Linux Audio

Check our new training course

Loading...
v3.15
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
 
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 
 
 
 
 
 116
 
 117#include <linux/uaccess.h>
 118
 119#include <linux/netfilter_arp.h>
 120
 121/*
 122 *	Interface to generic neighbour cache.
 123 */
 124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 125static int arp_constructor(struct neighbour *neigh);
 126static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 127static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 128static void parp_redo(struct sk_buff *skb);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152static const struct neigh_ops arp_broken_ops = {
 153	.family =		AF_INET,
 154	.solicit =		arp_solicit,
 155	.error_report =		arp_error_report,
 156	.output =		neigh_compat_output,
 157	.connected_output =	neigh_compat_output,
 158};
 159
 160struct neigh_table arp_tbl = {
 161	.family		= AF_INET,
 
 162	.key_len	= 4,
 163	.hash		= arp_hash,
 164	.constructor	= arp_constructor,
 165	.proxy_redo	= parp_redo,
 166	.id		= "arp_cache",
 167	.parms		= {
 168		.tbl			= &arp_tbl,
 
 
 
 169		.reachable_time		= 30 * HZ,
 170		.data	= {
 171			[NEIGH_VAR_MCAST_PROBES] = 3,
 172			[NEIGH_VAR_UCAST_PROBES] = 3,
 173			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 174			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 175			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 176			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 177			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
 178			[NEIGH_VAR_PROXY_QLEN] = 64,
 179			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 180			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 181			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 182		},
 183	},
 184	.gc_interval	= 30 * HZ,
 185	.gc_thresh1	= 128,
 186	.gc_thresh2	= 512,
 187	.gc_thresh3	= 1024,
 188};
 189EXPORT_SYMBOL(arp_tbl);
 190
 191int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 192{
 193	switch (dev->type) {
 194	case ARPHRD_ETHER:
 195	case ARPHRD_FDDI:
 196	case ARPHRD_IEEE802:
 197		ip_eth_mc_map(addr, haddr);
 198		return 0;
 
 
 
 199	case ARPHRD_INFINIBAND:
 200		ip_ib_mc_map(addr, dev->broadcast, haddr);
 201		return 0;
 202	case ARPHRD_IPGRE:
 203		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 204		return 0;
 205	default:
 206		if (dir) {
 207			memcpy(haddr, dev->broadcast, dev->addr_len);
 208			return 0;
 209		}
 210	}
 211	return -EINVAL;
 212}
 213
 214
 215static u32 arp_hash(const void *pkey,
 216		    const struct net_device *dev,
 217		    __u32 *hash_rnd)
 218{
 219	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
 220}
 221
 222static int arp_constructor(struct neighbour *neigh)
 223{
 224	__be32 addr = *(__be32 *)neigh->primary_key;
 225	struct net_device *dev = neigh->dev;
 226	struct in_device *in_dev;
 227	struct neigh_parms *parms;
 228
 229	rcu_read_lock();
 230	in_dev = __in_dev_get_rcu(dev);
 231	if (in_dev == NULL) {
 232		rcu_read_unlock();
 233		return -EINVAL;
 234	}
 235
 236	neigh->type = inet_addr_type(dev_net(dev), addr);
 237
 238	parms = in_dev->arp_parms;
 239	__neigh_parms_put(neigh->parms);
 240	neigh->parms = neigh_parms_clone(parms);
 241	rcu_read_unlock();
 242
 243	if (!dev->header_ops) {
 244		neigh->nud_state = NUD_NOARP;
 245		neigh->ops = &arp_direct_ops;
 246		neigh->output = neigh_direct_output;
 247	} else {
 248		/* Good devices (checked by reading texts, but only Ethernet is
 249		   tested)
 250
 251		   ARPHRD_ETHER: (ethernet, apfddi)
 252		   ARPHRD_FDDI: (fddi)
 253		   ARPHRD_IEEE802: (tr)
 254		   ARPHRD_METRICOM: (strip)
 255		   ARPHRD_ARCNET:
 256		   etc. etc. etc.
 257
 258		   ARPHRD_IPDDP will also work, if author repairs it.
 259		   I did not it, because this driver does not work even
 260		   in old paradigm.
 261		 */
 262
 263#if 1
 264		/* So... these "amateur" devices are hopeless.
 265		   The only thing, that I can say now:
 266		   It is very sad that we need to keep ugly obsolete
 267		   code to make them happy.
 268
 269		   They should be moved to more reasonable state, now
 270		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 271		   Besides that, they are sort of out of date
 272		   (a lot of redundant clones/copies, useless in 2.1),
 273		   I wonder why people believe that they work.
 274		 */
 275		switch (dev->type) {
 276		default:
 277			break;
 278		case ARPHRD_ROSE:
 279#if IS_ENABLED(CONFIG_AX25)
 280		case ARPHRD_AX25:
 281#if IS_ENABLED(CONFIG_NETROM)
 282		case ARPHRD_NETROM:
 283#endif
 284			neigh->ops = &arp_broken_ops;
 285			neigh->output = neigh->ops->output;
 286			return 0;
 287#else
 288			break;
 289#endif
 290		}
 291#endif
 292		if (neigh->type == RTN_MULTICAST) {
 293			neigh->nud_state = NUD_NOARP;
 294			arp_mc_map(addr, neigh->ha, dev, 1);
 295		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 296			neigh->nud_state = NUD_NOARP;
 297			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 298		} else if (neigh->type == RTN_BROADCAST ||
 299			   (dev->flags & IFF_POINTOPOINT)) {
 300			neigh->nud_state = NUD_NOARP;
 301			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 302		}
 303
 304		if (dev->header_ops->cache)
 305			neigh->ops = &arp_hh_ops;
 306		else
 307			neigh->ops = &arp_generic_ops;
 308
 309		if (neigh->nud_state & NUD_VALID)
 310			neigh->output = neigh->ops->connected_output;
 311		else
 312			neigh->output = neigh->ops->output;
 313	}
 314	return 0;
 315}
 316
 317static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 318{
 319	dst_link_failure(skb);
 320	kfree_skb(skb);
 321}
 322
 323static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 324{
 325	__be32 saddr = 0;
 326	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 327	struct net_device *dev = neigh->dev;
 328	__be32 target = *(__be32 *)neigh->primary_key;
 329	int probes = atomic_read(&neigh->probes);
 330	struct in_device *in_dev;
 331
 332	rcu_read_lock();
 333	in_dev = __in_dev_get_rcu(dev);
 334	if (!in_dev) {
 335		rcu_read_unlock();
 336		return;
 337	}
 338	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 339	default:
 340	case 0:		/* By default announce any local IP */
 341		if (skb && inet_addr_type(dev_net(dev),
 342					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 343			saddr = ip_hdr(skb)->saddr;
 344		break;
 345	case 1:		/* Restrict announcements of saddr in same subnet */
 346		if (!skb)
 347			break;
 348		saddr = ip_hdr(skb)->saddr;
 349		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 350			/* saddr should be known to target */
 351			if (inet_addr_onlink(in_dev, target, saddr))
 352				break;
 353		}
 354		saddr = 0;
 355		break;
 356	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 357		break;
 358	}
 359	rcu_read_unlock();
 360
 361	if (!saddr)
 362		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 363
 364	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 365	if (probes < 0) {
 366		if (!(neigh->nud_state & NUD_VALID))
 367			pr_debug("trying to ucast probe in NUD_INVALID\n");
 368		neigh_ha_snapshot(dst_ha, neigh, dev);
 369		dst_hw = dst_ha;
 
 370	} else {
 371		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 372		if (probes < 0) {
 
 373			neigh_app_ns(neigh);
 
 374			return;
 375		}
 376	}
 377
 378	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 379		 dst_hw, dev->dev_addr, NULL);
 
 
 380}
 381
 382static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 383{
 384	struct net *net = dev_net(in_dev->dev);
 385	int scope;
 386
 387	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 388	case 0:	/* Reply, the tip is already validated */
 389		return 0;
 390	case 1:	/* Reply only if tip is configured on the incoming interface */
 391		sip = 0;
 392		scope = RT_SCOPE_HOST;
 393		break;
 394	case 2:	/*
 395		 * Reply only if tip is configured on the incoming interface
 396		 * and is in same subnet as sip
 397		 */
 398		scope = RT_SCOPE_HOST;
 399		break;
 400	case 3:	/* Do not reply for scope host addresses */
 401		sip = 0;
 402		scope = RT_SCOPE_LINK;
 403		in_dev = NULL;
 404		break;
 405	case 4:	/* Reserved */
 406	case 5:
 407	case 6:
 408	case 7:
 409		return 0;
 410	case 8:	/* Do not reply */
 411		return 1;
 412	default:
 413		return 0;
 414	}
 415	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 416}
 417
 418static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 419{
 420	struct rtable *rt;
 421	int flag = 0;
 422	/*unsigned long now; */
 423	struct net *net = dev_net(dev);
 424
 425	rt = ip_route_output(net, sip, tip, 0, 0);
 426	if (IS_ERR(rt))
 427		return 1;
 428	if (rt->dst.dev != dev) {
 429		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 430		flag = 1;
 431	}
 432	ip_rt_put(rt);
 433	return flag;
 434}
 435
 436/* OBSOLETE FUNCTIONS */
 437
 438/*
 439 *	Find an arp mapping in the cache. If not found, post a request.
 440 *
 441 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 442 *	even if it exists. It is supposed that skb->dev was mangled
 443 *	by a virtual device (eql, shaper). Nobody but broken devices
 444 *	is allowed to use this function, it is scheduled to be removed. --ANK
 445 */
 446
 447static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 448			      __be32 paddr, struct net_device *dev)
 449{
 450	switch (addr_hint) {
 451	case RTN_LOCAL:
 452		pr_debug("arp called for own IP address\n");
 453		memcpy(haddr, dev->dev_addr, dev->addr_len);
 454		return 1;
 455	case RTN_MULTICAST:
 456		arp_mc_map(paddr, haddr, dev, 1);
 457		return 1;
 458	case RTN_BROADCAST:
 459		memcpy(haddr, dev->broadcast, dev->addr_len);
 460		return 1;
 461	}
 462	return 0;
 463}
 464
 465
 466int arp_find(unsigned char *haddr, struct sk_buff *skb)
 467{
 468	struct net_device *dev = skb->dev;
 469	__be32 paddr;
 470	struct neighbour *n;
 471
 472	if (!skb_dst(skb)) {
 473		pr_debug("arp_find is called with dst==NULL\n");
 474		kfree_skb(skb);
 475		return 1;
 476	}
 477
 478	paddr = rt_nexthop(skb_rtable(skb), ip_hdr(skb)->daddr);
 
