Linux Audio

Check our new training course

Loading...
v3.15
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 
 
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netfilter_arp.h>
 120
 121/*
 122 *	Interface to generic neighbour cache.
 123 */
 124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 
 125static int arp_constructor(struct neighbour *neigh);
 126static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 127static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 128static void parp_redo(struct sk_buff *skb);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152static const struct neigh_ops arp_broken_ops = {
 153	.family =		AF_INET,
 154	.solicit =		arp_solicit,
 155	.error_report =		arp_error_report,
 156	.output =		neigh_compat_output,
 157	.connected_output =	neigh_compat_output,
 158};
 159
 160struct neigh_table arp_tbl = {
 161	.family		= AF_INET,
 162	.key_len	= 4,
 
 163	.hash		= arp_hash,
 
 164	.constructor	= arp_constructor,
 165	.proxy_redo	= parp_redo,
 166	.id		= "arp_cache",
 167	.parms		= {
 168		.tbl			= &arp_tbl,
 169		.reachable_time		= 30 * HZ,
 170		.data	= {
 171			[NEIGH_VAR_MCAST_PROBES] = 3,
 172			[NEIGH_VAR_UCAST_PROBES] = 3,
 173			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 174			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 175			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 176			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 177			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
 178			[NEIGH_VAR_PROXY_QLEN] = 64,
 179			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 180			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 181			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 182		},
 183	},
 184	.gc_interval	= 30 * HZ,
 185	.gc_thresh1	= 128,
 186	.gc_thresh2	= 512,
 187	.gc_thresh3	= 1024,
 188};
 189EXPORT_SYMBOL(arp_tbl);
 190
 191int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 192{
 193	switch (dev->type) {
 194	case ARPHRD_ETHER:
 195	case ARPHRD_FDDI:
 196	case ARPHRD_IEEE802:
 197		ip_eth_mc_map(addr, haddr);
 198		return 0;
 199	case ARPHRD_INFINIBAND:
 200		ip_ib_mc_map(addr, dev->broadcast, haddr);
 201		return 0;
 202	case ARPHRD_IPGRE:
 203		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 204		return 0;
 205	default:
 206		if (dir) {
 207			memcpy(haddr, dev->broadcast, dev->addr_len);
 208			return 0;
 209		}
 210	}
 211	return -EINVAL;
 212}
 213
 214
 215static u32 arp_hash(const void *pkey,
 216		    const struct net_device *dev,
 217		    __u32 *hash_rnd)
 218{
 219	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
 
 
 
 
 
 220}
 221
 222static int arp_constructor(struct neighbour *neigh)
 223{
 224	__be32 addr = *(__be32 *)neigh->primary_key;
 225	struct net_device *dev = neigh->dev;
 226	struct in_device *in_dev;
 227	struct neigh_parms *parms;
 228
 229	rcu_read_lock();
 230	in_dev = __in_dev_get_rcu(dev);
 231	if (in_dev == NULL) {
 232		rcu_read_unlock();
 233		return -EINVAL;
 234	}
 235
 236	neigh->type = inet_addr_type(dev_net(dev), addr);
 237
 238	parms = in_dev->arp_parms;
 239	__neigh_parms_put(neigh->parms);
 240	neigh->parms = neigh_parms_clone(parms);
 241	rcu_read_unlock();
 242
 243	if (!dev->header_ops) {
 244		neigh->nud_state = NUD_NOARP;
 245		neigh->ops = &arp_direct_ops;
 246		neigh->output = neigh_direct_output;
 247	} else {
 248		/* Good devices (checked by reading texts, but only Ethernet is
 249		   tested)
 250
 251		   ARPHRD_ETHER: (ethernet, apfddi)
 252		   ARPHRD_FDDI: (fddi)
 253		   ARPHRD_IEEE802: (tr)
 254		   ARPHRD_METRICOM: (strip)
 255		   ARPHRD_ARCNET:
 256		   etc. etc. etc.
 257
 258		   ARPHRD_IPDDP will also work, if author repairs it.
 259		   I did not it, because this driver does not work even
 260		   in old paradigm.
 261		 */
 262
 263#if 1
 264		/* So... these "amateur" devices are hopeless.
 265		   The only thing, that I can say now:
 266		   It is very sad that we need to keep ugly obsolete
 267		   code to make them happy.
 268
 269		   They should be moved to more reasonable state, now
 270		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 271		   Besides that, they are sort of out of date
 272		   (a lot of redundant clones/copies, useless in 2.1),
 273		   I wonder why people believe that they work.
 274		 */
 275		switch (dev->type) {
 276		default:
 277			break;
 278		case ARPHRD_ROSE:
 279#if IS_ENABLED(CONFIG_AX25)
 280		case ARPHRD_AX25:
 281#if IS_ENABLED(CONFIG_NETROM)
 282		case ARPHRD_NETROM:
 283#endif
 284			neigh->ops = &arp_broken_ops;
 285			neigh->output = neigh->ops->output;
 286			return 0;
 287#else
 288			break;
 289#endif
 290		}
 291#endif
 292		if (neigh->type == RTN_MULTICAST) {
 293			neigh->nud_state = NUD_NOARP;
 294			arp_mc_map(addr, neigh->ha, dev, 1);
 295		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 296			neigh->nud_state = NUD_NOARP;
 297			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 298		} else if (neigh->type == RTN_BROADCAST ||
 299			   (dev->flags & IFF_POINTOPOINT)) {
 300			neigh->nud_state = NUD_NOARP;
 301			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 302		}
 303
 304		if (dev->header_ops->cache)
 305			neigh->ops = &arp_hh_ops;
 306		else
 307			neigh->ops = &arp_generic_ops;
 308
 309		if (neigh->nud_state & NUD_VALID)
 310			neigh->output = neigh->ops->connected_output;
 311		else
 312			neigh->output = neigh->ops->output;
 313	}
 314	return 0;
 315}
 316
 317static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 318{
 319	dst_link_failure(skb);
 320	kfree_skb(skb);
 321}
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 324{
 325	__be32 saddr = 0;
 326	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 327	struct net_device *dev = neigh->dev;
 328	__be32 target = *(__be32 *)neigh->primary_key;
 329	int probes = atomic_read(&neigh->probes);
 330	struct in_device *in_dev;
 
 331
 332	rcu_read_lock();
 333	in_dev = __in_dev_get_rcu(dev);
 334	if (!in_dev) {
 335		rcu_read_unlock();
 336		return;
 337	}
 338	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 339	default:
 340	case 0:		/* By default announce any local IP */
 341		if (skb && inet_addr_type(dev_net(dev),
 342					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 343			saddr = ip_hdr(skb)->saddr;
 344		break;
 345	case 1:		/* Restrict announcements of saddr in same subnet */
 346		if (!skb)
 347			break;
 348		saddr = ip_hdr(skb)->saddr;
 349		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 350			/* saddr should be known to target */
 351			if (inet_addr_onlink(in_dev, target, saddr))
 352				break;
 353		}
 354		saddr = 0;
 355		break;
 356	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 357		break;
 358	}
 359	rcu_read_unlock();
 360
 361	if (!saddr)
 362		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 363
 364	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 365	if (probes < 0) {
 366		if (!(neigh->nud_state & NUD_VALID))
 367			pr_debug("trying to ucast probe in NUD_INVALID\n");
 368		neigh_ha_snapshot(dst_ha, neigh, dev);
 369		dst_hw = dst_ha;
 370	} else {
 371		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 372		if (probes < 0) {
 373			neigh_app_ns(neigh);
 374			return;
 375		}
 376	}
 377
 378	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 379		 dst_hw, dev->dev_addr, NULL);
 
