Linux Audio

Check our new training course

Loading...
v3.15
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 
 
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netfilter_arp.h>
 120
 121/*
 122 *	Interface to generic neighbour cache.
 123 */
 124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 
 125static int arp_constructor(struct neighbour *neigh);
 126static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 127static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 128static void parp_redo(struct sk_buff *skb);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152static const struct neigh_ops arp_broken_ops = {
 153	.family =		AF_INET,
 154	.solicit =		arp_solicit,
 155	.error_report =		arp_error_report,
 156	.output =		neigh_compat_output,
 157	.connected_output =	neigh_compat_output,
 158};
 159
 160struct neigh_table arp_tbl = {
 161	.family		= AF_INET,
 162	.key_len	= 4,
 
 163	.hash		= arp_hash,
 
 164	.constructor	= arp_constructor,
 165	.proxy_redo	= parp_redo,
 166	.id		= "arp_cache",
 167	.parms		= {
 168		.tbl			= &arp_tbl,
 169		.reachable_time		= 30 * HZ,
 170		.data	= {
 171			[NEIGH_VAR_MCAST_PROBES] = 3,
 172			[NEIGH_VAR_UCAST_PROBES] = 3,
 173			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 174			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 175			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 176			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 177			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
 178			[NEIGH_VAR_PROXY_QLEN] = 64,
 179			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 180			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 181			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 182		},
 183	},
 184	.gc_interval	= 30 * HZ,
 185	.gc_thresh1	= 128,
 186	.gc_thresh2	= 512,
 187	.gc_thresh3	= 1024,
 188};
 189EXPORT_SYMBOL(arp_tbl);
 190
 191int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 192{
 193	switch (dev->type) {
 194	case ARPHRD_ETHER:
 195	case ARPHRD_FDDI:
 196	case ARPHRD_IEEE802:
 197		ip_eth_mc_map(addr, haddr);
 198		return 0;
 199	case ARPHRD_INFINIBAND:
 200		ip_ib_mc_map(addr, dev->broadcast, haddr);
 201		return 0;
 202	case ARPHRD_IPGRE:
 203		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 204		return 0;
 205	default:
 206		if (dir) {
 207			memcpy(haddr, dev->broadcast, dev->addr_len);
 208			return 0;
 209		}
 210	}
 211	return -EINVAL;
 212}
 213
 214
 215static u32 arp_hash(const void *pkey,
 216		    const struct net_device *dev,
 217		    __u32 *hash_rnd)
 218{
 219	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
 
 
 
 
 
 220}
 221
 222static int arp_constructor(struct neighbour *neigh)
 223{
 224	__be32 addr = *(__be32 *)neigh->primary_key;
 225	struct net_device *dev = neigh->dev;
 226	struct in_device *in_dev;
 227	struct neigh_parms *parms;
 
 228
 
 
 
 
 229	rcu_read_lock();
 230	in_dev = __in_dev_get_rcu(dev);
 231	if (in_dev == NULL) {
 232		rcu_read_unlock();
 233		return -EINVAL;
 234	}
 235
 236	neigh->type = inet_addr_type(dev_net(dev), addr);
 237
 238	parms = in_dev->arp_parms;
 239	__neigh_parms_put(neigh->parms);
 240	neigh->parms = neigh_parms_clone(parms);
 241	rcu_read_unlock();
 242
 243	if (!dev->header_ops) {
 244		neigh->nud_state = NUD_NOARP;
 245		neigh->ops = &arp_direct_ops;
 246		neigh->output = neigh_direct_output;
 247	} else {
 248		/* Good devices (checked by reading texts, but only Ethernet is
 249		   tested)
 250
 251		   ARPHRD_ETHER: (ethernet, apfddi)
 252		   ARPHRD_FDDI: (fddi)
 253		   ARPHRD_IEEE802: (tr)
 254		   ARPHRD_METRICOM: (strip)
 255		   ARPHRD_ARCNET:
 256		   etc. etc. etc.
 257
 258		   ARPHRD_IPDDP will also work, if author repairs it.
 259		   I did not it, because this driver does not work even
 260		   in old paradigm.
 261		 */
 262
 263#if 1
 264		/* So... these "amateur" devices are hopeless.
 265		   The only thing, that I can say now:
 266		   It is very sad that we need to keep ugly obsolete
 267		   code to make them happy.
 268
 269		   They should be moved to more reasonable state, now
 270		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 271		   Besides that, they are sort of out of date
 272		   (a lot of redundant clones/copies, useless in 2.1),
 273		   I wonder why people believe that they work.
 274		 */
 275		switch (dev->type) {
 276		default:
 277			break;
 278		case ARPHRD_ROSE:
 279#if IS_ENABLED(CONFIG_AX25)
 280		case ARPHRD_AX25:
 281#if IS_ENABLED(CONFIG_NETROM)
 282		case ARPHRD_NETROM:
 283#endif
 284			neigh->ops = &arp_broken_ops;
 285			neigh->output = neigh->ops->output;
 286			return 0;
 287#else
 288			break;
 289#endif
 290		}
 291#endif
 292		if (neigh->type == RTN_MULTICAST) {
 293			neigh->nud_state = NUD_NOARP;
 294			arp_mc_map(addr, neigh->ha, dev, 1);
 295		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 296			neigh->nud_state = NUD_NOARP;
 297			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 298		} else if (neigh->type == RTN_BROADCAST ||
 299			   (dev->flags & IFF_POINTOPOINT)) {
 300			neigh->nud_state = NUD_NOARP;
 301			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 302		}
 303
 304		if (dev->header_ops->cache)
 305			neigh->ops = &arp_hh_ops;
 306		else
 307			neigh->ops = &arp_generic_ops;
 308
 309		if (neigh->nud_state & NUD_VALID)
 310			neigh->output = neigh->ops->connected_output;
 311		else
 312			neigh->output = neigh->ops->output;
 313	}
 314	return 0;
 315}
 316
 317static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 318{
 319	dst_link_failure(skb);
 320	kfree_skb(skb);
 321}
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 324{
 325	__be32 saddr = 0;
 326	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 327	struct net_device *dev = neigh->dev;
 328	__be32 target = *(__be32 *)neigh->primary_key;
 329	int probes = atomic_read(&neigh->probes);
 330	struct in_device *in_dev;
 
 331
 332	rcu_read_lock();
 333	in_dev = __in_dev_get_rcu(dev);
 334	if (!in_dev) {
 335		rcu_read_unlock();
 336		return;
 337	}
 338	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 339	default:
 340	case 0:		/* By default announce any local IP */
 341		if (skb && inet_addr_type(dev_net(dev),
 342					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 343			saddr = ip_hdr(skb)->saddr;
 344		break;
 345	case 1:		/* Restrict announcements of saddr in same subnet */
 346		if (!skb)
 347			break;
 348		saddr = ip_hdr(skb)->saddr;
 349		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 350			/* saddr should be known to target */
 351			if (inet_addr_onlink(in_dev, target, saddr))
 352				break;
 353		}
 354		saddr = 0;
 355		break;
 356	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 357		break;
 358	}
 359	rcu_read_unlock();
 360
 361	if (!saddr)
 362		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 363
 364	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 365	if (probes < 0) {
 366		if (!(neigh->nud_state & NUD_VALID))
 367			pr_debug("trying to ucast probe in NUD_INVALID\n");
 368		neigh_ha_snapshot(dst_ha, neigh, dev);
 369		dst_hw = dst_ha;
 370	} else {
 371		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 372		if (probes < 0) {
 373			neigh_app_ns(neigh);
 374			return;
 375		}
 376	}
 377
 378	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 379		 dst_hw, dev->dev_addr, NULL);
 