 479	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 480			       paddr, dev))
 481		return 0;
 482
 483	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 484
 485	if (n) {
 486		n->used = jiffies;
 487		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 488			neigh_ha_snapshot(haddr, n, dev);
 489			neigh_release(n);
 490			return 0;
 491		}
 492		neigh_release(n);
 493	} else
 494		kfree_skb(skb);
 495	return 1;
 496}
 497EXPORT_SYMBOL(arp_find);
 498
 499/* END OF OBSOLETE FUNCTIONS */
 500
 501/*
 502 * Check if we can use proxy ARP for this path
 503 */
 504static inline int arp_fwd_proxy(struct in_device *in_dev,
 505				struct net_device *dev,	struct rtable *rt)
 506{
 507	struct in_device *out_dev;
 508	int imi, omi = -1;
 509
 510	if (rt->dst.dev == dev)
 511		return 0;
 512
 513	if (!IN_DEV_PROXY_ARP(in_dev))
 514		return 0;
 515	imi = IN_DEV_MEDIUM_ID(in_dev);
 516	if (imi == 0)
 517		return 1;
 518	if (imi == -1)
 519		return 0;
 520
 521	/* place to check for proxy_arp for routes */
 522
 523	out_dev = __in_dev_get_rcu(rt->dst.dev);
 524	if (out_dev)
 525		omi = IN_DEV_MEDIUM_ID(out_dev);
 526
 527	return omi != imi && omi != -1;
 528}
 529
 530/*
 531 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 532 *
 533 * RFC3069 supports proxy arp replies back to the same interface.  This
 534 * is done to support (ethernet) switch features, like RFC 3069, where
 535 * the individual ports are not allowed to communicate with each
 536 * other, BUT they are allowed to talk to the upstream router.  As
 537 * described in RFC 3069, it is possible to allow these hosts to
 538 * communicate through the upstream router, by proxy_arp'ing.
 539 *
 540 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 541 *
 542 *  This technology is known by different names:
 543 *    In RFC 3069 it is called VLAN Aggregation.
 544 *    Cisco and Allied Telesyn call it Private VLAN.
 545 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 546 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 547 *
 548 */
 549static inline int arp_fwd_pvlan(struct in_device *in_dev,
 550				struct net_device *dev,	struct rtable *rt,
 551				__be32 sip, __be32 tip)
 552{
 553	/* Private VLAN is only concerned about the same ethernet segment */
 554	if (rt->dst.dev != dev)
 555		return 0;
 556
 557	/* Don't reply on self probes (often done by windowz boxes)*/
 558	if (sip == tip)
 559		return 0;
 560
 561	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 562		return 1;
 563	else
 564		return 0;
 565}
 566
 567/*
 568 *	Interface to link layer: send routine and receive handler.
 569 */
 570
 571/*
 572 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 573 *	message.
 574 */
 575struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 576			   struct net_device *dev, __be32 src_ip,
 577			   const unsigned char *dest_hw,
 578			   const unsigned char *src_hw,
 579			   const unsigned char *target_hw)
 580{
 581	struct sk_buff *skb;
 582	struct arphdr *arp;
 583	unsigned char *arp_ptr;
 584	int hlen = LL_RESERVED_SPACE(dev);
 585	int tlen = dev->needed_tailroom;
 586
 587	/*
 588	 *	Allocate a buffer
 589	 */
 590
 591	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 592	if (skb == NULL)
 593		return NULL;
 594
 595	skb_reserve(skb, hlen);
 596	skb_reset_network_header(skb);
 597	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 598	skb->dev = dev;
 599	skb->protocol = htons(ETH_P_ARP);
 600	if (src_hw == NULL)
 601		src_hw = dev->dev_addr;
 602	if (dest_hw == NULL)
 603		dest_hw = dev->broadcast;
 604
 605	/*
 606	 *	Fill the device header for the ARP frame
 607	 */
 608	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 609		goto out;
 610
 611	/*
 612	 * Fill out the arp protocol part.
 613	 *
 614	 * The arp hardware type should match the device type, except for FDDI,
 615	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 616	 */
 617	/*
 618	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 619	 *	DIX code for the protocol. Make these device structure fields.
 620	 */
 621	switch (dev->type) {
 622	default:
 623		arp->ar_hrd = htons(dev->type);
 624		arp->ar_pro = htons(ETH_P_IP);
 625		break;
 626
 627#if IS_ENABLED(CONFIG_AX25)
 628	case ARPHRD_AX25:
 629		arp->ar_hrd = htons(ARPHRD_AX25);
 630		arp->ar_pro = htons(AX25_P_IP);
 631		break;
 632
 633#if IS_ENABLED(CONFIG_NETROM)
 634	case ARPHRD_NETROM:
 635		arp->ar_hrd = htons(ARPHRD_NETROM);
 636		arp->ar_pro = htons(AX25_P_IP);
 637		break;
 638#endif
 639#endif
 640
 641#if IS_ENABLED(CONFIG_FDDI)
 642	case ARPHRD_FDDI:
 643		arp->ar_hrd = htons(ARPHRD_ETHER);
 644		arp->ar_pro = htons(ETH_P_IP);
 645		break;
 646#endif
 
 
 
 
 
 
 647	}
 648
 649	arp->ar_hln = dev->addr_len;
 650	arp->ar_pln = 4;
 651	arp->ar_op = htons(type);
 652
 653	arp_ptr = (unsigned char *)(arp + 1);
 654
 655	memcpy(arp_ptr, src_hw, dev->addr_len);
 656	arp_ptr += dev->addr_len;
 657	memcpy(arp_ptr, &src_ip, 4);
 658	arp_ptr += 4;
 659
 660	switch (dev->type) {
 661#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 662	case ARPHRD_IEEE1394:
 663		break;
 664#endif
 665	default:
 666		if (target_hw != NULL)
 667			memcpy(arp_ptr, target_hw, dev->addr_len);
 668		else
 669			memset(arp_ptr, 0, dev->addr_len);
 670		arp_ptr += dev->addr_len;
 671	}
 672	memcpy(arp_ptr, &dest_ip, 4);
 673
 674	return skb;
 675
 676out:
 677	kfree_skb(skb);
 678	return NULL;
 679}
 680EXPORT_SYMBOL(arp_create);
 681
 682/*
 683 *	Send an arp packet.
 684 */
 685void arp_xmit(struct sk_buff *skb)
 686{
 687	/* Send it off, maybe filter it using firewalling first.  */
 688	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 689}
 690EXPORT_SYMBOL(arp_xmit);
 691
 692/*
 693 *	Create and send an arp packet.
 694 */
 695void arp_send(int type, int ptype, __be32 dest_ip,
 696	      struct net_device *dev, __be32 src_ip,
 697	      const unsigned char *dest_hw, const unsigned char *src_hw,
 698	      const unsigned char *target_hw)
 699{
 700	struct sk_buff *skb;
 701
 702	/*
 703	 *	No arp on this interface.
 704	 */
 705
 706	if (dev->flags&IFF_NOARP)
 707		return;
 708
 709	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 710			 dest_hw, src_hw, target_hw);
 711	if (skb == NULL)
 712		return;
 713
 714	arp_xmit(skb);
 715}
 716EXPORT_SYMBOL(arp_send);
 717
 718/*
 719 *	Process an arp request.
 720 */
 721
 722static int arp_process(struct sk_buff *skb)
 723{
 724	struct net_device *dev = skb->dev;
 725	struct in_device *in_dev = __in_dev_get_rcu(dev);
 726	struct arphdr *arp;
 727	unsigned char *arp_ptr;
 728	struct rtable *rt;
 729	unsigned char *sha;
 730	__be32 sip, tip;
 731	u16 dev_type = dev->type;
 732	int addr_type;
 733	struct neighbour *n;
 734	struct net *net = dev_net(dev);
 735	bool is_garp = false;
 736
 737	/* arp_rcv below verifies the ARP header and verifies the device
 738	 * is ARP'able.
 739	 */
 740
 741	if (in_dev == NULL)
 742		goto out;
 743
 744	arp = arp_hdr(skb);
 745
 746	switch (dev_type) {
 747	default:
 748		if (arp->ar_pro != htons(ETH_P_IP) ||
 749		    htons(dev_type) != arp->ar_hrd)
 750			goto out;
 751		break;
 752	case ARPHRD_ETHER:
 