 
 380}
 381
 382static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 383{
 384	struct net *net = dev_net(in_dev->dev);
 385	int scope;
 386
 387	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 388	case 0:	/* Reply, the tip is already validated */
 389		return 0;
 390	case 1:	/* Reply only if tip is configured on the incoming interface */
 391		sip = 0;
 392		scope = RT_SCOPE_HOST;
 393		break;
 394	case 2:	/*
 395		 * Reply only if tip is configured on the incoming interface
 396		 * and is in same subnet as sip
 397		 */
 398		scope = RT_SCOPE_HOST;
 399		break;
 400	case 3:	/* Do not reply for scope host addresses */
 401		sip = 0;
 402		scope = RT_SCOPE_LINK;
 403		in_dev = NULL;
 404		break;
 405	case 4:	/* Reserved */
 406	case 5:
 407	case 6:
 408	case 7:
 409		return 0;
 410	case 8:	/* Do not reply */
 411		return 1;
 412	default:
 413		return 0;
 414	}
 415	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 416}
 417
 418static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 419{
 420	struct rtable *rt;
 421	int flag = 0;
 422	/*unsigned long now; */
 423	struct net *net = dev_net(dev);
 424
 425	rt = ip_route_output(net, sip, tip, 0, 0);
 426	if (IS_ERR(rt))
 427		return 1;
 428	if (rt->dst.dev != dev) {
 429		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 430		flag = 1;
 431	}
 432	ip_rt_put(rt);
 433	return flag;
 434}
 435
 436/* OBSOLETE FUNCTIONS */
 437
 438/*
 439 *	Find an arp mapping in the cache. If not found, post a request.
 440 *
 441 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 442 *	even if it exists. It is supposed that skb->dev was mangled
 443 *	by a virtual device (eql, shaper). Nobody but broken devices
 444 *	is allowed to use this function, it is scheduled to be removed. --ANK
 445 */
 446
 447static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 448			      __be32 paddr, struct net_device *dev)
 449{
 450	switch (addr_hint) {
 451	case RTN_LOCAL:
 452		pr_debug("arp called for own IP address\n");
 453		memcpy(haddr, dev->dev_addr, dev->addr_len);
 454		return 1;
 455	case RTN_MULTICAST:
 456		arp_mc_map(paddr, haddr, dev, 1);
 457		return 1;
 458	case RTN_BROADCAST:
 459		memcpy(haddr, dev->broadcast, dev->addr_len);
 460		return 1;
 461	}
 462	return 0;
 463}
 464
 465
 466int arp_find(unsigned char *haddr, struct sk_buff *skb)
 467{
 468	struct net_device *dev = skb->dev;
 469	__be32 paddr;
 470	struct neighbour *n;
 471
 472	if (!skb_dst(skb)) {
 473		pr_debug("arp_find is called with dst==NULL\n");
 474		kfree_skb(skb);
 475		return 1;
 476	}
 477
 478	paddr = rt_nexthop(skb_rtable(skb), ip_hdr(skb)->daddr);
 479	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 480			       paddr, dev))
 481		return 0;
 482
 483	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 484
 485	if (n) {
 486		n->used = jiffies;
 487		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 488			neigh_ha_snapshot(haddr, n, dev);
 489			neigh_release(n);
 490			return 0;
 491		}
 492		neigh_release(n);
 493	} else
 494		kfree_skb(skb);
 495	return 1;
 496}
 497EXPORT_SYMBOL(arp_find);
 498
 499/* END OF OBSOLETE FUNCTIONS */
 500
 501/*
 502 * Check if we can use proxy ARP for this path
 503 */
 504static inline int arp_fwd_proxy(struct in_device *in_dev,
 505				struct net_device *dev,	struct rtable *rt)
 506{
 507	struct in_device *out_dev;
 508	int imi, omi = -1;
 509
 510	if (rt->dst.dev == dev)
 511		return 0;
 512
 513	if (!IN_DEV_PROXY_ARP(in_dev))
 514		return 0;
 515	imi = IN_DEV_MEDIUM_ID(in_dev);
 516	if (imi == 0)
 517		return 1;
 518	if (imi == -1)
 519		return 0;
 520
 521	/* place to check for proxy_arp for routes */
 522
 523	out_dev = __in_dev_get_rcu(rt->dst.dev);
 524	if (out_dev)
 525		omi = IN_DEV_MEDIUM_ID(out_dev);
 526
 527	return omi != imi && omi != -1;
 528}
 529
 530/*
 531 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 532 *
 533 * RFC3069 supports proxy arp replies back to the same interface.  This
 534 * is done to support (ethernet) switch features, like RFC 3069, where
 535 * the individual ports are not allowed to communicate with each
 536 * other, BUT they are allowed to talk to the upstream router.  As
 537 * described in RFC 3069, it is possible to allow these hosts to
 538 * communicate through the upstream router, by proxy_arp'ing.
 539 *
 540 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 541 *
 542 *  This technology is known by different names:
 543 *    In RFC 3069 it is called VLAN Aggregation.
 544 *    Cisco and Allied Telesyn call it Private VLAN.
 545 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 546 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 547 *
 548 */
 549static inline int arp_fwd_pvlan(struct in_device *in_dev,
 550				struct net_device *dev,	struct rtable *rt,
 551				__be32 sip, __be32 tip)
 552{
 553	/* Private VLAN is only concerned about the same ethernet segment */
 554	if (rt->dst.dev != dev)
 555		return 0;
 556
 557	/* Don't reply on self probes (often done by windowz boxes)*/
 558	if (sip == tip)
 559		return 0;
 560
 561	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 562		return 1;
 563	else
 564		return 0;
 565}
 566
 567/*
 568 *	Interface to link layer: send routine and receive handler.
 569 */
 570
 571/*
 572 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 573 *	message.
 574 */
 575struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 576			   struct net_device *dev, __be32 src_ip,
 577			   const unsigned char *dest_hw,
 578			   const unsigned char *src_hw,
 579			   const unsigned char *target_hw)
 580{
 581	struct sk_buff *skb;
 582	struct arphdr *arp;
 583	unsigned char *arp_ptr;
 584	int hlen = LL_RESERVED_SPACE(dev);
 585	int tlen = dev->needed_tailroom;
 586
 587	/*
 588	 *	Allocate a buffer
 589	 */
 590
 591	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 592	if (skb == NULL)
 593		return NULL;
 594
 595	skb_reserve(skb, hlen);
 596	skb_reset_network_header(skb);
 597	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 598	skb->dev = dev;
 599	skb->protocol = htons(ETH_P_ARP);
 600	if (src_hw == NULL)
 601		src_hw = dev->dev_addr;
 602	if (dest_hw == NULL)
 603		dest_hw = dev->broadcast;
 604
 605	/*
 606	 *	Fill the device header for the ARP frame
 607	 */
 608	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 609		goto out;
 610
 611	/*
 612	 * Fill out the arp protocol part.
 613	 *
 614	 * The arp hardware type should match the device type, except for FDDI,
 615	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 616	 */
 617	/*
 618	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 619	 *	DIX code for the protocol. Make these device structure fields.
 620	 */
 621	switch (dev->type) {
 622	default:
 623		arp->ar_hrd = htons(dev->type);
 624		arp->ar_pro = htons(ETH_P_IP);
 625		break;
 626
 627#if IS_ENABLED(CONFIG_AX25)
 628	case ARPHRD_AX25:
 629		arp->ar_hrd = htons(ARPHRD_AX25);
 630		arp->ar_pro = htons(AX25_P_IP);
 631		break;
 632
 633#if IS_ENABLED(CONFIG_NETROM)
 634	case ARPHRD_NETROM:
 635		arp->ar_hrd = htons(ARPHRD_NETROM);
 636		arp->ar_pro = htons(AX25_P_IP);
 637		break;
 638#endif
 639#endif
 640
 641#if IS_ENABLED(CONFIG_FDDI)
 642	case ARPHRD_FDDI:
 643		arp->ar_hrd = htons(ARPHRD_ETHER);
 644		arp->ar_pro = htons(ETH_P_IP);
 645		break;
 646#endif
 647	}
 648
 649	arp->ar_hln = dev->addr_len;
 650	arp->ar_pln = 4;
 651	arp->ar_op = htons(type);
 652
 653	arp_ptr = (unsigned char *)(arp + 1);
 654
 655	memcpy(arp_ptr, src_hw, dev->addr_len);
 656	arp_ptr += dev->addr_len;
 657	memcpy(arp_ptr, &src_ip, 4);
 658	arp_ptr += 4;
 659
 660	switch (dev->type) {
 661#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 662	case ARPHRD_IEEE1394:
 663		break;
 664#endif
 665	default:
 666		if (target_hw != NULL)
 667			memcpy(arp_ptr, target_hw, dev->addr_len);
 668		else
 669			memset(arp_ptr, 0, dev->addr_len);
 670		arp_ptr += dev->addr_len;
 671	}
 672	memcpy(arp_ptr, &dest_ip, 4);
 673
 674	return skb;
 675
 676out:
 677	kfree_skb(skb);
 678	return NULL;
 679}
 680EXPORT_SYMBOL(arp_create);
 681
 
 
 
 
 
 682/*
 683 *	Send an arp packet.
 684 */
 685void arp_xmit(struct sk_buff *skb)
 686{
 687	/* Send it off, maybe filter it using firewalling first.  */
 688	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 689}
 690EXPORT_SYMBOL(arp_xmit);
 691
 692/*
 693 *	Create and send an arp packet.
 694 */
 695void arp_send(int type, int ptype, __be32 dest_ip,
 696	      struct net_device *dev, __be32 src_ip,
 697	      const unsigned char *dest_hw, const unsigned char *src_hw,
 698	      const unsigned char *target_hw)
 699{
 700	struct sk_buff *skb;
 701
 702	/*
 703	 *	No arp on this interface.
 704	 */
 705
 706	if (dev->flags&IFF_NOARP)
 707		return;
 708
 709	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 710			 dest_hw, src_hw, target_hw);
 711	if (skb == NULL)
 712		return;
 713
 714	arp_xmit(skb);
 715}
 716EXPORT_SYMBOL(arp_send);
 717
 718/*
 719 *	Process an arp request.
 720 */
 721
 722static int arp_process(struct sk_buff *skb)
 723{
 724	struct net_device *dev = skb->dev;
 725	struct in_device *in_dev = __in_dev_get_rcu(dev);
 726	struct arphdr *arp;
 727	unsigned char *arp_ptr;
 728	struct rtable *rt;
 729	unsigned char *sha;
 730	__be32 sip, tip;
 731	u16 dev_type = dev->type;
 732	int addr_type;
 733	struct neighbour *n;
 734	struct net *net = dev_net(dev);
 735	bool is_garp = false;
 736
 737	/* arp_rcv below verifies the ARP header and verifies the device
 738	 * is ARP'able.
 739	 */
 740
 741	if (in_dev == NULL)
 742		goto out;
 743
 744	arp = arp_hdr(skb);
 745
 746	switch (dev_type) {
 747	default:
 748		if (arp->ar_pro != htons(ETH_P_IP) ||
 749		    htons(dev_type) != arp->ar_hrd)
 750			goto out;
 751		break;
 752	case ARPHRD_ETHER:
 753	case ARPHRD_FDDI:
 754	case ARPHRD_IEEE802:
 755		/*
 756		 * ETHERNET, and Fibre Channel (which are IEEE 802
 757		 * devices, according to RFC 2625) devices will accept ARP
 758		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 759		 * This is the case also of FDDI, where the RFC 1390 says that
 760		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 761		 * however, to be more robust, we'll accept both 1 (Ethernet)
 762		 * or 6 (IEEE 802.2)
 763		 */
 764		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 765		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 766		    arp->ar_pro != htons(ETH_P_IP))
 767			goto out;
 768		break;
 769	case ARPHRD_AX25:
 770		if (arp->ar_pro != htons(AX25_P_IP) ||
 771		    arp->ar_hrd != htons(ARPHRD_AX25))
 772			goto out;
 773		break;
 774	case ARPHRD_NETROM:
 775		if (arp->ar_pro != htons(AX25_P_IP) ||
 776		    arp->ar_hrd != htons(ARPHRD_NETROM))
 777			goto out;
 778		break;
 779	}
 780
 781	/* Understand only these message types */
 782
 783	if (arp->ar_op != htons(ARPOP_REPLY) &&
 784	    arp->ar_op != htons(ARPOP_REQUEST))
 785		goto out;
 786
 787/*
 788 *	Extract fields
 789 */
 790	arp_ptr = (unsigned char *)(arp + 1);
 791	sha	= arp_ptr;
 792	arp_ptr += dev->addr_len;
 793	memcpy(&sip, arp_ptr, 4);
 794	arp_ptr += 4;
 795	switch (dev_type) {
 796#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 797	case ARPHRD_IEEE1394:
 798		break;
 799#endif
 800	default:
 801		arp_ptr += dev->addr_len;
 802	}
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_multicast(tip) ||
 809	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 810		goto out;
 
