Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for STM32 DMA controller
   4 *
   5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
   6 *
   7 * Copyright (C) M'boumba Cedric Madianga 2015
   8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
   9 *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/clk.h>
  14#include <linux/delay.h>
  15#include <linux/dmaengine.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/err.h>
  18#include <linux/init.h>
  19#include <linux/iopoll.h>
  20#include <linux/jiffies.h>
  21#include <linux/list.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/of_dma.h>
  26#include <linux/platform_device.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/reset.h>
  29#include <linux/sched.h>
  30#include <linux/slab.h>
  31
  32#include "virt-dma.h"
  33
  34#define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
  35#define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
  36#define STM32_DMA_ISR(n)		(((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR)
  37#define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
  38#define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
  39#define STM32_DMA_IFCR(n)		(((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR)
  40#define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
  41#define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
  42#define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
  43#define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
  44#define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
  45#define STM32_DMA_MASKI			(STM32_DMA_TCI \
  46					 | STM32_DMA_TEI \
  47					 | STM32_DMA_DMEI \
  48					 | STM32_DMA_FEI)
  49/*
  50 * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits;
  51 * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
  52 */
  53#define STM32_DMA_FLAGS_SHIFT(n)	({ typeof(n) (_n) = (n); \
  54					   (((_n) & 2) << 3) | (((_n) & 1) * 6); })
  55
  56/* DMA Stream x Configuration Register */
  57#define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
  58#define STM32_DMA_SCR_REQ_MASK		GENMASK(27, 25)
  59#define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
  60#define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
  61#define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
  62#define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
  63#define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
  64#define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
  65#define STM32_DMA_SCR_TRBUFF		BIT(20) /* Bufferable transfer for USART/UART */
  66#define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
  67#define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
  68#define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
  69#define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
  70#define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
  71#define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
  72#define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
  73#define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
  74						*/
  75#define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
  76#define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
  77#define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
  78#define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
  79					| STM32_DMA_SCR_MINC \
  80					| STM32_DMA_SCR_PINCOS \
  81					| STM32_DMA_SCR_PL_MASK)
  82#define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
  83					| STM32_DMA_SCR_TEIE \
  84					| STM32_DMA_SCR_DMEIE)
  85
  86/* DMA Stream x number of data register */
  87#define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
  88
  89/* DMA stream peripheral address register */
  90#define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
  91
  92/* DMA stream x memory 0 address register */
  93#define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
  94
  95/* DMA stream x memory 1 address register */
  96#define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
  97
  98/* DMA stream x FIFO control register */
  99#define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
 100#define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
 101#define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
 102#define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
 103#define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
 104					| STM32_DMA_SFCR_DMDIS)
 105
 106/* DMA direction */
 107#define STM32_DMA_DEV_TO_MEM		0x00
 108#define	STM32_DMA_MEM_TO_DEV		0x01
 109#define	STM32_DMA_MEM_TO_MEM		0x02
 110
 111/* DMA priority level */
 112#define STM32_DMA_PRIORITY_LOW		0x00
 113#define STM32_DMA_PRIORITY_MEDIUM	0x01
 114#define STM32_DMA_PRIORITY_HIGH		0x02
 115#define STM32_DMA_PRIORITY_VERY_HIGH	0x03
 116
 117/* DMA FIFO threshold selection */
 118#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
 119#define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
 120#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
 121#define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
 122#define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
 123
 124#define STM32_DMA_MAX_DATA_ITEMS	0xffff
 125/*
 126 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
 127 * gather at boundary. Thus it's safer to round down this value on FIFO
 128 * size (16 Bytes)
 129 */
 130#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
 131	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
 132#define STM32_DMA_MAX_CHANNELS		0x08
 133#define STM32_DMA_MAX_REQUEST_ID	0x08
 134#define STM32_DMA_MAX_DATA_PARAM	0x03
 135#define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
 136#define STM32_DMA_MIN_BURST		4
 137#define STM32_DMA_MAX_BURST		16
 138
 139/* DMA Features */
 140#define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
 141#define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
 142#define STM32_DMA_ALT_ACK_MODE_MASK	BIT(4)
 143#define STM32_DMA_MDMA_STREAM_ID_MASK	GENMASK(19, 16)
 144
 145enum stm32_dma_width {
 146	STM32_DMA_BYTE,
 147	STM32_DMA_HALF_WORD,
 148	STM32_DMA_WORD,
 149};
 150
 151enum stm32_dma_burst_size {
 152	STM32_DMA_BURST_SINGLE,
 153	STM32_DMA_BURST_INCR4,
 154	STM32_DMA_BURST_INCR8,
 155	STM32_DMA_BURST_INCR16,
 156};
 157
 158/**
 159 * struct stm32_dma_cfg - STM32 DMA custom configuration
 160 * @channel_id: channel ID
 161 * @request_line: DMA request
 162 * @stream_config: 32bit mask specifying the DMA channel configuration
 163 * @features: 32bit mask specifying the DMA Feature list
 164 */
 165struct stm32_dma_cfg {
 166	u32 channel_id;
 167	u32 request_line;
 168	u32 stream_config;
 169	u32 features;
 170};
 171
 172struct stm32_dma_chan_reg {
 173	u32 dma_lisr;
 174	u32 dma_hisr;
 175	u32 dma_lifcr;
 176	u32 dma_hifcr;
 177	u32 dma_scr;
 178	u32 dma_sndtr;
 179	u32 dma_spar;
 180	u32 dma_sm0ar;
 181	u32 dma_sm1ar;
 182	u32 dma_sfcr;
 183};
 184
 185struct stm32_dma_sg_req {
 186	u32 len;
 187	struct stm32_dma_chan_reg chan_reg;
 188};
