Linux Audio

Check our new training course

Loading...
v3.15
 
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 
 
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netfilter_arp.h>
 120
 121/*
 122 *	Interface to generic neighbour cache.
 123 */
 124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 
 125static int arp_constructor(struct neighbour *neigh);
 126static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 127static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 128static void parp_redo(struct sk_buff *skb);
 
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152static const struct neigh_ops arp_broken_ops = {
 153	.family =		AF_INET,
 154	.solicit =		arp_solicit,
 155	.error_report =		arp_error_report,
 156	.output =		neigh_compat_output,
 157	.connected_output =	neigh_compat_output,
 158};
 159
 160struct neigh_table arp_tbl = {
 161	.family		= AF_INET,
 162	.key_len	= 4,
 
 163	.hash		= arp_hash,
 
 164	.constructor	= arp_constructor,
 165	.proxy_redo	= parp_redo,
 
 166	.id		= "arp_cache",
 167	.parms		= {
 168		.tbl			= &arp_tbl,
 169		.reachable_time		= 30 * HZ,
 170		.data	= {
 171			[NEIGH_VAR_MCAST_PROBES] = 3,
 172			[NEIGH_VAR_UCAST_PROBES] = 3,
 173			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 174			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 175			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 
 176			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 177			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
 178			[NEIGH_VAR_PROXY_QLEN] = 64,
 179			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 180			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 181			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 182		},
 183	},
 184	.gc_interval	= 30 * HZ,
 185	.gc_thresh1	= 128,
 186	.gc_thresh2	= 512,
 187	.gc_thresh3	= 1024,
 188};
 189EXPORT_SYMBOL(arp_tbl);
 190
 191int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 192{
 193	switch (dev->type) {
 194	case ARPHRD_ETHER:
 195	case ARPHRD_FDDI:
 196	case ARPHRD_IEEE802:
 197		ip_eth_mc_map(addr, haddr);
 198		return 0;
 199	case ARPHRD_INFINIBAND:
 200		ip_ib_mc_map(addr, dev->broadcast, haddr);
 201		return 0;
 202	case ARPHRD_IPGRE:
 203		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 204		return 0;
 205	default:
 206		if (dir) {
 207			memcpy(haddr, dev->broadcast, dev->addr_len);
 208			return 0;
 209		}
 210	}
 211	return -EINVAL;
 212}
 213
 214
 215static u32 arp_hash(const void *pkey,
 216		    const struct net_device *dev,
 217		    __u32 *hash_rnd)
 218{
 219	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
 
 
 
 
 
 220}
 221
 222static int arp_constructor(struct neighbour *neigh)
 223{
 224	__be32 addr = *(__be32 *)neigh->primary_key;
 225	struct net_device *dev = neigh->dev;
 226	struct in_device *in_dev;
 227	struct neigh_parms *parms;
 
 228
 
 
 
 
 229	rcu_read_lock();
 230	in_dev = __in_dev_get_rcu(dev);
 231	if (in_dev == NULL) {
 232		rcu_read_unlock();
 233		return -EINVAL;
 234	}
 235
 236	neigh->type = inet_addr_type(dev_net(dev), addr);
 237
 238	parms = in_dev->arp_parms;
 239	__neigh_parms_put(neigh->parms);
 240	neigh->parms = neigh_parms_clone(parms);
 241	rcu_read_unlock();
 242
 243	if (!dev->header_ops) {
 244		neigh->nud_state = NUD_NOARP;
 245		neigh->ops = &arp_direct_ops;
 246		neigh->output = neigh_direct_output;
 247	} else {
 248		/* Good devices (checked by reading texts, but only Ethernet is
 249		   tested)
 250
 251		   ARPHRD_ETHER: (ethernet, apfddi)
 252		   ARPHRD_FDDI: (fddi)
 253		   ARPHRD_IEEE802: (tr)
 254		   ARPHRD_METRICOM: (strip)
 255		   ARPHRD_ARCNET:
 256		   etc. etc. etc.
 257
 258		   ARPHRD_IPDDP will also work, if author repairs it.
 259		   I did not it, because this driver does not work even
 260		   in old paradigm.
 261		 */
 262
 263#if 1
 264		/* So... these "amateur" devices are hopeless.
 265		   The only thing, that I can say now:
 266		   It is very sad that we need to keep ugly obsolete
 267		   code to make them happy.
 268
 269		   They should be moved to more reasonable state, now
 270		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 271		   Besides that, they are sort of out of date
 272		   (a lot of redundant clones/copies, useless in 2.1),
 273		   I wonder why people believe that they work.
 274		 */
 275		switch (dev->type) {
 276		default:
 277			break;
 278		case ARPHRD_ROSE:
 279#if IS_ENABLED(CONFIG_AX25)
 280		case ARPHRD_AX25:
 281#if IS_ENABLED(CONFIG_NETROM)
 282		case ARPHRD_NETROM:
 283#endif
 284			neigh->ops = &arp_broken_ops;
 285			neigh->output = neigh->ops->output;
 286			return 0;
 287#else
 288			break;
 289#endif
 290		}
 291#endif
 292		if (neigh->type == RTN_MULTICAST) {
 293			neigh->nud_state = NUD_NOARP;
 294			arp_mc_map(addr, neigh->ha, dev, 1);
 295		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 296			neigh->nud_state = NUD_NOARP;
 297			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 298		} else if (neigh->type == RTN_BROADCAST ||
 299			   (dev->flags & IFF_POINTOPOINT)) {
 300			neigh->nud_state = NUD_NOARP;
 301			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 302		}
 303
 304		if (dev->header_ops->cache)
 305			neigh->ops = &arp_hh_ops;
 306		else
 307			neigh->ops = &arp_generic_ops;
 308
 309		if (neigh->nud_state & NUD_VALID)
 310			neigh->output = neigh->ops->connected_output;
 311		else
 312			neigh->output = neigh->ops->output;
 313	}
 314	return 0;
 315}
 316
 317static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 318{
 319	dst_link_failure(skb);
 320	kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321}
 322
 
 
 
 
 
 
 
 
 
 
 323static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 324{
 325	__be32 saddr = 0;
 326	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 327	struct net_device *dev = neigh->dev;
 328	__be32 target = *(__be32 *)neigh->primary_key;
 329	int probes = atomic_read(&neigh->probes);
 330	struct in_device *in_dev;
 
 331
 332	rcu_read_lock();
 333	in_dev = __in_dev_get_rcu(dev);
 334	if (!in_dev) {
 335		rcu_read_unlock();
 336		return;
 337	}
 338	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 339	default:
 340	case 0:		/* By default announce any local IP */
 341		if (skb && inet_addr_type(dev_net(dev),
 342					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 343			saddr = ip_hdr(skb)->saddr;
 344		break;
 345	case 1:		/* Restrict announcements of saddr in same subnet */
 346		if (!skb)
 347			break;
 348		saddr = ip_hdr(skb)->saddr;
 349		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 350			/* saddr should be known to target */
 351			if (inet_addr_onlink(in_dev, target, saddr))
 352				break;
 353		}
 354		saddr = 0;
 355		break;
 356	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 357		break;
 358	}
 359	rcu_read_unlock();
 360
 361	if (!saddr)
 362		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 363
 364	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 365	if (probes < 0) {
 366		if (!(neigh->nud_state & NUD_VALID))
 367			pr_debug("trying to ucast probe in NUD_INVALID\n");
 368		neigh_ha_snapshot(dst_ha, neigh, dev);
 369		dst_hw = dst_ha;
 370	} else {
 371		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 372		if (probes < 0) {
 373			neigh_app_ns(neigh);
 374			return;
 375		}
 376	}
 377
 378	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 379		 dst_hw, dev->dev_addr, NULL);
 