 
 380}
 381
 382static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 383{
 384	struct net *net = dev_net(in_dev->dev);
 385	int scope;
 386
 387	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 388	case 0:	/* Reply, the tip is already validated */
 389		return 0;
 390	case 1:	/* Reply only if tip is configured on the incoming interface */
 391		sip = 0;
 392		scope = RT_SCOPE_HOST;
 393		break;
 394	case 2:	/*
 395		 * Reply only if tip is configured on the incoming interface
 396		 * and is in same subnet as sip
 397		 */
 398		scope = RT_SCOPE_HOST;
 399		break;
 400	case 3:	/* Do not reply for scope host addresses */
 401		sip = 0;
 402		scope = RT_SCOPE_LINK;
 403		in_dev = NULL;
 404		break;
 405	case 4:	/* Reserved */
 406	case 5:
 407	case 6:
 408	case 7:
 409		return 0;
 410	case 8:	/* Do not reply */
 411		return 1;
 412	default:
 413		return 0;
 414	}
 415	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 416}
 417
 418static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 419{
 420	struct rtable *rt;
 421	int flag = 0;
 422	/*unsigned long now; */
 423	struct net *net = dev_net(dev);
 424
 425	rt = ip_route_output(net, sip, tip, 0, 0);
 426	if (IS_ERR(rt))
 427		return 1;
 428	if (rt->dst.dev != dev) {
 429		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 430		flag = 1;
 431	}
 432	ip_rt_put(rt);
 433	return flag;
 434}
 435
 436/* OBSOLETE FUNCTIONS */
 437
 438/*
 439 *	Find an arp mapping in the cache. If not found, post a request.
 440 *
 441 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 442 *	even if it exists. It is supposed that skb->dev was mangled
 443 *	by a virtual device (eql, shaper). Nobody but broken devices
 444 *	is allowed to use this function, it is scheduled to be removed. --ANK
 445 */
 446
 447static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 448			      __be32 paddr, struct net_device *dev)
 449{
 450	switch (addr_hint) {
 451	case RTN_LOCAL:
 452		pr_debug("arp called for own IP address\n");
 453		memcpy(haddr, dev->dev_addr, dev->addr_len);
 454		return 1;
 455	case RTN_MULTICAST:
 456		arp_mc_map(paddr, haddr, dev, 1);
 457		return 1;
 458	case RTN_BROADCAST:
 459		memcpy(haddr, dev->broadcast, dev->addr_len);
 460		return 1;
 461	}
 462	return 0;
 463}
 464
 465
 466int arp_find(unsigned char *haddr, struct sk_buff *skb)
 467{
 468	struct net_device *dev = skb->dev;
 469	__be32 paddr;
 470	struct neighbour *n;
 471
 472	if (!skb_dst(skb)) {
 473		pr_debug("arp_find is called with dst==NULL\n");
 474		kfree_skb(skb);
 475		return 1;
 476	}
 477
 478	paddr = rt_nexthop(skb_rtable(skb), ip_hdr(skb)->daddr);
 479	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 480			       paddr, dev))
 481		return 0;
 482
 483	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 484
 485	if (n) {
 486		n->used = jiffies;
 487		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 488			neigh_ha_snapshot(haddr, n, dev);
 489			neigh_release(n);
 490			return 0;
 491		}
 492		neigh_release(n);
 493	} else
 494		kfree_skb(skb);
 495	return 1;
 496}
 497EXPORT_SYMBOL(arp_find);
 498
 499/* END OF OBSOLETE FUNCTIONS */
 500
 501/*
 502 * Check if we can use proxy ARP for this path
 503 */
 504static inline int arp_fwd_proxy(struct in_device *in_dev,
 505				struct net_device *dev,	struct rtable *rt)
 506{
 507	struct in_device *out_dev;
 508	int imi, omi = -1;
 509
 510	if (rt->dst.dev == dev)
 511		return 0;
 512
 513	if (!IN_DEV_PROXY_ARP(in_dev))
 514		return 0;
 515	imi = IN_DEV_MEDIUM_ID(in_dev);
 516	if (imi == 0)
 517		return 1;
 518	if (imi == -1)
 519		return 0;
 520
 521	/* place to check for proxy_arp for routes */
 522
 523	out_dev = __in_dev_get_rcu(rt->dst.dev);
 524	if (out_dev)
 525		omi = IN_DEV_MEDIUM_ID(out_dev);
 526
 527	return omi != imi && omi != -1;
 528}
 529
 530/*
 531 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 532 *
 533 * RFC3069 supports proxy arp replies back to the same interface.  This
 534 * is done to support (ethernet) switch features, like RFC 3069, where
 535 * the individual ports are not allowed to communicate with each
 536 * other, BUT they are allowed to talk to the upstream router.  As
 537 * described in RFC 3069, it is possible to allow these hosts to
 538 * communicate through the upstream router, by proxy_arp'ing.
 539 *
 540 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 541 *
 542 *  This technology is known by different names:
 543 *    In RFC 3069 it is called VLAN Aggregation.
 544 *    Cisco and Allied Telesyn call it Private VLAN.
 545 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 546 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 547 *
 548 */
 549static inline int arp_fwd_pvlan(struct in_device *in_dev,
 550				struct net_device *dev,	struct rtable *rt,
 551				__be32 sip, __be32 tip)
 552{
 553	/* Private VLAN is only concerned about the same ethernet segment */
 554	if (rt->dst.dev != dev)
 555		return 0;
 556
 557	/* Don't reply on self probes (often done by windowz boxes)*/
 558	if (sip == tip)
 559		return 0;
 560
 561	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 562		return 1;
 563	else
 564		return 0;
 565}
 566
 567/*
 568 *	Interface to link layer: send routine and receive handler.
 569 */
 570
 571/*
 572 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 573 *	message.
 574 */
 575struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 576			   struct net_device *dev, __be32 src_ip,
 577			   const unsigned char *dest_hw,
 578			   const unsigned char *src_hw,
 579			   const unsigned char *target_hw)
 580{
 581	struct sk_buff *skb;
 582	struct arphdr *arp;
 583	unsigned char *arp_ptr;
 584	int hlen = LL_RESERVED_SPACE(dev);
 585	int tlen = dev->needed_tailroom;
 586
 587	/*
 588	 *	Allocate a buffer
 589	 */
 590
 591	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 592	if (skb == NULL)
 593		return NULL;
 594
 595	skb_reserve(skb, hlen);
 596	skb_reset_network_header(skb);
 597	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 598	skb->dev = dev;
 599	skb->protocol = htons(ETH_P_ARP);
 600	if (src_hw == NULL)
 601		src_hw = dev->dev_addr;
 602	if (dest_hw == NULL)
 603		dest_hw = dev->broadcast;
 604
 605	/*
 606	 *	Fill the device header for the ARP frame
 607	 */
 608	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 609		goto out;
 610
 611	/*
 612	 * Fill out the arp protocol part.
 613	 *
 614	 * The arp hardware type should match the device type, except for FDDI,
 615	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 616	 */
 617	/*
 618	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 619	 *	DIX code for the protocol. Make these device structure fields.
 620	 */
 621	switch (dev->type) {
 622	default:
 623		arp->ar_hrd = htons(dev->type);
 624		arp->ar_pro = htons(ETH_P_IP);
 625		break;
 626
 627#if IS_ENABLED(CONFIG_AX25)
 628	case ARPHRD_AX25:
 629		arp->ar_hrd = htons(ARPHRD_AX25);
 630		arp->ar_pro = htons(AX25_P_IP);
 631		break;
 632
 633#if IS_ENABLED(CONFIG_NETROM)
 634	case ARPHRD_NETROM:
 635		arp->ar_hrd = htons(ARPHRD_NETROM);
 636		arp->ar_pro = htons(AX25_P_IP);
 637		break;
 638#endif
 639#endif
 640
 641#if IS_ENABLED(CONFIG_FDDI)
 642	case ARPHRD_FDDI:
 643		arp->ar_hrd = htons(ARPHRD_ETHER);
 644		arp->ar_pro = htons(ETH_P_IP);
 645		break;
 646#endif
 647	}
 648
 649	arp->ar_hln = dev->addr_len;
 650	arp->ar_pln = 4;
 651	arp->ar_op = htons(type);
 652
 653	arp_ptr = (unsigned char *)(arp + 1);
 654
 655	memcpy(arp_ptr, src_hw, dev->addr_len);
 656	arp_ptr += dev->addr_len;
 657	memcpy(arp_ptr, &src_ip, 4);
 658	arp_ptr += 4;
 659
 660	switch (dev->type) {
 661#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 662	case ARPHRD_IEEE1394:
 663		break;
 664#endif
 665	default:
 666		if (target_hw != NULL)
 667			memcpy(arp_ptr, target_hw, dev->addr_len);
 668		else
 669			memset(arp_ptr, 0, dev->addr_len);
 670		arp_ptr += dev->addr_len;
 671	}
 672	memcpy(arp_ptr, &dest_ip, 4);
 673
 674	return skb;
 675
 676out:
 677	kfree_skb(skb);
 678	return NULL;
 679}
 680EXPORT_SYMBOL(arp_create);
 681
 
 
 
 
 
 682/*
 683 *	Send an arp packet.
 684 */
 685void arp_xmit(struct sk_buff *skb)
 686{
 687	/* Send it off, maybe filter it using firewalling first.  */
 688	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 689}
 690EXPORT_SYMBOL(arp_xmit);
 691
 692/*
 693 *	Create and send an arp packet.
 694 */
 695void arp_send(int type, int ptype, __be32 dest_ip,
 696	      struct net_device *dev, __be32 src_ip,
 697	      const unsigned char *dest_hw, const unsigned char *src_hw,
 698	      const unsigned char *target_hw)
 699{
 700	struct sk_buff *skb;
 701
 702	/*
 703	 *	No arp on this interface.
 704	 */
 705
 706	if (dev->flags&IFF_NOARP)
 707		return;
 708
 709	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 710			 dest_hw, src_hw, target_hw);
 711	if (skb == NULL)
 712		return;
 713
 714	arp_xmit(skb);
 
 
 
 
 715}
 716EXPORT_SYMBOL(arp_send);
 717
 718/*
 719 *	Process an arp request.
 720 */
 721
 722static int arp_process(struct sk_buff *skb)
 723{
 724	struct net_device *dev = skb->dev;
 725	struct in_device *in_dev = __in_dev_get_rcu(dev);
 726	struct arphdr *arp;
 727	unsigned char *arp_ptr;
 728	struct rtable *rt;
 729	unsigned char *sha;
 
 730	__be32 sip, tip;
 731	u16 dev_type = dev->type;
 732	int addr_type;
 733	struct neighbour *n;
 734	struct net *net = dev_net(dev);
 735	bool is_garp = false;
 736
 737	/* arp_rcv below verifies the ARP header and verifies the device
 738	 * is ARP'able.
 739	 */
 740
 741	if (in_dev == NULL)
 742		goto out;
 743
 744	arp = arp_hdr(skb);
 745
 746	switch (dev_type) {
 747	default:
 748		if (arp->ar_pro != htons(ETH_P_IP) ||
 749		    htons(dev_type) != arp->ar_hrd)
 750			goto out;
 751		break;
 752	case ARPHRD_ETHER:
 753	case ARPHRD_FDDI:
 754	case ARPHRD_IEEE802:
 755		/*
 756		 * ETHERNET, and Fibre Channel (which are IEEE 802
 757		 * devices, according to RFC 2625) devices will accept ARP
 758		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 759		 * This is the case also of FDDI, where the RFC 1390 says that
 760		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 761		 * however, to be more robust, we'll accept both 1 (Ethernet)
 762		 * or 6 (IEEE 802.2)
 763		 */
 764		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 765		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 766		    arp->ar_pro != htons(ETH_P_IP))
 767			goto out;
 768		break;
 769	case ARPHRD_AX25:
 770		if (arp->ar_pro != htons(AX25_P_IP) ||
 771		    arp->ar_hrd != htons(ARPHRD_AX25))
 772			goto out;
 773		break;
 774	case ARPHRD_NETROM:
 775		if (arp->ar_pro != htons(AX25_P_IP) ||
 776		    arp->ar_hrd != htons(ARPHRD_NETROM))
 777			goto out;
 778		break;
 779	}
 780
 781	/* Understand only these message types */
 782
 783	if (arp->ar_op != htons(ARPOP_REPLY) &&
 784	    arp->ar_op != htons(ARPOP_REQUEST))
 785		goto out;
 786
 787/*
 788 *	Extract fields
 789 */
 790	arp_ptr = (unsigned char *)(arp + 1);
 791	sha	= arp_ptr;
 792	arp_ptr += dev->addr_len;
 793	memcpy(&sip, arp_ptr, 4);
 794	arp_ptr += 4;
 795	switch (dev_type) {
 796#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 797	case ARPHRD_IEEE1394:
 798		break;
 799#endif
 800	default:
 
