Linux Audio

Check our new training course

Loading...
v3.15
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netfilter_arp.h>
 120
 121/*
 122 *	Interface to generic neighbour cache.
 123 */
 124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 125static int arp_constructor(struct neighbour *neigh);
 126static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 127static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 128static void parp_redo(struct sk_buff *skb);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152static const struct neigh_ops arp_broken_ops = {
 153	.family =		AF_INET,
 154	.solicit =		arp_solicit,
 155	.error_report =		arp_error_report,
 156	.output =		neigh_compat_output,
 157	.connected_output =	neigh_compat_output,
 158};
 159
 160struct neigh_table arp_tbl = {
 161	.family		= AF_INET,
 162	.key_len	= 4,
 163	.hash		= arp_hash,
 164	.constructor	= arp_constructor,
 165	.proxy_redo	= parp_redo,
 166	.id		= "arp_cache",
 167	.parms		= {
 168		.tbl			= &arp_tbl,
 
 
 
 169		.reachable_time		= 30 * HZ,
 170		.data	= {
 171			[NEIGH_VAR_MCAST_PROBES] = 3,
 172			[NEIGH_VAR_UCAST_PROBES] = 3,
 173			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 174			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 175			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 176			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 177			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
 178			[NEIGH_VAR_PROXY_QLEN] = 64,
 179			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 180			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 181			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 182		},
 183	},
 184	.gc_interval	= 30 * HZ,
 185	.gc_thresh1	= 128,
 186	.gc_thresh2	= 512,
 187	.gc_thresh3	= 1024,
 188};
 189EXPORT_SYMBOL(arp_tbl);
 190
 191int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 192{
 193	switch (dev->type) {
 194	case ARPHRD_ETHER:
 195	case ARPHRD_FDDI:
 196	case ARPHRD_IEEE802:
 197		ip_eth_mc_map(addr, haddr);
 198		return 0;
 199	case ARPHRD_INFINIBAND:
 200		ip_ib_mc_map(addr, dev->broadcast, haddr);
 201		return 0;
 202	case ARPHRD_IPGRE:
 203		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 204		return 0;
 205	default:
 206		if (dir) {
 207			memcpy(haddr, dev->broadcast, dev->addr_len);
 208			return 0;
 209		}
 210	}
 211	return -EINVAL;
 212}
 213
 214
 215static u32 arp_hash(const void *pkey,
 216		    const struct net_device *dev,
 217		    __u32 *hash_rnd)
 218{
 219	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
 220}
 221
 222static int arp_constructor(struct neighbour *neigh)
 223{
 224	__be32 addr = *(__be32 *)neigh->primary_key;
 225	struct net_device *dev = neigh->dev;
 226	struct in_device *in_dev;
 227	struct neigh_parms *parms;
 228
 229	rcu_read_lock();
 230	in_dev = __in_dev_get_rcu(dev);
 231	if (in_dev == NULL) {
 232		rcu_read_unlock();
 233		return -EINVAL;
 234	}
 235
 236	neigh->type = inet_addr_type(dev_net(dev), addr);
 237
 238	parms = in_dev->arp_parms;
 239	__neigh_parms_put(neigh->parms);
 240	neigh->parms = neigh_parms_clone(parms);
 241	rcu_read_unlock();
 242
 243	if (!dev->header_ops) {
 244		neigh->nud_state = NUD_NOARP;
 245		neigh->ops = &arp_direct_ops;
 246		neigh->output = neigh_direct_output;
 247	} else {
 248		/* Good devices (checked by reading texts, but only Ethernet is
 249		   tested)
 250
 251		   ARPHRD_ETHER: (ethernet, apfddi)
 252		   ARPHRD_FDDI: (fddi)
 253		   ARPHRD_IEEE802: (tr)
 254		   ARPHRD_METRICOM: (strip)
 255		   ARPHRD_ARCNET:
 256		   etc. etc. etc.
 257
 258		   ARPHRD_IPDDP will also work, if author repairs it.
 259		   I did not it, because this driver does not work even
 260		   in old paradigm.
 261		 */
 262
 263#if 1
 264		/* So... these "amateur" devices are hopeless.
 265		   The only thing, that I can say now:
 266		   It is very sad that we need to keep ugly obsolete
 267		   code to make them happy.
 268
 269		   They should be moved to more reasonable state, now
 270		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 271		   Besides that, they are sort of out of date
 272		   (a lot of redundant clones/copies, useless in 2.1),
 273		   I wonder why people believe that they work.
 274		 */
 275		switch (dev->type) {
 276		default:
 277			break;
 278		case ARPHRD_ROSE:
 279#if IS_ENABLED(CONFIG_AX25)
 280		case ARPHRD_AX25:
 281#if IS_ENABLED(CONFIG_NETROM)
 282		case ARPHRD_NETROM:
 283#endif
 284			neigh->ops = &arp_broken_ops;
 285			neigh->output = neigh->ops->output;
 286			return 0;
 287#else
 288			break;
 289#endif
 290		}
 291#endif
 292		if (neigh->type == RTN_MULTICAST) {
 293			neigh->nud_state = NUD_NOARP;
 294			arp_mc_map(addr, neigh->ha, dev, 1);
 295		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 296			neigh->nud_state = NUD_NOARP;
 297			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 298		} else if (neigh->type == RTN_BROADCAST ||
 299			   (dev->flags & IFF_POINTOPOINT)) {
 300			neigh->nud_state = NUD_NOARP;
 301			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 302		}
 303
 304		if (dev->header_ops->cache)
 305			neigh->ops = &arp_hh_ops;
 306		else
 307			neigh->ops = &arp_generic_ops;
 308
 309		if (neigh->nud_state & NUD_VALID)
 310			neigh->output = neigh->ops->connected_output;
 311		else
 312			neigh->output = neigh->ops->output;
 313	}
 314	return 0;
 315}
 316
 317static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 318{
 319	dst_link_failure(skb);
 320	kfree_skb(skb);
 321}
 322
 323static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 324{
 325	__be32 saddr = 0;
 326	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 327	struct net_device *dev = neigh->dev;
 328	__be32 target = *(__be32 *)neigh->primary_key;
 329	int probes = atomic_read(&neigh->probes);
 330	struct in_device *in_dev;
 331
 332	rcu_read_lock();
 333	in_dev = __in_dev_get_rcu(dev);
 334	if (!in_dev) {
 335		rcu_read_unlock();
 336		return;
 337	}
 338	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 339	default:
 340	case 0:		/* By default announce any local IP */
 341		if (skb && inet_addr_type(dev_net(dev),
 342					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 343			saddr = ip_hdr(skb)->saddr;
 344		break;
 345	case 1:		/* Restrict announcements of saddr in same subnet */
 346		if (!skb)
 347			break;
 348		saddr = ip_hdr(skb)->saddr;
 349		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 350			/* saddr should be known to target */
 351			if (inet_addr_onlink(in_dev, target, saddr))
 352				break;
 353		}
 354		saddr = 0;
 355		break;
 356	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 357		break;
 358	}
 359	rcu_read_unlock();
 360
 361	if (!saddr)
 362		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 363
 364	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 365	if (probes < 0) {
 366		if (!(neigh->nud_state & NUD_VALID))
 367			pr_debug("trying to ucast probe in NUD_INVALID\n");
 368		neigh_ha_snapshot(dst_ha, neigh, dev);
 369		dst_hw = dst_ha;
 370	} else {
 371		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 372		if (probes < 0) {
 
 373			neigh_app_ns(neigh);
 
 374			return;
 375		}
 376	}
 377
 378	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 379		 dst_hw, dev->dev_addr, NULL);
 
 
 380}
 381
 382static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 383{
 384	struct net *net = dev_net(in_dev->dev);
 385	int scope;
 386
 387	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 388	case 0:	/* Reply, the tip is already validated */
 389		return 0;
 390	case 1:	/* Reply only if tip is configured on the incoming interface */
 391		sip = 0;
 392		scope = RT_SCOPE_HOST;
 393		break;
 394	case 2:	/*
 395		 * Reply only if tip is configured on the incoming interface
 396		 * and is in same subnet as sip
 397		 */
 398		scope = RT_SCOPE_HOST;
 399		break;
 400	case 3:	/* Do not reply for scope host addresses */
 401		sip = 0;
 402		scope = RT_SCOPE_LINK;
 403		in_dev = NULL;
 404		break;
 405	case 4:	/* Reserved */
 406	case 5:
 407	case 6:
 408	case 7:
 409		return 0;
 410	case 8:	/* Do not reply */
 411		return 1;
 412	default:
 413		return 0;
 414	}
 415	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 416}
 417
 418static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 419{
 420	struct rtable *rt;
 421	int flag = 0;
 422	/*unsigned long now; */
 423	struct net *net = dev_net(dev);
 424
 425	rt = ip_route_output(net, sip, tip, 0, 0);
 426	if (IS_ERR(rt))
 427		return 1;
 428	if (rt->dst.dev != dev) {
 429		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 430		flag = 1;
 431	}
 432	ip_rt_put(rt);
 433	return flag;
 434}
 435
 436/* OBSOLETE FUNCTIONS */
 437
 438/*
 439 *	Find an arp mapping in the cache. If not found, post a request.
 440 *
 441 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 442 *	even if it exists. It is supposed that skb->dev was mangled
 443 *	by a virtual device (eql, shaper). Nobody but broken devices
 444 *	is allowed to use this function, it is scheduled to be removed. --ANK
 445 */
 446
 447static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 448			      __be32 paddr, struct net_device *dev)
 449{
 450	switch (addr_hint) {
 451	case RTN_LOCAL:
 452		pr_debug("arp called for own IP address\n");
 453		memcpy(haddr, dev->dev_addr, dev->addr_len);
 454		return 1;
 455	case RTN_MULTICAST:
 456		arp_mc_map(paddr, haddr, dev, 1);
 457		return 1;
 458	case RTN_BROADCAST:
 459		memcpy(haddr, dev->broadcast, dev->addr_len);
 460		return 1;
 461	}
 462	return 0;
 463}
 464
 465
 466int arp_find(unsigned char *haddr, struct sk_buff *skb)
 467{
 468	struct net_device *dev = skb->dev;
 469	__be32 paddr;
 470	struct neighbour *n;
 471
 472	if (!skb_dst(skb)) {
 473		pr_debug("arp_find is called with dst==NULL\n");
 474		kfree_skb(skb);
 475		return 1;
 476	}
 477
 478	paddr = rt_nexthop(skb_rtable(skb), ip_hdr(skb)->daddr);
 