 189
 190struct stm32_dma_desc {
 191	struct virt_dma_desc vdesc;
 192	bool cyclic;
 193	u32 num_sgs;
 194	struct stm32_dma_sg_req sg_req[];
 195};
 196
 197/**
 198 * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration
 199 * @stream_id: DMA request to trigger STM32 MDMA transfer
 200 * @ifcr: DMA interrupt flag clear register address,
 201 *        used by STM32 MDMA to clear DMA Transfer Complete flag
 202 * @tcf: DMA Transfer Complete flag
 203 */
 204struct stm32_dma_mdma_config {
 205	u32 stream_id;
 206	u32 ifcr;
 207	u32 tcf;
 208};
 209
 210struct stm32_dma_chan {
 211	struct virt_dma_chan vchan;
 212	bool config_init;
 213	bool busy;
 214	u32 id;
 215	u32 irq;
 216	struct stm32_dma_desc *desc;
 217	u32 next_sg;
 218	struct dma_slave_config	dma_sconfig;
 219	struct stm32_dma_chan_reg chan_reg;
 220	u32 threshold;
 221	u32 mem_burst;
 222	u32 mem_width;
 223	enum dma_status status;
 224	bool trig_mdma;
 225	struct stm32_dma_mdma_config mdma_config;
 226};
 227
 228struct stm32_dma_device {
 229	struct dma_device ddev;
 230	void __iomem *base;
 231	struct clk *clk;
 232	bool mem2mem;
 233	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
 234};
 235
 236static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
 237{
 238	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
 239			    ddev);
 240}
 241
 242static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
 243{
 244	return container_of(c, struct stm32_dma_chan, vchan.chan);
 245}
 246
 247static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
 248{
 249	return container_of(vdesc, struct stm32_dma_desc, vdesc);
 250}
 251
 252static struct device *chan2dev(struct stm32_dma_chan *chan)
 253{
 254	return &chan->vchan.chan.dev->device;
 255}
 256
 257static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
 258{
 259	return readl_relaxed(dmadev->base + reg);
 260}
 261
 262static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
 263{
 264	writel_relaxed(val, dmadev->base + reg);
 265}
 266
 267static int stm32_dma_get_width(struct stm32_dma_chan *chan,
 268			       enum dma_slave_buswidth width)
 269{
 270	switch (width) {
 271	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 272		return STM32_DMA_BYTE;
 273	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 274		return STM32_DMA_HALF_WORD;
 275	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 276		return STM32_DMA_WORD;
 277	default:
 278		dev_err(chan2dev(chan), "Dma bus width not supported\n");
 279		return -EINVAL;
 280	}
 281}
 282
 283static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
 284						       dma_addr_t buf_addr,
 285						       u32 threshold)
 286{
 287	enum dma_slave_buswidth max_width;
 288
 289	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
 290		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 291	else
 292		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 293
 294	while ((buf_len < max_width  || buf_len % max_width) &&
 295	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
 296		max_width = max_width >> 1;
 297
 298	if (buf_addr & (max_width - 1))
 299		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 300
 301	return max_width;
 302}
 303
 304static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
 305						enum dma_slave_buswidth width)
 306{
 307	u32 remaining;
 308
 309	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 310		return false;
 311
 312	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 313		if (burst != 0) {
 314			/*
 315			 * If number of beats fit in several whole bursts
 316			 * this configuration is allowed.
 317			 */
 318			remaining = ((STM32_DMA_FIFO_SIZE / width) *
 319				     (threshold + 1) / 4) % burst;
 320
 321			if (remaining == 0)
 322				return true;
 323		} else {
 324			return true;
 325		}
 326	}
 327
 328	return false;
 329}
 330
 331static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
 332{
 333	/* If FIFO direct mode, burst is not possible */
 334	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 335		return false;
 336
 337	/*
 338	 * Buffer or period length has to be aligned on FIFO depth.
 339	 * Otherwise bytes may be stuck within FIFO at buffer or period
 340	 * length.
 341	 */
 342	return ((buf_len % ((threshold + 1) * 4)) == 0);
 343}
 344
 345static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
 346				    enum dma_slave_buswidth width)
 347{
 348	u32 best_burst = max_burst;
 349
 350	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
 351		return 0;
 352
 353	while ((buf_len < best_burst * width && best_burst > 1) ||
 354	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
 355						    width)) {
 356		if (best_burst > STM32_DMA_MIN_BURST)
 357			best_burst = best_burst >> 1;
 358		else
 359			best_burst = 0;
 360	}
 361
 362	return best_burst;
 363}
 364
 365static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
 366{
 367	switch (maxburst) {
 368	case 0:
 369	case 1:
 370		return STM32_DMA_BURST_SINGLE;
 371	case 4:
 372		return STM32_DMA_BURST_INCR4;
 373	case 8:
 374		return STM32_DMA_BURST_INCR8;
 375	case 16:
 376		return STM32_DMA_BURST_INCR16;
 377	default:
 378		dev_err(chan2dev(chan), "Dma burst size not supported\n");
 379		return -EINVAL;
 380	}
 381}
 382
 383static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
 384				      u32 src_burst, u32 dst_burst)
 385{
 386	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
 387	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
 388
 389	if (!src_burst && !dst_burst) {
 390		/* Using direct mode */
 391		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
 392	} else {
 393		/* Using FIFO mode */
 394		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
 395	}
 396}
 397
 398static int stm32_dma_slave_config(struct dma_chan *c,
 399				  struct dma_slave_config *config)
 400{
 401	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 402
 403	memcpy(&chan->dma_sconfig, config, sizeof(*config));
 404
 405	/* Check if user is requesting DMA to trigger STM32 MDMA */
 406	if (config->peripheral_size) {
 407		config->peripheral_config = &chan->mdma_config;
 408		config->peripheral_size = sizeof(chan->mdma_config);
 409		chan->trig_mdma = true;
 410	}
 411
 412	chan->config_init = true;
 413
 414	return 0;
 415}
 416
 417static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
 418{
 419	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 420	u32 flags, dma_isr;
 421
 422	/*
 423	 * Read "flags" from DMA_xISR register corresponding to the selected
 424	 * DMA channel at the correct bit offset inside that register.
 425	 */
 426
 427	dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id));
 428	flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id);
 429
 430	return flags & STM32_DMA_MASKI;
 431}
 432
 433static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
 434{
 435	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 436	u32 dma_ifcr;
 437
 438	/*
 439	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
 440	 * DMA channel at the correct bit offset inside that register.