 801		arp_ptr += dev->addr_len;
 802	}
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_multicast(tip) ||
 809	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 810		goto out;
 
 
 
 
 
 
 
 
 811
 812/*
 813 *     Special case: We must set Frame Relay source Q.922 address
 814 */
 815	if (dev_type == ARPHRD_DLCI)
 816		sha = dev->broadcast;
 817
 818/*
 819 *  Process entry.  The idea here is we want to send a reply if it is a
 820 *  request for us or if it is a request for someone else that we hold
 821 *  a proxy for.  We want to add an entry to our cache if it is a reply
 822 *  to us or if it is a request for our address.
 823 *  (The assumption for this last is that if someone is requesting our
 824 *  address, they are probably intending to talk to us, so it saves time
 825 *  if we cache their address.  Their address is also probably not in
 826 *  our cache, since ours is not in their cache.)
 827 *
 828 *  Putting this another way, we only care about replies if they are to
 829 *  us, in which case we add them to the cache.  For requests, we care
 830 *  about those for us and those for our proxies.  We reply to both,
 831 *  and in the case of requests for us we add the requester to the arp
 832 *  cache.
 833 */
 834
 
 
 
 
 
 835	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 836	if (sip == 0) {
 837		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 838		    inet_addr_type(net, tip) == RTN_LOCAL &&
 839		    !arp_ignore(in_dev, sip, tip))
 840			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 841				 dev->dev_addr, sha);
 842		goto out;
 843	}
 844
 845	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 846	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 847
 848		rt = skb_rtable(skb);
 849		addr_type = rt->rt_type;
 850
 851		if (addr_type == RTN_LOCAL) {
 852			int dont_send;
 853
 854			dont_send = arp_ignore(in_dev, sip, tip);
 855			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 856				dont_send = arp_filter(sip, tip, dev);
 857			if (!dont_send) {
 858				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 859				if (n) {
 860					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 861						 dev, tip, sha, dev->dev_addr,
 862						 sha);
 
 863					neigh_release(n);
 864				}
 865			}
 866			goto out;
 867		} else if (IN_DEV_FORWARD(in_dev)) {
 868			if (addr_type == RTN_UNICAST  &&
 869			    (arp_fwd_proxy(in_dev, dev, rt) ||
 870			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 871			     (rt->dst.dev != dev &&
 872			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 873				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 874				if (n)
 875					neigh_release(n);
 876
 877				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 878				    skb->pkt_type == PACKET_HOST ||
 879				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 880					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 881						 dev, tip, sha, dev->dev_addr,
 882						 sha);
 
 883				} else {
 884					pneigh_enqueue(&arp_tbl,
 885						       in_dev->arp_parms, skb);
 886					return 0;
 887				}
 888				goto out;
 889			}
 890		}
 891	}
 892
 893	/* Update our ARP tables */
 894
 895	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 896
 
 
 
 
 
 
 897	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 898		/* Unsolicited ARP is not accepted by default.
 899		   It is possible, that this option should be enabled for some
 900		   devices (strip is candidate)
 901		 */
 902		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
 903			  inet_addr_type(net, sip) == RTN_UNICAST;
 904
 905		if (n == NULL &&
 906		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
 907		      inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
 
 
 908			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 909	}
 910
 911	if (n) {
 912		int state = NUD_REACHABLE;
 913		int override;
 914
 915		/* If several different ARP replies follows back-to-back,
 916		   use the FIRST one. It is possible, if several proxy
 917		   agents are active. Taking the first reply prevents
 918		   arp trashing and chooses the fastest router.
 919		 */
 920		override = time_after(jiffies,
 921				      n->updated +
 922				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 923			   is_garp;
 924
 925		/* Broadcast replies and request packets
 926		   do not assert neighbour reachability.
 927		 */
 928		if (arp->ar_op != htons(ARPOP_REPLY) ||
 929		    skb->pkt_type != PACKET_HOST)
 930			state = NUD_STALE;
 931		neigh_update(n, sha, state,
 932			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 933		neigh_release(n);
 934	}
 935
 936out:
 937	consume_skb(skb);
 938	return 0;
 
 
 
 
 
 
 
 939}
 940
 941static void parp_redo(struct sk_buff *skb)
 942{
 943	arp_process(skb);
 944}
 945
 946
 947/*
 948 *	Receive an arp request from the device layer.
 949 */
 950
 951static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 952		   struct packet_type *pt, struct net_device *orig_dev)
 953{
 954	const struct arphdr *arp;
 955
 
 956	if (dev->flags & IFF_NOARP ||
 957	    skb->pkt_type == PACKET_OTHERHOST ||
 958	    skb->pkt_type == PACKET_LOOPBACK)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (!skb)
 963		goto out_of_mem;
 964
 965	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 966	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 967		goto freeskb;
 968
 969	arp = arp_hdr(skb);
 970	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 971		goto freeskb;
 972
 973	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 974
 975	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 976
 
 
 
 977freeskb:
 978	kfree_skb(skb);
 979out_of_mem:
 980	return 0;
 981}
 982
 983/*
 984 *	User level interface (ioctl)
 985 */
 986
 987/*
 988 *	Set (create) an ARP cache entry.
 989 */
 990
 991static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 992{
 993	if (dev == NULL) {
 994		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 995		return 0;
 996	}
 997	if (__in_dev_get_rtnl(dev)) {
 998		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 999		return 0;
1000	}
1001	return -ENXIO;
1002}
1003
1004static int arp_req_set_public(struct net *net, struct arpreq *r,
1005		struct net_device *dev)
1006{
1007	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1008	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1009
1010	if (mask && mask != htonl(0xFFFFFFFF))
1011		return -EINVAL;
1012	if (!dev && (r->arp_flags & ATF_COM)) {
1013		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1014				      r->arp_ha.sa_data);
1015		if (!dev)
1016			return -ENODEV;
1017	}
1018	if (mask) {
1019		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1020			return -ENOBUFS;
1021		return 0;
1022	}
1023
1024	return arp_req_set_proxy(net, dev, 1);
1025}
1026
1027static int arp_req_set(struct net *net, struct arpreq *r,
1028		       struct net_device *dev)
1029{
1030	__be32 ip;
1031	struct neighbour *neigh;
1032	int err;
1033
1034	if (r->arp_flags & ATF_PUBL)
1035		return arp_req_set_public(net, r, dev);
1036
1037	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1038	if (r->arp_flags & ATF_PERM)
1039		r->arp_flags |= ATF_COM;
1040	if (dev == NULL) {
1041		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1042
1043		if (IS_ERR(rt))
1044			return PTR_ERR(rt);
1045		dev = rt->dst.dev;
1046		ip_rt_put(rt);
1047		if (!dev)
1048			return -EINVAL;
1049	}
1050	switch (dev->type) {
1051#if IS_ENABLED(CONFIG_FDDI)
1052	case ARPHRD_FDDI:
1053		/*
1054		 * According to RFC 1390, FDDI devices should accept ARP
1055		 * hardware types of 1 (Ethernet).  However, to be more
1056		 * robust, we'll accept hardware types of either 1 (Ethernet)
1057		 * or 6 (IEEE 802.2).
1058		 */
1059		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1060		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1061		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1062			return -EINVAL;
1063		break;
1064#endif
1065	default:
1066		if (r->arp_ha.sa_family != dev->type)
1067			return -EINVAL;
1068		break;
1069	}
1070
1071	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1072	err = PTR_ERR(neigh);
1073	if (!IS_ERR(neigh)) {
1074		unsigned int state = NUD_STALE;
1075		if (r->arp_flags & ATF_PERM)
1076			state = NUD_PERMANENT;
1077		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1078				   r->arp_ha.sa_data : NULL, state,
1079				   NEIGH_UPDATE_F_OVERRIDE |
1080				   NEIGH_UPDATE_F_ADMIN);
1081		neigh_release(neigh);
1082	}
1083	return err;
1084}
1085
1086static unsigned int arp_state_to_flags(struct neighbour *neigh)
1087{
1088	if (neigh->nud_state&NUD_PERMANENT)
1089		return ATF_PERM | ATF_COM;
1090	else if (neigh->nud_state&NUD_VALID)
1091		return ATF_COM;
1092	else
1093		return 0;
1094}
1095
1096/*
1097 *	Get an ARP cache entry.
1098 */
1099
1100static int arp_req_get(struct arpreq *r, struct net_device *dev)
1101{
1102	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1103	struct neighbour *neigh;
1104	int err = -ENXIO;
1105
1106	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1107	if (neigh) {
1108		read_lock_bh(&neigh->lock);
1109		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1110		r->arp_flags = arp_state_to_flags(neigh);
1111		read_unlock_bh(&neigh->lock);
1112		r->arp_ha.sa_family = dev->type;
1113		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
 
 
 
1114		neigh_release(neigh);
1115		err = 0;
1116	}
1117	return err;
1118}
1119
1120static int arp_invalidate(struct net_device *dev, __be32 ip)
1121{
1122	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1123	int err = -ENXIO;
 
1124
1125	if (neigh) {
1126		if (neigh->nud_state & ~NUD_NOARP)
1127			err = neigh_update(neigh, NULL, NUD_FAILED,
1128					   NEIGH_UPDATE_F_OVERRIDE|
1129					   NEIGH_UPDATE_F_ADMIN);
 