 479	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 480			       paddr, dev))
 481		return 0;
 482
 483	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 484
 485	if (n) {
 486		n->used = jiffies;
 487		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 488			neigh_ha_snapshot(haddr, n, dev);
 489			neigh_release(n);
 490			return 0;
 491		}
 492		neigh_release(n);
 493	} else
 494		kfree_skb(skb);
 495	return 1;
 496}
 497EXPORT_SYMBOL(arp_find);
 498
 499/* END OF OBSOLETE FUNCTIONS */
 500
 501/*
 502 * Check if we can use proxy ARP for this path
 503 */
 504static inline int arp_fwd_proxy(struct in_device *in_dev,
 505				struct net_device *dev,	struct rtable *rt)
 506{
 507	struct in_device *out_dev;
 508	int imi, omi = -1;
 509
 510	if (rt->dst.dev == dev)
 511		return 0;
 512
 513	if (!IN_DEV_PROXY_ARP(in_dev))
 514		return 0;
 515	imi = IN_DEV_MEDIUM_ID(in_dev);
 516	if (imi == 0)
 517		return 1;
 518	if (imi == -1)
 519		return 0;
 520
 521	/* place to check for proxy_arp for routes */
 522
 523	out_dev = __in_dev_get_rcu(rt->dst.dev);
 524	if (out_dev)
 525		omi = IN_DEV_MEDIUM_ID(out_dev);
 526
 527	return omi != imi && omi != -1;
 528}
 529
 530/*
 531 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 532 *
 533 * RFC3069 supports proxy arp replies back to the same interface.  This
 534 * is done to support (ethernet) switch features, like RFC 3069, where
 535 * the individual ports are not allowed to communicate with each
 536 * other, BUT they are allowed to talk to the upstream router.  As
 537 * described in RFC 3069, it is possible to allow these hosts to
 538 * communicate through the upstream router, by proxy_arp'ing.
 539 *
 540 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 541 *
 542 *  This technology is known by different names:
 543 *    In RFC 3069 it is called VLAN Aggregation.
 544 *    Cisco and Allied Telesyn call it Private VLAN.
 545 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 546 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 547 *
 548 */
 549static inline int arp_fwd_pvlan(struct in_device *in_dev,
 550				struct net_device *dev,	struct rtable *rt,
 551				__be32 sip, __be32 tip)
 552{
 553	/* Private VLAN is only concerned about the same ethernet segment */
 554	if (rt->dst.dev != dev)
 555		return 0;
 556
 557	/* Don't reply on self probes (often done by windowz boxes)*/
 558	if (sip == tip)
 559		return 0;
 560
 561	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 562		return 1;
 563	else
 564		return 0;
 565}
 566
 567/*
 568 *	Interface to link layer: send routine and receive handler.
 569 */
 570
 571/*
 572 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 573 *	message.
 574 */
 575struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 576			   struct net_device *dev, __be32 src_ip,
 577			   const unsigned char *dest_hw,
 578			   const unsigned char *src_hw,
 579			   const unsigned char *target_hw)
 580{
 581	struct sk_buff *skb;
 582	struct arphdr *arp;
 583	unsigned char *arp_ptr;
 584	int hlen = LL_RESERVED_SPACE(dev);
 585	int tlen = dev->needed_tailroom;
 586
 587	/*
 588	 *	Allocate a buffer
 589	 */
 590
 591	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 592	if (skb == NULL)
 593		return NULL;
 594
 595	skb_reserve(skb, hlen);
 596	skb_reset_network_header(skb);
 597	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 598	skb->dev = dev;
 599	skb->protocol = htons(ETH_P_ARP);
 600	if (src_hw == NULL)
 601		src_hw = dev->dev_addr;
 602	if (dest_hw == NULL)
 603		dest_hw = dev->broadcast;
 604
 605	/*
 606	 *	Fill the device header for the ARP frame
 607	 */
 608	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 609		goto out;
 610
 611	/*
 612	 * Fill out the arp protocol part.
 613	 *
 614	 * The arp hardware type should match the device type, except for FDDI,
 615	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 616	 */
 617	/*
 618	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 619	 *	DIX code for the protocol. Make these device structure fields.
 620	 */
 621	switch (dev->type) {
 622	default:
 623		arp->ar_hrd = htons(dev->type);
 624		arp->ar_pro = htons(ETH_P_IP);
 625		break;
 626
 627#if IS_ENABLED(CONFIG_AX25)
 628	case ARPHRD_AX25:
 629		arp->ar_hrd = htons(ARPHRD_AX25);
 630		arp->ar_pro = htons(AX25_P_IP);
 631		break;
 632
 633#if IS_ENABLED(CONFIG_NETROM)
 634	case ARPHRD_NETROM:
 635		arp->ar_hrd = htons(ARPHRD_NETROM);
 636		arp->ar_pro = htons(AX25_P_IP);
 637		break;
 638#endif
 639#endif
 640
 641#if IS_ENABLED(CONFIG_FDDI)
 642	case ARPHRD_FDDI:
 643		arp->ar_hrd = htons(ARPHRD_ETHER);
 644		arp->ar_pro = htons(ETH_P_IP);
 645		break;
 646#endif
 647	}
 648
 649	arp->ar_hln = dev->addr_len;
 650	arp->ar_pln = 4;
 651	arp->ar_op = htons(type);
 652
 653	arp_ptr = (unsigned char *)(arp + 1);
 654
 655	memcpy(arp_ptr, src_hw, dev->addr_len);
 656	arp_ptr += dev->addr_len;
 657	memcpy(arp_ptr, &src_ip, 4);
 658	arp_ptr += 4;
 659
 660	switch (dev->type) {
 661#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 662	case ARPHRD_IEEE1394:
 663		break;
 664#endif
 665	default:
 666		if (target_hw != NULL)
 667			memcpy(arp_ptr, target_hw, dev->addr_len);
 668		else
 669			memset(arp_ptr, 0, dev->addr_len);
 670		arp_ptr += dev->addr_len;
 671	}
 672	memcpy(arp_ptr, &dest_ip, 4);
 673
 674	return skb;
 675
 676out:
 677	kfree_skb(skb);
 678	return NULL;
 679}
 680EXPORT_SYMBOL(arp_create);
 681
 682/*
 683 *	Send an arp packet.
 684 */
 685void arp_xmit(struct sk_buff *skb)
 686{
 687	/* Send it off, maybe filter it using firewalling first.  */
 688	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 689}
 690EXPORT_SYMBOL(arp_xmit);
 691
 692/*
 693 *	Create and send an arp packet.
 694 */
 695void arp_send(int type, int ptype, __be32 dest_ip,
 696	      struct net_device *dev, __be32 src_ip,
 697	      const unsigned char *dest_hw, const unsigned char *src_hw,
 698	      const unsigned char *target_hw)
 699{
 700	struct sk_buff *skb;
 701
 702	/*
 703	 *	No arp on this interface.
 704	 */
 705
 706	if (dev->flags&IFF_NOARP)
 707		return;
 708
 709	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 710			 dest_hw, src_hw, target_hw);
 711	if (skb == NULL)
 712		return;
 713
 714	arp_xmit(skb);
 715}
 716EXPORT_SYMBOL(arp_send);
 717
 718/*
 719 *	Process an arp request.
 720 */
 721
 722static int arp_process(struct sk_buff *skb)
 723{
 724	struct net_device *dev = skb->dev;
 725	struct in_device *in_dev = __in_dev_get_rcu(dev);
 726	struct arphdr *arp;
 727	unsigned char *arp_ptr;
 728	struct rtable *rt;
 729	unsigned char *sha;
 730	__be32 sip, tip;
 731	u16 dev_type = dev->type;
 732	int addr_type;
 733	struct neighbour *n;
 734	struct net *net = dev_net(dev);
 735	bool is_garp = false;
 736
 737	/* arp_rcv below verifies the ARP header and verifies the device
 738	 * is ARP'able.
 739	 */
 740
 741	if (in_dev == NULL)
 742		goto out;
 743
 744	arp = arp_hdr(skb);
 745
 746	switch (dev_type) {
 747	default:
 748		if (arp->ar_pro != htons(ETH_P_IP) ||
 749		    htons(dev_type) != arp->ar_hrd)
 750			goto out;
 751		break;
 752	case ARPHRD_ETHER:
 753	case ARPHRD_FDDI:
 754	case ARPHRD_IEEE802:
 755		/*
 756		 * ETHERNET, and Fibre Channel (which are IEEE 802
 757		 * devices, according to RFC 2625) devices will accept ARP
 758		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 759		 * This is the case also of FDDI, where the RFC 1390 says that
 760		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 761		 * however, to be more robust, we'll accept both 1 (Ethernet)
 762		 * or 6 (IEEE 802.2)
 763		 */
 764		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 765		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 766		    arp->ar_pro != htons(ETH_P_IP))
 767			goto out;
 768		break;
 769	case ARPHRD_AX25:
 770		if (arp->ar_pro != htons(AX25_P_IP) ||
 771		    arp->ar_hrd != htons(ARPHRD_AX25))
 772			goto out;
 773		break;
 774	case ARPHRD_NETROM:
 775		if (arp->ar_pro != htons(AX25_P_IP) ||
 776		    arp->ar_hrd != htons(ARPHRD_NETROM))
 777			goto out;
 778		break;
 779	}
 780
 781	/* Understand only these message types */
 782
 783	if (arp->ar_op != htons(ARPOP_REPLY) &&
 784	    arp->ar_op != htons(ARPOP_REQUEST))
 785		goto out;
 786
 787/*
 788 *	Extract fields
 789 */
 790	arp_ptr = (unsigned char *)(arp + 1);
 791	sha	= arp_ptr;
 792	arp_ptr += dev->addr_len;
 793	memcpy(&sip, arp_ptr, 4);
 794	arp_ptr += 4;
 795	switch (dev_type) {
 796#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 797	case ARPHRD_IEEE1394:
 798		break;
 799#endif
 800	default:
 801		arp_ptr += dev->addr_len;
 802	}
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_multicast(tip) ||
 809	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 810		goto out;
 811
 812/*
 813 *     Special case: We must set Frame Relay source Q.922 address
 814 */
 815	if (dev_type == ARPHRD_DLCI)
 816		sha = dev->broadcast;
 817
 818/*
 819 *  Process entry.  The idea here is we want to send a reply if it is a
 820 *  request for us or if it is a request for someone else that we hold
 821 *  a proxy for.  We want to add an entry to our cache if it is a reply
 822 *  to us or if it is a request for our address.
 823 *  (The assumption for this last is that if someone is requesting our
 824 *  address, they are probably intending to talk to us, so it saves time
 825 *  if we cache their address.  Their address is also probably not in
 826 *  our cache, since ours is not in their cache.)
 827 *
 828 *  Putting this another way, we only care about replies if they are to
 829 *  us, in which case we add them to the cache.  For requests, we care
 830 *  about those for us and those for our proxies.  We reply to both,
 831 *  and in the case of requests for us we add the requester to the arp
 832 *  cache.
 833 */
 834
 835	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 836	if (sip == 0) {
 837		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 838		    inet_addr_type(net, tip) == RTN_LOCAL &&
 839		    !arp_ignore(in_dev, sip, tip))
 840			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 841				 dev->dev_addr, sha);
 842		goto out;
 843	}
 844
 845	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 846	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 847
 848		rt = skb_rtable(skb);
 849		addr_type = rt->rt_type;
 850
 851		if (addr_type == RTN_LOCAL) {
 852			int dont_send;
 853
 854			dont_send = arp_ignore(in_dev, sip, tip);
 855			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 856				dont_send = arp_filter(sip, tip, dev);
 857			if (!dont_send) {
 858				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 859				if (n) {
 860					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 861						 dev, tip, sha, dev->dev_addr,
 862						 sha);
 863					neigh_release(n);
 864				}
 865			}
 866			goto out;
 867		} else if (IN_DEV_FORWARD(in_dev)) {
 868			if (addr_type == RTN_UNICAST  &&
 869			    (arp_fwd_proxy(in_dev, dev, rt) ||
 870			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 871			     (rt->dst.dev != dev &&
 872			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 873				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 874				if (n)
 875					neigh_release(n);
 876
 877				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 878				    skb->pkt_type == PACKET_HOST ||
 879				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 880					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 881						 dev, tip, sha, dev->dev_addr,
 882						 sha);
 883				} else {
 884					pneigh_enqueue(&arp_tbl,
 885						       in_dev->arp_parms, skb);
 886					return 0;
 887				}
 888				goto out;
 889			}
 890		}
 891	}
 892
 893	/* Update our ARP tables */
 894
 895	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 896
 897	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 898		/* Unsolicited ARP is not accepted by default.
 899		   It is possible, that this option should be enabled for some
 900		   devices (strip is candidate)
 901		 */
 902		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
 903			  inet_addr_type(net, sip) == RTN_UNICAST;
 904
 905		if (n == NULL &&
 906		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
 907		      inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
 