 
 380}
 381
 382static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 383{
 384	struct net *net = dev_net(in_dev->dev);
 385	int scope;
 386
 387	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 388	case 0:	/* Reply, the tip is already validated */
 389		return 0;
 390	case 1:	/* Reply only if tip is configured on the incoming interface */
 391		sip = 0;
 392		scope = RT_SCOPE_HOST;
 393		break;
 394	case 2:	/*
 395		 * Reply only if tip is configured on the incoming interface
 396		 * and is in same subnet as sip
 397		 */
 398		scope = RT_SCOPE_HOST;
 399		break;
 400	case 3:	/* Do not reply for scope host addresses */
 401		sip = 0;
 402		scope = RT_SCOPE_LINK;
 403		in_dev = NULL;
 404		break;
 405	case 4:	/* Reserved */
 406	case 5:
 407	case 6:
 408	case 7:
 409		return 0;
 410	case 8:	/* Do not reply */
 411		return 1;
 412	default:
 413		return 0;
 414	}
 415	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 416}
 417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 419{
 420	struct rtable *rt;
 421	int flag = 0;
 422	/*unsigned long now; */
 423	struct net *net = dev_net(dev);
 424
 425	rt = ip_route_output(net, sip, tip, 0, 0);
 426	if (IS_ERR(rt))
 427		return 1;
 428	if (rt->dst.dev != dev) {
 429		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 430		flag = 1;
 431	}
 432	ip_rt_put(rt);
 433	return flag;
 434}
 435
 436/* OBSOLETE FUNCTIONS */
 437
 438/*
 439 *	Find an arp mapping in the cache. If not found, post a request.
 440 *
 441 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 442 *	even if it exists. It is supposed that skb->dev was mangled
 443 *	by a virtual device (eql, shaper). Nobody but broken devices
 444 *	is allowed to use this function, it is scheduled to be removed. --ANK
 445 */
 446
 447static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 448			      __be32 paddr, struct net_device *dev)
 449{
 450	switch (addr_hint) {
 451	case RTN_LOCAL:
 452		pr_debug("arp called for own IP address\n");
 453		memcpy(haddr, dev->dev_addr, dev->addr_len);
 454		return 1;
 455	case RTN_MULTICAST:
 456		arp_mc_map(paddr, haddr, dev, 1);
 457		return 1;
 458	case RTN_BROADCAST:
 459		memcpy(haddr, dev->broadcast, dev->addr_len);
 460		return 1;
 461	}
 462	return 0;
 463}
 464
 465
 466int arp_find(unsigned char *haddr, struct sk_buff *skb)
 467{
 468	struct net_device *dev = skb->dev;
 469	__be32 paddr;
 470	struct neighbour *n;
 471
 472	if (!skb_dst(skb)) {
 473		pr_debug("arp_find is called with dst==NULL\n");
 474		kfree_skb(skb);
 475		return 1;
 476	}
 477
 478	paddr = rt_nexthop(skb_rtable(skb), ip_hdr(skb)->daddr);
 479	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 480			       paddr, dev))
 481		return 0;
 482
 483	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 484
 485	if (n) {
 486		n->used = jiffies;
 487		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 488			neigh_ha_snapshot(haddr, n, dev);
 489			neigh_release(n);
 490			return 0;
 491		}
 492		neigh_release(n);
 493	} else
 494		kfree_skb(skb);
 495	return 1;
 496}
 497EXPORT_SYMBOL(arp_find);
 498
 499/* END OF OBSOLETE FUNCTIONS */
 500
 501/*
 502 * Check if we can use proxy ARP for this path
 503 */
 504static inline int arp_fwd_proxy(struct in_device *in_dev,
 505				struct net_device *dev,	struct rtable *rt)
 506{
 507	struct in_device *out_dev;
 508	int imi, omi = -1;
 509
 510	if (rt->dst.dev == dev)
 511		return 0;
 512
 513	if (!IN_DEV_PROXY_ARP(in_dev))
 514		return 0;
 515	imi = IN_DEV_MEDIUM_ID(in_dev);
 516	if (imi == 0)
 517		return 1;
 518	if (imi == -1)
 519		return 0;
 520
 521	/* place to check for proxy_arp for routes */
 522
 523	out_dev = __in_dev_get_rcu(rt->dst.dev);
 524	if (out_dev)
 525		omi = IN_DEV_MEDIUM_ID(out_dev);
 526
 527	return omi != imi && omi != -1;
 528}
 529
 530/*
 531 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 532 *
 533 * RFC3069 supports proxy arp replies back to the same interface.  This
 534 * is done to support (ethernet) switch features, like RFC 3069, where
 535 * the individual ports are not allowed to communicate with each
 536 * other, BUT they are allowed to talk to the upstream router.  As
 537 * described in RFC 3069, it is possible to allow these hosts to
 538 * communicate through the upstream router, by proxy_arp'ing.
 539 *
 540 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 541 *
 542 *  This technology is known by different names:
 543 *    In RFC 3069 it is called VLAN Aggregation.
 544 *    Cisco and Allied Telesyn call it Private VLAN.
 545 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 546 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 547 *
 548 */
 549static inline int arp_fwd_pvlan(struct in_device *in_dev,
 550				struct net_device *dev,	struct rtable *rt,
 551				__be32 sip, __be32 tip)
 552{
 553	/* Private VLAN is only concerned about the same ethernet segment */
 554	if (rt->dst.dev != dev)
 555		return 0;
 556
 557	/* Don't reply on self probes (often done by windowz boxes)*/
 558	if (sip == tip)
 559		return 0;
 560
 561	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 562		return 1;
 563	else
 564		return 0;
 565}
 566
 567/*
 568 *	Interface to link layer: send routine and receive handler.
 569 */
 570
 571/*
 572 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 573 *	message.
 574 */
 575struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 576			   struct net_device *dev, __be32 src_ip,
 577			   const unsigned char *dest_hw,
 578			   const unsigned char *src_hw,
 579			   const unsigned char *target_hw)
 580{
 581	struct sk_buff *skb;
 582	struct arphdr *arp;
 583	unsigned char *arp_ptr;
 584	int hlen = LL_RESERVED_SPACE(dev);
 585	int tlen = dev->needed_tailroom;
 586
 587	/*
 588	 *	Allocate a buffer
 589	 */
 590
 591	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 592	if (skb == NULL)
 593		return NULL;
 594
 595	skb_reserve(skb, hlen);
 596	skb_reset_network_header(skb);
 597	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 598	skb->dev = dev;
 599	skb->protocol = htons(ETH_P_ARP);
 600	if (src_hw == NULL)
 601		src_hw = dev->dev_addr;
 602	if (dest_hw == NULL)
 603		dest_hw = dev->broadcast;
 604
 605	/*
 606	 *	Fill the device header for the ARP frame
 607	 */
 608	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 609		goto out;
 610
 611	/*
 612	 * Fill out the arp protocol part.
 613	 *
 614	 * The arp hardware type should match the device type, except for FDDI,
 615	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 616	 */
 617	/*
 618	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 619	 *	DIX code for the protocol. Make these device structure fields.
 620	 */
 621	switch (dev->type) {
 622	default:
 623		arp->ar_hrd = htons(dev->type);
 624		arp->ar_pro = htons(ETH_P_IP);
 625		break;
 626
 627#if IS_ENABLED(CONFIG_AX25)
 628	case ARPHRD_AX25:
 629		arp->ar_hrd = htons(ARPHRD_AX25);
 630		arp->ar_pro = htons(AX25_P_IP);
 631		break;
 632
 633#if IS_ENABLED(CONFIG_NETROM)
 634	case ARPHRD_NETROM:
 635		arp->ar_hrd = htons(ARPHRD_NETROM);
 636		arp->ar_pro = htons(AX25_P_IP);
 637		break;
 638#endif
 639#endif
 640
 641#if IS_ENABLED(CONFIG_FDDI)
 642	case ARPHRD_FDDI:
 643		arp->ar_hrd = htons(ARPHRD_ETHER);
 644		arp->ar_pro = htons(ETH_P_IP);
 645		break;
 646#endif
 647	}
 648
 649	arp->ar_hln = dev->addr_len;
 650	arp->ar_pln = 4;
 651	arp->ar_op = htons(type);
 652
 653	arp_ptr = (unsigned char *)(arp + 1);
 654
 655	memcpy(arp_ptr, src_hw, dev->addr_len);
 656	arp_ptr += dev->addr_len;
 657	memcpy(arp_ptr, &src_ip, 4);
 658	arp_ptr += 4;
 659
 660	switch (dev->type) {
 661#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 662	case ARPHRD_IEEE1394:
 663		break;
 664#endif
 665	default:
 666		if (target_hw != NULL)
 667			memcpy(arp_ptr, target_hw, dev->addr_len);
 668		else
 669			memset(arp_ptr, 0, dev->addr_len);
 670		arp_ptr += dev->addr_len;
 671	}
 672	memcpy(arp_ptr, &dest_ip, 4);
 673
 674	return skb;
 675
 676out:
 677	kfree_skb(skb);
 678	return NULL;
 679}
 680EXPORT_SYMBOL(arp_create);
 681
 
 
 
 
 
 682/*
 683 *	Send an arp packet.
 684 */
 685void arp_xmit(struct sk_buff *skb)
 686{
 687	/* Send it off, maybe filter it using firewalling first.  */
 688	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 689}
 690EXPORT_SYMBOL(arp_xmit);
 691
 692/*
 693 *	Create and send an arp packet.
 694 */
 695void arp_send(int type, int ptype, __be32 dest_ip,
 696	      struct net_device *dev, __be32 src_ip,
 697	      const unsigned char *dest_hw, const unsigned char *src_hw,
 698	      const unsigned char *target_hw)
 699{
 700	struct sk_buff *skb;
 701
 702	/*
 703	 *	No arp on this interface.
 704	 */
 705
 706	if (dev->flags&IFF_NOARP)
 707		return;
 708
 709	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 710			 dest_hw, src_hw, target_hw);
 711	if (skb == NULL)
 712		return;
 713
 714	arp_xmit(skb);
 
 
 
 
 715}
 716EXPORT_SYMBOL(arp_send);
 717
 718/*
 719 *	Process an arp request.
 720 */
 721
 722static int arp_process(struct sk_buff *skb)
 723{
 724	struct net_device *dev = skb->dev;
 725	struct in_device *in_dev = __in_dev_get_rcu(dev);
 726	struct arphdr *arp;
 727	unsigned char *arp_ptr;
 728	struct rtable *rt;
 729	unsigned char *sha;
 
 730	__be32 sip, tip;
 731	u16 dev_type = dev->type;
 732	int addr_type;
 733	struct neighbour *n;
 734	struct net *net = dev_net(dev);
 735	bool is_garp = false;
 736
 737	/* arp_rcv below verifies the ARP header and verifies the device
 738	 * is ARP'able.
 739	 */
 740
 741	if (in_dev == NULL)
 742		goto out;
 743
 744	arp = arp_hdr(skb);
 745
 746	switch (dev_type) {
 747	default:
 748		if (arp->ar_pro != htons(ETH_P_IP) ||
 749		    htons(dev_type) != arp->ar_hrd)
 750			goto out;
 751		break;
 752	case ARPHRD_ETHER:
 753	case ARPHRD_FDDI:
 754	case ARPHRD_IEEE802:
 755		/*
 756		 * ETHERNET, and Fibre Channel (which are IEEE 802
 757		 * devices, according to RFC 2625) devices will accept ARP
 758		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 759		 * This is the case also of FDDI, where the RFC 1390 says that
 760		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 761		 * however, to be more robust, we'll accept both 1 (Ethernet)
 762		 * or 6 (IEEE 802.2)
 763		 */
 764		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 765		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 766		    arp->ar_pro != htons(ETH_P_IP))
 767			goto out;
 768		break;
 769	case ARPHRD_AX25:
 770		if (arp->ar_pro != htons(AX25_P_IP) ||
 771		    arp->ar_hrd != htons(ARPHRD_AX25))
 772			goto out;
 773		break;
 774	case ARPHRD_NETROM:
 775		if (arp->ar_pro != htons(AX25_P_IP) ||
 776		    arp->ar_hrd != htons(ARPHRD_NETROM))
 777			goto out;
 778		break;
 779	}
 780
 781	/* Understand only these message types */
 782
 783	if (arp->ar_op != htons(ARPOP_REPLY) &&
 784	    arp->ar_op != htons(ARPOP_REQUEST))
 785		goto out;
 786
 787/*
 788 *	Extract fields
 789 */
 790	arp_ptr = (unsigned char *)(arp + 1);
 791	sha	= arp_ptr;
 792	arp_ptr += dev->addr_len;
 793	memcpy(&sip, arp_ptr, 4);
 794	arp_ptr += 4;
 795	switch (dev_type) {
 796#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 797	case ARPHRD_IEEE1394:
 798		break;
 799#endif
 800	default:
 
