Loading...
1#include "builtin.h"
2#include "perf.h"
3
4#include "util/util.h"
5#include "util/evlist.h"
6#include "util/cache.h"
7#include "util/evsel.h"
8#include "util/symbol.h"
9#include "util/thread.h"
10#include "util/header.h"
11#include "util/session.h"
12#include "util/tool.h"
13
14#include "util/parse-options.h"
15#include "util/trace-event.h"
16
17#include "util/debug.h"
18
19#include <sys/prctl.h>
20#include <sys/resource.h>
21
22#include <semaphore.h>
23#include <pthread.h>
24#include <math.h>
25
26#define PR_SET_NAME 15 /* Set process name */
27#define MAX_CPUS 4096
28#define COMM_LEN 20
29#define SYM_LEN 129
30#define MAX_PID 65536
31
32struct sched_atom;
33
34struct task_desc {
35 unsigned long nr;
36 unsigned long pid;
37 char comm[COMM_LEN];
38
39 unsigned long nr_events;
40 unsigned long curr_event;
41 struct sched_atom **atoms;
42
43 pthread_t thread;
44 sem_t sleep_sem;
45
46 sem_t ready_for_work;
47 sem_t work_done_sem;
48
49 u64 cpu_usage;
50};
51
52enum sched_event_type {
53 SCHED_EVENT_RUN,
54 SCHED_EVENT_SLEEP,
55 SCHED_EVENT_WAKEUP,
56 SCHED_EVENT_MIGRATION,
57};
58
59struct sched_atom {
60 enum sched_event_type type;
61 int specific_wait;
62 u64 timestamp;
63 u64 duration;
64 unsigned long nr;
65 sem_t *wait_sem;
66 struct task_desc *wakee;
67};
68
69#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
70
71enum thread_state {
72 THREAD_SLEEPING = 0,
73 THREAD_WAIT_CPU,
74 THREAD_SCHED_IN,
75 THREAD_IGNORE
76};
77
78struct work_atom {
79 struct list_head list;
80 enum thread_state state;
81 u64 sched_out_time;
82 u64 wake_up_time;
83 u64 sched_in_time;
84 u64 runtime;
85};
86
87struct work_atoms {
88 struct list_head work_list;
89 struct thread *thread;
90 struct rb_node node;
91 u64 max_lat;
92 u64 max_lat_at;
93 u64 total_lat;
94 u64 nb_atoms;
95 u64 total_runtime;
96};
97
98typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
99
100struct perf_sched;
101
102struct trace_sched_handler {
103 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104 struct perf_sample *sample, struct machine *machine);
105
106 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107 struct perf_sample *sample, struct machine *machine);
108
109 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
111
112 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
113 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
114 struct machine *machine);
115
116 int (*migrate_task_event)(struct perf_sched *sched,
117 struct perf_evsel *evsel,
118 struct perf_sample *sample,
119 struct machine *machine);
120};
121
122struct perf_sched {
123 struct perf_tool tool;
124 const char *sort_order;
125 unsigned long nr_tasks;
126 struct task_desc *pid_to_task[MAX_PID];
127 struct task_desc **tasks;
128 const struct trace_sched_handler *tp_handler;
129 pthread_mutex_t start_work_mutex;
130 pthread_mutex_t work_done_wait_mutex;
131 int profile_cpu;
132/*
133 * Track the current task - that way we can know whether there's any
134 * weird events, such as a task being switched away that is not current.
135 */
136 int max_cpu;
137 u32 curr_pid[MAX_CPUS];
138 struct thread *curr_thread[MAX_CPUS];
139 char next_shortname1;
140 char next_shortname2;
141 unsigned int replay_repeat;
142 unsigned long nr_run_events;
143 unsigned long nr_sleep_events;
144 unsigned long nr_wakeup_events;
145 unsigned long nr_sleep_corrections;
146 unsigned long nr_run_events_optimized;
147 unsigned long targetless_wakeups;
148 unsigned long multitarget_wakeups;
149 unsigned long nr_runs;
150 unsigned long nr_timestamps;
151 unsigned long nr_unordered_timestamps;
152 unsigned long nr_state_machine_bugs;
153 unsigned long nr_context_switch_bugs;
154 unsigned long nr_events;
155 unsigned long nr_lost_chunks;
156 unsigned long nr_lost_events;
157 u64 run_measurement_overhead;
158 u64 sleep_measurement_overhead;
159 u64 start_time;
160 u64 cpu_usage;
161 u64 runavg_cpu_usage;
162 u64 parent_cpu_usage;
163 u64 runavg_parent_cpu_usage;
164 u64 sum_runtime;
165 u64 sum_fluct;
166 u64 run_avg;
167 u64 all_runtime;
168 u64 all_count;
169 u64 cpu_last_switched[MAX_CPUS];
170 struct rb_root atom_root, sorted_atom_root;
171 struct list_head sort_list, cmp_pid;
172};
173
174static u64 get_nsecs(void)
175{
176 struct timespec ts;
177
178 clock_gettime(CLOCK_MONOTONIC, &ts);
179
180 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
181}
182
183static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
184{
185 u64 T0 = get_nsecs(), T1;
186
187 do {
188 T1 = get_nsecs();
189 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
190}
191
192static void sleep_nsecs(u64 nsecs)
193{
194 struct timespec ts;
195
196 ts.tv_nsec = nsecs % 999999999;
197 ts.tv_sec = nsecs / 999999999;
198
199 nanosleep(&ts, NULL);
200}
201
202static void calibrate_run_measurement_overhead(struct perf_sched *sched)
203{
204 u64 T0, T1, delta, min_delta = 1000000000ULL;
205 int i;
206
207 for (i = 0; i < 10; i++) {
208 T0 = get_nsecs();
209 burn_nsecs(sched, 0);
210 T1 = get_nsecs();
211 delta = T1-T0;
212 min_delta = min(min_delta, delta);
213 }
214 sched->run_measurement_overhead = min_delta;
215
216 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
217}
218
219static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
220{
221 u64 T0, T1, delta, min_delta = 1000000000ULL;
222 int i;
223
224 for (i = 0; i < 10; i++) {
225 T0 = get_nsecs();
226 sleep_nsecs(10000);
227 T1 = get_nsecs();
228 delta = T1-T0;
229 min_delta = min(min_delta, delta);
230 }
231 min_delta -= 10000;
232 sched->sleep_measurement_overhead = min_delta;
233
234 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
235}
236
237static struct sched_atom *
238get_new_event(struct task_desc *task, u64 timestamp)
239{
240 struct sched_atom *event = zalloc(sizeof(*event));
241 unsigned long idx = task->nr_events;
242 size_t size;
243
244 event->timestamp = timestamp;
245 event->nr = idx;
246
247 task->nr_events++;
248 size = sizeof(struct sched_atom *) * task->nr_events;
249 task->atoms = realloc(task->atoms, size);
250 BUG_ON(!task->atoms);
251
252 task->atoms[idx] = event;
253
254 return event;
255}
256
257static struct sched_atom *last_event(struct task_desc *task)
258{
259 if (!task->nr_events)
260 return NULL;
261
262 return task->atoms[task->nr_events - 1];
263}
264
265static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
266 u64 timestamp, u64 duration)
267{
268 struct sched_atom *event, *curr_event = last_event(task);
269
270 /*
271 * optimize an existing RUN event by merging this one
272 * to it:
273 */
274 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
275 sched->nr_run_events_optimized++;
276 curr_event->duration += duration;
277 return;
278 }
279
280 event = get_new_event(task, timestamp);
281
282 event->type = SCHED_EVENT_RUN;
283 event->duration = duration;
284
285 sched->nr_run_events++;
286}
287
288static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
289 u64 timestamp, struct task_desc *wakee)
290{
291 struct sched_atom *event, *wakee_event;
292
293 event = get_new_event(task, timestamp);
294 event->type = SCHED_EVENT_WAKEUP;
295 event->wakee = wakee;
296
297 wakee_event = last_event(wakee);
298 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
299 sched->targetless_wakeups++;
300 return;
301 }
302 if (wakee_event->wait_sem) {
303 sched->multitarget_wakeups++;
304 return;
305 }
306
307 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
308 sem_init(wakee_event->wait_sem, 0, 0);
309 wakee_event->specific_wait = 1;
310 event->wait_sem = wakee_event->wait_sem;
311
312 sched->nr_wakeup_events++;
313}
314
315static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
316 u64 timestamp, u64 task_state __maybe_unused)
317{
318 struct sched_atom *event = get_new_event(task, timestamp);
319
320 event->type = SCHED_EVENT_SLEEP;
321
322 sched->nr_sleep_events++;
323}
324
325static struct task_desc *register_pid(struct perf_sched *sched,
326 unsigned long pid, const char *comm)
327{
328 struct task_desc *task;
329
330 BUG_ON(pid >= MAX_PID);
331
332 task = sched->pid_to_task[pid];
333
334 if (task)
335 return task;
336
337 task = zalloc(sizeof(*task));
338 task->pid = pid;
339 task->nr = sched->nr_tasks;
340 strcpy(task->comm, comm);
341 /*
342 * every task starts in sleeping state - this gets ignored
343 * if there's no wakeup pointing to this sleep state:
344 */
345 add_sched_event_sleep(sched, task, 0, 0);
346
347 sched->pid_to_task[pid] = task;
348 sched->nr_tasks++;
349 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
350 BUG_ON(!sched->tasks);
351 sched->tasks[task->nr] = task;
352
353 if (verbose)
354 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
355
356 return task;
357}
358
359
360static void print_task_traces(struct perf_sched *sched)
361{
362 struct task_desc *task;
363 unsigned long i;
364
365 for (i = 0; i < sched->nr_tasks; i++) {
366 task = sched->tasks[i];
367 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368 task->nr, task->comm, task->pid, task->nr_events);
369 }
370}
371
372static void add_cross_task_wakeups(struct perf_sched *sched)
373{
374 struct task_desc *task1, *task2;
375 unsigned long i, j;
376
377 for (i = 0; i < sched->nr_tasks; i++) {
378 task1 = sched->tasks[i];
379 j = i + 1;
380 if (j == sched->nr_tasks)
381 j = 0;
382 task2 = sched->tasks[j];
383 add_sched_event_wakeup(sched, task1, 0, task2);
384 }
385}
386
387static void perf_sched__process_event(struct perf_sched *sched,
388 struct sched_atom *atom)
389{
390 int ret = 0;
391
392 switch (atom->type) {
393 case SCHED_EVENT_RUN:
394 burn_nsecs(sched, atom->duration);
395 break;
396 case SCHED_EVENT_SLEEP:
397 if (atom->wait_sem)
398 ret = sem_wait(atom->wait_sem);
399 BUG_ON(ret);
400 break;
401 case SCHED_EVENT_WAKEUP:
402 if (atom->wait_sem)
403 ret = sem_post(atom->wait_sem);
404 BUG_ON(ret);
405 break;
406 case SCHED_EVENT_MIGRATION:
407 break;
408 default:
409 BUG_ON(1);
410 }
411}
412
413static u64 get_cpu_usage_nsec_parent(void)
414{
415 struct rusage ru;
416 u64 sum;
417 int err;
418
419 err = getrusage(RUSAGE_SELF, &ru);
420 BUG_ON(err);
421
422 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
423 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
424
425 return sum;
426}
427
428static int self_open_counters(void)
429{
430 struct perf_event_attr attr;
431 int fd;
432
433 memset(&attr, 0, sizeof(attr));
434
435 attr.type = PERF_TYPE_SOFTWARE;
436 attr.config = PERF_COUNT_SW_TASK_CLOCK;
437
438 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
439
440 if (fd < 0)
441 pr_err("Error: sys_perf_event_open() syscall returned "
442 "with %d (%s)\n", fd, strerror(errno));
443 return fd;
444}
445
446static u64 get_cpu_usage_nsec_self(int fd)
447{
448 u64 runtime;
449 int ret;
450
451 ret = read(fd, &runtime, sizeof(runtime));
452 BUG_ON(ret != sizeof(runtime));
453
454 return runtime;
455}
456
457struct sched_thread_parms {
458 struct task_desc *task;
459 struct perf_sched *sched;
460};
461
462static void *thread_func(void *ctx)
463{
464 struct sched_thread_parms *parms = ctx;
465 struct task_desc *this_task = parms->task;
466 struct perf_sched *sched = parms->sched;
467 u64 cpu_usage_0, cpu_usage_1;
468 unsigned long i, ret;
469 char comm2[22];
470 int fd;
471
472 zfree(&parms);
473
474 sprintf(comm2, ":%s", this_task->comm);
475 prctl(PR_SET_NAME, comm2);
476 fd = self_open_counters();
477 if (fd < 0)
478 return NULL;
479again:
480 ret = sem_post(&this_task->ready_for_work);
481 BUG_ON(ret);
482 ret = pthread_mutex_lock(&sched->start_work_mutex);
483 BUG_ON(ret);
484 ret = pthread_mutex_unlock(&sched->start_work_mutex);
485 BUG_ON(ret);
486
487 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
488
489 for (i = 0; i < this_task->nr_events; i++) {
490 this_task->curr_event = i;
491 perf_sched__process_event(sched, this_task->atoms[i]);
492 }
493
494 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
495 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
496 ret = sem_post(&this_task->work_done_sem);
497 BUG_ON(ret);
498
499 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
500 BUG_ON(ret);
501 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
502 BUG_ON(ret);
503
504 goto again;
505}
506
507static void create_tasks(struct perf_sched *sched)
508{
509 struct task_desc *task;
510 pthread_attr_t attr;
511 unsigned long i;
512 int err;
513
514 err = pthread_attr_init(&attr);
515 BUG_ON(err);
516 err = pthread_attr_setstacksize(&attr,
517 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
518 BUG_ON(err);
519 err = pthread_mutex_lock(&sched->start_work_mutex);
520 BUG_ON(err);
521 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
522 BUG_ON(err);
523 for (i = 0; i < sched->nr_tasks; i++) {
524 struct sched_thread_parms *parms = malloc(sizeof(*parms));
525 BUG_ON(parms == NULL);
526 parms->task = task = sched->tasks[i];
527 parms->sched = sched;
528 sem_init(&task->sleep_sem, 0, 0);
529 sem_init(&task->ready_for_work, 0, 0);
530 sem_init(&task->work_done_sem, 0, 0);
531 task->curr_event = 0;
532 err = pthread_create(&task->thread, &attr, thread_func, parms);
533 BUG_ON(err);
534 }
535}
536
537static void wait_for_tasks(struct perf_sched *sched)
538{
539 u64 cpu_usage_0, cpu_usage_1;
540 struct task_desc *task;
541 unsigned long i, ret;
542
543 sched->start_time = get_nsecs();
544 sched->cpu_usage = 0;
545 pthread_mutex_unlock(&sched->work_done_wait_mutex);
546
547 for (i = 0; i < sched->nr_tasks; i++) {
548 task = sched->tasks[i];
549 ret = sem_wait(&task->ready_for_work);
550 BUG_ON(ret);
551 sem_init(&task->ready_for_work, 0, 0);
552 }
553 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
554 BUG_ON(ret);
555
556 cpu_usage_0 = get_cpu_usage_nsec_parent();
557
558 pthread_mutex_unlock(&sched->start_work_mutex);
559
560 for (i = 0; i < sched->nr_tasks; i++) {
561 task = sched->tasks[i];
562 ret = sem_wait(&task->work_done_sem);
563 BUG_ON(ret);
564 sem_init(&task->work_done_sem, 0, 0);
565 sched->cpu_usage += task->cpu_usage;
566 task->cpu_usage = 0;
567 }
568
569 cpu_usage_1 = get_cpu_usage_nsec_parent();
570 if (!sched->runavg_cpu_usage)
571 sched->runavg_cpu_usage = sched->cpu_usage;
572 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
573
574 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
575 if (!sched->runavg_parent_cpu_usage)
576 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
577 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
578 sched->parent_cpu_usage)/10;
579
580 ret = pthread_mutex_lock(&sched->start_work_mutex);
581 BUG_ON(ret);
582
583 for (i = 0; i < sched->nr_tasks; i++) {
584 task = sched->tasks[i];
585 sem_init(&task->sleep_sem, 0, 0);
586 task->curr_event = 0;
587 }
588}
589
590static void run_one_test(struct perf_sched *sched)
591{
592 u64 T0, T1, delta, avg_delta, fluct;
593
594 T0 = get_nsecs();
595 wait_for_tasks(sched);
596 T1 = get_nsecs();
597
598 delta = T1 - T0;
599 sched->sum_runtime += delta;
600 sched->nr_runs++;
601
602 avg_delta = sched->sum_runtime / sched->nr_runs;
603 if (delta < avg_delta)
604 fluct = avg_delta - delta;
605 else
606 fluct = delta - avg_delta;
607 sched->sum_fluct += fluct;
608 if (!sched->run_avg)
609 sched->run_avg = delta;
610 sched->run_avg = (sched->run_avg * 9 + delta) / 10;
611
612 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
613
614 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
615
616 printf("cpu: %0.2f / %0.2f",
617 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
618
619#if 0
620 /*
621 * rusage statistics done by the parent, these are less
622 * accurate than the sched->sum_exec_runtime based statistics:
623 */
624 printf(" [%0.2f / %0.2f]",
625 (double)sched->parent_cpu_usage/1e6,
626 (double)sched->runavg_parent_cpu_usage/1e6);
627#endif
628
629 printf("\n");
630
631 if (sched->nr_sleep_corrections)
632 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
633 sched->nr_sleep_corrections = 0;
634}
635
636static void test_calibrations(struct perf_sched *sched)
637{
638 u64 T0, T1;
639
640 T0 = get_nsecs();
641 burn_nsecs(sched, 1e6);
642 T1 = get_nsecs();
643
644 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
645
646 T0 = get_nsecs();
647 sleep_nsecs(1e6);
648 T1 = get_nsecs();
649
650 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
651}
652
653static int
654replay_wakeup_event(struct perf_sched *sched,
655 struct perf_evsel *evsel, struct perf_sample *sample,
656 struct machine *machine __maybe_unused)
657{
658 const char *comm = perf_evsel__strval(evsel, sample, "comm");
659 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
660 struct task_desc *waker, *wakee;
661
662 if (verbose) {
663 printf("sched_wakeup event %p\n", evsel);
664
665 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
666 }
667
668 waker = register_pid(sched, sample->tid, "<unknown>");
669 wakee = register_pid(sched, pid, comm);
670
671 add_sched_event_wakeup(sched, waker, sample->time, wakee);
672 return 0;
673}
674
675static int replay_switch_event(struct perf_sched *sched,
676 struct perf_evsel *evsel,
677 struct perf_sample *sample,
678 struct machine *machine __maybe_unused)
679{
680 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
681 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
682 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
683 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
684 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
685 struct task_desc *prev, __maybe_unused *next;