 908			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 909	}
 910
 911	if (n) {
 912		int state = NUD_REACHABLE;
 913		int override;
 914
 915		/* If several different ARP replies follows back-to-back,
 916		   use the FIRST one. It is possible, if several proxy
 917		   agents are active. Taking the first reply prevents
 918		   arp trashing and chooses the fastest router.
 919		 */
 920		override = time_after(jiffies,
 921				      n->updated +
 922				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 923			   is_garp;
 924
 925		/* Broadcast replies and request packets
 926		   do not assert neighbour reachability.
 927		 */
 928		if (arp->ar_op != htons(ARPOP_REPLY) ||
 929		    skb->pkt_type != PACKET_HOST)
 930			state = NUD_STALE;
 931		neigh_update(n, sha, state,
 932			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 933		neigh_release(n);
 934	}
 935
 936out:
 937	consume_skb(skb);
 938	return 0;
 939}
 940
 941static void parp_redo(struct sk_buff *skb)
 942{
 943	arp_process(skb);
 944}
 945
 946
 947/*
 948 *	Receive an arp request from the device layer.
 949 */
 950
 951static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 952		   struct packet_type *pt, struct net_device *orig_dev)
 953{
 954	const struct arphdr *arp;
 955
 956	if (dev->flags & IFF_NOARP ||
 957	    skb->pkt_type == PACKET_OTHERHOST ||
 958	    skb->pkt_type == PACKET_LOOPBACK)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (!skb)
 963		goto out_of_mem;
 964
 965	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 966	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 967		goto freeskb;
 968
 969	arp = arp_hdr(skb);
 970	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 
 
 
 
 971		goto freeskb;
 972
 
 
 
 
 973	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 974
 975	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 976
 977freeskb:
 978	kfree_skb(skb);
 979out_of_mem:
 980	return 0;
 981}
 982
 983/*
 984 *	User level interface (ioctl)
 985 */
 986
 987/*
 988 *	Set (create) an ARP cache entry.
 989 */
 990
 991static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 992{
 993	if (dev == NULL) {
 994		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 995		return 0;
 996	}
 997	if (__in_dev_get_rtnl(dev)) {
 998		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 999		return 0;
1000	}
1001	return -ENXIO;
1002}
1003
1004static int arp_req_set_public(struct net *net, struct arpreq *r,
1005		struct net_device *dev)
1006{
1007	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1008	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1009
1010	if (mask && mask != htonl(0xFFFFFFFF))
1011		return -EINVAL;
1012	if (!dev && (r->arp_flags & ATF_COM)) {
1013		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1014				      r->arp_ha.sa_data);
1015		if (!dev)
1016			return -ENODEV;
1017	}
1018	if (mask) {
1019		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1020			return -ENOBUFS;
1021		return 0;
1022	}
1023
1024	return arp_req_set_proxy(net, dev, 1);
1025}
1026
1027static int arp_req_set(struct net *net, struct arpreq *r,
1028		       struct net_device *dev)
1029{
1030	__be32 ip;
1031	struct neighbour *neigh;
1032	int err;
1033
1034	if (r->arp_flags & ATF_PUBL)
1035		return arp_req_set_public(net, r, dev);
1036
1037	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1038	if (r->arp_flags & ATF_PERM)
1039		r->arp_flags |= ATF_COM;
1040	if (dev == NULL) {
1041		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1042
1043		if (IS_ERR(rt))
1044			return PTR_ERR(rt);
1045		dev = rt->dst.dev;
1046		ip_rt_put(rt);
1047		if (!dev)
1048			return -EINVAL;
1049	}
1050	switch (dev->type) {
1051#if IS_ENABLED(CONFIG_FDDI)
1052	case ARPHRD_FDDI:
1053		/*
1054		 * According to RFC 1390, FDDI devices should accept ARP
1055		 * hardware types of 1 (Ethernet).  However, to be more
1056		 * robust, we'll accept hardware types of either 1 (Ethernet)
1057		 * or 6 (IEEE 802.2).
1058		 */
1059		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1060		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1061		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1062			return -EINVAL;
1063		break;
1064#endif
1065	default:
1066		if (r->arp_ha.sa_family != dev->type)
1067			return -EINVAL;
1068		break;
1069	}
1070
1071	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1072	err = PTR_ERR(neigh);
1073	if (!IS_ERR(neigh)) {
1074		unsigned int state = NUD_STALE;
1075		if (r->arp_flags & ATF_PERM)
1076			state = NUD_PERMANENT;
1077		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1078				   r->arp_ha.sa_data : NULL, state,
1079				   NEIGH_UPDATE_F_OVERRIDE |
1080				   NEIGH_UPDATE_F_ADMIN);
1081		neigh_release(neigh);
1082	}
1083	return err;
1084}
1085
1086static unsigned int arp_state_to_flags(struct neighbour *neigh)
1087{
1088	if (neigh->nud_state&NUD_PERMANENT)
1089		return ATF_PERM | ATF_COM;
1090	else if (neigh->nud_state&NUD_VALID)
1091		return ATF_COM;
1092	else
1093		return 0;
1094}
1095
1096/*
1097 *	Get an ARP cache entry.
1098 */
1099
1100static int arp_req_get(struct arpreq *r, struct net_device *dev)
1101{
1102	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1103	struct neighbour *neigh;
1104	int err = -ENXIO;
1105
1106	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1107	if (neigh) {
1108		read_lock_bh(&neigh->lock);
1109		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1110		r->arp_flags = arp_state_to_flags(neigh);
1111		read_unlock_bh(&neigh->lock);
1112		r->arp_ha.sa_family = dev->type;
1113		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1114		neigh_release(neigh);
1115		err = 0;
1116	}
1117	return err;
1118}
1119
1120static int arp_invalidate(struct net_device *dev, __be32 ip)
1121{
1122	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1123	int err = -ENXIO;
1124
1125	if (neigh) {
1126		if (neigh->nud_state & ~NUD_NOARP)
1127			err = neigh_update(neigh, NULL, NUD_FAILED,
1128					   NEIGH_UPDATE_F_OVERRIDE|
1129					   NEIGH_UPDATE_F_ADMIN);
1130		neigh_release(neigh);
1131	}
1132
1133	return err;
1134}
 