 441	 */
 442	flags &= STM32_DMA_MASKI;
 443	dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id);
 444
 445	stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr);
 446}
 447
 448static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
 449{
 450	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 451	u32 dma_scr, id, reg;
 452
 453	id = chan->id;
 454	reg = STM32_DMA_SCR(id);
 455	dma_scr = stm32_dma_read(dmadev, reg);
 456
 457	if (dma_scr & STM32_DMA_SCR_EN) {
 458		dma_scr &= ~STM32_DMA_SCR_EN;
 459		stm32_dma_write(dmadev, reg, dma_scr);
 460
 461		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
 462					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
 463					10, 1000000);
 464	}
 465
 466	return 0;
 467}
 468
 469static void stm32_dma_stop(struct stm32_dma_chan *chan)
 470{
 471	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 472	u32 dma_scr, dma_sfcr, status;
 473	int ret;
 474
 475	/* Disable interrupts */
 476	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 477	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
 478	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 479	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 480	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
 481	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
 482
 483	/* Disable DMA */
 484	ret = stm32_dma_disable_chan(chan);
 485	if (ret < 0)
 486		return;
 487
 488	/* Clear interrupt status if it is there */
 489	status = stm32_dma_irq_status(chan);
 490	if (status) {
 491		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
 492			__func__, status);
 493		stm32_dma_irq_clear(chan, status);
 494	}
 495
 496	chan->busy = false;
 497	chan->status = DMA_COMPLETE;
 498}
 499
 500static int stm32_dma_terminate_all(struct dma_chan *c)
 501{
 502	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 503	unsigned long flags;
 504	LIST_HEAD(head);
 505
 506	spin_lock_irqsave(&chan->vchan.lock, flags);
 507
 508	if (chan->desc) {
 509		dma_cookie_complete(&chan->desc->vdesc.tx);
 510		vchan_terminate_vdesc(&chan->desc->vdesc);
 511		if (chan->busy)
 512			stm32_dma_stop(chan);
 513		chan->desc = NULL;
 514	}
 515
 516	vchan_get_all_descriptors(&chan->vchan, &head);
 517	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 518	vchan_dma_desc_free_list(&chan->vchan, &head);
 519
 520	return 0;
 521}
 522
 523static void stm32_dma_synchronize(struct dma_chan *c)
 524{
 525	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 526
 527	vchan_synchronize(&chan->vchan);
 528}
 529
 530static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
 531{
 532	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 533	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 534	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
 535	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
 536	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
 537	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
 538	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 539
 540	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
 541	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
 542	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
 543	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
 544	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
 545	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
 546}
 547
 548static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
 549{
 550	chan->next_sg++;
 551	if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
 552		chan->next_sg = 0;
 553}
 554
 555static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
 556
 557static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
 558{
 559	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 560	struct virt_dma_desc *vdesc;
 561	struct stm32_dma_sg_req *sg_req;
 562	struct stm32_dma_chan_reg *reg;
 563	u32 status;
 564	int ret;
 565
 566	ret = stm32_dma_disable_chan(chan);
 567	if (ret < 0)
 568		return;
 569
 570	if (!chan->desc) {
 571		vdesc = vchan_next_desc(&chan->vchan);
 572		if (!vdesc)
 573			return;
 574
 575		list_del(&vdesc->node);
 576
 577		chan->desc = to_stm32_dma_desc(vdesc);
 578		chan->next_sg = 0;
 579	}
 580
 581	if (chan->next_sg == chan->desc->num_sgs)
 582		chan->next_sg = 0;
 583
 584	sg_req = &chan->desc->sg_req[chan->next_sg];
 585	reg = &sg_req->chan_reg;
 586
 587	/* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */
 588	if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV)
 589		reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
 590
 591	reg->dma_scr &= ~STM32_DMA_SCR_EN;
 592	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 593	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
 594	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
 595	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
 596	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
 597	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
 598
 599	stm32_dma_sg_inc(chan);
 600
 601	/* Clear interrupt status if it is there */
 602	status = stm32_dma_irq_status(chan);
 603	if (status)
 604		stm32_dma_irq_clear(chan, status);
 605
 606	if (chan->desc->cyclic)
 607		stm32_dma_configure_next_sg(chan);
 608
 609	stm32_dma_dump_reg(chan);
 610
 611	/* Start DMA */
 612	chan->busy = true;
 613	chan->status = DMA_IN_PROGRESS;
 614	reg->dma_scr |= STM32_DMA_SCR_EN;
 615	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 616
 617	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
 618}
 619
 620static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
 621{
 622	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 623	struct stm32_dma_sg_req *sg_req;
 624	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
 625
 626	id = chan->id;
 627	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 628
 629	sg_req = &chan->desc->sg_req[chan->next_sg];
 630
 631	if (dma_scr & STM32_DMA_SCR_CT) {
 632		dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
 633		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
 634		dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
 635			stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
 636	} else {
 637		dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
 638		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
 639		dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
 640			stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
 641	}
 642}
 643
 644static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
 645{
 646	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 647	u32 dma_scr;
 648
 649	/*
 650	 * Read and store current remaining data items and peripheral/memory addresses to be
 651	 * updated on resume
 652	 */
 653	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 654	/*
 655	 * Transfer can be paused while between a previous resume and reconfiguration on transfer
 656	 * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
 657	 * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
 658	 */
 659	if (chan->desc && chan->desc->cyclic) {
 660		if (chan->desc->num_sgs == 1)
 661			dma_scr |= STM32_DMA_SCR_CIRC;
 662		else
 663			dma_scr |= STM32_DMA_SCR_DBM;
 664	}
 665	chan->chan_reg.dma_scr = dma_scr;
 666
 667	/*