686 u64 timestamp0, timestamp = sample->time;
687 int cpu = sample->cpu;
688 s64 delta;
689
690 if (verbose)
691 printf("sched_switch event %p\n", evsel);
692
693 if (cpu >= MAX_CPUS || cpu < 0)
694 return 0;
695
696 timestamp0 = sched->cpu_last_switched[cpu];
697 if (timestamp0)
698 delta = timestamp - timestamp0;
699 else
700 delta = 0;
701
702 if (delta < 0) {
703 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
704 return -1;
705 }
706
707 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
708 prev_comm, prev_pid, next_comm, next_pid, delta);
709
710 prev = register_pid(sched, prev_pid, prev_comm);
711 next = register_pid(sched, next_pid, next_comm);
712
713 sched->cpu_last_switched[cpu] = timestamp;
714
715 add_sched_event_run(sched, prev, timestamp, delta);
716 add_sched_event_sleep(sched, prev, timestamp, prev_state);
717
718 return 0;
719}
720
721static int replay_fork_event(struct perf_sched *sched,
722 union perf_event *event,
723 struct machine *machine)
724{
725 struct thread *child, *parent;
726
727 child = machine__findnew_thread(machine, event->fork.pid,
728 event->fork.tid);
729 parent = machine__findnew_thread(machine, event->fork.ppid,
730 event->fork.ptid);
731
732 if (child == NULL || parent == NULL) {
733 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
734 child, parent);
735 return 0;
736 }
737
738 if (verbose) {
739 printf("fork event\n");
740 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
741 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
742 }
743
744 register_pid(sched, parent->tid, thread__comm_str(parent));
745 register_pid(sched, child->tid, thread__comm_str(child));
746 return 0;
747}
748
749struct sort_dimension {
750 const char *name;
751 sort_fn_t cmp;
752 struct list_head list;
753};
754
755static int
756thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
757{
758 struct sort_dimension *sort;
759 int ret = 0;
760
761 BUG_ON(list_empty(list));
762
763 list_for_each_entry(sort, list, list) {
764 ret = sort->cmp(l, r);
765 if (ret)
766 return ret;
767 }
768
769 return ret;
770}
771
772static struct work_atoms *
773thread_atoms_search(struct rb_root *root, struct thread *thread,
774 struct list_head *sort_list)
775{
776 struct rb_node *node = root->rb_node;
777 struct work_atoms key = { .thread = thread };
778
779 while (node) {
780 struct work_atoms *atoms;
781 int cmp;
782
783 atoms = container_of(node, struct work_atoms, node);
784
785 cmp = thread_lat_cmp(sort_list, &key, atoms);
786 if (cmp > 0)
787 node = node->rb_left;
788 else if (cmp < 0)
789 node = node->rb_right;
790 else {
791 BUG_ON(thread != atoms->thread);
792 return atoms;
793 }
794 }
795 return NULL;
796}
797
798static void
799__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
800 struct list_head *sort_list)
801{
802 struct rb_node **new = &(root->rb_node), *parent = NULL;
803
804 while (*new) {
805 struct work_atoms *this;
806 int cmp;
807
808 this = container_of(*new, struct work_atoms, node);
809 parent = *new;
810
811 cmp = thread_lat_cmp(sort_list, data, this);
812
813 if (cmp > 0)
814 new = &((*new)->rb_left);
815 else
816 new = &((*new)->rb_right);
817 }
818
819 rb_link_node(&data->node, parent, new);
820 rb_insert_color(&data->node, root);
821}
822
823static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
824{
825 struct work_atoms *atoms = zalloc(sizeof(*atoms));
826 if (!atoms) {
827 pr_err("No memory at %s\n", __func__);
828 return -1;
829 }
830
831 atoms->thread = thread;
832 INIT_LIST_HEAD(&atoms->work_list);
833 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
834 return 0;
835}
836
837static char sched_out_state(u64 prev_state)
838{
839 const char *str = TASK_STATE_TO_CHAR_STR;
840
841 return str[prev_state];
842}
843
844static int
845add_sched_out_event(struct work_atoms *atoms,
846 char run_state,
847 u64 timestamp)
848{
849 struct work_atom *atom = zalloc(sizeof(*atom));
850 if (!atom) {
851 pr_err("Non memory at %s", __func__);
852 return -1;
853 }
854
855 atom->sched_out_time = timestamp;
856
857 if (run_state == 'R') {
858 atom->state = THREAD_WAIT_CPU;
859 atom->wake_up_time = atom->sched_out_time;
860 }
861
862 list_add_tail(&atom->list, &atoms->work_list);
863 return 0;
864}
865
866static void
867add_runtime_event(struct work_atoms *atoms, u64 delta,
868 u64 timestamp __maybe_unused)
869{
870 struct work_atom *atom;
871
872 BUG_ON(list_empty(&atoms->work_list));
873
874 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
875
876 atom->runtime += delta;
877 atoms->total_runtime += delta;
878}
879
880static void
881add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
882{
883 struct work_atom *atom;
884 u64 delta;
885
886 if (list_empty(&atoms->work_list))
887 return;
888
889 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
890
891 if (atom->state != THREAD_WAIT_CPU)
892 return;
893
894 if (timestamp < atom->wake_up_time) {
895 atom->state = THREAD_IGNORE;
896 return;
897 }
898
899 atom->state = THREAD_SCHED_IN;
900 atom->sched_in_time = timestamp;
901
902 delta = atom->sched_in_time - atom->wake_up_time;
903 atoms->total_lat += delta;
904 if (delta > atoms->max_lat) {
905 atoms->max_lat = delta;
906 atoms->max_lat_at = timestamp;
907 }
908 atoms->nb_atoms++;
909}
910
911static int latency_switch_event(struct perf_sched *sched,
912 struct perf_evsel *evsel,
913 struct perf_sample *sample,
914 struct machine *machine)
915{
916 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
917 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
918 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
919 struct work_atoms *out_events, *in_events;
920 struct thread *sched_out, *sched_in;
921 u64 timestamp0, timestamp = sample->time;
922 int cpu = sample->cpu;
923 s64 delta;
924
925 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
926
927 timestamp0 = sched->cpu_last_switched[cpu];
928 sched->cpu_last_switched[cpu] = timestamp;
929 if (timestamp0)
930 delta = timestamp - timestamp0;
931 else
932 delta = 0;
933
934 if (delta < 0) {
935 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
936 return -1;
937 }
938
939 sched_out = machine__findnew_thread(machine, 0, prev_pid);
940 sched_in = machine__findnew_thread(machine, 0, next_pid);
941
942 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
943 if (!out_events) {
944 if (thread_atoms_insert(sched, sched_out))
945 return -1;
946 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
947 if (!out_events) {
948 pr_err("out-event: Internal tree error");
949 return -1;
950 }
951 }
952 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
953 return -1;
954
955 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
956 if (!in_events) {
957 if (thread_atoms_insert(sched, sched_in))
958 return -1;
959 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
960 if (!in_events) {
961 pr_err("in-event: Internal tree error");
962 return -1;
963 }
964 /*
965 * Take came in we have not heard about yet,
966 * add in an initial atom in runnable state:
967 */
968 if (add_sched_out_event(in_events, 'R', timestamp))
969 return -1;
970 }
971 add_sched_in_event(in_events, timestamp);
972
973 return 0;
974}
975
976static int latency_runtime_event(struct perf_sched *sched,
977 struct perf_evsel *evsel,
978 struct perf_sample *sample,
979 struct machine *machine)
980{
981 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
982 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
983 struct thread *thread = machine__findnew_thread(machine, 0, pid);
984 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
985 u64 timestamp = sample->time;
986 int cpu = sample->cpu;
987
988 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
989 if (!atoms) {
990 if (thread_atoms_insert(sched, thread))
991 return -1;
992 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
993 if (!atoms) {
994 pr_err("in-event: Internal tree error");
995 return -1;
996 }
997 if (add_sched_out_event(atoms, 'R', timestamp))
998 return -1;
999 }
1000
1001 add_runtime_event(atoms, runtime, timestamp);
1002 return 0;
1003}
1004
1005static int latency_wakeup_event(struct perf_sched *sched,
1006 struct perf_evsel *evsel,
1007 struct perf_sample *sample,
1008 struct machine *machine)
1009{
1010 const u32 pid = perf_evsel__intval(evsel, sample, "pid"),
1011 success = perf_evsel__intval(evsel, sample, "success");
1012 struct work_atoms *atoms;
1013 struct work_atom *atom;
1014 struct thread *wakee;
1015 u64 timestamp = sample->time;
1016
1017 /* Note for later, it may be interesting to observe the failing cases */
1018 if (!success)
1019 return 0;
1020
1021 wakee = machine__findnew_thread(machine, 0, pid);
1022 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1023 if (!atoms) {
1024 if (thread_atoms_insert(sched, wakee))
1025 return -1;
1026 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1027 if (!atoms) {
1028 pr_err("wakeup-event: Internal tree error");
1029 return -1;
1030 }
1031 if (add_sched_out_event(atoms, 'S', timestamp))
1032 return -1;
1033 }
1034
1035 BUG_ON(list_empty(&atoms->work_list));
1036
1037 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1038
1039 /*
1040 * You WILL be missing events if you've recorded only
1041 * one CPU, or are only looking at only one, so don't
1042 * make useless noise.
1043 */
1044 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1045 sched->nr_state_machine_bugs++;
1046
1047 sched->nr_timestamps++;
1048 if (atom->sched_out_time > timestamp) {
1049 sched->nr_unordered_timestamps++;
1050 return 0;
1051 }
1052
1053 atom->state = THREAD_WAIT_CPU;
1054 atom->wake_up_time = timestamp;
1055 return 0;
1056}
1057
1058static int latency_migrate_task_event(struct perf_sched *sched,
1059 struct perf_evsel *evsel,
1060 struct perf_sample *sample,
1061 struct machine *machine)
1062{
1063 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1064 u64 timestamp = sample->time;
1065 struct work_atoms *atoms;
1066 struct work_atom *atom;
1067 struct thread *migrant;
1068
1069 /*
1070 * Only need to worry about migration when profiling one CPU.
1071 */
1072 if (sched->profile_cpu == -1)
1073 return 0;
1074
1075 migrant = machine__findnew_thread(machine, 0, pid);
1076 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1077 if (!atoms) {
1078 if (thread_atoms_insert(sched, migrant))
1079 return -1;
1080 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1081 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1082 if (!atoms) {
1083 pr_err("migration-event: Internal tree error");
1084 return -1;
1085 }
1086 if (add_sched_out_event(atoms, 'R', timestamp))
1087 return -1;
1088 }
1089
1090 BUG_ON(list_empty(&atoms->work_list));
1091
1092 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1093 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1094
1095 sched->nr_timestamps++;
1096
1097 if (atom->sched_out_time > timestamp)
1098 sched->nr_unordered_timestamps++;
1099
1100 return 0;
1101}
1102
1103static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1104{
1105 int i;
1106 int ret;
1107 u64 avg;
1108
1109 if (!work_list->nb_atoms)
1110 return;
1111 /*
1112 * Ignore idle threads:
1113 */
1114 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1115 return;
1116
1117 sched->all_runtime += work_list->total_runtime;
1118 sched->all_count += work_list->nb_atoms;
1119
1120 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1121
1122 for (i = 0; i < 24 - ret; i++)
1123 printf(" ");
1124
1125 avg = work_list->total_lat / work_list->nb_atoms;
1126
1127 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1128 (double)work_list->total_runtime / 1e6,
1129 work_list->nb_atoms, (double)avg / 1e6,
1130 (double)work_list->max_lat / 1e6,
1131 (double)work_list->max_lat_at / 1e9);
1132}
1133
1134static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1135{
1136 if (l->thread->tid < r->thread->tid)
1137 return -1;
1138 if (l->thread->tid > r->thread->tid)
1139 return 1;
1140
1141 return 0;
1142}
1143
1144static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1145{
1146 u64 avgl, avgr;
1147
1148 if (!l->nb_atoms)
1149 return -1;
1150
1151 if (!r->nb_atoms)
1152 return 1;
1153
1154 avgl = l->total_lat / l->nb_atoms;
1155 avgr = r->total_lat / r->nb_atoms;
1156
1157 if (avgl < avgr)
1158 return -1;
1159 if (avgl > avgr)
1160 return 1;
1161
1162 return 0;
1163}
1164
1165static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1166{
1167 if (l->max_lat < r->max_lat)
1168 return -1;
1169 if (l->max_lat > r->max_lat)
1170 return 1;
1171
1172 return 0;
1173}
1174
1175static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1176{
1177 if (l->nb_atoms < r->nb_atoms)
1178 return -1;
1179 if (l->nb_atoms > r->nb_atoms)
1180 return 1;
1181
1182 return 0;
1183}
1184
1185static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1186{
1187 if (l->total_runtime < r->total_runtime)
1188 return -1;
1189 if (l->total_runtime > r->total_runtime)
1190 return 1;
1191
1192 return 0;
1193}
1194
1195static int sort_dimension__add(const char *tok, struct list_head *list)
1196{
1197 size_t i;
1198 static struct sort_dimension avg_sort_dimension = {
1199 .name = "avg",
1200 .cmp = avg_cmp,
1201 };
1202 static struct sort_dimension max_sort_dimension = {
1203 .name = "max",
1204 .cmp = max_cmp,
1205 };
1206 static struct sort_dimension pid_sort_dimension = {
1207 .name = "pid",
1208 .cmp = pid_cmp,
1209 };
1210 static struct sort_dimension runtime_sort_dimension = {
1211 .name = "runtime",
1212 .cmp = runtime_cmp,
1213 };
1214 static struct sort_dimension switch_sort_dimension = {
1215 .name = "switch",
1216 .cmp = switch_cmp,
1217 };
1218 struct sort_dimension *available_sorts[] = {
1219 &pid_sort_dimension,
1220 &avg_sort_dimension,
1221 &max_sort_dimension,
1222 &switch_sort_dimension,
1223 &runtime_sort_dimension,
1224 };
1225
1226 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1227 if (!strcmp(available_sorts[i]->name, tok)) {
1228 list_add_tail(&available_sorts[i]->list, list);
1229
1230 return 0;
1231 }
1232 }
1233
1234 return -1;
1235}
1236
1237static void perf_sched__sort_lat(struct perf_sched *sched)
1238{
1239 struct rb_node *node;
1240
1241 for (;;) {
1242 struct work_atoms *data;
1243 node = rb_first(&sched->atom_root);
1244 if (!node)
1245 break;
1246
1247 rb_erase(node, &sched->atom_root);
1248 data = rb_entry(node, struct work_atoms, node);
1249 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1250 }
1251}
1252
1253static int process_sched_wakeup_event(struct perf_tool *tool,
1254 struct perf_evsel *evsel,
1255 struct perf_sample *sample,
1256 struct machine *machine)
1257{
1258 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1259
1260 if (sched->tp_handler->wakeup_event)
1261 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1262
1263 return 0;
1264}
1265
1266static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1267 struct perf_sample *sample, struct machine *machine)
1268{
1269 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1270 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1271 struct thread *sched_out __maybe_unused, *sched_in;
1272 int new_shortname;
1273 u64 timestamp0, timestamp = sample->time;
1274 s64 delta;
1275 int cpu, this_cpu = sample->cpu;
1276
1277 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1278
1279 if (this_cpu > sched->max_cpu)
1280 sched->max_cpu = this_cpu;
1281
1282 timestamp0 = sched->cpu_last_switched[this_cpu];
1283 sched->cpu_last_switched[this_cpu] = timestamp;
1284 if (timestamp0)
1285 delta = timestamp - timestamp0;
1286 else
1287 delta = 0;
1288
1289 if (delta < 0) {
1290 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1291 return -1;
1292 }
1293
1294 sched_out = machine__findnew_thread(machine, 0, prev_pid);
1295 sched_in = machine__findnew_thread(machine, 0, next_pid);
1296
1297 sched->curr_thread[this_cpu] = sched_in;
1298
1299 printf(" ");
1300
1301 new_shortname = 0;
1302 if (!sched_in->shortname[0]) {
1303 sched_in->shortname[0] = sched->next_shortname1;
1304 sched_in->shortname[1] = sched->next_shortname2;
1305
1306 if (sched->next_shortname1 < 'Z') {
1307 sched->next_shortname1++;
1308 } else {
1309 sched->next_shortname1='A';
1310 if (sched->next_shortname2 < '9') {
1311 sched->next_shortname2++;
1312 } else {
1313 sched->next_shortname2='0';
1314 }
1315 }
1316 new_shortname = 1;
1317 }
1318
1319 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1320 if (cpu != this_cpu)
1321 printf(" ");
1322 else
1323 printf("*");
1324
1325 if (sched->curr_thread[cpu]) {
1326 if (sched->curr_thread[cpu]->tid)
1327 printf("%2s ", sched->curr_thread[cpu]->shortname);
1328 else
1329 printf(". ");
1330 } else
1331 printf(" ");
1332 }
1333
1334 printf(" %12.6f secs ", (double)timestamp/1e9);
1335 if (new_shortname) {
1336 printf("%s => %s:%d\n",
1337 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1338 } else {
1339 printf("\n");
1340 }
1341
1342 return 0;
1343}
1344
1345static int process_sched_switch_event(struct perf_tool *tool,
1346 struct perf_evsel *evsel,
1347 struct perf_sample *sample,
1348 struct machine *machine)
1349{
1350 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1351 int this_cpu = sample->cpu, err = 0;
1352 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1353 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1354
1355 if (sched->curr_pid[this_cpu] != (u32)-1) {
1356 /*
1357 * Are we trying to switch away a PID that is
1358 * not current?