1130		neigh_release(neigh);
 
 
1131	}
1132
1133	return err;
1134}
1135
1136static int arp_req_delete_public(struct net *net, struct arpreq *r,
1137		struct net_device *dev)
1138{
1139	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1140	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1141
1142	if (mask == htonl(0xFFFFFFFF))
1143		return pneigh_delete(&arp_tbl, net, &ip, dev);
1144
1145	if (mask)
1146		return -EINVAL;
1147
1148	return arp_req_set_proxy(net, dev, 0);
1149}
1150
1151static int arp_req_delete(struct net *net, struct arpreq *r,
1152			  struct net_device *dev)
1153{
1154	__be32 ip;
1155
1156	if (r->arp_flags & ATF_PUBL)
1157		return arp_req_delete_public(net, r, dev);
1158
1159	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1160	if (dev == NULL) {
1161		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1162		if (IS_ERR(rt))
1163			return PTR_ERR(rt);
1164		dev = rt->dst.dev;
1165		ip_rt_put(rt);
1166		if (!dev)
1167			return -EINVAL;
1168	}
1169	return arp_invalidate(dev, ip);
1170}
1171
1172/*
1173 *	Handle an ARP layer I/O control request.
1174 */
1175
1176int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1177{
1178	int err;
1179	struct arpreq r;
1180	struct net_device *dev = NULL;
1181
1182	switch (cmd) {
1183	case SIOCDARP:
1184	case SIOCSARP:
1185		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1186			return -EPERM;
 
1187	case SIOCGARP:
1188		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1189		if (err)
1190			return -EFAULT;
1191		break;
1192	default:
1193		return -EINVAL;
1194	}
1195
1196	if (r.arp_pa.sa_family != AF_INET)
1197		return -EPFNOSUPPORT;
1198
1199	if (!(r.arp_flags & ATF_PUBL) &&
1200	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1201		return -EINVAL;
1202	if (!(r.arp_flags & ATF_NETMASK))
1203		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1204							   htonl(0xFFFFFFFFUL);
1205	rtnl_lock();
1206	if (r.arp_dev[0]) {
1207		err = -ENODEV;
1208		dev = __dev_get_by_name(net, r.arp_dev);
1209		if (dev == NULL)
1210			goto out;
1211
1212		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1213		if (!r.arp_ha.sa_family)
1214			r.arp_ha.sa_family = dev->type;
1215		err = -EINVAL;
1216		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1217			goto out;
1218	} else if (cmd == SIOCGARP) {
1219		err = -ENODEV;
1220		goto out;
1221	}
1222
1223	switch (cmd) {
1224	case SIOCDARP:
1225		err = arp_req_delete(net, &r, dev);
1226		break;
1227	case SIOCSARP:
1228		err = arp_req_set(net, &r, dev);
1229		break;
1230	case SIOCGARP:
1231		err = arp_req_get(&r, dev);
1232		break;
1233	}
1234out:
1235	rtnl_unlock();
1236	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1237		err = -EFAULT;
1238	return err;
1239}
1240
1241static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1242			    void *ptr)
1243{
1244	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1245	struct netdev_notifier_change_info *change_info;
1246
1247	switch (event) {
1248	case NETDEV_CHANGEADDR:
1249		neigh_changeaddr(&arp_tbl, dev);
1250		rt_cache_flush(dev_net(dev));
1251		break;
1252	case NETDEV_CHANGE:
1253		change_info = ptr;
1254		if (change_info->flags_changed & IFF_NOARP)
1255			neigh_changeaddr(&arp_tbl, dev);
1256		break;
1257	default:
1258		break;
1259	}
1260
1261	return NOTIFY_DONE;
1262}
1263
1264static struct notifier_block arp_netdev_notifier = {
1265	.notifier_call = arp_netdev_event,
1266};
1267
1268/* Note, that it is not on notifier chain.
1269   It is necessary, that this routine was called after route cache will be
1270   flushed.
1271 */
1272void arp_ifdown(struct net_device *dev)
1273{
1274	neigh_ifdown(&arp_tbl, dev);
1275}
1276
1277
1278/*
1279 *	Called once on startup.
1280 */
1281
1282static struct packet_type arp_packet_type __read_mostly = {
1283	.type =	cpu_to_be16(ETH_P_ARP),
1284	.func =	arp_rcv,
1285};
1286
1287static int arp_proc_init(void);
1288
1289void __init arp_init(void)
1290{
1291	neigh_table_init(&arp_tbl);
1292
1293	dev_add_pack(&arp_packet_type);
1294	arp_proc_init();
1295#ifdef CONFIG_SYSCTL
1296	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1297#endif
1298	register_netdevice_notifier(&arp_netdev_notifier);
1299}
1300
1301#ifdef CONFIG_PROC_FS
1302#if IS_ENABLED(CONFIG_AX25)
1303
1304/* ------------------------------------------------------------------------ */
1305/*
1306 *	ax25 -> ASCII conversion
1307 */
1308static char *ax2asc2(ax25_address *a, char *buf)
1309{
1310	char c, *s;
1311	int n;
1312
1313	for (n = 0, s = buf; n < 6; n++) {
1314		c = (a->ax25_call[n] >> 1) & 0x7F;
1315
1316		if (c != ' ')
1317			*s++ = c;
1318	}
1319
1320	*s++ = '-';
1321	n = (a->ax25_call[6] >> 1) & 0x0F;
1322	if (n > 9) {
1323		*s++ = '1';
1324		n -= 10;
1325	}
1326
1327	*s++ = n + '0';
1328	*s++ = '\0';
1329
1330	if (*buf == '\0' || *buf == '-')
1331		return "*";
1332
1333	return buf;
1334}
1335#endif /* CONFIG_AX25 */
1336
1337#define HBUFFERLEN 30
1338
1339static void arp_format_neigh_entry(struct seq_file *seq,
1340				   struct neighbour *n)
1341{
1342	char hbuffer[HBUFFERLEN];
1343	int k, j;
1344	char tbuf[16];
1345	struct net_device *dev = n->dev;
1346	int hatype = dev->type;
1347
1348	read_lock(&n->lock);
1349	/* Convert hardware address to XX:XX:XX:XX ... form. */
1350#if IS_ENABLED(CONFIG_AX25)
1351	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1352		ax2asc2((ax25_address *)n->ha, hbuffer);
1353	else {
1354#endif
1355	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1356		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1357		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1358		hbuffer[k++] = ':';
1359	}
1360	if (k != 0)
1361		--k;
1362	hbuffer[k] = 0;
1363#if IS_ENABLED(CONFIG_AX25)
1364	}
1365#endif
1366	sprintf(tbuf, "%pI4", n->primary_key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1369	read_unlock(&n->lock);
1370}
1371
1372static void arp_format_pneigh_entry(struct seq_file *seq,
1373				    struct pneigh_entry *n)
1374{
1375	struct net_device *dev = n->dev;
1376	int hatype = dev ? dev->type : 0;
1377	char tbuf[16];
1378
1379	sprintf(tbuf, "%pI4", n->key);
1380	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1381		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1382		   dev ? dev->name : "*");
1383}
1384
1385static int arp_seq_show(struct seq_file *seq, void *v)
1386{
1387	if (v == SEQ_START_TOKEN) {
1388		seq_puts(seq, "IP address       HW type     Flags       "
1389			      "HW address            Mask     Device\n");
1390	} else {
1391		struct neigh_seq_state *state = seq->private;
1392
1393		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1394			arp_format_pneigh_entry(seq, v);
1395		else
1396			arp_format_neigh_entry(seq, v);
1397	}
1398
1399	return 0;
1400}
1401
1402static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1403{
1404	/* Don't want to confuse "arp -a" w/ magic entries,
1405	 * so we tell the generic iterator to skip NUD_NOARP.
1406	 */
1407	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1408}
1409
1410/* ------------------------------------------------------------------------ */
1411
1412static const struct seq_operations arp_seq_ops = {
1413	.start	= arp_seq_start,
1414	.next	= neigh_seq_next,
1415	.stop	= neigh_seq_stop,
1416	.show	= arp_seq_show,
1417};
1418
1419static int arp_seq_open(struct inode *inode, struct file *file)
1420{
1421	return seq_open_net(inode, file, &arp_seq_ops,
1422			    sizeof(struct neigh_seq_state));
1423}
1424
1425static const struct file_operations arp_seq_fops = {
1426	.owner		= THIS_MODULE,
1427	.open           = arp_seq_open,
1428	.read           = seq_read,
1429	.llseek         = seq_lseek,
1430	.release	= seq_release_net,
1431};
1432
1433
1434static int __net_init arp_net_init(struct net *net)
1435{
1436	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1437		return -ENOMEM;
1438	return 0;
1439}
1440
1441static void __net_exit arp_net_exit(struct net *net)
1442{
1443	remove_proc_entry("arp", net->proc_net);
1444}
1445
1446static struct pernet_operations arp_net_ops = {
1447	.init = arp_net_init,
1448	.exit = arp_net_exit,
1449};
1450
1451static int __init arp_proc_init(void)
1452{
1453	return register_pernet_subsys(&arp_net_ops);
1454}
1455
1456#else /* CONFIG_PROC_FS */
1457
1458static int __init arp_proc_init(void)
1459{
1460	return 0;
1461}
1462
1463#endif /* CONFIG_PROC_FS */
v4.17
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 116#include <net/dst_metadata.h>
 117#include <net/ip_tunnels.h>
 118
 119#include <linux/uaccess.h>
 120
 121#include <linux/netfilter_arp.h>
 122
 123/*
 124 *	Interface to generic neighbour cache.
 125 */
 126static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 127static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 128static int arp_constructor(struct neighbour *neigh);
 129static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 130static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 131static void parp_redo(struct sk_buff *skb);
 132
 133static const struct neigh_ops arp_generic_ops = {
 134	.family =		AF_INET,
 135	.solicit =		arp_solicit,
 136	.error_report =		arp_error_report,
 137	.output =		neigh_resolve_output,
 138	.connected_output =	neigh_connected_output,
 139};
 140
 141static const struct neigh_ops arp_hh_ops = {
 142	.family =		AF_INET,
 143	.solicit =		arp_solicit,
 144	.error_report =		arp_error_report,
 145	.output =		neigh_resolve_output,
 146	.connected_output =	neigh_resolve_output,
 147};
 148
 149static const struct neigh_ops arp_direct_ops = {
 150	.family =		AF_INET,
 151	.output =		neigh_direct_output,
 152	.connected_output =	neigh_direct_output,
 153};
 154
 