 753	case ARPHRD_FDDI:
 754	case ARPHRD_IEEE802:
 755		/*
 756		 * ETHERNET, and Fibre Channel (which are IEEE 802
 757		 * devices, according to RFC 2625) devices will accept ARP
 758		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 759		 * This is the case also of FDDI, where the RFC 1390 says that
 760		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 761		 * however, to be more robust, we'll accept both 1 (Ethernet)
 762		 * or 6 (IEEE 802.2)
 763		 */
 764		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 765		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 766		    arp->ar_pro != htons(ETH_P_IP))
 767			goto out;
 768		break;
 769	case ARPHRD_AX25:
 770		if (arp->ar_pro != htons(AX25_P_IP) ||
 771		    arp->ar_hrd != htons(ARPHRD_AX25))
 772			goto out;
 773		break;
 774	case ARPHRD_NETROM:
 775		if (arp->ar_pro != htons(AX25_P_IP) ||
 776		    arp->ar_hrd != htons(ARPHRD_NETROM))
 777			goto out;
 778		break;
 779	}
 780
 781	/* Understand only these message types */
 782
 783	if (arp->ar_op != htons(ARPOP_REPLY) &&
 784	    arp->ar_op != htons(ARPOP_REQUEST))
 785		goto out;
 786
 787/*
 788 *	Extract fields
 789 */
 790	arp_ptr = (unsigned char *)(arp + 1);
 791	sha	= arp_ptr;
 792	arp_ptr += dev->addr_len;
 793	memcpy(&sip, arp_ptr, 4);
 794	arp_ptr += 4;
 795	switch (dev_type) {
 796#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 797	case ARPHRD_IEEE1394:
 798		break;
 799#endif
 800	default:
 801		arp_ptr += dev->addr_len;
 802	}
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_multicast(tip) ||
 809	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 810		goto out;
 811
 812/*
 813 *     Special case: We must set Frame Relay source Q.922 address
 814 */
 815	if (dev_type == ARPHRD_DLCI)
 816		sha = dev->broadcast;
 817
 818/*
 819 *  Process entry.  The idea here is we want to send a reply if it is a
 820 *  request for us or if it is a request for someone else that we hold
 821 *  a proxy for.  We want to add an entry to our cache if it is a reply
 822 *  to us or if it is a request for our address.
 823 *  (The assumption for this last is that if someone is requesting our
 824 *  address, they are probably intending to talk to us, so it saves time
 825 *  if we cache their address.  Their address is also probably not in
 826 *  our cache, since ours is not in their cache.)
 827 *
 828 *  Putting this another way, we only care about replies if they are to
 829 *  us, in which case we add them to the cache.  For requests, we care
 830 *  about those for us and those for our proxies.  We reply to both,
 831 *  and in the case of requests for us we add the requester to the arp
 832 *  cache.
 833 */
 834
 835	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 836	if (sip == 0) {
 837		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 838		    inet_addr_type(net, tip) == RTN_LOCAL &&
 839		    !arp_ignore(in_dev, sip, tip))
 840			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 841				 dev->dev_addr, sha);
 842		goto out;
 843	}
 844
 845	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 846	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 847
 848		rt = skb_rtable(skb);
 849		addr_type = rt->rt_type;
 850
 851		if (addr_type == RTN_LOCAL) {
 852			int dont_send;
 853
 854			dont_send = arp_ignore(in_dev, sip, tip);
 855			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 856				dont_send = arp_filter(sip, tip, dev);
 857			if (!dont_send) {
 858				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 859				if (n) {
 860					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 861						 dev, tip, sha, dev->dev_addr,
 862						 sha);
 863					neigh_release(n);
 864				}
 865			}
 866			goto out;
 867		} else if (IN_DEV_FORWARD(in_dev)) {
 868			if (addr_type == RTN_UNICAST  &&
 869			    (arp_fwd_proxy(in_dev, dev, rt) ||
 870			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 871			     (rt->dst.dev != dev &&
 872			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 873				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 874				if (n)
 875					neigh_release(n);
 876
 877				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 878				    skb->pkt_type == PACKET_HOST ||
 879				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 880					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 881						 dev, tip, sha, dev->dev_addr,
 882						 sha);
 883				} else {
 884					pneigh_enqueue(&arp_tbl,
 885						       in_dev->arp_parms, skb);
 886					return 0;
 887				}
 888				goto out;
 889			}
 890		}
 891	}
 892
 893	/* Update our ARP tables */
 894
 895	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 896
 897	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 898		/* Unsolicited ARP is not accepted by default.
 899		   It is possible, that this option should be enabled for some
 900		   devices (strip is candidate)
 901		 */
 902		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
 903			  inet_addr_type(net, sip) == RTN_UNICAST;
 904
 905		if (n == NULL &&
 906		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
 907		      inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
 
 908			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 909	}
 910
 911	if (n) {
 912		int state = NUD_REACHABLE;
 913		int override;
 914
 915		/* If several different ARP replies follows back-to-back,
 916		   use the FIRST one. It is possible, if several proxy
 917		   agents are active. Taking the first reply prevents
 918		   arp trashing and chooses the fastest router.
 919		 */
 920		override = time_after(jiffies,
 921				      n->updated +
 922				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 923			   is_garp;
 924
 925		/* Broadcast replies and request packets
 926		   do not assert neighbour reachability.
 927		 */
 928		if (arp->ar_op != htons(ARPOP_REPLY) ||
 929		    skb->pkt_type != PACKET_HOST)
 930			state = NUD_STALE;
 931		neigh_update(n, sha, state,
 932			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 933		neigh_release(n);
 934	}
 935
 936out:
 937	consume_skb(skb);
 938	return 0;
 939}
 940
 941static void parp_redo(struct sk_buff *skb)
 942{
 943	arp_process(skb);
 944}
 945
 946
 947/*
 948 *	Receive an arp request from the device layer.
 949 */
 950
 951static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 952		   struct packet_type *pt, struct net_device *orig_dev)
 953{
 954	const struct arphdr *arp;
 955
 956	if (dev->flags & IFF_NOARP ||
 957	    skb->pkt_type == PACKET_OTHERHOST ||
 958	    skb->pkt_type == PACKET_LOOPBACK)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (!skb)
 963		goto out_of_mem;
 964
 965	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 966	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 967		goto freeskb;
 968
 969	arp = arp_hdr(skb);
 970	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 
 
 
 
 971		goto freeskb;
 972
 
 
 
 
 973	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 974
 975	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 976
 977freeskb:
 978	kfree_skb(skb);
 979out_of_mem:
 980	return 0;
 981}
 982
 983/*
 984 *	User level interface (ioctl)
 985 */
 986
 987/*
 988 *	Set (create) an ARP cache entry.
 989 */
 990
 991static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 992{
 993	if (dev == NULL) {
 994		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 995		return 0;
 996	}
 997	if (__in_dev_get_rtnl(dev)) {
 998		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 999		return 0;
1000	}
1001	return -ENXIO;
1002}
1003
1004static int arp_req_set_public(struct net *net, struct arpreq *r,
1005		struct net_device *dev)
1006{
1007	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1008	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1009
1010	if (mask && mask != htonl(0xFFFFFFFF))
1011		return -EINVAL;
1012	if (!dev && (r->arp_flags & ATF_COM)) {
1013		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1014				      r->arp_ha.sa_data);
1015		if (!dev)
1016			return -ENODEV;
1017	}
1018	if (mask) {
1019		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1020			return -ENOBUFS;
1021		return 0;
1022	}
1023
1024	return arp_req_set_proxy(net, dev, 1);
1025}
1026
1027static int arp_req_set(struct net *net, struct arpreq *r,
1028		       struct net_device *dev)
1029{
1030	__be32 ip;
1031	struct neighbour *neigh;
1032	int err;
1033
1034	if (r->arp_flags & ATF_PUBL)
1035		return arp_req_set_public(net, r, dev);
1036
1037	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1038	if (r->arp_flags & ATF_PERM)
1039		r->arp_flags |= ATF_COM;
1040	if (dev == NULL) {
1041		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1042
1043		if (IS_ERR(rt))
1044			return PTR_ERR(rt);
1045		dev = rt->dst.dev;
1046		ip_rt_put(rt);
1047		if (!dev)
1048			return -EINVAL;
1049	}
1050	switch (dev->type) {
1051#if IS_ENABLED(CONFIG_FDDI)
1052	case ARPHRD_FDDI:
1053		/*
1054		 * According to RFC 1390, FDDI devices should accept ARP
1055		 * hardware types of 1 (Ethernet).  However, to be more
1056		 * robust, we'll accept hardware types of either 1 (Ethernet)
1057		 * or 6 (IEEE 802.2).
1058		 */
1059		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1060		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1061		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1062			return -EINVAL;
1063		break;
1064#endif
1065	default:
1066		if (r->arp_ha.sa_family != dev->type)
1067			return -EINVAL;
1068		break;
1069	}
1070
1071	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1072	err = PTR_ERR(neigh);
1073	if (!IS_ERR(neigh)) {
1074		unsigned int state = NUD_STALE;
1075		if (r->arp_flags & ATF_PERM)
1076			state = NUD_PERMANENT;
1077		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1078				   r->arp_ha.sa_data : NULL, state,
1079				   NEIGH_UPDATE_F_OVERRIDE |
1080				   NEIGH_UPDATE_F_ADMIN);
1081		neigh_release(neigh);
1082	}
1083	return err;
1084}
1085
1086static unsigned int arp_state_to_flags(struct neighbour *neigh)
1087{
1088	if (neigh->nud_state&NUD_PERMANENT)
1089		return ATF_PERM | ATF_COM;
1090	else if (neigh->nud_state&NUD_VALID)
1091		return ATF_COM;
1092	else
1093		return 0;
1094}
1095
1096/*
1097 *	Get an ARP cache entry.
1098 */
1099
1100static int arp_req_get(struct arpreq *r, struct net_device *dev)
1101{
1102	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1103	struct neighbour *neigh;
1104	int err = -ENXIO;
1105
1106	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1107	if (neigh) {
1108		read_lock_bh(&neigh->lock);
1109		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1110		r->arp_flags = arp_state_to_flags(neigh);
1111		read_unlock_bh(&neigh->lock);
1112		r->arp_ha.sa_family = dev->type;
1113		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1114		neigh_release(neigh);
1115		err = 0;
1116	}
1117	return err;
1118}
1119
1120static int arp_invalidate(struct net_device *dev, __be32 ip)
1121{
1122	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1123	int err = -ENXIO;
1124
1125	if (neigh) {
1126		if (neigh->nud_state & ~NUD_NOARP)
1127			err = neigh_update(neigh, NULL, NUD_FAILED,
1128					   NEIGH_UPDATE_F_OVERRIDE|
1129					   NEIGH_UPDATE_F_ADMIN);
1130		neigh_release(neigh);
1131	}
1132
1133	return err;
1134}
 
