Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for STM32 DMA controller
   4 *
   5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
   6 *
   7 * Copyright (C) M'boumba Cedric Madianga 2015
   8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
   9 *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/delay.h>
  14#include <linux/dmaengine.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/err.h>
  17#include <linux/init.h>
  18#include <linux/iopoll.h>
  19#include <linux/jiffies.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/of_dma.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/reset.h>
  28#include <linux/sched.h>
  29#include <linux/slab.h>
  30
  31#include "virt-dma.h"
  32
  33#define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
  34#define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
  35#define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
  36#define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
  37#define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
  38#define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
  39#define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
  40#define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
  41#define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
  42#define STM32_DMA_MASKI			(STM32_DMA_TCI \
  43					 | STM32_DMA_TEI \
  44					 | STM32_DMA_DMEI \
  45					 | STM32_DMA_FEI)
  46
  47/* DMA Stream x Configuration Register */
  48#define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
  49#define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
  50#define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
  51#define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
  52#define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
  53#define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
  54#define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
  55#define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
  56#define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
  57#define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
  58#define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
  59#define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
  60#define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
  61#define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
  62#define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
  63#define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
  64#define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
  65#define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
  66#define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
  67#define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
  68#define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
  69#define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
  70#define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
  71						*/
  72#define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
  73#define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
  74#define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
  75#define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
  76					| STM32_DMA_SCR_MINC \
  77					| STM32_DMA_SCR_PINCOS \
  78					| STM32_DMA_SCR_PL_MASK)
  79#define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
  80					| STM32_DMA_SCR_TEIE \
  81					| STM32_DMA_SCR_DMEIE)
  82
  83/* DMA Stream x number of data register */
  84#define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
  85
  86/* DMA stream peripheral address register */
  87#define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
  88
  89/* DMA stream x memory 0 address register */
  90#define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
  91
  92/* DMA stream x memory 1 address register */
  93#define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
  94
  95/* DMA stream x FIFO control register */
  96#define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
  97#define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
  98#define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
  99#define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
 100#define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
 101#define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
 102					| STM32_DMA_SFCR_DMDIS)
 103
 104/* DMA direction */
 105#define STM32_DMA_DEV_TO_MEM		0x00
 106#define	STM32_DMA_MEM_TO_DEV		0x01
 107#define	STM32_DMA_MEM_TO_MEM		0x02
 108
 109/* DMA priority level */
 110#define STM32_DMA_PRIORITY_LOW		0x00
 111#define STM32_DMA_PRIORITY_MEDIUM	0x01
 112#define STM32_DMA_PRIORITY_HIGH		0x02
 113#define STM32_DMA_PRIORITY_VERY_HIGH	0x03
 114
 115/* DMA FIFO threshold selection */
 116#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
 117#define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
 118#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
 119#define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
 120#define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
 121
 122#define STM32_DMA_MAX_DATA_ITEMS	0xffff
 123/*
 124 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
 125 * gather at boundary. Thus it's safer to round down this value on FIFO
 126 * size (16 Bytes)
 127 */
 128#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
 129	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
 130#define STM32_DMA_MAX_CHANNELS		0x08
 131#define STM32_DMA_MAX_REQUEST_ID	0x08
 132#define STM32_DMA_MAX_DATA_PARAM	0x03
 133#define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
 134#define STM32_DMA_MIN_BURST		4
 135#define STM32_DMA_MAX_BURST		16
 136
 137/* DMA Features */
 138#define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
 139#define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
 140#define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
 141#define STM32_DMA_DIRECT_MODE_GET(n)	(((n) & STM32_DMA_DIRECT_MODE_MASK) \
 142					 >> 2)
 143
 144enum stm32_dma_width {
 145	STM32_DMA_BYTE,
 146	STM32_DMA_HALF_WORD,
 147	STM32_DMA_WORD,
 148};
 149
 150enum stm32_dma_burst_size {
 151	STM32_DMA_BURST_SINGLE,
 152	STM32_DMA_BURST_INCR4,
 153	STM32_DMA_BURST_INCR8,
 154	STM32_DMA_BURST_INCR16,
 155};
 156
 157/**
 158 * struct stm32_dma_cfg - STM32 DMA custom configuration
 159 * @channel_id: channel ID
 160 * @request_line: DMA request