1359 */
1360 if (sched->curr_pid[this_cpu] != prev_pid)
1361 sched->nr_context_switch_bugs++;
1362 }
1363
1364 if (sched->tp_handler->switch_event)
1365 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1366
1367 sched->curr_pid[this_cpu] = next_pid;
1368 return err;
1369}
1370
1371static int process_sched_runtime_event(struct perf_tool *tool,
1372 struct perf_evsel *evsel,
1373 struct perf_sample *sample,
1374 struct machine *machine)
1375{
1376 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1377
1378 if (sched->tp_handler->runtime_event)
1379 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1380
1381 return 0;
1382}
1383
1384static int perf_sched__process_fork_event(struct perf_tool *tool,
1385 union perf_event *event,
1386 struct perf_sample *sample,
1387 struct machine *machine)
1388{
1389 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1390
1391 /* run the fork event through the perf machineruy */
1392 perf_event__process_fork(tool, event, sample, machine);
1393
1394 /* and then run additional processing needed for this command */
1395 if (sched->tp_handler->fork_event)
1396 return sched->tp_handler->fork_event(sched, event, machine);
1397
1398 return 0;
1399}
1400
1401static int process_sched_migrate_task_event(struct perf_tool *tool,
1402 struct perf_evsel *evsel,
1403 struct perf_sample *sample,
1404 struct machine *machine)
1405{
1406 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1407
1408 if (sched->tp_handler->migrate_task_event)
1409 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1410
1411 return 0;
1412}
1413
1414typedef int (*tracepoint_handler)(struct perf_tool *tool,
1415 struct perf_evsel *evsel,
1416 struct perf_sample *sample,
1417 struct machine *machine);
1418
1419static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1420 union perf_event *event __maybe_unused,
1421 struct perf_sample *sample,
1422 struct perf_evsel *evsel,
1423 struct machine *machine)
1424{
1425 int err = 0;
1426
1427 evsel->hists.stats.total_period += sample->period;
1428 hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1429
1430 if (evsel->handler != NULL) {
1431 tracepoint_handler f = evsel->handler;
1432 err = f(tool, evsel, sample, machine);
1433 }
1434
1435 return err;
1436}
1437
1438static int perf_sched__read_events(struct perf_sched *sched,
1439 struct perf_session **psession)
1440{
1441 const struct perf_evsel_str_handler handlers[] = {
1442 { "sched:sched_switch", process_sched_switch_event, },
1443 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1444 { "sched:sched_wakeup", process_sched_wakeup_event, },
1445 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1446 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1447 };
1448 struct perf_session *session;
1449 struct perf_data_file file = {
1450 .path = input_name,
1451 .mode = PERF_DATA_MODE_READ,
1452 };
1453
1454 session = perf_session__new(&file, false, &sched->tool);
1455 if (session == NULL) {
1456 pr_debug("No Memory for session\n");
1457 return -1;
1458 }
1459
1460 if (perf_session__set_tracepoints_handlers(session, handlers))
1461 goto out_delete;
1462
1463 if (perf_session__has_traces(session, "record -R")) {
1464 int err = perf_session__process_events(session, &sched->tool);
1465 if (err) {
1466 pr_err("Failed to process events, error %d", err);
1467 goto out_delete;
1468 }
1469
1470 sched->nr_events = session->stats.nr_events[0];
1471 sched->nr_lost_events = session->stats.total_lost;
1472 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1473 }
1474
1475 if (psession)
1476 *psession = session;
1477 else
1478 perf_session__delete(session);
1479
1480 return 0;
1481
1482out_delete:
1483 perf_session__delete(session);
1484 return -1;
1485}
1486
1487static void print_bad_events(struct perf_sched *sched)
1488{
1489 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1490 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1491 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1492 sched->nr_unordered_timestamps, sched->nr_timestamps);
1493 }
1494 if (sched->nr_lost_events && sched->nr_events) {
1495 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1496 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1497 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1498 }
1499 if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1500 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1501 (double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1502 sched->nr_state_machine_bugs, sched->nr_timestamps);
1503 if (sched->nr_lost_events)
1504 printf(" (due to lost events?)");
1505 printf("\n");
1506 }
1507 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1508 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1509 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1510 sched->nr_context_switch_bugs, sched->nr_timestamps);
1511 if (sched->nr_lost_events)
1512 printf(" (due to lost events?)");
1513 printf("\n");
1514 }
1515}
1516
1517static int perf_sched__lat(struct perf_sched *sched)
1518{
1519 struct rb_node *next;
1520 struct perf_session *session;
1521
1522 setup_pager();
1523
1524 /* save session -- references to threads are held in work_list */
1525 if (perf_sched__read_events(sched, &session))
1526 return -1;
1527
1528 perf_sched__sort_lat(sched);
1529
1530 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1531 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1532 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1533
1534 next = rb_first(&sched->sorted_atom_root);
1535
1536 while (next) {
1537 struct work_atoms *work_list;
1538
1539 work_list = rb_entry(next, struct work_atoms, node);
1540 output_lat_thread(sched, work_list);
1541 next = rb_next(next);
1542 }
1543
1544 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1545 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1546 (double)sched->all_runtime / 1e6, sched->all_count);
1547
1548 printf(" ---------------------------------------------------\n");
1549
1550 print_bad_events(sched);
1551 printf("\n");
1552
1553 perf_session__delete(session);
1554 return 0;
1555}
1556
1557static int perf_sched__map(struct perf_sched *sched)
1558{
1559 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1560
1561 setup_pager();
1562 if (perf_sched__read_events(sched, NULL))
1563 return -1;
1564 print_bad_events(sched);
1565 return 0;
1566}
1567
1568static int perf_sched__replay(struct perf_sched *sched)
1569{
1570 unsigned long i;
1571
1572 calibrate_run_measurement_overhead(sched);
1573 calibrate_sleep_measurement_overhead(sched);
1574
1575 test_calibrations(sched);
1576
1577 if (perf_sched__read_events(sched, NULL))
1578 return -1;
1579
1580 printf("nr_run_events: %ld\n", sched->nr_run_events);
1581 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1582 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1583
1584 if (sched->targetless_wakeups)
1585 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1586 if (sched->multitarget_wakeups)
1587 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1588 if (sched->nr_run_events_optimized)
1589 printf("run atoms optimized: %ld\n",
1590 sched->nr_run_events_optimized);
1591
1592 print_task_traces(sched);
1593 add_cross_task_wakeups(sched);
1594
1595 create_tasks(sched);
1596 printf("------------------------------------------------------------\n");
1597 for (i = 0; i < sched->replay_repeat; i++)
1598 run_one_test(sched);
1599
1600 return 0;
1601}
1602
1603static void setup_sorting(struct perf_sched *sched, const struct option *options,
1604 const char * const usage_msg[])
1605{
1606 char *tmp, *tok, *str = strdup(sched->sort_order);
1607
1608 for (tok = strtok_r(str, ", ", &tmp);
1609 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1610 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1611 error("Unknown --sort key: `%s'", tok);
1612 usage_with_options(usage_msg, options);
1613 }
1614 }
1615
1616 free(str);
1617
1618 sort_dimension__add("pid", &sched->cmp_pid);
1619}
1620
1621static int __cmd_record(int argc, const char **argv)
1622{
1623 unsigned int rec_argc, i, j;
1624 const char **rec_argv;
1625 const char * const record_args[] = {
1626 "record",
1627 "-a",
1628 "-R",
1629 "-m", "1024",
1630 "-c", "1",
1631 "-e", "sched:sched_switch",
1632 "-e", "sched:sched_stat_wait",
1633 "-e", "sched:sched_stat_sleep",
1634 "-e", "sched:sched_stat_iowait",
1635 "-e", "sched:sched_stat_runtime",
1636 "-e", "sched:sched_process_fork",
1637 "-e", "sched:sched_wakeup",
1638 "-e", "sched:sched_migrate_task",
1639 };
1640
1641 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1642 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1643
1644 if (rec_argv == NULL)
1645 return -ENOMEM;
1646
1647 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1648 rec_argv[i] = strdup(record_args[i]);
1649
1650 for (j = 1; j < (unsigned int)argc; j++, i++)
1651 rec_argv[i] = argv[j];
1652
1653 BUG_ON(i != rec_argc);
1654
1655 return cmd_record(i, rec_argv, NULL);
1656}
1657
1658int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1659{
1660 const char default_sort_order[] = "avg, max, switch, runtime";
1661 struct perf_sched sched = {
1662 .tool = {
1663 .sample = perf_sched__process_tracepoint_sample,
1664 .comm = perf_event__process_comm,
1665 .lost = perf_event__process_lost,
1666 .fork = perf_sched__process_fork_event,
1667 .ordered_samples = true,
1668 },
1669 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1670 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1671 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1672 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1673 .sort_order = default_sort_order,
1674 .replay_repeat = 10,
1675 .profile_cpu = -1,
1676 .next_shortname1 = 'A',
1677 .next_shortname2 = '0',
1678 };
1679 const struct option latency_options[] = {
1680 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1681 "sort by key(s): runtime, switch, avg, max"),
1682 OPT_INCR('v', "verbose", &verbose,
1683 "be more verbose (show symbol address, etc)"),
1684 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1685 "CPU to profile on"),
1686 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1687 "dump raw trace in ASCII"),
1688 OPT_END()
1689 };
1690 const struct option replay_options[] = {
1691 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1692 "repeat the workload replay N times (-1: infinite)"),
1693 OPT_INCR('v', "verbose", &verbose,
1694 "be more verbose (show symbol address, etc)"),
1695 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1696 "dump raw trace in ASCII"),
1697 OPT_END()
1698 };
1699 const struct option sched_options[] = {
1700 OPT_STRING('i', "input", &input_name, "file",
1701 "input file name"),
1702 OPT_INCR('v', "verbose", &verbose,
1703 "be more verbose (show symbol address, etc)"),
1704 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1705 "dump raw trace in ASCII"),
1706 OPT_END()
1707 };
1708 const char * const latency_usage[] = {
1709 "perf sched latency [<options>]",
1710 NULL
1711 };
1712 const char * const replay_usage[] = {
1713 "perf sched replay [<options>]",
1714 NULL
1715 };
1716 const char * const sched_usage[] = {
1717 "perf sched [<options>] {record|latency|map|replay|script}",
1718 NULL
1719 };
1720 struct trace_sched_handler lat_ops = {
1721 .wakeup_event = latency_wakeup_event,
1722 .switch_event = latency_switch_event,
1723 .runtime_event = latency_runtime_event,
1724 .migrate_task_event = latency_migrate_task_event,
1725 };
1726 struct trace_sched_handler map_ops = {
1727 .switch_event = map_switch_event,
1728 };
1729 struct trace_sched_handler replay_ops = {
1730 .wakeup_event = replay_wakeup_event,
1731 .switch_event = replay_switch_event,
1732 .fork_event = replay_fork_event,
1733 };
1734 unsigned int i;
1735
1736 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1737 sched.curr_pid[i] = -1;
1738
1739 argc = parse_options(argc, argv, sched_options, sched_usage,
1740 PARSE_OPT_STOP_AT_NON_OPTION);
1741 if (!argc)
1742 usage_with_options(sched_usage, sched_options);
1743
1744 /*
1745 * Aliased to 'perf script' for now:
1746 */
1747 if (!strcmp(argv[0], "script"))
1748 return cmd_script(argc, argv, prefix);
1749
1750 symbol__init();
1751 if (!strncmp(argv[0], "rec", 3)) {
1752 return __cmd_record(argc, argv);
1753 } else if (!strncmp(argv[0], "lat", 3)) {
1754 sched.tp_handler = &lat_ops;
1755 if (argc > 1) {
1756 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1757 if (argc)
1758 usage_with_options(latency_usage, latency_options);
1759 }
1760 setup_sorting(&sched, latency_options, latency_usage);
1761 return perf_sched__lat(&sched);
1762 } else if (!strcmp(argv[0], "map")) {
1763 sched.tp_handler = &map_ops;
1764 setup_sorting(&sched, latency_options, latency_usage);
1765 return perf_sched__map(&sched);
1766 } else if (!strncmp(argv[0], "rep", 3)) {
1767 sched.tp_handler = &replay_ops;
1768 if (argc) {
1769 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1770 if (argc)
1771 usage_with_options(replay_usage, replay_options);
1772 }
1773 return perf_sched__replay(&sched);
1774 } else {
1775 usage_with_options(sched_usage, sched_options);
1776 }
1777
1778 return 0;
1779}
1// SPDX-License-Identifier: GPL-2.0
2#include "builtin.h"
3#include "perf-sys.h"
4
5#include "util/cpumap.h"
6#include "util/evlist.h"
7#include "util/evsel.h"
8#include "util/evsel_fprintf.h"
9#include "util/mutex.h"
10#include "util/symbol.h"
11#include "util/thread.h"
12#include "util/header.h"
13#include "util/session.h"
14#include "util/tool.h"
15#include "util/cloexec.h"
16#include "util/thread_map.h"
17#include "util/color.h"
18#include "util/stat.h"
19#include "util/string2.h"
20#include "util/callchain.h"
21#include "util/time-utils.h"
22
23#include <subcmd/pager.h>
24#include <subcmd/parse-options.h>
25#include "util/trace-event.h"
26
27#include "util/debug.h"
28#include "util/event.h"
29#include "util/util.h"
30
31#include <linux/kernel.h>
32#include <linux/log2.h>
33#include <linux/zalloc.h>
34#include <sys/prctl.h>
35#include <sys/resource.h>
36#include <inttypes.h>
37
38#include <errno.h>
39#include <semaphore.h>
40#include <pthread.h>
41#include <math.h>
42#include <api/fs/fs.h>
43#include <perf/cpumap.h>
44#include <linux/time64.h>
45#include <linux/err.h>
46
47#include <linux/ctype.h>
48
49#define PR_SET_NAME 15 /* Set process name */
50#define MAX_CPUS 4096
51#define COMM_LEN 20
52#define SYM_LEN 129
53#define MAX_PID 1024000
54#define MAX_PRIO 140
55
56static const char *cpu_list;
57static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
58
59struct sched_atom;
60
61struct task_desc {
62 unsigned long nr;
63 unsigned long pid;
64 char comm[COMM_LEN];
65
66 unsigned long nr_events;
67 unsigned long curr_event;
68 struct sched_atom **atoms;
69
70 pthread_t thread;
71
72 sem_t ready_for_work;
73 sem_t work_done_sem;
74
75 u64 cpu_usage;
76};
77
78enum sched_event_type {
79 SCHED_EVENT_RUN,
80 SCHED_EVENT_SLEEP,
81 SCHED_EVENT_WAKEUP,
82};
83
84struct sched_atom {
85 enum sched_event_type type;
86 u64 timestamp;
87 u64 duration;
88 unsigned long nr;
89 sem_t *wait_sem;
90 struct task_desc *wakee;
91};
92
93enum thread_state {
94 THREAD_SLEEPING = 0,
95 THREAD_WAIT_CPU,
96 THREAD_SCHED_IN,
97 THREAD_IGNORE
98};
99
100struct work_atom {
101 struct list_head list;
102 enum thread_state state;
103 u64 sched_out_time;
104 u64 wake_up_time;
105 u64 sched_in_time;
106 u64 runtime;
107};
108
109struct work_atoms {
110 struct list_head work_list;
111 struct thread *thread;
112 struct rb_node node;
113 u64 max_lat;
114 u64 max_lat_start;
115 u64 max_lat_end;
116 u64 total_lat;
117 u64 nb_atoms;
118 u64 total_runtime;
119 int num_merged;
120};
121
122typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
123
124struct perf_sched;
125
126struct trace_sched_handler {
127 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
128 struct perf_sample *sample, struct machine *machine);
129
130 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
131 struct perf_sample *sample, struct machine *machine);
132
133 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
134 struct perf_sample *sample, struct machine *machine);
135
136 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
137 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
138 struct machine *machine);
139
140 int (*migrate_task_event)(struct perf_sched *sched,
141 struct evsel *evsel,
142 struct perf_sample *sample,
143 struct machine *machine);
144};
145
146#define COLOR_PIDS PERF_COLOR_BLUE
147#define COLOR_CPUS PERF_COLOR_BG_RED
148
149struct perf_sched_map {
150 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
151 struct perf_cpu *comp_cpus;
152 bool comp;
153 struct perf_thread_map *color_pids;
154 const char *color_pids_str;
155 struct perf_cpu_map *color_cpus;
156 const char *color_cpus_str;
157 const char *task_name;
158 struct strlist *task_names;
159 bool fuzzy;
160 struct perf_cpu_map *cpus;
161 const char *cpus_str;
162};
163
164struct perf_sched {
165 struct perf_tool tool;
166 const char *sort_order;
167 unsigned long nr_tasks;
168 struct task_desc **pid_to_task;
169 struct task_desc **tasks;
170 const struct trace_sched_handler *tp_handler;
171 struct mutex start_work_mutex;
172 struct mutex work_done_wait_mutex;
173 int profile_cpu;
174/*
175 * Track the current task - that way we can know whether there's any
176 * weird events, such as a task being switched away that is not current.
177 */
178 struct perf_cpu max_cpu;
179 u32 *curr_pid;
180 struct thread **curr_thread;
181 struct thread **curr_out_thread;
182 char next_shortname1;
183 char next_shortname2;
184 unsigned int replay_repeat;
185 unsigned long nr_run_events;
186 unsigned long nr_sleep_events;
187 unsigned long nr_wakeup_events;
188 unsigned long nr_sleep_corrections;
189 unsigned long nr_run_events_optimized;
190 unsigned long targetless_wakeups;
191 unsigned long multitarget_wakeups;
192 unsigned long nr_runs;
193 unsigned long nr_timestamps;
194 unsigned long nr_unordered_timestamps;
195 unsigned long nr_context_switch_bugs;
196 unsigned long nr_events;
197 unsigned long nr_lost_chunks;
198 unsigned long nr_lost_events;
199 u64 run_measurement_overhead;
200 u64 sleep_measurement_overhead;
201 u64 start_time;
202 u64 cpu_usage;
203 u64 runavg_cpu_usage;
204 u64 parent_cpu_usage;
205 u64 runavg_parent_cpu_usage;
206 u64 sum_runtime;
207 u64 sum_fluct;
208 u64 run_avg;
209 u64 all_runtime;
210 u64 all_count;
211 u64 *cpu_last_switched;
212 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
213 struct list_head sort_list, cmp_pid;
214 bool force;
215 bool skip_merge;
216 struct perf_sched_map map;
217
218 /* options for timehist command */
219 bool summary;
220 bool summary_only;
221 bool idle_hist;
222 bool show_callchain;
223 unsigned int max_stack;
224 bool show_cpu_visual;
225 bool show_wakeups;
226 bool show_next;
227 bool show_migrations;
228 bool pre_migrations;
229 bool show_state;
230 bool show_prio;
231 u64 skipped_samples;
232 const char *time_str;
233 struct perf_time_interval ptime;
234 struct perf_time_interval hist_time;
235 volatile bool thread_funcs_exit;
236 const char *prio_str;
237 DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
238};
239
240/* per thread run time data */
241struct thread_runtime {
242 u64 last_time; /* time of previous sched in/out event */
243 u64 dt_run; /* run time */
244 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
245 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
246 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
247 u64 dt_delay; /* time between wakeup and sched-in */
248 u64 dt_pre_mig; /* time between migration and wakeup */
249 u64 ready_to_run; /* time of wakeup */
250 u64 migrated; /* time when a thread is migrated */
251
252 struct stats run_stats;
253 u64 total_run_time;
254 u64 total_sleep_time;
255 u64 total_iowait_time;
256 u64 total_preempt_time;
257 u64 total_delay_time;
258 u64 total_pre_mig_time;
259
260 char last_state;
261
262 char shortname[3];
263 bool comm_changed;
264
265 u64 migrations;
266
267 int prio;
268};
269
270/* per event run time data */
271struct evsel_runtime {
272 u64 *last_time; /* time this event was last seen per cpu */
273 u32 ncpu; /* highest cpu slot allocated */
274};
275
276/* per cpu idle time data */
277struct idle_thread_runtime {
278 struct thread_runtime tr;
279 struct thread *last_thread;
280 struct rb_root_cached sorted_root;
281 struct callchain_root callchain;
282 struct callchain_cursor cursor;
283};
284
285/* track idle times per cpu */
286static struct thread **idle_threads;
287static int idle_max_cpu;
288static char idle_comm[] = "<idle>";
289
290static u64 get_nsecs(void)
291{
292 struct timespec ts;
293
294 clock_gettime(CLOCK_MONOTONIC, &ts);
295
296 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
297}
298
299static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
300{
301 u64 T0 = get_nsecs(), T1;
302
303 do {
304 T1 = get_nsecs();
305 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
306}
307
308static void sleep_nsecs(u64 nsecs)
309{
310 struct timespec ts;
311
312 ts.tv_nsec = nsecs % 999999999;
313 ts.tv_sec = nsecs / 999999999;
314
315 nanosleep(&ts, NULL);
316}
317
318static void calibrate_run_measurement_overhead(struct perf_sched *sched)
319{
320 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
321 int i;
322
323 for (i = 0; i < 10; i++) {
324 T0 = get_nsecs();
325 burn_nsecs(sched, 0);
326 T1 = get_nsecs();
327 delta = T1-T0;
328 min_delta = min(min_delta, delta);
329 }
330 sched->run_measurement_overhead = min_delta;
331
332 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
333}
334
335static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
336{
337 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
338 int i;
339
340 for (i = 0; i < 10; i++) {
341 T0 = get_nsecs();
342 sleep_nsecs(10000);
343 T1 = get_nsecs();
344 delta = T1-T0;
345 min_delta = min(min_delta, delta);
346 }
347 min_delta -= 10000;
348 sched->sleep_measurement_overhead = min_delta;
349
350 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
351}
352
353static struct sched_atom *
354get_new_event(struct task_desc *task, u64 timestamp)
355{
356 struct sched_atom *event = zalloc(sizeof(*event));
357 unsigned long idx = task->nr_events;
358 size_t size;
359
360 event->timestamp = timestamp;
361 event->nr = idx;
362
363 task->nr_events++;
364 size = sizeof(struct sched_atom *) * task->nr_events;
365 task->atoms = realloc(task->atoms, size);
366 BUG_ON(!task->atoms);
367
368 task->atoms[idx] = event;
369
370 return event;
371}
372
373static struct sched_atom *last_event(struct task_desc *task)
374{
375 if (!task->nr_events)
376 return NULL;
377
378 return task->atoms[task->nr_events - 1];
379}
380
381static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
382 u64 timestamp, u64 duration)
383{
384 struct sched_atom *event, *curr_event = last_event(task);
385
386 /*
387 * optimize an existing RUN event by merging this one
388 * to it:
389 */
390 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
391 sched->nr_run_events_optimized++;
392 curr_event->duration += duration;
393 return;