 668	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
 669	 * on resume NDTR autoreload value will be wrong (lower than the initial period length)
 670	 */
 671	if (chan->desc && chan->desc->cyclic) {
 672		dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
 673		stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 674	}
 675
 676	chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
 677
 678	chan->status = DMA_PAUSED;
 679
 680	dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
 681}
 682
 683static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
 684{
 685	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 686	struct stm32_dma_sg_req *sg_req;
 687	u32 dma_scr, status, id;
 688
 689	id = chan->id;
 690	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 691
 692	/* Clear interrupt status if it is there */
 693	status = stm32_dma_irq_status(chan);
 694	if (status)
 695		stm32_dma_irq_clear(chan, status);
 696
 697	if (!chan->next_sg)
 698		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
 699	else
 700		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
 701
 702	/* Reconfigure NDTR with the initial value */
 703	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
 704
 705	/* Restore SPAR */
 706	stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
 707
 708	/* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
 709	stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
 710	stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
 711
 712	/* Reactivate CIRC/DBM if needed */
 713	if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
 714		dma_scr |= STM32_DMA_SCR_DBM;
 715		/* Restore CT */
 716		if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
 717			dma_scr &= ~STM32_DMA_SCR_CT;
 718		else
 719			dma_scr |= STM32_DMA_SCR_CT;
 720	} else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
 721		dma_scr |= STM32_DMA_SCR_CIRC;
 722	}
 723	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 724
 725	stm32_dma_configure_next_sg(chan);
 726
 727	stm32_dma_dump_reg(chan);
 728
 729	dma_scr |= STM32_DMA_SCR_EN;
 730	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 731
 732	dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
 733}
 734
 735static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
 736{
 737	if (!chan->desc)
 738		return;
 739
 740	if (chan->desc->cyclic) {
 741		vchan_cyclic_callback(&chan->desc->vdesc);
 742		if (chan->trig_mdma)
 743			return;
 744		stm32_dma_sg_inc(chan);
 745		/* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
 746		if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
 747			stm32_dma_post_resume_reconfigure(chan);
 748		else if (scr & STM32_DMA_SCR_DBM)
 749			stm32_dma_configure_next_sg(chan);
 750	} else {
 751		chan->busy = false;
 752		chan->status = DMA_COMPLETE;
 753		if (chan->next_sg == chan->desc->num_sgs) {
 754			vchan_cookie_complete(&chan->desc->vdesc);
 755			chan->desc = NULL;
 756		}
 757		stm32_dma_start_transfer(chan);
 758	}
 759}
 760
 761static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
 762{
 763	struct stm32_dma_chan *chan = devid;
 764	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 765	u32 status, scr, sfcr;
 766
 767	spin_lock(&chan->vchan.lock);
 768
 769	status = stm32_dma_irq_status(chan);
 770	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 771	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 772
 773	if (status & STM32_DMA_FEI) {
 774		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
 775		status &= ~STM32_DMA_FEI;
 776		if (sfcr & STM32_DMA_SFCR_FEIE) {
 777			if (!(scr & STM32_DMA_SCR_EN) &&
 778			    !(status & STM32_DMA_TCI))
 779				dev_err(chan2dev(chan), "FIFO Error\n");
 780			else
 781				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
 782		}
 783	}
 784	if (status & STM32_DMA_DMEI) {
 785		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
 786		status &= ~STM32_DMA_DMEI;
 787		if (sfcr & STM32_DMA_SCR_DMEIE)
 788			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
 789	}
 790
 791	if (status & STM32_DMA_TCI) {
 792		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
 793		if (scr & STM32_DMA_SCR_TCIE) {
 794			if (chan->status != DMA_PAUSED)
 795				stm32_dma_handle_chan_done(chan, scr);
 796		}
 797		status &= ~STM32_DMA_TCI;
 798	}
 799
 800	if (status & STM32_DMA_HTI) {
 801		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
 802		status &= ~STM32_DMA_HTI;
 803	}
 804
 805	if (status) {
 806		stm32_dma_irq_clear(chan, status);
 807		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
 808		if (!(scr & STM32_DMA_SCR_EN))
 809			dev_err(chan2dev(chan), "chan disabled by HW\n");
 810	}
 811
 812	spin_unlock(&chan->vchan.lock);
 813
 814	return IRQ_HANDLED;
 815}
 816
 817static void stm32_dma_issue_pending(struct dma_chan *c)
 818{
 819	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 820	unsigned long flags;
 821
 822	spin_lock_irqsave(&chan->vchan.lock, flags);
 823	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
 824		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
 825		stm32_dma_start_transfer(chan);
 826
 827	}
 828	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 829}
 830
 831static int stm32_dma_pause(struct dma_chan *c)
 832{
 833	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 834	unsigned long flags;
 835	int ret;
 836
 837	if (chan->status != DMA_IN_PROGRESS)
 838		return -EPERM;
 839
 840	spin_lock_irqsave(&chan->vchan.lock, flags);
 841
 842	ret = stm32_dma_disable_chan(chan);
 843	if (!ret)
 844		stm32_dma_handle_chan_paused(chan);
 845
 846	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 847
 848	return ret;
 849}
 850
 851static int stm32_dma_resume(struct dma_chan *c)
 852{
 853	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 854	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 855	struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
 856	u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
 857	struct stm32_dma_sg_req *sg_req;
 858	unsigned long flags;
 859
 860	if (chan->status != DMA_PAUSED)
 861		return -EPERM;
 862
 863	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 864	if (WARN_ON(scr & STM32_DMA_SCR_EN))
 865		return -EPERM;
 866
 867	spin_lock_irqsave(&chan->vchan.lock, flags);
 868
 869	/* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
 870	if (!chan->next_sg)
 871		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
 872	else
 873		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
 874
 875	ndtr = sg_req->chan_reg.dma_sndtr;
 876	offset = (ndtr - chan_reg.dma_sndtr);
 877	offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr);
 878	spar = sg_req->chan_reg.dma_spar;
 879	sm0ar = sg_req->chan_reg.dma_sm0ar;
 880	sm1ar = sg_req->chan_reg.dma_sm1ar;
 881
 882	/*
 883	 * The peripheral and/or memory addresses have to be updated in order to adjust the
 884	 * address pointers. Need to check increment.
 885	 */
 886	if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
 887		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
 888	else
 889		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
 890
 891	if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
 892		offset = 0;
 893
 894	/*
 895	 * In case of DBM, the current target could be SM1AR.
