;
888
889 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
890
891 if (atom->state != THREAD_WAIT_CPU)
892 return;
893
894 if (timestamp < atom->wake_up_time) {
895 atom->state = THREAD_IGNORE;
896 return;
897 }
898
899 atom->state = THREAD_SCHED_IN;
900 atom->sched_in_time = timestamp;
901
902 delta = atom->sched_in_time - atom->wake_up_time;
903 atoms->total_lat += delta;
904 if (delta > atoms->max_lat) {
905 atoms->max_lat = delta;
906 atoms->max_lat_at = timestamp;
907 }
908 atoms->nb_atoms++;
909}
910
911static int latency_switch_event(struct perf_sched *sched,
912 struct perf_evsel *evsel,
913 struct perf_sample *sample,
914 struct machine *machine)
915{
916 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
917 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
918 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
919 struct work_atoms *out_events, *in_events;
920 struct thread *sched_out, *sched_in;
921 u64 timestamp0, timestamp = sample->time;
922 int cpu = sample->cpu;
923 s64 delta;
924
925 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
926
927 timestamp0 = sched->cpu_last_switched[cpu];
928 sched->cpu_last_switched[cpu] = timestamp;
929 if (timestamp0)
930 delta = timestamp - timestamp0;
931 else
932 delta = 0;
933
934 if (delta < 0) {
935 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
936 return -1;
937 }
938
939 sched_out = machine__findnew_thread(machine, 0, prev_pid);
940 sched_in = machine__findnew_thread(machine, 0, next_pid);
941
942 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
943 if (!out_events) {
944 if (thread_atoms_insert(sched, sched_out))
945 return -1;
946 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
947 if (!out_events) {
948 pr_err("out-event: Internal tree error");
949 return -1;
950 }
951 }
952 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
953 return -1;
954
955 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
956 if (!in_events) {
957 if (thread_atoms_insert(sched, sched_in))
958 return -1;
959 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
960 if (!in_events) {
961 pr_err("in-event: Internal tree error");
962 return -1;
963 }
964 /*
965 * Take came in we have not heard about yet,
966 * add in an initial atom in runnable state:
967 */
968 if (add_sched_out_event(in_events, 'R', timestamp))
969 return -1;
970 }
971 add_sched_in_event(in_events, timestamp);
972
973 return 0;
974}
975
976static int latency_runtime_event(struct perf_sched *sched,
977 struct perf_evsel *evsel,
978 struct perf_sample *sample,
979 struct machine *machine)
980{
981 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
982 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
983 struct thread *thread = machine__findnew_thread(machine, 0, pid);
984 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
985 u64 timestamp = sample->time;
986 int cpu = sample->cpu;
987
988 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
989 if (!atoms) {
990 if (thread_atoms_insert(sched, thread))
991 return -1;
992 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
993 if (!atoms) {
994 pr_err("in-event: Internal tree error");
995 return -1;
996 }
997 if (add_sched_out_event(atoms, 'R', timestamp))
998 return -1;
999 }
1000
1001 add_runtime_event(atoms, runtime, timestamp);
1002 return 0;
1003}
1004
1005static int latency_wakeup_event(struct perf_sched *sched,
1006 struct perf_evsel *evsel,
1007 struct perf_sample *sample,
1008 struct machine *machine)
1009{
1010 const u32 pid = perf_evsel__intval(evsel, sample, "pid"),
1011 success = perf_evsel__intval(evsel, sample, "success");
1012 struct work_atoms *atoms;
1013 struct work_atom *atom;
1014 struct thread *wakee;
1015 u64 timestamp = sample->time;
1016
1017 /* Note for later, it may be interesting to observe the failing cases */
1018 if (!success)
1019 return 0;
1020
1021 wakee = machine__findnew_thread(machine, 0, pid);
1022 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1023 if (!atoms) {
1024 if (thread_atoms_insert(sched, wakee))
1025 return -1;
1026 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1027 if (!atoms) {
1028 pr_err("wakeup-event: Internal tree error");
1029 return -1;
1030 }
1031 if (add_sched_out_event(atoms, 'S', timestamp))
1032 return -1;
1033 }
1034
1035 BUG_ON(list_empty(&atoms->work_list));
1036
1037 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1038
1039 /*
1040 * You WILL be missing events if you've recorded only
1041 * one CPU, or are only looking at only one, so don't
1042 * make useless noise.
1043 */
1044 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1045 sched->nr_state_machine_bugs++;
1046
1047 sched->nr_timestamps++;
1048 if (atom->sched_out_time > timestamp) {
1049 sched->nr_unordered_timestamps++;
1050 return 0;
1051 }
1052
1053 atom->state = THREAD_WAIT_CPU;
1054 atom->wake_up_time = timestamp;
1055 return 0;
1056}
1057
1058static int latency_migrate_task_event(struct perf_sched *sched,
1059 struct perf_evsel *evsel,
1060 struct perf_sample *sample,
1061 struct machine *machine)
1062{
1063 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1064 u64 timestamp = sample->time;
1065 struct work_atoms *atoms;
1066 struct work_atom *atom;
1067 struct thread *migrant;
1068
1069 /*
1070 * Only need to worry about migration when profiling one CPU.
1071 */
1072 if (sched->profile_cpu == -1)
1073 return 0;
1074
1075 migrant = machine__findnew_thread(machine, 0, pid);
1076 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1077 if (!atoms) {
1078 if (thread_atoms_insert(sched, migrant))
1079 return -1;
1080 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1081 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1082 if (!atoms) {
1083 pr_err("migration-event: Internal tree error");
1084 return -1;
1085 }
1086 if (add_sched_out_event(atoms, 'R', timestamp))
1087 return -1;
1088 }
1089
1090 BUG_ON(list_empty(&atoms->work_list));
1091
1092 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1093 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1094
1095 sched->nr_timestamps++;
1096
1097 if (atom->sched_out_time > timestamp)
1098 sched->nr_unordered_timestamps++;
1099
1100 return 0;
1101}
1102
1103static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1104{
1105 int i;
1106 int ret;
1107 u64 avg;
1108
1109 if (!work_list->nb_atoms)
1110 return;
1111 /*
1112 * Ignore idle threads:
1113 */
1114 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1115 return;
1116
1117 sched->all_runtime += work_list->total_runtime;
1118 sched->all_count += work_list->nb_atoms;
1119
1120 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1121
1122 for (i = 0; i < 24 - ret; i++)
1123 printf(" ");
1124
1125 avg = work_list->total_lat / work_list->nb_atoms;
1126
1127 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1128 (double)work_list->total_runtime / 1e6,
1129 work_list->nb_atoms, (double)avg / 1e6,
1130 (double)work_list->max_lat / 1e6,
1131 (double)work_list->max_lat_at / 1e9);
1132}
1133
1134static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1135{
1136 if (l->thread->tid < r->thread->tid)
1137 return -1;
1138 if (l->thread->tid > r->thread->tid)
1139 return 1;
1140
1141 return 0;
1142}
1143
1144static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1145{
1146 u64 avgl, avgr;
1147
1148 if (!l->nb_atoms)
1149 return -1;
1150
1151 if (!r->nb_atoms)
1152 return 1;
1153
1154 avgl = l->total_lat / l->nb_atoms;
1155 avgr = r->total_lat / r->nb_atoms;
1156
1157 if (avgl < avgr)
1158 return -1;
1159 if (avgl > avgr)
1160 return 1;
1161
1162 return 0;
1163}
1164
1165static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1166{
1167 if (l->max_lat < r->max_lat)
1168 return -1;
1169 if (l->max_lat > r->max_lat)
1170 return 1;
1171
1172 return 0;
1173}
1174
1175static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1176{
1177 if (l->nb_atoms < r->nb_atoms)
1178 return -1;
1179 if (l->nb_atoms > r->nb_atoms)
1180 return 1;
1181
1182 return 0;
1183}
1184
1185static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1186{
1187 if (l->total_runtime < r->total_runtime)
1188 return -1;
1189 if (l->total_runtime > r->total_runtime)
1190 return 1;
1191
1192 return 0;
1193}
1194
1195static int sort_dimension__add(const char *tok, struct list_head *list)
1196{
1197 size_t i;
1198 static struct sort_dimension avg_sort_dimension = {
1199 .name = "avg",
1200 .cmp = avg_cmp,
1201 };
1202 static struct sort_dimension max_sort_dimension = {
1203 .name = "max",
1204 .cmp = max_cmp,
1205 };
1206 static struct sort_dimension pid_sort_dimension = {
1207 .name = "pid",
1208 .cmp = pid_cmp,
1209 };
1210 static struct sort_dimension runtime_sort_dimension = {
1211 .name = "runtime",
1212 .cmp = runtime_cmp,
1213 };
1214 static struct sort_dimension switch_sort_dimension = {
1215 .name = "switch",
1216 .cmp = switch_cmp,
1217 };
1218 struct sort_dimension *available_sorts[] = {
1219 &pid_sort_dimension,
1220 &avg_sort_dimension,
1221 &max_sort_dimension,
1222 &switch_sort_dimension,
1223 &runtime_sort_dimension,
1224 };
1225
1226 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1227 if (!strcmp(available_sorts[i]->name, tok)) {
1228 list_add_tail(&available_sorts[i]->list, list);
1229
1230 return 0;
1231 }
1232 }
1233
1234 return -1;
1235}
1236
1237static void perf_sched__sort_lat(struct perf_sched *sched)
1238{
1239 struct rb_node *node;
1240
1241 for (;;) {
1242 struct work_atoms *data;
1243 node = rb_first(&sched->atom_root);
1244 if (!node)
1245 break;
1246
1247 rb_erase(node, &sched->atom_root);
1248 data = rb_entry(node, struct work_atoms, node);
1249 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1250 }
1251}
1252
1253static int process_sched_wakeup_event(struct perf_tool *tool,
1254 struct perf_evsel *evsel,
1255 struct perf_sample *sample,
1256 struct machine *machine)
1257{
1258 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1259
1260 if (sched->tp_handler->wakeup_event)
1261 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1262
1263 return 0;
1264}
1265
1266static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1267 struct perf_sample *sample, struct machine *machine)
1268{
1269 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1270 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1271 struct thread *sched_out __maybe_unused, *sched_in;
1272 int new_shortname;
1273 u64 timestamp0, timestamp = sample->time;
1274 s64 delta;
1275 int cpu, this_cpu = sample->cpu;
1276
1277 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1278
1279 if (this_cpu > sched->max_cpu)
1280 sched->max_cpu = this_cpu;
1281
1282 timestamp0 = sched->cpu_last_switched[this_cpu];
1283 sched->cpu_last_switched[this_cpu] = timestamp;
1284 if (timestamp0)
1285 delta = timestamp - timestamp0;
1286 else
1287 delta = 0;
1288
1289 if (delta < 0) {
1290 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1291 return -1;
1292 }
1293
1294 sched_out = machine__findnew_thread(machine, 0, prev_pid);
1295 sched_in = machine__findnew_thread(machine, 0, next_pid);
1296
1297 sched->curr_thread[this_cpu] = sched_in;
1298
1299 printf(" ");
1300
1301 new_shortname = 0;
1302 if (!sched_in->shortname[0]) {
1303 sched_in->shortname[0] = sched->next_shortname1;
1304 sched_in->shortname[1] = sched->next_shortname2;
1305
1306 if (sched->next_shortname1 < 'Z') {
1307 sched->next_shortname1++;
1308 } else {
1309 sched->next_shortname1='A';
1310 if (sched->next_shortname2 < '9') {
1311 sched->next_shortname2++;
1312 } else {
1313 sched->next_shortname2='0';
1314 }
1315 }
1316 new_shortname = 1;
1317 }
1318
1319 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1320 if (cpu != this_cpu)
1321 printf(" ");
1322 else
1323 printf("*");
1324
1325 if (sched->curr_thread[cpu]) {
1326 if (sched->curr_thread[cpu]->tid)
1327 printf("%2s ", sched->curr_thread[cpu]->shortname);
1328 else
1329 printf(". ");
1330 } else
1331 printf(" ");
1332 }
1333
1334 printf(" %12.6f secs ", (double)timestamp/1e9);
1335 if (new_shortname) {
1336 printf("%s => %s:%d\n",
1337 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1338 } else {
1339 printf("\n");
1340 }
1341
1342 return 0;
1343}
1344
1345static int process_sched_switch_event(struct perf_tool *tool,
1346 struct perf_evsel *evsel,
1347 struct perf_sample *sample,
1348 struct machine *machine)
1349{
1350 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1351 int this_cpu = sample->cpu, err = 0;
1352 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1353 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1354
1355 if (sched->curr_pid[this_cpu] != (u32)-1) {
1356 /*
1357 * Are we trying to switch away a PID that is
1358 * not current?