 161 * @stream_config: 32bit mask specifying the DMA channel configuration
 162 * @features: 32bit mask specifying the DMA Feature list
 163 */
 164struct stm32_dma_cfg {
 165	u32 channel_id;
 166	u32 request_line;
 167	u32 stream_config;
 168	u32 features;
 169};
 170
 171struct stm32_dma_chan_reg {
 172	u32 dma_lisr;
 173	u32 dma_hisr;
 174	u32 dma_lifcr;
 175	u32 dma_hifcr;
 176	u32 dma_scr;
 177	u32 dma_sndtr;
 178	u32 dma_spar;
 179	u32 dma_sm0ar;
 180	u32 dma_sm1ar;
 181	u32 dma_sfcr;
 182};
 183
 184struct stm32_dma_sg_req {
 185	u32 len;
 186	struct stm32_dma_chan_reg chan_reg;
 187};
 188
 189struct stm32_dma_desc {
 190	struct virt_dma_desc vdesc;
 191	bool cyclic;
 192	u32 num_sgs;
 193	struct stm32_dma_sg_req sg_req[];
 194};
 195
 196struct stm32_dma_chan {
 197	struct virt_dma_chan vchan;
 198	bool config_init;
 199	bool busy;
 200	u32 id;
 201	u32 irq;
 202	struct stm32_dma_desc *desc;
 203	u32 next_sg;
 204	struct dma_slave_config	dma_sconfig;
 205	struct stm32_dma_chan_reg chan_reg;
 206	u32 threshold;
 207	u32 mem_burst;
 208	u32 mem_width;
 209};
 210
 211struct stm32_dma_device {
 212	struct dma_device ddev;
 213	void __iomem *base;
 214	struct clk *clk;
 215	bool mem2mem;
 216	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
 217};
 218
 219static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
 220{
 221	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
 222			    ddev);
 223}
 224
 225static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
 226{
 227	return container_of(c, struct stm32_dma_chan, vchan.chan);
 228}
 229
 230static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
 231{
 232	return container_of(vdesc, struct stm32_dma_desc, vdesc);
 233}
 234
 235static struct device *chan2dev(struct stm32_dma_chan *chan)
 236{
 237	return &chan->vchan.chan.dev->device;
 238}
 239
 240static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
 241{
 242	return readl_relaxed(dmadev->base + reg);
 243}
 244
 245static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
 246{
 247	writel_relaxed(val, dmadev->base + reg);
 248}
 249
 250static int stm32_dma_get_width(struct stm32_dma_chan *chan,
 251			       enum dma_slave_buswidth width)
 252{
 253	switch (width) {
 254	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 255		return STM32_DMA_BYTE;
 256	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 257		return STM32_DMA_HALF_WORD;
 258	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 259		return STM32_DMA_WORD;
 260	default:
 261		dev_err(chan2dev(chan), "Dma bus width not supported\n");
 262		return -EINVAL;
 263	}
 264}
 265
 266static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
 267						       dma_addr_t buf_addr,
 268						       u32 threshold)
 269{
 270	enum dma_slave_buswidth max_width;
 271	u64 addr = buf_addr;
 272
 273	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
 274		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 275	else
 276		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 277
 278	while ((buf_len < max_width  || buf_len % max_width) &&
 279	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
 280		max_width = max_width >> 1;
 281
 282	if (do_div(addr, max_width))
 283		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 284
 285	return max_width;
 286}
 287
 288static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
 289						enum dma_slave_buswidth width)
 290{
 291	u32 remaining;
 292
 293	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 294		return false;
 295
 296	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 297		if (burst != 0) {
 298			/*
 299			 * If number of beats fit in several whole bursts
 300			 * this configuration is allowed.
 301			 */
 302			remaining = ((STM32_DMA_FIFO_SIZE / width) *
 303				     (threshold + 1) / 4) % burst;
 304
 305			if (remaining == 0)
 306				return true;
 307		} else {
 308			return true;
 309		}
 310	}
 311
 312	return false;
 313}
 314
 315static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
 316{
 317	/* If FIFO direct mode, burst is not possible */
 318	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 319		return false;
 320
 321	/*
 322	 * Buffer or period length has to be aligned on FIFO depth.
 323	 * Otherwise bytes may be stuck within FIFO at buffer or period
 324	 * length.
 325	 */
 326	return ((buf_len % ((threshold + 1) * 4)) == 0);
 327}
 328
 329static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
 330				    enum dma_slave_buswidth width)
 331{
 332	u32 best_burst = max_burst;
 333
 334	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
 335		return 0;
 336
 337	while ((buf_len < best_burst * width && best_burst > 1) ||
 338	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
 339						    width)) {
 340		if (best_burst > STM32_DMA_MIN_BURST)
 341			best_burst = best_burst >> 1;
 342		else
 343			best_burst = 0;
 344	}
 345
 346	return best_burst;
 347}
 348
 349static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
 350{
 351	switch (maxburst) {
 352	case 0:
 353	case 1:
 354		return STM32_DMA_BURST_SINGLE;
 355	case 4:
 356		return STM32_DMA_BURST_INCR4;
 357	case 8:
 358		return STM32_DMA_BURST_INCR8;
 359	case 16:
 360		return STM32_DMA_BURST_INCR16;
 361	default:
 362		dev_err(chan2dev(chan), "Dma burst size not supported\n");
 363		return -EINVAL;
 364	}
 365}
 366
 367static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
 368				      u32 src_burst, u32 dst_burst)
 369{
 370	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
 371	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
 372
 373	if (!src_burst && !dst_burst) {
 374		/* Using direct mode */
 375		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
 376	} else {
 377		/* Using FIFO mode */
 378		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
 379	}
 380}
 381
 382static int stm32_dma_slave_config(struct dma_chan *c,
 383				  struct dma_slave_config *config)
 384{
 385	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 386
 387	memcpy(&chan->dma_sconfig, config, sizeof(*config));
 388
 389	chan->config_init = true;
 390
 391	return 0;
 392}
 393
 394static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
 395{
 396	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 397	u32 flags, dma_isr;
 398
 399	/*
 400	 * Read "flags" from DMA_xISR register corresponding to the selected
 401	 * DMA channel at the correct bit offset inside that register.