 801		arp_ptr += dev->addr_len;
 802	}
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_multicast(tip) ||
 809	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 810		goto out;
 
 
 
 
 
 
 
 
 811
 812/*
 813 *     Special case: We must set Frame Relay source Q.922 address
 814 */
 815	if (dev_type == ARPHRD_DLCI)
 816		sha = dev->broadcast;
 817
 818/*
 819 *  Process entry.  The idea here is we want to send a reply if it is a
 820 *  request for us or if it is a request for someone else that we hold
 821 *  a proxy for.  We want to add an entry to our cache if it is a reply
 822 *  to us or if it is a request for our address.
 823 *  (The assumption for this last is that if someone is requesting our
 824 *  address, they are probably intending to talk to us, so it saves time
 825 *  if we cache their address.  Their address is also probably not in
 826 *  our cache, since ours is not in their cache.)
 827 *
 828 *  Putting this another way, we only care about replies if they are to
 829 *  us, in which case we add them to the cache.  For requests, we care
 830 *  about those for us and those for our proxies.  We reply to both,
 831 *  and in the case of requests for us we add the requester to the arp
 832 *  cache.
 833 */
 834
 
 
 
 
 
 835	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 836	if (sip == 0) {
 837		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 838		    inet_addr_type(net, tip) == RTN_LOCAL &&
 839		    !arp_ignore(in_dev, sip, tip))
 840			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 841				 dev->dev_addr, sha);
 842		goto out;
 843	}
 844
 845	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 846	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 847
 848		rt = skb_rtable(skb);
 849		addr_type = rt->rt_type;
 850
 851		if (addr_type == RTN_LOCAL) {
 852			int dont_send;
 853
 854			dont_send = arp_ignore(in_dev, sip, tip);
 855			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 856				dont_send = arp_filter(sip, tip, dev);
 857			if (!dont_send) {
 858				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 859				if (n) {
 860					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 861						 dev, tip, sha, dev->dev_addr,
 862						 sha);
 
 863					neigh_release(n);
 864				}
 865			}
 866			goto out;
 867		} else if (IN_DEV_FORWARD(in_dev)) {
 868			if (addr_type == RTN_UNICAST  &&
 869			    (arp_fwd_proxy(in_dev, dev, rt) ||
 870			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 871			     (rt->dst.dev != dev &&
 872			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 873				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 874				if (n)
 875					neigh_release(n);
 876
 877				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 878				    skb->pkt_type == PACKET_HOST ||
 879				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 880					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 881						 dev, tip, sha, dev->dev_addr,
 882						 sha);
 
 883				} else {
 884					pneigh_enqueue(&arp_tbl,
 885						       in_dev->arp_parms, skb);
 886					return 0;
 887				}
 888				goto out;
 889			}
 890		}
 891	}
 892
 893	/* Update our ARP tables */
 894
 895	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 896
 897	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 
 
 
 
 
 
 898		/* Unsolicited ARP is not accepted by default.
 899		   It is possible, that this option should be enabled for some
 900		   devices (strip is candidate)
 901		 */
 902		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
 903			  inet_addr_type(net, sip) == RTN_UNICAST;
 904
 905		if (n == NULL &&
 906		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
 907		      inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
 
 
 908			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 909	}
 910
 911	if (n) {
 912		int state = NUD_REACHABLE;
 913		int override;
 914
 915		/* If several different ARP replies follows back-to-back,
 916		   use the FIRST one. It is possible, if several proxy
 917		   agents are active. Taking the first reply prevents
 918		   arp trashing and chooses the fastest router.
 919		 */
 920		override = time_after(jiffies,
 921				      n->updated +
 922				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 923			   is_garp;
 924
 925		/* Broadcast replies and request packets
 926		   do not assert neighbour reachability.
 927		 */
 928		if (arp->ar_op != htons(ARPOP_REPLY) ||
 929		    skb->pkt_type != PACKET_HOST)
 930			state = NUD_STALE;
 931		neigh_update(n, sha, state,
 932			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 933		neigh_release(n);
 934	}
 935
 936out:
 937	consume_skb(skb);
 938	return 0;
 
 
 
 
 
 
 
 939}
 940
 941static void parp_redo(struct sk_buff *skb)
 942{
 943	arp_process(skb);
 944}
 945
 
 
 
 
 946
 947/*
 948 *	Receive an arp request from the device layer.
 949 */
 950
 951static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 952		   struct packet_type *pt, struct net_device *orig_dev)
 953{
 954	const struct arphdr *arp;
 955
 
 956	if (dev->flags & IFF_NOARP ||
 957	    skb->pkt_type == PACKET_OTHERHOST ||
 958	    skb->pkt_type == PACKET_LOOPBACK)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (!skb)
 963		goto out_of_mem;
 964
 965	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 966	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 967		goto freeskb;
 968
 969	arp = arp_hdr(skb);
 970	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 971		goto freeskb;
 972
 973	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 974
 975	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 976
 
 
 
 977freeskb:
 978	kfree_skb(skb);
 979out_of_mem:
 980	return 0;
 981}
 982
 983/*
 984 *	User level interface (ioctl)
 985 */
 986
 987/*
 988 *	Set (create) an ARP cache entry.
 989 */
 990
 991static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 992{
 993	if (dev == NULL) {
 994		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 995		return 0;
 996	}
 997	if (__in_dev_get_rtnl(dev)) {
 998		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 999		return 0;
1000	}
1001	return -ENXIO;
1002}
1003
1004static int arp_req_set_public(struct net *net, struct arpreq *r,
1005		struct net_device *dev)
1006{
1007	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1008	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1009
1010	if (mask && mask != htonl(0xFFFFFFFF))
1011		return -EINVAL;
1012	if (!dev && (r->arp_flags & ATF_COM)) {
1013		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1014				      r->arp_ha.sa_data);
1015		if (!dev)
1016			return -ENODEV;
1017	}
1018	if (mask) {
1019		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1020			return -ENOBUFS;
1021		return 0;
1022	}
1023
1024	return arp_req_set_proxy(net, dev, 1);
1025}
1026
1027static int arp_req_set(struct net *net, struct arpreq *r,
1028		       struct net_device *dev)
1029{
1030	__be32 ip;
1031	struct neighbour *neigh;
1032	int err;
1033
1034	if (r->arp_flags & ATF_PUBL)
1035		return arp_req_set_public(net, r, dev);
1036
1037	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1038	if (r->arp_flags & ATF_PERM)
1039		r->arp_flags |= ATF_COM;
1040	if (dev == NULL) {
1041		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1042
1043		if (IS_ERR(rt))
1044			return PTR_ERR(rt);
1045		dev = rt->dst.dev;
1046		ip_rt_put(rt);
1047		if (!dev)
1048			return -EINVAL;
1049	}
1050	switch (dev->type) {
1051#if IS_ENABLED(CONFIG_FDDI)
1052	case ARPHRD_FDDI:
1053		/*
1054		 * According to RFC 1390, FDDI devices should accept ARP
1055		 * hardware types of 1 (Ethernet).  However, to be more
1056		 * robust, we'll accept hardware types of either 1 (Ethernet)
1057		 * or 6 (IEEE 802.2).
1058		 */
1059		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1060		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1061		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1062			return -EINVAL;
1063		break;
1064#endif
1065	default:
1066		if (r->arp_ha.sa_family != dev->type)
1067			return -EINVAL;
1068		break;
1069	}
1070
1071	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1072	err = PTR_ERR(neigh);
1073	if (!IS_ERR(neigh)) {
1074		unsigned int state = NUD_STALE;
1075		if (r->arp_flags & ATF_PERM)
1076			state = NUD_PERMANENT;
1077		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1078				   r->arp_ha.sa_data : NULL, state,
1079				   NEIGH_UPDATE_F_OVERRIDE |
1080				   NEIGH_UPDATE_F_ADMIN);
1081		neigh_release(neigh);
1082	}
1083	return err;
1084}
1085
1086static unsigned int arp_state_to_flags(struct neighbour *neigh)
1087{
1088	if (neigh->nud_state&NUD_PERMANENT)
1089		return ATF_PERM | ATF_COM;
1090	else if (neigh->nud_state&NUD_VALID)
1091		return ATF_COM;
1092	else
1093		return 0;
1094}
1095
1096/*
1097 *	Get an ARP cache entry.
1098 */
1099
1100static int arp_req_get(struct arpreq *r, struct net_device *dev)
1101{
1102	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1103	struct neighbour *neigh;
1104	int err = -ENXIO;
1105
1106	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1107	if (neigh) {
1108		read_lock_bh(&neigh->lock);
1109		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1110		r->arp_flags = arp_state_to_flags(neigh);
1111		read_unlock_bh(&neigh->lock);
1112		r->arp_ha.sa_family = dev->type;
1113		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
 
 
 
 
1114		neigh_release(neigh);
1115		err = 0;
1116	}
1117	return err;
1118}
1119
1120static int arp_invalidate(struct net_device *dev, __be32 ip)
1121{
1122	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1123	int err = -ENXIO;
 
1124
1125	if (neigh) {
1126		if (neigh->nud_state & ~NUD_NOARP)
 
 
 
 
 
1127			err = neigh_update(neigh, NULL, NUD_FAILED,
1128					   NEIGH_UPDATE_F_OVERRIDE|
1129					   NEIGH_UPDATE_F_ADMIN);
 
1130		neigh_release(neigh);
 
 
1131	}
1132
1133	return err;
1134}
1135
1136static int arp_req_delete_public(struct net *net, struct arpreq *r,
1137		struct net_device *dev)
1138{
1139	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1140	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1141
1142	if (mask == htonl(0xFFFFFFFF))
1143		return pneigh_delete(&arp_tbl, net, &ip, dev);
1144
1145	if (mask)
1146		return -EINVAL;
1147
1148	return arp_req_set_proxy(net, dev, 0);
1149}
1150
1151static int arp_req_delete(struct net *net, struct arpreq *r,
1152			  struct net_device *dev)
1153{
1154	__be32 ip;
1155
1156	if (r->arp_flags & ATF_PUBL)
1157		return arp_req_delete_public(net, r, dev);
1158
1159	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1160	if (dev == NULL) {
1161		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1162		if (IS_ERR(rt))
1163			return PTR_ERR(rt);
1164		dev = rt->dst.dev;
1165		ip_rt_put(rt);
1166		if (!dev)
1167			return -EINVAL;
1168	}
1169	return arp_invalidate(dev, ip);
1170}
1171
1172/*
1173 *	Handle an ARP layer I/O control request.
1174 */
1175
1176int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1177{
1178	int err;
1179	struct arpreq r;
1180	struct net_device *dev = NULL;
1181
1182	switch (cmd) {
1183	case SIOCDARP:
1184	case SIOCSARP:
1185		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1186			return -EPERM;
 