394 }
395
396 event = get_new_event(task, timestamp);
397
398 event->type = SCHED_EVENT_RUN;
399 event->duration = duration;
400
401 sched->nr_run_events++;
402}
403
404static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
405 u64 timestamp, struct task_desc *wakee)
406{
407 struct sched_atom *event, *wakee_event;
408
409 event = get_new_event(task, timestamp);
410 event->type = SCHED_EVENT_WAKEUP;
411 event->wakee = wakee;
412
413 wakee_event = last_event(wakee);
414 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
415 sched->targetless_wakeups++;
416 return;
417 }
418 if (wakee_event->wait_sem) {
419 sched->multitarget_wakeups++;
420 return;
421 }
422
423 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
424 sem_init(wakee_event->wait_sem, 0, 0);
425 event->wait_sem = wakee_event->wait_sem;
426
427 sched->nr_wakeup_events++;
428}
429
430static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
431 u64 timestamp)
432{
433 struct sched_atom *event = get_new_event(task, timestamp);
434
435 event->type = SCHED_EVENT_SLEEP;
436
437 sched->nr_sleep_events++;
438}
439
440static struct task_desc *register_pid(struct perf_sched *sched,
441 unsigned long pid, const char *comm)
442{
443 struct task_desc *task;
444 static int pid_max;
445
446 if (sched->pid_to_task == NULL) {
447 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
448 pid_max = MAX_PID;
449 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
450 }
451 if (pid >= (unsigned long)pid_max) {
452 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
453 sizeof(struct task_desc *))) == NULL);
454 while (pid >= (unsigned long)pid_max)
455 sched->pid_to_task[pid_max++] = NULL;
456 }
457
458 task = sched->pid_to_task[pid];
459
460 if (task)
461 return task;
462
463 task = zalloc(sizeof(*task));
464 task->pid = pid;
465 task->nr = sched->nr_tasks;
466 strcpy(task->comm, comm);
467 /*
468 * every task starts in sleeping state - this gets ignored
469 * if there's no wakeup pointing to this sleep state:
470 */
471 add_sched_event_sleep(sched, task, 0);
472
473 sched->pid_to_task[pid] = task;
474 sched->nr_tasks++;
475 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
476 BUG_ON(!sched->tasks);
477 sched->tasks[task->nr] = task;
478
479 if (verbose > 0)
480 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
481
482 return task;
483}
484
485
486static void print_task_traces(struct perf_sched *sched)
487{
488 struct task_desc *task;
489 unsigned long i;
490
491 for (i = 0; i < sched->nr_tasks; i++) {
492 task = sched->tasks[i];
493 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
494 task->nr, task->comm, task->pid, task->nr_events);
495 }
496}
497
498static void add_cross_task_wakeups(struct perf_sched *sched)
499{
500 struct task_desc *task1, *task2;
501 unsigned long i, j;
502
503 for (i = 0; i < sched->nr_tasks; i++) {
504 task1 = sched->tasks[i];
505 j = i + 1;
506 if (j == sched->nr_tasks)
507 j = 0;
508 task2 = sched->tasks[j];
509 add_sched_event_wakeup(sched, task1, 0, task2);
510 }
511}
512
513static void perf_sched__process_event(struct perf_sched *sched,
514 struct sched_atom *atom)
515{
516 int ret = 0;
517
518 switch (atom->type) {
519 case SCHED_EVENT_RUN:
520 burn_nsecs(sched, atom->duration);
521 break;
522 case SCHED_EVENT_SLEEP:
523 if (atom->wait_sem)
524 ret = sem_wait(atom->wait_sem);
525 BUG_ON(ret);
526 break;
527 case SCHED_EVENT_WAKEUP:
528 if (atom->wait_sem)
529 ret = sem_post(atom->wait_sem);
530 BUG_ON(ret);
531 break;
532 default:
533 BUG_ON(1);
534 }
535}
536
537static u64 get_cpu_usage_nsec_parent(void)
538{
539 struct rusage ru;
540 u64 sum;
541 int err;
542
543 err = getrusage(RUSAGE_SELF, &ru);
544 BUG_ON(err);
545
546 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
547 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
548
549 return sum;
550}
551
552static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
553{
554 struct perf_event_attr attr;
555 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
556 int fd;
557 struct rlimit limit;
558 bool need_privilege = false;
559
560 memset(&attr, 0, sizeof(attr));
561
562 attr.type = PERF_TYPE_SOFTWARE;
563 attr.config = PERF_COUNT_SW_TASK_CLOCK;
564
565force_again:
566 fd = sys_perf_event_open(&attr, 0, -1, -1,
567 perf_event_open_cloexec_flag());
568
569 if (fd < 0) {
570 if (errno == EMFILE) {
571 if (sched->force) {
572 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
573 limit.rlim_cur += sched->nr_tasks - cur_task;
574 if (limit.rlim_cur > limit.rlim_max) {
575 limit.rlim_max = limit.rlim_cur;
576 need_privilege = true;
577 }
578 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
579 if (need_privilege && errno == EPERM)
580 strcpy(info, "Need privilege\n");
581 } else
582 goto force_again;
583 } else
584 strcpy(info, "Have a try with -f option\n");
585 }
586 pr_err("Error: sys_perf_event_open() syscall returned "
587 "with %d (%s)\n%s", fd,
588 str_error_r(errno, sbuf, sizeof(sbuf)), info);
589 exit(EXIT_FAILURE);
590 }
591 return fd;
592}
593
594static u64 get_cpu_usage_nsec_self(int fd)
595{
596 u64 runtime;
597 int ret;
598
599 ret = read(fd, &runtime, sizeof(runtime));
600 BUG_ON(ret != sizeof(runtime));
601
602 return runtime;
603}
604
605struct sched_thread_parms {
606 struct task_desc *task;
607 struct perf_sched *sched;
608 int fd;
609};
610
611static void *thread_func(void *ctx)
612{
613 struct sched_thread_parms *parms = ctx;
614 struct task_desc *this_task = parms->task;
615 struct perf_sched *sched = parms->sched;
616 u64 cpu_usage_0, cpu_usage_1;
617 unsigned long i, ret;
618 char comm2[22];
619 int fd = parms->fd;
620
621 zfree(&parms);
622
623 sprintf(comm2, ":%s", this_task->comm);
624 prctl(PR_SET_NAME, comm2);
625 if (fd < 0)
626 return NULL;
627
628 while (!sched->thread_funcs_exit) {
629 ret = sem_post(&this_task->ready_for_work);
630 BUG_ON(ret);
631 mutex_lock(&sched->start_work_mutex);
632 mutex_unlock(&sched->start_work_mutex);
633
634 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
635
636 for (i = 0; i < this_task->nr_events; i++) {
637 this_task->curr_event = i;
638 perf_sched__process_event(sched, this_task->atoms[i]);
639 }
640
641 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
642 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
643 ret = sem_post(&this_task->work_done_sem);
644 BUG_ON(ret);
645
646 mutex_lock(&sched->work_done_wait_mutex);
647 mutex_unlock(&sched->work_done_wait_mutex);
648 }
649 return NULL;
650}
651
652static void create_tasks(struct perf_sched *sched)
653 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
654 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
655{
656 struct task_desc *task;
657 pthread_attr_t attr;
658 unsigned long i;
659 int err;
660
661 err = pthread_attr_init(&attr);
662 BUG_ON(err);
663 err = pthread_attr_setstacksize(&attr,
664 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
665 BUG_ON(err);
666 mutex_lock(&sched->start_work_mutex);
667 mutex_lock(&sched->work_done_wait_mutex);
668 for (i = 0; i < sched->nr_tasks; i++) {
669 struct sched_thread_parms *parms = malloc(sizeof(*parms));
670 BUG_ON(parms == NULL);
671 parms->task = task = sched->tasks[i];
672 parms->sched = sched;
673 parms->fd = self_open_counters(sched, i);
674 sem_init(&task->ready_for_work, 0, 0);
675 sem_init(&task->work_done_sem, 0, 0);
676 task->curr_event = 0;
677 err = pthread_create(&task->thread, &attr, thread_func, parms);
678 BUG_ON(err);
679 }
680}
681
682static void destroy_tasks(struct perf_sched *sched)
683 UNLOCK_FUNCTION(sched->start_work_mutex)
684 UNLOCK_FUNCTION(sched->work_done_wait_mutex)
685{
686 struct task_desc *task;
687 unsigned long i;
688 int err;
689
690 mutex_unlock(&sched->start_work_mutex);
691 mutex_unlock(&sched->work_done_wait_mutex);
692 /* Get rid of threads so they won't be upset by mutex destrunction */
693 for (i = 0; i < sched->nr_tasks; i++) {
694 task = sched->tasks[i];
695 err = pthread_join(task->thread, NULL);
696 BUG_ON(err);
697 sem_destroy(&task->ready_for_work);
698 sem_destroy(&task->work_done_sem);
699 }
700}
701
702static void wait_for_tasks(struct perf_sched *sched)
703 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
704 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
705{
706 u64 cpu_usage_0, cpu_usage_1;
707 struct task_desc *task;
708 unsigned long i, ret;
709
710 sched->start_time = get_nsecs();
711 sched->cpu_usage = 0;
712 mutex_unlock(&sched->work_done_wait_mutex);
713
714 for (i = 0; i < sched->nr_tasks; i++) {
715 task = sched->tasks[i];
716 ret = sem_wait(&task->ready_for_work);
717 BUG_ON(ret);
718 sem_init(&task->ready_for_work, 0, 0);
719 }
720 mutex_lock(&sched->work_done_wait_mutex);
721
722 cpu_usage_0 = get_cpu_usage_nsec_parent();
723
724 mutex_unlock(&sched->start_work_mutex);
725
726 for (i = 0; i < sched->nr_tasks; i++) {
727 task = sched->tasks[i];
728 ret = sem_wait(&task->work_done_sem);
729 BUG_ON(ret);
730 sem_init(&task->work_done_sem, 0, 0);
731 sched->cpu_usage += task->cpu_usage;
732 task->cpu_usage = 0;
733 }
734
735 cpu_usage_1 = get_cpu_usage_nsec_parent();
736 if (!sched->runavg_cpu_usage)
737 sched->runavg_cpu_usage = sched->cpu_usage;
738 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
739
740 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
741 if (!sched->runavg_parent_cpu_usage)
742 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
743 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
744 sched->parent_cpu_usage)/sched->replay_repeat;
745
746 mutex_lock(&sched->start_work_mutex);
747
748 for (i = 0; i < sched->nr_tasks; i++) {
749 task = sched->tasks[i];
750 task->curr_event = 0;
751 }
752}
753
754static void run_one_test(struct perf_sched *sched)
755 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
756 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
757{
758 u64 T0, T1, delta, avg_delta, fluct;
759
760 T0 = get_nsecs();
761 wait_for_tasks(sched);
762 T1 = get_nsecs();
763
764 delta = T1 - T0;
765 sched->sum_runtime += delta;
766 sched->nr_runs++;
767
768 avg_delta = sched->sum_runtime / sched->nr_runs;
769 if (delta < avg_delta)
770 fluct = avg_delta - delta;
771 else
772 fluct = delta - avg_delta;
773 sched->sum_fluct += fluct;
774 if (!sched->run_avg)
775 sched->run_avg = delta;
776 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
777
778 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
779
780 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
781
782 printf("cpu: %0.2f / %0.2f",
783 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
784
785#if 0
786 /*
787 * rusage statistics done by the parent, these are less
788 * accurate than the sched->sum_exec_runtime based statistics:
789 */
790 printf(" [%0.2f / %0.2f]",
791 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
792 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
793#endif
794
795 printf("\n");
796
797 if (sched->nr_sleep_corrections)
798 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
799 sched->nr_sleep_corrections = 0;
800}
801
802static void test_calibrations(struct perf_sched *sched)
803{
804 u64 T0, T1;
805
806 T0 = get_nsecs();
807 burn_nsecs(sched, NSEC_PER_MSEC);
808 T1 = get_nsecs();
809
810 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
811
812 T0 = get_nsecs();
813 sleep_nsecs(NSEC_PER_MSEC);
814 T1 = get_nsecs();
815
816 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
817}
818
819static int
820replay_wakeup_event(struct perf_sched *sched,
821 struct evsel *evsel, struct perf_sample *sample,
822 struct machine *machine __maybe_unused)
823{
824 const char *comm = evsel__strval(evsel, sample, "comm");
825 const u32 pid = evsel__intval(evsel, sample, "pid");
826 struct task_desc *waker, *wakee;
827
828 if (verbose > 0) {
829 printf("sched_wakeup event %p\n", evsel);
830
831 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
832 }
833
834 waker = register_pid(sched, sample->tid, "<unknown>");
835 wakee = register_pid(sched, pid, comm);
836
837 add_sched_event_wakeup(sched, waker, sample->time, wakee);
838 return 0;
839}
840
841static int replay_switch_event(struct perf_sched *sched,
842 struct evsel *evsel,
843 struct perf_sample *sample,
844 struct machine *machine __maybe_unused)
845{
846 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
847 *next_comm = evsel__strval(evsel, sample, "next_comm");
848 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
849 next_pid = evsel__intval(evsel, sample, "next_pid");
850 struct task_desc *prev, __maybe_unused *next;
851 u64 timestamp0, timestamp = sample->time;
852 int cpu = sample->cpu;
853 s64 delta;
854
855 if (verbose > 0)
856 printf("sched_switch event %p\n", evsel);
857
858 if (cpu >= MAX_CPUS || cpu < 0)
859 return 0;
860
861 timestamp0 = sched->cpu_last_switched[cpu];
862 if (timestamp0)
863 delta = timestamp - timestamp0;
864 else
865 delta = 0;
866
867 if (delta < 0) {
868 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
869 return -1;
870 }
871
872 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
873 prev_comm, prev_pid, next_comm, next_pid, delta);
874
875 prev = register_pid(sched, prev_pid, prev_comm);
876 next = register_pid(sched, next_pid, next_comm);
877
878 sched->cpu_last_switched[cpu] = timestamp;
879
880 add_sched_event_run(sched, prev, timestamp, delta);
881 add_sched_event_sleep(sched, prev, timestamp);
882
883 return 0;
884}
885
886static int replay_fork_event(struct perf_sched *sched,
887 union perf_event *event,
888 struct machine *machine)
889{
890 struct thread *child, *parent;
891
892 child = machine__findnew_thread(machine, event->fork.pid,
893 event->fork.tid);
894 parent = machine__findnew_thread(machine, event->fork.ppid,
895 event->fork.ptid);
896
897 if (child == NULL || parent == NULL) {
898 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
899 child, parent);
900 goto out_put;
901 }
902
903 if (verbose > 0) {
904 printf("fork event\n");
905 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
906 printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child));
907 }
908
909 register_pid(sched, thread__tid(parent), thread__comm_str(parent));
910 register_pid(sched, thread__tid(child), thread__comm_str(child));
911out_put:
912 thread__put(child);
913 thread__put(parent);
914 return 0;
915}
916
917struct sort_dimension {
918 const char *name;
919 sort_fn_t cmp;
920 struct list_head list;
921};
922
923static inline void init_prio(struct thread_runtime *r)
924{
925 r->prio = -1;
926}
927
928/*
929 * handle runtime stats saved per thread
930 */
931static struct thread_runtime *thread__init_runtime(struct thread *thread)
932{
933 struct thread_runtime *r;
934
935 r = zalloc(sizeof(struct thread_runtime));
936 if (!r)
937 return NULL;
938
939 init_stats(&r->run_stats);
940 init_prio(r);
941 thread__set_priv(thread, r);
942
943 return r;
944}
945
946static struct thread_runtime *thread__get_runtime(struct thread *thread)
947{
948 struct thread_runtime *tr;
949
950 tr = thread__priv(thread);
951 if (tr == NULL) {
952 tr = thread__init_runtime(thread);
953 if (tr == NULL)
954 pr_debug("Failed to malloc memory for runtime data.\n");
955 }
956
957 return tr;
958}
959
960static int
961thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
962{
963 struct sort_dimension *sort;
964 int ret = 0;
965
966 BUG_ON(list_empty(list));
967
968 list_for_each_entry(sort, list, list) {
969 ret = sort->cmp(l, r);
970 if (ret)
971 return ret;
972 }
973
974 return ret;
975}
976
977static struct work_atoms *
978thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
979 struct list_head *sort_list)
980{
981 struct rb_node *node = root->rb_root.rb_node;
982 struct work_atoms key = { .thread = thread };
983
984 while (node) {
985 struct work_atoms *atoms;
986 int cmp;
987
988 atoms = container_of(node, struct work_atoms, node);
989
990 cmp = thread_lat_cmp(sort_list, &key, atoms);
991 if (cmp > 0)
992 node = node->rb_left;
993 else if (cmp < 0)
994 node = node->rb_right;
995 else {
996 BUG_ON(thread != atoms->thread);
997 return atoms;
998 }
999 }
1000 return NULL;
1001}
1002
1003static void
1004__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1005 struct list_head *sort_list)
1006{
1007 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1008 bool leftmost = true;
1009
1010 while (*new) {
1011 struct work_atoms *this;
1012 int cmp;
1013
1014 this = container_of(*new, struct work_atoms, node);
1015 parent = *new;
1016
1017 cmp = thread_lat_cmp(sort_list, data, this);
1018
1019 if (cmp > 0)
1020 new = &((*new)->rb_left);
1021 else {
1022 new = &((*new)->rb_right);
1023 leftmost = false;
1024 }
1025 }
1026
1027 rb_link_node(&data->node, parent, new);
1028 rb_insert_color_cached(&data->node, root, leftmost);
1029}
1030
1031static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1032{
1033 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1034 if (!atoms) {
1035 pr_err("No memory at %s\n", __func__);
1036 return -1;
1037 }
1038
1039 atoms->thread = thread__get(thread);
1040 INIT_LIST_HEAD(&atoms->work_list);
1041 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1042 return 0;
1043}
1044
1045static int
1046add_sched_out_event(struct work_atoms *atoms,
1047 char run_state,
1048 u64 timestamp)
1049{
1050 struct work_atom *atom = zalloc(sizeof(*atom));
1051 if (!atom) {
1052 pr_err("Non memory at %s", __func__);
1053 return -1;
1054 }
1055
1056 atom->sched_out_time = timestamp;
1057
1058 if (run_state == 'R') {
1059 atom->state = THREAD_WAIT_CPU;
1060 atom->wake_up_time = atom->sched_out_time;
1061 }
1062
1063 list_add_tail(&atom->list, &atoms->work_list);
1064 return 0;
1065}
1066
1067static void
1068add_runtime_event(struct work_atoms *atoms, u64 delta,
1069 u64 timestamp __maybe_unused)
1070{
1071 struct work_atom *atom;
1072
1073 BUG_ON(list_empty(&atoms->work_list));
1074
1075 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1076
1077 atom->runtime += delta;
1078 atoms->total_runtime += delta;
1079}
1080
1081static void
1082add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1083{
1084 struct work_atom *atom;
1085 u64 delta;
1086
1087 if (list_empty(&atoms->work_list))
1088 return;
1089
1090 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092 if (atom->state != THREAD_WAIT_CPU)
1093 return;
1094
1095 if (timestamp < atom->wake_up_time) {
1096 atom->state = THREAD_IGNORE;
1097 return;
1098 }
1099
1100 atom->state = THREAD_SCHED_IN;
1101 atom->sched_in_time = timestamp;
1102
1103 delta = atom->sched_in_time - atom->wake_up_time;
1104 atoms->total_lat += delta;
1105 if (delta > atoms->max_lat) {
1106 atoms->max_lat = delta;
1107 atoms->max_lat_start = atom->wake_up_time;
1108 atoms->max_lat_end = timestamp;
1109 }
1110 atoms->nb_atoms++;
1111}
1112
1113static int latency_switch_event(struct perf_sched *sched,
1114 struct evsel *evsel,
1115 struct perf_sample *sample,
1116 struct machine *machine)
1117{
1118 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1119 next_pid = evsel__intval(evsel, sample, "next_pid");
1120 const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1121 struct work_atoms *out_events, *in_events;
1122 struct thread *sched_out, *sched_in;
1123 u64 timestamp0, timestamp = sample->time;
1124 int cpu = sample->cpu, err = -1;
1125 s64 delta;
1126
1127 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1128
1129 timestamp0 = sched->cpu_last_switched[cpu];
1130 sched->cpu_last_switched[cpu] = timestamp;
1131 if (timestamp0)
1132 delta = timestamp - timestamp0;
1133 else
1134 delta = 0;
1135
1136 if (delta < 0) {
1137 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1138 return -1;
1139 }
1140
1141 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1142 sched_in = machine__findnew_thread(machine, -1, next_pid);
1143 if (sched_out == NULL || sched_in == NULL)
1144 goto out_put;
1145
1146 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1147 if (!out_events) {
1148 if (thread_atoms_insert(sched, sched_out))
1149 goto out_put;
1150 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1151 if (!out_events) {
1152 pr_err("out-event: Internal tree error");
1153 goto out_put;
1154 }
1155 }
1156 if (add_sched_out_event(out_events, prev_state, timestamp))
1157 return -1;
1158
1159 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1160 if (!in_events) {
1161 if (thread_atoms_insert(sched, sched_in))
1162 goto out_put;
1163 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1164 if (!in_events) {
1165 pr_err("in-event: Internal tree error");
1166 goto out_put;
1167 }
1168 /*
1169 * Take came in we have not heard about yet,
1170 * add in an initial atom in runnable state:
1171 */
1172 if (add_sched_out_event(in_events, 'R', timestamp))
1173 goto out_put;
1174 }
1175 add_sched_in_event(in_events, timestamp);
1176 err = 0;
1177out_put:
1178 thread__put(sched_out);
1179 thread__put(sched_in);
1180 return err;
1181}
1182
1183static int latency_runtime_event(struct perf_sched *sched,
1184 struct evsel *evsel,
1185 struct perf_sample *sample,
1186 struct machine *machine)
1187{
1188 const u32 pid = evsel__intval(evsel, sample, "pid");
1189 const u64 runtime = evsel__intval(evsel, sample, "runtime");
1190 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1191 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1192 u64 timestamp = sample->time;
1193 int cpu = sample->cpu, err = -1;
1194
1195 if (thread == NULL)
1196 return -1;
1197
1198 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1199 if (!atoms) {
1200 if (thread_atoms_insert(sched, thread))
1201 goto out_put;
1202 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1203 if (!atoms) {
1204 pr_err("in-event: Internal tree error");
1205 goto out_put;
1206 }
1207 if (add_sched_out_event(atoms, 'R', timestamp))
1208 goto out_put;
1209 }
1210
1211 add_runtime_event(atoms, runtime, timestamp);
1212 err = 0;
1213out_put:
1214 thread__put(thread);
1215 return err;
1216}
1217
1218static int latency_wakeup_event(struct perf_sched *sched,
1219 struct evsel *evsel,
1220 struct perf_sample *sample,
1221 struct machine *machine)
1222{
1223 const u32 pid = evsel__intval(evsel, sample, "pid");
1224 struct work_atoms *atoms;
1225 struct work_atom *atom;
1226 struct thread *wakee;
1227 u64 timestamp = sample->time;
1228 int err = -1;
1229
1230 wakee = machine__findnew_thread(machine, -1, pid);
1231 if (wakee == NULL)
1232 return -1;
1233 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1234 if (!atoms) {
1235 if (thread_atoms_insert(sched, wakee))
1236 goto out_put;
1237 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1238 if (!atoms) {
1239 pr_err("wakeup-event: Internal tree error");
1240 goto out_put;
1241 }
1242 if (add_sched_out_event(atoms, 'S', timestamp))
1243 goto out_put;
1244 }
1245
1246 BUG_ON(list_empty(&atoms->work_list));
1247
1248 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1249
1250 /*
1251 * As we do not guarantee the wakeup event happens when
1252 * task is out of run queue, also may happen when task is
1253 * on run queue and wakeup only change ->state to TASK_RUNNING,
1254 * then we should not set the ->wake_up_time when wake up a
1255 * task which is on run queue.