 
 
 
 
 
 
 
 155struct neigh_table arp_tbl = {
 156	.family		= AF_INET,
 157	.key_len	= 4,
 158	.protocol	= cpu_to_be16(ETH_P_IP),
 159	.hash		= arp_hash,
 160	.key_eq		= arp_key_eq,
 161	.constructor	= arp_constructor,
 162	.proxy_redo	= parp_redo,
 163	.id		= "arp_cache",
 164	.parms		= {
 165		.tbl			= &arp_tbl,
 166		.reachable_time		= 30 * HZ,
 167		.data	= {
 168			[NEIGH_VAR_MCAST_PROBES] = 3,
 169			[NEIGH_VAR_UCAST_PROBES] = 3,
 170			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 171			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 172			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 173			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 174			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 175			[NEIGH_VAR_PROXY_QLEN] = 64,
 176			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 177			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 178			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 179		},
 180	},
 181	.gc_interval	= 30 * HZ,
 182	.gc_thresh1	= 128,
 183	.gc_thresh2	= 512,
 184	.gc_thresh3	= 1024,
 185};
 186EXPORT_SYMBOL(arp_tbl);
 187
 188int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 189{
 190	switch (dev->type) {
 191	case ARPHRD_ETHER:
 192	case ARPHRD_FDDI:
 193	case ARPHRD_IEEE802:
 194		ip_eth_mc_map(addr, haddr);
 195		return 0;
 196	case ARPHRD_INFINIBAND:
 197		ip_ib_mc_map(addr, dev->broadcast, haddr);
 198		return 0;
 199	case ARPHRD_IPGRE:
 200		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 201		return 0;
 202	default:
 203		if (dir) {
 204			memcpy(haddr, dev->broadcast, dev->addr_len);
 205			return 0;
 206		}
 207	}
 208	return -EINVAL;
 209}
 210
 211
 212static u32 arp_hash(const void *pkey,
 213		    const struct net_device *dev,
 214		    __u32 *hash_rnd)
 215{
 216	return arp_hashfn(pkey, dev, hash_rnd);
 217}
 218
 219static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 220{
 221	return neigh_key_eq32(neigh, pkey);
 222}
 223
 224static int arp_constructor(struct neighbour *neigh)
 225{
 226	__be32 addr;
 227	struct net_device *dev = neigh->dev;
 228	struct in_device *in_dev;
 229	struct neigh_parms *parms;
 230	u32 inaddr_any = INADDR_ANY;
 231
 232	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 233		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 234
 235	addr = *(__be32 *)neigh->primary_key;
 236	rcu_read_lock();
 237	in_dev = __in_dev_get_rcu(dev);
 238	if (!in_dev) {
 239		rcu_read_unlock();
 240		return -EINVAL;
 241	}
 242
 243	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 244
 245	parms = in_dev->arp_parms;
 246	__neigh_parms_put(neigh->parms);
 247	neigh->parms = neigh_parms_clone(parms);
 248	rcu_read_unlock();
 249
 250	if (!dev->header_ops) {
 251		neigh->nud_state = NUD_NOARP;
 252		neigh->ops = &arp_direct_ops;
 253		neigh->output = neigh_direct_output;
 254	} else {
 255		/* Good devices (checked by reading texts, but only Ethernet is
 256		   tested)
 257
 258		   ARPHRD_ETHER: (ethernet, apfddi)
 259		   ARPHRD_FDDI: (fddi)
 260		   ARPHRD_IEEE802: (tr)
 261		   ARPHRD_METRICOM: (strip)
 262		   ARPHRD_ARCNET:
 263		   etc. etc. etc.
 264
 265		   ARPHRD_IPDDP will also work, if author repairs it.
 266		   I did not it, because this driver does not work even
 267		   in old paradigm.
 268		 */
 269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270		if (neigh->type == RTN_MULTICAST) {
 271			neigh->nud_state = NUD_NOARP;
 272			arp_mc_map(addr, neigh->ha, dev, 1);
 273		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 274			neigh->nud_state = NUD_NOARP;
 275			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 276		} else if (neigh->type == RTN_BROADCAST ||
 277			   (dev->flags & IFF_POINTOPOINT)) {
 278			neigh->nud_state = NUD_NOARP;
 279			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 280		}
 281
 282		if (dev->header_ops->cache)
 283			neigh->ops = &arp_hh_ops;
 284		else
 285			neigh->ops = &arp_generic_ops;
 286
 287		if (neigh->nud_state & NUD_VALID)
 288			neigh->output = neigh->ops->connected_output;
 289		else
 290			neigh->output = neigh->ops->output;
 291	}
 292	return 0;
 293}
 294
 295static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 296{
 297	dst_link_failure(skb);
 298	kfree_skb(skb);
 299}
 300
 301/* Create and send an arp packet. */
 302static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 303			 struct net_device *dev, __be32 src_ip,
 304			 const unsigned char *dest_hw,
 305			 const unsigned char *src_hw,
 306			 const unsigned char *target_hw,
 307			 struct dst_entry *dst)
 308{
 309	struct sk_buff *skb;
 310
 311	/* arp on this interface. */
 312	if (dev->flags & IFF_NOARP)
 313		return;
 314
 315	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 316			 dest_hw, src_hw, target_hw);
 317	if (!skb)
 318		return;
 319
 320	skb_dst_set(skb, dst_clone(dst));
 321	arp_xmit(skb);
 322}
 323
 324void arp_send(int type, int ptype, __be32 dest_ip,
 325	      struct net_device *dev, __be32 src_ip,
 326	      const unsigned char *dest_hw, const unsigned char *src_hw,
 327	      const unsigned char *target_hw)
 328{
 329	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 330		     target_hw, NULL);
 331}
 332EXPORT_SYMBOL(arp_send);
 333
 334static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 335{
 336	__be32 saddr = 0;
 337	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 338	struct net_device *dev = neigh->dev;
 339	__be32 target = *(__be32 *)neigh->primary_key;
 340	int probes = atomic_read(&neigh->probes);
 341	struct in_device *in_dev;
 342	struct dst_entry *dst = NULL;
 343
 344	rcu_read_lock();
 345	in_dev = __in_dev_get_rcu(dev);
 346	if (!in_dev) {
 347		rcu_read_unlock();
 348		return;
 349	}
 350	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 351	default:
 352	case 0:		/* By default announce any local IP */
 353		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 354					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 355			saddr = ip_hdr(skb)->saddr;
 356		break;
 357	case 1:		/* Restrict announcements of saddr in same subnet */
 358		if (!skb)
 359			break;
 360		saddr = ip_hdr(skb)->saddr;
 361		if (inet_addr_type_dev_table(dev_net(dev), dev,
 362					     saddr) == RTN_LOCAL) {
 363			/* saddr should be known to target */
 364			if (inet_addr_onlink(in_dev, target, saddr))
 365				break;
 366		}
 367		saddr = 0;
 368		break;
 369	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 370		break;
 371	}
 372	rcu_read_unlock();
 373
 374	if (!saddr)
 375		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 376
 377	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 378	if (probes < 0) {
 379		if (!(neigh->nud_state & NUD_VALID))
 380			pr_debug("trying to ucast probe in NUD_INVALID\n");
 381		neigh_ha_snapshot(dst_ha, neigh, dev);
 382		dst_hw = dst_ha;
 383	} else {
 384		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 385		if (probes < 0) {
 386			neigh_app_ns(neigh);
 387			return;
 388		}
 389	}
 390
 391	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 392		dst = skb_dst(skb);