1187	case SIOCGARP:
1188		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1189		if (err)
1190			return -EFAULT;
1191		break;
1192	default:
1193		return -EINVAL;
1194	}
1195
1196	if (r.arp_pa.sa_family != AF_INET)
1197		return -EPFNOSUPPORT;
1198
1199	if (!(r.arp_flags & ATF_PUBL) &&
1200	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1201		return -EINVAL;
1202	if (!(r.arp_flags & ATF_NETMASK))
1203		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1204							   htonl(0xFFFFFFFFUL);
1205	rtnl_lock();
1206	if (r.arp_dev[0]) {
1207		err = -ENODEV;
1208		dev = __dev_get_by_name(net, r.arp_dev);
1209		if (dev == NULL)
1210			goto out;
1211
1212		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1213		if (!r.arp_ha.sa_family)
1214			r.arp_ha.sa_family = dev->type;
1215		err = -EINVAL;
1216		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1217			goto out;
1218	} else if (cmd == SIOCGARP) {
1219		err = -ENODEV;
1220		goto out;
1221	}
1222
1223	switch (cmd) {
1224	case SIOCDARP:
1225		err = arp_req_delete(net, &r, dev);
1226		break;
1227	case SIOCSARP:
1228		err = arp_req_set(net, &r, dev);
1229		break;
1230	case SIOCGARP:
1231		err = arp_req_get(&r, dev);
1232		break;
1233	}
1234out:
1235	rtnl_unlock();
1236	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1237		err = -EFAULT;
1238	return err;
1239}
1240
1241static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1242			    void *ptr)
1243{
1244	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1245	struct netdev_notifier_change_info *change_info;
 
 
1246
1247	switch (event) {
1248	case NETDEV_CHANGEADDR:
1249		neigh_changeaddr(&arp_tbl, dev);
1250		rt_cache_flush(dev_net(dev));
1251		break;
1252	case NETDEV_CHANGE:
1253		change_info = ptr;
1254		if (change_info->flags_changed & IFF_NOARP)
1255			neigh_changeaddr(&arp_tbl, dev);
 
 
 
 
 
 
 
 
 
1256		break;
1257	default:
1258		break;
1259	}
1260
1261	return NOTIFY_DONE;
1262}
1263
1264static struct notifier_block arp_netdev_notifier = {
1265	.notifier_call = arp_netdev_event,
1266};
1267
1268/* Note, that it is not on notifier chain.
1269   It is necessary, that this routine was called after route cache will be
1270   flushed.
1271 */
1272void arp_ifdown(struct net_device *dev)
1273{
1274	neigh_ifdown(&arp_tbl, dev);
1275}
1276
1277
1278/*
1279 *	Called once on startup.
1280 */
1281
1282static struct packet_type arp_packet_type __read_mostly = {
1283	.type =	cpu_to_be16(ETH_P_ARP),
1284	.func =	arp_rcv,
1285};
1286
1287static int arp_proc_init(void);
1288
1289void __init arp_init(void)
1290{
1291	neigh_table_init(&arp_tbl);
1292
1293	dev_add_pack(&arp_packet_type);
1294	arp_proc_init();
1295#ifdef CONFIG_SYSCTL
1296	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1297#endif
1298	register_netdevice_notifier(&arp_netdev_notifier);
1299}
1300
1301#ifdef CONFIG_PROC_FS
1302#if IS_ENABLED(CONFIG_AX25)
1303
1304/* ------------------------------------------------------------------------ */
1305/*
1306 *	ax25 -> ASCII conversion
1307 */
1308static char *ax2asc2(ax25_address *a, char *buf)
1309{
1310	char c, *s;
1311	int n;
1312
1313	for (n = 0, s = buf; n < 6; n++) {
1314		c = (a->ax25_call[n] >> 1) & 0x7F;
1315
1316		if (c != ' ')
1317			*s++ = c;
1318	}
1319
1320	*s++ = '-';
1321	n = (a->ax25_call[6] >> 1) & 0x0F;
1322	if (n > 9) {
1323		*s++ = '1';
1324		n -= 10;
1325	}
1326
1327	*s++ = n + '0';
1328	*s++ = '\0';
1329
1330	if (*buf == '\0' || *buf == '-')
1331		return "*";
1332
1333	return buf;
1334}
1335#endif /* CONFIG_AX25 */
1336
1337#define HBUFFERLEN 30
1338
1339static void arp_format_neigh_entry(struct seq_file *seq,
1340				   struct neighbour *n)
1341{
1342	char hbuffer[HBUFFERLEN];
1343	int k, j;
1344	char tbuf[16];
1345	struct net_device *dev = n->dev;
1346	int hatype = dev->type;
1347
1348	read_lock(&n->lock);
1349	/* Convert hardware address to XX:XX:XX:XX ... form. */
1350#if IS_ENABLED(CONFIG_AX25)
1351	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1352		ax2asc2((ax25_address *)n->ha, hbuffer);
1353	else {
1354#endif
1355	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1356		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1357		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1358		hbuffer[k++] = ':';
1359	}
1360	if (k != 0)
1361		--k;
1362	hbuffer[k] = 0;
1363#if IS_ENABLED(CONFIG_AX25)
1364	}
1365#endif
1366	sprintf(tbuf, "%pI4", n->primary_key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1369	read_unlock(&n->lock);
1370}
1371
1372static void arp_format_pneigh_entry(struct seq_file *seq,
1373				    struct pneigh_entry *n)
1374{
1375	struct net_device *dev = n->dev;
1376	int hatype = dev ? dev->type : 0;
1377	char tbuf[16];
1378
1379	sprintf(tbuf, "%pI4", n->key);
1380	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1381		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1382		   dev ? dev->name : "*");
1383}
1384
1385static int arp_seq_show(struct seq_file *seq, void *v)
1386{
1387	if (v == SEQ_START_TOKEN) {
1388		seq_puts(seq, "IP address       HW type     Flags       "
1389			      "HW address            Mask     Device\n");
1390	} else {
1391		struct neigh_seq_state *state = seq->private;
1392
1393		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1394			arp_format_pneigh_entry(seq, v);
1395		else
1396			arp_format_neigh_entry(seq, v);
1397	}
1398
1399	return 0;
1400}
1401
1402static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1403{
1404	/* Don't want to confuse "arp -a" w/ magic entries,
1405	 * so we tell the generic iterator to skip NUD_NOARP.
1406	 */
1407	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1408}
1409
1410/* ------------------------------------------------------------------------ */
1411
1412static const struct seq_operations arp_seq_ops = {
1413	.start	= arp_seq_start,
1414	.next	= neigh_seq_next,
1415	.stop	= neigh_seq_stop,
1416	.show	= arp_seq_show,
1417};
1418
1419static int arp_seq_open(struct inode *inode, struct file *file)
1420{
1421	return seq_open_net(inode, file, &arp_seq_ops,
1422			    sizeof(struct neigh_seq_state));
1423}
1424
1425static const struct file_operations arp_seq_fops = {
1426	.owner		= THIS_MODULE,
1427	.open           = arp_seq_open,
1428	.read           = seq_read,
1429	.llseek         = seq_lseek,
1430	.release	= seq_release_net,
1431};
1432
1433
1434static int __net_init arp_net_init(struct net *net)
1435{
1436	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
 
1437		return -ENOMEM;
1438	return 0;
1439}
1440
1441static void __net_exit arp_net_exit(struct net *net)
1442{
1443	remove_proc_entry("arp", net->proc_net);
1444}
1445
1446static struct pernet_operations arp_net_ops = {
1447	.init = arp_net_init,
1448	.exit = arp_net_exit,
1449};
1450
1451static int __init arp_proc_init(void)
1452{
1453	return register_pernet_subsys(&arp_net_ops);
1454}
1455
1456#else /* CONFIG_PROC_FS */
1457
1458static int __init arp_proc_init(void)
1459{
1460	return 0;
 
 
 
1461}
1462
1463#endif /* CONFIG_PROC_FS */
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
 
 
 
 
 
  11 * Fixes:
  12 *		Alan Cox	:	Removed the Ethernet assumptions in
  13 *					Florian's code
  14 *		Alan Cox	:	Fixed some small errors in the ARP
  15 *					logic
  16 *		Alan Cox	:	Allow >4K in /proc
  17 *		Alan Cox	:	Make ARP add its own protocol entry
  18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  20 *		Alan Cox	:	Drop data when a device is downed.
  21 *		Alan Cox	:	Use init_timer().
  22 *		Alan Cox	:	Double lock fixes.
  23 *		Martin Seine	:	Move the arphdr structure
  24 *					to if_arp.h for compatibility.
  25 *					with BSD based programs.
  26 *		Andrew Tridgell :       Added ARP netmask code and
  27 *					re-arranged proxy handling.
  28 *		Alan Cox	:	Changed to use notifiers.
  29 *		Niibe Yutaka	:	Reply for this device or proxies only.
  30 *		Alan Cox	:	Don't proxy across hardware types!
  31 *		Jonathan Naylor :	Added support for NET/ROM.
  32 *		Mike Shaver     :       RFC1122 checks.
  33 *		Jonathan Naylor :	Only lookup the hardware address for
  34 *					the correct hardware type.
  35 *		Germano Caronni	:	Assorted subtle races.
  36 *		Craig Schlenter :	Don't modify permanent entry
  37 *					during arp_rcv.
  38 *		Russ Nelson	:	Tidied up a few bits.
  39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  40 *					eg intelligent arp probing and
  41 *					generation
  42 *					of host down events.
  43 *		Alan Cox	:	Missing unlock in device events.
  44 *		Eckes		:	ARP ioctl control errors.
  45 *		Alexey Kuznetsov:	Arp free fix.
  46 *		Manuel Rodriguez:	Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  50 *		Mike McLagan    :	Routing by source
  51 *		Stuart Cheshire	:	Metricom and grat arp fixes
  52 *					*** FOR 2.1 clean this up ***
  53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  55 *					folded into the mainstream FDDI code.
  56 *					Ack spit, Linus how did you allow that
  57 *					one in...
  58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  59 *					clean up the APFDDI & gen. FDDI bits.
  60 *		Alexey Kuznetsov:	new arp state machine;
  61 *					now it is in net/core/neighbour.c.
  62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  64 *		Shmulik Hen:		Split arp_send to arp_create and
  65 *					arp_xmit so intermediate drivers like
  66 *					bonding can change the skb before
  67 *					sending (e.g. insert 8021q tag).
  68 *		Harald Welte	:	convert to make use of jenkins hash
  69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 114
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *	Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 128static int arp_is_multicast(const void *pkey);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 
 