1359 */
1360 if (sched->curr_pid[this_cpu] != prev_pid)
1361 sched->nr_context_switch_bugs++;
1362 }
1363
1364 if (sched->tp_handler->switch_event)
1365 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1366
1367 sched->curr_pid[this_cpu] = next_pid;
1368 return err;
1369}
1370
1371static int process_sched_runtime_event(struct perf_tool *tool,
1372 struct perf_evsel *evsel,
1373 struct perf_sample *sample,
1374 struct machine *machine)
1375{
1376 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1377
1378 if (sched->tp_handler->runtime_event)
1379 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1380
1381 return 0;
1382}
1383
1384static int perf_sched__process_fork_event(struct perf_tool *tool,
1385 union perf_event *event,
1386 struct perf_sample *sample,
1387 struct machine *machine)
1388{
1389 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1390
1391 /* run the fork event through the perf machineruy */
1392 perf_event__process_fork(tool, event, sample, machine);
1393
1394 /* and then run additional processing needed for this command */
1395 if (sched->tp_handler->fork_event)
1396 return sched->tp_handler->fork_event(sched, event, machine);
1397
1398 return 0;
1399}
1400
1401static int process_sched_migrate_task_event(struct perf_tool *tool,
1402 struct perf_evsel *evsel,
1403 struct perf_sample *sample,
1404 struct machine *machine)
1405{
1406 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1407
1408 if (sched->tp_handler->migrate_task_event)
1409 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1410
1411 return 0;
1412}
1413
1414typedef int (*tracepoint_handler)(struct perf_tool *tool,
1415 struct perf_evsel *evsel,
1416 struct perf_sample *sample,
1417 struct machine *machine);
1418
1419static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1420 union perf_event *event __maybe_unused,
1421 struct perf_sample *sample,
1422 struct perf_evsel *evsel,
1423 struct machine *machine)
1424{
1425 int err = 0;
1426
1427 evsel->hists.stats.total_period += sample->period;
1428 hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1429
1430 if (evsel->handler != NULL) {
1431 tracepoint_handler f = evsel->handler;
1432 err = f(tool, evsel, sample, machine);
1433 }
1434
1435 return err;
1436}
1437
1438static int perf_sched__read_events(struct perf_sched *sched,
1439 struct perf_session **psession)
1440{
1441 const struct perf_evsel_str_handler handlers[] = {
1442 { "sched:sched_switch", process_sched_switch_event, },
1443 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1444 { "sched:sched_wakeup", process_sched_wakeup_event, },
1445 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1446 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1447 };
1448 struct perf_session *session;
1449 struct perf_data_file file = {
1450 .path = input_name,
1451 .mode = PERF_DATA_MODE_READ,
1452 };
1453
1454 session = perf_session__new(&file, false, &sched->tool);
1455 if (session == NULL) {
1456 pr_debug("No Memory for session\n");
1457 return -1;
1458 }
1459
1460 if (perf_session__set_tracepoints_handlers(session, handlers))
1461 goto out_delete;
1462
1463 if (perf_session__has_traces(session, "record -R")) {
1464 int err = perf_session__process_events(session, &sched->tool);
1465 if (err) {
1466 pr_err("Failed to process events, error %d", err);
1467 goto out_delete;
1468 }
1469
1470 sched->nr_events = session->stats.nr_events[0];
1471 sched->nr_lost_events = session->stats.total_lost;
1472 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1473 }
1474
1475 if (psession)
1476 *psession = session;
1477 else
1478 perf_session__delete(session);
1479
1480 return 0;
1481
1482out_delete:
1483 perf_session__delete(session);
1484 return -1;
1485}
1486
1487static void print_bad_events(struct perf_sched *sched)
1488{
1489 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1490 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1491 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1492 sched->nr_unordered_timestamps, sched->nr_timestamps);
1493 }
1494 if (sched->nr_lost_events && sched->nr_events) {
1495 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1496 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1497 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1498 }
1499 if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1500 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1501 (double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1502 sched->nr_state_machine_bugs, sched->nr_timestamps);
1503 if (sched->nr_lost_events)
1504 printf(" (due to lost events?)");
1505 printf("\n");
1506 }
1507 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1508 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1509 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1510 sched->nr_context_switch_bugs, sched->nr_timestamps);
1511 if (sched->nr_lost_events)
1512 printf(" (due to lost events?)");
1513 printf("\n");
1514 }
1515}
1516
1517static int perf_sched__lat(struct perf_sched *sched)
1518{
1519 struct rb_node *next;
1520 struct perf_session *session;
1521
1522 setup_pager();
1523
1524 /* save session -- references to threads are held in work_list */
1525 if (perf_sched__read_events(sched, &session))
1526 return -1;
1527
1528 perf_sched__sort_lat(sched);
1529
1530 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1531 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1532 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1533
1534 next = rb_first(&sched->sorted_atom_root);
1535
1536 while (next) {
1537 struct work_atoms *work_list;
1538
1539 work_list = rb_entry(next, struct work_atoms, node);
1540 output_lat_thread(sched, work_list);
1541 next = rb_next(next);
1542 }
1543
1544 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1545 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1546 (double)sched->all_runtime / 1e6, sched->all_count);
1547
1548 printf(" ---------------------------------------------------\n");
1549
1550 print_bad_events(sched);
1551 printf("\n");
1552
1553 perf_session__delete(session);
1554 return 0;
1555}
1556
1557static int perf_sched__map(struct perf_sched *sched)
1558{
1559 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1560
1561 setup_pager();
1562 if (perf_sched__read_events(sched, NULL))
1563 return -1;
1564 print_bad_events(sched);
1565 return 0;
1566}
1567
1568static int perf_sched__replay(struct perf_sched *sched)
1569{
1570 unsigned long i;
1571
1572 calibrate_run_measurement_overhead(sched);
1573 calibrate_sleep_measurement_overhead(sched);
1574
1575 test_calibrations(sched);
1576
1577 if (perf_sched__read_events(sched, NULL))
1578 return -1;
1579
1580 printf("nr_run_events: %ld\n", sched->nr_run_events);
1581 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1582 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1583
1584 if (sched->targetless_wakeups)
1585 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1586 if (sched->multitarget_wakeups)
1587 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1588 if (sched->nr_run_events_optimized)
1589 printf("run atoms optimized: %ld\n",
1590 sched->nr_run_events_optimized);
1591
1592 print_task_traces(sched);
1593 add_cross_task_wakeups(sched);
1594
1595 create_tasks(sched);
1596 printf("------------------------------------------------------------\n");
1597 for (i = 0; i < sched->replay_repeat; i++)
1598 run_one_test(sched);
1599
1600 return 0;
1601}
1602
1603static void setup_sorting(struct perf_sched *sched, const struct option *options,
1604 const char * const usage_msg[])
1605{
1606 char *tmp, *tok, *str = strdup(sched->sort_order);
1607
1608 for (tok = strtok_r(str, ", ", &tmp);
1609 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1610 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1611 error("Unknown --sort key: `%s'", tok);
1612 usage_with_options(usage_msg, options);
1613 }
1614 }
1615
1616 free(str);
1617
1618 sort_dimension__add("pid", &sched->cmp_pid);
1619}
1620
1621static int __cmd_record(int argc, const char **argv)
1622{
1623 unsigned int rec_argc, i, j;
1624 const char **rec_argv;
1625 const char * const record_args[] = {
1626 "record",
1627 "-a",
1628 "-R",
1629 "-m", "1024",
1630 "-c", "1",
1631 "-e", "sched:sched_switch",
1632 "-e", "sched:sched_stat_wait",
1633 "-e", "sched:sched_stat_sleep",
1634 "-e", "sched:sched_stat_iowait",
1635 "-e", "sched:sched_stat_runtime",
1636 "-e", "sched:sched_process_fork",
1637 "-e", "sched:sched_wakeup",
1638 "-e", "sched:sched_migrate_task",
1639 };
1640
1641 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1642 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1643
1644 if (rec_argv == NULL)
1645 return -ENOMEM;
1646
1647 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1648 rec_argv[i] = strdup(record_args[i]);
1649
1650 for (j = 1; j < (unsigned int)argc; j++, i++)
1651 rec_argv[i] = argv[j];
1652
1653 BUG_ON(i != rec_argc);
1654
1655 return cmd_record(i, rec_argv, NULL);
1656}
1657
1658int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1659{
1660 const char default_sort_order[] = "avg, max, switch, runtime";
1661 struct perf_sched sched = {
1662 .tool = {
1663 .sample = perf_sched__process_tracepoint_sample,
1664 .comm = perf_event__process_comm,
1665 .lost = perf_event__process_lost,
