Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for STM32 DMA controller
   4 *
   5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
   6 *
   7 * Copyright (C) M'boumba Cedric Madianga 2015
   8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
   9 *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/delay.h>
  14#include <linux/dmaengine.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/err.h>
  17#include <linux/init.h>
  18#include <linux/iopoll.h>
  19#include <linux/jiffies.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/of_dma.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/reset.h>
  28#include <linux/sched.h>
  29#include <linux/slab.h>
  30
  31#include "virt-dma.h"
  32
  33#define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
  34#define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
  35#define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
  36#define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
  37#define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
  38#define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
  39#define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
  40#define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
  41#define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
  42#define STM32_DMA_MASKI			(STM32_DMA_TCI \
  43					 | STM32_DMA_TEI \
  44					 | STM32_DMA_DMEI \
  45					 | STM32_DMA_FEI)
  46
  47/* DMA Stream x Configuration Register */
  48#define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
  49#define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
  50#define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
  51#define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
  52#define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
  53#define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
  54#define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
  55#define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
  56#define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
  57#define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
  58#define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
  59#define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
  60#define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
  61#define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
  62#define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
  63#define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
  64#define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
  65#define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
  66#define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
  67#define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
  68#define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
  69#define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
  70#define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
  71						*/
  72#define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
  73#define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
  74#define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
  75#define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
  76					| STM32_DMA_SCR_MINC \
  77					| STM32_DMA_SCR_PINCOS \
  78					| STM32_DMA_SCR_PL_MASK)
  79#define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
  80					| STM32_DMA_SCR_TEIE \
  81					| STM32_DMA_SCR_DMEIE)
  82
  83/* DMA Stream x number of data register */
  84#define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
  85
  86/* DMA stream peripheral address register */
  87#define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
  88
  89/* DMA stream x memory 0 address register */
  90#define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
  91
  92/* DMA stream x memory 1 address register */
  93#define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
  94
  95/* DMA stream x FIFO control register */
  96#define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
  97#define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
  98#define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
  99#define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
 100#define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
 101#define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
 102					| STM32_DMA_SFCR_DMDIS)
 103
 104/* DMA direction */
 105#define STM32_DMA_DEV_TO_MEM		0x00
 106#define	STM32_DMA_MEM_TO_DEV		0x01
 107#define	STM32_DMA_MEM_TO_MEM		0x02
 108
 109/* DMA priority level */
 110#define STM32_DMA_PRIORITY_LOW		0x00
 111#define STM32_DMA_PRIORITY_MEDIUM	0x01
 112#define STM32_DMA_PRIORITY_HIGH		0x02
 113#define STM32_DMA_PRIORITY_VERY_HIGH	0x03
 114
 115/* DMA FIFO threshold selection */
 116#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
 117#define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
 118#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
 119#define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
 120#define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
 121
 122#define STM32_DMA_MAX_DATA_ITEMS	0xffff
 123/*
 124 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
 125 * gather at boundary. Thus it's safer to round down this value on FIFO
 126 * size (16 Bytes)
 127 */
 128#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
 129	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
 130#define STM32_DMA_MAX_CHANNELS		0x08
 131#define STM32_DMA_MAX_REQUEST_ID	0x08
 132#define STM32_DMA_MAX_DATA_PARAM	0x03
 133#define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
 134#define STM32_DMA_MIN_BURST		4
 135#define STM32_DMA_MAX_BURST		16
 136
 137/* DMA Features */
 138#define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
 139#define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
 140#define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
 141#define STM32_DMA_DIRECT_MODE_GET(n)	(((n) & STM32_DMA_DIRECT_MODE_MASK) \
 142					 >> 2)
 143
 144enum stm32_dma_width {
 145	STM32_DMA_BYTE,
 146	STM32_DMA_HALF_WORD,
 147	STM32_DMA_WORD,
 148};
 149
 150enum stm32_dma_burst_size {
 151	STM32_DMA_BURST_SINGLE,
 152	STM32_DMA_BURST_INCR4,
 153	STM32_DMA_BURST_INCR8,
 154	STM32_DMA_BURST_INCR16,
 155};
 156
 157/**
 158 * struct stm32_dma_cfg - STM32 DMA custom configuration