 393	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 394		     dst_hw, dev->dev_addr, NULL, dst);
 395}
 396
 397static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 398{
 399	struct net *net = dev_net(in_dev->dev);
 400	int scope;
 401
 402	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 403	case 0:	/* Reply, the tip is already validated */
 404		return 0;
 405	case 1:	/* Reply only if tip is configured on the incoming interface */
 406		sip = 0;
 407		scope = RT_SCOPE_HOST;
 408		break;
 409	case 2:	/*
 410		 * Reply only if tip is configured on the incoming interface
 411		 * and is in same subnet as sip
 412		 */
 413		scope = RT_SCOPE_HOST;
 414		break;
 415	case 3:	/* Do not reply for scope host addresses */
 416		sip = 0;
 417		scope = RT_SCOPE_LINK;
 418		in_dev = NULL;
 419		break;
 420	case 4:	/* Reserved */
 421	case 5:
 422	case 6:
 423	case 7:
 424		return 0;
 425	case 8:	/* Do not reply */
 426		return 1;
 427	default:
 428		return 0;
 429	}
 430	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 431}
 432
 433static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 434{
 435	struct rtable *rt;
 436	int flag = 0;
 437	/*unsigned long now; */
 438	struct net *net = dev_net(dev);
 439
 440	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 441	if (IS_ERR(rt))
 442		return 1;
 443	if (rt->dst.dev != dev) {
 444		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 445		flag = 1;
 446	}
 447	ip_rt_put(rt);
 448	return flag;
 449}
 450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451/*
 452 * Check if we can use proxy ARP for this path
 453 */
 454static inline int arp_fwd_proxy(struct in_device *in_dev,
 455				struct net_device *dev,	struct rtable *rt)
 456{
 457	struct in_device *out_dev;
 458	int imi, omi = -1;
 459
 460	if (rt->dst.dev == dev)
 461		return 0;
 462
 463	if (!IN_DEV_PROXY_ARP(in_dev))
 464		return 0;
 465	imi = IN_DEV_MEDIUM_ID(in_dev);
 466	if (imi == 0)
 467		return 1;
 468	if (imi == -1)
 469		return 0;
 470
 471	/* place to check for proxy_arp for routes */
 472
 473	out_dev = __in_dev_get_rcu(rt->dst.dev);
 474	if (out_dev)
 475		omi = IN_DEV_MEDIUM_ID(out_dev);
 476
 477	return omi != imi && omi != -1;
 478}
 479
 480/*
 481 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 482 *
 483 * RFC3069 supports proxy arp replies back to the same interface.  This
 484 * is done to support (ethernet) switch features, like RFC 3069, where
 485 * the individual ports are not allowed to communicate with each
 486 * other, BUT they are allowed to talk to the upstream router.  As
 487 * described in RFC 3069, it is possible to allow these hosts to
 488 * communicate through the upstream router, by proxy_arp'ing.
 489 *
 490 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 491 *
 492 *  This technology is known by different names:
 493 *    In RFC 3069 it is called VLAN Aggregation.
 494 *    Cisco and Allied Telesyn call it Private VLAN.
 495 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 496 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 497 *
 498 */
 499static inline int arp_fwd_pvlan(struct in_device *in_dev,
 500				struct net_device *dev,	struct rtable *rt,
 501				__be32 sip, __be32 tip)
 502{
 503	/* Private VLAN is only concerned about the same ethernet segment */
 504	if (rt->dst.dev != dev)
 505		return 0;
 506
 507	/* Don't reply on self probes (often done by windowz boxes)*/
 508	if (sip == tip)
 509		return 0;
 510
 511	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 512		return 1;
 513	else
 514		return 0;
 515}
 516
 517/*
 518 *	Interface to link layer: send routine and receive handler.
 519 */
 520
 521/*
 522 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 523 *	message.
 524 */
 525struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 526			   struct net_device *dev, __be32 src_ip,
 527			   const unsigned char *dest_hw,
 528			   const unsigned char *src_hw,
 529			   const unsigned char *target_hw)
 530{
 531	struct sk_buff *skb;
 532	struct arphdr *arp;
 533	unsigned char *arp_ptr;
 534	int hlen = LL_RESERVED_SPACE(dev);
 535	int tlen = dev->needed_tailroom;
 536
 537	/*
 538	 *	Allocate a buffer
 539	 */
 540
 541	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 542	if (!skb)
 543		return NULL;
 544
 545	skb_reserve(skb, hlen);
 546	skb_reset_network_header(skb);
 547	arp = skb_put(skb, arp_hdr_len(dev));
 548	skb->dev = dev;
 549	skb->protocol = htons(ETH_P_ARP);
 550	if (!src_hw)
 551		src_hw = dev->dev_addr;
 552	if (!dest_hw)
 553		dest_hw = dev->broadcast;
 554
 555	/*
 556	 *	Fill the device header for the ARP frame
 557	 */
 558	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 559		goto out;
 560
 561	/*
 562	 * Fill out the arp protocol part.
 563	 *
 564	 * The arp hardware type should match the device type, except for FDDI,
 565	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 566	 */
 567	/*
 568	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 569	 *	DIX code for the protocol. Make these device structure fields.
 570	 */
 571	switch (dev->type) {
 572	default:
 573		arp->ar_hrd = htons(dev->type);
 574		arp->ar_pro = htons(ETH_P_IP);
 575		break;
 576
 577#if IS_ENABLED(CONFIG_AX25)
 578	case ARPHRD_AX25:
 579		arp->ar_hrd = htons(ARPHRD_AX25);
 580		arp->ar_pro = htons(AX25_P_IP);
 581		break;
 582
 583#if IS_ENABLED(CONFIG_NETROM)
 584	case ARPHRD_NETROM:
 585		arp->ar_hrd = htons(ARPHRD_NETROM);
 586		arp->ar_pro = htons(AX25_P_IP);
 587		break;
 588#endif
 589#endif
 590
 591#if IS_ENABLED(CONFIG_FDDI)
 592	case ARPHRD_FDDI:
 593		arp->ar_hrd = htons(ARPHRD_ETHER);
 594		arp->ar_pro = htons(ETH_P_IP);
 595		break;
 596#endif
 597	}
 598
 599	arp->ar_hln = dev->addr_len;
 600	arp->ar_pln = 4;
 601	arp->ar_op = htons(type);
 602
 603	arp_ptr = (unsigned char *)(arp + 1);
 604
 605	memcpy(arp_ptr, src_hw, dev->addr_len);
 606	arp_ptr += dev->addr_len;
 607	memcpy(arp_ptr, &src_ip, 4);
 608	arp_ptr += 4;
 609
 610	switch (dev->type) {
 611#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 612	case ARPHRD_IEEE1394:
 613		break;
 614#endif
 615	default:
 616		if (target_hw)
 617			memcpy(arp_ptr, target_hw, dev->addr_len);
 618		else
 619			memset(arp_ptr, 0, dev->addr_len);
 620		arp_ptr += dev->addr_len;
 621	}
 622	memcpy(arp_ptr, &dest_ip, 4);
 623
 624	return skb;
 625
 626out:
 627	kfree_skb(skb);
 628	return NULL;
 629}
 630EXPORT_SYMBOL(arp_create);
 631
 632static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 633{
 634	return dev_queue_xmit(skb);
 635}
 636
 637/*
 638 *	Send an arp packet.
 639 */
 640void arp_xmit(struct sk_buff *skb)
 641{
 642	/* Send it off, maybe filter it using firewalling first.  */
 643	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 644		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 645		arp_xmit_finish);
 646}
 647EXPORT_SYMBOL(arp_xmit);
 648
 649static bool arp_is_garp(struct net *net, struct net_device *dev,
 650			int *addr_type, __be16 ar_op,
 651			__be32 sip, __be32 tip,
 652			unsigned char *sha, unsigned char *tha)
 