 402	 *
 403	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 404	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 405	 */
 406
 407	if (chan->id & 4)
 408		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
 409	else
 410		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
 411
 412	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 413
 414	return flags & STM32_DMA_MASKI;
 415}
 416
 417static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
 418{
 419	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 420	u32 dma_ifcr;
 421
 422	/*
 423	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
 424	 * DMA channel at the correct bit offset inside that register.
 425	 *
 426	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 427	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 428	 */
 429	flags &= STM32_DMA_MASKI;
 430	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 431
 432	if (chan->id & 4)
 433		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
 434	else
 435		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
 436}
 437
 438static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
 439{
 440	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 441	u32 dma_scr, id, reg;
 442
 443	id = chan->id;
 444	reg = STM32_DMA_SCR(id);
 445	dma_scr = stm32_dma_read(dmadev, reg);
 446
 447	if (dma_scr & STM32_DMA_SCR_EN) {
 448		dma_scr &= ~STM32_DMA_SCR_EN;
 449		stm32_dma_write(dmadev, reg, dma_scr);
 450
 451		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
 452					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
 453					10, 1000000);
 454	}
 455
 456	return 0;
 457}
 458
 459static void stm32_dma_stop(struct stm32_dma_chan *chan)
 460{
 461	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 462	u32 dma_scr, dma_sfcr, status;
 463	int ret;
 464
 465	/* Disable interrupts */
 466	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 467	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
 468	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 469	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 470	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
 471	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
 472
 473	/* Disable DMA */
 474	ret = stm32_dma_disable_chan(chan);
 475	if (ret < 0)
 476		return;
 477
 478	/* Clear interrupt status if it is there */
 479	status = stm32_dma_irq_status(chan);
 480	if (status) {
 481		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
 482			__func__, status);
 483		stm32_dma_irq_clear(chan, status);
 484	}
 485
 486	chan->busy = false;
 487}
 488
 489static int stm32_dma_terminate_all(struct dma_chan *c)
 490{
 491	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 492	unsigned long flags;
 493	LIST_HEAD(head);
 494
 495	spin_lock_irqsave(&chan->vchan.lock, flags);
 496
 497	if (chan->desc) {
 498		vchan_terminate_vdesc(&chan->desc->vdesc);
 499		if (chan->busy)
 500			stm32_dma_stop(chan);
 501		chan->desc = NULL;
 502	}
 503
 504	vchan_get_all_descriptors(&chan->vchan, &head);
 505	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 506	vchan_dma_desc_free_list(&chan->vchan, &head);
 507
 508	return 0;
 509}
 510
 511static void stm32_dma_synchronize(struct dma_chan *c)
 512{
 513	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 514
 515	vchan_synchronize(&chan->vchan);
 516}
 517
 518static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
 519{
 520	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 521	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 522	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
 523	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
 524	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
 525	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
 526	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 527
 528	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
 529	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
 530	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
 531	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
 532	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
 533	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
 534}
 535
 536static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
 537
 538static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
 539{
 540	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 541	struct virt_dma_desc *vdesc;
 542	struct stm32_dma_sg_req *sg_req;
 543	struct stm32_dma_chan_reg *reg;
 544	u32 status;
 545	int ret;
 546
 547	ret = stm32_dma_disable_chan(chan);
 548	if (ret < 0)
 549		return;
 550
 551	if (!chan->desc) {
 552		vdesc = vchan_next_desc(&chan->vchan);
 553		if (!vdesc)
 554			return;
 555
 556		list_del(&vdesc->node);
 557
 558		chan->desc = to_stm32_dma_desc(vdesc);
 559		chan->next_sg = 0;
 560	}
 561
 562	if (chan->next_sg == chan->desc->num_sgs)
 563		chan->next_sg = 0;
 564
 565	sg_req = &chan->desc->sg_req[chan->next_sg];
 566	reg = &sg_req->chan_reg;
 567
 568	reg->dma_scr &= ~STM32_DMA_SCR_EN;
 569	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 570	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
 571	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
 572	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
 573	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
 574	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
 575
 576	chan->next_sg++;
 577
 578	/* Clear interrupt status if it is there */
 579	status = stm32_dma_irq_status(chan);
 580	if (status)
 581		stm32_dma_irq_clear(chan, status);
 582
 583	if (chan->desc->cyclic)
 584		stm32_dma_configure_next_sg(chan);
 585
 586	stm32_dma_dump_reg(chan);
 587
 588	/* Start DMA */
 589	reg->dma_scr |= STM32_DMA_SCR_EN;
 590	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 591