 
 
 
 
 
 
 
 811
 812/*
 813 *     Special case: We must set Frame Relay source Q.922 address
 814 */
 815	if (dev_type == ARPHRD_DLCI)
 816		sha = dev->broadcast;
 817
 818/*
 819 *  Process entry.  The idea here is we want to send a reply if it is a
 820 *  request for us or if it is a request for someone else that we hold
 821 *  a proxy for.  We want to add an entry to our cache if it is a reply
 822 *  to us or if it is a request for our address.
 823 *  (The assumption for this last is that if someone is requesting our
 824 *  address, they are probably intending to talk to us, so it saves time
 825 *  if we cache their address.  Their address is also probably not in
 826 *  our cache, since ours is not in their cache.)
 827 *
 828 *  Putting this another way, we only care about replies if they are to
 829 *  us, in which case we add them to the cache.  For requests, we care
 830 *  about those for us and those for our proxies.  We reply to both,
 831 *  and in the case of requests for us we add the requester to the arp
 832 *  cache.
 833 */
 834
 
 
 
 
 
 835	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 836	if (sip == 0) {
 837		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 838		    inet_addr_type(net, tip) == RTN_LOCAL &&
 839		    !arp_ignore(in_dev, sip, tip))
 840			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 841				 dev->dev_addr, sha);
 842		goto out;
 843	}
 844
 845	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 846	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 847
 848		rt = skb_rtable(skb);
 849		addr_type = rt->rt_type;
 850
 851		if (addr_type == RTN_LOCAL) {
 852			int dont_send;
 853
 854			dont_send = arp_ignore(in_dev, sip, tip);
 855			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 856				dont_send = arp_filter(sip, tip, dev);
 857			if (!dont_send) {
 858				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 859				if (n) {
 860					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 861						 dev, tip, sha, dev->dev_addr,
 862						 sha);
 
 863					neigh_release(n);
 864				}
 865			}
 866			goto out;
 867		} else if (IN_DEV_FORWARD(in_dev)) {
 868			if (addr_type == RTN_UNICAST  &&
 869			    (arp_fwd_proxy(in_dev, dev, rt) ||
 870			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 871			     (rt->dst.dev != dev &&
 872			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 873				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 874				if (n)
 875					neigh_release(n);
 876
 877				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 878				    skb->pkt_type == PACKET_HOST ||
 879				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 880					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 881						 dev, tip, sha, dev->dev_addr,
 882						 sha);
 
 883				} else {
 884					pneigh_enqueue(&arp_tbl,
 885						       in_dev->arp_parms, skb);
 886					return 0;
 887				}
 888				goto out;
 889			}
 890		}
 891	}
 892
 893	/* Update our ARP tables */
 894
 895	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 896
 897	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 
 
 898		/* Unsolicited ARP is not accepted by default.
 899		   It is possible, that this option should be enabled for some
 900		   devices (strip is candidate)
 901		 */
 902		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
 903			  inet_addr_type(net, sip) == RTN_UNICAST;
 904
 905		if (n == NULL &&
 906		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
 907		      inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
 908			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 909	}
 910
 911	if (n) {
 912		int state = NUD_REACHABLE;
 913		int override;
 914
 915		/* If several different ARP replies follows back-to-back,
 916		   use the FIRST one. It is possible, if several proxy
 917		   agents are active. Taking the first reply prevents
 918		   arp trashing and chooses the fastest router.
 919		 */
 920		override = time_after(jiffies,
 921				      n->updated +
 922				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 923			   is_garp;
 924
 925		/* Broadcast replies and request packets
 926		   do not assert neighbour reachability.
 927		 */
 928		if (arp->ar_op != htons(ARPOP_REPLY) ||
 929		    skb->pkt_type != PACKET_HOST)
 930			state = NUD_STALE;
 931		neigh_update(n, sha, state,
 932			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 933		neigh_release(n);
 934	}
 935
 936out:
 937	consume_skb(skb);
 938	return 0;
 
 
 
 
 
 
 
 939}
 940
 941static void parp_redo(struct sk_buff *skb)
 942{
 943	arp_process(skb);
 944}
 945
 946
 947/*
 948 *	Receive an arp request from the device layer.
 949 */
 950
 951static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 952		   struct packet_type *pt, struct net_device *orig_dev)
 953{
 954	const struct arphdr *arp;
 955
 
 956	if (dev->flags & IFF_NOARP ||
 957	    skb->pkt_type == PACKET_OTHERHOST ||
 958	    skb->pkt_type == PACKET_LOOPBACK)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (!skb)
 963		goto out_of_mem;
 964
 965	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 966	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 967		goto freeskb;
 968
 969	arp = arp_hdr(skb);
 970	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 971		goto freeskb;
 972
 973	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 974
 975	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 976
 
 
 
 977freeskb:
 978	kfree_skb(skb);
 979out_of_mem:
 980	return 0;
 981}
 982
 983/*
 984 *	User level interface (ioctl)
 985 */
 986
 987/*
 988 *	Set (create) an ARP cache entry.
 989 */
 990
 991static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 992{
 993	if (dev == NULL) {
 994		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 995		return 0;
 996	}
 997	if (__in_dev_get_rtnl(dev)) {
 998		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 999		return 0;
1000	}
1001	return -ENXIO;
1002}
1003
1004static int arp_req_set_public(struct net *net, struct arpreq *r,
1005		struct net_device *dev)
1006{
1007	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1008	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1009
1010	if (mask && mask != htonl(0xFFFFFFFF))
1011		return -EINVAL;
1012	if (!dev && (r->arp_flags & ATF_COM)) {
1013		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1014				      r->arp_ha.sa_data);
1015		if (!dev)
1016			return -ENODEV;
1017	}
1018	if (mask) {
1019		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1020			return -ENOBUFS;
1021		return 0;
1022	}
1023
1024	return arp_req_set_proxy(net, dev, 1);
1025}
1026
1027static int arp_req_set(struct net *net, struct arpreq *r,
1028		       struct net_device *dev)
1029{
1030	__be32 ip;
1031	struct neighbour *neigh;
1032	int err;
1033
1034	if (r->arp_flags & ATF_PUBL)
1035		return arp_req_set_public(net, r, dev);
1036
1037	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1038	if (r->arp_flags & ATF_PERM)
1039		r->arp_flags |= ATF_COM;
1040	if (dev == NULL) {
1041		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1042
1043		if (IS_ERR(rt))
1044			return PTR_ERR(rt);
1045		dev = rt->dst.dev;
1046		ip_rt_put(rt);
1047		if (!dev)
1048			return -EINVAL;
1049	}
1050	switch (dev->type) {
1051#if IS_ENABLED(CONFIG_FDDI)
1052	case ARPHRD_FDDI:
1053		/*
1054		 * According to RFC 1390, FDDI devices should accept ARP
1055		 * hardware types of 1 (Ethernet).  However, to be more
1056		 * robust, we'll accept hardware types of either 1 (Ethernet)
1057		 * or 6 (IEEE 802.2).
1058		 */
1059		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1060		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1061		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1062			return -EINVAL;
1063		break;
1064#endif
1065	default:
1066		if (r->arp_ha.sa_family != dev->type)
1067			return -EINVAL;
1068		break;
1069	}
1070
1071	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1072	err = PTR_ERR(neigh);
1073	if (!IS_ERR(neigh)) {
1074		unsigned int state = NUD_STALE;
1075		if (r->arp_flags & ATF_PERM)
1076			state = NUD_PERMANENT;
1077		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1078				   r->arp_ha.sa_data : NULL, state,
1079				   NEIGH_UPDATE_F_OVERRIDE |
1080				   NEIGH_UPDATE_F_ADMIN);
1081		neigh_release(neigh);
1082	}
1083	return err;
1084}
1085
1086static unsigned int arp_state_to_flags(struct neighbour *neigh)
1087{
1088	if (neigh->nud_state&NUD_PERMANENT)
1089		return ATF_PERM | ATF_COM;
1090	else if (neigh->nud_state&NUD_VALID)
1091		return ATF_COM;
1092	else
1093		return 0;
1094}
1095
1096/*
1097 *	Get an ARP cache entry.
1098 */
1099
1100static int arp_req_get(struct arpreq *r, struct net_device *dev)
1101{
1102	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1103	struct neighbour *neigh;
1104	int err = -ENXIO;
1105
1106	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1107	if (neigh) {
1108		read_lock_bh(&neigh->lock);
1109		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1110		r->arp_flags = arp_state_to_flags(neigh);
1111		read_unlock_bh(&neigh->lock);
1112		r->arp_ha.sa_family = dev->type;
1113		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
 