 159 * @channel_id: channel ID
 160 * @request_line: DMA request
 161 * @stream_config: 32bit mask specifying the DMA channel configuration
 162 * @features: 32bit mask specifying the DMA Feature list
 163 */
 164struct stm32_dma_cfg {
 165	u32 channel_id;
 166	u32 request_line;
 167	u32 stream_config;
 168	u32 features;
 169};
 170
 171struct stm32_dma_chan_reg {
 172	u32 dma_lisr;
 173	u32 dma_hisr;
 174	u32 dma_lifcr;
 175	u32 dma_hifcr;
 176	u32 dma_scr;
 177	u32 dma_sndtr;
 178	u32 dma_spar;
 179	u32 dma_sm0ar;
 180	u32 dma_sm1ar;
 181	u32 dma_sfcr;
 182};
 183
 184struct stm32_dma_sg_req {
 185	u32 len;
 186	struct stm32_dma_chan_reg chan_reg;
 187};
 188
 189struct stm32_dma_desc {
 190	struct virt_dma_desc vdesc;
 191	bool cyclic;
 192	u32 num_sgs;
 193	struct stm32_dma_sg_req sg_req[];
 194};
 195
 196struct stm32_dma_chan {
 197	struct virt_dma_chan vchan;
 198	bool config_init;
 199	bool busy;
 200	u32 id;
 201	u32 irq;
 202	struct stm32_dma_desc *desc;
 203	u32 next_sg;
 204	struct dma_slave_config	dma_sconfig;
 205	struct stm32_dma_chan_reg chan_reg;
 206	u32 threshold;
 207	u32 mem_burst;
 208	u32 mem_width;
 209};
 210
 211struct stm32_dma_device {
 212	struct dma_device ddev;
 213	void __iomem *base;
 214	struct clk *clk;
 215	bool mem2mem;
 216	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
 217};
 218
 219static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
 220{
 221	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
 222			    ddev);
 223}
 224
 225static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
 226{
 227	return container_of(c, struct stm32_dma_chan, vchan.chan);
 228}
 229
 230static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
 231{
 232	return container_of(vdesc, struct stm32_dma_desc, vdesc);
 233}
 234
 235static struct device *chan2dev(struct stm32_dma_chan *chan)
 236{
 237	return &chan->vchan.chan.dev->device;
 238}
 239
 240static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
 241{
 242	return readl_relaxed(dmadev->base + reg);
 243}
 244
 245static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
 246{
 247	writel_relaxed(val, dmadev->base + reg);
 248}
 249
 250static int stm32_dma_get_width(struct stm32_dma_chan *chan,
 251			       enum dma_slave_buswidth width)
 252{
 253	switch (width) {
 254	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 255		return STM32_DMA_BYTE;
 256	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 257		return STM32_DMA_HALF_WORD;
 258	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 259		return STM32_DMA_WORD;
 260	default:
 261		dev_err(chan2dev(chan), "Dma bus width not supported\n");
 262		return -EINVAL;
 263	}
 264}
 265
 266static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
 267						       u32 threshold)
 268{
 269	enum dma_slave_buswidth max_width;
 270
 271	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
 272		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 273	else
 274		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 275
 276	while ((buf_len < max_width  || buf_len % max_width) &&
 277	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
 278		max_width = max_width >> 1;
 279
 280	return max_width;
 281}
 282
 283static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
 284						enum dma_slave_buswidth width)
 285{
 286	u32 remaining;
 287
 288	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 289		return false;
 290
 291	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 292		if (burst != 0) {
 293			/*
 294			 * If number of beats fit in several whole bursts
 295			 * this configuration is allowed.
 296			 */
 297			remaining = ((STM32_DMA_FIFO_SIZE / width) *
 298				     (threshold + 1) / 4) % burst;
 299
 300			if (remaining == 0)
 301				return true;
 302		} else {
 303			return true;
 304		}
 305	}
 306
 307	return false;
 308}
 309
 310static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
 311{
 312	/* If FIFO direct mode, burst is not possible */
 313	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 314		return false;
 315
 316	/*
 317	 * Buffer or period length has to be aligned on FIFO depth.
 318	 * Otherwise bytes may be stuck within FIFO at buffer or period
 319	 * length.
 320	 */
 321	return ((buf_len % ((threshold + 1) * 4)) == 0);
 322}
 323
 324static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
 325				    enum dma_slave_buswidth width)
 326{
 327	u32 best_burst = max_burst;
 328
 329	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
 330		return 0;
 331
 332	while ((buf_len < best_burst * width && best_burst > 1) ||
 333	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
 334						    width)) {
 335		if (best_burst > STM32_DMA_MIN_BURST)
 336			best_burst = best_burst >> 1;
 337		else
 338			best_burst = 0;
 339	}
 340
 341	return best_burst;
 342}
 343
 344static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
 345{
 346	switch (maxburst) {
 347	case 0:
 348	case 1:
 349		return STM32_DMA_BURST_SINGLE;
 350	case 4:
 351		return STM32_DMA_BURST_INCR4;
 352	case 8:
 353		return STM32_DMA_BURST_INCR8;
 354	case 16:
 355		return STM32_DMA_BURST_INCR16;
 356	default:
 357		dev_err(chan2dev(chan), "Dma burst size not supported\n");
 358		return -EINVAL;
 359	}
 360}
 361
 362static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
 363				      u32 src_burst, u32 dst_burst)
 364{
 365	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
 366	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
 367
 368	if (!src_burst && !dst_burst) {
 369		/* Using direct mode */
 370		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
 371	} else {
 372		/* Using FIFO mode */
 373		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
 374	}
 375}
 376
 377static int stm32_dma_slave_config(struct dma_chan *c,
 378				  struct dma_slave_config *config)
 379{
 380	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 381
 382	memcpy(&chan->dma_sconfig, config, sizeof(*config));
 383
 384	chan->config_init = true;
 385
 386	return 0;
 387}
 388
 389static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
 390{
 391	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 392	u32 flags, dma_isr;
 393
 394	/*
 395	 * Read "flags" from DMA_xISR register corresponding to the selected
 396	 * DMA channel at the correct bit offset inside that register.