1666 .fork = perf_sched__process_fork_event,
1667 .ordered_samples = true,
1668 },
1669 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1670 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1671 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1672 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1673 .sort_order = default_sort_order,
1674 .replay_repeat = 10,
1675 .profile_cpu = -1,
1676 .next_shortname1 = 'A',
1677 .next_shortname2 = '0',
1678 };
1679 const struct option latency_options[] = {
1680 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1681 "sort by key(s): runtime, switch, avg, max"),
1682 OPT_INCR('v', "verbose", &verbose,
1683 "be more verbose (show symbol address, etc)"),
1684 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1685 "CPU to profile on"),
1686 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1687 "dump raw trace in ASCII"),
1688 OPT_END()
1689 };
1690 const struct option replay_options[] = {
1691 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1692 "repeat the workload replay N times (-1: infinite)"),
1693 OPT_INCR('v', "verbose", &verbose,
1694 "be more verbose (show symbol address, etc)"),
1695 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1696 "dump raw trace in ASCII"),
1697 OPT_END()
1698 };
1699 const struct option sched_options[] = {
1700 OPT_STRING('i', "input", &input_name, "file",
1701 "input file name"),
1702 OPT_INCR('v', "verbose", &verbose,
1703 "be more verbose (show symbol address, etc)"),
1704 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1705 "dump raw trace in ASCII"),
1706 OPT_END()
1707 };
1708 const char * const latency_usage[] = {
1709 "perf sched latency [<options>]",
1710 NULL
1711 };
1712 const char * const replay_usage[] = {
1713 "perf sched replay [<options>]",
1714 NULL
1715 };
1716 const char * const sched_usage[] = {
1717 "perf sched [<options>] {record|latency|map|replay|script}",
1718 NULL
1719 };
1720 struct trace_sched_handler lat_ops = {
1721 .wakeup_event = latency_wakeup_event,
1722 .switch_event = latency_switch_event,
1723 .runtime_event = latency_runtime_event,
1724 .migrate_task_event = latency_migrate_task_event,
1725 };
1726 struct trace_sched_handler map_ops = {
1727 .switch_event = map_switch_event,
1728 };
1729 struct trace_sched_handler replay_ops = {
1730 .wakeup_event = replay_wakeup_event,
1731 .switch_event = replay_switch_event,
1732 .fork_event = replay_fork_event,
1733 };
1734 unsigned int i;
1735
1736 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1737 sched.curr_pid[i] = -1;
1738
1739 argc = parse_options(argc, argv, sched_options, sched_usage,
1740 PARSE_OPT_STOP_AT_NON_OPTION);
1741 if (!argc)
1742 usage_with_options(sched_usage, sched_options);
1743
1744 /*
1745 * Aliased to 'perf script' for now:
1746 */
1747 if (!strcmp(argv[0], "script"))
1748 return cmd_script(argc, argv, prefix);
1749
1750 symbol__init();
1751 if (!strncmp(argv[0], "rec", 3)) {
1752 return __cmd_record(argc, argv);
1753 } else if (!strncmp(argv[0], "lat", 3)) {
1754 sched.tp_handler = &lat_ops;
1755 if (argc > 1) {
1756 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1757 if (argc)
1758 usage_with_options(latency_usage, latency_options);
1759 }
1760 setup_sorting(&sched, latency_options, latency_usage);
1761 return perf_sched__lat(&sched);
1762 } else if (!strcmp(argv[0], "map")) {
1763 sched.tp_handler = &map_ops;
1764 setup_sorting(&sched, latency_options, latency_usage);
1765 return perf_sched__map(&sched);
1766 } else if (!strncmp(argv[0], "rep", 3)) {
1767 sched.tp_handler = &replay_ops;
1768 if (argc) {
1769 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1770 if (argc)
1771 usage_with_options(replay_usage, replay_options);
1772 }
1773 return perf_sched__replay(&sched);
1774 } else {
1775 usage_with_options(sched_usage, sched_options);
1776 }
1777
1778 return 0;
1779}
1#include "builtin.h"
2#include "perf.h"
3
4#include "util/util.h"
5#include "util/cache.h"
6#include "util/symbol.h"
7#include "util/thread.h"
8#include "util/header.h"
9#include "util/session.h"
10
11#include "util/parse-options.h"
12#include "util/trace-event.h"
13
14#include "util/debug.h"
15
16#include <sys/prctl.h>
17
18#include <semaphore.h>
19#include <pthread.h>
20#include <math.h>
21
22static char const *input_name = "perf.data";
23
24static char default_sort_order[] = "avg, max, switch, runtime";
25static const char *sort_order = default_sort_order;
26
27static int profile_cpu = -1;
28
29#define PR_SET_NAME 15 /* Set process name */
30#define MAX_CPUS 4096
31
32static u64 run_measurement_overhead;
33static u64 sleep_measurement_overhead;
34
35#define COMM_LEN 20
36#define SYM_LEN 129
37
38#define MAX_PID 65536
39
40static unsigned long nr_tasks;
41
42struct sched_atom;
43
44struct task_desc {
45 unsigned long nr;
46 unsigned long pid;
47 char comm[COMM_LEN];
48
49 unsigned long nr_events;
50 unsigned long curr_event;
51 struct sched_atom **atoms;
52
53 pthread_t thread;
54 sem_t sleep_sem;
55
56 sem_t ready_for_work;
57 sem_t work_done_sem;
58
59 u64 cpu_usage;
60};
61
62enum sched_event_type {
63 SCHED_EVENT_RUN,
64 SCHED_EVENT_SLEEP,
65 SCHED_EVENT_WAKEUP,
66 SCHED_EVENT_MIGRATION,
67};
68
69struct sched_atom {
70 enum sched_event_type type;
71 int specific_wait;
72 u64 timestamp;
73 u64 duration;
74 unsigned long nr;
75 sem_t *wait_sem;
76 struct task_desc *wakee;
77};
78
79static struct task_desc *pid_to_task[MAX_PID];
80
81static struct task_desc **tasks;
82
83static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
84static u64 start_time;
85
86static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
87
88static unsigned long nr_run_events;
89static unsigned long nr_sleep_events;
90static unsigned long nr_wakeup_events;
91
92static unsigned long nr_sleep_corrections;
93static unsigned long nr_run_events_optimized;
94
95static unsigned long targetless_wakeups;
96static unsigned long multitarget_wakeups;
97
98static u64 cpu_usage;
99static u64 runavg_cpu_usage;
100static u64 parent_cpu_usage;
101static u64 runavg_parent_cpu_usage;
102
103static unsigned long nr_runs;
104static u64 sum_runtime;
105static u64 sum_fluct;
106static u64 run_avg;
107
108static unsigned int replay_repeat = 10;
109static unsigned long nr_timestamps;
110static unsigned long nr_unordered_timestamps;
111static unsigned long nr_state_machine_bugs;
112static unsigned long nr_context_switch_bugs;
113static unsigned long nr_events;
114static unsigned long nr_lost_chunks;
115static unsigned long nr_lost_events;
116
117#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
118
119enum thread_state {
120 THREAD_SLEEPING = 0,
121 THREAD_WAIT_CPU,
122 THREAD_SCHED_IN,
123 THREAD_IGNORE
124};
125
126struct work_atom {
127 struct list_head list;
128 enum thread_state state;
129 u64 sched_out_time;
130 u64 wake_up_time;
131 u64 sched_in_time;
132 u64 runtime;
133};
134
135struct work_atoms {
136 struct list_head work_list;
137 struct thread *thread;
138 struct rb_node node;
139 u64 max_lat;
140 u64 max_lat_at;
141 u64 total_lat;
142 u64 nb_atoms;
143 u64 total_runtime;
144};
145
146typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
147
148static struct rb_root atom_root, sorted_atom_root;
149
150static u64 all_runtime;
151static u64 all_count;
152
153
154static u64 get_nsecs(void)
155{
156 struct timespec ts;
157
158 clock_gettime(CLOCK_MONOTONIC, &ts);
159
160 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
161}
162
163static void burn_nsecs(u64 nsecs)
164{
165 u64 T0 = get_nsecs(), T1;
166
167 do {
168 T1 = get_nsecs();
169 } while (T1 + run_measurement_overhead < T0 + nsecs);
170}
171
172static void sleep_nsecs(u64 nsecs)
173{
174 struct timespec ts;
175
176 ts.tv_nsec = nsecs % 999999999;
177 ts.tv_sec = nsecs / 999999999;
178
179 nanosleep(&ts, NULL);
180}
181
182static void calibrate_run_measurement_overhead(void)
183{
184 u64 T0, T1, delta, min_delta = 1000000000ULL;
185 int i;
186
187 for (i = 0; i < 10; i++) {
188 T0 = get_nsecs();
189 burn_nsecs(0);
190 T1 = get_nsecs();
191 delta = T1-T0;
192 min_delta = min(min_delta, delta);
193 }
194 run_measurement_overhead = min_delta;
195
196 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
197}
198
199static void calibrate_sleep_measurement_overhead(void)
200{
201 u64 T0, T1, delta, min_delta = 1000000000ULL;
202 int i;
203
204 for (i = 0; i < 10; i++) {
205 T0 = get_nsecs();
206 sleep_nsecs(10000);
207 T1 = get_nsecs();
208 delta = T1-T0;
209 min_delta = min(min_delta, delta);
210 }
211 min_delta -= 10000;
212 sleep_measurement_overhead = min_delta;
213
214 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
215}
216
217static struct sched_atom *
218get_new_event(struct task_desc *task, u64 timestamp)
219{
220 struct sched_atom *event = zalloc(sizeof(*event));
221 unsigned long idx = task->nr_events;
222 size_t size;
223
224 event->timestamp = timestamp;
225 event->nr = idx;
226
227 task->nr_events++;
228 size = sizeof(struct sched_atom *) * task->nr_events;
229 task->atoms = realloc(task->atoms, size);
230 BUG_ON(!task->atoms);
231
232 task->atoms[idx] = event;
233
234 return event;
235}
236
237static struct sched_atom *last_event(struct task_desc *task)
238{
239 if (!task->nr_events)
240 return NULL;
241