1135
1136static int arp_req_delete_public(struct net *net, struct arpreq *r,
1137		struct net_device *dev)
1138{
1139	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1140	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1141
1142	if (mask == htonl(0xFFFFFFFF))
1143		return pneigh_delete(&arp_tbl, net, &ip, dev);
1144
1145	if (mask)
1146		return -EINVAL;
1147
1148	return arp_req_set_proxy(net, dev, 0);
1149}
1150
1151static int arp_req_delete(struct net *net, struct arpreq *r,
1152			  struct net_device *dev)
1153{
1154	__be32 ip;
1155
1156	if (r->arp_flags & ATF_PUBL)
1157		return arp_req_delete_public(net, r, dev);
1158
1159	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1160	if (dev == NULL) {
1161		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1162		if (IS_ERR(rt))
1163			return PTR_ERR(rt);
1164		dev = rt->dst.dev;
1165		ip_rt_put(rt);
1166		if (!dev)
1167			return -EINVAL;
1168	}
1169	return arp_invalidate(dev, ip);
1170}
1171
1172/*
1173 *	Handle an ARP layer I/O control request.
1174 */
1175
1176int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1177{
1178	int err;
1179	struct arpreq r;
1180	struct net_device *dev = NULL;
1181
1182	switch (cmd) {
1183	case SIOCDARP:
1184	case SIOCSARP:
1185		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1186			return -EPERM;
1187	case SIOCGARP:
1188		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1189		if (err)
1190			return -EFAULT;
1191		break;
1192	default:
1193		return -EINVAL;
1194	}
1195
1196	if (r.arp_pa.sa_family != AF_INET)
1197		return -EPFNOSUPPORT;
1198
1199	if (!(r.arp_flags & ATF_PUBL) &&
1200	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1201		return -EINVAL;
1202	if (!(r.arp_flags & ATF_NETMASK))
1203		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1204							   htonl(0xFFFFFFFFUL);
1205	rtnl_lock();
1206	if (r.arp_dev[0]) {
1207		err = -ENODEV;
1208		dev = __dev_get_by_name(net, r.arp_dev);
1209		if (dev == NULL)
1210			goto out;
1211
1212		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1213		if (!r.arp_ha.sa_family)
1214			r.arp_ha.sa_family = dev->type;
1215		err = -EINVAL;
1216		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1217			goto out;
1218	} else if (cmd == SIOCGARP) {
1219		err = -ENODEV;
1220		goto out;
1221	}
1222
1223	switch (cmd) {
1224	case SIOCDARP:
1225		err = arp_req_delete(net, &r, dev);
1226		break;
1227	case SIOCSARP:
1228		err = arp_req_set(net, &r, dev);
1229		break;
1230	case SIOCGARP:
1231		err = arp_req_get(&r, dev);
1232		break;
1233	}
1234out:
1235	rtnl_unlock();
1236	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1237		err = -EFAULT;
1238	return err;
1239}
1240
1241static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1242			    void *ptr)
1243{
1244	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1245	struct netdev_notifier_change_info *change_info;
1246
1247	switch (event) {
1248	case NETDEV_CHANGEADDR:
1249		neigh_changeaddr(&arp_tbl, dev);
1250		rt_cache_flush(dev_net(dev));
1251		break;
1252	case NETDEV_CHANGE:
1253		change_info = ptr;
1254		if (change_info->flags_changed & IFF_NOARP)
1255			neigh_changeaddr(&arp_tbl, dev);
1256		break;
1257	default:
1258		break;
1259	}
1260
1261	return NOTIFY_DONE;
1262}
1263
1264static struct notifier_block arp_netdev_notifier = {
1265	.notifier_call = arp_netdev_event,
1266};
1267
1268/* Note, that it is not on notifier chain.
1269   It is necessary, that this routine was called after route cache will be
1270   flushed.
1271 */
1272void arp_ifdown(struct net_device *dev)
1273{
1274	neigh_ifdown(&arp_tbl, dev);
1275}
1276
1277
1278/*
1279 *	Called once on startup.
1280 */
1281
1282static struct packet_type arp_packet_type __read_mostly = {
1283	.type =	cpu_to_be16(ETH_P_ARP),
1284	.func =	arp_rcv,
1285};
1286
1287static int arp_proc_init(void);
1288
1289void __init arp_init(void)
1290{
1291	neigh_table_init(&arp_tbl);
1292
1293	dev_add_pack(&arp_packet_type);
1294	arp_proc_init();
1295#ifdef CONFIG_SYSCTL
1296	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1297#endif
1298	register_netdevice_notifier(&arp_netdev_notifier);
1299}
1300
1301#ifdef CONFIG_PROC_FS
1302#if IS_ENABLED(CONFIG_AX25)
1303
1304/* ------------------------------------------------------------------------ */
1305/*
1306 *	ax25 -> ASCII conversion
1307 */
1308static char *ax2asc2(ax25_address *a, char *buf)
1309{
1310	char c, *s;
1311	int n;
1312
1313	for (n = 0, s = buf; n < 6; n++) {
1314		c = (a->ax25_call[n] >> 1) & 0x7F;
1315
1316		if (c != ' ')
1317			*s++ = c;
1318	}
1319
1320	*s++ = '-';
1321	n = (a->ax25_call[6] >> 1) & 0x0F;
1322	if (n > 9) {
1323		*s++ = '1';
1324		n -= 10;
1325	}
1326
1327	*s++ = n + '0';
1328	*s++ = '\0';
1329
1330	if (*buf == '\0' || *buf == '-')
1331		return "*";
1332
1333	return buf;
1334}
1335#endif /* CONFIG_AX25 */
1336
1337#define HBUFFERLEN 30
1338
1339static void arp_format_neigh_entry(struct seq_file *seq,
1340				   struct neighbour *n)
1341{
1342	char hbuffer[HBUFFERLEN];
1343	int k, j;
1344	char tbuf[16];
1345	struct net_device *dev = n->dev;
1346	int hatype = dev->type;
1347
1348	read_lock(&n->lock);
1349	/* Convert hardware address to XX:XX:XX:XX ... form. */
1350#if IS_ENABLED(CONFIG_AX25)
1351	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1352		ax2asc2((ax25_address *)n->ha, hbuffer);
1353	else {
1354#endif
1355	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1356		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1357		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1358		hbuffer[k++] = ':';
1359	}
1360	if (k != 0)
1361		--k;
1362	hbuffer[k] = 0;
1363#if IS_ENABLED(CONFIG_AX25)
1364	}
1365#endif
1366	sprintf(tbuf, "%pI4", n->primary_key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1369	read_unlock(&n->lock);
1370}
1371
1372static void arp_format_pneigh_entry(struct seq_file *seq,
1373				    struct pneigh_entry *n)
1374{
1375	struct net_device *dev = n->dev;
1376	int hatype = dev ? dev->type : 0;
1377	char tbuf[16];
1378
1379	sprintf(tbuf, "%pI4", n->key);
1380	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1381		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1382		   dev ? dev->name : "*");
1383}
1384
1385static int arp_seq_show(struct seq_file *seq, void *v)
1386{
1387	if (v == SEQ_START_TOKEN) {
1388		seq_puts(seq, "IP address       HW type     Flags       "
1389			      "HW address            Mask     Device\n");
1390	} else {
1391		struct neigh_seq_state *state = seq->private;
1392
1393		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1394			arp_format_pneigh_entry(seq, v);
1395		else
1396			arp_format_neigh_entry(seq, v);
1397	}
1398
1399	return 0;
1400}
1401
1402static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1403{
1404	/* Don't want to confuse "arp -a" w/ magic entries,
1405	 * so we tell the generic iterator to skip NUD_NOARP.
1406	 */
1407	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1408}
1409
1410/* ------------------------------------------------------------------------ */
1411
1412static const struct seq_operations arp_seq_ops = {
1413	.start	= arp_seq_start,
1414	.next	= neigh_seq_next,
1415	.stop	= neigh_seq_stop,
1416	.show	= arp_seq_show,
1417};
1418
1419static int arp_seq_open(struct inode *inode, struct file *file)
1420{
1421	return seq_open_net(inode, file, &arp_seq_ops,
1422			    sizeof(struct neigh_seq_state));
1423}
1424
1425static const struct file_operations arp_seq_fops = {
1426	.owner		= THIS_MODULE,
1427	.open           = arp_seq_open,
1428	.read           = seq_read,
1429	.llseek         = seq_lseek,
1430	.release	= seq_release_net,
1431};
1432
1433
1434static int __net_init arp_net_init(struct net *net)
1435{
1436	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1437		return -ENOMEM;
1438	return 0;
1439}
1440
1441static void __net_exit arp_net_exit(struct net *net)
1442{
1443	remove_proc_entry("arp", net->proc_net);
1444}
1445
1446static struct pernet_operations arp_net_ops = {
1447	.init = arp_net_init,
1448	.exit = arp_net_exit,
1449};
1450
1451static int __init arp_proc_init(void)
1452{
1453	return register_pernet_subsys(&arp_net_ops);
1454}
1455
1456#else /* CONFIG_PROC_FS */
1457
1458static int __init arp_proc_init(void)
1459{
1460	return 0;
1461}
1462
1463#endif /* CONFIG_PROC_FS */
v3.1
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
 