 
 
1114		neigh_release(neigh);
1115		err = 0;
1116	}
1117	return err;
1118}
1119
1120static int arp_invalidate(struct net_device *dev, __be32 ip)
1121{
1122	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1123	int err = -ENXIO;
1124
1125	if (neigh) {
1126		if (neigh->nud_state & ~NUD_NOARP)
1127			err = neigh_update(neigh, NULL, NUD_FAILED,
1128					   NEIGH_UPDATE_F_OVERRIDE|
1129					   NEIGH_UPDATE_F_ADMIN);
1130		neigh_release(neigh);
1131	}
1132
1133	return err;
1134}
1135
1136static int arp_req_delete_public(struct net *net, struct arpreq *r,
1137		struct net_device *dev)
1138{
1139	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1140	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1141
1142	if (mask == htonl(0xFFFFFFFF))
1143		return pneigh_delete(&arp_tbl, net, &ip, dev);
1144
1145	if (mask)
1146		return -EINVAL;
1147
1148	return arp_req_set_proxy(net, dev, 0);
1149}
1150
1151static int arp_req_delete(struct net *net, struct arpreq *r,
1152			  struct net_device *dev)
1153{
1154	__be32 ip;
1155
1156	if (r->arp_flags & ATF_PUBL)
1157		return arp_req_delete_public(net, r, dev);
1158
1159	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1160	if (dev == NULL) {
1161		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1162		if (IS_ERR(rt))
1163			return PTR_ERR(rt);
1164		dev = rt->dst.dev;
1165		ip_rt_put(rt);
1166		if (!dev)
1167			return -EINVAL;
1168	}
1169	return arp_invalidate(dev, ip);
1170}
1171
1172/*
1173 *	Handle an ARP layer I/O control request.
1174 */
1175
1176int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1177{
1178	int err;
1179	struct arpreq r;
1180	struct net_device *dev = NULL;
1181
1182	switch (cmd) {
1183	case SIOCDARP:
1184	case SIOCSARP:
1185		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1186			return -EPERM;
1187	case SIOCGARP:
1188		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1189		if (err)
1190			return -EFAULT;
1191		break;
1192	default:
1193		return -EINVAL;
1194	}
1195
1196	if (r.arp_pa.sa_family != AF_INET)
1197		return -EPFNOSUPPORT;
1198
1199	if (!(r.arp_flags & ATF_PUBL) &&
1200	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1201		return -EINVAL;
1202	if (!(r.arp_flags & ATF_NETMASK))
1203		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1204							   htonl(0xFFFFFFFFUL);
1205	rtnl_lock();
1206	if (r.arp_dev[0]) {
1207		err = -ENODEV;
1208		dev = __dev_get_by_name(net, r.arp_dev);
1209		if (dev == NULL)
1210			goto out;
1211
1212		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1213		if (!r.arp_ha.sa_family)
1214			r.arp_ha.sa_family = dev->type;
1215		err = -EINVAL;
1216		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1217			goto out;
1218	} else if (cmd == SIOCGARP) {
1219		err = -ENODEV;
1220		goto out;
1221	}
1222
1223	switch (cmd) {
1224	case SIOCDARP:
1225		err = arp_req_delete(net, &r, dev);
1226		break;
1227	case SIOCSARP:
1228		err = arp_req_set(net, &r, dev);
1229		break;
1230	case SIOCGARP:
1231		err = arp_req_get(&r, dev);
1232		break;
1233	}
1234out:
1235	rtnl_unlock();
1236	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1237		err = -EFAULT;
1238	return err;
1239}
1240
1241static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1242			    void *ptr)
1243{
1244	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1245	struct netdev_notifier_change_info *change_info;
1246
1247	switch (event) {
1248	case NETDEV_CHANGEADDR:
1249		neigh_changeaddr(&arp_tbl, dev);
1250		rt_cache_flush(dev_net(dev));
1251		break;
1252	case NETDEV_CHANGE:
1253		change_info = ptr;
1254		if (change_info->flags_changed & IFF_NOARP)
1255			neigh_changeaddr(&arp_tbl, dev);
1256		break;
1257	default:
1258		break;
1259	}
1260
1261	return NOTIFY_DONE;
1262}
1263
1264static struct notifier_block arp_netdev_notifier = {
1265	.notifier_call = arp_netdev_event,
1266};
1267
1268/* Note, that it is not on notifier chain.
1269   It is necessary, that this routine was called after route cache will be
1270   flushed.
1271 */
1272void arp_ifdown(struct net_device *dev)
1273{
1274	neigh_ifdown(&arp_tbl, dev);
1275}
1276
1277
1278/*
1279 *	Called once on startup.
1280 */
1281
1282static struct packet_type arp_packet_type __read_mostly = {
1283	.type =	cpu_to_be16(ETH_P_ARP),
1284	.func =	arp_rcv,
1285};
1286
1287static int arp_proc_init(void);
1288
1289void __init arp_init(void)
1290{
1291	neigh_table_init(&arp_tbl);
1292
1293	dev_add_pack(&arp_packet_type);
1294	arp_proc_init();
1295#ifdef CONFIG_SYSCTL
1296	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1297#endif
1298	register_netdevice_notifier(&arp_netdev_notifier);
1299}
1300
1301#ifdef CONFIG_PROC_FS
1302#if IS_ENABLED(CONFIG_AX25)
1303
1304/* ------------------------------------------------------------------------ */
1305/*
1306 *	ax25 -> ASCII conversion
1307 */
1308static char *ax2asc2(ax25_address *a, char *buf)
1309{
1310	char c, *s;
1311	int n;
1312
1313	for (n = 0, s = buf; n < 6; n++) {
1314		c = (a->ax25_call[n] >> 1) & 0x7F;
1315
1316		if (c != ' ')
1317			*s++ = c;
1318	}
1319
1320	*s++ = '-';
1321	n = (a->ax25_call[6] >> 1) & 0x0F;
1322	if (n > 9) {
1323		*s++ = '1';
1324		n -= 10;
1325	}
1326
1327	*s++ = n + '0';
1328	*s++ = '\0';
1329
1330	if (*buf == '\0' || *buf == '-')
1331		return "*";
1332
1333	return buf;
1334}
1335#endif /* CONFIG_AX25 */
1336
1337#define HBUFFERLEN 30
1338
1339static void arp_format_neigh_entry(struct seq_file *seq,
1340				   struct neighbour *n)
1341{
1342	char hbuffer[HBUFFERLEN];
1343	int k, j;
1344	char tbuf[16];
1345	struct net_device *dev = n->dev;
1346	int hatype = dev->type;
1347
1348	read_lock(&n->lock);
1349	/* Convert hardware address to XX:XX:XX:XX ... form. */
1350#if IS_ENABLED(CONFIG_AX25)
1351	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1352		ax2asc2((ax25_address *)n->ha, hbuffer);
1353	else {
1354#endif
1355	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1356		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1357		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1358		hbuffer[k++] = ':';
1359	}
1360	if (k != 0)
1361		--k;
1362	hbuffer[k] = 0;
1363#if IS_ENABLED(CONFIG_AX25)
1364	}
1365#endif
1366	sprintf(tbuf, "%pI4", n->primary_key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1369	read_unlock(&n->lock);
1370}
1371
1372static void arp_format_pneigh_entry(struct seq_file *seq,
1373				    struct pneigh_entry *n)
1374{
1375	struct net_device *dev = n->dev;
1376	int hatype = dev ? dev->type : 0;
1377	char tbuf[16];
1378
1379	sprintf(tbuf, "%pI4", n->key);
1380	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1381		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1382		   dev ? dev->name : "*");
1383}
1384
1385static int arp_seq_show(struct seq_file *seq, void *v)
1386{
1387	if (v == SEQ_START_TOKEN) {
1388		seq_puts(seq, "IP address       HW type     Flags       "
1389			      "HW address            Mask     Device\n");
1390	} else {
1391		struct neigh_seq_state *state = seq->private;
1392
1393		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1394			arp_format_pneigh_entry(seq, v);
1395		else
1396			arp_format_neigh_entry(seq, v);
1397	}
1398
1399	return 0;
1400}
1401
1402static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1403{
1404	/* Don't want to confuse "arp -a" w/ magic entries,
1405	 * so we tell the generic iterator to skip NUD_NOARP.
1406	 */
1407	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1408}
1409
1410/* ------------------------------------------------------------------------ */
1411
1412static const struct seq_operations arp_seq_ops = {
1413	.start	= arp_seq_start,
1414	.next	= neigh_seq_next,
1415	.stop	= neigh_seq_stop,
1416	.show	= arp_seq_show,
1417};
1418
1419static int arp_seq_open(struct inode *inode, struct file *file)
1420{
1421	return seq_open_net(inode, file, &arp_seq_ops,
1422			    sizeof(struct neigh_seq_state));
1423}
1424
1425static const struct file_operations arp_seq_fops = {
1426	.owner		= THIS_MODULE,
1427	.open           = arp_seq_open,
1428	.read           = seq_read,
1429	.llseek         = seq_lseek,
1430	.release	= seq_release_net,
1431};
1432
1433
1434static int __net_init arp_net_init(struct net *net)
1435{
1436	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1437		return -ENOMEM;
1438	return 0;
1439}
1440
1441static void __net_exit arp_net_exit(struct net *net)
1442{
1443	remove_proc_entry("arp", net->proc_net);
1444}
1445
1446static struct pernet_operations arp_net_ops = {
1447	.init = arp_net_init,
1448	.exit = arp_net_exit,
1449};
1450
1451static int __init arp_proc_init(void)
1452{
1453	return register_pernet_subsys(&arp_net_ops);
1454}
1455
1456#else /* CONFIG_PROC_FS */
1457
1458static int __init arp_proc_init(void)
1459{
1460	return 0;
1461}
1462
1463#endif /* CONFIG_PROC_FS */
v4.6
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 116#include <net/dst_metadata.h>
 117#include <net/ip_tunnels.h>
 118
 119#include <linux/uaccess.h>
 120
 121#include <linux/netfilter_arp.h>
 122
 123/*
 124 *	Interface to generic neighbour cache.
 125 */
 126static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 127static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 128static int arp_constructor(struct neighbour *neigh);
 129static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 130static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 131static void parp_redo(struct sk_buff *skb);
 132
 133static const struct neigh_ops arp_generic_ops = {
 134	.family =		AF_INET,
 135	.solicit =		arp_solicit,
 136	.error_report =		arp_error_report,
 137	.output =		neigh_resolve_output,
 138	.connected_output =	neigh_connected_output,
 139};
 140
 141static const struct neigh_ops arp_hh_ops = {
 142	.family =		AF_INET,
 143	.solicit =		arp_solicit,
 144	.error_report =		arp_error_report,
 145	.output =		neigh_resolve_output,
 146	.connected_output =	neigh_resolve_output,
 147};
 148
 149static const struct neigh_ops arp_direct_ops = {
 150	.family =		AF_INET,
 151	.output =		neigh_direct_output,
 152	.connected_output =	neigh_direct_output,
 153};
 154
 