242 return task->atoms[task->nr_events - 1];
243}
244
245static void
246add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
247{
248 struct sched_atom *event, *curr_event = last_event(task);
249
250 /*
251 * optimize an existing RUN event by merging this one
252 * to it:
253 */
254 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
255 nr_run_events_optimized++;
256 curr_event->duration += duration;
257 return;
258 }
259
260 event = get_new_event(task, timestamp);
261
262 event->type = SCHED_EVENT_RUN;
263 event->duration = duration;
264
265 nr_run_events++;
266}
267
268static void
269add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
270 struct task_desc *wakee)
271{
272 struct sched_atom *event, *wakee_event;
273
274 event = get_new_event(task, timestamp);
275 event->type = SCHED_EVENT_WAKEUP;
276 event->wakee = wakee;
277
278 wakee_event = last_event(wakee);
279 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
280 targetless_wakeups++;
281 return;
282 }
283 if (wakee_event->wait_sem) {
284 multitarget_wakeups++;
285 return;
286 }
287
288 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
289 sem_init(wakee_event->wait_sem, 0, 0);
290 wakee_event->specific_wait = 1;
291 event->wait_sem = wakee_event->wait_sem;
292
293 nr_wakeup_events++;
294}
295
296static void
297add_sched_event_sleep(struct task_desc *task, u64 timestamp,
298 u64 task_state __used)
299{
300 struct sched_atom *event = get_new_event(task, timestamp);
301
302 event->type = SCHED_EVENT_SLEEP;
303
304 nr_sleep_events++;
305}
306
307static struct task_desc *register_pid(unsigned long pid, const char *comm)
308{
309 struct task_desc *task;
310
311 BUG_ON(pid >= MAX_PID);
312
313 task = pid_to_task[pid];
314
315 if (task)
316 return task;
317
318 task = zalloc(sizeof(*task));
319 task->pid = pid;
320 task->nr = nr_tasks;
321 strcpy(task->comm, comm);
322 /*
323 * every task starts in sleeping state - this gets ignored
324 * if there's no wakeup pointing to this sleep state:
325 */
326 add_sched_event_sleep(task, 0, 0);
327
328 pid_to_task[pid] = task;
329 nr_tasks++;
330 tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
331 BUG_ON(!tasks);
332 tasks[task->nr] = task;
333
334 if (verbose)
335 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
336
337 return task;
338}
339
340
341static void print_task_traces(void)
342{
343 struct task_desc *task;
344 unsigned long i;
345
346 for (i = 0; i < nr_tasks; i++) {
347 task = tasks[i];
348 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
349 task->nr, task->comm, task->pid, task->nr_events);
350 }
351}
352
353static void add_cross_task_wakeups(void)
354{
355 struct task_desc *task1, *task2;
356 unsigned long i, j;
357
358 for (i = 0; i < nr_tasks; i++) {
359 task1 = tasks[i];
360 j = i + 1;
361 if (j == nr_tasks)
362 j = 0;
363 task2 = tasks[j];
364 add_sched_event_wakeup(task1, 0, task2);
365 }
366}
367
368static void
369process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
370{
371 int ret = 0;
372
373 switch (atom->type) {
374 case SCHED_EVENT_RUN:
375 burn_nsecs(atom->duration);
376 break;
377 case SCHED_EVENT_SLEEP:
378 if (atom->wait_sem)
379 ret = sem_wait(atom->wait_sem);
380 BUG_ON(ret);
381 break;
382 case SCHED_EVENT_WAKEUP:
383 if (atom->wait_sem)
384 ret = sem_post(atom->wait_sem);
385 BUG_ON(ret);
386 break;
387 case SCHED_EVENT_MIGRATION:
388 break;
389 default:
390 BUG_ON(1);
391 }
392}
393
394static u64 get_cpu_usage_nsec_parent(void)
395{
396 struct rusage ru;
397 u64 sum;
398 int err;
399
400 err = getrusage(RUSAGE_SELF, &ru);
401 BUG_ON(err);
402
403 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
404 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
405
406 return sum;
407}
408
409static int self_open_counters(void)
410{
411 struct perf_event_attr attr;
412 int fd;
413
414 memset(&attr, 0, sizeof(attr));
415
416 attr.type = PERF_TYPE_SOFTWARE;
417 attr.config = PERF_COUNT_SW_TASK_CLOCK;
418
419 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
420
421 if (fd < 0)
422 die("Error: sys_perf_event_open() syscall returned"
423 "with %d (%s)\n", fd, strerror(errno));
424 return fd;
425}
426
427static u64 get_cpu_usage_nsec_self(int fd)
428{
429 u64 runtime;
430 int ret;
431
432 ret = read(fd, &runtime, sizeof(runtime));
433 BUG_ON(ret != sizeof(runtime));
434
435 return runtime;
436}
437
438static void *thread_func(void *ctx)
439{
440 struct task_desc *this_task = ctx;
441 u64 cpu_usage_0, cpu_usage_1;
442 unsigned long i, ret;
443 char comm2[22];
444 int fd;
445
446 sprintf(comm2, ":%s", this_task->comm);
447 prctl(PR_SET_NAME, comm2);
448 fd = self_open_counters();
449
450again:
451 ret = sem_post(&this_task->ready_for_work);
452 BUG_ON(ret);
453 ret = pthread_mutex_lock(&start_work_mutex);
454 BUG_ON(ret);
455 ret = pthread_mutex_unlock(&start_work_mutex);
456 BUG_ON(ret);
457
458 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
459
460 for (i = 0; i < this_task->nr_events; i++) {
461 this_task->curr_event = i;
462 process_sched_event(this_task, this_task->atoms[i]);
463 }
464
465 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
466 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
467 ret = sem_post(&this_task->work_done_sem);
468 BUG_ON(ret);
469
470 ret = pthread_mutex_lock(&work_done_wait_mutex);
471 BUG_ON(ret);
472 ret = pthread_mutex_unlock(&work_done_wait_mutex);
473 BUG_ON(ret);
474
475 goto again;
476}
477
478static void create_tasks(void)
479{
480 struct task_desc *task;
481 pthread_attr_t attr;
482 unsigned long i;
483 int err;
484
485 err = pthread_attr_init(&attr);
486 BUG_ON(err);
487 err = pthread_attr_setstacksize(&attr,
488 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
489 BUG_ON(err);
490 err = pthread_mutex_lock(&start_work_mutex);
491 BUG_ON(err);
492 err = pthread_mutex_lock(&work_done_wait_mutex);
493 BUG_ON(err);
494 for (i = 0; i < nr_tasks; i++) {
495 task = tasks[i];
496 sem_init(&task->sleep_sem, 0, 0);
497 sem_init(&task->ready_for_work, 0, 0);
498 sem_init(&task->work_done_sem, 0, 0);
499 task->curr_event = 0;
500 err = pthread_create(&task->thread, &attr, thread_func, task);
501 BUG_ON(err);
502 }
503}
504
505static void wait_for_tasks(void)
506{
507 u64 cpu_usage_0, cpu_usage_1;
508 struct task_desc *task;
509 unsigned long i, ret;
510
511 start_time = get_nsecs();
512 cpu_usage = 0;
513 pthread_mutex_unlock(&work_done_wait_mutex);
514
515 for (i = 0; i < nr_tasks; i++) {
516 task = tasks[i];
517 ret = sem_wait(&task->ready_for_work);
518 BUG_ON(ret);
519 sem_init(&task->ready_for_work, 0, 0);
520 }
521 ret = pthread_mutex_lock(&work_done_wait_mutex);
522 BUG_ON(ret);
523
524 cpu_usage_0 = get_cpu_usage_nsec_parent();
525
526 pthread_mutex_unlock(&start_work_mutex);
527
528 for (i = 0; i < nr_tasks; i++) {
529 task = tasks[i];
530 ret = sem_wait(&task->work_done_sem);
531 BUG_ON(ret);
532 sem_init(&task->work_done_sem, 0, 0);
533 cpu_usage += task->cpu_usage;
534 task->cpu_usage = 0;
535 }
536
537 cpu_usage_1 = get_cpu_usage_nsec_parent();
538 if (!runavg_cpu_usage)
539 runavg_cpu_usage = cpu_usage;
540 runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
541
542 parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
543 if (!runavg_parent_cpu_usage)
544 runavg_parent_cpu_usage = parent_cpu_usage;
545 runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
546 parent_cpu_usage)/10;
547
548 ret = pthread_mutex_lock(&start_work_mutex);
549 BUG_ON(ret);
550
551 for (i = 0; i < nr_tasks; i++) {
552 task = tasks[i];
553 sem_init(&task->sleep_sem, 0, 0);
554 task->curr_event = 0;
555 }
556}
557
558static void run_one_test(void)
559{
560 u64 T0, T1, delta, avg_delta, fluct;
561
562 T0 = get_nsecs();
563 wait_for_tasks();
564 T1 = get_nsecs();
565
566 delta = T1 - T0;
567 sum_runtime += delta;
568 nr_runs++;
569
570 avg_delta = sum_runtime / nr_runs;
571 if (delta < avg_delta)
572 fluct = avg_delta - delta;
573 else
574 fluct = delta - avg_delta;
575 sum_fluct += fluct;
576 if (!run_avg)
577 run_avg = delta;
578 run_avg = (run_avg*9 + delta)/10;
579
580 printf("#%-3ld: %0.3f, ",
581 nr_runs, (double)delta/1000000.0);
582
583 printf("ravg: %0.2f, ",
584 (double)run_avg/1e6);
585
586 printf("cpu: %0.2f / %0.2f",
587 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
588
589#if 0
590 /*
591 * rusage statistics done by the parent, these are less
592 * accurate than the sum_exec_runtime based statistics:
593 */
594 printf(" [%0.2f / %0.2f]",
595 (double)parent_cpu_usage/1e6,
596 (double)runavg_parent_cpu_usage/1e6);
597#endif
598
599 printf("\n");
600
601 if (nr_sleep_corrections)
602 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
603 nr_sleep_corrections = 0;
604}
605
606static void test_calibrations(void)
607{
608 u64 T0, T1;
609
610 T0 = get_nsecs();
611 burn_nsecs(1e6);
612 T1 = get_nsecs();
613
614 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
615
616 T0 = get_nsecs();
617 sleep_nsecs(1e6);
618 T1 = get_nsecs();
619
620 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
621}
622
623#define FILL_FIELD(ptr, field, event, data) \
624 ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
625
626#define FILL_ARRAY(ptr, array, event, data) \
627do { \
628 void *__array = raw_field_ptr(event, #array, data); \
629 memcpy(ptr.array, __array, sizeof(ptr.array)); \