 
  76#include <linux/module.h>
  77#include <linux/types.h>
  78#include <linux/string.h>
  79#include <linux/kernel.h>
  80#include <linux/capability.h>
  81#include <linux/socket.h>
  82#include <linux/sockios.h>
  83#include <linux/errno.h>
  84#include <linux/in.h>
  85#include <linux/mm.h>
  86#include <linux/inet.h>
  87#include <linux/inetdevice.h>
  88#include <linux/netdevice.h>
  89#include <linux/etherdevice.h>
  90#include <linux/fddidevice.h>
  91#include <linux/if_arp.h>
  92#include <linux/trdevice.h>
  93#include <linux/skbuff.h>
  94#include <linux/proc_fs.h>
  95#include <linux/seq_file.h>
  96#include <linux/stat.h>
  97#include <linux/init.h>
  98#include <linux/net.h>
  99#include <linux/rcupdate.h>
 100#include <linux/slab.h>
 101#ifdef CONFIG_SYSCTL
 102#include <linux/sysctl.h>
 103#endif
 104
 105#include <net/net_namespace.h>
 106#include <net/ip.h>
 107#include <net/icmp.h>
 108#include <net/route.h>
 109#include <net/protocol.h>
 110#include <net/tcp.h>
 111#include <net/sock.h>
 112#include <net/arp.h>
 113#include <net/ax25.h>
 114#include <net/netrom.h>
 115#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
 116#include <net/atmclip.h>
 117struct neigh_table *clip_tbl_hook;
 118EXPORT_SYMBOL(clip_tbl_hook);
 119#endif
 120
 121#include <asm/system.h>
 122#include <linux/uaccess.h>
 123
 124#include <linux/netfilter_arp.h>
 125
 126/*
 127 *	Interface to generic neighbour cache.
 128 */
 129static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
 130static int arp_constructor(struct neighbour *neigh);
 131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 133static void parp_redo(struct sk_buff *skb);
 134
 135static const struct neigh_ops arp_generic_ops = {
 136	.family =		AF_INET,
 137	.solicit =		arp_solicit,
 138	.error_report =		arp_error_report,
 139	.output =		neigh_resolve_output,
 140	.connected_output =	neigh_connected_output,
 141};
 142
 143static const struct neigh_ops arp_hh_ops = {
 144	.family =		AF_INET,
 145	.solicit =		arp_solicit,
 146	.error_report =		arp_error_report,
 147	.output =		neigh_resolve_output,
 148	.connected_output =	neigh_resolve_output,
 149};
 150
 151static const struct neigh_ops arp_direct_ops = {
 152	.family =		AF_INET,
 153	.output =		neigh_direct_output,
 154	.connected_output =	neigh_direct_output,
 155};
 156
 157static const struct neigh_ops arp_broken_ops = {
 158	.family =		AF_INET,
 159	.solicit =		arp_solicit,
 160	.error_report =		arp_error_report,
 161	.output =		neigh_compat_output,
 162	.connected_output =	neigh_compat_output,
 163};
 164
 165struct neigh_table arp_tbl = {
 166	.family		= AF_INET,
 167	.entry_size	= sizeof(struct neighbour) + 4,
 168	.key_len	= 4,
 169	.hash		= arp_hash,
 170	.constructor	= arp_constructor,
 171	.proxy_redo	= parp_redo,
 172	.id		= "arp_cache",
 173	.parms		= {
 174		.tbl			= &arp_tbl,
 175		.base_reachable_time	= 30 * HZ,
 176		.retrans_time		= 1 * HZ,
 177		.gc_staletime		= 60 * HZ,
 178		.reachable_time		= 30 * HZ,
 179		.delay_probe_time	= 5 * HZ,
 180		.queue_len		= 3,
 181		.ucast_probes		= 3,
 182		.mcast_probes		= 3,
 183		.anycast_delay		= 1 * HZ,
 184		.proxy_delay		= (8 * HZ) / 10,
 185		.proxy_qlen		= 64,
 186		.locktime		= 1 * HZ,
 
 
 
 
 
 187	},
 188	.gc_interval	= 30 * HZ,
 189	.gc_thresh1	= 128,
 190	.gc_thresh2	= 512,
 191	.gc_thresh3	= 1024,
 192};
 193EXPORT_SYMBOL(arp_tbl);
 194
 195int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 196{
 197	switch (dev->type) {
 198	case ARPHRD_ETHER:
 199	case ARPHRD_FDDI:
 200	case ARPHRD_IEEE802:
 201		ip_eth_mc_map(addr, haddr);
 202		return 0;
 203	case ARPHRD_IEEE802_TR:
 204		ip_tr_mc_map(addr, haddr);
 205		return 0;
 206	case ARPHRD_INFINIBAND:
 207		ip_ib_mc_map(addr, dev->broadcast, haddr);
 208		return 0;
 209	case ARPHRD_IPGRE:
 210		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 211		return 0;
 212	default:
 213		if (dir) {
 214			memcpy(haddr, dev->broadcast, dev->addr_len);
 215			return 0;
 216		}
 217	}
 218	return -EINVAL;
 219}
 220
 221
 222static u32 arp_hash(const void *pkey,
 223		    const struct net_device *dev,
 224		    __u32 hash_rnd)
 225{
 226	return arp_hashfn(*(u32 *)pkey, dev, hash_rnd);
 227}
 228
 229static int arp_constructor(struct neighbour *neigh)
 230{
 231	__be32 addr = *(__be32 *)neigh->primary_key;
 232	struct net_device *dev = neigh->dev;
 233	struct in_device *in_dev;
 234	struct neigh_parms *parms;
 235
 236	rcu_read_lock();
 237	in_dev = __in_dev_get_rcu(dev);
 238	if (in_dev == NULL) {
 239		rcu_read_unlock();
 240		return -EINVAL;
 241	}
 242
 243	neigh->type = inet_addr_type(dev_net(dev), addr);
 244
 245	parms = in_dev->arp_parms;
 246	__neigh_parms_put(neigh->parms);
 247	neigh->parms = neigh_parms_clone(parms);
 248	rcu_read_unlock();
 249
 250	if (!dev->header_ops) {
 251		neigh->nud_state = NUD_NOARP;
 252		neigh->ops = &arp_direct_ops;
 253		neigh->output = neigh_direct_output;
 254	} else {
 255		/* Good devices (checked by reading texts, but only Ethernet is
 256		   tested)
 257
 258		   ARPHRD_ETHER: (ethernet, apfddi)
 259		   ARPHRD_FDDI: (fddi)
 260		   ARPHRD_IEEE802: (tr)
 261		   ARPHRD_METRICOM: (strip)
 262		   ARPHRD_ARCNET:
 263		   etc. etc. etc.
 264
 265		   ARPHRD_IPDDP will also work, if author repairs it.
 266		   I did not it, because this driver does not work even
 267		   in old paradigm.
 268		 */
 269
 270#if 1
 271		/* So... these "amateur" devices are hopeless.
 272		   The only thing, that I can say now:
 273		   It is very sad that we need to keep ugly obsolete
 274		   code to make them happy.
 275
 276		   They should be moved to more reasonable state, now
 277		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 278		   Besides that, they are sort of out of date
 279		   (a lot of redundant clones/copies, useless in 2.1),
 280		   I wonder why people believe that they work.
 281		 */
 282		switch (dev->type) {
 283		default:
 284			break;
 285		case ARPHRD_ROSE:
 286#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 287		case ARPHRD_AX25:
 288#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 289		case ARPHRD_NETROM:
 290#endif
 291			neigh->ops = &arp_broken_ops;
 292			neigh->output = neigh->ops->output;
 293			return 0;
 294#else
 295			break;
 296#endif
 297		}
 298#endif
 299		if (neigh->type == RTN_MULTICAST) {
 300			neigh->nud_state = NUD_NOARP;
 301			arp_mc_map(addr, neigh->ha, dev, 1);
 302		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 303			neigh->nud_state = NUD_NOARP;
 304			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 305		} else if (neigh->type == RTN_BROADCAST ||
 306			   (dev->flags & IFF_POINTOPOINT)) {
 307			neigh->nud_state = NUD_NOARP;
 308			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 309		}
 310
 311		if (dev->header_ops->cache)
 312			neigh->ops = &arp_hh_ops;
 313		else
 314			neigh->ops = &arp_generic_ops;
 315
 316		if (neigh->nud_state & NUD_VALID)
 317			neigh->output = neigh->ops->connected_output;
 318		else
 319			neigh->output = neigh->ops->output;
 320	}
 321	return 0;
 322}
 323
 324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 325{
 326	dst_link_failure(skb);
 327	kfree_skb(skb);
 328}
 329
 330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 331{
 332	__be32 saddr = 0;
 333	u8  *dst_ha = NULL;
 334	struct net_device *dev = neigh->dev;
 335	__be32 target = *(__be32 *)neigh->primary_key;
 336	int probes = atomic_read(&neigh->probes);
 337	struct in_device *in_dev;
 338
 339	rcu_read_lock();
 340	in_dev = __in_dev_get_rcu(dev);
 341	if (!in_dev) {
 342		rcu_read_unlock();
 343		return;
 344	}
 345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 346	default:
 347	case 0:		/* By default announce any local IP */
 348		if (skb && inet_addr_type(dev_net(dev),
 349					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 350			saddr = ip_hdr(skb)->saddr;
 351		break;
 352	case 1:		/* Restrict announcements of saddr in same subnet */
 353		if (!skb)
 354			break;
 355		saddr = ip_hdr(skb)->saddr;
 356		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 357			/* saddr should be known to target */
 358			if (inet_addr_onlink(in_dev, target, saddr))
 359				break;
 360		}
 361		saddr = 0;
 362		break;
 363	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 364		break;
 365	}
 366	rcu_read_unlock();
 367
 368	if (!saddr)
 369		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 370
 371	probes -= neigh->parms->ucast_probes;
 372	if (probes < 0) {
 373		if (!(neigh->nud_state & NUD_VALID))
 374			printk(KERN_DEBUG
 375			       "trying to ucast probe in NUD_INVALID\n");
 376		dst_ha = neigh->ha;
 377		read_lock_bh(&neigh->lock);
 378	} else {
 379		probes -= neigh->parms->app_probes;
 380		if (probes < 0) {
 381#ifdef CONFIG_ARPD
 382			neigh_app_ns(neigh);
 383#endif
 384			return;
 385		}
 386	}
 387
 388	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 389		 dst_ha, dev->dev_addr, NULL);
 390	if (dst_ha)
 391		read_unlock_bh(&neigh->lock);
 392}
 393
 394static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 395{
 
 396	int scope;
 397
 398	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 399	case 0:	/* Reply, the tip is already validated */
 400		return 0;
 401	case 1:	/* Reply only if tip is configured on the incoming interface */
 402		sip = 0;
 403		scope = RT_SCOPE_HOST;
 404		break;
 405	case 2:	/*
 406		 * Reply only if tip is configured on the incoming interface
 407		 * and is in same subnet as sip
 408		 */
 409		scope = RT_SCOPE_HOST;
 410		break;
 411	case 3:	/* Do not reply for scope host addresses */
 412		sip = 0;
 413		scope = RT_SCOPE_LINK;
 