 
 
 653{
 654	bool is_garp = tip == sip;
 655
 656	/* Gratuitous ARP _replies_ also require target hwaddr to be
 657	 * the same as source.
 658	 */
 659	if (is_garp && ar_op == htons(ARPOP_REPLY))
 660		is_garp =
 661			/* IPv4 over IEEE 1394 doesn't provide target
 662			 * hardware address field in its ARP payload.
 663			 */
 664			tha &&
 665			!memcmp(tha, sha, dev->addr_len);
 666
 667	if (is_garp) {
 668		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 669		if (*addr_type != RTN_UNICAST)
 670			is_garp = false;
 671	}
 672	return is_garp;
 673}
 
 674
 675/*
 676 *	Process an arp request.
 677 */
 678
 679static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 680{
 681	struct net_device *dev = skb->dev;
 682	struct in_device *in_dev = __in_dev_get_rcu(dev);
 683	struct arphdr *arp;
 684	unsigned char *arp_ptr;
 685	struct rtable *rt;
 686	unsigned char *sha;
 687	unsigned char *tha = NULL;
 688	__be32 sip, tip;
 689	u16 dev_type = dev->type;
 690	int addr_type;
 691	struct neighbour *n;
 692	struct dst_entry *reply_dst = NULL;
 693	bool is_garp = false;
 694
 695	/* arp_rcv below verifies the ARP header and verifies the device
 696	 * is ARP'able.
 697	 */
 698
 699	if (!in_dev)
 700		goto out_free_skb;
 701
 702	arp = arp_hdr(skb);
 703
 704	switch (dev_type) {
 705	default:
 706		if (arp->ar_pro != htons(ETH_P_IP) ||
 707		    htons(dev_type) != arp->ar_hrd)
 708			goto out_free_skb;
 709		break;
 710	case ARPHRD_ETHER:
 711	case ARPHRD_FDDI:
 712	case ARPHRD_IEEE802:
 713		/*
 714		 * ETHERNET, and Fibre Channel (which are IEEE 802
 715		 * devices, according to RFC 2625) devices will accept ARP
 716		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 717		 * This is the case also of FDDI, where the RFC 1390 says that
 718		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 719		 * however, to be more robust, we'll accept both 1 (Ethernet)
 720		 * or 6 (IEEE 802.2)
 721		 */
 722		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 723		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 724		    arp->ar_pro != htons(ETH_P_IP))
 725			goto out_free_skb;
 726		break;
 727	case ARPHRD_AX25:
 728		if (arp->ar_pro != htons(AX25_P_IP) ||
 729		    arp->ar_hrd != htons(ARPHRD_AX25))
 730			goto out_free_skb;
 731		break;
 732	case ARPHRD_NETROM:
 733		if (arp->ar_pro != htons(AX25_P_IP) ||
 734		    arp->ar_hrd != htons(ARPHRD_NETROM))
 735			goto out_free_skb;
 736		break;
 737	}
 738
 739	/* Understand only these message types */
 740
 741	if (arp->ar_op != htons(ARPOP_REPLY) &&
 742	    arp->ar_op != htons(ARPOP_REQUEST))
 743		goto out_free_skb;
 744
 745/*
 746 *	Extract fields
 747 */
 748	arp_ptr = (unsigned char *)(arp + 1);
 749	sha	= arp_ptr;
 750	arp_ptr += dev->addr_len;
 751	memcpy(&sip, arp_ptr, 4);
 752	arp_ptr += 4;
 753	switch (dev_type) {
 754#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 755	case ARPHRD_IEEE1394:
 756		break;
 757#endif
 758	default:
 759		tha = arp_ptr;
 760		arp_ptr += dev->addr_len;
 761	}
 762	memcpy(&tip, arp_ptr, 4);
 763/*
 764 *	Check for bad requests for 127.x.x.x and requests for multicast
 765 *	addresses.  If this is one such, delete it.
 766 */
 767	if (ipv4_is_multicast(tip) ||
 768	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 769		goto out_free_skb;
 770
 771 /*
 772  *	For some 802.11 wireless deployments (and possibly other networks),
 773  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 774  *	and thus should not be accepted.
 775  */
 776	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 777		goto out_free_skb;
 778
 779/*
 780 *     Special case: We must set Frame Relay source Q.922 address
 781 */
 782	if (dev_type == ARPHRD_DLCI)
 783		sha = dev->broadcast;
 784
 785/*
 786 *  Process entry.  The idea here is we want to send a reply if it is a
 787 *  request for us or if it is a request for someone else that we hold
 788 *  a proxy for.  We want to add an entry to our cache if it is a reply
 789 *  to us or if it is a request for our address.
 790 *  (The assumption for this last is that if someone is requesting our
 791 *  address, they are probably intending to talk to us, so it saves time
 792 *  if we cache their address.  Their address is also probably not in
 793 *  our cache, since ours is not in their cache.)
 794 *
 795 *  Putting this another way, we only care about replies if they are to
 796 *  us, in which case we add them to the cache.  For requests, we care
 797 *  about those for us and those for our proxies.  We reply to both,
 798 *  and in the case of requests for us we add the requester to the arp
 799 *  cache.
 800 */
 801
 802	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 803		reply_dst = (struct dst_entry *)
 804			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 805						    GFP_ATOMIC);
 806
 807	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 808	if (sip == 0) {
 809		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 810		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 811		    !arp_ignore(in_dev, sip, tip))
 812			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 813				     sha, dev->dev_addr, sha, reply_dst);
 814		goto out_consume_skb;
 815	}
 816
 817	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 818	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 819
 820		rt = skb_rtable(skb);
 821		addr_type = rt->rt_type;
 822
 823		if (addr_type == RTN_LOCAL) {
 824			int dont_send;
 825
 826			dont_send = arp_ignore(in_dev, sip, tip);
 827			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 828				dont_send = arp_filter(sip, tip, dev);
 829			if (!dont_send) {
 830				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 831				if (n) {
 832					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 833						     sip, dev, tip, sha,
 834						     dev->dev_addr, sha,
 835						     reply_dst);
 836					neigh_release(n);
 837				}
 838			}
 839			goto out_consume_skb;
 840		} else if (IN_DEV_FORWARD(in_dev)) {
 841			if (addr_type == RTN_UNICAST  &&
 842			    (arp_fwd_proxy(in_dev, dev, rt) ||
 843			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 844			     (rt->dst.dev != dev &&
 845			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 846				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 847				if (n)
 848					neigh_release(n);
 849
 850				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 851				    skb->pkt_type == PACKET_HOST ||
 852				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 853					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 854						     sip, dev, tip, sha,
 855						     dev->dev_addr, sha,
 856						     reply_dst);
 857				} else {
 858					pneigh_enqueue(&arp_tbl,
 859						       in_dev->arp_parms, skb);
 860					goto out_free_dst;
 861				}
 862				goto out_consume_skb;
 863			}
 864		}
 865	}
 866
 867	/* Update our ARP tables */
 868
 869	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 870
 871	addr_type = -1;
 872	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
 873		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 874				      sip, tip, sha, tha);
 875	}
 876
 877	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 878		/* Unsolicited ARP is not accepted by default.
 879		   It is possible, that this option should be enabled for some
 880		   devices (strip is candidate)
 881		 */
 882		if (!n &&
 883		    (is_garp ||
 884		     (arp->ar_op == htons(ARPOP_REPLY) &&
 885		      (addr_type == RTN_UNICAST ||
 886		       (addr_type < 0 &&
 887			/* postpone calculation to as late as possible */
 888			inet_addr_type_dev_table(net, dev, sip) ==
 889				RTN_UNICAST)))))
 890			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 891	}
 892
 893	if (n) {
 894		int state = NUD_REACHABLE;
 895		int override;
 896
 897		/* If several different ARP replies follows back-to-back,
 898		   use the FIRST one. It is possible, if several proxy
 899		   agents are active. Taking the first reply prevents
 900		   arp trashing and chooses the fastest router.
 901		 */
 902		override = time_after(jiffies,
 903				      n->updated +
 904				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 905			   is_garp;
 906
 907		/* Broadcast replies and request packets
 908		   do not assert neighbour reachability.
 909		 */
 910		if (arp->ar_op != htons(ARPOP_REPLY) ||
 911		    skb->pkt_type != PACKET_HOST)
 912			state = NUD_STALE;
 913		neigh_update(n, sha, state,
 914			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 915		neigh_release(n);
 916	}
 917
 918out_consume_skb:
 919	consume_skb(skb);
 920
 921out_free_dst:
 922	dst_release(reply_dst);
 923	return NET_RX_SUCCESS;
 924
 925out_free_skb:
 926	kfree_skb(skb);
 927	return NET_RX_DROP;
 928}
 929
 930static void parp_redo(struct sk_buff *skb)
 931{
 932	arp_process(dev_net(skb->dev), NULL, skb);
 933}
 934
 935
 936/*
 937 *	Receive an arp request from the device layer.
 938 */
 939
 940static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 941		   struct packet_type *pt, struct net_device *orig_dev)
 942{
 943	const struct arphdr *arp;
 944
 945	/* do not tweak dropwatch on an ARP we will ignore */
 946	if (dev->flags & IFF_NOARP ||
 947	    skb->pkt_type == PACKET_OTHERHOST ||
 948	    skb->pkt_type == PACKET_LOOPBACK)
 949		goto consumeskb;
 950
 951	skb = skb_share_check(skb, GFP_ATOMIC);
 952	if (!skb)
 953		goto out_of_mem;
 954
 955	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 956	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 957		goto freeskb;
 958
 959	arp = arp_hdr(skb);
 960	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 961		goto freeskb;
 962
 963	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 964
 965	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 966		       dev_net(dev), NULL, skb, dev, NULL,
 967		       arp_process);
 968
 969consumeskb:
 970	consume_skb(skb);
 971	return NET_RX_SUCCESS;
 972freeskb:
 973	kfree_skb(skb);
 974out_of_mem:
 975	return NET_RX_DROP;
 976}
 977
 978/*
 979 *	User level interface (ioctl)
 980 */
 981
 982/*
 983 *	Set (create) an ARP cache entry.
 984 */
 985
 986static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 987{
 988	if (!dev) {
 989		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 990		return 0;
 991	}
 992	if (__in_dev_get_rtnl(dev)) {
 993		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 994		return 0;
 995	}
 996	return -ENXIO;
 997}
 998
 999static int arp_req_set_public(struct net *net, struct arpreq *r,
1000		struct net_device *dev)
1001{
1002	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1003	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1004
1005	if (mask && mask != htonl(0xFFFFFFFF))
1006		return -EINVAL;
1007	if (!dev && (r->arp_flags & ATF_COM)) {
1008		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1009				      r->arp_ha.sa_data);
1010		if (!dev)
1011			return -ENODEV;
1012	}
1013	if (mask) {
1014		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1015			return -ENOBUFS;
1016		return 0;
1017	}
1018
1019	return arp_req_set_proxy(net, dev, 1);
1020}
1021
1022static int arp_req_set(struct net *net, struct arpreq *r,
1023		       struct net_device *dev)
1024{
1025	__be32 ip;
1026	struct neighbour *neigh;
1027	int err;
1028
1029	if (r->arp_flags & ATF_PUBL)
1030		return arp_req_set_public(net, r, dev);
1031
1032	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1033	if (r->arp_flags & ATF_PERM)
1034		r->arp_flags |= ATF_COM;
1035	if (!dev) {
1036		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1037
1038		if (IS_ERR(rt))
1039			return PTR_ERR(rt);
1040		dev = rt->dst.dev;
1041		ip_rt_put(rt);
1042		if (!dev)
1043			return -EINVAL;
1044	}
1045	switch (dev->type) {
1046#if IS_ENABLED(CONFIG_FDDI)
1047	case ARPHRD_FDDI:
1048		/*
1049		 * According to RFC 1390, FDDI devices should accept ARP
1050		 * hardware types of 1 (Ethernet).  However, to be more
1051		 * robust, we'll accept hardware types of either 1 (Ethernet)
1052		 * or 6 (IEEE 802.2).
1053		 */
1054		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1055		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1056		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1057			return -EINVAL;
1058		break;
1059#endif
1060	default:
1061		if (r->arp_ha.sa_family != dev->type)
1062			return -EINVAL;
1063		break;
1064	}
1065
1066	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1067	err = PTR_ERR(neigh);
1068	if (!IS_ERR(neigh)) {
1069		unsigned int state = NUD_STALE;
1070		if (r->arp_flags & ATF_PERM)
1071			state = NUD_PERMANENT;
1072		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1073				   r->arp_ha.sa_data : NULL, state,
1074				   NEIGH_UPDATE_F_OVERRIDE |
1075				   NEIGH_UPDATE_F_ADMIN, 0);
1076		neigh_release(neigh);
1077	}
1078	return err;
1079}
1080
1081static unsigned int arp_state_to_flags(struct neighbour *neigh)
1082{
1083	if (neigh->nud_state&NUD_PERMANENT)
1084		return ATF_PERM | ATF_COM;
1085	else if (neigh->nud_state&NUD_VALID)
1086		return ATF_COM;
1087	else
1088		return 0;
1089}
1090
1091/*
1092 *	Get an ARP cache entry.
1093 */
1094
1095static int arp_req_get(struct arpreq *r, struct net_device *dev)
1096{
1097	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1098	struct neighbour *neigh;
1099	int err = -ENXIO;
1100
1101	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1102	if (neigh) {
1103		if (!(neigh->nud_state & NUD_NOARP)) {
1104			read_lock_bh(&neigh->lock);
1105			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1106			r->arp_flags = arp_state_to_flags(neigh);
1107			read_unlock_bh(&neigh->lock);
1108			r->arp_ha.sa_family = dev->type;
1109			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1110			err = 0;
1111		}
1112		neigh_release(neigh);
 