 
 
 
 
 
 
 
 155struct neigh_table arp_tbl = {
 156	.family		= AF_INET,
 157	.key_len	= 4,
 158	.protocol	= cpu_to_be16(ETH_P_IP),
 159	.hash		= arp_hash,
 160	.key_eq		= arp_key_eq,
 161	.constructor	= arp_constructor,
 162	.proxy_redo	= parp_redo,
 163	.id		= "arp_cache",
 164	.parms		= {
 165		.tbl			= &arp_tbl,
 166		.reachable_time		= 30 * HZ,
 167		.data	= {
 168			[NEIGH_VAR_MCAST_PROBES] = 3,
 169			[NEIGH_VAR_UCAST_PROBES] = 3,
 170			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 171			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 172			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 173			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 174			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
 175			[NEIGH_VAR_PROXY_QLEN] = 64,
 176			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 177			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 178			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 179		},
 180	},
 181	.gc_interval	= 30 * HZ,
 182	.gc_thresh1	= 128,
 183	.gc_thresh2	= 512,
 184	.gc_thresh3	= 1024,
 185};
 186EXPORT_SYMBOL(arp_tbl);
 187
 188int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 189{
 190	switch (dev->type) {
 191	case ARPHRD_ETHER:
 192	case ARPHRD_FDDI:
 193	case ARPHRD_IEEE802:
 194		ip_eth_mc_map(addr, haddr);
 195		return 0;
 196	case ARPHRD_INFINIBAND:
 197		ip_ib_mc_map(addr, dev->broadcast, haddr);
 198		return 0;
 199	case ARPHRD_IPGRE:
 200		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 201		return 0;
 202	default:
 203		if (dir) {
 204			memcpy(haddr, dev->broadcast, dev->addr_len);
 205			return 0;
 206		}
 207	}
 208	return -EINVAL;
 209}
 210
 211
 212static u32 arp_hash(const void *pkey,
 213		    const struct net_device *dev,
 214		    __u32 *hash_rnd)
 215{
 216	return arp_hashfn(pkey, dev, hash_rnd);
 217}
 218
 219static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 220{
 221	return neigh_key_eq32(neigh, pkey);
 222}
 223
 224static int arp_constructor(struct neighbour *neigh)
 225{
 226	__be32 addr = *(__be32 *)neigh->primary_key;
 227	struct net_device *dev = neigh->dev;
 228	struct in_device *in_dev;
 229	struct neigh_parms *parms;
 230
 231	rcu_read_lock();
 232	in_dev = __in_dev_get_rcu(dev);
 233	if (!in_dev) {
 234		rcu_read_unlock();
 235		return -EINVAL;
 236	}
 237
 238	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 239
 240	parms = in_dev->arp_parms;
 241	__neigh_parms_put(neigh->parms);
 242	neigh->parms = neigh_parms_clone(parms);
 243	rcu_read_unlock();
 244
 245	if (!dev->header_ops) {
 246		neigh->nud_state = NUD_NOARP;
 247		neigh->ops = &arp_direct_ops;
 248		neigh->output = neigh_direct_output;
 249	} else {
 250		/* Good devices (checked by reading texts, but only Ethernet is
 251		   tested)
 252
 253		   ARPHRD_ETHER: (ethernet, apfddi)
 254		   ARPHRD_FDDI: (fddi)
 255		   ARPHRD_IEEE802: (tr)
 256		   ARPHRD_METRICOM: (strip)
 257		   ARPHRD_ARCNET:
 258		   etc. etc. etc.
 259
 260		   ARPHRD_IPDDP will also work, if author repairs it.
 261		   I did not it, because this driver does not work even
 262		   in old paradigm.
 263		 */
 264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265		if (neigh->type == RTN_MULTICAST) {
 266			neigh->nud_state = NUD_NOARP;
 267			arp_mc_map(addr, neigh->ha, dev, 1);
 268		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 269			neigh->nud_state = NUD_NOARP;
 270			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 271		} else if (neigh->type == RTN_BROADCAST ||
 272			   (dev->flags & IFF_POINTOPOINT)) {
 273			neigh->nud_state = NUD_NOARP;
 274			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 275		}
 276
 277		if (dev->header_ops->cache)
 278			neigh->ops = &arp_hh_ops;
 279		else
 280			neigh->ops = &arp_generic_ops;
 281
 282		if (neigh->nud_state & NUD_VALID)
 283			neigh->output = neigh->ops->connected_output;
 284		else
 285			neigh->output = neigh->ops->output;
 286	}
 287	return 0;
 288}
 289
 290static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 291{
 292	dst_link_failure(skb);
 293	kfree_skb(skb);
 294}
 295
 296/* Create and send an arp packet. */
 297static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 298			 struct net_device *dev, __be32 src_ip,
 299			 const unsigned char *dest_hw,
 300			 const unsigned char *src_hw,
 301			 const unsigned char *target_hw,
 302			 struct dst_entry *dst)
 303{
 304	struct sk_buff *skb;
 305
 306	/* arp on this interface. */
 307	if (dev->flags & IFF_NOARP)
 308		return;
 309
 310	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 311			 dest_hw, src_hw, target_hw);
 312	if (!skb)
 313		return;
 314
 315	skb_dst_set(skb, dst_clone(dst));
 316	arp_xmit(skb);
 317}
 318
 319void arp_send(int type, int ptype, __be32 dest_ip,
 320	      struct net_device *dev, __be32 src_ip,
 321	      const unsigned char *dest_hw, const unsigned char *src_hw,
 322	      const unsigned char *target_hw)
 323{
 324	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 325		     target_hw, NULL);
 326}
 327EXPORT_SYMBOL(arp_send);
 328
 329static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 330{
 331	__be32 saddr = 0;
 332	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 333	struct net_device *dev = neigh->dev;
 334	__be32 target = *(__be32 *)neigh->primary_key;
 335	int probes = atomic_read(&neigh->probes);
 336	struct in_device *in_dev;
 337	struct dst_entry *dst = NULL;
 338
 339	rcu_read_lock();
 340	in_dev = __in_dev_get_rcu(dev);
 341	if (!in_dev) {
 342		rcu_read_unlock();
 343		return;
 344	}
 345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 346	default:
 347	case 0:		/* By default announce any local IP */
 348		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 349					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 350			saddr = ip_hdr(skb)->saddr;
 351		break;
 352	case 1:		/* Restrict announcements of saddr in same subnet */
 353		if (!skb)
 354			break;
 355		saddr = ip_hdr(skb)->saddr;
 356		if (inet_addr_type_dev_table(dev_net(dev), dev,
 357					     saddr) == RTN_LOCAL) {
 358			/* saddr should be known to target */
 359			if (inet_addr_onlink(in_dev, target, saddr))
 360				break;
 361		}
 362		saddr = 0;
 363		break;
 364	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 365		break;
 366	}
 367	rcu_read_unlock();
 368
 369	if (!saddr)
 370		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 371
 372	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 373	if (probes < 0) {
 374		if (!(neigh->nud_state & NUD_VALID))
 375			pr_debug("trying to ucast probe in NUD_INVALID\n");
 376		neigh_ha_snapshot(dst_ha, neigh, dev);
 377		dst_hw = dst_ha;
 378	} else {
 379		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 380		if (probes < 0) {
 381			neigh_app_ns(neigh);
 382			return;
 383		}
 384	}
 385
 386	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 387		dst = skb_dst(skb);
 388	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 389		     dst_hw, dev->dev_addr, NULL, dst);
 390}
 391
 392static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 393{
 394	struct net *net = dev_net(in_dev->dev);
 395	int scope;
 396
 397	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 398	case 0:	/* Reply, the tip is already validated */
 399		return 0;
 400	case 1:	/* Reply only if tip is configured on the incoming interface */
 401		sip = 0;
 402		scope = RT_SCOPE_HOST;
 403		break;
 404	case 2:	/*
 405		 * Reply only if tip is configured on the incoming interface
 406		 * and is in same subnet as sip
 407		 */
 408		scope = RT_SCOPE_HOST;
 409		break;
 410	case 3:	/* Do not reply for scope host addresses */
 411		sip = 0;
 412		scope = RT_SCOPE_LINK;
 413		in_dev = NULL;
 414		break;
 415	case 4:	/* Reserved */
 416	case 5:
 417	case 6:
 418	case 7:
 419		return 0;
 420	case 8:	/* Do not reply */
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 426}
 427
 428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 429{
 430	struct rtable *rt;
 431	int flag = 0;
 432	/*unsigned long now; */
 433	struct net *net = dev_net(dev);
 434
 435	rt = ip_route_output(net, sip, tip, 0, 0);
 436	if (IS_ERR(rt))
 437		return 1;
 438	if (rt->dst.dev != dev) {
 439		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 440		flag = 1;
 441	}
 442	ip_rt_put(rt);
 443	return flag;
 444}
 445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446/*
 447 * Check if we can use proxy ARP for this path
 448 */
 449static inline int arp_fwd_proxy(struct in_device *in_dev,
 450				struct net_device *dev,	struct rtable *rt)
 451{
 452	struct in_device *out_dev;
 453	int imi, omi = -1;
 454
 455	if (rt->dst.dev == dev)
 456		return 0;
 457
 458	if (!IN_DEV_PROXY_ARP(in_dev))
 459		return 0;
 460	imi = IN_DEV_MEDIUM_ID(in_dev);
 461	if (imi == 0)
 462		return 1;
 463	if (imi == -1)
 464		return 0;
 465
 466	/* place to check for proxy_arp for routes */
 467
