Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for STM32 DMA controller
   4 *
   5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
   6 *
   7 * Copyright (C) M'boumba Cedric Madianga 2015
   8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
   9 *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/clk.h>
  14#include <linux/delay.h>
  15#include <linux/dmaengine.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/err.h>
  18#include <linux/init.h>
  19#include <linux/iopoll.h>
  20#include <linux/jiffies.h>
  21#include <linux/list.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
  24#include <linux/of_dma.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/reset.h>
  28#include <linux/sched.h>
  29#include <linux/slab.h>
  30
  31#include "virt-dma.h"
  32
  33#define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
  34#define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
  35#define STM32_DMA_ISR(n)		(((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR)
  36#define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
  37#define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
  38#define STM32_DMA_IFCR(n)		(((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR)
  39#define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
  40#define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
  41#define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
  42#define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
  43#define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
  44#define STM32_DMA_MASKI			(STM32_DMA_TCI \
  45					 | STM32_DMA_TEI \
  46					 | STM32_DMA_DMEI \
  47					 | STM32_DMA_FEI)
  48/*
  49 * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits;
  50 * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
  51 */
  52#define STM32_DMA_FLAGS_SHIFT(n)	({ typeof(n) (_n) = (n); \
  53					   (((_n) & 2) << 3) | (((_n) & 1) * 6); })
  54
  55/* DMA Stream x Configuration Register */
  56#define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
  57#define STM32_DMA_SCR_REQ_MASK		GENMASK(27, 25)
  58#define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
  59#define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
  60#define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
  61#define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
  62#define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
  63#define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
  64#define STM32_DMA_SCR_TRBUFF		BIT(20) /* Bufferable transfer for USART/UART */
  65#define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
  66#define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
  67#define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
  68#define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
  69#define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
  70#define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
  71#define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
  72#define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
  73						*/
  74#define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
  75#define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
  76#define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
  77#define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
  78					| STM32_DMA_SCR_MINC \
  79					| STM32_DMA_SCR_PINCOS \
  80					| STM32_DMA_SCR_PL_MASK)
  81#define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
  82					| STM32_DMA_SCR_TEIE \
  83					| STM32_DMA_SCR_DMEIE)
  84
  85/* DMA Stream x number of data register */
  86#define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
  87
  88/* DMA stream peripheral address register */
  89#define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
  90
  91/* DMA stream x memory 0 address register */
  92#define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
  93
  94/* DMA stream x memory 1 address register */
  95#define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
  96
  97/* DMA stream x FIFO control register */
  98#define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
  99#define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
 100#define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
 101#define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
 102#define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
 103					| STM32_DMA_SFCR_DMDIS)
 104
 105/* DMA direction */
 106#define STM32_DMA_DEV_TO_MEM		0x00
 107#define	STM32_DMA_MEM_TO_DEV		0x01
 108#define	STM32_DMA_MEM_TO_MEM		0x02
 109
 110/* DMA priority level */
 111#define STM32_DMA_PRIORITY_LOW		0x00
 112#define STM32_DMA_PRIORITY_MEDIUM	0x01
 113#define STM32_DMA_PRIORITY_HIGH		0x02
 114#define STM32_DMA_PRIORITY_VERY_HIGH	0x03
 115
 116/* DMA FIFO threshold selection */
 117#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
 118#define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
 119#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
 120#define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
 121#define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
 122
 123#define STM32_DMA_MAX_DATA_ITEMS	0xffff
 124/*
 125 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
 126 * gather at boundary. Thus it's safer to round down this value on FIFO
 127 * size (16 Bytes)
 128 */
 129#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
 130	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
 131#define STM32_DMA_MAX_CHANNELS		0x08
 132#define STM32_DMA_MAX_REQUEST_ID	0x08
 133#define STM32_DMA_MAX_DATA_PARAM	0x03
 134#define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
 135#define STM32_DMA_MIN_BURST		4
 136#define STM32_DMA_MAX_BURST		16
 137
 138/* DMA Features */
 139#define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
 140#define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
 141#define STM32_DMA_ALT_ACK_MODE_MASK	BIT(4)
 142#define STM32_DMA_MDMA_STREAM_ID_MASK	GENMASK(19, 16)
 143
 144enum stm32_dma_width {
 145	STM32_DMA_BYTE,
 146	STM32_DMA_HALF_WORD,
 147	STM32_DMA_WORD,
 148};
 149
 150enum stm32_dma_burst_size {
 151	STM32_DMA_BURST_SINGLE,
 152	STM32_DMA_BURST_INCR4,
 153	STM32_DMA_BURST_INCR8,
 154	STM32_DMA_BURST_INCR16,
 155};
 156
 157/**
 158 * struct stm32_dma_cfg - STM32 DMA custom configuration
 159 * @channel_id: channel ID
 160 * @request_line: DMA request
 161 * @stream_config: 32bit mask specifying the DMA channel configuration
 162 * @features: 32bit mask specifying the DMA Feature list
 163 */
 164struct stm32_dma_cfg {
 165	u32 channel_id;
 166	u32 request_line;
 167	u32 stream_config;
 168	u32 features;
 169};
 170
 171struct stm32_dma_chan_reg {
 172	u32 dma_lisr;
 173	u32 dma_hisr;
 174	u32 dma_lifcr;
 175	u32 dma_hifcr;
 176	u32 dma_scr;
 177	u32 dma_sndtr;
 178	u32 dma_spar;
 179	u32 dma_sm0ar;
 180	u32 dma_sm1ar;
 181	u32 dma_sfcr;
 182};
 183
 184struct stm32_dma_sg_req {
 185	u32 len;
 186	struct stm32_dma_chan_reg chan_reg;
 187};
 188
 189struct stm32_dma_desc {