 397	 *
 398	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 399	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 400	 */
 401
 402	if (chan->id & 4)
 403		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
 404	else
 405		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
 406
 407	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 408
 409	return flags & STM32_DMA_MASKI;
 410}
 411
 412static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
 413{
 414	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 415	u32 dma_ifcr;
 416
 417	/*
 418	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
 419	 * DMA channel at the correct bit offset inside that register.
 420	 *
 421	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 422	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 423	 */
 424	flags &= STM32_DMA_MASKI;
 425	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 426
 427	if (chan->id & 4)
 428		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
 429	else
 430		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
 431}
 432
 433static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
 434{
 435	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 436	u32 dma_scr, id, reg;
 437
 438	id = chan->id;
 439	reg = STM32_DMA_SCR(id);
 440	dma_scr = stm32_dma_read(dmadev, reg);
 441
 442	if (dma_scr & STM32_DMA_SCR_EN) {
 443		dma_scr &= ~STM32_DMA_SCR_EN;
 444		stm32_dma_write(dmadev, reg, dma_scr);
 445
 446		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
 447					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
 448					10, 1000000);
 449	}
 450
 451	return 0;
 452}
 453
 454static void stm32_dma_stop(struct stm32_dma_chan *chan)
 455{
 456	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 457	u32 dma_scr, dma_sfcr, status;
 458	int ret;
 459
 460	/* Disable interrupts */
 461	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 462	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
 463	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 464	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 465	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
 466	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
 467
 468	/* Disable DMA */
 469	ret = stm32_dma_disable_chan(chan);
 470	if (ret < 0)
 471		return;
 472
 473	/* Clear interrupt status if it is there */
 474	status = stm32_dma_irq_status(chan);
 475	if (status) {
 476		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
 477			__func__, status);
 478		stm32_dma_irq_clear(chan, status);
 479	}
 480
 481	chan->busy = false;
 482}
 483
 484static int stm32_dma_terminate_all(struct dma_chan *c)
 485{
 486	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 487	unsigned long flags;
 488	LIST_HEAD(head);
 489
 490	spin_lock_irqsave(&chan->vchan.lock, flags);
 491
 492	if (chan->desc) {
 493		vchan_terminate_vdesc(&chan->desc->vdesc);
 494		if (chan->busy)
 495			stm32_dma_stop(chan);
 496		chan->desc = NULL;
 497	}
 498
 499	vchan_get_all_descriptors(&chan->vchan, &head);
 500	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 501	vchan_dma_desc_free_list(&chan->vchan, &head);
 502
 503	return 0;
 504}
 505
 506static void stm32_dma_synchronize(struct dma_chan *c)
 507{
 508	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 509
 510	vchan_synchronize(&chan->vchan);
 511}
 512
 513static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
 514{
 515	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 516	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 517	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
 518	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
 519	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
 520	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
 521	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 522
 523	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
 524	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
 525	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
 526	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
 527	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
 528	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
 529}
 530
 531static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
 532
 533static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
 534{
 535	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 536	struct virt_dma_desc *vdesc;
 537	struct stm32_dma_sg_req *sg_req;
 538	struct stm32_dma_chan_reg *reg;
 539	u32 status;
 540	int ret;
 541
 542	ret = stm32_dma_disable_chan(chan);
 543	if (ret < 0)
 544		return;
 545
 546	if (!chan->desc) {
 547		vdesc = vchan_next_desc(&chan->vchan);
 548		if (!vdesc)
 549			return;
 550
 551		list_del(&vdesc->node);
 552
 553		chan->desc = to_stm32_dma_desc(vdesc);
 554		chan->next_sg = 0;
 555	}
 556
 557	if (chan->next_sg == chan->desc->num_sgs)
 558		chan->next_sg = 0;
 559
 560	sg_req = &chan->desc->sg_req[chan->next_sg];
 561	reg = &sg_req->chan_reg;
 562
 563	reg->dma_scr &= ~STM32_DMA_SCR_EN;
 564	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 565	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
 566	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
 567	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
 568	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
 569	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
 570
 571	chan->next_sg++;
 572
 573	/* Clear interrupt status if it is there */
 574	status = stm32_dma_irq_status(chan);
 575	if (status)
 576		stm32_dma_irq_clear(chan, status);
 577
 578	if (chan->desc->cyclic)
 579		stm32_dma_configure_next_sg(chan);
 580
 581	stm32_dma_dump_reg(chan);
 582
 583	/* Start DMA */
 584	reg->dma_scr |= STM32_DMA_SCR_EN;