 896	 * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
 897	 * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
 898	 */
 899	if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
 900		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
 901	else
 902		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
 903
 904	/* NDTR must be restored otherwise internal HW counter won't be correctly reset */
 905	stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
 906
 907	/*
 908	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
 909	 * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
 910	 */
 911	if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
 912		chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
 913
 914	if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
 915		stm32_dma_configure_next_sg(chan);
 916
 917	stm32_dma_dump_reg(chan);
 918
 919	/* The stream may then be re-enabled to restart transfer from the point it was stopped */
 920	chan->status = DMA_IN_PROGRESS;
 921	chan_reg.dma_scr |= STM32_DMA_SCR_EN;
 922	stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
 923
 924	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 925
 926	dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
 927
 928	return 0;
 929}
 930
 931static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
 932				    enum dma_transfer_direction direction,
 933				    enum dma_slave_buswidth *buswidth,
 934				    u32 buf_len, dma_addr_t buf_addr)
 935{
 936	enum dma_slave_buswidth src_addr_width, dst_addr_width;
 937	int src_bus_width, dst_bus_width;
 938	int src_burst_size, dst_burst_size;
 939	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
 940	u32 dma_scr, fifoth;
 941
 942	src_addr_width = chan->dma_sconfig.src_addr_width;
 943	dst_addr_width = chan->dma_sconfig.dst_addr_width;
 944	src_maxburst = chan->dma_sconfig.src_maxburst;
 945	dst_maxburst = chan->dma_sconfig.dst_maxburst;
 946	fifoth = chan->threshold;
 947
 948	switch (direction) {
 949	case DMA_MEM_TO_DEV:
 950		/* Set device data size */
 951		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 952		if (dst_bus_width < 0)
 953			return dst_bus_width;
 954
 955		/* Set device burst size */
 956		dst_best_burst = stm32_dma_get_best_burst(buf_len,
 957							  dst_maxburst,
 958							  fifoth,
 959							  dst_addr_width);
 960
 961		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 962		if (dst_burst_size < 0)
 963			return dst_burst_size;
 964
 965		/* Set memory data size */
 966		src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
 967							 fifoth);
 968		chan->mem_width = src_addr_width;
 969		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 970		if (src_bus_width < 0)
 971			return src_bus_width;
 972
 973		/*
 974		 * Set memory burst size - burst not possible if address is not aligned on
 975		 * the address boundary equal to the size of the transfer
 976		 */
 977		if (buf_addr & (buf_len - 1))
 978			src_maxburst = 1;
 979		else
 980			src_maxburst = STM32_DMA_MAX_BURST;
 981		src_best_burst = stm32_dma_get_best_burst(buf_len,
 982							  src_maxburst,
 983							  fifoth,
 984							  src_addr_width);
 985		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 986		if (src_burst_size < 0)
 987			return src_burst_size;
 988
 989		dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) |
 990			FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) |
 991			FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) |
 992			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) |
 993			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size);
 994
 995		/* Set FIFO threshold */
 996		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 997		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
 998			chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
 999
1000		/* Set peripheral address */
1001		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
1002		*buswidth = dst_addr_width;
1003		break;
1004
1005	case DMA_DEV_TO_MEM:
1006		/* Set device data size */
1007		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
1008		if (src_bus_width < 0)
1009			return src_bus_width;
1010
1011		/* Set device burst size */
1012		src_best_burst = stm32_dma_get_best_burst(buf_len,
1013							  src_maxburst,
1014							  fifoth,
1015							  src_addr_width);
1016		chan->mem_burst = src_best_burst;
1017		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
1018		if (src_burst_size < 0)
1019			return src_burst_size;
1020
1021		/* Set memory data size */
1022		dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
1023							 fifoth);
1024		chan->mem_width = dst_addr_width;
1025		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
1026		if (dst_bus_width < 0)
1027			return dst_bus_width;
1028
1029		/*
1030		 * Set memory burst size - burst not possible if address is not aligned on
1031		 * the address boundary equal to the size of the transfer
1032		 */
1033		if (buf_addr & (buf_len - 1))
1034			dst_maxburst = 1;
1035		else
1036			dst_maxburst = STM32_DMA_MAX_BURST;
1037		dst_best_burst = stm32_dma_get_best_burst(buf_len,
1038							  dst_maxburst,
1039							  fifoth,
1040							  dst_addr_width);
1041		chan->mem_burst = dst_best_burst;
1042		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
1043		if (dst_burst_size < 0)
1044			return dst_burst_size;
1045
1046		dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) |
1047			FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) |
1048			FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) |
1049			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) |
1050			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size);
1051
1052		/* Set FIFO threshold */
1053		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
1054		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
1055			chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
1056
1057		/* Set peripheral address */
1058		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
1059		*buswidth = chan->dma_sconfig.src_addr_width;
1060		break;
1061
1062	default:
1063		dev_err(chan2dev(chan), "Dma direction is not supported\n");
1064		return -EINVAL;
1065	}
1066
1067	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
1068
1069	/* Set DMA control register */
1070	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
1071			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
1072			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
1073	chan->chan_reg.dma_scr |= dma_scr;
1074
1075	return 0;
1076}
1077
1078static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
1079{
1080	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
1081}
1082
1083static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
1084	struct dma_chan *c, struct scatterlist *sgl,
1085	u32 sg_len, enum dma_transfer_direction direction,
1086	unsigned long flags, void *context)
1087{
1088	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1089	struct stm32_dma_desc *desc;
1090	struct scatterlist *sg;
1091	enum dma_slave_buswidth buswidth;
1092	u32 nb_data_items;
1093	int i, ret;
1094
1095	if (!chan->config_init) {
1096		dev_err(chan2dev(chan), "dma channel is not configured\n");
1097		return NULL;
1098	}
1099
1100	if (sg_len < 1) {
1101		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
1102		return NULL;
1103	}
1104
1105	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
1106	if (!desc)
1107		return NULL;
1108
1109	/* Set peripheral flow controller */
1110	if (chan->dma_sconfig.device_fc)
1111		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
1112	else
1113		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1114
1115	/* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */
1116	if (chan->trig_mdma && sg_len > 1)
1117		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1118
1119	for_each_sg(sgl, sg, sg_len, i) {
1120		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
1121					       sg_dma_len(sg),
1122					       sg_dma_address(sg));
1123		if (ret < 0)
1124			goto err;
1125
1126		desc->sg_req[i].len = sg_dma_len(sg);
1127
1128		nb_data_items = desc->sg_req[i].len / buswidth;
1129		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1130			dev_err(chan2dev(chan), "nb items not supported\n");
1131			goto err;
1132		}
1133
1134		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1135		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1136		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1137		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1138		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
1139		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
1140		if (chan->trig_mdma)
1141			desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg);
1142		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1143	}
1144
1145	desc->num_sgs = sg_len;
1146	desc->cyclic = false;
1147
1148	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1149
1150err:
1151	kfree(desc);
1152	return NULL;
1153}
1154
1155static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
1156	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
1157	size_t period_len, enum dma_transfer_direction direction,
1158	unsigned long flags)
1159{
1160	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1161	struct stm32_dma_desc *desc;
1162	enum dma_slave_buswidth buswidth;
1163	u32 num_periods, nb_data_items;
1164	int i, ret;
1165
1166	if (!buf_len || !period_len) {
1167		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
1168		return NULL;
1169	}
1170
1171	if (!chan->config_init) {
1172		dev_err(chan2dev(chan), "dma channel is not configured\n");
1173		return NULL;
1174	}
1175
1176	if (buf_len % period_len) {
1177		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
1178		return NULL;
1179	}
1180
1181	/*
1182	 * We allow to take more number of requests till DMA is
1183	 * not started. The driver will loop over all requests.