 592	chan->busy = true;
 593
 594	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
 595}
 596
 597static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
 598{
 599	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 600	struct stm32_dma_sg_req *sg_req;
 601	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
 602
 603	id = chan->id;
 604	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 605
 606	if (dma_scr & STM32_DMA_SCR_DBM) {
 607		if (chan->next_sg == chan->desc->num_sgs)
 608			chan->next_sg = 0;
 609
 610		sg_req = &chan->desc->sg_req[chan->next_sg];
 611
 612		if (dma_scr & STM32_DMA_SCR_CT) {
 613			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
 614			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
 615			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
 616				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
 617		} else {
 618			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
 619			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
 620			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
 621				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
 622		}
 623	}
 624}
 625
 626static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
 627{
 628	if (chan->desc) {
 629		if (chan->desc->cyclic) {
 630			vchan_cyclic_callback(&chan->desc->vdesc);
 631			chan->next_sg++;
 632			stm32_dma_configure_next_sg(chan);
 633		} else {
 634			chan->busy = false;
 635			if (chan->next_sg == chan->desc->num_sgs) {
 636				vchan_cookie_complete(&chan->desc->vdesc);
 637				chan->desc = NULL;
 638			}
 639			stm32_dma_start_transfer(chan);
 640		}
 641	}
 642}
 643
 644static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
 645{
 646	struct stm32_dma_chan *chan = devid;
 647	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 648	u32 status, scr, sfcr;
 649
 650	spin_lock(&chan->vchan.lock);
 651
 652	status = stm32_dma_irq_status(chan);
 653	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 654	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 655
 656	if (status & STM32_DMA_FEI) {
 657		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
 658		status &= ~STM32_DMA_FEI;
 659		if (sfcr & STM32_DMA_SFCR_FEIE) {
 660			if (!(scr & STM32_DMA_SCR_EN) &&
 661			    !(status & STM32_DMA_TCI))
 662				dev_err(chan2dev(chan), "FIFO Error\n");
 663			else
 664				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
 665		}
 666	}
 667	if (status & STM32_DMA_DMEI) {
 668		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
 669		status &= ~STM32_DMA_DMEI;
 670		if (sfcr & STM32_DMA_SCR_DMEIE)
 671			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
 672	}
 673
 674	if (status & STM32_DMA_TCI) {
 675		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
 676		if (scr & STM32_DMA_SCR_TCIE)
 677			stm32_dma_handle_chan_done(chan);
 678		status &= ~STM32_DMA_TCI;
 679	}
 680
 681	if (status & STM32_DMA_HTI) {
 682		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
 683		status &= ~STM32_DMA_HTI;
 684	}
 685
 686	if (status) {
 687		stm32_dma_irq_clear(chan, status);
 688		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
 689		if (!(scr & STM32_DMA_SCR_EN))
 690			dev_err(chan2dev(chan), "chan disabled by HW\n");
 691	}
 692
 693	spin_unlock(&chan->vchan.lock);
 694
 695	return IRQ_HANDLED;
 696}
 697
 698static void stm32_dma_issue_pending(struct dma_chan *c)
 699{
 700	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 701	unsigned long flags;
 702
 703	spin_lock_irqsave(&chan->vchan.lock, flags);
 704	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
 705		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
 706		stm32_dma_start_transfer(chan);
 707
 708	}
 709	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 710}
 711
 712static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
 713				    enum dma_transfer_direction direction,
 714				    enum dma_slave_buswidth *buswidth,
 715				    u32 buf_len, dma_addr_t buf_addr)
 716{
 717	enum dma_slave_buswidth src_addr_width, dst_addr_width;
 718	int src_bus_width, dst_bus_width;
 719	int src_burst_size, dst_burst_size;
 720	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
 721	u32 dma_scr, fifoth;
 722
 723	src_addr_width = chan->dma_sconfig.src_addr_width;
 724	dst_addr_width = chan->dma_sconfig.dst_addr_width;
 725	src_maxburst = chan->dma_sconfig.src_maxburst;
 726	dst_maxburst = chan->dma_sconfig.dst_maxburst;
 727	fifoth = chan->threshold;
 728
 729	switch (direction) {
 730	case DMA_MEM_TO_DEV:
 731		/* Set device data size */
 732		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 733		if (dst_bus_width < 0)
 734			return dst_bus_width;
 735
 736		/* Set device burst size */
 737		dst_best_burst = stm32_dma_get_best_burst(buf_len,
 738							  dst_maxburst,
 739							  fifoth,
 740							  dst_addr_width);
 741
 742		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 743		if (dst_burst_size < 0)
 744			return dst_burst_size;
 745
 746		/* Set memory data size */
 747		src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
 748							 fifoth);
 749		chan->mem_width = src_addr_width;
 750		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 751		if (src_bus_width < 0)
 752			return src_bus_width;
 753
 754		/* Set memory burst size */
 755		src_maxburst = STM32_DMA_MAX_BURST;
 756		src_best_burst = stm32_dma_get_best_burst(buf_len,
 757							  src_maxburst,
 758							  fifoth,
 759							  src_addr_width);
 760		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 761		if (src_burst_size < 0)
 762			return src_burst_size;
 763
 764		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
 765			STM32_DMA_SCR_PSIZE(dst_bus_width) |
 766			STM32_DMA_SCR_MSIZE(src_bus_width) |
 767			STM32_DMA_SCR_PBURST(dst_burst_size) |
 768			STM32_DMA_SCR_MBURST(src_burst_size);