 585	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 586
 587	chan->busy = true;
 588
 589	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
 590}
 591
 592static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
 593{
 594	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 595	struct stm32_dma_sg_req *sg_req;
 596	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
 597
 598	id = chan->id;
 599	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 600
 601	if (dma_scr & STM32_DMA_SCR_DBM) {
 602		if (chan->next_sg == chan->desc->num_sgs)
 603			chan->next_sg = 0;
 604
 605		sg_req = &chan->desc->sg_req[chan->next_sg];
 606
 607		if (dma_scr & STM32_DMA_SCR_CT) {
 608			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
 609			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
 610			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
 611				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
 612		} else {
 613			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
 614			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
 615			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
 616				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
 617		}
 618	}
 619}
 620
 621static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
 622{
 623	if (chan->desc) {
 624		if (chan->desc->cyclic) {
 625			vchan_cyclic_callback(&chan->desc->vdesc);
 626			chan->next_sg++;
 627			stm32_dma_configure_next_sg(chan);
 628		} else {
 629			chan->busy = false;
 630			if (chan->next_sg == chan->desc->num_sgs) {
 631				vchan_cookie_complete(&chan->desc->vdesc);
 632				chan->desc = NULL;
 633			}
 634			stm32_dma_start_transfer(chan);
 635		}
 636	}
 637}
 638
 639static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
 640{
 641	struct stm32_dma_chan *chan = devid;
 642	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 643	u32 status, scr, sfcr;
 644
 645	spin_lock(&chan->vchan.lock);
 646
 647	status = stm32_dma_irq_status(chan);
 648	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 649	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 650
 651	if (status & STM32_DMA_TCI) {
 652		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
 653		if (scr & STM32_DMA_SCR_TCIE)
 654			stm32_dma_handle_chan_done(chan);
 655		status &= ~STM32_DMA_TCI;
 656	}
 657	if (status & STM32_DMA_HTI) {
 658		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
 659		status &= ~STM32_DMA_HTI;
 660	}
 661	if (status & STM32_DMA_FEI) {
 662		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
 663		status &= ~STM32_DMA_FEI;
 664		if (sfcr & STM32_DMA_SFCR_FEIE) {
 665			if (!(scr & STM32_DMA_SCR_EN))
 666				dev_err(chan2dev(chan), "FIFO Error\n");
 667			else
 668				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
 669		}
 670	}
 671	if (status & STM32_DMA_DMEI) {
 672		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
 673		status &= ~STM32_DMA_DMEI;
 674		if (sfcr & STM32_DMA_SCR_DMEIE)
 675			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
 676	}
 677	if (status) {
 678		stm32_dma_irq_clear(chan, status);
 679		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
 680		if (!(scr & STM32_DMA_SCR_EN))
 681			dev_err(chan2dev(chan), "chan disabled by HW\n");
 682	}
 683
 684	spin_unlock(&chan->vchan.lock);
 685
 686	return IRQ_HANDLED;
 687}
 688
 689static void stm32_dma_issue_pending(struct dma_chan *c)
 690{
 691	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 692	unsigned long flags;
 693
 694	spin_lock_irqsave(&chan->vchan.lock, flags);
 695	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
 696		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
 697		stm32_dma_start_transfer(chan);
 698
 699	}
 700	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 701}
 702
 703static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
 704				    enum dma_transfer_direction direction,
 705				    enum dma_slave_buswidth *buswidth,
 706				    u32 buf_len)
 707{
 708	enum dma_slave_buswidth src_addr_width, dst_addr_width;
 709	int src_bus_width, dst_bus_width;
 710	int src_burst_size, dst_burst_size;
 711	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
 712	u32 dma_scr, fifoth;
 713
 714	src_addr_width = chan->dma_sconfig.src_addr_width;
 715	dst_addr_width = chan->dma_sconfig.dst_addr_width;
 716	src_maxburst = chan->dma_sconfig.src_maxburst;
 717	dst_maxburst = chan->dma_sconfig.dst_maxburst;
 718	fifoth = chan->threshold;
 719
 720	switch (direction) {
 721	case DMA_MEM_TO_DEV:
 722		/* Set device data size */
 723		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 724		if (dst_bus_width < 0)
 725			return dst_bus_width;
 726
 727		/* Set device burst size */
 728		dst_best_burst = stm32_dma_get_best_burst(buf_len,
 729							  dst_maxburst,
 730							  fifoth,
 731							  dst_addr_width);
 732
 733		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 734		if (dst_burst_size < 0)
 735			return dst_burst_size;
 736
 737		/* Set memory data size */
 738		src_addr_width = stm32_dma_get_max_width(buf_len, fifoth);
 739		chan->mem_width = src_addr_width;
 740		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 741		if (src_bus_width < 0)
 742			return src_bus_width;
 743
 744		/* Set memory burst size */
 745		src_maxburst = STM32_DMA_MAX_BURST;
 746		src_best_burst = stm32_dma_get_best_burst(buf_len,
 747							  src_maxburst,
 748							  fifoth,
 749							  src_addr_width);
 750		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 751		if (src_burst_size < 0)
 752			return src_burst_size;
 753
 754		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
 755			STM32_DMA_SCR_PSIZE(dst_bus_width) |
 756			STM32_DMA_SCR_MSIZE(src_bus_width) |
 757			STM32_DMA_SCR_PBURST(dst_burst_size) |
 758			STM32_DMA_SCR_MBURST(src_burst_size);
