Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for STM32 DMA controller
   4 *
   5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
   6 *
   7 * Copyright (C) M'boumba Cedric Madianga 2015
   8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
   9 *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/delay.h>
  14#include <linux/dmaengine.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/err.h>
  17#include <linux/init.h>
  18#include <linux/jiffies.h>
  19#include <linux/list.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/of_device.h>
  23#include <linux/of_dma.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/reset.h>
  27#include <linux/sched.h>
  28#include <linux/slab.h>
  29
  30#include "virt-dma.h"
  31
  32#define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
  33#define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
  34#define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
  35#define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
  36#define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
  37#define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
  38#define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
  39#define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
  40#define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
  41#define STM32_DMA_MASKI			(STM32_DMA_TCI \
  42					 | STM32_DMA_TEI \
  43					 | STM32_DMA_DMEI \
  44					 | STM32_DMA_FEI)
  45
  46/* DMA Stream x Configuration Register */
  47#define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
  48#define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
  49#define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
  50#define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
  51#define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
  52#define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
  53#define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
  54#define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
  55#define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
  56#define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
  57#define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
  58#define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
  59#define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
  60#define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
  61#define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
  62#define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
  63#define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
  64#define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
  65#define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
  66#define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
  67#define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
  68#define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
  69#define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
  70						*/
  71#define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
  72#define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
  73#define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
  74#define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
  75					| STM32_DMA_SCR_MINC \
  76					| STM32_DMA_SCR_PINCOS \
  77					| STM32_DMA_SCR_PL_MASK)
  78#define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
  79					| STM32_DMA_SCR_TEIE \
  80					| STM32_DMA_SCR_DMEIE)
  81
  82/* DMA Stream x number of data register */
  83#define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
  84
  85/* DMA stream peripheral address register */
  86#define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
  87
  88/* DMA stream x memory 0 address register */
  89#define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
  90
  91/* DMA stream x memory 1 address register */
  92#define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
  93
  94/* DMA stream x FIFO control register */
  95#define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
  96#define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
  97#define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
  98#define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
  99#define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
 100#define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
 101					| STM32_DMA_SFCR_DMDIS)
 102
 103/* DMA direction */
 104#define STM32_DMA_DEV_TO_MEM		0x00
 105#define	STM32_DMA_MEM_TO_DEV		0x01
 106#define	STM32_DMA_MEM_TO_MEM		0x02
 107
 108/* DMA priority level */
 109#define STM32_DMA_PRIORITY_LOW		0x00
 110#define STM32_DMA_PRIORITY_MEDIUM	0x01
 111#define STM32_DMA_PRIORITY_HIGH		0x02
 112#define STM32_DMA_PRIORITY_VERY_HIGH	0x03
 113
 114/* DMA FIFO threshold selection */
 115#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
 116#define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
 117#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
 118#define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
 119
 120#define STM32_DMA_MAX_DATA_ITEMS	0xffff
 121/*
 122 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
 123 * gather at boundary. Thus it's safer to round down this value on FIFO
 124 * size (16 Bytes)
 125 */
 126#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
 127	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
 128#define STM32_DMA_MAX_CHANNELS		0x08
 129#define STM32_DMA_MAX_REQUEST_ID	0x08
 130#define STM32_DMA_MAX_DATA_PARAM	0x03
 131#define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
 132#define STM32_DMA_MIN_BURST		4
 133#define STM32_DMA_MAX_BURST		16
 134
 135/* DMA Features */
 136#define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
 137#define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
 138
 139enum stm32_dma_width {
 140	STM32_DMA_BYTE,
 141	STM32_DMA_HALF_WORD,
 142	STM32_DMA_WORD,
 143};
 144
 145enum stm32_dma_burst_size {
 146	STM32_DMA_BURST_SINGLE,
 147	STM32_DMA_BURST_INCR4,
 148	STM32_DMA_BURST_INCR8,
 149	STM32_DMA_BURST_INCR16,
 150};
 151
 152/**
 153 * struct stm32_dma_cfg - STM32 DMA custom configuration
 154 * @channel_id: channel ID
 155 * @request_line: DMA request
 156 * @stream_config: 32bit mask specifying the DMA channel configuration
 157 * @features: 32bit mask specifying the DMA Feature list
 158 */
 159struct stm32_dma_cfg {
 160	u32 channel_id;
 161	u32 request_line;
 162	u32 stream_config;
 163	u32 features;
 164};
 165
 166struct stm32_dma_chan_reg {
 167	u32 dma_lisr;
 168	u32 dma_hisr;
 169	u32 dma_lifcr;
 170	u32 dma_hifcr;