 414		break;
 415	case 4:	/* Reserved */
 416	case 5:
 417	case 6:
 418	case 7:
 419		return 0;
 420	case 8:	/* Do not reply */
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425	return !inet_confirm_addr(in_dev, sip, tip, scope);
 426}
 427
 428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 429{
 430	struct rtable *rt;
 431	int flag = 0;
 432	/*unsigned long now; */
 433	struct net *net = dev_net(dev);
 434
 435	rt = ip_route_output(net, sip, tip, 0, 0);
 436	if (IS_ERR(rt))
 437		return 1;
 438	if (rt->dst.dev != dev) {
 439		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 440		flag = 1;
 441	}
 442	ip_rt_put(rt);
 443	return flag;
 444}
 445
 446/* OBSOLETE FUNCTIONS */
 447
 448/*
 449 *	Find an arp mapping in the cache. If not found, post a request.
 450 *
 451 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 452 *	even if it exists. It is supposed that skb->dev was mangled
 453 *	by a virtual device (eql, shaper). Nobody but broken devices
 454 *	is allowed to use this function, it is scheduled to be removed. --ANK
 455 */
 456
 457static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 458			      __be32 paddr, struct net_device *dev)
 459{
 460	switch (addr_hint) {
 461	case RTN_LOCAL:
 462		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
 463		memcpy(haddr, dev->dev_addr, dev->addr_len);
 464		return 1;
 465	case RTN_MULTICAST:
 466		arp_mc_map(paddr, haddr, dev, 1);
 467		return 1;
 468	case RTN_BROADCAST:
 469		memcpy(haddr, dev->broadcast, dev->addr_len);
 470		return 1;
 471	}
 472	return 0;
 473}
 474
 475
 476int arp_find(unsigned char *haddr, struct sk_buff *skb)
 477{
 478	struct net_device *dev = skb->dev;
 479	__be32 paddr;
 480	struct neighbour *n;
 481
 482	if (!skb_dst(skb)) {
 483		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
 484		kfree_skb(skb);
 485		return 1;
 486	}
 487
 488	paddr = skb_rtable(skb)->rt_gateway;
 489
 490	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 491			       paddr, dev))
 492		return 0;
 493
 494	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 495
 496	if (n) {
 497		n->used = jiffies;
 498		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 499			neigh_ha_snapshot(haddr, n, dev);
 500			neigh_release(n);
 501			return 0;
 502		}
 503		neigh_release(n);
 504	} else
 505		kfree_skb(skb);
 506	return 1;
 507}
 508EXPORT_SYMBOL(arp_find);
 509
 510/* END OF OBSOLETE FUNCTIONS */
 511
 512/*
 513 * Check if we can use proxy ARP for this path
 514 */
 515static inline int arp_fwd_proxy(struct in_device *in_dev,
 516				struct net_device *dev,	struct rtable *rt)
 517{
 518	struct in_device *out_dev;
 519	int imi, omi = -1;
 520
 521	if (rt->dst.dev == dev)
 522		return 0;
 523
 524	if (!IN_DEV_PROXY_ARP(in_dev))
 525		return 0;
 526	imi = IN_DEV_MEDIUM_ID(in_dev);
 527	if (imi == 0)
 528		return 1;
 529	if (imi == -1)
 530		return 0;
 531
 532	/* place to check for proxy_arp for routes */
 533
 534	out_dev = __in_dev_get_rcu(rt->dst.dev);
 535	if (out_dev)
 536		omi = IN_DEV_MEDIUM_ID(out_dev);
 537
 538	return omi != imi && omi != -1;
 539}
 540
 541/*
 542 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 543 *
 544 * RFC3069 supports proxy arp replies back to the same interface.  This
 545 * is done to support (ethernet) switch features, like RFC 3069, where
 546 * the individual ports are not allowed to communicate with each
 547 * other, BUT they are allowed to talk to the upstream router.  As
 548 * described in RFC 3069, it is possible to allow these hosts to
 549 * communicate through the upstream router, by proxy_arp'ing.
 550 *
 551 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 552 *
 553 *  This technology is known by different names:
 554 *    In RFC 3069 it is called VLAN Aggregation.
 555 *    Cisco and Allied Telesyn call it Private VLAN.
 556 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 557 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 558 *
 559 */
 560static inline int arp_fwd_pvlan(struct in_device *in_dev,
 561				struct net_device *dev,	struct rtable *rt,
 562				__be32 sip, __be32 tip)
 563{
 564	/* Private VLAN is only concerned about the same ethernet segment */
 565	if (rt->dst.dev != dev)
 566		return 0;
 567
 568	/* Don't reply on self probes (often done by windowz boxes)*/
 569	if (sip == tip)
 570		return 0;
 571
 572	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 573		return 1;
 574	else
 575		return 0;
 576}
 577
 578/*
 579 *	Interface to link layer: send routine and receive handler.
 580 */
 581
 582/*
 583 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 584 *	message.
 585 */
 586struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 587			   struct net_device *dev, __be32 src_ip,
 588			   const unsigned char *dest_hw,
 589			   const unsigned char *src_hw,
 590			   const unsigned char *target_hw)
 591{
 592	struct sk_buff *skb;
 593	struct arphdr *arp;
 594	unsigned char *arp_ptr;
 
 
 595
 596	/*
 597	 *	Allocate a buffer
 598	 */
 599
 600	skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
 601	if (skb == NULL)
 602		return NULL;
 603
 604	skb_reserve(skb, LL_RESERVED_SPACE(dev));
 605	skb_reset_network_header(skb);
 606	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 607	skb->dev = dev;
 608	skb->protocol = htons(ETH_P_ARP);
 609	if (src_hw == NULL)
 610		src_hw = dev->dev_addr;
 611	if (dest_hw == NULL)
 612		dest_hw = dev->broadcast;
 613
 614	/*
 615	 *	Fill the device header for the ARP frame
 616	 */
 617	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 618		goto out;
 619
 620	/*
 621	 * Fill out the arp protocol part.
 622	 *
 623	 * The arp hardware type should match the device type, except for FDDI,
 624	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 625	 */
 626	/*
 627	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 628	 *	DIX code for the protocol. Make these device structure fields.
 629	 */
 630	switch (dev->type) {
 631	default:
 632		arp->ar_hrd = htons(dev->type);
 633		arp->ar_pro = htons(ETH_P_IP);
 634		break;
 635
 636#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 637	case ARPHRD_AX25:
 638		arp->ar_hrd = htons(ARPHRD_AX25);
 639		arp->ar_pro = htons(AX25_P_IP);
 640		break;
 641
 642#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 643	case ARPHRD_NETROM:
 644		arp->ar_hrd = htons(ARPHRD_NETROM);
 645		arp->ar_pro = htons(AX25_P_IP);
 646		break;
 647#endif
 648#endif
 649
 650#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
 651	case ARPHRD_FDDI:
 652		arp->ar_hrd = htons(ARPHRD_ETHER);
 653		arp->ar_pro = htons(ETH_P_IP);
 654		break;
 655#endif
 656#if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
 657	case ARPHRD_IEEE802_TR:
 658		arp->ar_hrd = htons(ARPHRD_IEEE802);
 659		arp->ar_pro = htons(ETH_P_IP);
 660		break;
 661#endif
 662	}
 663
 664	arp->ar_hln = dev->addr_len;
 665	arp->ar_pln = 4;
 666	arp->ar_op = htons(type);
 667
 668	arp_ptr = (unsigned char *)(arp + 1);
 669
 670	memcpy(arp_ptr, src_hw, dev->addr_len);
 671	arp_ptr += dev->addr_len;
 672	memcpy(arp_ptr, &src_ip, 4);
 673	arp_ptr += 4;
 674	if (target_hw != NULL)
 675		memcpy(arp_ptr, target_hw, dev->addr_len);
 676	else
 677		memset(arp_ptr, 0, dev->addr_len);
 678	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 679	memcpy(arp_ptr, &dest_ip, 4);
 680
 681	return skb;
 682
 683out:
 684	kfree_skb(skb);
 685	return NULL;
 686}
 687EXPORT_SYMBOL(arp_create);
 688
 689/*
 690 *	Send an arp packet.
 691 */
 692void arp_xmit(struct sk_buff *skb)
 693{
 694	/* Send it off, maybe filter it using firewalling first.  */
 695	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 696}
 697EXPORT_SYMBOL(arp_xmit);
 698
 699/*
 700 *	Create and send an arp packet.
 701 */
 702void arp_send(int type, int ptype, __be32 dest_ip,
 703	      struct net_device *dev, __be32 src_ip,
 704	      const unsigned char *dest_hw, const unsigned char *src_hw,
 705	      const unsigned char *target_hw)
 706{
 707	struct sk_buff *skb;
 708
 709	/*
 710	 *	No arp on this interface.
 711	 */
 712
 713	if (dev->flags&IFF_NOARP)
 714		return;
 715
 716	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 717			 dest_hw, src_hw, target_hw);
 718	if (skb == NULL)
 719		return;
 720
 721	arp_xmit(skb);
 722}
 723EXPORT_SYMBOL(arp_send);
 724
 725/*
 726 *	Process an arp request.
 727 */
 728
 729static int arp_process(struct sk_buff *skb)
 730{
 731	struct net_device *dev = skb->dev;
 732	struct in_device *in_dev = __in_dev_get_rcu(dev);
 733	struct arphdr *arp;
 734	unsigned char *arp_ptr;
 735	struct rtable *rt;
 736	unsigned char *sha;
 737	__be32 sip, tip;
 738	u16 dev_type = dev->type;
 739	int addr_type;
 740	struct neighbour *n;
 741	struct net *net = dev_net(dev);
 