 
 
 
 
 
 
 152struct neigh_table arp_tbl = {
 153	.family		= AF_INET,
 154	.key_len	= 4,
 155	.protocol	= cpu_to_be16(ETH_P_IP),
 156	.hash		= arp_hash,
 157	.key_eq		= arp_key_eq,
 158	.constructor	= arp_constructor,
 159	.proxy_redo	= parp_redo,
 160	.is_multicast	= arp_is_multicast,
 161	.id		= "arp_cache",
 162	.parms		= {
 163		.tbl			= &arp_tbl,
 164		.reachable_time		= 30 * HZ,
 165		.data	= {
 166			[NEIGH_VAR_MCAST_PROBES] = 3,
 167			[NEIGH_VAR_UCAST_PROBES] = 3,
 168			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 169			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 170			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 171			[NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
 172			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 173			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 174			[NEIGH_VAR_PROXY_QLEN] = 64,
 175			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 176			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 177			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 178		},
 179	},
 180	.gc_interval	= 30 * HZ,
 181	.gc_thresh1	= 128,
 182	.gc_thresh2	= 512,
 183	.gc_thresh3	= 1024,
 184};
 185EXPORT_SYMBOL(arp_tbl);
 186
 187int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 188{
 189	switch (dev->type) {
 190	case ARPHRD_ETHER:
 191	case ARPHRD_FDDI:
 192	case ARPHRD_IEEE802:
 193		ip_eth_mc_map(addr, haddr);
 194		return 0;
 195	case ARPHRD_INFINIBAND:
 196		ip_ib_mc_map(addr, dev->broadcast, haddr);
 197		return 0;
 198	case ARPHRD_IPGRE:
 199		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 200		return 0;
 201	default:
 202		if (dir) {
 203			memcpy(haddr, dev->broadcast, dev->addr_len);
 204			return 0;
 205		}
 206	}
 207	return -EINVAL;
 208}
 209
 210
 211static u32 arp_hash(const void *pkey,
 212		    const struct net_device *dev,
 213		    __u32 *hash_rnd)
 214{
 215	return arp_hashfn(pkey, dev, hash_rnd);
 216}
 217
 218static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 219{
 220	return neigh_key_eq32(neigh, pkey);
 221}
 222
 223static int arp_constructor(struct neighbour *neigh)
 224{
 225	__be32 addr;
 226	struct net_device *dev = neigh->dev;
 227	struct in_device *in_dev;
 228	struct neigh_parms *parms;
 229	u32 inaddr_any = INADDR_ANY;
 230
 231	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 232		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 233
 234	addr = *(__be32 *)neigh->primary_key;
 235	rcu_read_lock();
 236	in_dev = __in_dev_get_rcu(dev);
 237	if (!in_dev) {
 238		rcu_read_unlock();
 239		return -EINVAL;
 240	}
 241
 242	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 243
 244	parms = in_dev->arp_parms;
 245	__neigh_parms_put(neigh->parms);
 246	neigh->parms = neigh_parms_clone(parms);
 247	rcu_read_unlock();
 248
 249	if (!dev->header_ops) {
 250		neigh->nud_state = NUD_NOARP;
 251		neigh->ops = &arp_direct_ops;
 252		neigh->output = neigh_direct_output;
 253	} else {
 254		/* Good devices (checked by reading texts, but only Ethernet is
 255		   tested)
 256
 257		   ARPHRD_ETHER: (ethernet, apfddi)
 258		   ARPHRD_FDDI: (fddi)
 259		   ARPHRD_IEEE802: (tr)
 260		   ARPHRD_METRICOM: (strip)
 261		   ARPHRD_ARCNET:
 262		   etc. etc. etc.
 263
 264		   ARPHRD_IPDDP will also work, if author repairs it.
 265		   I did not it, because this driver does not work even
 266		   in old paradigm.
 267		 */
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269		if (neigh->type == RTN_MULTICAST) {
 270			neigh->nud_state = NUD_NOARP;
 271			arp_mc_map(addr, neigh->ha, dev, 1);
 272		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 273			neigh->nud_state = NUD_NOARP;
 274			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 275		} else if (neigh->type == RTN_BROADCAST ||
 276			   (dev->flags & IFF_POINTOPOINT)) {
 277			neigh->nud_state = NUD_NOARP;
 278			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 279		}
 280
 281		if (dev->header_ops->cache)
 282			neigh->ops = &arp_hh_ops;
 283		else
 284			neigh->ops = &arp_generic_ops;
 285
 286		if (neigh->nud_state & NUD_VALID)
 287			neigh->output = neigh->ops->connected_output;
 288		else
 289			neigh->output = neigh->ops->output;
 290	}
 291	return 0;
 292}
 293
 294static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 295{
 296	dst_link_failure(skb);
 297	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
 298}
 299
 300/* Create and send an arp packet. */
 301static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 302			 struct net_device *dev, __be32 src_ip,
 303			 const unsigned char *dest_hw,
 304			 const unsigned char *src_hw,
 305			 const unsigned char *target_hw,
 306			 struct dst_entry *dst)
 307{
 308	struct sk_buff *skb;
 309
 310	/* arp on this interface. */
 311	if (dev->flags & IFF_NOARP)
 312		return;
 313
 314	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 315			 dest_hw, src_hw, target_hw);
 316	if (!skb)
 317		return;
 318
 319	skb_dst_set(skb, dst_clone(dst));
 320	arp_xmit(skb);
 321}
 322
 323void arp_send(int type, int ptype, __be32 dest_ip,
 324	      struct net_device *dev, __be32 src_ip,
 325	      const unsigned char *dest_hw, const unsigned char *src_hw,
 326	      const unsigned char *target_hw)
 327{
 328	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 329		     target_hw, NULL);
 330}
 331EXPORT_SYMBOL(arp_send);
 332
 333static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 334{
 335	__be32 saddr = 0;
 336	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 337	struct net_device *dev = neigh->dev;
 338	__be32 target = *(__be32 *)neigh->primary_key;
 339	int probes = atomic_read(&neigh->probes);
 340	struct in_device *in_dev;
 341	struct dst_entry *dst = NULL;
 342
 343	rcu_read_lock();
 344	in_dev = __in_dev_get_rcu(dev);
 345	if (!in_dev) {
 346		rcu_read_unlock();
 347		return;
 348	}
 349	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 350	default:
 351	case 0:		/* By default announce any local IP */
 352		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 353					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 354			saddr = ip_hdr(skb)->saddr;
 355		break;
 356	case 1:		/* Restrict announcements of saddr in same subnet */
 357		if (!skb)
 358			break;
 359		saddr = ip_hdr(skb)->saddr;
 360		if (inet_addr_type_dev_table(dev_net(dev), dev,
 361					     saddr) == RTN_LOCAL) {
 362			/* saddr should be known to target */
 363			if (inet_addr_onlink(in_dev, target, saddr))
 364				break;
 365		}
 366		saddr = 0;
 367		break;
 368	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 369		break;
 370	}
 371	rcu_read_unlock();
 372
 373	if (!saddr)
 374		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 375
 376	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 377	if (probes < 0) {
 378		if (!(READ_ONCE(neigh->nud_state) & NUD_VALID))
 379			pr_debug("trying to ucast probe in NUD_INVALID\n");
 380		neigh_ha_snapshot(dst_ha, neigh, dev);
 381		dst_hw = dst_ha;
 382	} else {
 383		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 384		if (probes < 0) {
 385			neigh_app_ns(neigh);
 386			return;
 387		}
 388	}
 389
 390	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 391		dst = skb_dst(skb);
 392	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 393		     dst_hw, dev->dev_addr, NULL, dst);
 394}
 395
 396static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 397{
 398	struct net *net = dev_net(in_dev->dev);