 769
 770		/* Set FIFO threshold */
 771		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 772		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
 773			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
 774
 775		/* Set peripheral address */
 776		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
 777		*buswidth = dst_addr_width;
 778		break;
 779
 780	case DMA_DEV_TO_MEM:
 781		/* Set device data size */
 782		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 783		if (src_bus_width < 0)
 784			return src_bus_width;
 785
 786		/* Set device burst size */
 787		src_best_burst = stm32_dma_get_best_burst(buf_len,
 788							  src_maxburst,
 789							  fifoth,
 790							  src_addr_width);
 791		chan->mem_burst = src_best_burst;
 792		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 793		if (src_burst_size < 0)
 794			return src_burst_size;
 795
 796		/* Set memory data size */
 797		dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
 798							 fifoth);
 799		chan->mem_width = dst_addr_width;
 800		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 801		if (dst_bus_width < 0)
 802			return dst_bus_width;
 803
 804		/* Set memory burst size */
 805		dst_maxburst = STM32_DMA_MAX_BURST;
 806		dst_best_burst = stm32_dma_get_best_burst(buf_len,
 807							  dst_maxburst,
 808							  fifoth,
 809							  dst_addr_width);
 810		chan->mem_burst = dst_best_burst;
 811		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 812		if (dst_burst_size < 0)
 813			return dst_burst_size;
 814
 815		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
 816			STM32_DMA_SCR_PSIZE(src_bus_width) |
 817			STM32_DMA_SCR_MSIZE(dst_bus_width) |
 818			STM32_DMA_SCR_PBURST(src_burst_size) |
 819			STM32_DMA_SCR_MBURST(dst_burst_size);
 820
 821		/* Set FIFO threshold */
 822		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 823		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
 824			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
 825
 826		/* Set peripheral address */
 827		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
 828		*buswidth = chan->dma_sconfig.src_addr_width;
 829		break;
 830
 831	default:
 832		dev_err(chan2dev(chan), "Dma direction is not supported\n");
 833		return -EINVAL;
 834	}
 835
 836	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
 837
 838	/* Set DMA control register */
 839	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
 840			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
 841			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
 842	chan->chan_reg.dma_scr |= dma_scr;
 843
 844	return 0;
 845}
 846
 847static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
 848{
 849	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
 850}
 851
 852static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
 853	struct dma_chan *c, struct scatterlist *sgl,
 854	u32 sg_len, enum dma_transfer_direction direction,
 855	unsigned long flags, void *context)
 856{
 857	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 858	struct stm32_dma_desc *desc;
 859	struct scatterlist *sg;
 860	enum dma_slave_buswidth buswidth;
 861	u32 nb_data_items;
 862	int i, ret;
 863
 864	if (!chan->config_init) {
 865		dev_err(chan2dev(chan), "dma channel is not configured\n");
 866		return NULL;
 867	}
 868
 869	if (sg_len < 1) {
 870		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
 871		return NULL;
 872	}
 873
 874	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
 875	if (!desc)
 876		return NULL;
 877
 878	/* Set peripheral flow controller */
 879	if (chan->dma_sconfig.device_fc)
 880		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
 881	else
 882		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 883
 884	for_each_sg(sgl, sg, sg_len, i) {
 885		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
 886					       sg_dma_len(sg),
 887					       sg_dma_address(sg));
 888		if (ret < 0)
 889			goto err;
 890
 891		desc->sg_req[i].len = sg_dma_len(sg);
 892
 893		nb_data_items = desc->sg_req[i].len / buswidth;
 894		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 895			dev_err(chan2dev(chan), "nb items not supported\n");
 896			goto err;
 897		}
 898
 899		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 900		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 901		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 902		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 903		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
 904		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
 905		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 906	}
 907
 908	desc->num_sgs = sg_len;
 909	desc->cyclic = false;
 910
 911	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
 912
 913err:
 914	kfree(desc);
 915	return NULL;
 916}
 917
 918static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
 919	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
 920	size_t period_len, enum dma_transfer_direction direction,
 921	unsigned long flags)
 922{
 923	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 924	struct stm32_dma_desc *desc;
 925	enum dma_slave_buswidth buswidth;
 926	u32 num_periods, nb_data_items;
 927	int i, ret;
 928
 929	if (!buf_len || !period_len) {
 930		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
 931		return NULL;
 932	}
 933
 934	if (!chan->config_init) {
 935		dev_err(chan2dev(chan), "dma channel is not configured\n");
 936		return NULL;
 937	}
 938
 939	if (buf_len % period_len) {
 940		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
 941		return NULL;
 942	}
 943
 944	/*
 945	 * We allow to take more number of requests till DMA is
 946	 * not started. The driver will loop over all requests.
 947	 * Once DMA is started then new requests can be queued only after
 948	 * terminating the DMA.