1256 *
1257 * You WILL be missing events if you've recorded only
1258 * one CPU, or are only looking at only one, so don't
1259 * skip in this case.
1260 */
1261 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1262 goto out_ok;
1263
1264 sched->nr_timestamps++;
1265 if (atom->sched_out_time > timestamp) {
1266 sched->nr_unordered_timestamps++;
1267 goto out_ok;
1268 }
1269
1270 atom->state = THREAD_WAIT_CPU;
1271 atom->wake_up_time = timestamp;
1272out_ok:
1273 err = 0;
1274out_put:
1275 thread__put(wakee);
1276 return err;
1277}
1278
1279static int latency_migrate_task_event(struct perf_sched *sched,
1280 struct evsel *evsel,
1281 struct perf_sample *sample,
1282 struct machine *machine)
1283{
1284 const u32 pid = evsel__intval(evsel, sample, "pid");
1285 u64 timestamp = sample->time;
1286 struct work_atoms *atoms;
1287 struct work_atom *atom;
1288 struct thread *migrant;
1289 int err = -1;
1290
1291 /*
1292 * Only need to worry about migration when profiling one CPU.
1293 */
1294 if (sched->profile_cpu == -1)
1295 return 0;
1296
1297 migrant = machine__findnew_thread(machine, -1, pid);
1298 if (migrant == NULL)
1299 return -1;
1300 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1301 if (!atoms) {
1302 if (thread_atoms_insert(sched, migrant))
1303 goto out_put;
1304 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1305 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1306 if (!atoms) {
1307 pr_err("migration-event: Internal tree error");
1308 goto out_put;
1309 }
1310 if (add_sched_out_event(atoms, 'R', timestamp))
1311 goto out_put;
1312 }
1313
1314 BUG_ON(list_empty(&atoms->work_list));
1315
1316 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1317 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1318
1319 sched->nr_timestamps++;
1320
1321 if (atom->sched_out_time > timestamp)
1322 sched->nr_unordered_timestamps++;
1323 err = 0;
1324out_put:
1325 thread__put(migrant);
1326 return err;
1327}
1328
1329static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1330{
1331 int i;
1332 int ret;
1333 u64 avg;
1334 char max_lat_start[32], max_lat_end[32];
1335
1336 if (!work_list->nb_atoms)
1337 return;
1338 /*
1339 * Ignore idle threads:
1340 */
1341 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1342 return;
1343
1344 sched->all_runtime += work_list->total_runtime;
1345 sched->all_count += work_list->nb_atoms;
1346
1347 if (work_list->num_merged > 1) {
1348 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread),
1349 work_list->num_merged);
1350 } else {
1351 ret = printf(" %s:%d ", thread__comm_str(work_list->thread),
1352 thread__tid(work_list->thread));
1353 }
1354
1355 for (i = 0; i < 24 - ret; i++)
1356 printf(" ");
1357
1358 avg = work_list->total_lat / work_list->nb_atoms;
1359 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1360 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1361
1362 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1363 (double)work_list->total_runtime / NSEC_PER_MSEC,
1364 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1365 (double)work_list->max_lat / NSEC_PER_MSEC,
1366 max_lat_start, max_lat_end);
1367}
1368
1369static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1370{
1371 pid_t l_tid, r_tid;
1372
1373 if (RC_CHK_EQUAL(l->thread, r->thread))
1374 return 0;
1375 l_tid = thread__tid(l->thread);
1376 r_tid = thread__tid(r->thread);
1377 if (l_tid < r_tid)
1378 return -1;
1379 if (l_tid > r_tid)
1380 return 1;
1381 return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1382}
1383
1384static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1385{
1386 u64 avgl, avgr;
1387
1388 if (!l->nb_atoms)
1389 return -1;
1390
1391 if (!r->nb_atoms)
1392 return 1;
1393
1394 avgl = l->total_lat / l->nb_atoms;
1395 avgr = r->total_lat / r->nb_atoms;
1396
1397 if (avgl < avgr)
1398 return -1;
1399 if (avgl > avgr)
1400 return 1;
1401
1402 return 0;
1403}
1404
1405static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407 if (l->max_lat < r->max_lat)
1408 return -1;
1409 if (l->max_lat > r->max_lat)
1410 return 1;
1411
1412 return 0;
1413}
1414
1415static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1416{
1417 if (l->nb_atoms < r->nb_atoms)
1418 return -1;
1419 if (l->nb_atoms > r->nb_atoms)
1420 return 1;
1421
1422 return 0;
1423}
1424
1425static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1426{
1427 if (l->total_runtime < r->total_runtime)
1428 return -1;
1429 if (l->total_runtime > r->total_runtime)
1430 return 1;
1431
1432 return 0;
1433}
1434
1435static int sort_dimension__add(const char *tok, struct list_head *list)
1436{
1437 size_t i;
1438 static struct sort_dimension avg_sort_dimension = {
1439 .name = "avg",
1440 .cmp = avg_cmp,
1441 };
1442 static struct sort_dimension max_sort_dimension = {
1443 .name = "max",
1444 .cmp = max_cmp,
1445 };
1446 static struct sort_dimension pid_sort_dimension = {
1447 .name = "pid",
1448 .cmp = pid_cmp,
1449 };
1450 static struct sort_dimension runtime_sort_dimension = {
1451 .name = "runtime",
1452 .cmp = runtime_cmp,
1453 };
1454 static struct sort_dimension switch_sort_dimension = {
1455 .name = "switch",
1456 .cmp = switch_cmp,
1457 };
1458 struct sort_dimension *available_sorts[] = {
1459 &pid_sort_dimension,
1460 &avg_sort_dimension,
1461 &max_sort_dimension,
1462 &switch_sort_dimension,
1463 &runtime_sort_dimension,
1464 };
1465
1466 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1467 if (!strcmp(available_sorts[i]->name, tok)) {
1468 list_add_tail(&available_sorts[i]->list, list);
1469
1470 return 0;
1471 }
1472 }
1473
1474 return -1;
1475}
1476
1477static void perf_sched__sort_lat(struct perf_sched *sched)
1478{
1479 struct rb_node *node;
1480 struct rb_root_cached *root = &sched->atom_root;
1481again:
1482 for (;;) {
1483 struct work_atoms *data;
1484 node = rb_first_cached(root);
1485 if (!node)
1486 break;
1487
1488 rb_erase_cached(node, root);
1489 data = rb_entry(node, struct work_atoms, node);
1490 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1491 }
1492 if (root == &sched->atom_root) {
1493 root = &sched->merged_atom_root;
1494 goto again;
1495 }
1496}
1497
1498static int process_sched_wakeup_event(const struct perf_tool *tool,
1499 struct evsel *evsel,
1500 struct perf_sample *sample,
1501 struct machine *machine)
1502{
1503 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1504
1505 if (sched->tp_handler->wakeup_event)
1506 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1507
1508 return 0;
1509}
1510
1511static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1512 struct evsel *evsel __maybe_unused,
1513 struct perf_sample *sample __maybe_unused,
1514 struct machine *machine __maybe_unused)
1515{
1516 return 0;
1517}
1518
1519union map_priv {
1520 void *ptr;
1521 bool color;
1522};
1523
1524static bool thread__has_color(struct thread *thread)
1525{
1526 union map_priv priv = {
1527 .ptr = thread__priv(thread),
1528 };
1529
1530 return priv.color;
1531}
1532
1533static struct thread*
1534map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1535{
1536 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1537 union map_priv priv = {
1538 .color = false,
1539 };
1540
1541 if (!sched->map.color_pids || !thread || thread__priv(thread))
1542 return thread;
1543
1544 if (thread_map__has(sched->map.color_pids, tid))
1545 priv.color = true;
1546
1547 thread__set_priv(thread, priv.ptr);
1548 return thread;
1549}
1550
1551static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1552{
1553 bool fuzzy_match = sched->map.fuzzy;
1554 struct strlist *task_names = sched->map.task_names;
1555 struct str_node *node;
1556
1557 strlist__for_each_entry(node, task_names) {
1558 bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1559 !strcmp(comm_str, node->s);
1560 if (match_found)
1561 return true;
1562 }
1563
1564 return false;
1565}
1566
1567static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1568 const char *color, bool sched_out)
1569{
1570 for (int i = 0; i < cpus_nr; i++) {
1571 struct perf_cpu cpu = {
1572 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1573 };
1574 struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1575 struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1576 struct thread_runtime *curr_tr;
1577 const char *pid_color = color;
1578 const char *cpu_color = color;
1579 char symbol = ' ';
1580 struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1581
1582 if (thread_to_check && thread__has_color(thread_to_check))
1583 pid_color = COLOR_PIDS;
1584
1585 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1586 cpu_color = COLOR_CPUS;
1587
1588 if (cpu.cpu == this_cpu.cpu)
1589 symbol = '*';
1590
1591 color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1592
1593 thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1594 sched->curr_thread[cpu.cpu];
1595
1596 if (thread_to_check) {
1597 curr_tr = thread__get_runtime(thread_to_check);
1598 if (curr_tr == NULL)
1599 return;
1600
1601 if (sched_out) {
1602 if (cpu.cpu == this_cpu.cpu)
1603 color_fprintf(stdout, color, "- ");
1604 else {
1605 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1606 if (curr_tr != NULL)
1607 color_fprintf(stdout, pid_color, "%2s ",
1608 curr_tr->shortname);
1609 }
1610 } else
1611 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1612 } else
1613 color_fprintf(stdout, color, " ");
1614 }
1615}
1616
1617static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1618 struct perf_sample *sample, struct machine *machine)
1619{
1620 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1621 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1622 struct thread *sched_in, *sched_out;
1623 struct thread_runtime *tr;
1624 int new_shortname;
1625 u64 timestamp0, timestamp = sample->time;
1626 s64 delta;
1627 struct perf_cpu this_cpu = {
1628 .cpu = sample->cpu,
1629 };
1630 int cpus_nr;
1631 int proceed;
1632 bool new_cpu = false;
1633 const char *color = PERF_COLOR_NORMAL;
1634 char stimestamp[32];
1635 const char *str;
1636
1637 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1638
1639 if (this_cpu.cpu > sched->max_cpu.cpu)
1640 sched->max_cpu = this_cpu;
1641
1642 if (sched->map.comp) {
1643 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1644 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1645 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1646 new_cpu = true;
1647 }
1648 } else
1649 cpus_nr = sched->max_cpu.cpu;
1650
1651 timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1652 sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1653 if (timestamp0)
1654 delta = timestamp - timestamp0;
1655 else
1656 delta = 0;
1657
1658 if (delta < 0) {
1659 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1660 return -1;
1661 }
1662
1663 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1664 sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1665 if (sched_in == NULL || sched_out == NULL)
1666 return -1;
1667
1668 tr = thread__get_runtime(sched_in);
1669 if (tr == NULL) {
1670 thread__put(sched_in);
1671 return -1;
1672 }
1673
1674 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1675 sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1676
1677 str = thread__comm_str(sched_in);
1678 new_shortname = 0;
1679 if (!tr->shortname[0]) {
1680 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1681 /*
1682 * Don't allocate a letter-number for swapper:0
1683 * as a shortname. Instead, we use '.' for it.
1684 */
1685 tr->shortname[0] = '.';
1686 tr->shortname[1] = ' ';
1687 } else if (!sched->map.task_name || sched_match_task(sched, str)) {
1688 tr->shortname[0] = sched->next_shortname1;
1689 tr->shortname[1] = sched->next_shortname2;
1690
1691 if (sched->next_shortname1 < 'Z') {
1692 sched->next_shortname1++;
1693 } else {
1694 sched->next_shortname1 = 'A';
1695 if (sched->next_shortname2 < '9')
1696 sched->next_shortname2++;
1697 else
1698 sched->next_shortname2 = '0';
1699 }
1700 } else {
1701 tr->shortname[0] = '-';
1702 tr->shortname[1] = ' ';
1703 }
1704 new_shortname = 1;
1705 }
1706
1707 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1708 goto out;
1709
1710 proceed = 0;
1711 str = thread__comm_str(sched_in);
1712 /*
1713 * Check which of sched_in and sched_out matches the passed --task-name
1714 * arguments and call the corresponding print_sched_map.
1715 */
1716 if (sched->map.task_name && !sched_match_task(sched, str)) {
1717 if (!sched_match_task(sched, thread__comm_str(sched_out)))
1718 goto out;
1719 else
1720 goto sched_out;
1721
1722 } else {
1723 str = thread__comm_str(sched_out);
1724 if (!(sched->map.task_name && !sched_match_task(sched, str)))
1725 proceed = 1;
1726 }
1727
1728 printf(" ");
1729
1730 print_sched_map(sched, this_cpu, cpus_nr, color, false);
1731
1732 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1733 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1734 if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1735 const char *pid_color = color;
1736
1737 if (thread__has_color(sched_in))
1738 pid_color = COLOR_PIDS;
1739
1740 color_fprintf(stdout, pid_color, "%s => %s:%d",
1741 tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1742 tr->comm_changed = false;
1743 }
1744
1745 if (sched->map.comp && new_cpu)
1746 color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1747
1748 if (proceed != 1) {
1749 color_fprintf(stdout, color, "\n");
1750 goto out;
1751 }
1752
1753sched_out:
1754 if (sched->map.task_name) {
1755 tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1756 if (strcmp(tr->shortname, "") == 0)
1757 goto out;
1758
1759 if (proceed == 1)
1760 color_fprintf(stdout, color, "\n");
1761
1762 printf(" ");
1763 print_sched_map(sched, this_cpu, cpus_nr, color, true);
1764 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1765 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1766 }
1767
1768 color_fprintf(stdout, color, "\n");
1769
1770out:
1771 if (sched->map.task_name)
1772 thread__put(sched_out);
1773
1774 thread__put(sched_in);
1775
1776 return 0;
1777}
1778
1779static int process_sched_switch_event(const struct perf_tool *tool,
1780 struct evsel *evsel,
1781 struct perf_sample *sample,
1782 struct machine *machine)
1783{
1784 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1785 int this_cpu = sample->cpu, err = 0;
1786 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1787 next_pid = evsel__intval(evsel, sample, "next_pid");
1788
1789 if (sched->curr_pid[this_cpu] != (u32)-1) {
1790 /*
1791 * Are we trying to switch away a PID that is
1792 * not current?
1793 */
1794 if (sched->curr_pid[this_cpu] != prev_pid)
1795 sched->nr_context_switch_bugs++;
1796 }
1797
1798 if (sched->tp_handler->switch_event)
1799 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1800
1801 sched->curr_pid[this_cpu] = next_pid;
1802 return err;
1803}
1804
1805static int process_sched_runtime_event(const struct perf_tool *tool,
1806 struct evsel *evsel,
1807 struct perf_sample *sample,
1808 struct machine *machine)
1809{
1810 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1811
1812 if (sched->tp_handler->runtime_event)
1813 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1814
1815 return 0;
1816}
1817
1818static int perf_sched__process_fork_event(const struct perf_tool *tool,
1819 union perf_event *event,
1820 struct perf_sample *sample,
1821 struct machine *machine)
1822{
1823 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1824
1825 /* run the fork event through the perf machinery */
1826 perf_event__process_fork(tool, event, sample, machine);
1827
1828 /* and then run additional processing needed for this command */
1829 if (sched->tp_handler->fork_event)
1830 return sched->tp_handler->fork_event(sched, event, machine);
1831
1832 return 0;
1833}
1834
1835static int process_sched_migrate_task_event(const struct perf_tool *tool,
1836 struct evsel *evsel,
1837 struct perf_sample *sample,
1838 struct machine *machine)
1839{
1840 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1841
1842 if (sched->tp_handler->migrate_task_event)
1843 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1844
1845 return 0;
1846}
1847
1848typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1849 struct evsel *evsel,
1850 struct perf_sample *sample,
1851 struct machine *machine);
1852
1853static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1854 union perf_event *event __maybe_unused,
1855 struct perf_sample *sample,
1856 struct evsel *evsel,
1857 struct machine *machine)
1858{
1859 int err = 0;
1860
1861 if (evsel->handler != NULL) {
1862 tracepoint_handler f = evsel->handler;
1863 err = f(tool, evsel, sample, machine);
1864 }
1865
1866 return err;
1867}
1868
1869static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1870 union perf_event *event,
1871 struct perf_sample *sample,
1872 struct machine *machine)
1873{
1874 struct thread *thread;
1875 struct thread_runtime *tr;
1876 int err;
1877
1878 err = perf_event__process_comm(tool, event, sample, machine);
1879 if (err)
1880 return err;
1881
1882 thread = machine__find_thread(machine, sample->pid, sample->tid);
1883 if (!thread) {
1884 pr_err("Internal error: can't find thread\n");
1885 return -1;
1886 }
1887
1888 tr = thread__get_runtime(thread);
1889 if (tr == NULL) {
1890 thread__put(thread);
1891 return -1;
1892 }
1893
1894 tr->comm_changed = true;
1895 thread__put(thread);
1896
1897 return 0;
1898}
1899
1900static int perf_sched__read_events(struct perf_sched *sched)
1901{
1902 struct evsel_str_handler handlers[] = {
1903 { "sched:sched_switch", process_sched_switch_event, },
1904 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1905 { "sched:sched_wakeup", process_sched_wakeup_event, },
1906 { "sched:sched_waking", process_sched_wakeup_event, },
1907 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1908 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1909 };
1910 struct perf_session *session;
1911 struct perf_data data = {
1912 .path = input_name,
1913 .mode = PERF_DATA_MODE_READ,
1914 .force = sched->force,
1915 };
1916 int rc = -1;
1917
1918 session = perf_session__new(&data, &sched->tool);
1919 if (IS_ERR(session)) {
1920 pr_debug("Error creating perf session");
1921 return PTR_ERR(session);
1922 }
1923
1924 symbol__init(&session->header.env);
1925
1926 /* prefer sched_waking if it is captured */
1927 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1928 handlers[2].handler = process_sched_wakeup_ignore;
1929
1930 if (perf_session__set_tracepoints_handlers(session, handlers))
1931 goto out_delete;
1932
1933 if (perf_session__has_traces(session, "record -R")) {
1934 int err = perf_session__process_events(session);
1935 if (err) {
1936 pr_err("Failed to process events, error %d", err);
1937 goto out_delete;
1938 }
1939
1940 sched->nr_events = session->evlist->stats.nr_events[0];
1941 sched->nr_lost_events = session->evlist->stats.total_lost;
1942 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1943 }
1944
1945 rc = 0;
1946out_delete:
1947 perf_session__delete(session);
1948 return rc;
1949}
1950
1951/*
1952 * scheduling times are printed as msec.usec
1953 */
1954static inline void print_sched_time(unsigned long long nsecs, int width)
1955{
1956 unsigned long msecs;
1957 unsigned long usecs;
1958
1959 msecs = nsecs / NSEC_PER_MSEC;
1960 nsecs -= msecs * NSEC_PER_MSEC;
1961 usecs = nsecs / NSEC_PER_USEC;
1962 printf("%*lu.%03lu ", width, msecs, usecs);
1963}
1964
1965/*
1966 * returns runtime data for event, allocating memory for it the
1967 * first time it is used.