1184	 * Once DMA is started then new requests can be queued only after
1185	 * terminating the DMA.
1186	 */
1187	if (chan->busy) {
1188		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
1189		return NULL;
1190	}
1191
1192	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
1193				       buf_addr);
1194	if (ret < 0)
1195		return NULL;
1196
1197	nb_data_items = period_len / buswidth;
1198	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1199		dev_err(chan2dev(chan), "number of items not supported\n");
1200		return NULL;
1201	}
1202
1203	/*  Enable Circular mode or double buffer mode */
1204	if (buf_len == period_len) {
1205		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
1206	} else {
1207		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1208		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1209	}
1210
1211	/* Clear periph ctrl if client set it */
1212	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1213
1214	num_periods = buf_len / period_len;
1215
1216	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
1217	if (!desc)
1218		return NULL;
1219
1220	for (i = 0; i < num_periods; i++) {
1221		desc->sg_req[i].len = period_len;
1222
1223		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1224		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1225		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1226		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1227		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1228		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1229		if (chan->trig_mdma)
1230			desc->sg_req[i].chan_reg.dma_sm1ar += period_len;
1231		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1232		if (!chan->trig_mdma)
1233			buf_addr += period_len;
1234	}
1235
1236	desc->num_sgs = num_periods;
1237	desc->cyclic = true;
1238
1239	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1240}
1241
1242static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1243	struct dma_chan *c, dma_addr_t dest,
1244	dma_addr_t src, size_t len, unsigned long flags)
1245{
1246	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1247	enum dma_slave_buswidth max_width;
1248	struct stm32_dma_desc *desc;
1249	size_t xfer_count, offset;
1250	u32 num_sgs, best_burst, dma_burst, threshold;
1251	int i;
1252
1253	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1254	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1255	if (!desc)
1256		return NULL;
1257
1258	threshold = chan->threshold;
1259
1260	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1261		xfer_count = min_t(size_t, len - offset,
1262				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1263
1264		/* Compute best burst size */
1265		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1266		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1267						      threshold, max_width);
1268		dma_burst = stm32_dma_get_burst(chan, best_burst);
1269
1270		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1271		desc->sg_req[i].chan_reg.dma_scr =
1272			FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) |
1273			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) |
1274			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) |
1275			STM32_DMA_SCR_MINC |
1276			STM32_DMA_SCR_PINC |
1277			STM32_DMA_SCR_TCIE |
1278			STM32_DMA_SCR_TEIE;
1279		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1280		desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold);
1281		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1282		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1283		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1284		desc->sg_req[i].len = xfer_count;
1285	}
1286
1287	desc->num_sgs = num_sgs;
1288	desc->cyclic = false;
1289
1290	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1291}
1292
1293static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1294{
1295	u32 dma_scr, width, ndtr;
1296	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1297
1298	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1299	width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr);
1300	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1301
1302	return ndtr << width;
1303}
1304
1305/**
1306 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1307 * @chan: dma channel
1308 *
1309 * This function called when IRQ are disable, checks that the hardware has not
1310 * switched on the next transfer in double buffer mode. The test is done by
1311 * comparing the next_sg memory address with the hardware related register
1312 * (based on CT bit value).
1313 *
1314 * Returns true if expected current transfer is still running or double
1315 * buffer mode is not activated.
1316 */
1317static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1318{
1319	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1320	struct stm32_dma_sg_req *sg_req;
1321	u32 dma_scr, dma_smar, id, period_len;
1322
1323	id = chan->id;
1324	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1325
1326	/* In cyclic CIRC but not DBM, CT is not used */
1327	if (!(dma_scr & STM32_DMA_SCR_DBM))
1328		return true;
1329
1330	sg_req = &chan->desc->sg_req[chan->next_sg];
1331	period_len = sg_req->len;
1332
1333	/* DBM - take care of a previous pause/resume not yet post reconfigured */
1334	if (dma_scr & STM32_DMA_SCR_CT) {
1335		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1336		/*
1337		 * If transfer has been pause/resumed,
1338		 * SM0AR is in the range of [SM0AR:SM0AR+period_len]
1339		 */
1340		return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
1341			dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
1342	}
1343
1344	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1345	/*
1346	 * If transfer has been pause/resumed,
1347	 * SM1AR is in the range of [SM1AR:SM1AR+period_len]
1348	 */
1349	return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
1350		dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
1351}
1352
1353static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1354				     struct stm32_dma_desc *desc,
1355				     u32 next_sg)
1356{
1357	u32 modulo, burst_size;
1358	u32 residue;
1359	u32 n_sg = next_sg;
1360	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1361	int i;
1362
1363	/*
1364	 * Calculate the residue means compute the descriptors
1365	 * information:
1366	 * - the sg_req currently transferred
1367	 * - the Hardware remaining position in this sg (NDTR bits field).