 190	struct virt_dma_desc vdesc;
 191	bool cyclic;
 192	u32 num_sgs;
 193	struct stm32_dma_sg_req sg_req[] __counted_by(num_sgs);
 194};
 195
 196/**
 197 * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration
 198 * @stream_id: DMA request to trigger STM32 MDMA transfer
 199 * @ifcr: DMA interrupt flag clear register address,
 200 *        used by STM32 MDMA to clear DMA Transfer Complete flag
 201 * @tcf: DMA Transfer Complete flag
 202 */
 203struct stm32_dma_mdma_config {
 204	u32 stream_id;
 205	u32 ifcr;
 206	u32 tcf;
 207};
 208
 209struct stm32_dma_chan {
 210	struct virt_dma_chan vchan;
 211	bool config_init;
 212	bool busy;
 213	u32 id;
 214	u32 irq;
 215	struct stm32_dma_desc *desc;
 216	u32 next_sg;
 217	struct dma_slave_config	dma_sconfig;
 218	struct stm32_dma_chan_reg chan_reg;
 219	u32 threshold;
 220	u32 mem_burst;
 221	u32 mem_width;
 222	enum dma_status status;
 223	bool trig_mdma;
 224	struct stm32_dma_mdma_config mdma_config;
 225};
 226
 227struct stm32_dma_device {
 228	struct dma_device ddev;
 229	void __iomem *base;
 230	struct clk *clk;
 231	bool mem2mem;
 232	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
 233};
 234
 235static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
 236{
 237	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
 238			    ddev);
 239}
 240
 241static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
 242{
 243	return container_of(c, struct stm32_dma_chan, vchan.chan);
 244}
 245
 246static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
 247{
 248	return container_of(vdesc, struct stm32_dma_desc, vdesc);
 249}
 250
 251static struct device *chan2dev(struct stm32_dma_chan *chan)
 252{
 253	return &chan->vchan.chan.dev->device;
 254}
 255
 256static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
 257{
 258	return readl_relaxed(dmadev->base + reg);
 259}
 260
 261static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
 262{
 263	writel_relaxed(val, dmadev->base + reg);
 264}
 265
 266static int stm32_dma_get_width(struct stm32_dma_chan *chan,
 267			       enum dma_slave_buswidth width)
 268{
 269	switch (width) {
 270	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 271		return STM32_DMA_BYTE;
 272	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 273		return STM32_DMA_HALF_WORD;
 274	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 275		return STM32_DMA_WORD;
 276	default:
 277		dev_err(chan2dev(chan), "Dma bus width not supported\n");
 278		return -EINVAL;
 279	}
 280}
 281
 282static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
 283						       dma_addr_t buf_addr,
 284						       u32 threshold)
 285{
 286	enum dma_slave_buswidth max_width;
 287
 288	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
 289		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 290	else
 291		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 292
 293	while ((buf_len < max_width  || buf_len % max_width) &&
 294	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
 295		max_width = max_width >> 1;
 296
 297	if (buf_addr & (max_width - 1))
 298		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 299
 300	return max_width;
 301}
 302
 303static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
 304						enum dma_slave_buswidth width)
 305{
 306	u32 remaining;
 307
 308	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 309		return false;
 310
 311	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 312		if (burst != 0) {
 313			/*
 314			 * If number of beats fit in several whole bursts
 315			 * this configuration is allowed.
 316			 */
 317			remaining = ((STM32_DMA_FIFO_SIZE / width) *
 318				     (threshold + 1) / 4) % burst;
 319
 320			if (remaining == 0)
 321				return true;
 322		} else {
 323			return true;
 324		}
 325	}
 326
 327	return false;
 328}
 329
 330static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
 331{
 332	/* If FIFO direct mode, burst is not possible */
 333	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 334		return false;
 335
 336	/*
 337	 * Buffer or period length has to be aligned on FIFO depth.
 338	 * Otherwise bytes may be stuck within FIFO at buffer or period
 339	 * length.
 340	 */
 341	return ((buf_len % ((threshold + 1) * 4)) == 0);
 342}
 343
 344static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
 345				    enum dma_slave_buswidth width)
 346{
 347	u32 best_burst = max_burst;
 348
 349	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
 350		return 0;
 351
 352	while ((buf_len < best_burst * width && best_burst > 1) ||
 353	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
 354						    width)) {
 355		if (best_burst > STM32_DMA_MIN_BURST)
 356			best_burst = best_burst >> 1;
 357		else
 358			best_burst = 0;
 359	}
 360
 361	return best_burst;
 362}
 363
 364static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
 365{
 366	switch (maxburst) {
 367	case 0:
 368	case 1:
 369		return STM32_DMA_BURST_SINGLE;
 370	case 4:
 371		return STM32_DMA_BURST_INCR4;
 372	case 8:
 373		return STM32_DMA_BURST_INCR8;
 374	case 16:
 375		return STM32_DMA_BURST_INCR16;
 376	default:
 377		dev_err(chan2dev(chan), "Dma burst size not supported\n");
 378		return -EINVAL;
 379	}
 380}
 381
 382static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
 383				      u32 src_burst, u32 dst_burst)
 384{
 385	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
 386	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
 387
 388	if (!src_burst && !dst_burst) {
 389		/* Using direct mode */
 390		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
 391	} else {
 392		/* Using FIFO mode */
 393		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
 394	}
 395}
 396
 397static int stm32_dma_slave_config(struct dma_chan *c,
 398				  struct dma_slave_config *config)
 399{
 400	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 401
 402	memcpy(&chan->dma_sconfig, config, sizeof(*config));
 403
 404	/* Check if user is requesting DMA to trigger STM32 MDMA */
 405	if (config->peripheral_size) {
 406		config->peripheral_config = &chan->mdma_config;
 407		config->peripheral_size = sizeof(chan->mdma_config);
 408		chan->trig_mdma = true;
 409	}
 410
 411	chan->config_init = true;
 412
 413	return 0;
 414}
 415
 416static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
 417{
 418	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 419	u32 flags, dma_isr;
 420
 421	/*
 422	 * Read "flags" from DMA_xISR register corresponding to the selected
 423	 * DMA channel at the correct bit offset inside that register.
 424	 */
 425
 426	dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id));
 427	flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id);
 428
 429	return flags & STM32_DMA_MASKI;
 430}
 431
 432static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
 433{
 434	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 435	u32 dma_ifcr;
 436
 437	/*
 438	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
 439	 * DMA channel at the correct bit offset inside that register.