 759
 760		/* Set FIFO threshold */
 761		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 762		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
 763			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
 764
 765		/* Set peripheral address */
 766		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
 767		*buswidth = dst_addr_width;
 768		break;
 769
 770	case DMA_DEV_TO_MEM:
 771		/* Set device data size */
 772		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 773		if (src_bus_width < 0)
 774			return src_bus_width;
 775
 776		/* Set device burst size */
 777		src_best_burst = stm32_dma_get_best_burst(buf_len,
 778							  src_maxburst,
 779							  fifoth,
 780							  src_addr_width);
 781		chan->mem_burst = src_best_burst;
 782		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 783		if (src_burst_size < 0)
 784			return src_burst_size;
 785
 786		/* Set memory data size */
 787		dst_addr_width = stm32_dma_get_max_width(buf_len, fifoth);
 788		chan->mem_width = dst_addr_width;
 789		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 790		if (dst_bus_width < 0)
 791			return dst_bus_width;
 792
 793		/* Set memory burst size */
 794		dst_maxburst = STM32_DMA_MAX_BURST;
 795		dst_best_burst = stm32_dma_get_best_burst(buf_len,
 796							  dst_maxburst,
 797							  fifoth,
 798							  dst_addr_width);
 799		chan->mem_burst = dst_best_burst;
 800		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 801		if (dst_burst_size < 0)
 802			return dst_burst_size;
 803
 804		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
 805			STM32_DMA_SCR_PSIZE(src_bus_width) |
 806			STM32_DMA_SCR_MSIZE(dst_bus_width) |
 807			STM32_DMA_SCR_PBURST(src_burst_size) |
 808			STM32_DMA_SCR_MBURST(dst_burst_size);
 809
 810		/* Set FIFO threshold */
 811		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 812		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
 813			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
 814
 815		/* Set peripheral address */
 816		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
 817		*buswidth = chan->dma_sconfig.src_addr_width;
 818		break;
 819
 820	default:
 821		dev_err(chan2dev(chan), "Dma direction is not supported\n");
 822		return -EINVAL;
 823	}
 824
 825	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
 826
 827	/* Set DMA control register */
 828	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
 829			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
 830			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
 831	chan->chan_reg.dma_scr |= dma_scr;
 832
 833	return 0;
 834}
 835
 836static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
 837{
 838	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
 839}
 840
 841static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
 842	struct dma_chan *c, struct scatterlist *sgl,
 843	u32 sg_len, enum dma_transfer_direction direction,
 844	unsigned long flags, void *context)
 845{
 846	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 847	struct stm32_dma_desc *desc;
 848	struct scatterlist *sg;
 849	enum dma_slave_buswidth buswidth;
 850	u32 nb_data_items;
 851	int i, ret;
 852
 853	if (!chan->config_init) {
 854		dev_err(chan2dev(chan), "dma channel is not configured\n");
 855		return NULL;
 856	}
 857
 858	if (sg_len < 1) {
 859		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
 860		return NULL;
 861	}
 862
 863	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
 864	if (!desc)
 865		return NULL;
 866
 867	/* Set peripheral flow controller */
 868	if (chan->dma_sconfig.device_fc)
 869		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
 870	else
 871		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 872
 873	for_each_sg(sgl, sg, sg_len, i) {
 874		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
 875					       sg_dma_len(sg));
 876		if (ret < 0)
 877			goto err;
 878
 879		desc->sg_req[i].len = sg_dma_len(sg);
 880
 881		nb_data_items = desc->sg_req[i].len / buswidth;
 882		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 883			dev_err(chan2dev(chan), "nb items not supported\n");
 884			goto err;
 885		}
 886
 887		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 888		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 889		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 890		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 891		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
 892		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
 893		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 894	}
 895
 896	desc->num_sgs = sg_len;
 897	desc->cyclic = false;
 898
 899	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
 900
 901err:
 902	kfree(desc);
 903	return NULL;
 904}
 905
 906static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
 907	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
 908	size_t period_len, enum dma_transfer_direction direction,
 909	unsigned long flags)
 910{
 911	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 912	struct stm32_dma_desc *desc;
 913	enum dma_slave_buswidth buswidth;
 914	u32 num_periods, nb_data_items;
 915	int i, ret;
 916
 917	if (!buf_len || !period_len) {
 918		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
 919		return NULL;
 920	}
 921
 922	if (!chan->config_init) {
 923		dev_err(chan2dev(chan), "dma channel is not configured\n");
 924		return NULL;
 925	}
 926
 927	if (buf_len % period_len) {
 928		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
 929		return NULL;
 930	}
 931
 932	/*
 933	 * We allow to take more number of requests till DMA is
 934	 * not started. The driver will loop over all requests.
 935	 * Once DMA is started then new requests can be queued only after
 936	 * terminating the DMA.