1368	 *
1369	 * A race condition may occur if DMA is running in cyclic or double
1370	 * buffer mode, since the DMA register are automatically reloaded at end
1371	 * of period transfer. The hardware may have switched to the next
1372	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1373	 * read.
1374	 * In this case the SxNDTR reg could (or not) correspond to the new
1375	 * transfer position, and not the expected one.
1376	 * The strategy implemented in the stm32 driver is to:
1377	 *  - read the SxNDTR register
1378	 *  - crosscheck that hardware is still in current transfer.
1379	 * In case of switch, we can assume that the DMA is at the beginning of
1380	 * the next transfer. So we approximate the residue in consequence, by
1381	 * pointing on the beginning of next transfer.
1382	 *
1383	 * This race condition doesn't apply for none cyclic mode, as double
1384	 * buffer is not used. In such situation registers are updated by the
1385	 * software.
1386	 */
1387
1388	residue = stm32_dma_get_remaining_bytes(chan);
1389
1390	if (chan->desc->cyclic && !stm32_dma_is_current_sg(chan)) {
1391		n_sg++;
1392		if (n_sg == chan->desc->num_sgs)
1393			n_sg = 0;
1394		residue = sg_req->len;
1395	}
1396
1397	/*
1398	 * In cyclic mode, for the last period, residue = remaining bytes
1399	 * from NDTR,
1400	 * else for all other periods in cyclic mode, and in sg mode,
1401	 * residue = remaining bytes from NDTR + remaining
1402	 * periods/sg to be transferred
1403	 */
1404	if (!chan->desc->cyclic || n_sg != 0)
1405		for (i = n_sg; i < desc->num_sgs; i++)
1406			residue += desc->sg_req[i].len;
1407
1408	if (!chan->mem_burst)
1409		return residue;
1410
1411	burst_size = chan->mem_burst * chan->mem_width;
1412	modulo = residue % burst_size;
1413	if (modulo)
1414		residue = residue - modulo + burst_size;
1415
1416	return residue;
1417}
1418
1419static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1420					   dma_cookie_t cookie,
1421					   struct dma_tx_state *state)
1422{
1423	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1424	struct virt_dma_desc *vdesc;
1425	enum dma_status status;
1426	unsigned long flags;
1427	u32 residue = 0;
1428
1429	status = dma_cookie_status(c, cookie, state);
1430	if (status == DMA_COMPLETE)
1431		return status;
1432
1433	status = chan->status;
1434
1435	if (!state)
1436		return status;
1437
1438	spin_lock_irqsave(&chan->vchan.lock, flags);
1439	vdesc = vchan_find_desc(&chan->vchan, cookie);
1440	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1441		residue = stm32_dma_desc_residue(chan, chan->desc,
1442						 chan->next_sg);
1443	else if (vdesc)
1444		residue = stm32_dma_desc_residue(chan,
1445						 to_stm32_dma_desc(vdesc), 0);
1446	dma_set_residue(state, residue);
1447
1448	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1449
1450	return status;
1451}
1452
1453static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1454{
1455	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1456	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1457	int ret;
1458
1459	chan->config_init = false;
1460
1461	ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1462	if (ret < 0)
1463		return ret;
1464
1465	ret = stm32_dma_disable_chan(chan);
1466	if (ret < 0)
1467		pm_runtime_put(dmadev->ddev.dev);
1468
1469	return ret;
1470}
1471
1472static void stm32_dma_free_chan_resources(struct dma_chan *c)
1473{
1474	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1475	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1476	unsigned long flags;
1477
1478	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1479
1480	if (chan->busy) {
1481		spin_lock_irqsave(&chan->vchan.lock, flags);
1482		stm32_dma_stop(chan);
1483		chan->desc = NULL;
1484		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1485	}
1486
1487	pm_runtime_put(dmadev->ddev.dev);
1488
1489	vchan_free_chan_resources(to_virt_chan(c));
1490	stm32_dma_clear_reg(&chan->chan_reg);
1491	chan->threshold = 0;
1492}
1493
1494static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1495{
1496	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1497}
1498
1499static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1500				 struct stm32_dma_cfg *cfg)
1501{
1502	stm32_dma_clear_reg(&chan->chan_reg);
1503
1504	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1505	chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line);
1506
1507	/* Enable Interrupts  */
1508	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1509
1510	chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features);
1511	if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features))
1512		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1513	if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features))
1514		chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1515	chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features);
1516}
1517
1518static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1519					   struct of_dma *ofdma)
1520{
1521	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1522	struct device *dev = dmadev->ddev.dev;
1523	struct stm32_dma_cfg cfg;
1524	struct stm32_dma_chan *chan;
1525	struct dma_chan *c;
1526
1527	if (dma_spec->args_count < 4) {
1528		dev_err(dev, "Bad number of cells\n");
1529		return NULL;
1530	}
1531
1532	cfg.channel_id = dma_spec->args[0];
1533	cfg.request_line = dma_spec->args[1];
1534	cfg.stream_config = dma_spec->args[2];
1535	cfg.features = dma_spec->args[3];
1536
1537	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1538	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1539		dev_err(dev, "Bad channel and/or request id\n");
1540		return NULL;
1541	}
1542
1543	chan = &dmadev->chan[cfg.channel_id];
1544
1545	c = dma_get_slave_channel(&chan->vchan.chan);
1546	if (!c) {
1547		dev_err(dev, "No more channels available\n");
1548		return NULL;
1549	}
1550
1551	stm32_dma_set_config(chan, &cfg);
1552
1553	return c;
1554}
1555
1556static const struct of_device_id stm32_dma_of_match[] = {
1557	{ .compatible = "st,stm32-dma", },
1558	{ /* sentinel */ },
1559};
1560MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1561
1562static int stm32_dma_probe(struct platform_device *pdev)
1563{
1564	struct stm32_dma_chan *chan;
1565	struct stm32_dma_device *dmadev;
1566	struct dma_device *dd;
1567	const struct of_device_id *match;
1568	struct resource *res;
1569	struct reset_control *rst;
1570	int i, ret;
1571