 440	 */
 441	flags &= STM32_DMA_MASKI;
 442	dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id);
 443
 444	stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr);
 445}
 446
 447static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
 448{
 449	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 450	u32 dma_scr, id, reg;
 451
 452	id = chan->id;
 453	reg = STM32_DMA_SCR(id);
 454	dma_scr = stm32_dma_read(dmadev, reg);
 455
 456	if (dma_scr & STM32_DMA_SCR_EN) {
 457		dma_scr &= ~STM32_DMA_SCR_EN;
 458		stm32_dma_write(dmadev, reg, dma_scr);
 459
 460		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
 461					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
 462					10, 1000000);
 463	}
 464
 465	return 0;
 466}
 467
 468static void stm32_dma_stop(struct stm32_dma_chan *chan)
 469{
 470	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 471	u32 dma_scr, dma_sfcr, status;
 472	int ret;
 473
 474	/* Disable interrupts */
 475	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 476	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
 477	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 478	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 479	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
 480	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
 481
 482	/* Disable DMA */
 483	ret = stm32_dma_disable_chan(chan);
 484	if (ret < 0)
 485		return;
 486
 487	/* Clear interrupt status if it is there */
 488	status = stm32_dma_irq_status(chan);
 489	if (status) {
 490		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
 491			__func__, status);
 492		stm32_dma_irq_clear(chan, status);
 493	}
 494
 495	chan->busy = false;
 496	chan->status = DMA_COMPLETE;
 497}
 498
 499static int stm32_dma_terminate_all(struct dma_chan *c)
 500{
 501	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 502	unsigned long flags;
 503	LIST_HEAD(head);
 504
 505	spin_lock_irqsave(&chan->vchan.lock, flags);
 506
 507	if (chan->desc) {
 508		dma_cookie_complete(&chan->desc->vdesc.tx);
 509		vchan_terminate_vdesc(&chan->desc->vdesc);
 510		if (chan->busy)
 511			stm32_dma_stop(chan);
 512		chan->desc = NULL;
 513	}
 514
 515	vchan_get_all_descriptors(&chan->vchan, &head);
 516	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 517	vchan_dma_desc_free_list(&chan->vchan, &head);
 518
 519	return 0;
 520}
 521
 522static void stm32_dma_synchronize(struct dma_chan *c)
 523{
 524	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 525
 526	vchan_synchronize(&chan->vchan);
 527}
 528
 529static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
 530{
 531	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 532	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 533	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
 534	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
 535	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
 536	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
 537	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 538
 539	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
 540	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
 541	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
 542	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
 543	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
 544	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
 545}
 546
 547static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
 548{
 549	chan->next_sg++;
 550	if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
 551		chan->next_sg = 0;
 552}
 553
 554static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
 555
 556static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
 557{
 558	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 559	struct virt_dma_desc *vdesc;
 560	struct stm32_dma_sg_req *sg_req;
 561	struct stm32_dma_chan_reg *reg;
 562	u32 status;
 563	int ret;
 564
 565	ret = stm32_dma_disable_chan(chan);
 566	if (ret < 0)
 567		return;
 568
 569	if (!chan->desc) {
 570		vdesc = vchan_next_desc(&chan->vchan);
 571		if (!vdesc)
 572			return;
 573
 574		list_del(&vdesc->node);
 575
 576		chan->desc = to_stm32_dma_desc(vdesc);
 577		chan->next_sg = 0;
 578	}
 579
 580	if (chan->next_sg == chan->desc->num_sgs)
 581		chan->next_sg = 0;
 582
 583	sg_req = &chan->desc->sg_req[chan->next_sg];
 584	reg = &sg_req->chan_reg;
 585
 586	/* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */
 587	if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV)
 588		reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
 589
 590	reg->dma_scr &= ~STM32_DMA_SCR_EN;
 591	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 592	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
 593	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
 594	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
 595	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
 596	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
 597
 598	stm32_dma_sg_inc(chan);
 599
 600	/* Clear interrupt status if it is there */
 601	status = stm32_dma_irq_status(chan);
 602	if (status)
 603		stm32_dma_irq_clear(chan, status);
 604
 605	if (chan->desc->cyclic)
 606		stm32_dma_configure_next_sg(chan);
 607
 608	stm32_dma_dump_reg(chan);
 609
 610	/* Start DMA */
 611	chan->busy = true;
 612	chan->status = DMA_IN_PROGRESS;
 613	reg->dma_scr |= STM32_DMA_SCR_EN;
 614	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 615
 616	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
 617}
 618
 619static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
 620{
 621	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 622	struct stm32_dma_sg_req *sg_req;
 623	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
 624
 625	id = chan->id;
 626	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 627
 628	sg_req = &chan->desc->sg_req[chan->next_sg];
 629
 630	if (dma_scr & STM32_DMA_SCR_CT) {
 631		dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
 632		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
 633		dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
 634			stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
 635	} else {
 636		dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
 637		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
 638		dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
 639			stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
 640	}
 641}
 642
 643static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
 644{
 645	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 646	u32 dma_scr;
 647
 648	/*
 649	 * Read and store current remaining data items and peripheral/memory addresses to be
 650	 * updated on resume
 651	 */
 652	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 653	/*
 654	 * Transfer can be paused while between a previous resume and reconfiguration on transfer
 655	 * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
 656	 * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
 657	 */
 658	if (chan->desc && chan->desc->cyclic) {
 659		if (chan->desc->num_sgs == 1)
 660			dma_scr |= STM32_DMA_SCR_CIRC;
 661		else
 662			dma_scr |= STM32_DMA_SCR_DBM;
 663	}
 664	chan->chan_reg.dma_scr = dma_scr;
 665
 666	/*