 949	 */
 950	if (chan->busy) {
 951		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
 952		return NULL;
 953	}
 954
 955	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
 956				       buf_addr);
 957	if (ret < 0)
 958		return NULL;
 959
 960	nb_data_items = period_len / buswidth;
 961	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 962		dev_err(chan2dev(chan), "number of items not supported\n");
 963		return NULL;
 964	}
 965
 966	/*  Enable Circular mode or double buffer mode */
 967	if (buf_len == period_len)
 968		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
 969	else
 970		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
 971
 972	/* Clear periph ctrl if client set it */
 973	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 974
 975	num_periods = buf_len / period_len;
 976
 977	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
 978	if (!desc)
 979		return NULL;
 980
 981	for (i = 0; i < num_periods; i++) {
 982		desc->sg_req[i].len = period_len;
 983
 984		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 985		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 986		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 987		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 988		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
 989		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
 990		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 991		buf_addr += period_len;
 992	}
 993
 994	desc->num_sgs = num_periods;
 995	desc->cyclic = true;
 996
 997	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
 998}
 999
1000static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1001	struct dma_chan *c, dma_addr_t dest,
1002	dma_addr_t src, size_t len, unsigned long flags)
1003{
1004	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1005	enum dma_slave_buswidth max_width;
1006	struct stm32_dma_desc *desc;
1007	size_t xfer_count, offset;
1008	u32 num_sgs, best_burst, dma_burst, threshold;
1009	int i;
1010
1011	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1012	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1013	if (!desc)
1014		return NULL;
1015
1016	threshold = chan->threshold;
1017
1018	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1019		xfer_count = min_t(size_t, len - offset,
1020				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1021
1022		/* Compute best burst size */
1023		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1024		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1025						      threshold, max_width);
1026		dma_burst = stm32_dma_get_burst(chan, best_burst);
1027
1028		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1029		desc->sg_req[i].chan_reg.dma_scr =
1030			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1031			STM32_DMA_SCR_PBURST(dma_burst) |
1032			STM32_DMA_SCR_MBURST(dma_burst) |
1033			STM32_DMA_SCR_MINC |
1034			STM32_DMA_SCR_PINC |
1035			STM32_DMA_SCR_TCIE |
1036			STM32_DMA_SCR_TEIE;
1037		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1038		desc->sg_req[i].chan_reg.dma_sfcr |=
1039			STM32_DMA_SFCR_FTH(threshold);
1040		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1041		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1042		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1043		desc->sg_req[i].len = xfer_count;
1044	}
1045
1046	desc->num_sgs = num_sgs;
1047	desc->cyclic = false;
1048
1049	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1050}
1051
1052static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1053{
1054	u32 dma_scr, width, ndtr;
1055	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1056
1057	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1058	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1059	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1060
1061	return ndtr << width;
1062}
1063
1064/**
1065 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1066 * @chan: dma channel
1067 *
1068 * This function called when IRQ are disable, checks that the hardware has not
1069 * switched on the next transfer in double buffer mode. The test is done by
1070 * comparing the next_sg memory address with the hardware related register
1071 * (based on CT bit value).
1072 *
1073 * Returns true if expected current transfer is still running or double
1074 * buffer mode is not activated.
1075 */
1076static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1077{
1078	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1079	struct stm32_dma_sg_req *sg_req;
1080	u32 dma_scr, dma_smar, id;
1081
1082	id = chan->id;
1083	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1084
1085	if (!(dma_scr & STM32_DMA_SCR_DBM))
1086		return true;
1087
1088	sg_req = &chan->desc->sg_req[chan->next_sg];
1089
1090	if (dma_scr & STM32_DMA_SCR_CT) {
1091		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1092		return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1093	}
1094
1095	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1096
1097	return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1098}
1099
1100static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1101				     struct stm32_dma_desc *desc,
1102				     u32 next_sg)
1103{
1104	u32 modulo, burst_size;
1105	u32 residue;
1106	u32 n_sg = next_sg;
1107	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1108	int i;
1109
1110	/*
1111	 * Calculate the residue means compute the descriptors
1112	 * information:
1113	 * - the sg_req currently transferred
1114	 * - the Hardware remaining position in this sg (NDTR bits field).
1115	 *
1116	 * A race condition may occur if DMA is running in cyclic or double
1117	 * buffer mode, since the DMA register are automatically reloaded at end
1118	 * of period transfer. The hardware may have switched to the next
1119	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1120	 * read.
1121	 * In this case the SxNDTR reg could (or not) correspond to the new
1122	 * transfer position, and not the expected one.
1123	 * The strategy implemented in the stm32 driver is to:
1124	 *  - read the SxNDTR register
1125	 *  - crosscheck that hardware is still in current transfer.
1126	 * In case of switch, we can assume that the DMA is at the beginning of
1127	 * the next transfer. So we approximate the residue in consequence, by
1128	 * pointing on the beginning of next transfer.
1129	 *
1130	 * This race condition doesn't apply for none cyclic mode, as double
1131	 * buffer is not used. In such situation registers are updated by the
1132	 * software.