1135
1136static int arp_req_delete_public(struct net *net, struct arpreq *r,
1137		struct net_device *dev)
1138{
1139	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1140	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1141
1142	if (mask == htonl(0xFFFFFFFF))
1143		return pneigh_delete(&arp_tbl, net, &ip, dev);
1144
1145	if (mask)
1146		return -EINVAL;
1147
1148	return arp_req_set_proxy(net, dev, 0);
1149}
1150
1151static int arp_req_delete(struct net *net, struct arpreq *r,
1152			  struct net_device *dev)
1153{
1154	__be32 ip;
1155
1156	if (r->arp_flags & ATF_PUBL)
1157		return arp_req_delete_public(net, r, dev);
1158
1159	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1160	if (dev == NULL) {
1161		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1162		if (IS_ERR(rt))
1163			return PTR_ERR(rt);
1164		dev = rt->dst.dev;
1165		ip_rt_put(rt);
1166		if (!dev)
1167			return -EINVAL;
1168	}
1169	return arp_invalidate(dev, ip);
1170}
1171
1172/*
1173 *	Handle an ARP layer I/O control request.
1174 */
1175
1176int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1177{
1178	int err;
1179	struct arpreq r;
1180	struct net_device *dev = NULL;
1181
1182	switch (cmd) {
1183	case SIOCDARP:
1184	case SIOCSARP:
1185		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1186			return -EPERM;
1187	case SIOCGARP:
1188		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1189		if (err)
1190			return -EFAULT;
1191		break;
1192	default:
1193		return -EINVAL;
1194	}
1195
1196	if (r.arp_pa.sa_family != AF_INET)
1197		return -EPFNOSUPPORT;
1198
1199	if (!(r.arp_flags & ATF_PUBL) &&
1200	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1201		return -EINVAL;
1202	if (!(r.arp_flags & ATF_NETMASK))
1203		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1204							   htonl(0xFFFFFFFFUL);
1205	rtnl_lock();
1206	if (r.arp_dev[0]) {
1207		err = -ENODEV;
1208		dev = __dev_get_by_name(net, r.arp_dev);
1209		if (dev == NULL)
1210			goto out;
1211
1212		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1213		if (!r.arp_ha.sa_family)
1214			r.arp_ha.sa_family = dev->type;
1215		err = -EINVAL;
1216		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1217			goto out;
1218	} else if (cmd == SIOCGARP) {
1219		err = -ENODEV;
1220		goto out;
1221	}
1222
1223	switch (cmd) {
1224	case SIOCDARP:
1225		err = arp_req_delete(net, &r, dev);
1226		break;
1227	case SIOCSARP:
1228		err = arp_req_set(net, &r, dev);
1229		break;
1230	case SIOCGARP:
1231		err = arp_req_get(&r, dev);
1232		break;
1233	}
1234out:
1235	rtnl_unlock();
1236	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1237		err = -EFAULT;
1238	return err;
1239}
1240
1241static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1242			    void *ptr)
1243{
1244	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1245	struct netdev_notifier_change_info *change_info;
1246
1247	switch (event) {
1248	case NETDEV_CHANGEADDR:
1249		neigh_changeaddr(&arp_tbl, dev);
1250		rt_cache_flush(dev_net(dev));
1251		break;
1252	case NETDEV_CHANGE:
1253		change_info = ptr;
1254		if (change_info->flags_changed & IFF_NOARP)
1255			neigh_changeaddr(&arp_tbl, dev);
1256		break;
1257	default:
1258		break;
1259	}
1260
1261	return NOTIFY_DONE;
1262}
1263
1264static struct notifier_block arp_netdev_notifier = {
1265	.notifier_call = arp_netdev_event,
1266};
1267
1268/* Note, that it is not on notifier chain.
1269   It is necessary, that this routine was called after route cache will be
1270   flushed.
1271 */
1272void arp_ifdown(struct net_device *dev)
1273{
1274	neigh_ifdown(&arp_tbl, dev);
1275}
1276
1277
1278/*
1279 *	Called once on startup.
1280 */
1281
1282static struct packet_type arp_packet_type __read_mostly = {
1283	.type =	cpu_to_be16(ETH_P_ARP),
1284	.func =	arp_rcv,
1285};
1286
1287static int arp_proc_init(void);
1288
1289void __init arp_init(void)
1290{
1291	neigh_table_init(&arp_tbl);
1292
1293	dev_add_pack(&arp_packet_type);
1294	arp_proc_init();
1295#ifdef CONFIG_SYSCTL
1296	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1297#endif
1298	register_netdevice_notifier(&arp_netdev_notifier);
1299}
1300
1301#ifdef CONFIG_PROC_FS
1302#if IS_ENABLED(CONFIG_AX25)
1303
1304/* ------------------------------------------------------------------------ */
1305/*
1306 *	ax25 -> ASCII conversion
1307 */
1308static char *ax2asc2(ax25_address *a, char *buf)
1309{
1310	char c, *s;
1311	int n;
1312
1313	for (n = 0, s = buf; n < 6; n++) {
1314		c = (a->ax25_call[n] >> 1) & 0x7F;
1315
1316		if (c != ' ')
1317			*s++ = c;
1318	}
1319
1320	*s++ = '-';
1321	n = (a->ax25_call[6] >> 1) & 0x0F;
1322	if (n > 9) {
1323		*s++ = '1';
1324		n -= 10;
1325	}
1326
1327	*s++ = n + '0';
1328	*s++ = '\0';
1329
1330	if (*buf == '\0' || *buf == '-')
1331		return "*";
1332
1333	return buf;
1334}
1335#endif /* CONFIG_AX25 */
1336
1337#define HBUFFERLEN 30
1338
1339static void arp_format_neigh_entry(struct seq_file *seq,
1340				   struct neighbour *n)
1341{
1342	char hbuffer[HBUFFERLEN];
1343	int k, j;
1344	char tbuf[16];
1345	struct net_device *dev = n->dev;
1346	int hatype = dev->type;
1347
1348	read_lock(&n->lock);
1349	/* Convert hardware address to XX:XX:XX:XX ... form. */
1350#if IS_ENABLED(CONFIG_AX25)
1351	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1352		ax2asc2((ax25_address *)n->ha, hbuffer);
1353	else {
1354#endif
1355	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1356		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1357		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1358		hbuffer[k++] = ':';
1359	}
1360	if (k != 0)
1361		--k;
1362	hbuffer[k] = 0;
1363#if IS_ENABLED(CONFIG_AX25)
1364	}
1365#endif
1366	sprintf(tbuf, "%pI4", n->primary_key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1369	read_unlock(&n->lock);
1370}
1371
1372static void arp_format_pneigh_entry(struct seq_file *seq,
1373				    struct pneigh_entry *n)
1374{
1375	struct net_device *dev = n->dev;
1376	int hatype = dev ? dev->type : 0;
1377	char tbuf[16];
1378
1379	sprintf(tbuf, "%pI4", n->key);
1380	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1381		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1382		   dev ? dev->name : "*");
1383}
1384
1385static int arp_seq_show(struct seq_file *seq, void *v)
1386{
1387	if (v == SEQ_START_TOKEN) {
1388		seq_puts(seq, "IP address       HW type     Flags       "
1389			      "HW address            Mask     Device\n");
1390	} else {
1391		struct neigh_seq_state *state = seq->private;
1392
1393		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1394			arp_format_pneigh_entry(seq, v);
1395		else
1396			arp_format_neigh_entry(seq, v);
1397	}
1398
1399	return 0;
1400}
1401
1402static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1403{
1404	/* Don't want to confuse "arp -a" w/ magic entries,
1405	 * so we tell the generic iterator to skip NUD_NOARP.
1406	 */
1407	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1408}
1409
1410/* ------------------------------------------------------------------------ */
1411
1412static const struct seq_operations arp_seq_ops = {
1413	.start	= arp_seq_start,
1414	.next	= neigh_seq_next,
1415	.stop	= neigh_seq_stop,
1416	.show	= arp_seq_show,
1417};
1418
1419static int arp_seq_open(struct inode *inode, struct file *file)
1420{
1421	return seq_open_net(inode, file, &arp_seq_ops,
1422			    sizeof(struct neigh_seq_state));
1423}
1424
1425static const struct file_operations arp_seq_fops = {
1426	.owner		= THIS_MODULE,
1427	.open           = arp_seq_open,
1428	.read           = seq_read,
1429	.llseek         = seq_lseek,
1430	.release	= seq_release_net,
1431};
1432
1433
1434static int __net_init arp_net_init(struct net *net)
1435{
1436	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1437		return -ENOMEM;
1438	return 0;
1439}
1440
1441static void __net_exit arp_net_exit(struct net *net)
1442{
1443	remove_proc_entry("arp", net->proc_net);
1444}
1445
1446static struct pernet_operations arp_net_ops = {
1447	.init = arp_net_init,
1448	.exit = arp_net_exit,
1449};
1450
1451static int __init arp_proc_init(void)
1452{
1453	return register_pernet_subsys(&arp_net_ops);
1454}
1455
1456#else /* CONFIG_PROC_FS */
1457
1458static int __init arp_proc_init(void)
1459{
1460	return 0;
1461}
1462
1463#endif /* CONFIG_PROC_FS */
v3.5.6
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netfilter_arp.h>
 120
 121/*
 122 *	Interface to generic neighbour cache.
 123 */
 124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 125static int arp_constructor(struct neighbour *neigh);
 126static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 127static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 128static void parp_redo(struct sk_buff *skb);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152static const struct neigh_ops arp_broken_ops = {
 153	.family =		AF_INET,
 154	.solicit =		arp_solicit,
 155	.error_report =		arp_error_report,
 156	.output =		neigh_compat_output,
 157	.connected_output =	neigh_compat_output,
 158};
 159
 160struct neigh_table arp_tbl = {
 161	.family		= AF_INET,
 162	.key_len	= 4,
 163	.hash		= arp_hash,
 164	.constructor	= arp_constructor,
 165	.proxy_redo	= parp_redo,
 166	.id		= "arp_cache",
 167	.parms		= {
 168		.tbl			= &arp_tbl,
 169		.base_reachable_time	= 30 * HZ,
 170		.retrans_time		= 1 * HZ,
 171		.gc_staletime		= 60 * HZ,
 172		.reachable_time		= 30 * HZ,
 173		.delay_probe_time	= 5 * HZ,
 174		.queue_len_bytes	= 64*1024,
 175		.ucast_probes		= 3,
 176		.mcast_probes		= 3,
 177		.anycast_delay		= 1 * HZ,
 178		.proxy_delay		= (8 * HZ) / 10,
 179		.proxy_qlen		= 64,
 180		.locktime		= 1 * HZ,
 