 667	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
 668	 * on resume NDTR autoreload value will be wrong (lower than the initial period length)
 669	 */
 670	if (chan->desc && chan->desc->cyclic) {
 671		dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
 672		stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 673	}
 674
 675	chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
 676
 677	chan->status = DMA_PAUSED;
 678
 679	dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
 680}
 681
 682static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
 683{
 684	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 685	struct stm32_dma_sg_req *sg_req;
 686	u32 dma_scr, status, id;
 687
 688	id = chan->id;
 689	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 690
 691	/* Clear interrupt status if it is there */
 692	status = stm32_dma_irq_status(chan);
 693	if (status)
 694		stm32_dma_irq_clear(chan, status);
 695
 696	if (!chan->next_sg)
 697		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
 698	else
 699		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
 700
 701	/* Reconfigure NDTR with the initial value */
 702	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
 703
 704	/* Restore SPAR */
 705	stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
 706
 707	/* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
 708	stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
 709	stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
 710
 711	/* Reactivate CIRC/DBM if needed */
 712	if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
 713		dma_scr |= STM32_DMA_SCR_DBM;
 714		/* Restore CT */
 715		if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
 716			dma_scr &= ~STM32_DMA_SCR_CT;
 717		else
 718			dma_scr |= STM32_DMA_SCR_CT;
 719	} else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
 720		dma_scr |= STM32_DMA_SCR_CIRC;
 721	}
 722	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 723
 724	stm32_dma_configure_next_sg(chan);
 725
 726	stm32_dma_dump_reg(chan);
 727
 728	dma_scr |= STM32_DMA_SCR_EN;
 729	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 730
 731	dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
 732}
 733
 734static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
 735{
 736	if (!chan->desc)
 737		return;
 738
 739	if (chan->desc->cyclic) {
 740		vchan_cyclic_callback(&chan->desc->vdesc);
 741		if (chan->trig_mdma)
 742			return;
 743		stm32_dma_sg_inc(chan);
 744		/* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
 745		if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
 746			stm32_dma_post_resume_reconfigure(chan);
 747		else if (scr & STM32_DMA_SCR_DBM)
 748			stm32_dma_configure_next_sg(chan);
 749	} else {
 750		chan->busy = false;
 751		chan->status = DMA_COMPLETE;
 752		if (chan->next_sg == chan->desc->num_sgs) {
 753			vchan_cookie_complete(&chan->desc->vdesc);
 754			chan->desc = NULL;
 755		}
 756		stm32_dma_start_transfer(chan);
 757	}
 758}
 759
 760static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
 761{
 762	struct stm32_dma_chan *chan = devid;
 763	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 764	u32 status, scr, sfcr;
 765
 766	spin_lock(&chan->vchan.lock);
 767
 768	status = stm32_dma_irq_status(chan);
 769	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 770	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 771
 772	if (status & STM32_DMA_FEI) {
 773		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
 774		status &= ~STM32_DMA_FEI;
 775		if (sfcr & STM32_DMA_SFCR_FEIE) {
 776			if (!(scr & STM32_DMA_SCR_EN) &&
 777			    !(status & STM32_DMA_TCI))
 778				dev_err(chan2dev(chan), "FIFO Error\n");
 779			else
 780				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
 781		}
 782	}
 783	if (status & STM32_DMA_DMEI) {
 784		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
 785		status &= ~STM32_DMA_DMEI;
 786		if (sfcr & STM32_DMA_SCR_DMEIE)
 787			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
 788	}
 789
 790	if (status & STM32_DMA_TCI) {
 791		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
 792		if (scr & STM32_DMA_SCR_TCIE) {
 793			if (chan->status != DMA_PAUSED)
 794				stm32_dma_handle_chan_done(chan, scr);
 795		}
 796		status &= ~STM32_DMA_TCI;
 797	}
 798
 799	if (status & STM32_DMA_HTI) {
 800		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
 801		status &= ~STM32_DMA_HTI;
 802	}
 803
 804	if (status) {
 805		stm32_dma_irq_clear(chan, status);
 806		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
 807		if (!(scr & STM32_DMA_SCR_EN))
 808			dev_err(chan2dev(chan), "chan disabled by HW\n");
 809	}
 810
 811	spin_unlock(&chan->vchan.lock);
 812
 813	return IRQ_HANDLED;
 814}
 815
 816static void stm32_dma_issue_pending(struct dma_chan *c)
 817{
 818	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 819	unsigned long flags;
 820
 821	spin_lock_irqsave(&chan->vchan.lock, flags);
 822	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
 823		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
 824		stm32_dma_start_transfer(chan);
 825
 826	}
 827	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 828}
 829
 830static int stm32_dma_pause(struct dma_chan *c)
 831{
 832	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 833	unsigned long flags;
 834	int ret;
 835
 836	if (chan->status != DMA_IN_PROGRESS)
 837		return -EPERM;
 838
 839	spin_lock_irqsave(&chan->vchan.lock, flags);
 840
 841	ret = stm32_dma_disable_chan(chan);
 842	if (!ret)
 843		stm32_dma_handle_chan_paused(chan);
 844
 845	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 846
 847	return ret;
 848}
 849
 850static int stm32_dma_resume(struct dma_chan *c)
 851{
 852	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 853	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 854	struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
 855	u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
 856	struct stm32_dma_sg_req *sg_req;
 857	unsigned long flags;
 858
 859	if (chan->status != DMA_PAUSED)
 860		return -EPERM;
 861
 862	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 863	if (WARN_ON(scr & STM32_DMA_SCR_EN))
 864		return -EPERM;
 865
 866	spin_lock_irqsave(&chan->vchan.lock, flags);
 867
 868	/* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
 869	if (!chan->next_sg)
 870		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
 871	else
 872		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
 873
 874	ndtr = sg_req->chan_reg.dma_sndtr;
 875	offset = (ndtr - chan_reg.dma_sndtr);
 876	offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr);
 877	spar = sg_req->chan_reg.dma_spar;
 878	sm0ar = sg_req->chan_reg.dma_sm0ar;
 879	sm1ar = sg_req->chan_reg.dma_sm1ar;
 880
 881	/*
 882	 * The peripheral and/or memory addresses have to be updated in order to adjust the
 883	 * address pointers. Need to check increment.
 884	 */
 885	if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
 886		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
 887	else
 888		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
 889
 890	if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
 891		offset = 0;
 892
 893	/*
 894	 * In case of DBM, the current target could be SM1AR.