1133	 */
1134
1135	residue = stm32_dma_get_remaining_bytes(chan);
1136
1137	if (!stm32_dma_is_current_sg(chan)) {
1138		n_sg++;
1139		if (n_sg == chan->desc->num_sgs)
1140			n_sg = 0;
1141		residue = sg_req->len;
1142	}
1143
1144	/*
1145	 * In cyclic mode, for the last period, residue = remaining bytes
1146	 * from NDTR,
1147	 * else for all other periods in cyclic mode, and in sg mode,
1148	 * residue = remaining bytes from NDTR + remaining
1149	 * periods/sg to be transferred
1150	 */
1151	if (!chan->desc->cyclic || n_sg != 0)
1152		for (i = n_sg; i < desc->num_sgs; i++)
1153			residue += desc->sg_req[i].len;
1154
1155	if (!chan->mem_burst)
1156		return residue;
1157
1158	burst_size = chan->mem_burst * chan->mem_width;
1159	modulo = residue % burst_size;
1160	if (modulo)
1161		residue = residue - modulo + burst_size;
1162
1163	return residue;
1164}
1165
1166static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1167					   dma_cookie_t cookie,
1168					   struct dma_tx_state *state)
1169{
1170	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1171	struct virt_dma_desc *vdesc;
1172	enum dma_status status;
1173	unsigned long flags;
1174	u32 residue = 0;
1175
1176	status = dma_cookie_status(c, cookie, state);
1177	if (status == DMA_COMPLETE || !state)
1178		return status;
1179
1180	spin_lock_irqsave(&chan->vchan.lock, flags);
1181	vdesc = vchan_find_desc(&chan->vchan, cookie);
1182	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1183		residue = stm32_dma_desc_residue(chan, chan->desc,
1184						 chan->next_sg);
1185	else if (vdesc)
1186		residue = stm32_dma_desc_residue(chan,
1187						 to_stm32_dma_desc(vdesc), 0);
1188	dma_set_residue(state, residue);
1189
1190	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1191
1192	return status;
1193}
1194
1195static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1196{
1197	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1198	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1199	int ret;
1200
1201	chan->config_init = false;
1202
1203	ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1204	if (ret < 0)
1205		return ret;
1206
1207	ret = stm32_dma_disable_chan(chan);
1208	if (ret < 0)
1209		pm_runtime_put(dmadev->ddev.dev);
1210
1211	return ret;
1212}
1213
1214static void stm32_dma_free_chan_resources(struct dma_chan *c)
1215{
1216	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1217	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1218	unsigned long flags;
1219
1220	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1221
1222	if (chan->busy) {
1223		spin_lock_irqsave(&chan->vchan.lock, flags);
1224		stm32_dma_stop(chan);
1225		chan->desc = NULL;
1226		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1227	}
1228
1229	pm_runtime_put(dmadev->ddev.dev);
1230
1231	vchan_free_chan_resources(to_virt_chan(c));
1232	stm32_dma_clear_reg(&chan->chan_reg);
1233	chan->threshold = 0;
1234}
1235
1236static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1237{
1238	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1239}
1240
1241static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1242				 struct stm32_dma_cfg *cfg)
1243{
1244	stm32_dma_clear_reg(&chan->chan_reg);
1245
1246	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1247	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1248
1249	/* Enable Interrupts  */
1250	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1251
1252	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1253	if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1254		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1255}
1256
1257static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1258					   struct of_dma *ofdma)
1259{
1260	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1261	struct device *dev = dmadev->ddev.dev;
1262	struct stm32_dma_cfg cfg;
1263	struct stm32_dma_chan *chan;
1264	struct dma_chan *c;
1265
1266	if (dma_spec->args_count < 4) {
1267		dev_err(dev, "Bad number of cells\n");
1268		return NULL;
1269	}
1270
1271	cfg.channel_id = dma_spec->args[0];
1272	cfg.request_line = dma_spec->args[1];
1273	cfg.stream_config = dma_spec->args[2];
1274	cfg.features = dma_spec->args[3];
1275
1276	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1277	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1278		dev_err(dev, "Bad channel and/or request id\n");
1279		return NULL;
1280	}
1281
1282	chan = &dmadev->chan[cfg.channel_id];
1283
1284	c = dma_get_slave_channel(&chan->vchan.chan);
1285	if (!c) {
1286		dev_err(dev, "No more channels available\n");
1287		return NULL;
1288	}
1289
1290	stm32_dma_set_config(chan, &cfg);
1291
1292	return c;
1293}
1294
1295static const struct of_device_id stm32_dma_of_match[] = {
1296	{ .compatible = "st,stm32-dma", },
1297	{ /* sentinel */ },
1298};
1299MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1300
1301static int stm32_dma_probe(struct platform_device *pdev)
1302{
1303	struct stm32_dma_chan *chan;
1304	struct stm32_dma_device *dmadev;
1305	struct dma_device *dd;
1306	const struct of_device_id *match;
1307	struct resource *res;
1308	struct reset_control *rst;
1309	int i, ret;
1310
1311	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1312	if (!match) {
1313		dev_err(&pdev->dev, "Error: No device match found\n");
1314		return -ENODEV;
1315	}
1316
1317	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1318	if (!dmadev)
1319		return -ENOMEM;
1320
1321	dd = &dmadev->ddev;
1322
1323	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1324	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1325	if (IS_ERR(dmadev->base))
1326		return PTR_ERR(dmadev->base);