 399	int scope;
 400
 401	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 402	case 0:	/* Reply, the tip is already validated */
 403		return 0;
 404	case 1:	/* Reply only if tip is configured on the incoming interface */
 405		sip = 0;
 406		scope = RT_SCOPE_HOST;
 407		break;
 408	case 2:	/*
 409		 * Reply only if tip is configured on the incoming interface
 410		 * and is in same subnet as sip
 411		 */
 412		scope = RT_SCOPE_HOST;
 413		break;
 414	case 3:	/* Do not reply for scope host addresses */
 415		sip = 0;
 416		scope = RT_SCOPE_LINK;
 417		in_dev = NULL;
 418		break;
 419	case 4:	/* Reserved */
 420	case 5:
 421	case 6:
 422	case 7:
 423		return 0;
 424	case 8:	/* Do not reply */
 425		return 1;
 426	default:
 427		return 0;
 428	}
 429	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 430}
 431
 432static int arp_accept(struct in_device *in_dev, __be32 sip)
 433{
 434	struct net *net = dev_net(in_dev->dev);
 435	int scope = RT_SCOPE_LINK;
 436
 437	switch (IN_DEV_ARP_ACCEPT(in_dev)) {
 438	case 0: /* Don't create new entries from garp */
 439		return 0;
 440	case 1: /* Create new entries from garp */
 441		return 1;
 442	case 2: /* Create a neighbor in the arp table only if sip
 443		 * is in the same subnet as an address configured
 444		 * on the interface that received the garp message
 445		 */
 446		return !!inet_confirm_addr(net, in_dev, sip, 0, scope);
 447	default:
 448		return 0;
 449	}
 450}
 451
 452static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 453{
 454	struct rtable *rt;
 455	int flag = 0;
 456	/*unsigned long now; */
 457	struct net *net = dev_net(dev);
 458
 459	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 460	if (IS_ERR(rt))
 461		return 1;
 462	if (rt->dst.dev != dev) {
 463		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 464		flag = 1;
 465	}
 466	ip_rt_put(rt);
 467	return flag;
 468}
 469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470/*
 471 * Check if we can use proxy ARP for this path
 472 */
 473static inline int arp_fwd_proxy(struct in_device *in_dev,
 474				struct net_device *dev,	struct rtable *rt)
 475{
 476	struct in_device *out_dev;
 477	int imi, omi = -1;
 478
 479	if (rt->dst.dev == dev)
 480		return 0;
 481
 482	if (!IN_DEV_PROXY_ARP(in_dev))
 483		return 0;
 484	imi = IN_DEV_MEDIUM_ID(in_dev);
 485	if (imi == 0)
 486		return 1;
 487	if (imi == -1)
 488		return 0;
 489
 490	/* place to check for proxy_arp for routes */
 491
 492	out_dev = __in_dev_get_rcu(rt->dst.dev);
 493	if (out_dev)
 494		omi = IN_DEV_MEDIUM_ID(out_dev);
 495
 496	return omi != imi && omi != -1;
 497}
 498
 499/*
 500 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 501 *
 502 * RFC3069 supports proxy arp replies back to the same interface.  This
 503 * is done to support (ethernet) switch features, like RFC 3069, where
 504 * the individual ports are not allowed to communicate with each
 505 * other, BUT they are allowed to talk to the upstream router.  As
 506 * described in RFC 3069, it is possible to allow these hosts to
 507 * communicate through the upstream router, by proxy_arp'ing.
 508 *
 509 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 510 *
 511 *  This technology is known by different names:
 512 *    In RFC 3069 it is called VLAN Aggregation.
 513 *    Cisco and Allied Telesyn call it Private VLAN.
 514 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 515 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 516 *
 517 */
 518static inline int arp_fwd_pvlan(struct in_device *in_dev,
 519				struct net_device *dev,	struct rtable *rt,
 520				__be32 sip, __be32 tip)
 521{
 522	/* Private VLAN is only concerned about the same ethernet segment */
 523	if (rt->dst.dev != dev)
 524		return 0;
 525
 526	/* Don't reply on self probes (often done by windowz boxes)*/
 527	if (sip == tip)
 528		return 0;
 529
 530	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 531		return 1;
 532	else
 533		return 0;
 534}
 535
 536/*
 537 *	Interface to link layer: send routine and receive handler.
 538 */
 539
 540/*
 541 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 542 *	message.
 543 */
 544struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 545			   struct net_device *dev, __be32 src_ip,
 546			   const unsigned char *dest_hw,
 547			   const unsigned char *src_hw,
 548			   const unsigned char *target_hw)
 549{
 550	struct sk_buff *skb;
 551	struct arphdr *arp;
 552	unsigned char *arp_ptr;
 553	int hlen = LL_RESERVED_SPACE(dev);
 554	int tlen = dev->needed_tailroom;
 555
 556	/*
 557	 *	Allocate a buffer
 558	 */
 559
 560	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 561	if (!skb)
 562		return NULL;
 563
 564	skb_reserve(skb, hlen);
 565	skb_reset_network_header(skb);
 566	arp = skb_put(skb, arp_hdr_len(dev));
 567	skb->dev = dev;
 568	skb->protocol = htons(ETH_P_ARP);
 569	if (!src_hw)
 570		src_hw = dev->dev_addr;
 571	if (!dest_hw)
 572		dest_hw = dev->broadcast;
 573
 574	/*
 575	 *	Fill the device header for the ARP frame
 576	 */
 577	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 578		goto out;
 579
 580	/*
 581	 * Fill out the arp protocol part.
 582	 *
 583	 * The arp hardware type should match the device type, except for FDDI,
 584	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 585	 */
 586	/*
 587	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 588	 *	DIX code for the protocol. Make these device structure fields.
 589	 */
 590	switch (dev->type) {
 591	default:
 592		arp->ar_hrd = htons(dev->type);
 593		arp->ar_pro = htons(ETH_P_IP);
 594		break;
 595
 596#if IS_ENABLED(CONFIG_AX25)
 597	case ARPHRD_AX25:
 598		arp->ar_hrd = htons(ARPHRD_AX25);
 599		arp->ar_pro = htons(AX25_P_IP);
 600		break;
 601
 602#if IS_ENABLED(CONFIG_NETROM)
 603	case ARPHRD_NETROM:
 604		arp->ar_hrd = htons(ARPHRD_NETROM);
 605		arp->ar_pro = htons(AX25_P_IP);
 606		break;
 607#endif
 608#endif
 609
 610#if IS_ENABLED(CONFIG_FDDI)
 611	case ARPHRD_FDDI:
 612		arp->ar_hrd = htons(ARPHRD_ETHER);
 613		arp->ar_pro = htons(ETH_P_IP);
 614		break;
 615#endif
 616	}
 617
 618	arp->ar_hln = dev->addr_len;
 619	arp->ar_pln = 4;
 620	arp->ar_op = htons(type);
 621
 622	arp_ptr = (unsigned char *)(arp + 1);
 623
 624	memcpy(arp_ptr, src_hw, dev->addr_len);
 625	arp_ptr += dev->addr_len;
 626	memcpy(arp_ptr, &src_ip, 4);
 627	arp_ptr += 4;
 628
 629	switch (dev->type) {
 630#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 631	case ARPHRD_IEEE1394:
 632		break;
 633#endif
 634	default:
 635		if (target_hw)
 636			memcpy(arp_ptr, target_hw, dev->addr_len);
 637		else
 638			memset(arp_ptr, 0, dev->addr_len);
 639		arp_ptr += dev->addr_len;
 640	}
 641	memcpy(arp_ptr, &dest_ip, 4);
 642
 643	return skb;
 644
 645out:
 646	kfree_skb(skb);
 647	return NULL;
 648}
 649EXPORT_SYMBOL(arp_create);
 650
 651static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 652{
 653	return dev_queue_xmit(skb);
 654}
 655
 656/*
 657 *	Send an arp packet.
 658 */
 659void arp_xmit(struct sk_buff *skb)
 660{
 661	/* Send it off, maybe filter it using firewalling first.  */
 662	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 663		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 664		arp_xmit_finish);
 665}
 666EXPORT_SYMBOL(arp_xmit);
 667
 668static bool arp_is_garp(struct net *net, struct net_device *dev,
 669			int *addr_type, __be16 ar_op,
 670			__be32 sip, __be32 tip,
 671			unsigned char *sha, unsigned char *tha)
 