 468	out_dev = __in_dev_get_rcu(rt->dst.dev);
 469	if (out_dev)
 470		omi = IN_DEV_MEDIUM_ID(out_dev);
 471
 472	return omi != imi && omi != -1;
 473}
 474
 475/*
 476 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 477 *
 478 * RFC3069 supports proxy arp replies back to the same interface.  This
 479 * is done to support (ethernet) switch features, like RFC 3069, where
 480 * the individual ports are not allowed to communicate with each
 481 * other, BUT they are allowed to talk to the upstream router.  As
 482 * described in RFC 3069, it is possible to allow these hosts to
 483 * communicate through the upstream router, by proxy_arp'ing.
 484 *
 485 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 486 *
 487 *  This technology is known by different names:
 488 *    In RFC 3069 it is called VLAN Aggregation.
 489 *    Cisco and Allied Telesyn call it Private VLAN.
 490 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 491 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 492 *
 493 */
 494static inline int arp_fwd_pvlan(struct in_device *in_dev,
 495				struct net_device *dev,	struct rtable *rt,
 496				__be32 sip, __be32 tip)
 497{
 498	/* Private VLAN is only concerned about the same ethernet segment */
 499	if (rt->dst.dev != dev)
 500		return 0;
 501
 502	/* Don't reply on self probes (often done by windowz boxes)*/
 503	if (sip == tip)
 504		return 0;
 505
 506	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 507		return 1;
 508	else
 509		return 0;
 510}
 511
 512/*
 513 *	Interface to link layer: send routine and receive handler.
 514 */
 515
 516/*
 517 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 518 *	message.
 519 */
 520struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 521			   struct net_device *dev, __be32 src_ip,
 522			   const unsigned char *dest_hw,
 523			   const unsigned char *src_hw,
 524			   const unsigned char *target_hw)
 525{
 526	struct sk_buff *skb;
 527	struct arphdr *arp;
 528	unsigned char *arp_ptr;
 529	int hlen = LL_RESERVED_SPACE(dev);
 530	int tlen = dev->needed_tailroom;
 531
 532	/*
 533	 *	Allocate a buffer
 534	 */
 535
 536	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 537	if (!skb)
 538		return NULL;
 539
 540	skb_reserve(skb, hlen);
 541	skb_reset_network_header(skb);
 542	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 543	skb->dev = dev;
 544	skb->protocol = htons(ETH_P_ARP);
 545	if (!src_hw)
 546		src_hw = dev->dev_addr;
 547	if (!dest_hw)
 548		dest_hw = dev->broadcast;
 549
 550	/*
 551	 *	Fill the device header for the ARP frame
 552	 */
 553	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 554		goto out;
 555
 556	/*
 557	 * Fill out the arp protocol part.
 558	 *
 559	 * The arp hardware type should match the device type, except for FDDI,
 560	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 561	 */
 562	/*
 563	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 564	 *	DIX code for the protocol. Make these device structure fields.
 565	 */
 566	switch (dev->type) {
 567	default:
 568		arp->ar_hrd = htons(dev->type);
 569		arp->ar_pro = htons(ETH_P_IP);
 570		break;
 571
 572#if IS_ENABLED(CONFIG_AX25)
 573	case ARPHRD_AX25:
 574		arp->ar_hrd = htons(ARPHRD_AX25);
 575		arp->ar_pro = htons(AX25_P_IP);
 576		break;
 577
 578#if IS_ENABLED(CONFIG_NETROM)
 579	case ARPHRD_NETROM:
 580		arp->ar_hrd = htons(ARPHRD_NETROM);
 581		arp->ar_pro = htons(AX25_P_IP);
 582		break;
 583#endif
 584#endif
 585
 586#if IS_ENABLED(CONFIG_FDDI)
 587	case ARPHRD_FDDI:
 588		arp->ar_hrd = htons(ARPHRD_ETHER);
 589		arp->ar_pro = htons(ETH_P_IP);
 590		break;
 591#endif
 592	}
 593
 594	arp->ar_hln = dev->addr_len;
 595	arp->ar_pln = 4;
 596	arp->ar_op = htons(type);
 597
 598	arp_ptr = (unsigned char *)(arp + 1);
 599
 600	memcpy(arp_ptr, src_hw, dev->addr_len);
 601	arp_ptr += dev->addr_len;
 602	memcpy(arp_ptr, &src_ip, 4);
 603	arp_ptr += 4;
 604
 605	switch (dev->type) {
 606#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 607	case ARPHRD_IEEE1394:
 608		break;
 609#endif
 610	default:
 611		if (target_hw)
 612			memcpy(arp_ptr, target_hw, dev->addr_len);
 613		else
 614			memset(arp_ptr, 0, dev->addr_len);
 615		arp_ptr += dev->addr_len;
 616	}
 617	memcpy(arp_ptr, &dest_ip, 4);
 618
 619	return skb;
 620
 621out:
 622	kfree_skb(skb);
 623	return NULL;
 624}
 625EXPORT_SYMBOL(arp_create);
 626
 627static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 628{
 629	return dev_queue_xmit(skb);
 630}
 631
 632/*
 633 *	Send an arp packet.
 634 */
 635void arp_xmit(struct sk_buff *skb)
 636{
 637	/* Send it off, maybe filter it using firewalling first.  */
 638	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 639		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 640		arp_xmit_finish);
 641}
 642EXPORT_SYMBOL(arp_xmit);
 643
 644/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645 *	Process an arp request.
 646 */
 647
 648static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 649{
 650	struct net_device *dev = skb->dev;
 651	struct in_device *in_dev = __in_dev_get_rcu(dev);
 652	struct arphdr *arp;
 653	unsigned char *arp_ptr;
 654	struct rtable *rt;
 655	unsigned char *sha;
 656	__be32 sip, tip;
 657	u16 dev_type = dev->type;
 658	int addr_type;
 659	struct neighbour *n;
 660	struct dst_entry *reply_dst = NULL;
 661	bool is_garp = false;
 662
 663	/* arp_rcv below verifies the ARP header and verifies the device
 664	 * is ARP'able.
 665	 */
 666
 667	if (!in_dev)
 668		goto out_free_skb;
 669
 670	arp = arp_hdr(skb);
 671
 672	switch (dev_type) {
 673	default:
 674		if (arp->ar_pro != htons(ETH_P_IP) ||
 675		    htons(dev_type) != arp->ar_hrd)
 676			goto out_free_skb;
 677		break;
 678	case ARPHRD_ETHER:
 679	case ARPHRD_FDDI:
 680	case ARPHRD_IEEE802:
 681		/*
 682		 * ETHERNET, and Fibre Channel (which are IEEE 802
 683		 * devices, according to RFC 2625) devices will accept ARP
 684		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 685		 * This is the case also of FDDI, where the RFC 1390 says that
 686		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 687		 * however, to be more robust, we'll accept both 1 (Ethernet)
 688		 * or 6 (IEEE 802.2)
 689		 */
 690		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 691		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 692		    arp->ar_pro != htons(ETH_P_IP))
 693			goto out_free_skb;
 694		break;
 695	case ARPHRD_AX25:
 696		if (arp->ar_pro != htons(AX25_P_IP) ||
 697		    arp->ar_hrd != htons(ARPHRD_AX25))
 698			goto out_free_skb;
 699		break;
 700	case ARPHRD_NETROM:
 701		if (arp->ar_pro != htons(AX25_P_IP) ||
 702		    arp->ar_hrd != htons(ARPHRD_NETROM))
 703			goto out_free_skb;
 704		break;
 705	}
 706
 707	/* Understand only these message types */
 708
 709	if (arp->ar_op != htons(ARPOP_REPLY) &&
 710	    arp->ar_op != htons(ARPOP_REQUEST))
 711		goto out_free_skb;
 712
 713/*
 714 *	Extract fields
 715 */
 716	arp_ptr = (unsigned char *)(arp + 1);
 717	sha	= arp_ptr;
 718	arp_ptr += dev->addr_len;
 719	memcpy(&sip, arp_ptr, 4);
 720	arp_ptr += 4;
 721	switch (dev_type) {
 722#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 723	case ARPHRD_IEEE1394:
 724		break;
 725#endif
 726	default:
 727		arp_ptr += dev->addr_len;
 728	}
 729	memcpy(&tip, arp_ptr, 4);
 730/*
 731 *	Check for bad requests for 127.x.x.x and requests for multicast
 732 *	addresses.  If this is one such, delete it.
 733 */
 734	if (ipv4_is_multicast(tip) ||
 735	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 736		goto out_free_skb;
 737
 738 /*
 739  *	For some 802.11 wireless deployments (and possibly other networks),
 740  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 741  *	and thus should not be accepted.
 742  */
 743	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 744		goto out_free_skb;
 745
 746/*
 747 *     Special case: We must set Frame Relay source Q.922 address
 748 */
 749	if (dev_type == ARPHRD_DLCI)
 750		sha = dev->broadcast;
 751
 752/*
 753 *  Process entry.  The idea here is we want to send a reply if it is a
 754 *  request for us or if it is a request for someone else that we hold
 755 *  a proxy for.  We want to add an entry to our cache if it is a reply
 756 *  to us or if it is a request for our address.
 757 *  (The assumption for this last is that if someone is requesting our
 758 *  address, they are probably intending to talk to us, so it saves time
 759 *  if we cache their address.  Their address is also probably not in
 760 *  our cache, since ours is not in their cache.)
 761 *
 762 *  Putting this another way, we only care about replies if they are to
 763 *  us, in which case we add them to the cache.  For requests, we care
 764 *  about those for us and those for our proxies.  We reply to both,
 765 *  and in the case of requests for us we add the requester to the arp
 766 *  cache.
 767 */
 768