1968 */
1969static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1970{
1971 struct evsel_runtime *r = evsel->priv;
1972
1973 if (r == NULL) {
1974 r = zalloc(sizeof(struct evsel_runtime));
1975 evsel->priv = r;
1976 }
1977
1978 return r;
1979}
1980
1981/*
1982 * save last time event was seen per cpu
1983 */
1984static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1985{
1986 struct evsel_runtime *r = evsel__get_runtime(evsel);
1987
1988 if (r == NULL)
1989 return;
1990
1991 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1992 int i, n = __roundup_pow_of_two(cpu+1);
1993 void *p = r->last_time;
1994
1995 p = realloc(r->last_time, n * sizeof(u64));
1996 if (!p)
1997 return;
1998
1999 r->last_time = p;
2000 for (i = r->ncpu; i < n; ++i)
2001 r->last_time[i] = (u64) 0;
2002
2003 r->ncpu = n;
2004 }
2005
2006 r->last_time[cpu] = timestamp;
2007}
2008
2009/* returns last time this event was seen on the given cpu */
2010static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2011{
2012 struct evsel_runtime *r = evsel__get_runtime(evsel);
2013
2014 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2015 return 0;
2016
2017 return r->last_time[cpu];
2018}
2019
2020static int comm_width = 30;
2021
2022static char *timehist_get_commstr(struct thread *thread)
2023{
2024 static char str[32];
2025 const char *comm = thread__comm_str(thread);
2026 pid_t tid = thread__tid(thread);
2027 pid_t pid = thread__pid(thread);
2028 int n;
2029
2030 if (pid == 0)
2031 n = scnprintf(str, sizeof(str), "%s", comm);
2032
2033 else if (tid != pid)
2034 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2035
2036 else
2037 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2038
2039 if (n > comm_width)
2040 comm_width = n;
2041
2042 return str;
2043}
2044
2045/* prio field format: xxx or xxx->yyy */
2046#define MAX_PRIO_STR_LEN 8
2047static char *timehist_get_priostr(struct evsel *evsel,
2048 struct thread *thread,
2049 struct perf_sample *sample)
2050{
2051 static char prio_str[16];
2052 int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2053 struct thread_runtime *tr = thread__priv(thread);
2054
2055 if (tr->prio != prev_prio && tr->prio != -1)
2056 scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2057 else
2058 scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2059
2060 return prio_str;
2061}
2062
2063static void timehist_header(struct perf_sched *sched)
2064{
2065 u32 ncpus = sched->max_cpu.cpu + 1;
2066 u32 i, j;
2067
2068 printf("%15s %6s ", "time", "cpu");
2069
2070 if (sched->show_cpu_visual) {
2071 printf(" ");
2072 for (i = 0, j = 0; i < ncpus; ++i) {
2073 printf("%x", j++);
2074 if (j > 15)
2075 j = 0;
2076 }
2077 printf(" ");
2078 }
2079
2080 printf(" %-*s", comm_width, "task name");
2081
2082 if (sched->show_prio)
2083 printf(" %-*s", MAX_PRIO_STR_LEN, "prio");
2084
2085 printf(" %9s %9s %9s", "wait time", "sch delay", "run time");
2086
2087 if (sched->pre_migrations)
2088 printf(" %9s", "pre-mig time");
2089
2090 if (sched->show_state)
2091 printf(" %s", "state");
2092
2093 printf("\n");
2094
2095 /*
2096 * units row
2097 */
2098 printf("%15s %-6s ", "", "");
2099
2100 if (sched->show_cpu_visual)
2101 printf(" %*s ", ncpus, "");
2102
2103 printf(" %-*s", comm_width, "[tid/pid]");
2104
2105 if (sched->show_prio)
2106 printf(" %-*s", MAX_PRIO_STR_LEN, "");
2107
2108 printf(" %9s %9s %9s", "(msec)", "(msec)", "(msec)");
2109
2110 if (sched->pre_migrations)
2111 printf(" %9s", "(msec)");
2112
2113 printf("\n");
2114
2115 /*
2116 * separator
2117 */
2118 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2119
2120 if (sched->show_cpu_visual)
2121 printf(" %.*s ", ncpus, graph_dotted_line);
2122
2123 printf(" %.*s", comm_width, graph_dotted_line);
2124
2125 if (sched->show_prio)
2126 printf(" %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2127
2128 printf(" %.9s %.9s %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
2129
2130 if (sched->pre_migrations)
2131 printf(" %.9s", graph_dotted_line);
2132
2133 if (sched->show_state)
2134 printf(" %.5s", graph_dotted_line);
2135
2136 printf("\n");
2137}
2138
2139static void timehist_print_sample(struct perf_sched *sched,
2140 struct evsel *evsel,
2141 struct perf_sample *sample,
2142 struct addr_location *al,
2143 struct thread *thread,
2144 u64 t, const char state)
2145{
2146 struct thread_runtime *tr = thread__priv(thread);
2147 const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2148 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2149 u32 max_cpus = sched->max_cpu.cpu + 1;
2150 char tstr[64];
2151 char nstr[30];
2152 u64 wait_time;
2153
2154 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2155 return;
2156
2157 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2158 printf("%15s [%04d] ", tstr, sample->cpu);
2159
2160 if (sched->show_cpu_visual) {
2161 u32 i;
2162 char c;
2163
2164 printf(" ");
2165 for (i = 0; i < max_cpus; ++i) {
2166 /* flag idle times with 'i'; others are sched events */
2167 if (i == sample->cpu)
2168 c = (thread__tid(thread) == 0) ? 'i' : 's';
2169 else
2170 c = ' ';
2171 printf("%c", c);
2172 }
2173 printf(" ");
2174 }
2175
2176 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2177
2178 if (sched->show_prio)
2179 printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2180
2181 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2182 print_sched_time(wait_time, 6);
2183
2184 print_sched_time(tr->dt_delay, 6);
2185 print_sched_time(tr->dt_run, 6);
2186 if (sched->pre_migrations)
2187 print_sched_time(tr->dt_pre_mig, 6);
2188
2189 if (sched->show_state)
2190 printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2191
2192 if (sched->show_next) {
2193 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2194 printf(" %-*s", comm_width, nstr);
2195 }
2196
2197 if (sched->show_wakeups && !sched->show_next)
2198 printf(" %-*s", comm_width, "");
2199
2200 if (thread__tid(thread) == 0)
2201 goto out;
2202
2203 if (sched->show_callchain)
2204 printf(" ");
2205
2206 sample__fprintf_sym(sample, al, 0,
2207 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2208 EVSEL__PRINT_CALLCHAIN_ARROW |
2209 EVSEL__PRINT_SKIP_IGNORED,
2210 get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout);
2211
2212out:
2213 printf("\n");
2214}
2215
2216/*
2217 * Explanation of delta-time stats:
2218 *
2219 * t = time of current schedule out event
2220 * tprev = time of previous sched out event
2221 * also time of schedule-in event for current task
2222 * last_time = time of last sched change event for current task
2223 * (i.e, time process was last scheduled out)
2224 * ready_to_run = time of wakeup for current task
2225 * migrated = time of task migration to another CPU
2226 *
2227 * -----|-------------|-------------|-------------|-------------|-----
2228 * last ready migrated tprev t
2229 * time to run
2230 *
2231 * |---------------- dt_wait ----------------|
2232 * |--------- dt_delay ---------|-- dt_run --|
2233 * |- dt_pre_mig -|
2234 *
2235 * dt_run = run time of current task
2236 * dt_wait = time between last schedule out event for task and tprev
2237 * represents time spent off the cpu
2238 * dt_delay = time between wakeup and schedule-in of task
2239 * dt_pre_mig = time between wakeup and migration to another CPU
2240 */
2241
2242static void timehist_update_runtime_stats(struct thread_runtime *r,
2243 u64 t, u64 tprev)
2244{
2245 r->dt_delay = 0;
2246 r->dt_sleep = 0;
2247 r->dt_iowait = 0;
2248 r->dt_preempt = 0;
2249 r->dt_run = 0;
2250 r->dt_pre_mig = 0;
2251
2252 if (tprev) {
2253 r->dt_run = t - tprev;
2254 if (r->ready_to_run) {
2255 if (r->ready_to_run > tprev)
2256 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2257 else
2258 r->dt_delay = tprev - r->ready_to_run;
2259
2260 if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2261 r->dt_pre_mig = r->migrated - r->ready_to_run;
2262 }
2263
2264 if (r->last_time > tprev)
2265 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2266 else if (r->last_time) {
2267 u64 dt_wait = tprev - r->last_time;
2268
2269 if (r->last_state == 'R')
2270 r->dt_preempt = dt_wait;
2271 else if (r->last_state == 'D')
2272 r->dt_iowait = dt_wait;
2273 else
2274 r->dt_sleep = dt_wait;
2275 }
2276 }
2277
2278 update_stats(&r->run_stats, r->dt_run);
2279
2280 r->total_run_time += r->dt_run;
2281 r->total_delay_time += r->dt_delay;
2282 r->total_sleep_time += r->dt_sleep;
2283 r->total_iowait_time += r->dt_iowait;
2284 r->total_preempt_time += r->dt_preempt;
2285 r->total_pre_mig_time += r->dt_pre_mig;
2286}
2287
2288static bool is_idle_sample(struct perf_sample *sample,
2289 struct evsel *evsel)
2290{
2291 /* pid 0 == swapper == idle task */
2292 if (evsel__name_is(evsel, "sched:sched_switch"))
2293 return evsel__intval(evsel, sample, "prev_pid") == 0;
2294
2295 return sample->pid == 0;
2296}
2297
2298static void save_task_callchain(struct perf_sched *sched,
2299 struct perf_sample *sample,
2300 struct evsel *evsel,
2301 struct machine *machine)
2302{
2303 struct callchain_cursor *cursor;
2304 struct thread *thread;
2305
2306 /* want main thread for process - has maps */
2307 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2308 if (thread == NULL) {
2309 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2310 return;
2311 }
2312
2313 if (!sched->show_callchain || sample->callchain == NULL)
2314 return;
2315
2316 cursor = get_tls_callchain_cursor();
2317
2318 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2319 NULL, NULL, sched->max_stack + 2) != 0) {
2320 if (verbose > 0)
2321 pr_err("Failed to resolve callchain. Skipping\n");
2322
2323 return;
2324 }
2325
2326 callchain_cursor_commit(cursor);
2327
2328 while (true) {
2329 struct callchain_cursor_node *node;
2330 struct symbol *sym;
2331
2332 node = callchain_cursor_current(cursor);
2333 if (node == NULL)
2334 break;
2335
2336 sym = node->ms.sym;
2337 if (sym) {
2338 if (!strcmp(sym->name, "schedule") ||
2339 !strcmp(sym->name, "__schedule") ||
2340 !strcmp(sym->name, "preempt_schedule"))
2341 sym->ignore = 1;
2342 }
2343
2344 callchain_cursor_advance(cursor);
2345 }
2346}
2347
2348static int init_idle_thread(struct thread *thread)
2349{
2350 struct idle_thread_runtime *itr;
2351
2352 thread__set_comm(thread, idle_comm, 0);
2353
2354 itr = zalloc(sizeof(*itr));
2355 if (itr == NULL)
2356 return -ENOMEM;
2357
2358 init_prio(&itr->tr);
2359 init_stats(&itr->tr.run_stats);
2360 callchain_init(&itr->callchain);
2361 callchain_cursor_reset(&itr->cursor);
2362 thread__set_priv(thread, itr);
2363
2364 return 0;
2365}
2366
2367/*
2368 * Track idle stats per cpu by maintaining a local thread
2369 * struct for the idle task on each cpu.
2370 */
2371static int init_idle_threads(int ncpu)
2372{
2373 int i, ret;
2374
2375 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2376 if (!idle_threads)
2377 return -ENOMEM;
2378
2379 idle_max_cpu = ncpu;
2380
2381 /* allocate the actual thread struct if needed */
2382 for (i = 0; i < ncpu; ++i) {
2383 idle_threads[i] = thread__new(0, 0);
2384 if (idle_threads[i] == NULL)
2385 return -ENOMEM;
2386
2387 ret = init_idle_thread(idle_threads[i]);
2388 if (ret < 0)
2389 return ret;
2390 }
2391
2392 return 0;
2393}
2394
2395static void free_idle_threads(void)
2396{
2397 int i;
2398
2399 if (idle_threads == NULL)
2400 return;
2401
2402 for (i = 0; i < idle_max_cpu; ++i) {
2403 if ((idle_threads[i]))
2404 thread__delete(idle_threads[i]);
2405 }
2406
2407 free(idle_threads);
2408}
2409
2410static struct thread *get_idle_thread(int cpu)
2411{
2412 /*
2413 * expand/allocate array of pointers to local thread
2414 * structs if needed
2415 */
2416 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2417 int i, j = __roundup_pow_of_two(cpu+1);
2418 void *p;
2419
2420 p = realloc(idle_threads, j * sizeof(struct thread *));
2421 if (!p)
2422 return NULL;
2423
2424 idle_threads = (struct thread **) p;
2425 for (i = idle_max_cpu; i < j; ++i)
2426 idle_threads[i] = NULL;
2427
2428 idle_max_cpu = j;
2429 }
2430
2431 /* allocate a new thread struct if needed */
2432 if (idle_threads[cpu] == NULL) {
2433 idle_threads[cpu] = thread__new(0, 0);
2434
2435 if (idle_threads[cpu]) {
2436 if (init_idle_thread(idle_threads[cpu]) < 0)
2437 return NULL;
2438 }
2439 }
2440
2441 return idle_threads[cpu];
2442}
2443
2444static void save_idle_callchain(struct perf_sched *sched,
2445 struct idle_thread_runtime *itr,
2446 struct perf_sample *sample)
2447{
2448 struct callchain_cursor *cursor;
2449
2450 if (!sched->show_callchain || sample->callchain == NULL)
2451 return;
2452
2453 cursor = get_tls_callchain_cursor();
2454 if (cursor == NULL)
2455 return;
2456
2457 callchain_cursor__copy(&itr->cursor, cursor);
2458}
2459
2460static struct thread *timehist_get_thread(struct perf_sched *sched,
2461 struct perf_sample *sample,
2462 struct machine *machine,
2463 struct evsel *evsel)
2464{
2465 struct thread *thread;
2466
2467 if (is_idle_sample(sample, evsel)) {
2468 thread = get_idle_thread(sample->cpu);
2469 if (thread == NULL)
2470 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2471
2472 } else {
2473 /* there were samples with tid 0 but non-zero pid */
2474 thread = machine__findnew_thread(machine, sample->pid,
2475 sample->tid ?: sample->pid);
2476 if (thread == NULL) {
2477 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2478 sample->tid);
2479 }
2480
2481 save_task_callchain(sched, sample, evsel, machine);
2482 if (sched->idle_hist) {
2483 struct thread *idle;
2484 struct idle_thread_runtime *itr;
2485
2486 idle = get_idle_thread(sample->cpu);
2487 if (idle == NULL) {
2488 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2489 return NULL;
2490 }
2491
2492 itr = thread__priv(idle);
2493 if (itr == NULL)
2494 return NULL;
2495
2496 itr->last_thread = thread;
2497
2498 /* copy task callchain when entering to idle */
2499 if (evsel__intval(evsel, sample, "next_pid") == 0)
2500 save_idle_callchain(sched, itr, sample);
2501 }
2502 }
2503
2504 return thread;
2505}
2506
2507static bool timehist_skip_sample(struct perf_sched *sched,
2508 struct thread *thread,
2509 struct evsel *evsel,
2510 struct perf_sample *sample)
2511{
2512 bool rc = false;
2513 int prio = -1;
2514 struct thread_runtime *tr = NULL;
2515
2516 if (thread__is_filtered(thread)) {
2517 rc = true;
2518 sched->skipped_samples++;
2519 }
2520
2521 if (sched->prio_str) {
2522 /*
2523 * Because priority may be changed during task execution,
2524 * first read priority from prev sched_in event for current task.
2525 * If prev sched_in event is not saved, then read priority from
2526 * current task sched_out event.