 937	 */
 938	if (chan->busy) {
 939		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
 940		return NULL;
 941	}
 942
 943	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
 944	if (ret < 0)
 945		return NULL;
 946
 947	nb_data_items = period_len / buswidth;
 948	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 949		dev_err(chan2dev(chan), "number of items not supported\n");
 950		return NULL;
 951	}
 952
 953	/*  Enable Circular mode or double buffer mode */
 954	if (buf_len == period_len)
 955		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
 956	else
 957		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
 958
 959	/* Clear periph ctrl if client set it */
 960	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 961
 962	num_periods = buf_len / period_len;
 963
 964	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
 965	if (!desc)
 966		return NULL;
 967
 968	for (i = 0; i < num_periods; i++) {
 969		desc->sg_req[i].len = period_len;
 970
 971		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 972		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 973		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 974		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 975		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
 976		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
 977		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 978		buf_addr += period_len;
 979	}
 980
 981	desc->num_sgs = num_periods;
 982	desc->cyclic = true;
 983
 984	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
 985}
 986
 987static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
 988	struct dma_chan *c, dma_addr_t dest,
 989	dma_addr_t src, size_t len, unsigned long flags)
 990{
 991	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 992	enum dma_slave_buswidth max_width;
 993	struct stm32_dma_desc *desc;
 994	size_t xfer_count, offset;
 995	u32 num_sgs, best_burst, dma_burst, threshold;
 996	int i;
 997
 998	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
 999	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1000	if (!desc)
1001		return NULL;
1002
1003	threshold = chan->threshold;
1004
1005	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1006		xfer_count = min_t(size_t, len - offset,
1007				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1008
1009		/* Compute best burst size */
1010		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1011		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1012						      threshold, max_width);
1013		dma_burst = stm32_dma_get_burst(chan, best_burst);
1014
1015		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1016		desc->sg_req[i].chan_reg.dma_scr =
1017			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1018			STM32_DMA_SCR_PBURST(dma_burst) |
1019			STM32_DMA_SCR_MBURST(dma_burst) |
1020			STM32_DMA_SCR_MINC |
1021			STM32_DMA_SCR_PINC |
1022			STM32_DMA_SCR_TCIE |
1023			STM32_DMA_SCR_TEIE;
1024		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1025		desc->sg_req[i].chan_reg.dma_sfcr |=
1026			STM32_DMA_SFCR_FTH(threshold);
1027		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1028		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1029		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1030		desc->sg_req[i].len = xfer_count;
1031	}
1032
1033	desc->num_sgs = num_sgs;
1034	desc->cyclic = false;
1035
1036	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1037}
1038
1039static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1040{
1041	u32 dma_scr, width, ndtr;
1042	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1043
1044	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1045	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1046	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1047
1048	return ndtr << width;
1049}
1050
1051/**
1052 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1053 * @chan: dma channel
1054 *
1055 * This function called when IRQ are disable, checks that the hardware has not
1056 * switched on the next transfer in double buffer mode. The test is done by
1057 * comparing the next_sg memory address with the hardware related register
1058 * (based on CT bit value).
1059 *
1060 * Returns true if expected current transfer is still running or double
1061 * buffer mode is not activated.
1062 */
1063static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1064{
1065	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1066	struct stm32_dma_sg_req *sg_req;
1067	u32 dma_scr, dma_smar, id;
1068
1069	id = chan->id;
1070	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1071
1072	if (!(dma_scr & STM32_DMA_SCR_DBM))
1073		return true;
1074
1075	sg_req = &chan->desc->sg_req[chan->next_sg];
1076
1077	if (dma_scr & STM32_DMA_SCR_CT) {
1078		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1079		return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1080	}
1081
1082	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1083
1084	return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1085}
1086
1087static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1088				     struct stm32_dma_desc *desc,
1089				     u32 next_sg)
1090{
1091	u32 modulo, burst_size;
1092	u32 residue;
1093	u32 n_sg = next_sg;
1094	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1095	int i;
1096
1097	/*
1098	 * Calculate the residue means compute the descriptors
1099	 * information:
1100	 * - the sg_req currently transferred
1101	 * - the Hardware remaining position in this sg (NDTR bits field).
1102	 *
1103	 * A race condition may occur if DMA is running in cyclic or double
1104	 * buffer mode, since the DMA register are automatically reloaded at end
1105	 * of period transfer. The hardware may have switched to the next
1106	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1107	 * read.
1108	 * In this case the SxNDTR reg could (or not) correspond to the new
1109	 * transfer position, and not the expected one.
1110	 * The strategy implemented in the stm32 driver is to:
1111	 *  - read the SxNDTR register
1112	 *  - crosscheck that hardware is still in current transfer.
1113	 * In case of switch, we can assume that the DMA is at the beginning of
1114	 * the next transfer. So we approximate the residue in consequence, by
1115	 * pointing on the beginning of next transfer.
1116	 *
1117	 * This race condition doesn't apply for none cyclic mode, as double
1118	 * buffer is not used. In such situation registers are updated by the
1119	 * software.