 
 
 
 
 181	},
 182	.gc_interval	= 30 * HZ,
 183	.gc_thresh1	= 128,
 184	.gc_thresh2	= 512,
 185	.gc_thresh3	= 1024,
 186};
 187EXPORT_SYMBOL(arp_tbl);
 188
 189int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 190{
 191	switch (dev->type) {
 192	case ARPHRD_ETHER:
 193	case ARPHRD_FDDI:
 194	case ARPHRD_IEEE802:
 195		ip_eth_mc_map(addr, haddr);
 196		return 0;
 197	case ARPHRD_INFINIBAND:
 198		ip_ib_mc_map(addr, dev->broadcast, haddr);
 199		return 0;
 200	case ARPHRD_IPGRE:
 201		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 202		return 0;
 203	default:
 204		if (dir) {
 205			memcpy(haddr, dev->broadcast, dev->addr_len);
 206			return 0;
 207		}
 208	}
 209	return -EINVAL;
 210}
 211
 212
 213static u32 arp_hash(const void *pkey,
 214		    const struct net_device *dev,
 215		    __u32 *hash_rnd)
 216{
 217	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
 218}
 219
 220static int arp_constructor(struct neighbour *neigh)
 221{
 222	__be32 addr = *(__be32 *)neigh->primary_key;
 223	struct net_device *dev = neigh->dev;
 224	struct in_device *in_dev;
 225	struct neigh_parms *parms;
 226
 227	rcu_read_lock();
 228	in_dev = __in_dev_get_rcu(dev);
 229	if (in_dev == NULL) {
 230		rcu_read_unlock();
 231		return -EINVAL;
 232	}
 233
 234	neigh->type = inet_addr_type(dev_net(dev), addr);
 235
 236	parms = in_dev->arp_parms;
 237	__neigh_parms_put(neigh->parms);
 238	neigh->parms = neigh_parms_clone(parms);
 239	rcu_read_unlock();
 240
 241	if (!dev->header_ops) {
 242		neigh->nud_state = NUD_NOARP;
 243		neigh->ops = &arp_direct_ops;
 244		neigh->output = neigh_direct_output;
 245	} else {
 246		/* Good devices (checked by reading texts, but only Ethernet is
 247		   tested)
 248
 249		   ARPHRD_ETHER: (ethernet, apfddi)
 250		   ARPHRD_FDDI: (fddi)
 251		   ARPHRD_IEEE802: (tr)
 252		   ARPHRD_METRICOM: (strip)
 253		   ARPHRD_ARCNET:
 254		   etc. etc. etc.
 255
 256		   ARPHRD_IPDDP will also work, if author repairs it.
 257		   I did not it, because this driver does not work even
 258		   in old paradigm.
 259		 */
 260
 261#if 1
 262		/* So... these "amateur" devices are hopeless.
 263		   The only thing, that I can say now:
 264		   It is very sad that we need to keep ugly obsolete
 265		   code to make them happy.
 266
 267		   They should be moved to more reasonable state, now
 268		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 269		   Besides that, they are sort of out of date
 270		   (a lot of redundant clones/copies, useless in 2.1),
 271		   I wonder why people believe that they work.
 272		 */
 273		switch (dev->type) {
 274		default:
 275			break;
 276		case ARPHRD_ROSE:
 277#if IS_ENABLED(CONFIG_AX25)
 278		case ARPHRD_AX25:
 279#if IS_ENABLED(CONFIG_NETROM)
 280		case ARPHRD_NETROM:
 281#endif
 282			neigh->ops = &arp_broken_ops;
 283			neigh->output = neigh->ops->output;
 284			return 0;
 285#else
 286			break;
 287#endif
 288		}
 289#endif
 290		if (neigh->type == RTN_MULTICAST) {
 291			neigh->nud_state = NUD_NOARP;
 292			arp_mc_map(addr, neigh->ha, dev, 1);
 293		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 294			neigh->nud_state = NUD_NOARP;
 295			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 296		} else if (neigh->type == RTN_BROADCAST ||
 297			   (dev->flags & IFF_POINTOPOINT)) {
 298			neigh->nud_state = NUD_NOARP;
 299			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 300		}
 301
 302		if (dev->header_ops->cache)
 303			neigh->ops = &arp_hh_ops;
 304		else
 305			neigh->ops = &arp_generic_ops;
 306
 307		if (neigh->nud_state & NUD_VALID)
 308			neigh->output = neigh->ops->connected_output;
 309		else
 310			neigh->output = neigh->ops->output;
 311	}
 312	return 0;
 313}
 314
 315static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 316{
 317	dst_link_failure(skb);
 318	kfree_skb(skb);
 319}
 320
 321static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 322{
 323	__be32 saddr = 0;
 324	u8  *dst_ha = NULL;
 325	struct net_device *dev = neigh->dev;
 326	__be32 target = *(__be32 *)neigh->primary_key;
 327	int probes = atomic_read(&neigh->probes);
 328	struct in_device *in_dev;
 329
 330	rcu_read_lock();
 331	in_dev = __in_dev_get_rcu(dev);
 332	if (!in_dev) {
 333		rcu_read_unlock();
 334		return;
 335	}
 336	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 337	default:
 338	case 0:		/* By default announce any local IP */
 339		if (skb && inet_addr_type(dev_net(dev),
 340					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 341			saddr = ip_hdr(skb)->saddr;
 342		break;
 343	case 1:		/* Restrict announcements of saddr in same subnet */
 344		if (!skb)
 345			break;
 346		saddr = ip_hdr(skb)->saddr;
 347		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 348			/* saddr should be known to target */
 349			if (inet_addr_onlink(in_dev, target, saddr))
 350				break;
 351		}
 352		saddr = 0;
 353		break;
 354	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 355		break;
 356	}
 357	rcu_read_unlock();
 358
 359	if (!saddr)
 360		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 361
 362	probes -= neigh->parms->ucast_probes;
 363	if (probes < 0) {
 364		if (!(neigh->nud_state & NUD_VALID))
 365			pr_debug("trying to ucast probe in NUD_INVALID\n");
 366		dst_ha = neigh->ha;
 367		read_lock_bh(&neigh->lock);
 368	} else {
 369		probes -= neigh->parms->app_probes;
 370		if (probes < 0) {
 371#ifdef CONFIG_ARPD
 372			neigh_app_ns(neigh);
 373#endif
 374			return;
 375		}
 376	}
 377
 378	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 379		 dst_ha, dev->dev_addr, NULL);
 380	if (dst_ha)
 381		read_unlock_bh(&neigh->lock);
 382}
 383
 384static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 385{
 
 386	int scope;
 387
 388	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 389	case 0:	/* Reply, the tip is already validated */
 390		return 0;
 391	case 1:	/* Reply only if tip is configured on the incoming interface */
 392		sip = 0;
 393		scope = RT_SCOPE_HOST;
 394		break;
 395	case 2:	/*
 396		 * Reply only if tip is configured on the incoming interface
 397		 * and is in same subnet as sip
 398		 */
 399		scope = RT_SCOPE_HOST;
 400		break;
 401	case 3:	/* Do not reply for scope host addresses */
 402		sip = 0;
 403		scope = RT_SCOPE_LINK;
 