630} while(0)
631
632#define FILL_COMMON_FIELDS(ptr, event, data) \
633do { \
634 FILL_FIELD(ptr, common_type, event, data); \
635 FILL_FIELD(ptr, common_flags, event, data); \
636 FILL_FIELD(ptr, common_preempt_count, event, data); \
637 FILL_FIELD(ptr, common_pid, event, data); \
638 FILL_FIELD(ptr, common_tgid, event, data); \
639} while (0)
640
641
642
643struct trace_switch_event {
644 u32 size;
645
646 u16 common_type;
647 u8 common_flags;
648 u8 common_preempt_count;
649 u32 common_pid;
650 u32 common_tgid;
651
652 char prev_comm[16];
653 u32 prev_pid;
654 u32 prev_prio;
655 u64 prev_state;
656 char next_comm[16];
657 u32 next_pid;
658 u32 next_prio;
659};
660
661struct trace_runtime_event {
662 u32 size;
663
664 u16 common_type;
665 u8 common_flags;
666 u8 common_preempt_count;
667 u32 common_pid;
668 u32 common_tgid;
669
670 char comm[16];
671 u32 pid;
672 u64 runtime;
673 u64 vruntime;
674};
675
676struct trace_wakeup_event {
677 u32 size;
678
679 u16 common_type;
680 u8 common_flags;
681 u8 common_preempt_count;
682 u32 common_pid;
683 u32 common_tgid;
684
685 char comm[16];
686 u32 pid;
687
688 u32 prio;
689 u32 success;
690 u32 cpu;
691};
692
693struct trace_fork_event {
694 u32 size;
695
696 u16 common_type;
697 u8 common_flags;
698 u8 common_preempt_count;
699 u32 common_pid;
700 u32 common_tgid;
701
702 char parent_comm[16];
703 u32 parent_pid;
704 char child_comm[16];
705 u32 child_pid;
706};
707
708struct trace_migrate_task_event {
709 u32 size;
710
711 u16 common_type;
712 u8 common_flags;
713 u8 common_preempt_count;
714 u32 common_pid;
715 u32 common_tgid;
716
717 char comm[16];
718 u32 pid;
719
720 u32 prio;
721 u32 cpu;
722};
723
724struct trace_sched_handler {
725 void (*switch_event)(struct trace_switch_event *,
726 struct perf_session *,
727 struct event *,
728 int cpu,
729 u64 timestamp,
730 struct thread *thread);
731
732 void (*runtime_event)(struct trace_runtime_event *,
733 struct perf_session *,
734 struct event *,
735 int cpu,
736 u64 timestamp,
737 struct thread *thread);
738
739 void (*wakeup_event)(struct trace_wakeup_event *,
740 struct perf_session *,
741 struct event *,
742 int cpu,
743 u64 timestamp,
744 struct thread *thread);
745
746 void (*fork_event)(struct trace_fork_event *,
747 struct event *,
748 int cpu,
749 u64 timestamp,
750 struct thread *thread);
751
752 void (*migrate_task_event)(struct trace_migrate_task_event *,
753 struct perf_session *session,
754 struct event *,
755 int cpu,
756 u64 timestamp,
757 struct thread *thread);
758};
759
760
761static void
762replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
763 struct perf_session *session __used,
764 struct event *event,
765 int cpu __used,
766 u64 timestamp __used,
767 struct thread *thread __used)
768{
769 struct task_desc *waker, *wakee;
770
771 if (verbose) {
772 printf("sched_wakeup event %p\n", event);
773
774 printf(" ... pid %d woke up %s/%d\n",
775 wakeup_event->common_pid,
776 wakeup_event->comm,
777 wakeup_event->pid);
778 }
779
780 waker = register_pid(wakeup_event->common_pid, "<unknown>");
781 wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
782
783 add_sched_event_wakeup(waker, timestamp, wakee);
784}
785
786static u64 cpu_last_switched[MAX_CPUS];
787
788static void
789replay_switch_event(struct trace_switch_event *switch_event,
790 struct perf_session *session __used,
791 struct event *event,
792 int cpu,
793 u64 timestamp,
794 struct thread *thread __used)
795{
796 struct task_desc *prev, __used *next;
797 u64 timestamp0;
798 s64 delta;
799
800 if (verbose)
801 printf("sched_switch event %p\n", event);
802
803 if (cpu >= MAX_CPUS || cpu < 0)
804 return;
805
806 timestamp0 = cpu_last_switched[cpu];
807 if (timestamp0)
808 delta = timestamp - timestamp0;
809 else
810 delta = 0;
811
812 if (delta < 0)
813 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
814
815 if (verbose) {
816 printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
817 switch_event->prev_comm, switch_event->prev_pid,
818 switch_event->next_comm, switch_event->next_pid,
819 delta);
820 }
821
822 prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
823 next = register_pid(switch_event->next_pid, switch_event->next_comm);
824
825 cpu_last_switched[cpu] = timestamp;
826
827 add_sched_event_run(prev, timestamp, delta);
828 add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
829}
830
831
832static void
833replay_fork_event(struct trace_fork_event *fork_event,
834 struct event *event,
835 int cpu __used,
836 u64 timestamp __used,
837 struct thread *thread __used)
838{
839 if (verbose) {
840 printf("sched_fork event %p\n", event);
841 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
842 printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
843 }
844 register_pid(fork_event->parent_pid, fork_event->parent_comm);
845 register_pid(fork_event->child_pid, fork_event->child_comm);
846}
847
848static struct trace_sched_handler replay_ops = {
849 .wakeup_event = replay_wakeup_event,
850 .switch_event = replay_switch_event,
851 .fork_event = replay_fork_event,
852};
853
854struct sort_dimension {
855 const char *name;
856 sort_fn_t cmp;
857 struct list_head list;
858};
859
860static LIST_HEAD(cmp_pid);
861
862static int
863thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
864{
865 struct sort_dimension *sort;
866 int ret = 0;
867
868 BUG_ON(list_empty(list));
869
870 list_for_each_entry(sort, list, list) {
871 ret = sort->cmp(l, r);
872 if (ret)
873 return ret;
874 }
875
876 return ret;
877}
878
879static struct work_atoms *
880thread_atoms_search(struct rb_root *root, struct thread *thread,
881 struct list_head *sort_list)
882{
883 struct rb_node *node = root->rb_node;
884 struct work_atoms key = { .thread = thread };
885
886 while (node) {
887 struct work_atoms *atoms;
888 int cmp;
889
890 atoms = container_of(node, struct work_atoms, node);
891
892 cmp = thread_lat_cmp(sort_list, &key, atoms);
893 if (cmp > 0)
894 node = node->rb_left;
895 else if (cmp < 0)
896 node = node->rb_right;
897 else {
898 BUG_ON(thread != atoms->thread);
899 return atoms;
900 }
901 }
902 return NULL;
903}
904
905static void
906__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
907 struct list_head *sort_list)
908{
909 struct rb_node **new = &(root->rb_node), *parent = NULL;
910
911 while (*new) {
912 struct work_atoms *this;
913 int cmp;
914
915 this = container_of(*new, struct work_atoms, node);
916 parent = *new;
917
918 cmp = thread_lat_cmp(sort_list, data, this);
919
920 if (cmp > 0)
921 new = &((*new)->rb_left);
922 else
923 new = &((*new)->rb_right);
924 }
925
926 rb_link_node(&data->node, parent, new);
927 rb_insert_color(&data->node, root);
928}
929
930static void thread_atoms_insert(struct thread *thread)
931{
932 struct work_atoms *atoms = zalloc(sizeof(*atoms));
933 if (!atoms)
934 die("No memory");
935
936 atoms->thread = thread;
937 INIT_LIST_HEAD(&atoms->work_list);
938 __thread_latency_insert(&atom_root, atoms, &cmp_pid);
939}
940
941static void
942latency_fork_event(struct trace_fork_event *fork_event __used,
943 struct event *event __used,
944 int cpu __used,
945 u64 timestamp __used,
946 struct thread *thread __used)
947{
948 /* should insert the newcomer */
949}
950
951__used
952static char sched_out_state(struct trace_switch_event *switch_event)
953{
954 const char *str = TASK_STATE_TO_CHAR_STR;
955
956 return str[switch_event->prev_state];
957}
958
959static void
960add_sched_out_event(struct work_atoms *atoms,
961 char run_state,
962 u64 timestamp)
963{
964 struct work_atom *atom = zalloc(sizeof(*atom));
965 if (!atom)
966 die("Non memory");
967
968 atom->sched_out_time = timestamp;
969
970 if (run_state == 'R') {
971 atom->state = THREAD_WAIT_CPU;
972 atom->wake_up_time = atom->sched_out_time;
973 }
974
975 list_add_tail(&atom->list, &atoms->work_list);
976}
977
978static void
979add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
980{
981 struct work_atom *atom;
982
983 BUG_ON(list_empty(&atoms->work_list));
984
985 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
986
987 atom->runtime += delta;
988 atoms->total_runtime += delta;
989}
990
991static void
992add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
993{
994 struct work_atom *atom;
995 u64 delta;
996
997 if (list_empty(&atoms->work_list))
998 return;
999
1000 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1001
1002 if (atom->state != THREAD_WAIT_CPU)
1003 return;
1004
1005 if (timestamp < atom->wake_up_time) {
1006 atom->state = THREAD_IGNORE;
1007 return;
1008 }
1009
1010 atom->state = THREAD_SCHED_IN;
1011 atom->sched_in_time = timestamp;
1012
1013 delta = atom->sched_in_time - atom->wake_up_time;
1014 atoms->total_lat += delta;
1015 if (delta > atoms->max_lat) {
1016 atoms->max_lat = delta;
1017 atoms->max_lat_at = timestamp;
1018 }
1019 atoms->nb_atoms++;
1020}
1021
1022static void
1023latency_switch_event(struct trace_switch_event *switch_event,
1024 struct perf_session *session,
1025 struct event *event __used,
1026 int cpu,
1027 u64 timestamp,
1028 struct thread *thread __used)
1029{
1030 struct work_atoms *out_events, *in_events;
1031 struct thread *sched_out, *sched_in;
1032 u64 timestamp0;
1033 s64 delta;
1034
1035 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1036