1120	 */
1121
1122	residue = stm32_dma_get_remaining_bytes(chan);
1123
1124	if (!stm32_dma_is_current_sg(chan)) {
1125		n_sg++;
1126		if (n_sg == chan->desc->num_sgs)
1127			n_sg = 0;
1128		residue = sg_req->len;
1129	}
1130
1131	/*
1132	 * In cyclic mode, for the last period, residue = remaining bytes
1133	 * from NDTR,
1134	 * else for all other periods in cyclic mode, and in sg mode,
1135	 * residue = remaining bytes from NDTR + remaining
1136	 * periods/sg to be transferred
1137	 */
1138	if (!chan->desc->cyclic || n_sg != 0)
1139		for (i = n_sg; i < desc->num_sgs; i++)
1140			residue += desc->sg_req[i].len;
1141
1142	if (!chan->mem_burst)
1143		return residue;
1144
1145	burst_size = chan->mem_burst * chan->mem_width;
1146	modulo = residue % burst_size;
1147	if (modulo)
1148		residue = residue - modulo + burst_size;
1149
1150	return residue;
1151}
1152
1153static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1154					   dma_cookie_t cookie,
1155					   struct dma_tx_state *state)
1156{
1157	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1158	struct virt_dma_desc *vdesc;
1159	enum dma_status status;
1160	unsigned long flags;
1161	u32 residue = 0;
1162
1163	status = dma_cookie_status(c, cookie, state);
1164	if (status == DMA_COMPLETE || !state)
1165		return status;
1166
1167	spin_lock_irqsave(&chan->vchan.lock, flags);
1168	vdesc = vchan_find_desc(&chan->vchan, cookie);
1169	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1170		residue = stm32_dma_desc_residue(chan, chan->desc,
1171						 chan->next_sg);
1172	else if (vdesc)
1173		residue = stm32_dma_desc_residue(chan,
1174						 to_stm32_dma_desc(vdesc), 0);
1175	dma_set_residue(state, residue);
1176
1177	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1178
1179	return status;
1180}
1181
1182static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1183{
1184	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1185	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1186	int ret;
1187
1188	chan->config_init = false;
1189
1190	ret = pm_runtime_get_sync(dmadev->ddev.dev);
1191	if (ret < 0)
1192		return ret;
1193
1194	ret = stm32_dma_disable_chan(chan);
1195	if (ret < 0)
1196		pm_runtime_put(dmadev->ddev.dev);
1197
1198	return ret;
1199}
1200
1201static void stm32_dma_free_chan_resources(struct dma_chan *c)
1202{
1203	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1204	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1205	unsigned long flags;
1206
1207	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1208
1209	if (chan->busy) {
1210		spin_lock_irqsave(&chan->vchan.lock, flags);
1211		stm32_dma_stop(chan);
1212		chan->desc = NULL;
1213		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1214	}
1215
1216	pm_runtime_put(dmadev->ddev.dev);
1217
1218	vchan_free_chan_resources(to_virt_chan(c));
1219}
1220
1221static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1222{
1223	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1224}
1225
1226static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1227				 struct stm32_dma_cfg *cfg)
1228{
1229	stm32_dma_clear_reg(&chan->chan_reg);
1230
1231	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1232	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1233
1234	/* Enable Interrupts  */
1235	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1236
1237	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1238	if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1239		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1240}
1241
1242static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1243					   struct of_dma *ofdma)
1244{
1245	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1246	struct device *dev = dmadev->ddev.dev;
1247	struct stm32_dma_cfg cfg;
1248	struct stm32_dma_chan *chan;
1249	struct dma_chan *c;
1250
1251	if (dma_spec->args_count < 4) {
1252		dev_err(dev, "Bad number of cells\n");
1253		return NULL;
1254	}
1255
1256	cfg.channel_id = dma_spec->args[0];
1257	cfg.request_line = dma_spec->args[1];
1258	cfg.stream_config = dma_spec->args[2];
1259	cfg.features = dma_spec->args[3];
1260
1261	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1262	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1263		dev_err(dev, "Bad channel and/or request id\n");
1264		return NULL;
1265	}
1266
1267	chan = &dmadev->chan[cfg.channel_id];
1268
1269	c = dma_get_slave_channel(&chan->vchan.chan);
1270	if (!c) {
1271		dev_err(dev, "No more channels available\n");
1272		return NULL;
1273	}
1274
1275	stm32_dma_set_config(chan, &cfg);
1276
1277	return c;
1278}
1279
1280static const struct of_device_id stm32_dma_of_match[] = {
1281	{ .compatible = "st,stm32-dma", },
1282	{ /* sentinel */ },
1283};
1284MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1285
1286static int stm32_dma_probe(struct platform_device *pdev)
1287{
1288	struct stm32_dma_chan *chan;
1289	struct stm32_dma_device *dmadev;
1290	struct dma_device *dd;
1291	const struct of_device_id *match;
1292	struct resource *res;
1293	struct reset_control *rst;
1294	int i, ret;
1295
1296	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1297	if (!match) {
1298		dev_err(&pdev->dev, "Error: No device match found\n");
1299		return -ENODEV;
1300	}
1301
1302	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1303	if (!dmadev)
1304		return -ENOMEM;
1305
1306	dd = &dmadev->ddev;
1307
1308	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1309	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1310	if (IS_ERR(dmadev->base))
1311		return PTR_ERR(dmadev->base);
1312
1313	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1314	if (IS_ERR(dmadev->clk)) {