 769	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 770		reply_dst = (struct dst_entry *)
 771			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 772						    GFP_ATOMIC);
 773
 774	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 775	if (sip == 0) {
 776		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 777		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 778		    !arp_ignore(in_dev, sip, tip))
 779			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 780				     sha, dev->dev_addr, sha, reply_dst);
 781		goto out_consume_skb;
 782	}
 783
 784	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 785	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 786
 787		rt = skb_rtable(skb);
 788		addr_type = rt->rt_type;
 789
 790		if (addr_type == RTN_LOCAL) {
 791			int dont_send;
 792
 793			dont_send = arp_ignore(in_dev, sip, tip);
 794			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 795				dont_send = arp_filter(sip, tip, dev);
 796			if (!dont_send) {
 797				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 798				if (n) {
 799					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 800						     sip, dev, tip, sha,
 801						     dev->dev_addr, sha,
 802						     reply_dst);
 803					neigh_release(n);
 804				}
 805			}
 806			goto out_consume_skb;
 807		} else if (IN_DEV_FORWARD(in_dev)) {
 808			if (addr_type == RTN_UNICAST  &&
 809			    (arp_fwd_proxy(in_dev, dev, rt) ||
 810			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 811			     (rt->dst.dev != dev &&
 812			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 813				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 814				if (n)
 815					neigh_release(n);
 816
 817				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 818				    skb->pkt_type == PACKET_HOST ||
 819				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 820					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 821						     sip, dev, tip, sha,
 822						     dev->dev_addr, sha,
 823						     reply_dst);
 824				} else {
 825					pneigh_enqueue(&arp_tbl,
 826						       in_dev->arp_parms, skb);
 827					goto out_free_dst;
 828				}
 829				goto out_consume_skb;
 830			}
 831		}
 832	}
 833
 834	/* Update our ARP tables */
 835
 836	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 837
 838	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 839		unsigned int addr_type = inet_addr_type_dev_table(net, dev, sip);
 840
 841		/* Unsolicited ARP is not accepted by default.
 842		   It is possible, that this option should be enabled for some
 843		   devices (strip is candidate)
 844		 */
 845		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
 846			  addr_type == RTN_UNICAST;
 847
 848		if (!n &&
 849		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
 850				addr_type == RTN_UNICAST) || is_garp))
 851			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 852	}
 853
 854	if (n) {
 855		int state = NUD_REACHABLE;
 856		int override;
 857
 858		/* If several different ARP replies follows back-to-back,
 859		   use the FIRST one. It is possible, if several proxy
 860		   agents are active. Taking the first reply prevents
 861		   arp trashing and chooses the fastest router.
 862		 */
 863		override = time_after(jiffies,
 864				      n->updated +
 865				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 866			   is_garp;
 867
 868		/* Broadcast replies and request packets
 869		   do not assert neighbour reachability.
 870		 */
 871		if (arp->ar_op != htons(ARPOP_REPLY) ||
 872		    skb->pkt_type != PACKET_HOST)
 873			state = NUD_STALE;
 874		neigh_update(n, sha, state,
 875			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 876		neigh_release(n);
 877	}
 878
 879out_consume_skb:
 880	consume_skb(skb);
 881
 882out_free_dst:
 883	dst_release(reply_dst);
 884	return NET_RX_SUCCESS;
 885
 886out_free_skb:
 887	kfree_skb(skb);
 888	return NET_RX_DROP;
 889}
 890
 891static void parp_redo(struct sk_buff *skb)
 892{
 893	arp_process(dev_net(skb->dev), NULL, skb);
 894}
 895
 896
 897/*
 898 *	Receive an arp request from the device layer.
 899 */
 900
 901static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 902		   struct packet_type *pt, struct net_device *orig_dev)
 903{
 904	const struct arphdr *arp;
 905
 906	/* do not tweak dropwatch on an ARP we will ignore */
 907	if (dev->flags & IFF_NOARP ||
 908	    skb->pkt_type == PACKET_OTHERHOST ||
 909	    skb->pkt_type == PACKET_LOOPBACK)
 910		goto consumeskb;
 911
 912	skb = skb_share_check(skb, GFP_ATOMIC);
 913	if (!skb)
 914		goto out_of_mem;
 915
 916	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 917	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 918		goto freeskb;
 919
 920	arp = arp_hdr(skb);
 921	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 922		goto freeskb;
 923
 924	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 925
 926	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 927		       dev_net(dev), NULL, skb, dev, NULL,
 928		       arp_process);
 929
 930consumeskb:
 931	consume_skb(skb);
 932	return NET_RX_SUCCESS;
 933freeskb:
 934	kfree_skb(skb);
 935out_of_mem:
 936	return NET_RX_DROP;
 937}
 938
 939/*
 940 *	User level interface (ioctl)
 941 */
 942
 943/*
 944 *	Set (create) an ARP cache entry.
 945 */
 946
 947static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 948{
 949	if (!dev) {
 950		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 951		return 0;
 952	}
 953	if (__in_dev_get_rtnl(dev)) {
 954		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 955		return 0;
 956	}
 957	return -ENXIO;
 958}
 959
 960static int arp_req_set_public(struct net *net, struct arpreq *r,
 961		struct net_device *dev)
 962{
 963	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 964	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
 965
 966	if (mask && mask != htonl(0xFFFFFFFF))
 967		return -EINVAL;
 968	if (!dev && (r->arp_flags & ATF_COM)) {
 969		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
 970				      r->arp_ha.sa_data);
 971		if (!dev)
 972			return -ENODEV;
 973	}
 974	if (mask) {
 975		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
 976			return -ENOBUFS;
 977		return 0;
 978	}
 979
 980	return arp_req_set_proxy(net, dev, 1);
 981}
 982
 983static int arp_req_set(struct net *net, struct arpreq *r,
 984		       struct net_device *dev)
 985{
 986	__be32 ip;
 987	struct neighbour *neigh;
 988	int err;
 989
 990	if (r->arp_flags & ATF_PUBL)
 991		return arp_req_set_public(net, r, dev);
 992
 993	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 994	if (r->arp_flags & ATF_PERM)
 995		r->arp_flags |= ATF_COM;
 996	if (!dev) {
 997		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
 998
 999		if (IS_ERR(rt))
1000			return PTR_ERR(rt);
1001		dev = rt->dst.dev;
1002		ip_rt_put(rt);
1003		if (!dev)
1004			return -EINVAL;
1005	}
1006	switch (dev->type) {
1007#if IS_ENABLED(CONFIG_FDDI)
1008	case ARPHRD_FDDI:
1009		/*
1010		 * According to RFC 1390, FDDI devices should accept ARP
1011		 * hardware types of 1 (Ethernet).  However, to be more
1012		 * robust, we'll accept hardware types of either 1 (Ethernet)
1013		 * or 6 (IEEE 802.2).
1014		 */
1015		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1016		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1017		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1018			return -EINVAL;
1019		break;
1020#endif
1021	default:
1022		if (r->arp_ha.sa_family != dev->type)
1023			return -EINVAL;
1024		break;
1025	}
1026
1027	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1028	err = PTR_ERR(neigh);
1029	if (!IS_ERR(neigh)) {
1030		unsigned int state = NUD_STALE;
1031		if (r->arp_flags & ATF_PERM)
1032			state = NUD_PERMANENT;
1033		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1034				   r->arp_ha.sa_data : NULL, state,
1035				   NEIGH_UPDATE_F_OVERRIDE |
1036				   NEIGH_UPDATE_F_ADMIN);
1037		neigh_release(neigh);
1038	}
1039	return err;
1040}
1041
1042static unsigned int arp_state_to_flags(struct neighbour *neigh)
1043{
1044	if (neigh->nud_state&NUD_PERMANENT)
1045		return ATF_PERM | ATF_COM;
1046	else if (neigh->nud_state&NUD_VALID)
1047		return ATF_COM;
1048	else
1049		return 0;
1050}
1051
1052/*
1053 *	Get an ARP cache entry.
1054 */
1055
1056static int arp_req_get(struct arpreq *r, struct net_device *dev)
1057{
1058	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1059	struct neighbour *neigh;
1060	int err = -ENXIO;
1061
1062	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1063	if (neigh) {
1064		if (!(neigh->nud_state & NUD_NOARP)) {
1065			read_lock_bh(&neigh->lock);
1066			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1067			r->arp_flags = arp_state_to_flags(neigh);
1068			read_unlock_bh(&neigh->lock);
1069			r->arp_ha.sa_family = dev->type;
1070			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1071			err = 0;
1072		}
1073		neigh_release(neigh);
 