 895	 * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
 896	 * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
 897	 */
 898	if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
 899		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
 900	else
 901		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
 902
 903	/* NDTR must be restored otherwise internal HW counter won't be correctly reset */
 904	stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
 905
 906	/*
 907	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
 908	 * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
 909	 */
 910	if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
 911		chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
 912
 913	if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
 914		stm32_dma_configure_next_sg(chan);
 915
 916	stm32_dma_dump_reg(chan);
 917
 918	/* The stream may then be re-enabled to restart transfer from the point it was stopped */
 919	chan->status = DMA_IN_PROGRESS;
 920	chan_reg.dma_scr |= STM32_DMA_SCR_EN;
 921	stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
 922
 923	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 924
 925	dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
 926
 927	return 0;
 928}
 929
 930static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
 931				    enum dma_transfer_direction direction,
 932				    enum dma_slave_buswidth *buswidth,
 933				    u32 buf_len, dma_addr_t buf_addr)
 934{
 935	enum dma_slave_buswidth src_addr_width, dst_addr_width;
 936	int src_bus_width, dst_bus_width;
 937	int src_burst_size, dst_burst_size;
 938	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
 939	u32 dma_scr, fifoth;
 940
 941	src_addr_width = chan->dma_sconfig.src_addr_width;
 942	dst_addr_width = chan->dma_sconfig.dst_addr_width;
 943	src_maxburst = chan->dma_sconfig.src_maxburst;
 944	dst_maxburst = chan->dma_sconfig.dst_maxburst;
 945	fifoth = chan->threshold;
 946
 947	switch (direction) {
 948	case DMA_MEM_TO_DEV:
 949		/* Set device data size */
 950		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 951		if (dst_bus_width < 0)
 952			return dst_bus_width;
 953
 954		/* Set device burst size */
 955		dst_best_burst = stm32_dma_get_best_burst(buf_len,
 956							  dst_maxburst,
 957							  fifoth,
 958							  dst_addr_width);
 959
 960		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 961		if (dst_burst_size < 0)
 962			return dst_burst_size;
 963
 964		/* Set memory data size */
 965		src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
 966							 fifoth);
 967		chan->mem_width = src_addr_width;
 968		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 969		if (src_bus_width < 0)
 970			return src_bus_width;
 971
 972		/*
 973		 * Set memory burst size - burst not possible if address is not aligned on
 974		 * the address boundary equal to the size of the transfer
 975		 */
 976		if (buf_addr & (buf_len - 1))
 977			src_maxburst = 1;
 978		else
 979			src_maxburst = STM32_DMA_MAX_BURST;
 980		src_best_burst = stm32_dma_get_best_burst(buf_len,
 981							  src_maxburst,
 982							  fifoth,
 983							  src_addr_width);
 984		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 985		if (src_burst_size < 0)
 986			return src_burst_size;
 987
 988		dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) |
 989			FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) |
 990			FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) |
 991			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) |
 992			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size);
 993
 994		/* Set FIFO threshold */
 995		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 996		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
 997			chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
 998
 999		/* Set peripheral address */
1000		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
1001		*buswidth = dst_addr_width;
1002		break;
1003
1004	case DMA_DEV_TO_MEM:
1005		/* Set device data size */
1006		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
1007		if (src_bus_width < 0)
1008			return src_bus_width;
1009
1010		/* Set device burst size */
1011		src_best_burst = stm32_dma_get_best_burst(buf_len,
1012							  src_maxburst,
1013							  fifoth,
1014							  src_addr_width);
1015		chan->mem_burst = src_best_burst;
1016		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
1017		if (src_burst_size < 0)
1018			return src_burst_size;
1019
1020		/* Set memory data size */
1021		dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
1022							 fifoth);
1023		chan->mem_width = dst_addr_width;
1024		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
1025		if (dst_bus_width < 0)
1026			return dst_bus_width;
1027
1028		/*
1029		 * Set memory burst size - burst not possible if address is not aligned on
1030		 * the address boundary equal to the size of the transfer
1031		 */
1032		if (buf_addr & (buf_len - 1))
1033			dst_maxburst = 1;
1034		else
1035			dst_maxburst = STM32_DMA_MAX_BURST;
1036		dst_best_burst = stm32_dma_get_best_burst(buf_len,
1037							  dst_maxburst,
1038							  fifoth,
1039							  dst_addr_width);
1040		chan->mem_burst = dst_best_burst;
1041		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
1042		if (dst_burst_size < 0)
1043			return dst_burst_size;
1044
1045		dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) |
1046			FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) |
1047			FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) |
1048			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) |
1049			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size);
1050
1051		/* Set FIFO threshold */
1052		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
1053		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
1054			chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
1055
1056		/* Set peripheral address */
1057		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
1058		*buswidth = chan->dma_sconfig.src_addr_width;
1059		break;
1060
1061	default:
1062		dev_err(chan2dev(chan), "Dma direction is not supported\n");
1063		return -EINVAL;
1064	}
1065
1066	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
1067
1068	/* Set DMA control register */
1069	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
1070			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
1071			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
1072	chan->chan_reg.dma_scr |= dma_scr;
1073
1074	return 0;
1075}
1076
1077static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
1078{
1079	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
1080}
1081
1082static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
1083	struct dma_chan *c, struct scatterlist *sgl,
1084	u32 sg_len, enum dma_transfer_direction direction,
1085	unsigned long flags, void *context)
1086{
1087	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1088	struct stm32_dma_desc *desc;
1089	struct scatterlist *sg;
1090	enum dma_slave_buswidth buswidth;
1091	u32 nb_data_items;
1092	int i, ret;
1093
1094	if (!chan->config_init) {
1095		dev_err(chan2dev(chan), "dma channel is not configured\n");
1096		return NULL;
1097	}
1098
1099	if (sg_len < 1) {
1100		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
1101		return NULL;
1102	}
1103
1104	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
1105	if (!desc)
1106		return NULL;
1107	desc->num_sgs = sg_len;
1108
1109	/* Set peripheral flow controller */
1110	if (chan->dma_sconfig.device_fc)
1111		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
1112	else
1113		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1114
1115	/* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */
1116	if (chan->trig_mdma && sg_len > 1) {
1117		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1118		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1119	}
1120
1121	for_each_sg(sgl, sg, sg_len, i) {
1122		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
1123					       sg_dma_len(sg),
1124					       sg_dma_address(sg));
1125		if (ret < 0)
1126			goto err;
1127
1128		desc->sg_req[i].len = sg_dma_len(sg);
1129
1130		nb_data_items = desc->sg_req[i].len / buswidth;
1131		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1132			dev_err(chan2dev(chan), "nb items not supported\n");
1133			goto err;
1134		}
1135
1136		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1137		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1138		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1139		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1140		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
1141		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
1142		if (chan->trig_mdma)
1143			desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg);
1144		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1145	}
1146	desc->cyclic = false;
1147
1148	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1149
1150err:
1151	kfree(desc);
1152	return NULL;
1153}
1154
1155static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
1156	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
1157	size_t period_len, enum dma_transfer_direction direction,
1158	unsigned long flags)
1159{
1160	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1161	struct stm32_dma_desc *desc;
1162	enum dma_slave_buswidth buswidth;
1163	u32 num_periods, nb_data_items;
1164	int i, ret;
1165
1166	if (!buf_len || !period_len) {
1167		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
1168		return NULL;
1169	}
1170
1171	if (!chan->config_init) {
1172		dev_err(chan2dev(chan), "dma channel is not configured\n");
1173		return NULL;
1174	}
1175
1176	if (buf_len % period_len) {
1177		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
1178		return NULL;
1179	}
1180
1181	/*
1182	 * We allow to take more number of requests till DMA is
1183	 * not started. The driver will loop over all requests.