 404		break;
 405	case 4:	/* Reserved */
 406	case 5:
 407	case 6:
 408	case 7:
 409		return 0;
 410	case 8:	/* Do not reply */
 411		return 1;
 412	default:
 413		return 0;
 414	}
 415	return !inet_confirm_addr(in_dev, sip, tip, scope);
 416}
 417
 418static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 419{
 420	struct rtable *rt;
 421	int flag = 0;
 422	/*unsigned long now; */
 423	struct net *net = dev_net(dev);
 424
 425	rt = ip_route_output(net, sip, tip, 0, 0);
 426	if (IS_ERR(rt))
 427		return 1;
 428	if (rt->dst.dev != dev) {
 429		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 430		flag = 1;
 431	}
 432	ip_rt_put(rt);
 433	return flag;
 434}
 435
 436/* OBSOLETE FUNCTIONS */
 437
 438/*
 439 *	Find an arp mapping in the cache. If not found, post a request.
 440 *
 441 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 442 *	even if it exists. It is supposed that skb->dev was mangled
 443 *	by a virtual device (eql, shaper). Nobody but broken devices
 444 *	is allowed to use this function, it is scheduled to be removed. --ANK
 445 */
 446
 447static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 448			      __be32 paddr, struct net_device *dev)
 449{
 450	switch (addr_hint) {
 451	case RTN_LOCAL:
 452		pr_debug("arp called for own IP address\n");
 453		memcpy(haddr, dev->dev_addr, dev->addr_len);
 454		return 1;
 455	case RTN_MULTICAST:
 456		arp_mc_map(paddr, haddr, dev, 1);
 457		return 1;
 458	case RTN_BROADCAST:
 459		memcpy(haddr, dev->broadcast, dev->addr_len);
 460		return 1;
 461	}
 462	return 0;
 463}
 464
 465
 466int arp_find(unsigned char *haddr, struct sk_buff *skb)
 467{
 468	struct net_device *dev = skb->dev;
 469	__be32 paddr;
 470	struct neighbour *n;
 471
 472	if (!skb_dst(skb)) {
 473		pr_debug("arp_find is called with dst==NULL\n");
 474		kfree_skb(skb);
 475		return 1;
 476	}
 477
 478	paddr = skb_rtable(skb)->rt_gateway;
 479
 480	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 481			       paddr, dev))
 482		return 0;
 483
 484	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 485
 486	if (n) {
 487		n->used = jiffies;
 488		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 489			neigh_ha_snapshot(haddr, n, dev);
 490			neigh_release(n);
 491			return 0;
 492		}
 493		neigh_release(n);
 494	} else
 495		kfree_skb(skb);
 496	return 1;
 497}
 498EXPORT_SYMBOL(arp_find);
 499
 500/* END OF OBSOLETE FUNCTIONS */
 501
 502/*
 503 * Check if we can use proxy ARP for this path
 504 */
 505static inline int arp_fwd_proxy(struct in_device *in_dev,
 506				struct net_device *dev,	struct rtable *rt)
 507{
 508	struct in_device *out_dev;
 509	int imi, omi = -1;
 510
 511	if (rt->dst.dev == dev)
 512		return 0;
 513
 514	if (!IN_DEV_PROXY_ARP(in_dev))
 515		return 0;
 516	imi = IN_DEV_MEDIUM_ID(in_dev);
 517	if (imi == 0)
 518		return 1;
 519	if (imi == -1)
 520		return 0;
 521
 522	/* place to check for proxy_arp for routes */
 523
 524	out_dev = __in_dev_get_rcu(rt->dst.dev);
 525	if (out_dev)
 526		omi = IN_DEV_MEDIUM_ID(out_dev);
 527
 528	return omi != imi && omi != -1;
 529}
 530
 531/*
 532 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 533 *
 534 * RFC3069 supports proxy arp replies back to the same interface.  This
 535 * is done to support (ethernet) switch features, like RFC 3069, where
 536 * the individual ports are not allowed to communicate with each
 537 * other, BUT they are allowed to talk to the upstream router.  As
 538 * described in RFC 3069, it is possible to allow these hosts to
 539 * communicate through the upstream router, by proxy_arp'ing.
 540 *
 541 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 542 *
 543 *  This technology is known by different names:
 544 *    In RFC 3069 it is called VLAN Aggregation.
 545 *    Cisco and Allied Telesyn call it Private VLAN.
 546 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 547 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 548 *
 549 */
 550static inline int arp_fwd_pvlan(struct in_device *in_dev,
 551				struct net_device *dev,	struct rtable *rt,
 552				__be32 sip, __be32 tip)
 553{
 554	/* Private VLAN is only concerned about the same ethernet segment */
 555	if (rt->dst.dev != dev)
 556		return 0;
 557
 558	/* Don't reply on self probes (often done by windowz boxes)*/
 559	if (sip == tip)
 560		return 0;
 561
 562	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 563		return 1;
 564	else
 565		return 0;
 566}
 567
 568/*
 569 *	Interface to link layer: send routine and receive handler.
 570 */
 571
 572/*
 573 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 574 *	message.
 575 */
 576struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 577			   struct net_device *dev, __be32 src_ip,
 578			   const unsigned char *dest_hw,
 579			   const unsigned char *src_hw,
 580			   const unsigned char *target_hw)
 581{
 582	struct sk_buff *skb;
 583	struct arphdr *arp;
 584	unsigned char *arp_ptr;
 585	int hlen = LL_RESERVED_SPACE(dev);
 586	int tlen = dev->needed_tailroom;
 587
 588	/*
 589	 *	Allocate a buffer
 590	 */
 591
 592	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 593	if (skb == NULL)
 594		return NULL;
 595
 596	skb_reserve(skb, hlen);
 597	skb_reset_network_header(skb);
 598	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 599	skb->dev = dev;
 600	skb->protocol = htons(ETH_P_ARP);
 601	if (src_hw == NULL)
 602		src_hw = dev->dev_addr;
 603	if (dest_hw == NULL)
 604		dest_hw = dev->broadcast;
 605
 606	/*
 607	 *	Fill the device header for the ARP frame
 608	 */
 609	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 610		goto out;
 611
 612	/*
 613	 * Fill out the arp protocol part.
 614	 *
 615	 * The arp hardware type should match the device type, except for FDDI,
 616	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 617	 */
 618	/*
 619	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 620	 *	DIX code for the protocol. Make these device structure fields.
 621	 */
 622	switch (dev->type) {
 623	default:
 624		arp->ar_hrd = htons(dev->type);
 625		arp->ar_pro = htons(ETH_P_IP);
 626		break;
 627
 628#if IS_ENABLED(CONFIG_AX25)
 629	case ARPHRD_AX25:
 630		arp->ar_hrd = htons(ARPHRD_AX25);
 631		arp->ar_pro = htons(AX25_P_IP);
 632		break;
 633
 634#if IS_ENABLED(CONFIG_NETROM)
 635	case ARPHRD_NETROM:
 636		arp->ar_hrd = htons(ARPHRD_NETROM);
 637		arp->ar_pro = htons(AX25_P_IP);
 638		break;
 639#endif
 640#endif
 641
 642#if IS_ENABLED(CONFIG_FDDI)
 643	case ARPHRD_FDDI:
 644		arp->ar_hrd = htons(ARPHRD_ETHER);
 645		arp->ar_pro = htons(ETH_P_IP);
 646		break;
 647#endif
 648	}
 649
 650	arp->ar_hln = dev->addr_len;
 651	arp->ar_pln = 4;
 652	arp->ar_op = htons(type);
 653
 654	arp_ptr = (unsigned char *)(arp + 1);
 655
 656	memcpy(arp_ptr, src_hw, dev->addr_len);
 657	arp_ptr += dev->addr_len;
 658	memcpy(arp_ptr, &src_ip, 4);
 659	arp_ptr += 4;
 660	if (target_hw != NULL)
 661		memcpy(arp_ptr, target_hw, dev->addr_len);
 662	else
 663		memset(arp_ptr, 0, dev->addr_len);
 664	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 665	memcpy(arp_ptr, &dest_ip, 4);
 666
 667	return skb;
 668
 669out:
 670	kfree_skb(skb);
 671	return NULL;
 672}
 673EXPORT_SYMBOL(arp_create);
 674
 675/*
 676 *	Send an arp packet.
 677 */
 678void arp_xmit(struct sk_buff *skb)
 679{
 680	/* Send it off, maybe filter it using firewalling first.  */
 681	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 682}
 683EXPORT_SYMBOL(arp_xmit);
 684
 685/*
 686 *	Create and send an arp packet.
 687 */
 688void arp_send(int type, int ptype, __be32 dest_ip,
 689	      struct net_device *dev, __be32 src_ip,
 690	      const unsigned char *dest_hw, const unsigned char *src_hw,
 691	      const unsigned char *target_hw)
 692{
 693	struct sk_buff *skb;
 694
 695	/*
 696	 *	No arp on this interface.
 697	 */
 698
 699	if (dev->flags&IFF_NOARP)
 700		return;
 701
 702	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 703			 dest_hw, src_hw, target_hw);
 704	if (skb == NULL)
 705		return;
 706
 707	arp_xmit(skb);
 708}
 709EXPORT_SYMBOL(arp_send);
 710
 711/*
 712 *	Process an arp request.
 713 */
 714
 715static int arp_process(struct sk_buff *skb)
 716{
 717	struct net_device *dev = skb->dev;
 718	struct in_device *in_dev = __in_dev_get_rcu(dev);
 719	struct arphdr *arp;
 720	unsigned char *arp_ptr;
 721	struct rtable *rt;
 722	unsigned char *sha;
 723	__be32 sip, tip;
 724	u16 dev_type = dev->type;
 725	int addr_type;
 726	struct neighbour *n;
 727	struct net *net = dev_net(dev);
 
 728
 729	/* arp_rcv below verifies the ARP header and verifies the device
 730	 * is ARP'able.
 731	 */
 732
 733	if (in_dev == NULL)
 734		goto out;
 735
 736	arp = arp_hdr(skb);
 737
 738	switch (dev_type) {
 739	default:
 740		if (arp->ar_pro != htons(ETH_P_IP) ||
 741		    htons(dev_type) != arp->ar_hrd)
 742			goto out;
 743		break;
 744	case ARPHRD_ETHER:
 745	case ARPHRD_FDDI:
 746	case ARPHRD_IEEE802:
 747		/*
 748		 * ETHERNET, and Fibre Channel (which are IEEE 802
 749		 * devices, according to RFC 2625) devices will accept ARP
 750		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 751		 * This is the case also of FDDI, where the RFC 1390 says that
 752		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 753		 * however, to be more robust, we'll accept both 1 (Ethernet)
 754		 * or 6 (IEEE 802.2)
 755		 */
 756		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 757		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 758		    arp->ar_pro != htons(ETH_P_IP))
 759			goto out;
 760		break;
 761	case ARPHRD_AX25:
 762		if (arp->ar_pro != htons(AX25_P_IP) ||
 763		    arp->ar_hrd != htons(ARPHRD_AX25))
 764			goto out;
 765		break;
 766	case ARPHRD_NETROM:
 767		if (arp->ar_pro != htons(AX25_P_IP) ||
 768		    arp->ar_hrd != htons(ARPHRD_NETROM))
 769			goto out;
 770		break;
 771	}
 772
 773	/* Understand only these message types */
 774
 775	if (arp->ar_op != htons(ARPOP_REPLY) &&
 776	    arp->ar_op != htons(ARPOP_REQUEST))
 777		goto out;
 778
 779/*
 780 *	Extract fields
 781 */
 782	arp_ptr = (unsigned char *)(arp + 1);
 783	sha	= arp_ptr;
 784	arp_ptr += dev->addr_len;
 785	memcpy(&sip, arp_ptr, 4);
 786	arp_ptr += 4;
 787	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 788	memcpy(&tip, arp_ptr, 4);
 789/*
 790 *	Check for bad requests for 127.x.x.x and requests for multicast
 791 *	addresses.  If this is one such, delete it.
 792 */
 793	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
 