1037 timestamp0 = cpu_last_switched[cpu];
1038 cpu_last_switched[cpu] = timestamp;
1039 if (timestamp0)
1040 delta = timestamp - timestamp0;
1041 else
1042 delta = 0;
1043
1044 if (delta < 0)
1045 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1046
1047
1048 sched_out = perf_session__findnew(session, switch_event->prev_pid);
1049 sched_in = perf_session__findnew(session, switch_event->next_pid);
1050
1051 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1052 if (!out_events) {
1053 thread_atoms_insert(sched_out);
1054 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1055 if (!out_events)
1056 die("out-event: Internal tree error");
1057 }
1058 add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1059
1060 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1061 if (!in_events) {
1062 thread_atoms_insert(sched_in);
1063 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1064 if (!in_events)
1065 die("in-event: Internal tree error");
1066 /*
1067 * Take came in we have not heard about yet,
1068 * add in an initial atom in runnable state:
1069 */
1070 add_sched_out_event(in_events, 'R', timestamp);
1071 }
1072 add_sched_in_event(in_events, timestamp);
1073}
1074
1075static void
1076latency_runtime_event(struct trace_runtime_event *runtime_event,
1077 struct perf_session *session,
1078 struct event *event __used,
1079 int cpu,
1080 u64 timestamp,
1081 struct thread *this_thread __used)
1082{
1083 struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1084 struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1085
1086 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1087 if (!atoms) {
1088 thread_atoms_insert(thread);
1089 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1090 if (!atoms)
1091 die("in-event: Internal tree error");
1092 add_sched_out_event(atoms, 'R', timestamp);
1093 }
1094
1095 add_runtime_event(atoms, runtime_event->runtime, timestamp);
1096}
1097
1098static void
1099latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1100 struct perf_session *session,
1101 struct event *__event __used,
1102 int cpu __used,
1103 u64 timestamp,
1104 struct thread *thread __used)
1105{
1106 struct work_atoms *atoms;
1107 struct work_atom *atom;
1108 struct thread *wakee;
1109
1110 /* Note for later, it may be interesting to observe the failing cases */
1111 if (!wakeup_event->success)
1112 return;
1113
1114 wakee = perf_session__findnew(session, wakeup_event->pid);
1115 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1116 if (!atoms) {
1117 thread_atoms_insert(wakee);
1118 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1119 if (!atoms)
1120 die("wakeup-event: Internal tree error");
1121 add_sched_out_event(atoms, 'S', timestamp);
1122 }
1123
1124 BUG_ON(list_empty(&atoms->work_list));
1125
1126 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1127
1128 /*
1129 * You WILL be missing events if you've recorded only
1130 * one CPU, or are only looking at only one, so don't
1131 * make useless noise.
1132 */
1133 if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1134 nr_state_machine_bugs++;
1135
1136 nr_timestamps++;
1137 if (atom->sched_out_time > timestamp) {
1138 nr_unordered_timestamps++;
1139 return;
1140 }
1141
1142 atom->state = THREAD_WAIT_CPU;
1143 atom->wake_up_time = timestamp;
1144}
1145
1146static void
1147latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1148 struct perf_session *session,
1149 struct event *__event __used,
1150 int cpu __used,
1151 u64 timestamp,
1152 struct thread *thread __used)
1153{
1154 struct work_atoms *atoms;
1155 struct work_atom *atom;
1156 struct thread *migrant;
1157
1158 /*
1159 * Only need to worry about migration when profiling one CPU.
1160 */
1161 if (profile_cpu == -1)
1162 return;
1163
1164 migrant = perf_session__findnew(session, migrate_task_event->pid);
1165 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1166 if (!atoms) {
1167 thread_atoms_insert(migrant);
1168 register_pid(migrant->pid, migrant->comm);
1169 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1170 if (!atoms)
1171 die("migration-event: Internal tree error");
1172 add_sched_out_event(atoms, 'R', timestamp);
1173 }
1174
1175 BUG_ON(list_empty(&atoms->work_list));
1176
1177 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1178 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1179
1180 nr_timestamps++;
1181
1182 if (atom->sched_out_time > timestamp)
1183 nr_unordered_timestamps++;
1184}
1185
1186static struct trace_sched_handler lat_ops = {
1187 .wakeup_event = latency_wakeup_event,
1188 .switch_event = latency_switch_event,
1189 .runtime_event = latency_runtime_event,
1190 .fork_event = latency_fork_event,
1191 .migrate_task_event = latency_migrate_task_event,
1192};
1193
1194static void output_lat_thread(struct work_atoms *work_list)
1195{
1196 int i;
1197 int ret;
1198 u64 avg;
1199
1200 if (!work_list->nb_atoms)
1201 return;
1202 /*
1203 * Ignore idle threads:
1204 */
1205 if (!strcmp(work_list->thread->comm, "swapper"))
1206 return;
1207
1208 all_runtime += work_list->total_runtime;
1209 all_count += work_list->nb_atoms;
1210
1211 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
1212
1213 for (i = 0; i < 24 - ret; i++)
1214 printf(" ");
1215
1216 avg = work_list->total_lat / work_list->nb_atoms;
1217
1218 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1219 (double)work_list->total_runtime / 1e6,
1220 work_list->nb_atoms, (double)avg / 1e6,
1221 (double)work_list->max_lat / 1e6,
1222 (double)work_list->max_lat_at / 1e9);
1223}
1224
1225static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1226{
1227 if (l->thread->pid < r->thread->pid)
1228 return -1;
1229 if (l->thread->pid > r->thread->pid)
1230 return 1;
1231
1232 return 0;
1233}
1234
1235static struct sort_dimension pid_sort_dimension = {
1236 .name = "pid",
1237 .cmp = pid_cmp,
1238};
1239
1240static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1241{
1242 u64 avgl, avgr;
1243
1244 if (!l->nb_atoms)
1245 return -1;
1246
1247 if (!r->nb_atoms)
1248 return 1;
1249
1250 avgl = l->total_lat / l->nb_atoms;
1251 avgr = r->total_lat / r->nb_atoms;
1252
1253 if (avgl < avgr)
1254 return -1;
1255 if (avgl > avgr)
1256 return 1;
1257
1258 return 0;
1259}
1260
1261static struct sort_dimension avg_sort_dimension = {
1262 .name = "avg",
1263 .cmp = avg_cmp,
1264};
1265
1266static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1267{
1268 if (l->max_lat < r->max_lat)
1269 return -1;
1270 if (l->max_lat > r->max_lat)
1271 return 1;
1272
1273 return 0;
1274}
1275
1276static struct sort_dimension max_sort_dimension = {
1277 .name = "max",
1278 .cmp = max_cmp,
1279};
1280
1281static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1282{
1283 if (l->nb_atoms < r->nb_atoms)
1284 return -1;
1285 if (l->nb_atoms > r->nb_atoms)
1286 return 1;
1287
1288 return 0;
1289}
1290
1291static struct sort_dimension switch_sort_dimension = {
1292 .name = "switch",
1293 .cmp = switch_cmp,
1294};
1295
1296static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1297{
1298 if (l->total_runtime < r->total_runtime)
1299 return -1;
1300 if (l->total_runtime > r->total_runtime)
1301 return 1;
1302
1303 return 0;
1304}
1305
1306static struct sort_dimension runtime_sort_dimension = {
1307 .name = "runtime",
1308 .cmp = runtime_cmp,
1309};
1310
1311static struct sort_dimension *available_sorts[] = {
1312 &pid_sort_dimension,
1313 &avg_sort_dimension,
1314 &max_sort_dimension,
1315 &switch_sort_dimension,
1316 &runtime_sort_dimension,
1317};
1318
1319#define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1320
1321static LIST_HEAD(sort_list);
1322
1323static int sort_dimension__add(const char *tok, struct list_head *list)
1324{
1325 int i;
1326
1327 for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1328 if (!strcmp(available_sorts[i]->name, tok)) {
1329 list_add_tail(&available_sorts[i]->list, list);
1330
1331 return 0;
1332 }
1333 }
1334
1335 return -1;
1336}
1337
1338static void setup_sorting(void);
1339
1340static void sort_lat(void)
1341{
1342 struct rb_node *node;
1343
1344 for (;;) {
1345 struct work_atoms *data;
1346 node = rb_first(&atom_root);
1347 if (!node)
1348 break;
1349
1350 rb_erase(node, &atom_root);
1351 data = rb_entry(node, struct work_atoms, node);
1352 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1353 }
1354}
1355
1356static struct trace_sched_handler *trace_handler;
1357
1358static void
1359process_sched_wakeup_event(void *data, struct perf_session *session,
1360 struct event *event,
1361 int cpu __used,
1362 u64 timestamp __used,
1363 struct thread *thread __used)
1364{
1365 struct trace_wakeup_event wakeup_event;
1366
1367 FILL_COMMON_FIELDS(wakeup_event, event, data);
1368
1369 FILL_ARRAY(wakeup_event, comm, event, data);
1370 FILL_FIELD(wakeup_event, pid, event, data);
1371 FILL_FIELD(wakeup_event, prio, event, data);
1372 FILL_FIELD(wakeup_event, success, event, data);
1373 FILL_FIELD(wakeup_event, cpu, event, data);
1374
1375 if (trace_handler->wakeup_event)
1376 trace_handler->wakeup_event(&wakeup_event, session, event,
1377 cpu, timestamp, thread);
1378}
1379
1380/*
1381 * Track the current task - that way we can know whether there's any
1382 * weird events, such as a task being switched away that is not current.