1315		ret = PTR_ERR(dmadev->clk);
1316		if (ret != -EPROBE_DEFER)
1317			dev_err(&pdev->dev, "Can't get clock\n");
1318		return ret;
1319	}
1320
1321	ret = clk_prepare_enable(dmadev->clk);
1322	if (ret < 0) {
1323		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1324		return ret;
1325	}
1326
1327	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1328						"st,mem2mem");
1329
1330	rst = devm_reset_control_get(&pdev->dev, NULL);
1331	if (IS_ERR(rst)) {
1332		ret = PTR_ERR(rst);
1333		if (ret == -EPROBE_DEFER)
1334			goto clk_free;
1335	} else {
1336		reset_control_assert(rst);
1337		udelay(2);
1338		reset_control_deassert(rst);
1339	}
1340
1341	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1342
1343	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1344	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1345	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1346	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1347	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1348	dd->device_tx_status = stm32_dma_tx_status;
1349	dd->device_issue_pending = stm32_dma_issue_pending;
1350	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1351	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1352	dd->device_config = stm32_dma_slave_config;
1353	dd->device_terminate_all = stm32_dma_terminate_all;
1354	dd->device_synchronize = stm32_dma_synchronize;
1355	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1356		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1357		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1358	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1359		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1360		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1361	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1362	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1363	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1364	dd->max_burst = STM32_DMA_MAX_BURST;
1365	dd->descriptor_reuse = true;
1366	dd->dev = &pdev->dev;
1367	INIT_LIST_HEAD(&dd->channels);
1368
1369	if (dmadev->mem2mem) {
1370		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1371		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1372		dd->directions |= BIT(DMA_MEM_TO_MEM);
1373	}
1374
1375	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1376		chan = &dmadev->chan[i];
1377		chan->id = i;
1378		chan->vchan.desc_free = stm32_dma_desc_free;
1379		vchan_init(&chan->vchan, dd);
1380	}
1381
1382	ret = dma_async_device_register(dd);
1383	if (ret)
1384		goto clk_free;
1385
1386	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1387		chan = &dmadev->chan[i];
1388		ret = platform_get_irq(pdev, i);
1389		if (ret < 0)
1390			goto err_unregister;
1391		chan->irq = ret;
1392
1393		ret = devm_request_irq(&pdev->dev, chan->irq,
1394				       stm32_dma_chan_irq, 0,
1395				       dev_name(chan2dev(chan)), chan);
1396		if (ret) {
1397			dev_err(&pdev->dev,
1398				"request_irq failed with err %d channel %d\n",
1399				ret, i);
1400			goto err_unregister;
1401		}
1402	}
1403
1404	ret = of_dma_controller_register(pdev->dev.of_node,
1405					 stm32_dma_of_xlate, dmadev);
1406	if (ret < 0) {
1407		dev_err(&pdev->dev,
1408			"STM32 DMA DMA OF registration failed %d\n", ret);
1409		goto err_unregister;
1410	}
1411
1412	platform_set_drvdata(pdev, dmadev);
1413
1414	pm_runtime_set_active(&pdev->dev);
1415	pm_runtime_enable(&pdev->dev);
1416	pm_runtime_get_noresume(&pdev->dev);
1417	pm_runtime_put(&pdev->dev);
1418
1419	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1420
1421	return 0;
1422
1423err_unregister:
1424	dma_async_device_unregister(dd);
1425clk_free:
1426	clk_disable_unprepare(dmadev->clk);
1427
1428	return ret;
1429}
1430
1431#ifdef CONFIG_PM
1432static int stm32_dma_runtime_suspend(struct device *dev)
1433{
1434	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1435
1436	clk_disable_unprepare(dmadev->clk);
1437
1438	return 0;
1439}
1440
1441static int stm32_dma_runtime_resume(struct device *dev)
1442{
1443	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1444	int ret;
1445
1446	ret = clk_prepare_enable(dmadev->clk);
1447	if (ret) {
1448		dev_err(dev, "failed to prepare_enable clock\n");
1449		return ret;
1450	}
1451
1452	return 0;
1453}
1454#endif
1455
1456#ifdef CONFIG_PM_SLEEP
1457static int stm32_dma_suspend(struct device *dev)
1458{
1459	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1460	int id, ret, scr;
1461
1462	ret = pm_runtime_get_sync(dev);
1463	if (ret < 0)
1464		return ret;
1465
1466	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1467		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1468		if (scr & STM32_DMA_SCR_EN) {
1469			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1470			return -EBUSY;
1471		}
1472	}
1473
1474	pm_runtime_put_sync(dev);
1475
1476	pm_runtime_force_suspend(dev);
1477
1478	return 0;
1479}
1480
1481static int stm32_dma_resume(struct device *dev)
1482{
1483	return pm_runtime_force_resume(dev);
1484}
1485#endif
1486
1487static const struct dev_pm_ops stm32_dma_pm_ops = {
1488	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1489	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1490			   stm32_dma_runtime_resume, NULL)
1491};
1492
1493static struct platform_driver stm32_dma_driver = {
1494	.driver = {
1495		.name = "stm32-dma",
1496		.of_match_table = stm32_dma_of_match,
1497		.pm = &stm32_dma_pm_ops,
1498	},
1499	.probe = stm32_dma_probe,
1500};
1501
1502static int __init stm32_dma_init(void)
1503{
1504	return platform_driver_register(&stm32_dma_driver);
1505}
1506subsys_initcall(stm32_dma_init);