 742
 743	/* arp_rcv below verifies the ARP header and verifies the device
 744	 * is ARP'able.
 745	 */
 746
 747	if (in_dev == NULL)
 748		goto out;
 749
 750	arp = arp_hdr(skb);
 751
 752	switch (dev_type) {
 753	default:
 754		if (arp->ar_pro != htons(ETH_P_IP) ||
 755		    htons(dev_type) != arp->ar_hrd)
 756			goto out;
 757		break;
 758	case ARPHRD_ETHER:
 759	case ARPHRD_IEEE802_TR:
 760	case ARPHRD_FDDI:
 761	case ARPHRD_IEEE802:
 762		/*
 763		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
 764		 * devices, according to RFC 2625) devices will accept ARP
 765		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 766		 * This is the case also of FDDI, where the RFC 1390 says that
 767		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 768		 * however, to be more robust, we'll accept both 1 (Ethernet)
 769		 * or 6 (IEEE 802.2)
 770		 */
 771		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 772		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 773		    arp->ar_pro != htons(ETH_P_IP))
 774			goto out;
 775		break;
 776	case ARPHRD_AX25:
 777		if (arp->ar_pro != htons(AX25_P_IP) ||
 778		    arp->ar_hrd != htons(ARPHRD_AX25))
 779			goto out;
 780		break;
 781	case ARPHRD_NETROM:
 782		if (arp->ar_pro != htons(AX25_P_IP) ||
 783		    arp->ar_hrd != htons(ARPHRD_NETROM))
 784			goto out;
 785		break;
 786	}
 787
 788	/* Understand only these message types */
 789
 790	if (arp->ar_op != htons(ARPOP_REPLY) &&
 791	    arp->ar_op != htons(ARPOP_REQUEST))
 792		goto out;
 793
 794/*
 795 *	Extract fields
 796 */
 797	arp_ptr = (unsigned char *)(arp + 1);
 798	sha	= arp_ptr;
 799	arp_ptr += dev->addr_len;
 800	memcpy(&sip, arp_ptr, 4);
 801	arp_ptr += 4;
 802	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
 
 809		goto out;
 810
 811/*
 812 *     Special case: We must set Frame Relay source Q.922 address
 813 */
 814	if (dev_type == ARPHRD_DLCI)
 815		sha = dev->broadcast;
 816
 817/*
 818 *  Process entry.  The idea here is we want to send a reply if it is a
 819 *  request for us or if it is a request for someone else that we hold
 820 *  a proxy for.  We want to add an entry to our cache if it is a reply
 821 *  to us or if it is a request for our address.
 822 *  (The assumption for this last is that if someone is requesting our
 823 *  address, they are probably intending to talk to us, so it saves time
 824 *  if we cache their address.  Their address is also probably not in
 825 *  our cache, since ours is not in their cache.)
 826 *
 827 *  Putting this another way, we only care about replies if they are to
 828 *  us, in which case we add them to the cache.  For requests, we care
 829 *  about those for us and those for our proxies.  We reply to both,
 830 *  and in the case of requests for us we add the requester to the arp
 831 *  cache.
 832 */
 833
 834	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 835	if (sip == 0) {
 836		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 837		    inet_addr_type(net, tip) == RTN_LOCAL &&
 838		    !arp_ignore(in_dev, sip, tip))
 839			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 840				 dev->dev_addr, sha);
 841		goto out;
 842	}
 843
 844	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 845	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 846
 847		rt = skb_rtable(skb);
 848		addr_type = rt->rt_type;
 849
 850		if (addr_type == RTN_LOCAL) {
 851			int dont_send;
 852
 853			dont_send = arp_ignore(in_dev, sip, tip);
 854			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 855				dont_send = arp_filter(sip, tip, dev);
 856			if (!dont_send) {
 857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 858				if (n) {
 859					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 860						 dev, tip, sha, dev->dev_addr,
 861						 sha);
 862					neigh_release(n);
 863				}
 864			}
 865			goto out;
 866		} else if (IN_DEV_FORWARD(in_dev)) {
 867			if (addr_type == RTN_UNICAST  &&
 868			    (arp_fwd_proxy(in_dev, dev, rt) ||
 869			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 870			     pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
 
 871				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 872				if (n)
 873					neigh_release(n);
 874
 875				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 876				    skb->pkt_type == PACKET_HOST ||
 877				    in_dev->arp_parms->proxy_delay == 0) {
 878					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 879						 dev, tip, sha, dev->dev_addr,
 880						 sha);
 881				} else {
 882					pneigh_enqueue(&arp_tbl,
 883						       in_dev->arp_parms, skb);
 884					return 0;
 885				}
 886				goto out;
 887			}
 888		}
 889	}
 890
 891	/* Update our ARP tables */
 892
 893	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 894
 895	if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
 896		/* Unsolicited ARP is not accepted by default.
 897		   It is possible, that this option should be enabled for some
 898		   devices (strip is candidate)
 899		 */
 
 
 
 900		if (n == NULL &&
 901		    (arp->ar_op == htons(ARPOP_REPLY) ||
 902		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 903		    inet_addr_type(net, sip) == RTN_UNICAST)
 904			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 905	}
 906
 907	if (n) {
 908		int state = NUD_REACHABLE;
 909		int override;
 910
 911		/* If several different ARP replies follows back-to-back,
 912		   use the FIRST one. It is possible, if several proxy
 913		   agents are active. Taking the first reply prevents
 914		   arp trashing and chooses the fastest router.
 915		 */
 916		override = time_after(jiffies, n->updated + n->parms->locktime);
 
 
 
 917
 918		/* Broadcast replies and request packets
 919		   do not assert neighbour reachability.
 920		 */
 921		if (arp->ar_op != htons(ARPOP_REPLY) ||
 922		    skb->pkt_type != PACKET_HOST)
 923			state = NUD_STALE;
 924		neigh_update(n, sha, state,
 925			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 926		neigh_release(n);
 927	}
 928
 929out:
 930	consume_skb(skb);
 931	return 0;
 932}
 933
 934static void parp_redo(struct sk_buff *skb)
 935{
 936	arp_process(skb);
 937}
 938
 939
 940/*
 941 *	Receive an arp request from the device layer.
 942 */
 943
 944static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 945		   struct packet_type *pt, struct net_device *orig_dev)
 946{
 947	struct arphdr *arp;
 
 
 
 
 
 
 
 
 