1383 */
1384static int max_cpu;
1385
1386static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1387
1388static struct thread *curr_thread[MAX_CPUS];
1389
1390static char next_shortname1 = 'A';
1391static char next_shortname2 = '0';
1392
1393static void
1394map_switch_event(struct trace_switch_event *switch_event,
1395 struct perf_session *session,
1396 struct event *event __used,
1397 int this_cpu,
1398 u64 timestamp,
1399 struct thread *thread __used)
1400{
1401 struct thread *sched_out __used, *sched_in;
1402 int new_shortname;
1403 u64 timestamp0;
1404 s64 delta;
1405 int cpu;
1406
1407 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1408
1409 if (this_cpu > max_cpu)
1410 max_cpu = this_cpu;
1411
1412 timestamp0 = cpu_last_switched[this_cpu];
1413 cpu_last_switched[this_cpu] = timestamp;
1414 if (timestamp0)
1415 delta = timestamp - timestamp0;
1416 else
1417 delta = 0;
1418
1419 if (delta < 0)
1420 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1421
1422
1423 sched_out = perf_session__findnew(session, switch_event->prev_pid);
1424 sched_in = perf_session__findnew(session, switch_event->next_pid);
1425
1426 curr_thread[this_cpu] = sched_in;
1427
1428 printf(" ");
1429
1430 new_shortname = 0;
1431 if (!sched_in->shortname[0]) {
1432 sched_in->shortname[0] = next_shortname1;
1433 sched_in->shortname[1] = next_shortname2;
1434
1435 if (next_shortname1 < 'Z') {
1436 next_shortname1++;
1437 } else {
1438 next_shortname1='A';
1439 if (next_shortname2 < '9') {
1440 next_shortname2++;
1441 } else {
1442 next_shortname2='0';
1443 }
1444 }
1445 new_shortname = 1;
1446 }
1447
1448 for (cpu = 0; cpu <= max_cpu; cpu++) {
1449 if (cpu != this_cpu)
1450 printf(" ");
1451 else
1452 printf("*");
1453
1454 if (curr_thread[cpu]) {
1455 if (curr_thread[cpu]->pid)
1456 printf("%2s ", curr_thread[cpu]->shortname);
1457 else
1458 printf(". ");
1459 } else
1460 printf(" ");
1461 }
1462
1463 printf(" %12.6f secs ", (double)timestamp/1e9);
1464 if (new_shortname) {
1465 printf("%s => %s:%d\n",
1466 sched_in->shortname, sched_in->comm, sched_in->pid);
1467 } else {
1468 printf("\n");
1469 }
1470}
1471
1472
1473static void
1474process_sched_switch_event(void *data, struct perf_session *session,
1475 struct event *event,
1476 int this_cpu,
1477 u64 timestamp __used,
1478 struct thread *thread __used)
1479{
1480 struct trace_switch_event switch_event;
1481
1482 FILL_COMMON_FIELDS(switch_event, event, data);
1483
1484 FILL_ARRAY(switch_event, prev_comm, event, data);
1485 FILL_FIELD(switch_event, prev_pid, event, data);
1486 FILL_FIELD(switch_event, prev_prio, event, data);
1487 FILL_FIELD(switch_event, prev_state, event, data);
1488 FILL_ARRAY(switch_event, next_comm, event, data);
1489 FILL_FIELD(switch_event, next_pid, event, data);
1490 FILL_FIELD(switch_event, next_prio, event, data);
1491
1492 if (curr_pid[this_cpu] != (u32)-1) {
1493 /*
1494 * Are we trying to switch away a PID that is
1495 * not current?
1496 */
1497 if (curr_pid[this_cpu] != switch_event.prev_pid)
1498 nr_context_switch_bugs++;
1499 }
1500 if (trace_handler->switch_event)
1501 trace_handler->switch_event(&switch_event, session, event,
1502 this_cpu, timestamp, thread);
1503
1504 curr_pid[this_cpu] = switch_event.next_pid;
1505}
1506
1507static void
1508process_sched_runtime_event(void *data, struct perf_session *session,
1509 struct event *event,
1510 int cpu __used,
1511 u64 timestamp __used,
1512 struct thread *thread __used)
1513{
1514 struct trace_runtime_event runtime_event;
1515
1516 FILL_ARRAY(runtime_event, comm, event, data);
1517 FILL_FIELD(runtime_event, pid, event, data);
1518 FILL_FIELD(runtime_event, runtime, event, data);
1519 FILL_FIELD(runtime_event, vruntime, event, data);
1520
1521 if (trace_handler->runtime_event)
1522 trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1523}
1524
1525static void
1526process_sched_fork_event(void *data,
1527 struct event *event,
1528 int cpu __used,
1529 u64 timestamp __used,
1530 struct thread *thread __used)
1531{
1532 struct trace_fork_event fork_event;
1533
1534 FILL_COMMON_FIELDS(fork_event, event, data);
1535
1536 FILL_ARRAY(fork_event, parent_comm, event, data);
1537 FILL_FIELD(fork_event, parent_pid, event, data);
1538 FILL_ARRAY(fork_event, child_comm, event, data);
1539 FILL_FIELD(fork_event, child_pid, event, data);
1540
1541 if (trace_handler->fork_event)
1542 trace_handler->fork_event(&fork_event, event,
1543 cpu, timestamp, thread);
1544}
1545
1546static void
1547process_sched_exit_event(struct event *event,
1548 int cpu __used,
1549 u64 timestamp __used,
1550 struct thread *thread __used)
1551{
1552 if (verbose)
1553 printf("sched_exit event %p\n", event);
1554}
1555
1556static void
1557process_sched_migrate_task_event(void *data, struct perf_session *session,
1558 struct event *event,
1559 int cpu __used,
1560 u64 timestamp __used,
1561 struct thread *thread __used)
1562{
1563 struct trace_migrate_task_event migrate_task_event;
1564
1565 FILL_COMMON_FIELDS(migrate_task_event, event, data);
1566
1567 FILL_ARRAY(migrate_task_event, comm, event, data);
1568 FILL_FIELD(migrate_task_event, pid, event, data);
1569 FILL_FIELD(migrate_task_event, prio, event, data);
1570 FILL_FIELD(migrate_task_event, cpu, event, data);
1571
1572 if (trace_handler->migrate_task_event)
1573 trace_handler->migrate_task_event(&migrate_task_event, session,
1574 event, cpu, timestamp, thread);
1575}
1576
1577static void process_raw_event(union perf_event *raw_event __used,
1578 struct perf_session *session, void *data, int cpu,
1579 u64 timestamp, struct thread *thread)
1580{
1581 struct event *event;
1582 int type;
1583
1584
1585 type = trace_parse_common_type(data);
1586 event = trace_find_event(type);
1587
1588 if (!strcmp(event->name, "sched_switch"))
1589 process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1590 if (!strcmp(event->name, "sched_stat_runtime"))
1591 process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1592 if (!strcmp(event->name, "sched_wakeup"))
1593 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1594 if (!strcmp(event->name, "sched_wakeup_new"))
1595 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1596 if (!strcmp(event->name, "sched_process_fork"))
1597 process_sched_fork_event(data, event, cpu, timestamp, thread);
1598 if (!strcmp(event->name, "sched_process_exit"))
1599 process_sched_exit_event(event, cpu, timestamp, thread);
1600 if (!strcmp(event->name, "sched_migrate_task"))
1601 process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1602}
1603
1604static int process_sample_event(union perf_event *event,
1605 struct perf_sample *sample,
1606 struct perf_evsel *evsel __used,
1607 struct perf_session *session)
1608{
1609 struct thread *thread;
1610
1611 if (!(session->sample_type & PERF_SAMPLE_RAW))
1612 return 0;
1613
1614 thread = perf_session__findnew(session, sample->pid);
1615 if (thread == NULL) {
1616 pr_debug("problem processing %d event, skipping it.\n",
1617 event->header.type);
1618 return -1;
1619 }
1620
1621 dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1622
1623 if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
1624 return 0;
1625
1626 process_raw_event(event, session, sample->raw_data, sample->cpu,
1627 sample->time, thread);
1628
1629 return 0;
1630}
1631
1632static struct perf_event_ops event_ops = {
1633 .sample = process_sample_event,
1634 .comm = perf_event__process_comm,
1635 .lost = perf_event__process_lost,
1636 .fork = perf_event__process_task,
1637 .ordered_samples = true,
1638};
1639
1640static void read_events(bool destroy, struct perf_session **psession)
1641{
1642 int err = -EINVAL;
1643 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644 0, false, &event_ops);
1645 if (session == NULL)
1646 die("No Memory");
1647
1648 if (perf_session__has_traces(session, "record -R")) {
1649 err = perf_session__process_events(session, &event_ops);
1650 if (err)
1651 die("Failed to process events, error %d", err);