1572	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1573	if (!match) {
1574		dev_err(&pdev->dev, "Error: No device match found\n");
1575		return -ENODEV;
1576	}
1577
1578	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1579	if (!dmadev)
1580		return -ENOMEM;
1581
1582	dd = &dmadev->ddev;
1583
1584	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1585	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1586	if (IS_ERR(dmadev->base))
1587		return PTR_ERR(dmadev->base);
1588
1589	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1590	if (IS_ERR(dmadev->clk))
1591		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1592
1593	ret = clk_prepare_enable(dmadev->clk);
1594	if (ret < 0) {
1595		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1596		return ret;
1597	}
1598
1599	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1600						"st,mem2mem");
1601
1602	rst = devm_reset_control_get(&pdev->dev, NULL);
1603	if (IS_ERR(rst)) {
1604		ret = PTR_ERR(rst);
1605		if (ret == -EPROBE_DEFER)
1606			goto clk_free;
1607	} else {
1608		reset_control_assert(rst);
1609		udelay(2);
1610		reset_control_deassert(rst);
1611	}
1612
1613	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1614
1615	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1616	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1617	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1618	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1619	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1620	dd->device_tx_status = stm32_dma_tx_status;
1621	dd->device_issue_pending = stm32_dma_issue_pending;
1622	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1623	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1624	dd->device_config = stm32_dma_slave_config;
1625	dd->device_pause = stm32_dma_pause;
1626	dd->device_resume = stm32_dma_resume;
1627	dd->device_terminate_all = stm32_dma_terminate_all;
1628	dd->device_synchronize = stm32_dma_synchronize;
1629	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1630		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1631		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1632	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1633		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1634		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1635	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1636	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1637	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1638	dd->max_burst = STM32_DMA_MAX_BURST;
1639	dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
1640	dd->descriptor_reuse = true;
1641	dd->dev = &pdev->dev;
1642	INIT_LIST_HEAD(&dd->channels);
1643
1644	if (dmadev->mem2mem) {
1645		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1646		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1647		dd->directions |= BIT(DMA_MEM_TO_MEM);
1648	}
1649
1650	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1651		chan = &dmadev->chan[i];
1652		chan->id = i;
1653		chan->vchan.desc_free = stm32_dma_desc_free;
1654		vchan_init(&chan->vchan, dd);
1655
1656		chan->mdma_config.ifcr = res->start;
1657		chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id);
1658
1659		chan->mdma_config.tcf = STM32_DMA_TCI;
1660		chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id);
1661	}
1662
1663	ret = dma_async_device_register(dd);
1664	if (ret)
1665		goto clk_free;
1666
1667	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1668		chan = &dmadev->chan[i];
1669		ret = platform_get_irq(pdev, i);
1670		if (ret < 0)
1671			goto err_unregister;
1672		chan->irq = ret;
1673
1674		ret = devm_request_irq(&pdev->dev, chan->irq,
1675				       stm32_dma_chan_irq, 0,
1676				       dev_name(chan2dev(chan)), chan);
1677		if (ret) {
1678			dev_err(&pdev->dev,
1679				"request_irq failed with err %d channel %d\n",
1680				ret, i);
1681			goto err_unregister;
1682		}
1683	}
1684
1685	ret = of_dma_controller_register(pdev->dev.of_node,
1686					 stm32_dma_of_xlate, dmadev);
1687	if (ret < 0) {
1688		dev_err(&pdev->dev,
1689			"STM32 DMA DMA OF registration failed %d\n", ret);
1690		goto err_unregister;
1691	}
1692
1693	platform_set_drvdata(pdev, dmadev);
1694
1695	pm_runtime_set_active(&pdev->dev);
1696	pm_runtime_enable(&pdev->dev);
1697	pm_runtime_get_noresume(&pdev->dev);
1698	pm_runtime_put(&pdev->dev);
1699
1700	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1701
1702	return 0;
1703
1704err_unregister:
1705	dma_async_device_unregister(dd);
1706clk_free:
1707	clk_disable_unprepare(dmadev->clk);
1708
1709	return ret;
1710}
1711
1712#ifdef CONFIG_PM
1713static int stm32_dma_runtime_suspend(struct device *dev)
1714{
1715	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1716
1717	clk_disable_unprepare(dmadev->clk);
1718
1719	return 0;
1720}
1721
1722static int stm32_dma_runtime_resume(struct device *dev)
1723{
1724	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1725	int ret;
1726
1727	ret = clk_prepare_enable(dmadev->clk);
1728	if (ret) {
1729		dev_err(dev, "failed to prepare_enable clock\n");
1730		return ret;
1731	}
1732
1733	return 0;
1734}
1735#endif
1736
1737#ifdef CONFIG_PM_SLEEP
1738static int stm32_dma_pm_suspend(struct device *dev)
1739{
1740	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1741	int id, ret, scr;
1742
1743	ret = pm_runtime_resume_and_get(dev);
1744	if (ret < 0)
1745		return ret;
1746
1747	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1748		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1749		if (scr & STM32_DMA_SCR_EN) {
1750			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1751			return -EBUSY;
1752		}
1753	}
1754
1755	pm_runtime_put_sync(dev);
1756
1757	pm_runtime_force_suspend(dev);
1758
1759	return 0;
1760}
1761
1762static int stm32_dma_pm_resume(struct device *dev)
1763{
1764	return pm_runtime_force_resume(dev);
1765}
1766#endif
1767
1768static const struct dev_pm_ops stm32_dma_pm_ops = {
1769	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
1770	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1771			   stm32_dma_runtime_resume, NULL)
1772};
1773
1774static struct platform_driver stm32_dma_driver = {
1775	.driver = {
1776		.name = "stm32-dma",
1777		.of_match_table = stm32_dma_of_match,
1778		.pm = &stm32_dma_pm_ops,
1779	},
1780	.probe = stm32_dma_probe,
1781};
1782
1783static int __init stm32_dma_init(void)
1784{
1785	return platform_driver_register(&stm32_dma_driver);
1786}
1787subsys_initcall(stm32_dma_init);