1184	 * Once DMA is started then new requests can be queued only after
1185	 * terminating the DMA.
1186	 */
1187	if (chan->busy) {
1188		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
1189		return NULL;
1190	}
1191
1192	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
1193				       buf_addr);
1194	if (ret < 0)
1195		return NULL;
1196
1197	nb_data_items = period_len / buswidth;
1198	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1199		dev_err(chan2dev(chan), "number of items not supported\n");
1200		return NULL;
1201	}
1202
1203	/*  Enable Circular mode or double buffer mode */
1204	if (buf_len == period_len) {
1205		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
1206	} else {
1207		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1208		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1209	}
1210
1211	/* Clear periph ctrl if client set it */
1212	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1213
1214	num_periods = buf_len / period_len;
1215
1216	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
1217	if (!desc)
1218		return NULL;
1219	desc->num_sgs = num_periods;
1220
1221	for (i = 0; i < num_periods; i++) {
1222		desc->sg_req[i].len = period_len;
1223
1224		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1225		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1226		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1227		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1228		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1229		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1230		if (chan->trig_mdma)
1231			desc->sg_req[i].chan_reg.dma_sm1ar += period_len;
1232		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1233		if (!chan->trig_mdma)
1234			buf_addr += period_len;
1235	}
1236	desc->cyclic = true;
1237
1238	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1239}
1240
1241static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1242	struct dma_chan *c, dma_addr_t dest,
1243	dma_addr_t src, size_t len, unsigned long flags)
1244{
1245	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1246	enum dma_slave_buswidth max_width;
1247	struct stm32_dma_desc *desc;
1248	size_t xfer_count, offset;
1249	u32 num_sgs, best_burst, threshold;
1250	int dma_burst, i;
1251
1252	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1253	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1254	if (!desc)
1255		return NULL;
1256	desc->num_sgs = num_sgs;
1257
1258	threshold = chan->threshold;
1259
1260	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1261		xfer_count = min_t(size_t, len - offset,
1262				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1263
1264		/* Compute best burst size */
1265		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1266		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1267						      threshold, max_width);
1268		dma_burst = stm32_dma_get_burst(chan, best_burst);
1269		if (dma_burst < 0) {
1270			kfree(desc);
1271			return NULL;
1272		}
1273
1274		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1275		desc->sg_req[i].chan_reg.dma_scr =
1276			FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) |
1277			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) |
1278			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) |
1279			STM32_DMA_SCR_MINC |
1280			STM32_DMA_SCR_PINC |
1281			STM32_DMA_SCR_TCIE |
1282			STM32_DMA_SCR_TEIE;
1283		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1284		desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold);
1285		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1286		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1287		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1288		desc->sg_req[i].len = xfer_count;
1289	}
1290	desc->cyclic = false;
1291
1292	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1293}
1294
1295static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1296{
1297	u32 dma_scr, width, ndtr;
1298	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1299
1300	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1301	width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr);
1302	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1303
1304	return ndtr << width;
1305}
1306
1307/**
1308 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1309 * @chan: dma channel
1310 *
1311 * This function called when IRQ are disable, checks that the hardware has not
1312 * switched on the next transfer in double buffer mode. The test is done by
1313 * comparing the next_sg memory address with the hardware related register
1314 * (based on CT bit value).
1315 *
1316 * Returns true if expected current transfer is still running or double
1317 * buffer mode is not activated.
1318 */
1319static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1320{
1321	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1322	struct stm32_dma_sg_req *sg_req;
1323	u32 dma_scr, dma_smar, id, period_len;
1324
1325	id = chan->id;
1326	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1327
1328	/* In cyclic CIRC but not DBM, CT is not used */
1329	if (!(dma_scr & STM32_DMA_SCR_DBM))
1330		return true;
1331
1332	sg_req = &chan->desc->sg_req[chan->next_sg];
1333	period_len = sg_req->len;
1334
1335	/* DBM - take care of a previous pause/resume not yet post reconfigured */
1336	if (dma_scr & STM32_DMA_SCR_CT) {
1337		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1338		/*
1339		 * If transfer has been pause/resumed,
1340		 * SM0AR is in the range of [SM0AR:SM0AR+period_len]
1341		 */
1342		return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
1343			dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
1344	}
1345
1346	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1347	/*
1348	 * If transfer has been pause/resumed,
1349	 * SM1AR is in the range of [SM1AR:SM1AR+period_len]
1350	 */
1351	return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
1352		dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
1353}
1354
1355static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1356				     struct stm32_dma_desc *desc,
1357				     u32 next_sg)
1358{
1359	u32 modulo, burst_size;
1360	u32 residue;
1361	u32 n_sg = next_sg;
1362	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1363	int i;
1364
1365	/*
1366	 * Calculate the residue means compute the descriptors
1367	 * information:
1368	 * - the sg_req currently transferred
1369	 * - the Hardware remaining position in this sg (NDTR bits field).