 
 
 672{
 673	bool is_garp = tip == sip;
 674
 675	/* Gratuitous ARP _replies_ also require target hwaddr to be
 676	 * the same as source.
 677	 */
 678	if (is_garp && ar_op == htons(ARPOP_REPLY))
 679		is_garp =
 680			/* IPv4 over IEEE 1394 doesn't provide target
 681			 * hardware address field in its ARP payload.
 682			 */
 683			tha &&
 684			!memcmp(tha, sha, dev->addr_len);
 685
 686	if (is_garp) {
 687		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 688		if (*addr_type != RTN_UNICAST)
 689			is_garp = false;
 690	}
 691	return is_garp;
 692}
 
 693
 694/*
 695 *	Process an arp request.
 696 */
 697
 698static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 699{
 700	struct net_device *dev = skb->dev;
 701	struct in_device *in_dev = __in_dev_get_rcu(dev);
 702	struct arphdr *arp;
 703	unsigned char *arp_ptr;
 704	struct rtable *rt;
 705	unsigned char *sha;
 706	unsigned char *tha = NULL;
 707	__be32 sip, tip;
 708	u16 dev_type = dev->type;
 709	int addr_type;
 710	struct neighbour *n;
 711	struct dst_entry *reply_dst = NULL;
 712	bool is_garp = false;
 713
 714	/* arp_rcv below verifies the ARP header and verifies the device
 715	 * is ARP'able.
 716	 */
 717
 718	if (!in_dev)
 719		goto out_free_skb;
 720
 721	arp = arp_hdr(skb);
 722
 723	switch (dev_type) {
 724	default:
 725		if (arp->ar_pro != htons(ETH_P_IP) ||
 726		    htons(dev_type) != arp->ar_hrd)
 727			goto out_free_skb;
 728		break;
 729	case ARPHRD_ETHER:
 730	case ARPHRD_FDDI:
 731	case ARPHRD_IEEE802:
 732		/*
 733		 * ETHERNET, and Fibre Channel (which are IEEE 802
 734		 * devices, according to RFC 2625) devices will accept ARP
 735		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 736		 * This is the case also of FDDI, where the RFC 1390 says that
 737		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 738		 * however, to be more robust, we'll accept both 1 (Ethernet)
 739		 * or 6 (IEEE 802.2)
 740		 */
 741		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 742		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 743		    arp->ar_pro != htons(ETH_P_IP))
 744			goto out_free_skb;
 745		break;
 746	case ARPHRD_AX25:
 747		if (arp->ar_pro != htons(AX25_P_IP) ||
 748		    arp->ar_hrd != htons(ARPHRD_AX25))
 749			goto out_free_skb;
 750		break;
 751	case ARPHRD_NETROM:
 752		if (arp->ar_pro != htons(AX25_P_IP) ||
 753		    arp->ar_hrd != htons(ARPHRD_NETROM))
 754			goto out_free_skb;
 755		break;
 756	}
 757
 758	/* Understand only these message types */
 759
 760	if (arp->ar_op != htons(ARPOP_REPLY) &&
 761	    arp->ar_op != htons(ARPOP_REQUEST))
 762		goto out_free_skb;
 763
 764/*
 765 *	Extract fields
 766 */
 767	arp_ptr = (unsigned char *)(arp + 1);
 768	sha	= arp_ptr;
 769	arp_ptr += dev->addr_len;
 770	memcpy(&sip, arp_ptr, 4);
 771	arp_ptr += 4;
 772	switch (dev_type) {
 773#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 774	case ARPHRD_IEEE1394:
 775		break;
 776#endif
 777	default:
 778		tha = arp_ptr;
 779		arp_ptr += dev->addr_len;
 780	}
 781	memcpy(&tip, arp_ptr, 4);
 782/*
 783 *	Check for bad requests for 127.x.x.x and requests for multicast
 784 *	addresses.  If this is one such, delete it.
 785 */
 786	if (ipv4_is_multicast(tip) ||
 787	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 788		goto out_free_skb;
 789
 790 /*
 791  *	For some 802.11 wireless deployments (and possibly other networks),
 792  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 793  *	and thus should not be accepted.
 794  */
 795	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 796		goto out_free_skb;
 797
 798/*
 799 *     Special case: We must set Frame Relay source Q.922 address
 800 */
 801	if (dev_type == ARPHRD_DLCI)
 802		sha = dev->broadcast;
 803
 804/*
 805 *  Process entry.  The idea here is we want to send a reply if it is a
 806 *  request for us or if it is a request for someone else that we hold
 807 *  a proxy for.  We want to add an entry to our cache if it is a reply
 808 *  to us or if it is a request for our address.
 809 *  (The assumption for this last is that if someone is requesting our
 810 *  address, they are probably intending to talk to us, so it saves time
 811 *  if we cache their address.  Their address is also probably not in
 812 *  our cache, since ours is not in their cache.)
 813 *
 814 *  Putting this another way, we only care about replies if they are to
 815 *  us, in which case we add them to the cache.  For requests, we care
 816 *  about those for us and those for our proxies.  We reply to both,
 817 *  and in the case of requests for us we add the requester to the arp
 818 *  cache.
 819 */
 820
 821	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 822		reply_dst = (struct dst_entry *)
 823			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 824						    GFP_ATOMIC);
 825
 826	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 827	if (sip == 0) {
 828		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 829		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 830		    !arp_ignore(in_dev, sip, tip))
 831			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 832				     sha, dev->dev_addr, sha, reply_dst);
 833		goto out_consume_skb;
 834	}
 835
 836	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 837	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 838
 839		rt = skb_rtable(skb);
 840		addr_type = rt->rt_type;
 841
 842		if (addr_type == RTN_LOCAL) {
 843			int dont_send;
 844
 845			dont_send = arp_ignore(in_dev, sip, tip);
 846			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 847				dont_send = arp_filter(sip, tip, dev);
 848			if (!dont_send) {
 849				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 850				if (n) {
 851					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 852						     sip, dev, tip, sha,
 853						     dev->dev_addr, sha,
 854						     reply_dst);
 855					neigh_release(n);
 856				}
 857			}
 858			goto out_consume_skb;
 859		} else if (IN_DEV_FORWARD(in_dev)) {
 860			if (addr_type == RTN_UNICAST  &&
 861			    (arp_fwd_proxy(in_dev, dev, rt) ||
 862			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 863			     (rt->dst.dev != dev &&
 864			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 865				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 866				if (n)
 867					neigh_release(n);
 868
 869				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 870				    skb->pkt_type == PACKET_HOST ||
 871				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 872					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 873						     sip, dev, tip, sha,
 874						     dev->dev_addr, sha,
 875						     reply_dst);
 876				} else {
 877					pneigh_enqueue(&arp_tbl,
 878						       in_dev->arp_parms, skb);
 879					goto out_free_dst;
 880				}
 881				goto out_consume_skb;
 882			}
 883		}
 884	}
 885
 886	/* Update our ARP tables */
 887
 888	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 889
 890	addr_type = -1;
 891	if (n || arp_accept(in_dev, sip)) {
 892		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 893				      sip, tip, sha, tha);
 894	}
 895
 896	if (arp_accept(in_dev, sip)) {
 897		/* Unsolicited ARP is not accepted by default.
 898		   It is possible, that this option should be enabled for some
 899		   devices (strip is candidate)
 900		 */
 901		if (!n &&
 902		    (is_garp ||
 903		     (arp->ar_op == htons(ARPOP_REPLY) &&
 904		      (addr_type == RTN_UNICAST ||
 905		       (addr_type < 0 &&
 906			/* postpone calculation to as late as possible */
 907			inet_addr_type_dev_table(net, dev, sip) ==
 908				RTN_UNICAST)))))
 909			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 910	}
 911
 912	if (n) {
 913		int state = NUD_REACHABLE;
 914		int override;
 915
 916		/* If several different ARP replies follows back-to-back,
 917		   use the FIRST one. It is possible, if several proxy
 918		   agents are active. Taking the first reply prevents
 919		   arp trashing and chooses the fastest router.
 920		 */
 921		override = time_after(jiffies,
 922				      n->updated +
 923				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 924			   is_garp;
 925
 926		/* Broadcast replies and request packets
 927		   do not assert neighbour reachability.
 928		 */
 929		if (arp->ar_op != htons(ARPOP_REPLY) ||
 930		    skb->pkt_type != PACKET_HOST)
 931			state = NUD_STALE;
 932		neigh_update(n, sha, state,
 933			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 934		neigh_release(n);
 935	}
 936
 937out_consume_skb:
 938	consume_skb(skb);
 939
 940out_free_dst:
 941	dst_release(reply_dst);
 942	return NET_RX_SUCCESS;
 943
 944out_free_skb:
 945	kfree_skb(skb);
 946	return NET_RX_DROP;
 947}
 948
 949static void parp_redo(struct sk_buff *skb)
 950{
 951	arp_process(dev_net(skb->dev), NULL, skb);
 952}
 953
 954static int arp_is_multicast(const void *pkey)
 955{
 956	return ipv4_is_multicast(*((__be32 *)pkey));
 957}
 958
 959/*
 960 *	Receive an arp request from the device layer.
 961 */
 962
 963static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 964		   struct packet_type *pt, struct net_device *orig_dev)
 965{
 966	const struct arphdr *arp;
 967
 968	/* do not tweak dropwatch on an ARP we will ignore */
 969	if (dev->flags & IFF_NOARP ||
 970	    skb->pkt_type == PACKET_OTHERHOST ||
 971	    skb->pkt_type == PACKET_LOOPBACK)
 972		goto consumeskb;
 973
 974	skb = skb_share_check(skb, GFP_ATOMIC);
 975	if (!skb)
 976		goto out_of_mem;
 977
 978	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 979	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 980		goto freeskb;
 981
 982	arp = arp_hdr(skb);
 983	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 984		goto freeskb;
 985
 986	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 987
 988	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 989		       dev_net(dev), NULL, skb, dev, NULL,
 990		       arp_process);
 991
 992consumeskb:
 993	consume_skb(skb);
 994	return NET_RX_SUCCESS;
 995freeskb:
 996	kfree_skb(skb);
 997out_of_mem:
 998	return NET_RX_DROP;
 999}
1000
1001/*
1002 *	User level interface (ioctl)
1003 */
1004
1005/*
1006 *	Set (create) an ARP cache entry.
1007 */
1008
1009static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1010{
1011	if (!dev) {
1012		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1013		return 0;
1014	}
1015	if (__in_dev_get_rtnl(dev)) {
1016		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1017		return 0;
1018	}
1019	return -ENXIO;
1020}
1021
1022static int arp_req_set_public(struct net *net, struct arpreq *r,
1023		struct net_device *dev)
1024{
1025	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1026	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1027
1028	if (mask && mask != htonl(0xFFFFFFFF))
1029		return -EINVAL;
1030	if (!dev && (r->arp_flags & ATF_COM)) {
1031		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1032				      r->arp_ha.sa_data);
1033		if (!dev)
1034			return -ENODEV;
1035	}
1036	if (mask) {
1037		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1038			return -ENOBUFS;
1039		return 0;
1040	}
1041
1042	return arp_req_set_proxy(net, dev, 1);
1043}
1044
1045static int arp_req_set(struct net *net, struct arpreq *r,
1046		       struct net_device *dev)
1047{
1048	__be32 ip;
1049	struct neighbour *neigh;
1050	int err;
1051
1052	if (r->arp_flags & ATF_PUBL)
1053		return arp_req_set_public(net, r, dev);
1054
1055	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1056	if (r->arp_flags & ATF_PERM)
1057		r->arp_flags |= ATF_COM;
1058	if (!dev) {
1059		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1060
1061		if (IS_ERR(rt))
1062			return PTR_ERR(rt);
1063		dev = rt->dst.dev;
1064		ip_rt_put(rt);
1065		if (!dev)
1066			return -EINVAL;
1067	}
1068	switch (dev->type) {
1069#if IS_ENABLED(CONFIG_FDDI)
1070	case ARPHRD_FDDI:
1071		/*
1072		 * According to RFC 1390, FDDI devices should accept ARP
1073		 * hardware types of 1 (Ethernet).  However, to be more
1074		 * robust, we'll accept hardware types of either 1 (Ethernet)
1075		 * or 6 (IEEE 802.2).
1076		 */
1077		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1078		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1079		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1080			return -EINVAL;
1081		break;
1082#endif
1083	default:
1084		if (r->arp_ha.sa_family != dev->type)
1085			return -EINVAL;
1086		break;
1087	}
1088
1089	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1090	err = PTR_ERR(neigh);
1091	if (!IS_ERR(neigh)) {
1092		unsigned int state = NUD_STALE;
1093		if (r->arp_flags & ATF_PERM)
1094			state = NUD_PERMANENT;
1095		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1096				   r->arp_ha.sa_data : NULL, state,
1097				   NEIGH_UPDATE_F_OVERRIDE |
1098				   NEIGH_UPDATE_F_ADMIN, 0);
1099		neigh_release(neigh);
1100	}
1101	return err;
1102}
1103
1104static unsigned int arp_state_to_flags(struct neighbour *neigh)
1105{
1106	if (neigh->nud_state&NUD_PERMANENT)
1107		return ATF_PERM | ATF_COM;
1108	else if (neigh->nud_state&NUD_VALID)
1109		return ATF_COM;
1110	else
1111		return 0;
1112}
1113
1114/*
1115 *	Get an ARP cache entry.
1116 */
1117
1118static int arp_req_get(struct arpreq *r, struct net_device *dev)
1119{
1120	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1121	struct neighbour *neigh;
1122	int err = -ENXIO;
1123
1124	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1125	if (neigh) {
1126		if (!(READ_ONCE(neigh->nud_state) & NUD_NOARP)) {
1127			read_lock_bh(&neigh->lock);
1128			memcpy(r->arp_ha.sa_data, neigh->ha,
1129			       min(dev->addr_len, sizeof(r->arp_ha.sa_data_min)));
1130			r->arp_flags = arp_state_to_flags(neigh);
1131			read_unlock_bh(&neigh->lock);
1132			r->arp_ha.sa_family = dev->type;
1133			strscpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1134			err = 0;
1135		}
1136		neigh_release(neigh);
 