2527 */
2528 tr = thread__get_runtime(thread);
2529 if (tr && tr->prio != -1)
2530 prio = tr->prio;
2531 else if (evsel__name_is(evsel, "sched:sched_switch"))
2532 prio = evsel__intval(evsel, sample, "prev_prio");
2533
2534 if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2535 rc = true;
2536 sched->skipped_samples++;
2537 }
2538 }
2539
2540 if (sched->idle_hist) {
2541 if (!evsel__name_is(evsel, "sched:sched_switch"))
2542 rc = true;
2543 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2544 evsel__intval(evsel, sample, "next_pid") != 0)
2545 rc = true;
2546 }
2547
2548 return rc;
2549}
2550
2551static void timehist_print_wakeup_event(struct perf_sched *sched,
2552 struct evsel *evsel,
2553 struct perf_sample *sample,
2554 struct machine *machine,
2555 struct thread *awakened)
2556{
2557 struct thread *thread;
2558 char tstr[64];
2559
2560 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2561 if (thread == NULL)
2562 return;
2563
2564 /* show wakeup unless both awakee and awaker are filtered */
2565 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2566 timehist_skip_sample(sched, awakened, evsel, sample)) {
2567 return;
2568 }
2569
2570 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2571 printf("%15s [%04d] ", tstr, sample->cpu);
2572 if (sched->show_cpu_visual)
2573 printf(" %*s ", sched->max_cpu.cpu + 1, "");
2574
2575 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2576
2577 /* dt spacer */
2578 printf(" %9s %9s %9s ", "", "", "");
2579
2580 printf("awakened: %s", timehist_get_commstr(awakened));
2581
2582 printf("\n");
2583}
2584
2585static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2586 union perf_event *event __maybe_unused,
2587 struct evsel *evsel __maybe_unused,
2588 struct perf_sample *sample __maybe_unused,
2589 struct machine *machine __maybe_unused)
2590{
2591 return 0;
2592}
2593
2594static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2595 union perf_event *event __maybe_unused,
2596 struct evsel *evsel,
2597 struct perf_sample *sample,
2598 struct machine *machine)
2599{
2600 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2601 struct thread *thread;
2602 struct thread_runtime *tr = NULL;
2603 /* want pid of awakened task not pid in sample */
2604 const u32 pid = evsel__intval(evsel, sample, "pid");
2605
2606 thread = machine__findnew_thread(machine, 0, pid);
2607 if (thread == NULL)
2608 return -1;
2609
2610 tr = thread__get_runtime(thread);
2611 if (tr == NULL)
2612 return -1;
2613
2614 if (tr->ready_to_run == 0)
2615 tr->ready_to_run = sample->time;
2616
2617 /* show wakeups if requested */
2618 if (sched->show_wakeups &&
2619 !perf_time__skip_sample(&sched->ptime, sample->time))
2620 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2621
2622 return 0;
2623}
2624
2625static void timehist_print_migration_event(struct perf_sched *sched,
2626 struct evsel *evsel,
2627 struct perf_sample *sample,
2628 struct machine *machine,
2629 struct thread *migrated)
2630{
2631 struct thread *thread;
2632 char tstr[64];
2633 u32 max_cpus;
2634 u32 ocpu, dcpu;
2635
2636 if (sched->summary_only)
2637 return;
2638
2639 max_cpus = sched->max_cpu.cpu + 1;
2640 ocpu = evsel__intval(evsel, sample, "orig_cpu");
2641 dcpu = evsel__intval(evsel, sample, "dest_cpu");
2642
2643 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2644 if (thread == NULL)
2645 return;
2646
2647 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2648 timehist_skip_sample(sched, migrated, evsel, sample)) {
2649 return;
2650 }
2651
2652 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2653 printf("%15s [%04d] ", tstr, sample->cpu);
2654
2655 if (sched->show_cpu_visual) {
2656 u32 i;
2657 char c;
2658
2659 printf(" ");
2660 for (i = 0; i < max_cpus; ++i) {
2661 c = (i == sample->cpu) ? 'm' : ' ';
2662 printf("%c", c);
2663 }
2664 printf(" ");
2665 }
2666
2667 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2668
2669 /* dt spacer */
2670 printf(" %9s %9s %9s ", "", "", "");
2671
2672 printf("migrated: %s", timehist_get_commstr(migrated));
2673 printf(" cpu %d => %d", ocpu, dcpu);
2674
2675 printf("\n");
2676}
2677
2678static int timehist_migrate_task_event(const struct perf_tool *tool,
2679 union perf_event *event __maybe_unused,
2680 struct evsel *evsel,
2681 struct perf_sample *sample,
2682 struct machine *machine)
2683{
2684 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2685 struct thread *thread;
2686 struct thread_runtime *tr = NULL;
2687 /* want pid of migrated task not pid in sample */
2688 const u32 pid = evsel__intval(evsel, sample, "pid");
2689
2690 thread = machine__findnew_thread(machine, 0, pid);
2691 if (thread == NULL)
2692 return -1;
2693
2694 tr = thread__get_runtime(thread);
2695 if (tr == NULL)
2696 return -1;
2697
2698 tr->migrations++;
2699 tr->migrated = sample->time;
2700
2701 /* show migrations if requested */
2702 if (sched->show_migrations) {
2703 timehist_print_migration_event(sched, evsel, sample,
2704 machine, thread);
2705 }
2706
2707 return 0;
2708}
2709
2710static void timehist_update_task_prio(struct evsel *evsel,
2711 struct perf_sample *sample,
2712 struct machine *machine)
2713{
2714 struct thread *thread;
2715 struct thread_runtime *tr = NULL;
2716 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2717 const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2718
2719 if (next_pid == 0)
2720 thread = get_idle_thread(sample->cpu);
2721 else
2722 thread = machine__findnew_thread(machine, -1, next_pid);
2723
2724 if (thread == NULL)
2725 return;
2726
2727 tr = thread__get_runtime(thread);
2728 if (tr == NULL)
2729 return;
2730
2731 tr->prio = next_prio;
2732}
2733
2734static int timehist_sched_change_event(const struct perf_tool *tool,
2735 union perf_event *event,
2736 struct evsel *evsel,
2737 struct perf_sample *sample,
2738 struct machine *machine)
2739{
2740 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2741 struct perf_time_interval *ptime = &sched->ptime;
2742 struct addr_location al;
2743 struct thread *thread;
2744 struct thread_runtime *tr = NULL;
2745 u64 tprev, t = sample->time;
2746 int rc = 0;
2747 const char state = evsel__taskstate(evsel, sample, "prev_state");
2748
2749 addr_location__init(&al);
2750 if (machine__resolve(machine, &al, sample) < 0) {
2751 pr_err("problem processing %d event. skipping it\n",
2752 event->header.type);
2753 rc = -1;
2754 goto out;
2755 }
2756
2757 if (sched->show_prio || sched->prio_str)
2758 timehist_update_task_prio(evsel, sample, machine);
2759
2760 thread = timehist_get_thread(sched, sample, machine, evsel);
2761 if (thread == NULL) {
2762 rc = -1;
2763 goto out;
2764 }
2765
2766 if (timehist_skip_sample(sched, thread, evsel, sample))
2767 goto out;
2768
2769 tr = thread__get_runtime(thread);
2770 if (tr == NULL) {
2771 rc = -1;
2772 goto out;
2773 }
2774
2775 tprev = evsel__get_time(evsel, sample->cpu);
2776
2777 /*
2778 * If start time given:
2779 * - sample time is under window user cares about - skip sample
2780 * - tprev is under window user cares about - reset to start of window
2781 */
2782 if (ptime->start && ptime->start > t)
2783 goto out;
2784
2785 if (tprev && ptime->start > tprev)
2786 tprev = ptime->start;
2787
2788 /*
2789 * If end time given:
2790 * - previous sched event is out of window - we are done
2791 * - sample time is beyond window user cares about - reset it
2792 * to close out stats for time window interest
2793 * - If tprev is 0, that is, sched_in event for current task is
2794 * not recorded, cannot determine whether sched_in event is
2795 * within time window interest - ignore it
2796 */
2797 if (ptime->end) {
2798 if (!tprev || tprev > ptime->end)
2799 goto out;
2800
2801 if (t > ptime->end)
2802 t = ptime->end;
2803 }
2804
2805 if (!sched->idle_hist || thread__tid(thread) == 0) {
2806 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2807 timehist_update_runtime_stats(tr, t, tprev);
2808
2809 if (sched->idle_hist) {
2810 struct idle_thread_runtime *itr = (void *)tr;
2811 struct thread_runtime *last_tr;
2812
2813 if (itr->last_thread == NULL)
2814 goto out;
2815
2816 /* add current idle time as last thread's runtime */
2817 last_tr = thread__get_runtime(itr->last_thread);
2818 if (last_tr == NULL)
2819 goto out;
2820
2821 timehist_update_runtime_stats(last_tr, t, tprev);
2822 /*
2823 * remove delta time of last thread as it's not updated
2824 * and otherwise it will show an invalid value next
2825 * time. we only care total run time and run stat.
2826 */
2827 last_tr->dt_run = 0;
2828 last_tr->dt_delay = 0;
2829 last_tr->dt_sleep = 0;
2830 last_tr->dt_iowait = 0;
2831 last_tr->dt_preempt = 0;
2832
2833 if (itr->cursor.nr)
2834 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2835
2836 itr->last_thread = NULL;
2837 }
2838
2839 if (!sched->summary_only)
2840 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2841 }
2842
2843out:
2844 if (sched->hist_time.start == 0 && t >= ptime->start)
2845 sched->hist_time.start = t;
2846 if (ptime->end == 0 || t <= ptime->end)
2847 sched->hist_time.end = t;
2848
2849 if (tr) {
2850 /* time of this sched_switch event becomes last time task seen */
2851 tr->last_time = sample->time;
2852
2853 /* last state is used to determine where to account wait time */
2854 tr->last_state = state;
2855
2856 /* sched out event for task so reset ready to run time and migrated time */
2857 if (state == 'R')
2858 tr->ready_to_run = t;
2859 else
2860 tr->ready_to_run = 0;
2861
2862 tr->migrated = 0;
2863 }
2864
2865 evsel__save_time(evsel, sample->time, sample->cpu);
2866
2867 addr_location__exit(&al);
2868 return rc;
2869}
2870
2871static int timehist_sched_switch_event(const struct perf_tool *tool,
2872 union perf_event *event,
2873 struct evsel *evsel,
2874 struct perf_sample *sample,
2875 struct machine *machine __maybe_unused)
2876{
2877 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2878}
2879
2880static int process_lost(const struct perf_tool *tool __maybe_unused,
2881 union perf_event *event,
2882 struct perf_sample *sample,
2883 struct machine *machine __maybe_unused)
2884{
2885 char tstr[64];
2886
2887 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2888 printf("%15s ", tstr);
2889 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2890
2891 return 0;
2892}
2893
2894
2895static void print_thread_runtime(struct thread *t,
2896 struct thread_runtime *r)
2897{
2898 double mean = avg_stats(&r->run_stats);
2899 float stddev;
2900
2901 printf("%*s %5d %9" PRIu64 " ",
2902 comm_width, timehist_get_commstr(t), thread__ppid(t),
2903 (u64) r->run_stats.n);
2904
2905 print_sched_time(r->total_run_time, 8);
2906 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2907 print_sched_time(r->run_stats.min, 6);
2908 printf(" ");
2909 print_sched_time((u64) mean, 6);
2910 printf(" ");
2911 print_sched_time(r->run_stats.max, 6);
2912 printf(" ");
2913 printf("%5.2f", stddev);
2914 printf(" %5" PRIu64, r->migrations);
2915 printf("\n");
2916}
2917
2918static void print_thread_waittime(struct thread *t,
2919 struct thread_runtime *r)
2920{
2921 printf("%*s %5d %9" PRIu64 " ",
2922 comm_width, timehist_get_commstr(t), thread__ppid(t),
2923 (u64) r->run_stats.n);
2924
2925 print_sched_time(r->total_run_time, 8);
2926 print_sched_time(r->total_sleep_time, 6);
2927 printf(" ");
2928 print_sched_time(r->total_iowait_time, 6);
2929 printf(" ");
2930 print_sched_time(r->total_preempt_time, 6);
2931 printf(" ");
2932 print_sched_time(r->total_delay_time, 6);
2933 printf("\n");
2934}
2935
2936struct total_run_stats {
2937 struct perf_sched *sched;
2938 u64 sched_count;
2939 u64 task_count;
2940 u64 total_run_time;
2941};
2942
2943static int show_thread_runtime(struct thread *t, void *priv)
2944{
2945 struct total_run_stats *stats = priv;
2946 struct thread_runtime *r;
2947
2948 if (thread__is_filtered(t))
2949 return 0;
2950
2951 r = thread__priv(t);
2952 if (r && r->run_stats.n) {
2953 stats->task_count++;
2954 stats->sched_count += r->run_stats.n;
2955 stats->total_run_time += r->total_run_time;
2956
2957 if (stats->sched->show_state)
2958 print_thread_waittime(t, r);
2959 else
2960 print_thread_runtime(t, r);
2961 }
2962
2963 return 0;
2964}
2965
2966static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2967{
2968 const char *sep = " <- ";
2969 struct callchain_list *chain;
2970 size_t ret = 0;
2971 char bf[1024];
2972 bool first;
2973
2974 if (node == NULL)
2975 return 0;
2976
2977 ret = callchain__fprintf_folded(fp, node->parent);
2978 first = (ret == 0);
2979
2980 list_for_each_entry(chain, &node->val, list) {
2981 if (chain->ip >= PERF_CONTEXT_MAX)
2982 continue;
2983 if (chain->ms.sym && chain->ms.sym->ignore)
2984 continue;
2985 ret += fprintf(fp, "%s%s", first ? "" : sep,
2986 callchain_list__sym_name(chain, bf, sizeof(bf),
2987 false));
2988 first = false;
2989 }
2990
2991 return ret;
2992}
2993
2994static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2995{
2996 size_t ret = 0;
2997 FILE *fp = stdout;
2998 struct callchain_node *chain;
2999 struct rb_node *rb_node = rb_first_cached(root);
3000
3001 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
3002 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
3003 graph_dotted_line);
3004
3005 while (rb_node) {
3006 chain = rb_entry(rb_node, struct callchain_node, rb_node);
3007 rb_node = rb_next(rb_node);
3008
3009 ret += fprintf(fp, " ");
3010 print_sched_time(chain->hit, 12);
3011 ret += 16; /* print_sched_time returns 2nd arg + 4 */
3012 ret += fprintf(fp, " %8d ", chain->count);
3013 ret += callchain__fprintf_folded(fp, chain);
3014 ret += fprintf(fp, "\n");
3015 }
3016
3017 return ret;
3018}
3019
3020static void timehist_print_summary(struct perf_sched *sched,
3021 struct perf_session *session)
3022{
3023 struct machine *m = &session->machines.host;
3024 struct total_run_stats totals;
3025 u64 task_count;
3026 struct thread *t;
3027 struct thread_runtime *r;
3028 int i;
3029 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3030
3031 memset(&totals, 0, sizeof(totals));
3032 totals.sched = sched;
3033
3034 if (sched->idle_hist) {
3035 printf("\nIdle-time summary\n");
3036 printf("%*s parent sched-out ", comm_width, "comm");
3037 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
3038 } else if (sched->show_state) {
3039 printf("\nWait-time summary\n");
3040 printf("%*s parent sched-in ", comm_width, "comm");
3041 printf(" run-time sleep iowait preempt delay\n");
3042 } else {
3043 printf("\nRuntime summary\n");
3044 printf("%*s parent sched-in ", comm_width, "comm");
3045 printf(" run-time min-run avg-run max-run stddev migrations\n");
3046 }
3047 printf("%*s (count) ", comm_width, "");
3048 printf(" (msec) (msec) (msec) (msec) %s\n",
3049 sched->show_state ? "(msec)" : "%");
3050 printf("%.117s\n", graph_dotted_line);
3051
3052 machine__for_each_thread(m, show_thread_runtime, &totals);
3053 task_count = totals.task_count;
3054 if (!task_count)
3055 printf("<no still running tasks>\n");
3056
3057 /* CPU idle stats not tracked when samples were skipped */
3058 if (sched->skipped_samples && !sched->idle_hist)
3059 return;
3060
3061 printf("\nIdle stats:\n");
3062 for (i = 0; i < idle_max_cpu; ++i) {
3063 if (cpu_list && !test_bit(i, cpu_bitmap))
3064 continue;
3065
3066 t = idle_threads[i];
3067 if (!t)
3068 continue;
3069
3070 r = thread__priv(t);
3071 if (r && r->run_stats.n) {
3072 totals.sched_count += r->run_stats.n;
3073 printf(" CPU %2d idle for ", i);
3074 print_sched_time(r->total_run_time, 6);
3075 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3076 } else
3077 printf(" CPU %2d idle entire time window\n", i);
3078 }
3079
3080 if (sched->idle_hist && sched->show_callchain) {
3081 callchain_param.mode = CHAIN_FOLDED;
3082 callchain_param.value = CCVAL_PERIOD;
3083
3084 callchain_register_param(&callchain_param);
3085
3086 printf("\nIdle stats by callchain:\n");
3087 for (i = 0; i < idle_max_cpu; ++i) {
3088 struct idle_thread_runtime *itr;
3089
3090 t = idle_threads[i];
3091 if (!t)
3092 continue;
3093
3094 itr = thread__priv(t);
3095 if (itr == NULL)
3096 continue;
3097
3098 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3099 0, &callchain_param);
3100
3101 printf(" CPU %2d:", i);
3102 print_sched_time(itr->tr.total_run_time, 6);
3103 printf(" msec\n");
3104 timehist_print_idlehist_callchain(&itr->sorted_root);
3105 printf("\n");
3106 }
3107 }
3108
3109 printf("\n"
3110 " Total number of unique tasks: %" PRIu64 "\n"
3111 "Total number of context switches: %" PRIu64 "\n",
3112 totals.task_count, totals.sched_count);
3113
3114 printf(" Total run time (msec): ");
3115 print_sched_time(totals.total_run_time, 2);
3116 printf("\n");
3117
3118 printf(" Total scheduling time (msec): ");
3119 print_sched_time(hist_time, 2);
3120 printf(" (x %d)\n", sched->max_cpu.cpu);
3121}
3122
3123typedef int (*sched_handler)(const struct perf_tool *tool,
3124 union perf_event *event,
3125 struct evsel *evsel,
3126 struct perf_sample *sample,
3127 struct machine *machine);
3128
3129static int perf_timehist__process_sample(const struct perf_tool *tool,
3130 union perf_event *event,
3131 struct perf_sample *sample,
3132 struct evsel *evsel,
3133 struct machine *machine)
3134{
3135 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3136 int err = 0;
3137 struct perf_cpu this_cpu = {
3138 .cpu = sample->cpu,
3139 };
3140
3141 if (this_cpu.cpu > sched->max_cpu.cpu)
3142 sched->max_cpu = this_cpu;
3143
3144 if (evsel->handler != NULL) {
3145 sched_handler f = evsel->handler;
3146
3147 err = f(tool, event, evsel, sample, machine);
3148 }
3149
3150 return err;
3151}
3152
3153static int timehist_check_attr(struct perf_sched *sched,
3154 struct evlist *evlist)
3155{
3156 struct evsel *evsel;
3157 struct evsel_runtime *er;
3158
3159 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3160 er = evsel__get_runtime(evsel);
3161 if (er == NULL) {
3162 pr_err("Failed to allocate memory for evsel runtime data\n");
3163 return -1;
3164 }
3165
3166 /* only need to save callchain related to sched_switch event */
3167 if (sched->show_callchain &&
3168 evsel__name_is(evsel, "sched:sched_switch") &&
3169 !evsel__has_callchain(evsel)) {
3170 pr_info("Samples of sched_switch event do not have callchains.\n");
3171 sched->show_callchain = 0;
3172 symbol_conf.use_callchain = 0;
3173 }
3174 }
3175
3176 return 0;
3177}
3178
3179static int timehist_parse_prio_str(struct perf_sched *sched)
3180{
3181 char *p;
3182 unsigned long start_prio, end_prio;
3183 const char *str = sched->prio_str;
3184
3185 if (!str)
3186 return 0;
3187
3188 while (isdigit(*str)) {
3189 p = NULL;
3190 start_prio = strtoul(str, &p, 0);
3191 if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3192 return -1;
3193
3194 if (*p == '-') {
3195 str = ++p;
3196 p = NULL;
3197 end_prio = strtoul(str, &p, 0);
3198
3199 if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3200 return -1;
3201
3202 if (end_prio < start_prio)
3203 return -1;
3204 } else {
3205 end_prio = start_prio;
3206 }
3207
3208 for (; start_prio <= end_prio; start_prio++)
3209 __set_bit(start_prio, sched->prio_bitmap);
3210
3211 if (*p)
3212 ++p;
3213
3214 str = p;
3215 }
3216
3217 return 0;
3218}
3219
3220static int perf_sched__timehist(struct perf_sched *sched)
3221{
3222 struct evsel_str_handler handlers[] = {
3223 { "sched:sched_switch", timehist_sched_switch_event, },
3224 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
3225 { "sched:sched_waking", timehist_sched_wakeup_event, },
3226 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
3227 };
3228 const struct evsel_str_handler migrate_handlers[] = {
3229 { "sched:sched_migrate_task", timehist_migrate_task_event, },
3230 };
3231 struct perf_data data = {
3232 .path = input_name,
3233 .mode = PERF_DATA_MODE_READ,
3234 .force = sched->force,
3235 };
3236
3237 struct perf_session *session;
3238 struct evlist *evlist;
3239 int err = -1;
3240
3241 /*
3242 * event handlers for timehist option
3243 */
3244 sched->tool.sample = perf_timehist__process_sample;
3245 sched->tool.mmap = perf_event__process_mmap;
3246 sched->tool.comm = perf_event__process_comm;
3247 sched->tool.exit = perf_event__process_exit;
3248 sched->tool.fork = perf_event__process_fork;
3249 sched->tool.lost = process_lost;
3250 sched->tool.attr = perf_event__process_attr;
3251 sched->tool.tracing_data = perf_event__process_tracing_data;
3252 sched->tool.build_id = perf_event__process_build_id;
3253
3254 sched->tool.ordering_requires_timestamps = true;
3255
3256 symbol_conf.use_callchain = sched->show_callchain;
3257
3258 session = perf_session__new(&data, &sched->tool);
3259 if (IS_ERR(session))
3260 return PTR_ERR(session);
3261
3262 if (cpu_list) {
3263 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3264 if (err < 0)
3265 goto out;
3266 }
3267
3268 evlist = session->evlist;
3269
3270 symbol__init(&session->header.env);
3271
3272 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3273 pr_err("Invalid time string\n");
3274 err = -EINVAL;
3275 goto out;
3276 }
3277
3278 if (timehist_check_attr(sched, evlist) != 0)
3279 goto out;
3280
3281 if (timehist_parse_prio_str(sched) != 0) {
3282 pr_err("Invalid prio string\n");
3283 goto out;
3284 }
3285
3286 setup_pager();
3287
3288 /* prefer sched_waking if it is captured */