 794		goto out;
 795
 796/*
 797 *     Special case: We must set Frame Relay source Q.922 address
 798 */
 799	if (dev_type == ARPHRD_DLCI)
 800		sha = dev->broadcast;
 801
 802/*
 803 *  Process entry.  The idea here is we want to send a reply if it is a
 804 *  request for us or if it is a request for someone else that we hold
 805 *  a proxy for.  We want to add an entry to our cache if it is a reply
 806 *  to us or if it is a request for our address.
 807 *  (The assumption for this last is that if someone is requesting our
 808 *  address, they are probably intending to talk to us, so it saves time
 809 *  if we cache their address.  Their address is also probably not in
 810 *  our cache, since ours is not in their cache.)
 811 *
 812 *  Putting this another way, we only care about replies if they are to
 813 *  us, in which case we add them to the cache.  For requests, we care
 814 *  about those for us and those for our proxies.  We reply to both,
 815 *  and in the case of requests for us we add the requester to the arp
 816 *  cache.
 817 */
 818
 819	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 820	if (sip == 0) {
 821		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 822		    inet_addr_type(net, tip) == RTN_LOCAL &&
 823		    !arp_ignore(in_dev, sip, tip))
 824			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 825				 dev->dev_addr, sha);
 826		goto out;
 827	}
 828
 829	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 830	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 831
 832		rt = skb_rtable(skb);
 833		addr_type = rt->rt_type;
 834
 835		if (addr_type == RTN_LOCAL) {
 836			int dont_send;
 837
 838			dont_send = arp_ignore(in_dev, sip, tip);
 839			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 840				dont_send = arp_filter(sip, tip, dev);
 841			if (!dont_send) {
 842				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 843				if (n) {
 844					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 845						 dev, tip, sha, dev->dev_addr,
 846						 sha);
 847					neigh_release(n);
 848				}
 849			}
 850			goto out;
 851		} else if (IN_DEV_FORWARD(in_dev)) {
 852			if (addr_type == RTN_UNICAST  &&
 853			    (arp_fwd_proxy(in_dev, dev, rt) ||
 854			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 855			     (rt->dst.dev != dev &&
 856			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 858				if (n)
 859					neigh_release(n);
 860
 861				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 862				    skb->pkt_type == PACKET_HOST ||
 863				    in_dev->arp_parms->proxy_delay == 0) {
 864					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 865						 dev, tip, sha, dev->dev_addr,
 866						 sha);
 867				} else {
 868					pneigh_enqueue(&arp_tbl,
 869						       in_dev->arp_parms, skb);
 870					return 0;
 871				}
 872				goto out;
 873			}
 874		}
 875	}
 876
 877	/* Update our ARP tables */
 878
 879	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 880
 881	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 882		/* Unsolicited ARP is not accepted by default.
 883		   It is possible, that this option should be enabled for some
 884		   devices (strip is candidate)
 885		 */
 
 
 
 886		if (n == NULL &&
 887		    (arp->ar_op == htons(ARPOP_REPLY) ||
 888		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 889		    inet_addr_type(net, sip) == RTN_UNICAST)
 890			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 891	}
 892
 893	if (n) {
 894		int state = NUD_REACHABLE;
 895		int override;
 896
 897		/* If several different ARP replies follows back-to-back,
 898		   use the FIRST one. It is possible, if several proxy
 899		   agents are active. Taking the first reply prevents
 900		   arp trashing and chooses the fastest router.
 901		 */
 902		override = time_after(jiffies, n->updated + n->parms->locktime);
 
 
 
 903
 904		/* Broadcast replies and request packets
 905		   do not assert neighbour reachability.
 906		 */
 907		if (arp->ar_op != htons(ARPOP_REPLY) ||
 908		    skb->pkt_type != PACKET_HOST)
 909			state = NUD_STALE;
 910		neigh_update(n, sha, state,
 911			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 912		neigh_release(n);
 913	}
 914
 915out:
 916	consume_skb(skb);
 917	return 0;
 918}
 919
 920static void parp_redo(struct sk_buff *skb)
 921{
 922	arp_process(skb);
 923}
 924
 925
 926/*
 927 *	Receive an arp request from the device layer.
 928 */
 929
 930static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 931		   struct packet_type *pt, struct net_device *orig_dev)
 932{
 933	struct arphdr *arp;
 
 
 
 
 
 
 
 
 
 934
 935	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 936	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 937		goto freeskb;
 938
 939	arp = arp_hdr(skb);
 940	if (arp->ar_hln != dev->addr_len ||
 941	    dev->flags & IFF_NOARP ||
 942	    skb->pkt_type == PACKET_OTHERHOST ||
 943	    skb->pkt_type == PACKET_LOOPBACK ||
 944	    arp->ar_pln != 4)
 945		goto freeskb;
 946
 947	skb = skb_share_check(skb, GFP_ATOMIC);
 948	if (skb == NULL)
 949		goto out_of_mem;
 950
 951	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 952
 953	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 954
 955freeskb:
 956	kfree_skb(skb);
 957out_of_mem:
 958	return 0;
 959}
 960
 961/*
 962 *	User level interface (ioctl)
 963 */
 964
 965/*
 966 *	Set (create) an ARP cache entry.
 967 */
 968
 969static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 970{
 971	if (dev == NULL) {
 972		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 973		return 0;
 974	}
 975	if (__in_dev_get_rtnl(dev)) {
 976		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 977		return 0;
 978	}
 979	return -ENXIO;
 980}
 981
 982static int arp_req_set_public(struct net *net, struct arpreq *r,
 983		struct net_device *dev)
 984{
 985	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 986	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
 987
 988	if (mask && mask != htonl(0xFFFFFFFF))
 989		return -EINVAL;
 990	if (!dev && (r->arp_flags & ATF_COM)) {
 991		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
 992				      r->arp_ha.sa_data);
 993		if (!dev)
 994			return -ENODEV;
 995	}
 996	if (mask) {
 997		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
 998			return -ENOBUFS;
 999		return 0;
1000	}
1001
1002	return arp_req_set_proxy(net, dev, 1);
1003}
1004
1005static int arp_req_set(struct net *net, struct arpreq *r,
1006		       struct net_device *dev)
1007{
1008	__be32 ip;
1009	struct neighbour *neigh;
1010	int err;
1011
1012	if (r->arp_flags & ATF_PUBL)
1013		return arp_req_set_public(net, r, dev);
1014
1015	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1016	if (r->arp_flags & ATF_PERM)
1017		r->arp_flags |= ATF_COM;
1018	if (dev == NULL) {
1019		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1020
1021		if (IS_ERR(rt))
1022			return PTR_ERR(rt);
1023		dev = rt->dst.dev;
1024		ip_rt_put(rt);
1025		if (!dev)
1026			return -EINVAL;
1027	}
1028	switch (dev->type) {
1029#if IS_ENABLED(CONFIG_FDDI)
1030	case ARPHRD_FDDI:
1031		/*
1032		 * According to RFC 1390, FDDI devices should accept ARP
1033		 * hardware types of 1 (Ethernet).  However, to be more
1034		 * robust, we'll accept hardware types of either 1 (Ethernet)
1035		 * or 6 (IEEE 802.2).
1036		 */
1037		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1038		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1039		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1040			return -EINVAL;
1041		break;
1042#endif
1043	default:
1044		if (r->arp_ha.sa_family != dev->type)
1045			return -EINVAL;
1046		break;
1047	}
1048
1049	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1050	err = PTR_ERR(neigh);
1051	if (!IS_ERR(neigh)) {
1052		unsigned int state = NUD_STALE;
1053		if (r->arp_flags & ATF_PERM)
1054			state = NUD_PERMANENT;
1055		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1056				   r->arp_ha.sa_data : NULL, state,
1057				   NEIGH_UPDATE_F_OVERRIDE |
1058				   NEIGH_UPDATE_F_ADMIN);
1059		neigh_release(neigh);
1060	}
1061	return err;
1062}
1063
1064static unsigned int arp_state_to_flags(struct neighbour *neigh)
1065{
1066	if (neigh->nud_state&NUD_PERMANENT)
1067		return ATF_PERM | ATF_COM;
1068	else if (neigh->nud_state&NUD_VALID)
1069		return ATF_COM;
1070	else
1071		return 0;
1072}
1073
1074/*
1075 *	Get an ARP cache entry.
1076 */
1077
1078static int arp_req_get(struct arpreq *r, struct net_device *dev)
1079{
1080	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1081	struct neighbour *neigh;
1082	int err = -ENXIO;
1083
1084	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1085	if (neigh) {
1086		read_lock_bh(&neigh->lock);
1087		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1088		r->arp_flags = arp_state_to_flags(neigh);
1089		read_unlock_bh(&neigh->lock);
1090		r->arp_ha.sa_family = dev->type;
1091		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1092		neigh_release(neigh);
1093		err = 0;
1094	}
1095	return err;
1096}
1097
1098int arp_invalidate(struct net_device *dev, __be32 ip)
1099{
1100	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1101	int err = -ENXIO;
1102
1103	if (neigh) {
1104		if (neigh->nud_state & ~NUD_NOARP)
1105			err = neigh_update(neigh, NULL, NUD_FAILED,
1106					   NEIGH_UPDATE_F_OVERRIDE|
1107					   NEIGH_UPDATE_F_ADMIN);
1108		neigh_release(neigh);
1109	}
1110
1111	return err;
1112}
1113EXPORT_SYMBOL(arp_invalidate);
1114
1115static int arp_req_delete_public(struct net *net, struct arpreq *r,
1116		struct net_device *dev)
1117{
1118	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1119	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1120
1121	if (mask == htonl(0xFFFFFFFF))
1122		return pneigh_delete(&arp_tbl, net, &ip, dev);
1123
1124	if (mask)
1125		return -EINVAL;
1126
1127	return arp_req_set_proxy(net, dev, 0);
1128}
1129
1130static int arp_req_delete(struct net *net, struct arpreq *r,
1131			  struct net_device *dev)
1132{
1133	__be32 ip;
1134
1135	if (r->arp_flags & ATF_PUBL)
1136		return arp_req_delete_public(net, r, dev);
1137
1138	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1139	if (dev == NULL) {
1140		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1141		if (IS_ERR(rt))
1142			return PTR_ERR(rt);
1143		dev = rt->dst.dev;
1144		ip_rt_put(rt);
1145		if (!dev)
1146			return -EINVAL;
1147	}
1148	return arp_invalidate(dev, ip);
1149}
1150
1151/*
1152 *	Handle an ARP layer I/O control request.
1153 */
1154
1155int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1156{
1157	int err;
1158	struct arpreq r;
1159	struct net_device *dev = NULL;
1160
1161	switch (cmd) {
1162	case SIOCDARP:
1163	case SIOCSARP:
1164		if (!capable(CAP_NET_ADMIN))
1165			return -EPERM;
1166	case SIOCGARP:
1167		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1168		if (err)
1169			return -EFAULT;
1170		break;
1171	default:
1172		return -EINVAL;
1173	}
1174
1175	if (r.arp_pa.sa_family != AF_INET)
1176		return -EPFNOSUPPORT;
1177
1178	if (!(r.arp_flags & ATF_PUBL) &&
1179	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1180		return -EINVAL;
1181	if (!(r.arp_flags & ATF_NETMASK))
1182		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1183							   htonl(0xFFFFFFFFUL);
1184	rtnl_lock();
1185	if (r.arp_dev[0]) {
1186		err = -ENODEV;
1187		dev = __dev_get_by_name(net, r.arp_dev);
1188		if (dev == NULL)
1189			goto out;
1190
1191		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1192		if (!r.arp_ha.sa_family)
1193			r.arp_ha.sa_family = dev->type;
1194		err = -EINVAL;
1195		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1196			goto out;
1197	} else if (cmd == SIOCGARP) {
1198		err = -ENODEV;
1199		goto out;
1200	}
1201
1202	switch (cmd) {
1203	case SIOCDARP:
1204		err = arp_req_delete(net, &r, dev);
1205		break;
1206	case SIOCSARP:
1207		err = arp_req_set(net, &r, dev);
1208		break;
1209	case SIOCGARP:
1210		err = arp_req_get(&r, dev);
1211		break;
1212	}
1213out:
1214	rtnl_unlock();
1215	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1216		err = -EFAULT;
1217	return err;
1218}
1219
1220static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1221			    void *ptr)
1222{
1223	struct net_device *dev = ptr;
 