1370	 *
1371	 * A race condition may occur if DMA is running in cyclic or double
1372	 * buffer mode, since the DMA register are automatically reloaded at end
1373	 * of period transfer. The hardware may have switched to the next
1374	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1375	 * read.
1376	 * In this case the SxNDTR reg could (or not) correspond to the new
1377	 * transfer position, and not the expected one.
1378	 * The strategy implemented in the stm32 driver is to:
1379	 *  - read the SxNDTR register
1380	 *  - crosscheck that hardware is still in current transfer.
1381	 * In case of switch, we can assume that the DMA is at the beginning of
1382	 * the next transfer. So we approximate the residue in consequence, by
1383	 * pointing on the beginning of next transfer.
1384	 *
1385	 * This race condition doesn't apply for none cyclic mode, as double
1386	 * buffer is not used. In such situation registers are updated by the
1387	 * software.
1388	 */
1389
1390	residue = stm32_dma_get_remaining_bytes(chan);
1391
1392	if ((chan->desc->cyclic || chan->trig_mdma) && !stm32_dma_is_current_sg(chan)) {
1393		n_sg++;
1394		if (n_sg == chan->desc->num_sgs)
1395			n_sg = 0;
1396		if (!chan->trig_mdma)
1397			residue = sg_req->len;
1398	}
1399
1400	/*
1401	 * In cyclic mode, for the last period, residue = remaining bytes
1402	 * from NDTR,
1403	 * else for all other periods in cyclic mode, and in sg mode,
1404	 * residue = remaining bytes from NDTR + remaining
1405	 * periods/sg to be transferred
1406	 */
1407	if ((!chan->desc->cyclic && !chan->trig_mdma) || n_sg != 0)
1408		for (i = n_sg; i < desc->num_sgs; i++)
1409			residue += desc->sg_req[i].len;
1410
1411	if (!chan->mem_burst)
1412		return residue;
1413
1414	burst_size = chan->mem_burst * chan->mem_width;
1415	modulo = residue % burst_size;
1416	if (modulo)
1417		residue = residue - modulo + burst_size;
1418
1419	return residue;
1420}
1421
1422static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1423					   dma_cookie_t cookie,
1424					   struct dma_tx_state *state)
1425{
1426	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1427	struct virt_dma_desc *vdesc;
1428	enum dma_status status;
1429	unsigned long flags;
1430	u32 residue = 0;
1431
1432	status = dma_cookie_status(c, cookie, state);
1433	if (status == DMA_COMPLETE)
1434		return status;
1435
1436	status = chan->status;
1437
1438	if (!state)
1439		return status;
1440
1441	spin_lock_irqsave(&chan->vchan.lock, flags);
1442	vdesc = vchan_find_desc(&chan->vchan, cookie);
1443	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1444		residue = stm32_dma_desc_residue(chan, chan->desc,
1445						 chan->next_sg);
1446	else if (vdesc)
1447		residue = stm32_dma_desc_residue(chan,
1448						 to_stm32_dma_desc(vdesc), 0);
1449	dma_set_residue(state, residue);
1450
1451	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1452
1453	return status;
1454}
1455
1456static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1457{
1458	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1459	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1460	int ret;
1461
1462	chan->config_init = false;
1463
1464	ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1465	if (ret < 0)
1466		return ret;
1467
1468	ret = stm32_dma_disable_chan(chan);
1469	if (ret < 0)
1470		pm_runtime_put(dmadev->ddev.dev);
1471
1472	return ret;
1473}
1474
1475static void stm32_dma_free_chan_resources(struct dma_chan *c)
1476{
1477	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1478	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1479	unsigned long flags;
1480
1481	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1482
1483	if (chan->busy) {
1484		spin_lock_irqsave(&chan->vchan.lock, flags);
1485		stm32_dma_stop(chan);
1486		chan->desc = NULL;
1487		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1488	}
1489
1490	pm_runtime_put(dmadev->ddev.dev);
1491
1492	vchan_free_chan_resources(to_virt_chan(c));
1493	stm32_dma_clear_reg(&chan->chan_reg);
1494	chan->threshold = 0;
1495}
1496
1497static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1498{
1499	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1500}
1501
1502static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1503				 struct stm32_dma_cfg *cfg)
1504{
1505	stm32_dma_clear_reg(&chan->chan_reg);
1506
1507	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1508	chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line);
1509
1510	/* Enable Interrupts  */
1511	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1512
1513	chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features);
1514	if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features))
1515		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1516	if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features))
1517		chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1518	chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features);
1519}
1520
1521static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1522					   struct of_dma *ofdma)
1523{
1524	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1525	struct device *dev = dmadev->ddev.dev;
1526	struct stm32_dma_cfg cfg;
1527	struct stm32_dma_chan *chan;
1528	struct dma_chan *c;
1529
1530	if (dma_spec->args_count < 4) {
1531		dev_err(dev, "Bad number of cells\n");
1532		return NULL;
1533	}
1534
1535	cfg.channel_id = dma_spec->args[0];
1536	cfg.request_line = dma_spec->args[1];
1537	cfg.stream_config = dma_spec->args[2];
1538	cfg.features = dma_spec->args[3];
1539
1540	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1541	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1542		dev_err(dev, "Bad channel and/or request id\n");
1543		return NULL;
1544	}
1545
1546	chan = &dmadev->chan[cfg.channel_id];
1547
1548	c = dma_get_slave_channel(&chan->vchan.chan);
1549	if (!c) {
1550		dev_err(dev, "No more channels available\n");
1551		return NULL;
1552	}
1553
1554	stm32_dma_set_config(chan, &cfg);
1555
1556	return c;
1557}
1558
1559static const struct of_device_id stm32_dma_of_match[] = {
1560	{ .compatible = "st,stm32-dma", },
1561	{ /* sentinel */ },
1562};
1563MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1564
1565static int stm32_dma_probe(struct platform_device *pdev)
1566{
1567	struct stm32_dma_chan *chan;
1568	struct stm32_dma_device *dmadev;