1652
1653 nr_events = session->hists.stats.nr_events[0];
1654 nr_lost_events = session->hists.stats.total_lost;
1655 nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1656 }
1657
1658 if (destroy)
1659 perf_session__delete(session);
1660
1661 if (psession)
1662 *psession = session;
1663}
1664
1665static void print_bad_events(void)
1666{
1667 if (nr_unordered_timestamps && nr_timestamps) {
1668 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1669 (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1670 nr_unordered_timestamps, nr_timestamps);
1671 }
1672 if (nr_lost_events && nr_events) {
1673 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1674 (double)nr_lost_events/(double)nr_events*100.0,
1675 nr_lost_events, nr_events, nr_lost_chunks);
1676 }
1677 if (nr_state_machine_bugs && nr_timestamps) {
1678 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1679 (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1680 nr_state_machine_bugs, nr_timestamps);
1681 if (nr_lost_events)
1682 printf(" (due to lost events?)");
1683 printf("\n");
1684 }
1685 if (nr_context_switch_bugs && nr_timestamps) {
1686 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1687 (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1688 nr_context_switch_bugs, nr_timestamps);
1689 if (nr_lost_events)
1690 printf(" (due to lost events?)");
1691 printf("\n");
1692 }
1693}
1694
1695static void __cmd_lat(void)
1696{
1697 struct rb_node *next;
1698 struct perf_session *session;
1699
1700 setup_pager();
1701 read_events(false, &session);
1702 sort_lat();
1703
1704 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1705 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1706 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1707
1708 next = rb_first(&sorted_atom_root);
1709
1710 while (next) {
1711 struct work_atoms *work_list;
1712
1713 work_list = rb_entry(next, struct work_atoms, node);
1714 output_lat_thread(work_list);
1715 next = rb_next(next);
1716 }
1717
1718 printf(" -----------------------------------------------------------------------------------------\n");
1719 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1720 (double)all_runtime/1e6, all_count);
1721
1722 printf(" ---------------------------------------------------\n");
1723
1724 print_bad_events();
1725 printf("\n");
1726
1727 perf_session__delete(session);
1728}
1729
1730static struct trace_sched_handler map_ops = {
1731 .wakeup_event = NULL,
1732 .switch_event = map_switch_event,
1733 .runtime_event = NULL,
1734 .fork_event = NULL,
1735};
1736
1737static void __cmd_map(void)
1738{
1739 max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1740
1741 setup_pager();
1742 read_events(true, NULL);
1743 print_bad_events();
1744}
1745
1746static void __cmd_replay(void)
1747{
1748 unsigned long i;
1749
1750 calibrate_run_measurement_overhead();
1751 calibrate_sleep_measurement_overhead();
1752
1753 test_calibrations();
1754
1755 read_events(true, NULL);
1756
1757 printf("nr_run_events: %ld\n", nr_run_events);
1758 printf("nr_sleep_events: %ld\n", nr_sleep_events);
1759 printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
1760
1761 if (targetless_wakeups)
1762 printf("target-less wakeups: %ld\n", targetless_wakeups);
1763 if (multitarget_wakeups)
1764 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1765 if (nr_run_events_optimized)
1766 printf("run atoms optimized: %ld\n",
1767 nr_run_events_optimized);
1768
1769 print_task_traces();
1770 add_cross_task_wakeups();
1771
1772 create_tasks();
1773 printf("------------------------------------------------------------\n");
1774 for (i = 0; i < replay_repeat; i++)
1775 run_one_test();
1776}
1777
1778
1779static const char * const sched_usage[] = {
1780 "perf sched [<options>] {record|latency|map|replay|script}",
1781 NULL
1782};
1783
1784static const struct option sched_options[] = {
1785 OPT_STRING('i', "input", &input_name, "file",
1786 "input file name"),
1787 OPT_INCR('v', "verbose", &verbose,
1788 "be more verbose (show symbol address, etc)"),
1789 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1790 "dump raw trace in ASCII"),
1791 OPT_END()
1792};
1793
1794static const char * const latency_usage[] = {
1795 "perf sched latency [<options>]",
1796 NULL
1797};
1798
1799static const struct option latency_options[] = {
1800 OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1801 "sort by key(s): runtime, switch, avg, max"),
1802 OPT_INCR('v', "verbose", &verbose,
1803 "be more verbose (show symbol address, etc)"),
1804 OPT_INTEGER('C', "CPU", &profile_cpu,
1805 "CPU to profile on"),
1806 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1807 "dump raw trace in ASCII"),
1808 OPT_END()
1809};
1810
1811static const char * const replay_usage[] = {
1812 "perf sched replay [<options>]",
1813 NULL
1814};
1815
1816static const struct option replay_options[] = {
1817 OPT_UINTEGER('r', "repeat", &replay_repeat,
1818 "repeat the workload replay N times (-1: infinite)"),
1819 OPT_INCR('v', "verbose", &verbose,
1820 "be more verbose (show symbol address, etc)"),
1821 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1822 "dump raw trace in ASCII"),
1823 OPT_END()
1824};
1825
1826static void setup_sorting(void)
1827{
1828 char *tmp, *tok, *str = strdup(sort_order);
1829
1830 for (tok = strtok_r(str, ", ", &tmp);
1831 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1832 if (sort_dimension__add(tok, &sort_list) < 0) {
1833 error("Unknown --sort key: `%s'", tok);
1834 usage_with_options(latency_usage, latency_options);
1835 }
1836 }
1837
1838 free(str);
1839
1840 sort_dimension__add("pid", &cmp_pid);
1841}
1842
1843static const char *record_args[] = {
1844 "record",
1845 "-a",
1846 "-R",
1847 "-f",
1848 "-m", "1024",
1849 "-c", "1",
1850 "-e", "sched:sched_switch",
1851 "-e", "sched:sched_stat_wait",
1852 "-e", "sched:sched_stat_sleep",
1853 "-e", "sched:sched_stat_iowait",
1854 "-e", "sched:sched_stat_runtime",
1855 "-e", "sched:sched_process_exit",
1856 "-e", "sched:sched_process_fork",
1857 "-e", "sched:sched_wakeup",
1858 "-e", "sched:sched_migrate_task",
1859};
1860
1861static int __cmd_record(int argc, const char **argv)
1862{
1863 unsigned int rec_argc, i, j;
1864 const char **rec_argv;
1865
1866 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1867 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1868
1869 if (rec_argv == NULL)
1870 return -ENOMEM;
1871
1872 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1873 rec_argv[i] = strdup(record_args[i]);
1874
1875 for (j = 1; j < (unsigned int)argc; j++, i++)
1876 rec_argv[i] = argv[j];
1877
1878 BUG_ON(i != rec_argc);
1879
1880 return cmd_record(i, rec_argv, NULL);
1881}
1882
1883int cmd_sched(int argc, const char **argv, const char *prefix __used)
1884{
1885 argc = parse_options(argc, argv, sched_options, sched_usage,
1886 PARSE_OPT_STOP_AT_NON_OPTION);
1887 if (!argc)
1888 usage_with_options(sched_usage, sched_options);
1889
1890 /*
1891 * Aliased to 'perf script' for now:
1892 */
1893 if (!strcmp(argv[0], "script"))
1894 return cmd_script(argc, argv, prefix);
1895
1896 symbol__init();
1897 if (!strncmp(argv[0], "rec", 3)) {
1898 return __cmd_record(argc, argv);
1899 } else if (!strncmp(argv[0], "lat", 3)) {
1900 trace_handler = &lat_ops;
1901 if (argc > 1) {
1902 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1903 if (argc)
1904 usage_with_options(latency_usage, latency_options);
1905 }
1906 setup_sorting();
1907 __cmd_lat();
1908 } else if (!strcmp(argv[0], "map")) {
1909 trace_handler = &map_ops;
1910 setup_sorting();
1911 __cmd_map();
1912 } else if (!strncmp(argv[0], "rep", 3)) {
1913 trace_handler = &replay_ops;
1914 if (argc) {
1915 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1916 if (argc)
1917 usage_with_options(replay_usage, replay_options);
1918 }
1919 __cmd_replay();
1920 } else {
1921 usage_with_options(sched_usage, sched_options);
1922 }
1923
1924 return 0;
1925}