1224
1225	switch (event) {
1226	case NETDEV_CHANGEADDR:
1227		neigh_changeaddr(&arp_tbl, dev);
1228		rt_cache_flush(dev_net(dev), 0);
 
 
 
 
 
1229		break;
1230	default:
1231		break;
1232	}
1233
1234	return NOTIFY_DONE;
1235}
1236
1237static struct notifier_block arp_netdev_notifier = {
1238	.notifier_call = arp_netdev_event,
1239};
1240
1241/* Note, that it is not on notifier chain.
1242   It is necessary, that this routine was called after route cache will be
1243   flushed.
1244 */
1245void arp_ifdown(struct net_device *dev)
1246{
1247	neigh_ifdown(&arp_tbl, dev);
1248}
1249
1250
1251/*
1252 *	Called once on startup.
1253 */
1254
1255static struct packet_type arp_packet_type __read_mostly = {
1256	.type =	cpu_to_be16(ETH_P_ARP),
1257	.func =	arp_rcv,
1258};
1259
1260static int arp_proc_init(void);
1261
1262void __init arp_init(void)
1263{
1264	neigh_table_init(&arp_tbl);
1265
1266	dev_add_pack(&arp_packet_type);
1267	arp_proc_init();
1268#ifdef CONFIG_SYSCTL
1269	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1270#endif
1271	register_netdevice_notifier(&arp_netdev_notifier);
1272}
1273
1274#ifdef CONFIG_PROC_FS
1275#if IS_ENABLED(CONFIG_AX25)
1276
1277/* ------------------------------------------------------------------------ */
1278/*
1279 *	ax25 -> ASCII conversion
1280 */
1281static char *ax2asc2(ax25_address *a, char *buf)
1282{
1283	char c, *s;
1284	int n;
1285
1286	for (n = 0, s = buf; n < 6; n++) {
1287		c = (a->ax25_call[n] >> 1) & 0x7F;
1288
1289		if (c != ' ')
1290			*s++ = c;
1291	}
1292
1293	*s++ = '-';
1294	n = (a->ax25_call[6] >> 1) & 0x0F;
1295	if (n > 9) {
1296		*s++ = '1';
1297		n -= 10;
1298	}
1299
1300	*s++ = n + '0';
1301	*s++ = '\0';
1302
1303	if (*buf == '\0' || *buf == '-')
1304		return "*";
1305
1306	return buf;
1307}
1308#endif /* CONFIG_AX25 */
1309
1310#define HBUFFERLEN 30
1311
1312static void arp_format_neigh_entry(struct seq_file *seq,
1313				   struct neighbour *n)
1314{
1315	char hbuffer[HBUFFERLEN];
1316	int k, j;
1317	char tbuf[16];
1318	struct net_device *dev = n->dev;
1319	int hatype = dev->type;
1320
1321	read_lock(&n->lock);
1322	/* Convert hardware address to XX:XX:XX:XX ... form. */
1323#if IS_ENABLED(CONFIG_AX25)
1324	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1325		ax2asc2((ax25_address *)n->ha, hbuffer);
1326	else {
1327#endif
1328	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1329		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1330		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1331		hbuffer[k++] = ':';
1332	}
1333	if (k != 0)
1334		--k;
1335	hbuffer[k] = 0;
1336#if IS_ENABLED(CONFIG_AX25)
1337	}
1338#endif
1339	sprintf(tbuf, "%pI4", n->primary_key);
1340	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1341		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1342	read_unlock(&n->lock);
1343}
1344
1345static void arp_format_pneigh_entry(struct seq_file *seq,
1346				    struct pneigh_entry *n)
1347{
1348	struct net_device *dev = n->dev;
1349	int hatype = dev ? dev->type : 0;
1350	char tbuf[16];
1351
1352	sprintf(tbuf, "%pI4", n->key);
1353	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1354		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1355		   dev ? dev->name : "*");
1356}
1357
1358static int arp_seq_show(struct seq_file *seq, void *v)
1359{
1360	if (v == SEQ_START_TOKEN) {
1361		seq_puts(seq, "IP address       HW type     Flags       "
1362			      "HW address            Mask     Device\n");
1363	} else {
1364		struct neigh_seq_state *state = seq->private;
1365
1366		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1367			arp_format_pneigh_entry(seq, v);
1368		else
1369			arp_format_neigh_entry(seq, v);
1370	}
1371
1372	return 0;
1373}
1374
1375static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1376{
1377	/* Don't want to confuse "arp -a" w/ magic entries,
1378	 * so we tell the generic iterator to skip NUD_NOARP.
1379	 */
1380	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1381}
1382
1383/* ------------------------------------------------------------------------ */
1384
1385static const struct seq_operations arp_seq_ops = {
1386	.start	= arp_seq_start,
1387	.next	= neigh_seq_next,
1388	.stop	= neigh_seq_stop,
1389	.show	= arp_seq_show,
1390};
1391
1392static int arp_seq_open(struct inode *inode, struct file *file)
1393{
1394	return seq_open_net(inode, file, &arp_seq_ops,
1395			    sizeof(struct neigh_seq_state));
1396}
1397
1398static const struct file_operations arp_seq_fops = {
1399	.owner		= THIS_MODULE,
1400	.open           = arp_seq_open,
1401	.read           = seq_read,
1402	.llseek         = seq_lseek,
1403	.release	= seq_release_net,
1404};
1405
1406
1407static int __net_init arp_net_init(struct net *net)
1408{
1409	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1410		return -ENOMEM;
1411	return 0;
1412}
1413
1414static void __net_exit arp_net_exit(struct net *net)
1415{
1416	proc_net_remove(net, "arp");
1417}
1418
1419static struct pernet_operations arp_net_ops = {
1420	.init = arp_net_init,
1421	.exit = arp_net_exit,
1422};
1423
1424static int __init arp_proc_init(void)
1425{
1426	return register_pernet_subsys(&arp_net_ops);
1427}
1428
1429#else /* CONFIG_PROC_FS */
1430
1431static int __init arp_proc_init(void)
1432{
1433	return 0;
1434}
1435
1436#endif /* CONFIG_PROC_FS */