1569	struct dma_device *dd;
1570	struct resource *res;
1571	struct reset_control *rst;
1572	int i, ret;
1573
1574	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1575	if (!dmadev)
1576		return -ENOMEM;
1577
1578	dd = &dmadev->ddev;
1579
1580	dmadev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1581	if (IS_ERR(dmadev->base))
1582		return PTR_ERR(dmadev->base);
1583
1584	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1585	if (IS_ERR(dmadev->clk))
1586		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1587
1588	ret = clk_prepare_enable(dmadev->clk);
1589	if (ret < 0) {
1590		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1591		return ret;
1592	}
1593
1594	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1595						"st,mem2mem");
1596
1597	rst = devm_reset_control_get(&pdev->dev, NULL);
1598	if (IS_ERR(rst)) {
1599		ret = PTR_ERR(rst);
1600		if (ret == -EPROBE_DEFER)
1601			goto clk_free;
1602	} else {
1603		reset_control_assert(rst);
1604		udelay(2);
1605		reset_control_deassert(rst);
1606	}
1607
1608	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1609
1610	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1611	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1612	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1613	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1614	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1615	dd->device_tx_status = stm32_dma_tx_status;
1616	dd->device_issue_pending = stm32_dma_issue_pending;
1617	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1618	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1619	dd->device_config = stm32_dma_slave_config;
1620	dd->device_pause = stm32_dma_pause;
1621	dd->device_resume = stm32_dma_resume;
1622	dd->device_terminate_all = stm32_dma_terminate_all;
1623	dd->device_synchronize = stm32_dma_synchronize;
1624	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1625		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1626		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1627	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1628		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1629		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1630	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1631	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1632	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1633	dd->max_burst = STM32_DMA_MAX_BURST;
1634	dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
1635	dd->descriptor_reuse = true;
1636	dd->dev = &pdev->dev;
1637	INIT_LIST_HEAD(&dd->channels);
1638
1639	if (dmadev->mem2mem) {
1640		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1641		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1642		dd->directions |= BIT(DMA_MEM_TO_MEM);
1643	}
1644
1645	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1646		chan = &dmadev->chan[i];
1647		chan->id = i;
1648		chan->vchan.desc_free = stm32_dma_desc_free;
1649		vchan_init(&chan->vchan, dd);
1650
1651		chan->mdma_config.ifcr = res->start;
1652		chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id);
1653
1654		chan->mdma_config.tcf = STM32_DMA_TCI;
1655		chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id);
1656	}
1657
1658	ret = dma_async_device_register(dd);
1659	if (ret)
1660		goto clk_free;
1661
1662	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1663		chan = &dmadev->chan[i];
1664		ret = platform_get_irq(pdev, i);
1665		if (ret < 0)
1666			goto err_unregister;
1667		chan->irq = ret;
1668
1669		ret = devm_request_irq(&pdev->dev, chan->irq,
1670				       stm32_dma_chan_irq, 0,
1671				       dev_name(chan2dev(chan)), chan);
1672		if (ret) {
1673			dev_err(&pdev->dev,
1674				"request_irq failed with err %d channel %d\n",
1675				ret, i);
1676			goto err_unregister;
1677		}
1678	}
1679
1680	ret = of_dma_controller_register(pdev->dev.of_node,
1681					 stm32_dma_of_xlate, dmadev);
1682	if (ret < 0) {
1683		dev_err(&pdev->dev,
1684			"STM32 DMA DMA OF registration failed %d\n", ret);
1685		goto err_unregister;
1686	}
1687
1688	platform_set_drvdata(pdev, dmadev);
1689
1690	pm_runtime_set_active(&pdev->dev);
1691	pm_runtime_enable(&pdev->dev);
1692	pm_runtime_get_noresume(&pdev->dev);
1693	pm_runtime_put(&pdev->dev);
1694
1695	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1696
1697	return 0;
1698
1699err_unregister:
1700	dma_async_device_unregister(dd);
1701clk_free:
1702	clk_disable_unprepare(dmadev->clk);
1703
1704	return ret;
1705}
1706
1707#ifdef CONFIG_PM
1708static int stm32_dma_runtime_suspend(struct device *dev)
1709{
1710	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1711
1712	clk_disable_unprepare(dmadev->clk);
1713
1714	return 0;
1715}
1716
1717static int stm32_dma_runtime_resume(struct device *dev)
1718{
1719	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1720	int ret;
1721
1722	ret = clk_prepare_enable(dmadev->clk);
1723	if (ret) {
1724		dev_err(dev, "failed to prepare_enable clock\n");
1725		return ret;
1726	}
1727
1728	return 0;
1729}
1730#endif
1731
1732#ifdef CONFIG_PM_SLEEP
1733static int stm32_dma_pm_suspend(struct device *dev)
1734{
1735	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1736	int id, ret, scr;
1737
1738	ret = pm_runtime_resume_and_get(dev);
1739	if (ret < 0)
1740		return ret;
1741
1742	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1743		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1744		if (scr & STM32_DMA_SCR_EN) {
1745			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1746			return -EBUSY;
1747		}
1748	}
1749
1750	pm_runtime_put_sync(dev);
1751
1752	pm_runtime_force_suspend(dev);
1753
1754	return 0;
1755}
1756
1757static int stm32_dma_pm_resume(struct device *dev)
1758{
1759	return pm_runtime_force_resume(dev);
1760}
1761#endif
1762
1763static const struct dev_pm_ops stm32_dma_pm_ops = {
1764	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
1765	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1766			   stm32_dma_runtime_resume, NULL)
1767};
1768
1769static struct platform_driver stm32_dma_driver = {
1770	.driver = {
1771		.name = "stm32-dma",
1772		.of_match_table = stm32_dma_of_match,
1773		.pm = &stm32_dma_pm_ops,
1774	},
1775	.probe = stm32_dma_probe,
1776};
1777
1778static int __init stm32_dma_init(void)
1779{
1780	return platform_driver_register(&stm32_dma_driver);
1781}
1782subsys_initcall(stm32_dma_init);