 948
 949	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 950	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 951		goto freeskb;
 952
 953	arp = arp_hdr(skb);
 954	if (arp->ar_hln != dev->addr_len ||
 955	    dev->flags & IFF_NOARP ||
 956	    skb->pkt_type == PACKET_OTHERHOST ||
 957	    skb->pkt_type == PACKET_LOOPBACK ||
 958	    arp->ar_pln != 4)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (skb == NULL)
 963		goto out_of_mem;
 964
 965	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 968
 969freeskb:
 970	kfree_skb(skb);
 971out_of_mem:
 972	return 0;
 973}
 974
 975/*
 976 *	User level interface (ioctl)
 977 */
 978
 979/*
 980 *	Set (create) an ARP cache entry.
 981 */
 982
 983static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 984{
 985	if (dev == NULL) {
 986		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 987		return 0;
 988	}
 989	if (__in_dev_get_rtnl(dev)) {
 990		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 991		return 0;
 992	}
 993	return -ENXIO;
 994}
 995
 996static int arp_req_set_public(struct net *net, struct arpreq *r,
 997		struct net_device *dev)
 998{
 999	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1001
1002	if (mask && mask != htonl(0xFFFFFFFF))
1003		return -EINVAL;
1004	if (!dev && (r->arp_flags & ATF_COM)) {
1005		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1006				      r->arp_ha.sa_data);
1007		if (!dev)
1008			return -ENODEV;
1009	}
1010	if (mask) {
1011		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1012			return -ENOBUFS;
1013		return 0;
1014	}
1015
1016	return arp_req_set_proxy(net, dev, 1);
1017}
1018
1019static int arp_req_set(struct net *net, struct arpreq *r,
1020		       struct net_device *dev)
1021{
1022	__be32 ip;
1023	struct neighbour *neigh;
1024	int err;
1025
1026	if (r->arp_flags & ATF_PUBL)
1027		return arp_req_set_public(net, r, dev);
1028
1029	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1030	if (r->arp_flags & ATF_PERM)
1031		r->arp_flags |= ATF_COM;
1032	if (dev == NULL) {
1033		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1034
1035		if (IS_ERR(rt))
1036			return PTR_ERR(rt);
1037		dev = rt->dst.dev;
1038		ip_rt_put(rt);
1039		if (!dev)
1040			return -EINVAL;
1041	}
1042	switch (dev->type) {
1043#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1044	case ARPHRD_FDDI:
1045		/*
1046		 * According to RFC 1390, FDDI devices should accept ARP
1047		 * hardware types of 1 (Ethernet).  However, to be more
1048		 * robust, we'll accept hardware types of either 1 (Ethernet)
1049		 * or 6 (IEEE 802.2).
1050		 */
1051		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1052		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1053		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1054			return -EINVAL;
1055		break;
1056#endif
1057	default:
1058		if (r->arp_ha.sa_family != dev->type)
1059			return -EINVAL;
1060		break;
1061	}
1062
1063	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1064	err = PTR_ERR(neigh);
1065	if (!IS_ERR(neigh)) {
1066		unsigned state = NUD_STALE;
1067		if (r->arp_flags & ATF_PERM)
1068			state = NUD_PERMANENT;
1069		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1070				   r->arp_ha.sa_data : NULL, state,
1071				   NEIGH_UPDATE_F_OVERRIDE |
1072				   NEIGH_UPDATE_F_ADMIN);
1073		neigh_release(neigh);
1074	}
1075	return err;
1076}
1077
1078static unsigned arp_state_to_flags(struct neighbour *neigh)
1079{
1080	if (neigh->nud_state&NUD_PERMANENT)
1081		return ATF_PERM | ATF_COM;
1082	else if (neigh->nud_state&NUD_VALID)
1083		return ATF_COM;
1084	else
1085		return 0;
1086}
1087
1088/*
1089 *	Get an ARP cache entry.
1090 */
1091
1092static int arp_req_get(struct arpreq *r, struct net_device *dev)
1093{
1094	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1095	struct neighbour *neigh;
1096	int err = -ENXIO;
1097
1098	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1099	if (neigh) {
1100		read_lock_bh(&neigh->lock);
1101		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102		r->arp_flags = arp_state_to_flags(neigh);
1103		read_unlock_bh(&neigh->lock);
1104		r->arp_ha.sa_family = dev->type;
1105		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1106		neigh_release(neigh);
1107		err = 0;
1108	}
1109	return err;
1110}
1111
1112int arp_invalidate(struct net_device *dev, __be32 ip)
1113{
1114	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115	int err = -ENXIO;
1116
1117	if (neigh) {
1118		if (neigh->nud_state & ~NUD_NOARP)
1119			err = neigh_update(neigh, NULL, NUD_FAILED,
1120					   NEIGH_UPDATE_F_OVERRIDE|
1121					   NEIGH_UPDATE_F_ADMIN);
1122		neigh_release(neigh);
1123	}
1124
1125	return err;
1126}
1127EXPORT_SYMBOL(arp_invalidate);
1128
1129static int arp_req_delete_public(struct net *net, struct arpreq *r,
1130		struct net_device *dev)
1131{
1132	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1133	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1134
1135	if (mask == htonl(0xFFFFFFFF))
1136		return pneigh_delete(&arp_tbl, net, &ip, dev);
1137
1138	if (mask)
1139		return -EINVAL;
1140
1141	return arp_req_set_proxy(net, dev, 0);
1142}
1143
1144static int arp_req_delete(struct net *net, struct arpreq *r,
1145			  struct net_device *dev)
1146{
1147	__be32 ip;
1148
1149	if (r->arp_flags & ATF_PUBL)
1150		return arp_req_delete_public(net, r, dev);
1151
1152	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153	if (dev == NULL) {
1154		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1155		if (IS_ERR(rt))
1156			return PTR_ERR(rt);
1157		dev = rt->dst.dev;
1158		ip_rt_put(rt);
1159		if (!dev)
1160			return -EINVAL;
1161	}
1162	return arp_invalidate(dev, ip);
1163}
1164
1165/*
1166 *	Handle an ARP layer I/O control request.
1167 */
1168
1169int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1170{
1171	int err;
1172	struct arpreq r;
1173	struct net_device *dev = NULL;
1174
1175	switch (cmd) {
1176	case SIOCDARP:
1177	case SIOCSARP:
1178		if (!capable(CAP_NET_ADMIN))
1179			return -EPERM;
1180	case SIOCGARP:
1181		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1182		if (err)
1183			return -EFAULT;
1184		break;
1185	default:
1186		return -EINVAL;
1187	}
1188
1189	if (r.arp_pa.sa_family != AF_INET)
1190		return -EPFNOSUPPORT;
1191
1192	if (!(r.arp_flags & ATF_PUBL) &&
1193	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1194		return -EINVAL;
1195	if (!(r.arp_flags & ATF_NETMASK))
1196		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1197							   htonl(0xFFFFFFFFUL);
1198	rtnl_lock();
1199	if (r.arp_dev[0]) {
1200		err = -ENODEV;
1201		dev = __dev_get_by_name(net, r.arp_dev);
1202		if (dev == NULL)
1203			goto out;
1204
1205		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1206		if (!r.arp_ha.sa_family)
1207			r.arp_ha.sa_family = dev->type;
1208		err = -EINVAL;
1209		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1210			goto out;
1211	} else if (cmd == SIOCGARP) {
1212		err = -ENODEV;
1213		goto out;
1214	}
1215
1216	switch (cmd) {
1217	case SIOCDARP:
1218		err = arp_req_delete(net, &r, dev);
1219		break;
1220	case SIOCSARP:
1221		err = arp_req_set(net, &r, dev);
1222		break;
1223	case SIOCGARP:
1224		err = arp_req_get(&r, dev);
1225		break;
1226	}
1227out:
1228	rtnl_unlock();
1229	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1230		err = -EFAULT;
1231	return err;
1232}
1233
1234static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1235			    void *ptr)
1236{
1237	struct net_device *dev = ptr;
 
1238
1239	switch (event) {
1240	case NETDEV_CHANGEADDR:
1241		neigh_changeaddr(&arp_tbl, dev);
1242		rt_cache_flush(dev_net(dev), 0);
 
 
 
 
 
1243		break;
1244	default:
1245		break;
1246	}
1247
1248	return NOTIFY_DONE;
1249}
1250
1251static struct notifier_block arp_netdev_notifier = {
1252	.notifier_call = arp_netdev_event,
1253};
1254
1255/* Note, that it is not on notifier chain.
1256   It is necessary, that this routine was called after route cache will be
1257   flushed.
1258 */
1259void arp_ifdown(struct net_device *dev)
1260{
1261	neigh_ifdown(&arp_tbl, dev);
1262}
1263
1264
1265/*
1266 *	Called once on startup.
1267 */
1268
1269static struct packet_type arp_packet_type __read_mostly = {
1270	.type =	cpu_to_be16(ETH_P_ARP),
1271	.func =	arp_rcv,
1272};
1273
1274static int arp_proc_init(void);
1275
1276void __init arp_init(void)
1277{
1278	neigh_table_init(&arp_tbl);
1279
1280	dev_add_pack(&arp_packet_type);
1281	arp_proc_init();
1282#ifdef CONFIG_SYSCTL
1283	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1284#endif
1285	register_netdevice_notifier(&arp_netdev_notifier);
1286}
1287
1288#ifdef CONFIG_PROC_FS
1289#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1290
1291/* ------------------------------------------------------------------------ */
1292/*
1293 *	ax25 -> ASCII conversion
1294 */
1295static char *ax2asc2(ax25_address *a, char *buf)
1296{
1297	char c, *s;
1298	int n;
1299
1300	for (n = 0, s = buf; n < 6; n++) {
1301		c = (a->ax25_call[n] >> 1) & 0x7F;
1302
1303		if (c != ' ')
1304			*s++ = c;
1305	}
1306
1307	*s++ = '-';
1308	n = (a->ax25_call[6] >> 1) & 0x0F;
1309	if (n > 9) {
1310		*s++ = '1';
1311		n -= 10;
1312	}
1313
1314	*s++ = n + '0';
1315	*s++ = '\0';
1316
1317	if (*buf == '\0' || *buf == '-')
1318		return "*";
1319
1320	return buf;
1321}
1322#endif /* CONFIG_AX25 */
1323
1324#define HBUFFERLEN 30
1325
1326static void arp_format_neigh_entry(struct seq_file *seq,
1327				   struct neighbour *n)
1328{
1329	char hbuffer[HBUFFERLEN];
1330	int k, j;
1331	char tbuf[16];
1332	struct net_device *dev = n->dev;
1333	int hatype = dev->type;
1334
1335	read_lock(&n->lock);
1336	/* Convert hardware address to XX:XX:XX:XX ... form. */
1337#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1338	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1339		ax2asc2((ax25_address *)n->ha, hbuffer);
1340	else {
1341#endif
1342	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1343		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1344		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1345		hbuffer[k++] = ':';
1346	}
1347	if (k != 0)
1348		--k;
1349	hbuffer[k] = 0;
1350#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1351	}
1352#endif
1353	sprintf(tbuf, "%pI4", n->primary_key);
1354	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1355		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1356	read_unlock(&n->lock);
1357}
1358
1359static void arp_format_pneigh_entry(struct seq_file *seq,
1360				    struct pneigh_entry *n)
1361{
1362	struct net_device *dev = n->dev;
1363	int hatype = dev ? dev->type : 0;
1364	char tbuf[16];
1365
1366	sprintf(tbuf, "%pI4", n->key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1369		   dev ? dev->name : "*");
1370}
1371
1372static int arp_seq_show(struct seq_file *seq, void *v)
1373{
1374	if (v == SEQ_START_TOKEN) {
1375		seq_puts(seq, "IP address       HW type     Flags       "
1376			      "HW address            Mask     Device\n");
1377	} else {
1378		struct neigh_seq_state *state = seq->private;
1379
1380		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1381			arp_format_pneigh_entry(seq, v);
1382		else
1383			arp_format_neigh_entry(seq, v);
1384	}
1385
1386	return 0;
1387}
1388
1389static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1390{
1391	/* Don't want to confuse "arp -a" w/ magic entries,
1392	 * so we tell the generic iterator to skip NUD_NOARP.
1393	 */
1394	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1395}
1396
1397/* ------------------------------------------------------------------------ */
1398
1399static const struct seq_operations arp_seq_ops = {
1400	.start	= arp_seq_start,
1401	.next	= neigh_seq_next,
1402	.stop	= neigh_seq_stop,
1403	.show	= arp_seq_show,
1404};
1405
1406static int arp_seq_open(struct inode *inode, struct file *file)
1407{
1408	return seq_open_net(inode, file, &arp_seq_ops,
1409			    sizeof(struct neigh_seq_state));
1410}
1411
1412static const struct file_operations arp_seq_fops = {
1413	.owner		= THIS_MODULE,
1414	.open           = arp_seq_open,
1415	.read           = seq_read,
1416	.llseek         = seq_lseek,
1417	.release	= seq_release_net,
1418};
1419
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1424		return -ENOMEM;
1425	return 0;
1426}
1427
1428static void __net_exit arp_net_exit(struct net *net)
1429{
1430	proc_net_remove(net, "arp");
1431}
1432
1433static struct pernet_operations arp_net_ops = {
1434	.init = arp_net_init,
1435	.exit = arp_net_exit,
1436};
1437
1438static int __init arp_proc_init(void)
1439{
1440	return register_pernet_subsys(&arp_net_ops);
1441}
1442
1443#else /* CONFIG_PROC_FS */
1444
1445static int __init arp_proc_init(void)
1446{
1447	return 0;
1448}
1449
1450#endif /* CONFIG_PROC_FS */