3289 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3290 handlers[1].handler = timehist_sched_wakeup_ignore;
3291
3292 /* setup per-evsel handlers */
3293 if (perf_session__set_tracepoints_handlers(session, handlers))
3294 goto out;
3295
3296 /* sched_switch event at a minimum needs to exist */
3297 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3298 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3299 goto out;
3300 }
3301
3302 if ((sched->show_migrations || sched->pre_migrations) &&
3303 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3304 goto out;
3305
3306 /* pre-allocate struct for per-CPU idle stats */
3307 sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3308 if (sched->max_cpu.cpu == 0)
3309 sched->max_cpu.cpu = 4;
3310 if (init_idle_threads(sched->max_cpu.cpu))
3311 goto out;
3312
3313 /* summary_only implies summary option, but don't overwrite summary if set */
3314 if (sched->summary_only)
3315 sched->summary = sched->summary_only;
3316
3317 if (!sched->summary_only)
3318 timehist_header(sched);
3319
3320 err = perf_session__process_events(session);
3321 if (err) {
3322 pr_err("Failed to process events, error %d", err);
3323 goto out;
3324 }
3325
3326 sched->nr_events = evlist->stats.nr_events[0];
3327 sched->nr_lost_events = evlist->stats.total_lost;
3328 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3329
3330 if (sched->summary)
3331 timehist_print_summary(sched, session);
3332
3333out:
3334 free_idle_threads();
3335 perf_session__delete(session);
3336
3337 return err;
3338}
3339
3340
3341static void print_bad_events(struct perf_sched *sched)
3342{
3343 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3344 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3345 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3346 sched->nr_unordered_timestamps, sched->nr_timestamps);
3347 }
3348 if (sched->nr_lost_events && sched->nr_events) {
3349 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3350 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3351 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3352 }
3353 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3354 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3355 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3356 sched->nr_context_switch_bugs, sched->nr_timestamps);
3357 if (sched->nr_lost_events)
3358 printf(" (due to lost events?)");
3359 printf("\n");
3360 }
3361}
3362
3363static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3364{
3365 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3366 struct work_atoms *this;
3367 const char *comm = thread__comm_str(data->thread), *this_comm;
3368 bool leftmost = true;
3369
3370 while (*new) {
3371 int cmp;
3372
3373 this = container_of(*new, struct work_atoms, node);
3374 parent = *new;
3375
3376 this_comm = thread__comm_str(this->thread);
3377 cmp = strcmp(comm, this_comm);
3378 if (cmp > 0) {
3379 new = &((*new)->rb_left);
3380 } else if (cmp < 0) {
3381 new = &((*new)->rb_right);
3382 leftmost = false;
3383 } else {
3384 this->num_merged++;
3385 this->total_runtime += data->total_runtime;
3386 this->nb_atoms += data->nb_atoms;
3387 this->total_lat += data->total_lat;
3388 list_splice(&data->work_list, &this->work_list);
3389 if (this->max_lat < data->max_lat) {
3390 this->max_lat = data->max_lat;
3391 this->max_lat_start = data->max_lat_start;
3392 this->max_lat_end = data->max_lat_end;
3393 }
3394 zfree(&data);
3395 return;
3396 }
3397 }
3398
3399 data->num_merged++;
3400 rb_link_node(&data->node, parent, new);
3401 rb_insert_color_cached(&data->node, root, leftmost);
3402}
3403
3404static void perf_sched__merge_lat(struct perf_sched *sched)
3405{
3406 struct work_atoms *data;
3407 struct rb_node *node;
3408
3409 if (sched->skip_merge)
3410 return;
3411
3412 while ((node = rb_first_cached(&sched->atom_root))) {
3413 rb_erase_cached(node, &sched->atom_root);
3414 data = rb_entry(node, struct work_atoms, node);
3415 __merge_work_atoms(&sched->merged_atom_root, data);
3416 }
3417}
3418
3419static int setup_cpus_switch_event(struct perf_sched *sched)
3420{
3421 unsigned int i;
3422
3423 sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3424 if (!sched->cpu_last_switched)
3425 return -1;
3426
3427 sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3428 if (!sched->curr_pid) {
3429 zfree(&sched->cpu_last_switched);
3430 return -1;
3431 }
3432
3433 for (i = 0; i < MAX_CPUS; i++)
3434 sched->curr_pid[i] = -1;
3435
3436 return 0;
3437}
3438
3439static void free_cpus_switch_event(struct perf_sched *sched)
3440{
3441 zfree(&sched->curr_pid);
3442 zfree(&sched->cpu_last_switched);
3443}
3444
3445static int perf_sched__lat(struct perf_sched *sched)
3446{
3447 int rc = -1;
3448 struct rb_node *next;
3449
3450 setup_pager();
3451
3452 if (setup_cpus_switch_event(sched))
3453 return rc;
3454
3455 if (perf_sched__read_events(sched))
3456 goto out_free_cpus_switch_event;
3457
3458 perf_sched__merge_lat(sched);
3459 perf_sched__sort_lat(sched);
3460
3461 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3462 printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n");
3463 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3464
3465 next = rb_first_cached(&sched->sorted_atom_root);
3466
3467 while (next) {
3468 struct work_atoms *work_list;
3469
3470 work_list = rb_entry(next, struct work_atoms, node);
3471 output_lat_thread(sched, work_list);
3472 next = rb_next(next);
3473 thread__zput(work_list->thread);
3474 }
3475
3476 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3477 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3478 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3479
3480 printf(" ---------------------------------------------------\n");
3481
3482 print_bad_events(sched);
3483 printf("\n");
3484
3485 rc = 0;
3486
3487out_free_cpus_switch_event:
3488 free_cpus_switch_event(sched);
3489 return rc;
3490}
3491
3492static int setup_map_cpus(struct perf_sched *sched)
3493{
3494 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF);
3495
3496 if (sched->map.comp) {
3497 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3498 if (!sched->map.comp_cpus)
3499 return -1;
3500 }
3501
3502 if (sched->map.cpus_str) {
3503 sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3504 if (!sched->map.cpus) {
3505 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3506 zfree(&sched->map.comp_cpus);
3507 return -1;
3508 }
3509 }
3510
3511 return 0;
3512}
3513
3514static int setup_color_pids(struct perf_sched *sched)
3515{
3516 struct perf_thread_map *map;
3517
3518 if (!sched->map.color_pids_str)
3519 return 0;
3520
3521 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3522 if (!map) {
3523 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3524 return -1;
3525 }
3526
3527 sched->map.color_pids = map;
3528 return 0;
3529}
3530
3531static int setup_color_cpus(struct perf_sched *sched)
3532{
3533 struct perf_cpu_map *map;
3534
3535 if (!sched->map.color_cpus_str)
3536 return 0;
3537
3538 map = perf_cpu_map__new(sched->map.color_cpus_str);
3539 if (!map) {
3540 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3541 return -1;
3542 }
3543
3544 sched->map.color_cpus = map;
3545 return 0;
3546}
3547
3548static int perf_sched__map(struct perf_sched *sched)
3549{
3550 int rc = -1;
3551
3552 sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3553 if (!sched->curr_thread)
3554 return rc;
3555
3556 sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3557 if (!sched->curr_out_thread)
3558 return rc;
3559
3560 if (setup_cpus_switch_event(sched))
3561 goto out_free_curr_thread;
3562
3563 if (setup_map_cpus(sched))
3564 goto out_free_cpus_switch_event;
3565
3566 if (setup_color_pids(sched))
3567 goto out_put_map_cpus;
3568
3569 if (setup_color_cpus(sched))
3570 goto out_put_color_pids;
3571
3572 setup_pager();
3573 if (perf_sched__read_events(sched))
3574 goto out_put_color_cpus;
3575
3576 rc = 0;
3577 print_bad_events(sched);
3578
3579out_put_color_cpus:
3580 perf_cpu_map__put(sched->map.color_cpus);
3581
3582out_put_color_pids:
3583 perf_thread_map__put(sched->map.color_pids);
3584
3585out_put_map_cpus:
3586 zfree(&sched->map.comp_cpus);
3587 perf_cpu_map__put(sched->map.cpus);
3588
3589out_free_cpus_switch_event:
3590 free_cpus_switch_event(sched);
3591
3592out_free_curr_thread:
3593 zfree(&sched->curr_thread);
3594 return rc;
3595}
3596
3597static int perf_sched__replay(struct perf_sched *sched)
3598{
3599 int ret;
3600 unsigned long i;
3601
3602 mutex_init(&sched->start_work_mutex);
3603 mutex_init(&sched->work_done_wait_mutex);
3604
3605 ret = setup_cpus_switch_event(sched);
3606 if (ret)
3607 goto out_mutex_destroy;
3608
3609 calibrate_run_measurement_overhead(sched);
3610 calibrate_sleep_measurement_overhead(sched);
3611
3612 test_calibrations(sched);
3613
3614 ret = perf_sched__read_events(sched);
3615 if (ret)
3616 goto out_free_cpus_switch_event;
3617
3618 printf("nr_run_events: %ld\n", sched->nr_run_events);
3619 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3620 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3621
3622 if (sched->targetless_wakeups)
3623 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3624 if (sched->multitarget_wakeups)
3625 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3626 if (sched->nr_run_events_optimized)
3627 printf("run atoms optimized: %ld\n",
3628 sched->nr_run_events_optimized);
3629
3630 print_task_traces(sched);
3631 add_cross_task_wakeups(sched);
3632
3633 sched->thread_funcs_exit = false;
3634 create_tasks(sched);
3635 printf("------------------------------------------------------------\n");
3636 if (sched->replay_repeat == 0)
3637 sched->replay_repeat = UINT_MAX;
3638
3639 for (i = 0; i < sched->replay_repeat; i++)
3640 run_one_test(sched);
3641
3642 sched->thread_funcs_exit = true;
3643 destroy_tasks(sched);
3644
3645out_free_cpus_switch_event:
3646 free_cpus_switch_event(sched);
3647
3648out_mutex_destroy:
3649 mutex_destroy(&sched->start_work_mutex);
3650 mutex_destroy(&sched->work_done_wait_mutex);
3651 return ret;
3652}
3653
3654static void setup_sorting(struct perf_sched *sched, const struct option *options,
3655 const char * const usage_msg[])
3656{
3657 char *tmp, *tok, *str = strdup(sched->sort_order);
3658
3659 for (tok = strtok_r(str, ", ", &tmp);
3660 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3661 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3662 usage_with_options_msg(usage_msg, options,
3663 "Unknown --sort key: `%s'", tok);
3664 }
3665 }
3666
3667 free(str);
3668
3669 sort_dimension__add("pid", &sched->cmp_pid);
3670}
3671
3672static bool schedstat_events_exposed(void)
3673{
3674 /*
3675 * Select "sched:sched_stat_wait" event to check
3676 * whether schedstat tracepoints are exposed.
3677 */
3678 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3679 false : true;
3680}
3681
3682static int __cmd_record(int argc, const char **argv)
3683{
3684 unsigned int rec_argc, i, j;
3685 char **rec_argv;
3686 const char **rec_argv_copy;
3687 const char * const record_args[] = {
3688 "record",
3689 "-a",
3690 "-R",
3691 "-m", "1024",
3692 "-c", "1",
3693 "-e", "sched:sched_switch",
3694 "-e", "sched:sched_stat_runtime",
3695 "-e", "sched:sched_process_fork",
3696 "-e", "sched:sched_wakeup_new",
3697 "-e", "sched:sched_migrate_task",
3698 };
3699
3700 /*
3701 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3702 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3703 * to prevent "perf sched record" execution failure, determine
3704 * whether to record schedstat events according to actual situation.
3705 */
3706 const char * const schedstat_args[] = {
3707 "-e", "sched:sched_stat_wait",
3708 "-e", "sched:sched_stat_sleep",
3709 "-e", "sched:sched_stat_iowait",
3710 };
3711 unsigned int schedstat_argc = schedstat_events_exposed() ?
3712 ARRAY_SIZE(schedstat_args) : 0;
3713
3714 struct tep_event *waking_event;
3715 int ret;
3716
3717 /*
3718 * +2 for either "-e", "sched:sched_wakeup" or
3719 * "-e", "sched:sched_waking"
3720 */
3721 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3722 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3723 if (rec_argv == NULL)
3724 return -ENOMEM;
3725 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3726 if (rec_argv_copy == NULL) {
3727 free(rec_argv);
3728 return -ENOMEM;
3729 }
3730
3731 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3732 rec_argv[i] = strdup(record_args[i]);
3733
3734 rec_argv[i++] = strdup("-e");
3735 waking_event = trace_event__tp_format("sched", "sched_waking");
3736 if (!IS_ERR(waking_event))
3737 rec_argv[i++] = strdup("sched:sched_waking");
3738 else
3739 rec_argv[i++] = strdup("sched:sched_wakeup");
3740
3741 for (j = 0; j < schedstat_argc; j++)
3742 rec_argv[i++] = strdup(schedstat_args[j]);
3743
3744 for (j = 1; j < (unsigned int)argc; j++, i++)
3745 rec_argv[i] = strdup(argv[j]);
3746
3747 BUG_ON(i != rec_argc);
3748
3749 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3750 ret = cmd_record(rec_argc, rec_argv_copy);
3751
3752 for (i = 0; i < rec_argc; i++)
3753 free(rec_argv[i]);
3754 free(rec_argv);
3755 free(rec_argv_copy);
3756
3757 return ret;
3758}
3759
3760int cmd_sched(int argc, const char **argv)
3761{
3762 static const char default_sort_order[] = "avg, max, switch, runtime";
3763 struct perf_sched sched = {
3764 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3765 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3766 .sort_order = default_sort_order,
3767 .replay_repeat = 10,
3768 .profile_cpu = -1,
3769 .next_shortname1 = 'A',
3770 .next_shortname2 = '0',
3771 .skip_merge = 0,
3772 .show_callchain = 1,
3773 .max_stack = 5,
3774 };
3775 const struct option sched_options[] = {
3776 OPT_STRING('i', "input", &input_name, "file",
3777 "input file name"),
3778 OPT_INCR('v', "verbose", &verbose,
3779 "be more verbose (show symbol address, etc)"),
3780 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3781 "dump raw trace in ASCII"),
3782 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3783 OPT_END()
3784 };
3785 const struct option latency_options[] = {
3786 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3787 "sort by key(s): runtime, switch, avg, max"),
3788 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3789 "CPU to profile on"),
3790 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3791 "latency stats per pid instead of per comm"),
3792 OPT_PARENT(sched_options)
3793 };
3794 const struct option replay_options[] = {
3795 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3796 "repeat the workload replay N times (0: infinite)"),
3797 OPT_PARENT(sched_options)
3798 };
3799 const struct option map_options[] = {
3800 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3801 "map output in compact mode"),
3802 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3803 "highlight given pids in map"),
3804 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3805 "highlight given CPUs in map"),
3806 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3807 "display given CPUs in map"),
3808 OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3809 "map output only for the given task name(s)."),
3810 OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3811 "given command name can be partially matched (fuzzy matching)"),
3812 OPT_PARENT(sched_options)
3813 };
3814 const struct option timehist_options[] = {
3815 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3816 "file", "vmlinux pathname"),
3817 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3818 "file", "kallsyms pathname"),
3819 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3820 "Display call chains if present (default on)"),
3821 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3822 "Maximum number of functions to display backtrace."),
3823 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3824 "Look for files with symbols relative to this directory"),
3825 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3826 "Show only syscall summary with statistics"),
3827 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3828 "Show all syscalls and summary with statistics"),
3829 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3830 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3831 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3832 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3833 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3834 OPT_STRING(0, "time", &sched.time_str, "str",
3835 "Time span for analysis (start,stop)"),
3836 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3837 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3838 "analyze events only for given process id(s)"),
3839 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3840 "analyze events only for given thread id(s)"),
3841 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3842 OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3843 OPT_STRING(0, "prio", &sched.prio_str, "prio",
3844 "analyze events only for given task priority(ies)"),
3845 OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
3846 OPT_PARENT(sched_options)
3847 };
3848
3849 const char * const latency_usage[] = {
3850 "perf sched latency [<options>]",
3851 NULL
3852 };
3853 const char * const replay_usage[] = {
3854 "perf sched replay [<options>]",
3855 NULL
3856 };
3857 const char * const map_usage[] = {
3858 "perf sched map [<options>]",
3859 NULL
3860 };
3861 const char * const timehist_usage[] = {
3862 "perf sched timehist [<options>]",
3863 NULL
3864 };
3865 const char *const sched_subcommands[] = { "record", "latency", "map",
3866 "replay", "script",
3867 "timehist", NULL };
3868 const char *sched_usage[] = {
3869 NULL,
3870 NULL
3871 };
3872 struct trace_sched_handler lat_ops = {
3873 .wakeup_event = latency_wakeup_event,
3874 .switch_event = latency_switch_event,
3875 .runtime_event = latency_runtime_event,
3876 .migrate_task_event = latency_migrate_task_event,
3877 };
3878 struct trace_sched_handler map_ops = {
3879 .switch_event = map_switch_event,
3880 };
3881 struct trace_sched_handler replay_ops = {
3882 .wakeup_event = replay_wakeup_event,
3883 .switch_event = replay_switch_event,
3884 .fork_event = replay_fork_event,
3885 };
3886 int ret;
3887
3888 perf_tool__init(&sched.tool, /*ordered_events=*/true);
3889 sched.tool.sample = perf_sched__process_tracepoint_sample;
3890 sched.tool.comm = perf_sched__process_comm;
3891 sched.tool.namespaces = perf_event__process_namespaces;
3892 sched.tool.lost = perf_event__process_lost;
3893 sched.tool.fork = perf_sched__process_fork_event;
3894
3895 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3896 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3897 if (!argc)
3898 usage_with_options(sched_usage, sched_options);
3899
3900 /*
3901 * Aliased to 'perf script' for now:
3902 */
3903 if (!strcmp(argv[0], "script")) {
3904 return cmd_script(argc, argv);
3905 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3906 return __cmd_record(argc, argv);
3907 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3908 sched.tp_handler = &lat_ops;
3909 if (argc > 1) {
3910 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3911 if (argc)
3912 usage_with_options(latency_usage, latency_options);
3913 }
3914 setup_sorting(&sched, latency_options, latency_usage);
3915 return perf_sched__lat(&sched);
3916 } else if (!strcmp(argv[0], "map")) {
3917 if (argc) {
3918 argc = parse_options(argc, argv, map_options, map_usage, 0);
3919 if (argc)
3920 usage_with_options(map_usage, map_options);
3921
3922 if (sched.map.task_name) {
3923 sched.map.task_names = strlist__new(sched.map.task_name, NULL);
3924 if (sched.map.task_names == NULL) {
3925 fprintf(stderr, "Failed to parse task names\n");
3926 return -1;
3927 }
3928 }
3929 }
3930 sched.tp_handler = &map_ops;
3931 setup_sorting(&sched, latency_options, latency_usage);
3932 return perf_sched__map(&sched);
3933 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3934 sched.tp_handler = &replay_ops;
3935 if (argc) {
3936 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3937 if (argc)
3938 usage_with_options(replay_usage, replay_options);
3939 }
3940 return perf_sched__replay(&sched);
3941 } else if (!strcmp(argv[0], "timehist")) {
3942 if (argc) {
3943 argc = parse_options(argc, argv, timehist_options,
3944 timehist_usage, 0);
3945 if (argc)
3946 usage_with_options(timehist_usage, timehist_options);
3947 }
3948 if ((sched.show_wakeups || sched.show_next) &&
3949 sched.summary_only) {
3950 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3951 parse_options_usage(timehist_usage, timehist_options, "s", true);
3952 if (sched.show_wakeups)
3953 parse_options_usage(NULL, timehist_options, "w", true);
3954 if (sched.show_next)
3955 parse_options_usage(NULL, timehist_options, "n", true);
3956 return -EINVAL;
3957 }
3958 ret = symbol__validate_sym_arguments();
3959 if (ret)
3960 return ret;
3961
3962 return perf_sched__timehist(&sched);
3963 } else {
3964 usage_with_options(sched_usage, sched_options);
3965 }
3966
3967 /* free usage string allocated by parse_options_subcommand */
3968 free((void *)sched_usage[0]);
3969
3970 return 0;
3971}