1137	}
1138	return err;
1139}
1140
1141int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1142{
1143	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1144	int err = -ENXIO;
1145	struct neigh_table *tbl = &arp_tbl;
1146
1147	if (neigh) {
1148		if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) {
1149			neigh_release(neigh);
1150			return 0;
1151		}
1152
1153		if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP)
1154			err = neigh_update(neigh, NULL, NUD_FAILED,
1155					   NEIGH_UPDATE_F_OVERRIDE|
1156					   NEIGH_UPDATE_F_ADMIN, 0);
1157		write_lock_bh(&tbl->lock);
1158		neigh_release(neigh);
1159		neigh_remove_one(neigh, tbl);
1160		write_unlock_bh(&tbl->lock);
1161	}
1162
1163	return err;
1164}
1165
1166static int arp_req_delete_public(struct net *net, struct arpreq *r,
1167		struct net_device *dev)
1168{
1169	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1170	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1171
1172	if (mask == htonl(0xFFFFFFFF))
1173		return pneigh_delete(&arp_tbl, net, &ip, dev);
1174
1175	if (mask)
1176		return -EINVAL;
1177
1178	return arp_req_set_proxy(net, dev, 0);
1179}
1180
1181static int arp_req_delete(struct net *net, struct arpreq *r,
1182			  struct net_device *dev)
1183{
1184	__be32 ip;
1185
1186	if (r->arp_flags & ATF_PUBL)
1187		return arp_req_delete_public(net, r, dev);
1188
1189	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1190	if (!dev) {
1191		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1192		if (IS_ERR(rt))
1193			return PTR_ERR(rt);
1194		dev = rt->dst.dev;
1195		ip_rt_put(rt);
1196		if (!dev)
1197			return -EINVAL;
1198	}
1199	return arp_invalidate(dev, ip, true);
1200}
1201
1202/*
1203 *	Handle an ARP layer I/O control request.
1204 */
1205
1206int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1207{
1208	int err;
1209	struct arpreq r;
1210	struct net_device *dev = NULL;
1211
1212	switch (cmd) {
1213	case SIOCDARP:
1214	case SIOCSARP:
1215		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1216			return -EPERM;
1217		fallthrough;
1218	case SIOCGARP:
1219		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1220		if (err)
1221			return -EFAULT;
1222		break;
1223	default:
1224		return -EINVAL;
1225	}
1226
1227	if (r.arp_pa.sa_family != AF_INET)
1228		return -EPFNOSUPPORT;
1229
1230	if (!(r.arp_flags & ATF_PUBL) &&
1231	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1232		return -EINVAL;
1233	if (!(r.arp_flags & ATF_NETMASK))
1234		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1235							   htonl(0xFFFFFFFFUL);
1236	rtnl_lock();
1237	if (r.arp_dev[0]) {
1238		err = -ENODEV;
1239		dev = __dev_get_by_name(net, r.arp_dev);
1240		if (!dev)
1241			goto out;
1242
1243		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1244		if (!r.arp_ha.sa_family)
1245			r.arp_ha.sa_family = dev->type;
1246		err = -EINVAL;
1247		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1248			goto out;
1249	} else if (cmd == SIOCGARP) {
1250		err = -ENODEV;
1251		goto out;
1252	}
1253
1254	switch (cmd) {
1255	case SIOCDARP:
1256		err = arp_req_delete(net, &r, dev);
1257		break;
1258	case SIOCSARP:
1259		err = arp_req_set(net, &r, dev);
1260		break;
1261	case SIOCGARP:
1262		err = arp_req_get(&r, dev);
1263		break;
1264	}
1265out:
1266	rtnl_unlock();
1267	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1268		err = -EFAULT;
1269	return err;
1270}
1271
1272static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1273			    void *ptr)
1274{
1275	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1276	struct netdev_notifier_change_info *change_info;
1277	struct in_device *in_dev;
1278	bool evict_nocarrier;
1279
1280	switch (event) {
1281	case NETDEV_CHANGEADDR:
1282		neigh_changeaddr(&arp_tbl, dev);
1283		rt_cache_flush(dev_net(dev));
1284		break;
1285	case NETDEV_CHANGE:
1286		change_info = ptr;
1287		if (change_info->flags_changed & IFF_NOARP)
1288			neigh_changeaddr(&arp_tbl, dev);
1289
1290		in_dev = __in_dev_get_rtnl(dev);
1291		if (!in_dev)
1292			evict_nocarrier = true;
1293		else
1294			evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1295
1296		if (evict_nocarrier && !netif_carrier_ok(dev))
1297			neigh_carrier_down(&arp_tbl, dev);
1298		break;
1299	default:
1300		break;
1301	}
1302
1303	return NOTIFY_DONE;
1304}
1305
1306static struct notifier_block arp_netdev_notifier = {
1307	.notifier_call = arp_netdev_event,
1308};
1309
1310/* Note, that it is not on notifier chain.
1311   It is necessary, that this routine was called after route cache will be
1312   flushed.
1313 */
1314void arp_ifdown(struct net_device *dev)
1315{
1316	neigh_ifdown(&arp_tbl, dev);
1317}
1318
1319
1320/*
1321 *	Called once on startup.
1322 */
1323
1324static struct packet_type arp_packet_type __read_mostly = {
1325	.type =	cpu_to_be16(ETH_P_ARP),
1326	.func =	arp_rcv,
1327};
1328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329#ifdef CONFIG_PROC_FS
1330#if IS_ENABLED(CONFIG_AX25)
1331
 
1332/*
1333 *	ax25 -> ASCII conversion
1334 */
1335static void ax2asc2(ax25_address *a, char *buf)
1336{
1337	char c, *s;
1338	int n;
1339
1340	for (n = 0, s = buf; n < 6; n++) {
1341		c = (a->ax25_call[n] >> 1) & 0x7F;
1342
1343		if (c != ' ')
1344			*s++ = c;
1345	}
1346
1347	*s++ = '-';
1348	n = (a->ax25_call[6] >> 1) & 0x0F;
1349	if (n > 9) {
1350		*s++ = '1';
1351		n -= 10;
1352	}
1353
1354	*s++ = n + '0';
1355	*s++ = '\0';
1356
1357	if (*buf == '\0' || *buf == '-') {
1358		buf[0] = '*';
1359		buf[1] = '\0';
1360	}
1361}
1362#endif /* CONFIG_AX25 */
1363
1364#define HBUFFERLEN 30
1365
1366static void arp_format_neigh_entry(struct seq_file *seq,
1367				   struct neighbour *n)
1368{
1369	char hbuffer[HBUFFERLEN];
1370	int k, j;
1371	char tbuf[16];
1372	struct net_device *dev = n->dev;
1373	int hatype = dev->type;
1374
1375	read_lock(&n->lock);
1376	/* Convert hardware address to XX:XX:XX:XX ... form. */
1377#if IS_ENABLED(CONFIG_AX25)
1378	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1379		ax2asc2((ax25_address *)n->ha, hbuffer);
1380	else {
1381#endif
1382	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1383		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1384		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1385		hbuffer[k++] = ':';
1386	}
1387	if (k != 0)
1388		--k;
1389	hbuffer[k] = 0;
1390#if IS_ENABLED(CONFIG_AX25)
1391	}
1392#endif
1393	sprintf(tbuf, "%pI4", n->primary_key);
1394	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1395		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1396	read_unlock(&n->lock);
1397}
1398
1399static void arp_format_pneigh_entry(struct seq_file *seq,
1400				    struct pneigh_entry *n)
1401{
1402	struct net_device *dev = n->dev;
1403	int hatype = dev ? dev->type : 0;
1404	char tbuf[16];
1405
1406	sprintf(tbuf, "%pI4", n->key);
1407	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1408		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1409		   dev ? dev->name : "*");
1410}
1411
1412static int arp_seq_show(struct seq_file *seq, void *v)
1413{
1414	if (v == SEQ_START_TOKEN) {
1415		seq_puts(seq, "IP address       HW type     Flags       "
1416			      "HW address            Mask     Device\n");
1417	} else {
1418		struct neigh_seq_state *state = seq->private;
1419
1420		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1421			arp_format_pneigh_entry(seq, v);
1422		else
1423			arp_format_neigh_entry(seq, v);
1424	}
1425
1426	return 0;
1427}
1428
1429static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1430{
1431	/* Don't want to confuse "arp -a" w/ magic entries,
1432	 * so we tell the generic iterator to skip NUD_NOARP.
1433	 */
1434	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1435}
1436
 
 
1437static const struct seq_operations arp_seq_ops = {
1438	.start	= arp_seq_start,
1439	.next	= neigh_seq_next,
1440	.stop	= neigh_seq_stop,
1441	.show	= arp_seq_show,
1442};
1443#endif /* CONFIG_PROC_FS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445static int __net_init arp_net_init(struct net *net)
1446{
1447	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1448			sizeof(struct neigh_seq_state)))
1449		return -ENOMEM;
1450	return 0;
1451}
1452
1453static void __net_exit arp_net_exit(struct net *net)
1454{
1455	remove_proc_entry("arp", net->proc_net);
1456}
1457
1458static struct pernet_operations arp_net_ops = {
1459	.init = arp_net_init,
1460	.exit = arp_net_exit,
1461};
1462
1463void __init arp_init(void)
1464{
1465	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
 
 
 
1466
1467	dev_add_pack(&arp_packet_type);
1468	register_pernet_subsys(&arp_net_ops);
1469#ifdef CONFIG_SYSCTL
1470	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1471#endif
1472	register_netdevice_notifier(&arp_netdev_notifier);
1473}