1113	}
1114	return err;
1115}
1116
1117static int arp_invalidate(struct net_device *dev, __be32 ip)
1118{
1119	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1120	int err = -ENXIO;
1121	struct neigh_table *tbl = &arp_tbl;
1122
1123	if (neigh) {
1124		if (neigh->nud_state & ~NUD_NOARP)
1125			err = neigh_update(neigh, NULL, NUD_FAILED,
1126					   NEIGH_UPDATE_F_OVERRIDE|
1127					   NEIGH_UPDATE_F_ADMIN, 0);
1128		write_lock_bh(&tbl->lock);
1129		neigh_release(neigh);
1130		neigh_remove_one(neigh, tbl);
1131		write_unlock_bh(&tbl->lock);
1132	}
1133
1134	return err;
1135}
1136
1137static int arp_req_delete_public(struct net *net, struct arpreq *r,
1138		struct net_device *dev)
1139{
1140	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1141	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1142
1143	if (mask == htonl(0xFFFFFFFF))
1144		return pneigh_delete(&arp_tbl, net, &ip, dev);
1145
1146	if (mask)
1147		return -EINVAL;
1148
1149	return arp_req_set_proxy(net, dev, 0);
1150}
1151
1152static int arp_req_delete(struct net *net, struct arpreq *r,
1153			  struct net_device *dev)
1154{
1155	__be32 ip;
1156
1157	if (r->arp_flags & ATF_PUBL)
1158		return arp_req_delete_public(net, r, dev);
1159
1160	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1161	if (!dev) {
1162		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1163		if (IS_ERR(rt))
1164			return PTR_ERR(rt);
1165		dev = rt->dst.dev;
1166		ip_rt_put(rt);
1167		if (!dev)
1168			return -EINVAL;
1169	}
1170	return arp_invalidate(dev, ip);
1171}
1172
1173/*
1174 *	Handle an ARP layer I/O control request.
1175 */
1176
1177int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1178{
1179	int err;
1180	struct arpreq r;
1181	struct net_device *dev = NULL;
1182
1183	switch (cmd) {
1184	case SIOCDARP:
1185	case SIOCSARP:
1186		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1187			return -EPERM;
1188		/* fall through */
1189	case SIOCGARP:
1190		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1191		if (err)
1192			return -EFAULT;
1193		break;
1194	default:
1195		return -EINVAL;
1196	}
1197
1198	if (r.arp_pa.sa_family != AF_INET)
1199		return -EPFNOSUPPORT;
1200
1201	if (!(r.arp_flags & ATF_PUBL) &&
1202	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1203		return -EINVAL;
1204	if (!(r.arp_flags & ATF_NETMASK))
1205		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1206							   htonl(0xFFFFFFFFUL);
1207	rtnl_lock();
1208	if (r.arp_dev[0]) {
1209		err = -ENODEV;
1210		dev = __dev_get_by_name(net, r.arp_dev);
1211		if (!dev)
1212			goto out;
1213
1214		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1215		if (!r.arp_ha.sa_family)
1216			r.arp_ha.sa_family = dev->type;
1217		err = -EINVAL;
1218		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1219			goto out;
1220	} else if (cmd == SIOCGARP) {
1221		err = -ENODEV;
1222		goto out;
1223	}
1224
1225	switch (cmd) {
1226	case SIOCDARP:
1227		err = arp_req_delete(net, &r, dev);
1228		break;
1229	case SIOCSARP:
1230		err = arp_req_set(net, &r, dev);
1231		break;
1232	case SIOCGARP:
1233		err = arp_req_get(&r, dev);
1234		break;
1235	}
1236out:
1237	rtnl_unlock();
1238	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1239		err = -EFAULT;
1240	return err;
1241}
1242
1243static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1244			    void *ptr)
1245{
1246	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1247	struct netdev_notifier_change_info *change_info;
1248
1249	switch (event) {
1250	case NETDEV_CHANGEADDR:
1251		neigh_changeaddr(&arp_tbl, dev);
1252		rt_cache_flush(dev_net(dev));
1253		break;
1254	case NETDEV_CHANGE:
1255		change_info = ptr;
1256		if (change_info->flags_changed & IFF_NOARP)
1257			neigh_changeaddr(&arp_tbl, dev);
1258		break;
1259	default:
1260		break;
1261	}
1262
1263	return NOTIFY_DONE;
1264}
1265
1266static struct notifier_block arp_netdev_notifier = {
1267	.notifier_call = arp_netdev_event,
1268};
1269
1270/* Note, that it is not on notifier chain.
1271   It is necessary, that this routine was called after route cache will be
1272   flushed.
1273 */
1274void arp_ifdown(struct net_device *dev)
1275{
1276	neigh_ifdown(&arp_tbl, dev);
1277}
1278
1279
1280/*
1281 *	Called once on startup.
1282 */
1283
1284static struct packet_type arp_packet_type __read_mostly = {
1285	.type =	cpu_to_be16(ETH_P_ARP),
1286	.func =	arp_rcv,
1287};
1288
1289static int arp_proc_init(void);
1290
1291void __init arp_init(void)
1292{
1293	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1294
1295	dev_add_pack(&arp_packet_type);
1296	arp_proc_init();
1297#ifdef CONFIG_SYSCTL
1298	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1299#endif
1300	register_netdevice_notifier(&arp_netdev_notifier);
1301}
1302
1303#ifdef CONFIG_PROC_FS
1304#if IS_ENABLED(CONFIG_AX25)
1305
1306/* ------------------------------------------------------------------------ */
1307/*
1308 *	ax25 -> ASCII conversion
1309 */
1310static void ax2asc2(ax25_address *a, char *buf)
1311{
1312	char c, *s;
1313	int n;
1314
1315	for (n = 0, s = buf; n < 6; n++) {
1316		c = (a->ax25_call[n] >> 1) & 0x7F;
1317
1318		if (c != ' ')
1319			*s++ = c;
1320	}
1321
1322	*s++ = '-';
1323	n = (a->ax25_call[6] >> 1) & 0x0F;
1324	if (n > 9) {
1325		*s++ = '1';
1326		n -= 10;
1327	}
1328
1329	*s++ = n + '0';
1330	*s++ = '\0';
1331
1332	if (*buf == '\0' || *buf == '-') {
1333		buf[0] = '*';
1334		buf[1] = '\0';
1335	}
1336}
1337#endif /* CONFIG_AX25 */
1338
1339#define HBUFFERLEN 30
1340
1341static void arp_format_neigh_entry(struct seq_file *seq,
1342				   struct neighbour *n)
1343{
1344	char hbuffer[HBUFFERLEN];
1345	int k, j;
1346	char tbuf[16];
1347	struct net_device *dev = n->dev;
1348	int hatype = dev->type;
1349
1350	read_lock(&n->lock);
1351	/* Convert hardware address to XX:XX:XX:XX ... form. */
1352#if IS_ENABLED(CONFIG_AX25)
1353	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1354		ax2asc2((ax25_address *)n->ha, hbuffer);
1355	else {
1356#endif
1357	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1358		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1359		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1360		hbuffer[k++] = ':';
1361	}
1362	if (k != 0)
1363		--k;
1364	hbuffer[k] = 0;
1365#if IS_ENABLED(CONFIG_AX25)
1366	}
1367#endif
1368	sprintf(tbuf, "%pI4", n->primary_key);
1369	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1370		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1371	read_unlock(&n->lock);
1372}
1373
1374static void arp_format_pneigh_entry(struct seq_file *seq,
1375				    struct pneigh_entry *n)
1376{
1377	struct net_device *dev = n->dev;
1378	int hatype = dev ? dev->type : 0;
1379	char tbuf[16];
1380
1381	sprintf(tbuf, "%pI4", n->key);
1382	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1383		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1384		   dev ? dev->name : "*");
1385}
1386
1387static int arp_seq_show(struct seq_file *seq, void *v)
1388{
1389	if (v == SEQ_START_TOKEN) {
1390		seq_puts(seq, "IP address       HW type     Flags       "
1391			      "HW address            Mask     Device\n");
1392	} else {
1393		struct neigh_seq_state *state = seq->private;
1394
1395		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1396			arp_format_pneigh_entry(seq, v);
1397		else
1398			arp_format_neigh_entry(seq, v);
1399	}
1400
1401	return 0;
1402}
1403
1404static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1405{
1406	/* Don't want to confuse "arp -a" w/ magic entries,
1407	 * so we tell the generic iterator to skip NUD_NOARP.
1408	 */
1409	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1410}
1411
1412/* ------------------------------------------------------------------------ */
1413
1414static const struct seq_operations arp_seq_ops = {
1415	.start	= arp_seq_start,
1416	.next	= neigh_seq_next,
1417	.stop	= neigh_seq_stop,
1418	.show	= arp_seq_show,
1419};
1420
1421static int arp_seq_open(struct inode *inode, struct file *file)
1422{
1423	return seq_open_net(inode, file, &arp_seq_ops,
1424			    sizeof(struct neigh_seq_state));
1425}
1426
1427static const struct file_operations arp_seq_fops = {
 
1428	.open           = arp_seq_open,
1429	.read           = seq_read,
1430	.llseek         = seq_lseek,
1431	.release	= seq_release_net,
1432};
1433
1434
1435static int __net_init arp_net_init(struct net *net)
1436{
1437	if (!proc_create("arp", 0444, net->proc_net, &arp_seq_fops))
1438		return -ENOMEM;
1439	return 0;
1440}
1441
1442static void __net_exit arp_net_exit(struct net *net)
1443{
1444	remove_proc_entry("arp", net->proc_net);
1445}
1446
1447static struct pernet_operations arp_net_ops = {
1448	.init = arp_net_init,
1449	.exit = arp_net_exit,
1450};
1451
1452static int __init arp_proc_init(void)
1453{
1454	return register_pernet_subsys(&arp_net_ops);
1455}
1456
1457#else /* CONFIG_PROC_FS */
1458
1459static int __init arp_proc_init(void)
1460{
1461	return 0;
1462}
1463
1464#endif /* CONFIG_PROC_FS */