1327
1328	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1329	if (IS_ERR(dmadev->clk))
1330		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1331
1332	ret = clk_prepare_enable(dmadev->clk);
1333	if (ret < 0) {
1334		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1335		return ret;
1336	}
1337
1338	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1339						"st,mem2mem");
1340
1341	rst = devm_reset_control_get(&pdev->dev, NULL);
1342	if (IS_ERR(rst)) {
1343		ret = PTR_ERR(rst);
1344		if (ret == -EPROBE_DEFER)
1345			goto clk_free;
1346	} else {
1347		reset_control_assert(rst);
1348		udelay(2);
1349		reset_control_deassert(rst);
1350	}
1351
1352	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1353
1354	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1355	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1356	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1357	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1358	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1359	dd->device_tx_status = stm32_dma_tx_status;
1360	dd->device_issue_pending = stm32_dma_issue_pending;
1361	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1362	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1363	dd->device_config = stm32_dma_slave_config;
1364	dd->device_terminate_all = stm32_dma_terminate_all;
1365	dd->device_synchronize = stm32_dma_synchronize;
1366	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1367		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1368		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1369	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1370		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1371		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1372	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1373	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1374	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1375	dd->max_burst = STM32_DMA_MAX_BURST;
1376	dd->descriptor_reuse = true;
1377	dd->dev = &pdev->dev;
1378	INIT_LIST_HEAD(&dd->channels);
1379
1380	if (dmadev->mem2mem) {
1381		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1382		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1383		dd->directions |= BIT(DMA_MEM_TO_MEM);
1384	}
1385
1386	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1387		chan = &dmadev->chan[i];
1388		chan->id = i;
1389		chan->vchan.desc_free = stm32_dma_desc_free;
1390		vchan_init(&chan->vchan, dd);
1391	}
1392
1393	ret = dma_async_device_register(dd);
1394	if (ret)
1395		goto clk_free;
1396
1397	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1398		chan = &dmadev->chan[i];
1399		ret = platform_get_irq(pdev, i);
1400		if (ret < 0)
1401			goto err_unregister;
1402		chan->irq = ret;
1403
1404		ret = devm_request_irq(&pdev->dev, chan->irq,
1405				       stm32_dma_chan_irq, 0,
1406				       dev_name(chan2dev(chan)), chan);
1407		if (ret) {
1408			dev_err(&pdev->dev,
1409				"request_irq failed with err %d channel %d\n",
1410				ret, i);
1411			goto err_unregister;
1412		}
1413	}
1414
1415	ret = of_dma_controller_register(pdev->dev.of_node,
1416					 stm32_dma_of_xlate, dmadev);
1417	if (ret < 0) {
1418		dev_err(&pdev->dev,
1419			"STM32 DMA DMA OF registration failed %d\n", ret);
1420		goto err_unregister;
1421	}
1422
1423	platform_set_drvdata(pdev, dmadev);
1424
1425	pm_runtime_set_active(&pdev->dev);
1426	pm_runtime_enable(&pdev->dev);
1427	pm_runtime_get_noresume(&pdev->dev);
1428	pm_runtime_put(&pdev->dev);
1429
1430	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1431
1432	return 0;
1433
1434err_unregister:
1435	dma_async_device_unregister(dd);
1436clk_free:
1437	clk_disable_unprepare(dmadev->clk);
1438
1439	return ret;
1440}
1441
1442#ifdef CONFIG_PM
1443static int stm32_dma_runtime_suspend(struct device *dev)
1444{
1445	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1446
1447	clk_disable_unprepare(dmadev->clk);
1448
1449	return 0;
1450}
1451
1452static int stm32_dma_runtime_resume(struct device *dev)
1453{
1454	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1455	int ret;
1456
1457	ret = clk_prepare_enable(dmadev->clk);
1458	if (ret) {
1459		dev_err(dev, "failed to prepare_enable clock\n");
1460		return ret;
1461	}
1462
1463	return 0;
1464}
1465#endif
1466
1467#ifdef CONFIG_PM_SLEEP
1468static int stm32_dma_suspend(struct device *dev)
1469{
1470	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1471	int id, ret, scr;
1472
1473	ret = pm_runtime_resume_and_get(dev);
1474	if (ret < 0)
1475		return ret;
1476
1477	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1478		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1479		if (scr & STM32_DMA_SCR_EN) {
1480			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1481			return -EBUSY;
1482		}
1483	}
1484
1485	pm_runtime_put_sync(dev);
1486
1487	pm_runtime_force_suspend(dev);
1488
1489	return 0;
1490}
1491
1492static int stm32_dma_resume(struct device *dev)
1493{
1494	return pm_runtime_force_resume(dev);
1495}
1496#endif
1497
1498static const struct dev_pm_ops stm32_dma_pm_ops = {
1499	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1500	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1501			   stm32_dma_runtime_resume, NULL)
1502};
1503
1504static struct platform_driver stm32_dma_driver = {
1505	.driver = {
1506		.name = "stm32-dma",
1507		.of_match_table = stm32_dma_of_match,
1508		.pm = &stm32_dma_pm_ops,
1509	},
1510	.probe = stm32_dma_probe,
1511};
1512
1513static int __init stm32_dma_init(void)
1514{
1515	return platform_driver_register(&stm32_dma_driver);
1516}
1517subsys_initcall(stm32_dma_init);