1074	}
1075	return err;
1076}
1077
1078static int arp_invalidate(struct net_device *dev, __be32 ip)
1079{
1080	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1081	int err = -ENXIO;
1082
1083	if (neigh) {
1084		if (neigh->nud_state & ~NUD_NOARP)
1085			err = neigh_update(neigh, NULL, NUD_FAILED,
1086					   NEIGH_UPDATE_F_OVERRIDE|
1087					   NEIGH_UPDATE_F_ADMIN);
1088		neigh_release(neigh);
1089	}
1090
1091	return err;
1092}
1093
1094static int arp_req_delete_public(struct net *net, struct arpreq *r,
1095		struct net_device *dev)
1096{
1097	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1098	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1099
1100	if (mask == htonl(0xFFFFFFFF))
1101		return pneigh_delete(&arp_tbl, net, &ip, dev);
1102
1103	if (mask)
1104		return -EINVAL;
1105
1106	return arp_req_set_proxy(net, dev, 0);
1107}
1108
1109static int arp_req_delete(struct net *net, struct arpreq *r,
1110			  struct net_device *dev)
1111{
1112	__be32 ip;
1113
1114	if (r->arp_flags & ATF_PUBL)
1115		return arp_req_delete_public(net, r, dev);
1116
1117	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1118	if (!dev) {
1119		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1120		if (IS_ERR(rt))
1121			return PTR_ERR(rt);
1122		dev = rt->dst.dev;
1123		ip_rt_put(rt);
1124		if (!dev)
1125			return -EINVAL;
1126	}
1127	return arp_invalidate(dev, ip);
1128}
1129
1130/*
1131 *	Handle an ARP layer I/O control request.
1132 */
1133
1134int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1135{
1136	int err;
1137	struct arpreq r;
1138	struct net_device *dev = NULL;
1139
1140	switch (cmd) {
1141	case SIOCDARP:
1142	case SIOCSARP:
1143		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1144			return -EPERM;
1145	case SIOCGARP:
1146		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1147		if (err)
1148			return -EFAULT;
1149		break;
1150	default:
1151		return -EINVAL;
1152	}
1153
1154	if (r.arp_pa.sa_family != AF_INET)
1155		return -EPFNOSUPPORT;
1156
1157	if (!(r.arp_flags & ATF_PUBL) &&
1158	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1159		return -EINVAL;
1160	if (!(r.arp_flags & ATF_NETMASK))
1161		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1162							   htonl(0xFFFFFFFFUL);
1163	rtnl_lock();
1164	if (r.arp_dev[0]) {
1165		err = -ENODEV;
1166		dev = __dev_get_by_name(net, r.arp_dev);
1167		if (!dev)
1168			goto out;
1169
1170		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1171		if (!r.arp_ha.sa_family)
1172			r.arp_ha.sa_family = dev->type;
1173		err = -EINVAL;
1174		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1175			goto out;
1176	} else if (cmd == SIOCGARP) {
1177		err = -ENODEV;
1178		goto out;
1179	}
1180
1181	switch (cmd) {
1182	case SIOCDARP:
1183		err = arp_req_delete(net, &r, dev);
1184		break;
1185	case SIOCSARP:
1186		err = arp_req_set(net, &r, dev);
1187		break;
1188	case SIOCGARP:
1189		err = arp_req_get(&r, dev);
1190		break;
1191	}
1192out:
1193	rtnl_unlock();
1194	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1195		err = -EFAULT;
1196	return err;
1197}
1198
1199static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1200			    void *ptr)
1201{
1202	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1203	struct netdev_notifier_change_info *change_info;
1204
1205	switch (event) {
1206	case NETDEV_CHANGEADDR:
1207		neigh_changeaddr(&arp_tbl, dev);
1208		rt_cache_flush(dev_net(dev));
1209		break;
1210	case NETDEV_CHANGE:
1211		change_info = ptr;
1212		if (change_info->flags_changed & IFF_NOARP)
1213			neigh_changeaddr(&arp_tbl, dev);
1214		break;
1215	default:
1216		break;
1217	}
1218
1219	return NOTIFY_DONE;
1220}
1221
1222static struct notifier_block arp_netdev_notifier = {
1223	.notifier_call = arp_netdev_event,
1224};
1225
1226/* Note, that it is not on notifier chain.
1227   It is necessary, that this routine was called after route cache will be
1228   flushed.
1229 */
1230void arp_ifdown(struct net_device *dev)
1231{
1232	neigh_ifdown(&arp_tbl, dev);
1233}
1234
1235
1236/*
1237 *	Called once on startup.
1238 */
1239
1240static struct packet_type arp_packet_type __read_mostly = {
1241	.type =	cpu_to_be16(ETH_P_ARP),
1242	.func =	arp_rcv,
1243};
1244
1245static int arp_proc_init(void);
1246
1247void __init arp_init(void)
1248{
1249	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1250
1251	dev_add_pack(&arp_packet_type);
1252	arp_proc_init();
1253#ifdef CONFIG_SYSCTL
1254	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1255#endif
1256	register_netdevice_notifier(&arp_netdev_notifier);
1257}
1258
1259#ifdef CONFIG_PROC_FS
1260#if IS_ENABLED(CONFIG_AX25)
1261
1262/* ------------------------------------------------------------------------ */
1263/*
1264 *	ax25 -> ASCII conversion
1265 */
1266static char *ax2asc2(ax25_address *a, char *buf)
1267{
1268	char c, *s;
1269	int n;
1270
1271	for (n = 0, s = buf; n < 6; n++) {
1272		c = (a->ax25_call[n] >> 1) & 0x7F;
1273
1274		if (c != ' ')
1275			*s++ = c;
1276	}
1277
1278	*s++ = '-';
1279	n = (a->ax25_call[6] >> 1) & 0x0F;
1280	if (n > 9) {
1281		*s++ = '1';
1282		n -= 10;
1283	}
1284
1285	*s++ = n + '0';
1286	*s++ = '\0';
1287
1288	if (*buf == '\0' || *buf == '-')
1289		return "*";
1290
1291	return buf;
1292}
1293#endif /* CONFIG_AX25 */
1294
1295#define HBUFFERLEN 30
1296
1297static void arp_format_neigh_entry(struct seq_file *seq,
1298				   struct neighbour *n)
1299{
1300	char hbuffer[HBUFFERLEN];
1301	int k, j;
1302	char tbuf[16];
1303	struct net_device *dev = n->dev;
1304	int hatype = dev->type;
1305
1306	read_lock(&n->lock);
1307	/* Convert hardware address to XX:XX:XX:XX ... form. */
1308#if IS_ENABLED(CONFIG_AX25)
1309	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1310		ax2asc2((ax25_address *)n->ha, hbuffer);
1311	else {
1312#endif
1313	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1314		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1315		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1316		hbuffer[k++] = ':';
1317	}
1318	if (k != 0)
1319		--k;
1320	hbuffer[k] = 0;
1321#if IS_ENABLED(CONFIG_AX25)
1322	}
1323#endif
1324	sprintf(tbuf, "%pI4", n->primary_key);
1325	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1326		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1327	read_unlock(&n->lock);
1328}
1329
1330static void arp_format_pneigh_entry(struct seq_file *seq,
1331				    struct pneigh_entry *n)
1332{
1333	struct net_device *dev = n->dev;
1334	int hatype = dev ? dev->type : 0;
1335	char tbuf[16];
1336
1337	sprintf(tbuf, "%pI4", n->key);
1338	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1339		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1340		   dev ? dev->name : "*");
1341}
1342
1343static int arp_seq_show(struct seq_file *seq, void *v)
1344{
1345	if (v == SEQ_START_TOKEN) {
1346		seq_puts(seq, "IP address       HW type     Flags       "
1347			      "HW address            Mask     Device\n");
1348	} else {
1349		struct neigh_seq_state *state = seq->private;
1350
1351		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1352			arp_format_pneigh_entry(seq, v);
1353		else
1354			arp_format_neigh_entry(seq, v);
1355	}
1356
1357	return 0;
1358}
1359
1360static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1361{
1362	/* Don't want to confuse "arp -a" w/ magic entries,
1363	 * so we tell the generic iterator to skip NUD_NOARP.
1364	 */
1365	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1366}
1367
1368/* ------------------------------------------------------------------------ */
1369
1370static const struct seq_operations arp_seq_ops = {
1371	.start	= arp_seq_start,
1372	.next	= neigh_seq_next,
1373	.stop	= neigh_seq_stop,
1374	.show	= arp_seq_show,
1375};
1376
1377static int arp_seq_open(struct inode *inode, struct file *file)
1378{
1379	return seq_open_net(inode, file, &arp_seq_ops,
1380			    sizeof(struct neigh_seq_state));
1381}
1382
1383static const struct file_operations arp_seq_fops = {
1384	.owner		= THIS_MODULE,
1385	.open           = arp_seq_open,
1386	.read           = seq_read,
1387	.llseek         = seq_lseek,
1388	.release	= seq_release_net,
1389};
1390
1391
1392static int __net_init arp_net_init(struct net *net)
1393{
1394	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1395		return -ENOMEM;
1396	return 0;
1397}
1398
1399static void __net_exit arp_net_exit(struct net *net)
1400{
1401	remove_proc_entry("arp", net->proc_net);
1402}
1403
1404static struct pernet_operations arp_net_ops = {
1405	.init = arp_net_init,
1406	.exit = arp_net_exit,
1407};
1408
1409static int __init arp_proc_init(void)
1410{
1411	return register_pernet_subsys(&arp_net_ops);
1412}
1413
1414#else /* CONFIG_PROC_FS */
1415
1416static int __init arp_proc_init(void)
1417{
1418	return 0;
1419}
1420
1421#endif /* CONFIG_PROC_FS */