 171	u32 dma_scr;
 172	u32 dma_sndtr;
 173	u32 dma_spar;
 174	u32 dma_sm0ar;
 175	u32 dma_sm1ar;
 176	u32 dma_sfcr;
 177};
 178
 179struct stm32_dma_sg_req {
 180	u32 len;
 181	struct stm32_dma_chan_reg chan_reg;
 182};
 183
 184struct stm32_dma_desc {
 185	struct virt_dma_desc vdesc;
 186	bool cyclic;
 187	u32 num_sgs;
 188	struct stm32_dma_sg_req sg_req[];
 189};
 190
 191struct stm32_dma_chan {
 192	struct virt_dma_chan vchan;
 193	bool config_init;
 194	bool busy;
 195	u32 id;
 196	u32 irq;
 197	struct stm32_dma_desc *desc;
 198	u32 next_sg;
 199	struct dma_slave_config	dma_sconfig;
 200	struct stm32_dma_chan_reg chan_reg;
 201	u32 threshold;
 202	u32 mem_burst;
 203	u32 mem_width;
 204};
 205
 206struct stm32_dma_device {
 207	struct dma_device ddev;
 208	void __iomem *base;
 209	struct clk *clk;
 210	struct reset_control *rst;
 211	bool mem2mem;
 212	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
 213};
 214
 215static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
 216{
 217	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
 218			    ddev);
 219}
 220
 221static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
 222{
 223	return container_of(c, struct stm32_dma_chan, vchan.chan);
 224}
 225
 226static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
 227{
 228	return container_of(vdesc, struct stm32_dma_desc, vdesc);
 229}
 230
 231static struct device *chan2dev(struct stm32_dma_chan *chan)
 232{
 233	return &chan->vchan.chan.dev->device;
 234}
 235
 236static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
 237{
 238	return readl_relaxed(dmadev->base + reg);
 239}
 240
 241static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
 242{
 243	writel_relaxed(val, dmadev->base + reg);
 244}
 245
 246static int stm32_dma_get_width(struct stm32_dma_chan *chan,
 247			       enum dma_slave_buswidth width)
 248{
 249	switch (width) {
 250	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 251		return STM32_DMA_BYTE;
 252	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 253		return STM32_DMA_HALF_WORD;
 254	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 255		return STM32_DMA_WORD;
 256	default:
 257		dev_err(chan2dev(chan), "Dma bus width not supported\n");
 258		return -EINVAL;
 259	}
 260}
 261
 262static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
 263						       u32 threshold)
 264{
 265	enum dma_slave_buswidth max_width;
 266
 267	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
 268		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 269	else
 270		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 271
 272	while ((buf_len < max_width  || buf_len % max_width) &&
 273	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
 274		max_width = max_width >> 1;
 275
 276	return max_width;
 277}
 278
 279static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
 280						enum dma_slave_buswidth width)
 281{
 282	u32 remaining;
 283
 284	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 285		if (burst != 0) {
 286			/*
 287			 * If number of beats fit in several whole bursts
 288			 * this configuration is allowed.
 289			 */
 290			remaining = ((STM32_DMA_FIFO_SIZE / width) *
 291				     (threshold + 1) / 4) % burst;
 292
 293			if (remaining == 0)
 294				return true;
 295		} else {
 296			return true;
 297		}
 298	}
 299
 300	return false;
 301}
 302
 303static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
 304{
 305	/*
 306	 * Buffer or period length has to be aligned on FIFO depth.
 307	 * Otherwise bytes may be stuck within FIFO at buffer or period
 308	 * length.
 309	 */
 310	return ((buf_len % ((threshold + 1) * 4)) == 0);
 311}
 312
 313static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
 314				    enum dma_slave_buswidth width)
 315{
 316	u32 best_burst = max_burst;
 317
 318	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
 319		return 0;
 320
 321	while ((buf_len < best_burst * width && best_burst > 1) ||
 322	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
 323						    width)) {
 324		if (best_burst > STM32_DMA_MIN_BURST)
 325			best_burst = best_burst >> 1;
 326		else
 327			best_burst = 0;
 328	}
 329
 330	return best_burst;
 331}
 332
 333static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
 334{
 335	switch (maxburst) {
 336	case 0:
 337	case 1:
 338		return STM32_DMA_BURST_SINGLE;
 339	case 4:
 340		return STM32_DMA_BURST_INCR4;
 341	case 8:
 342		return STM32_DMA_BURST_INCR8;
 343	case 16:
 344		return STM32_DMA_BURST_INCR16;
 345	default:
 346		dev_err(chan2dev(chan), "Dma burst size not supported\n");
 347		return -EINVAL;
 348	}
 349}
 350
 351static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
 352				      u32 src_burst, u32 dst_burst)
 353{
 354	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
 355	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
 356
 357	if (!src_burst && !dst_burst) {
 358		/* Using direct mode */
 359		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
 360	} else {
 361		/* Using FIFO mode */
 362		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
 363	}
 364}
 365
 366static int stm32_dma_slave_config(struct dma_chan *c,
 367				  struct dma_slave_config *config)
 368{
 369	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 370
 371	memcpy(&chan->dma_sconfig, config, sizeof(*config));
 372
 373	chan->config_init = true;
 374
 375	return 0;
 376}
 377
 378static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
 379{
 380	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 381	u32 flags, dma_isr;
 382
 383	/*
 384	 * Read "flags" from DMA_xISR register corresponding to the selected
 385	 * DMA channel at the correct bit offset inside that register.
 386	 *
 387	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 388	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 389	 */
 390
 391	if (chan->id & 4)
 392		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
 393	else
 394		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
 395
 396	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 397
 398	return flags & STM32_DMA_MASKI;
 399}
 400
 401static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
 402{
 403	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 404	u32 dma_ifcr;
 405
 406	/*
 407	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
 408	 * DMA channel at the correct bit offset inside that register.
 409	 *
 410	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 411	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 412	 */
 413	flags &= STM32_DMA_MASKI;
 414	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 415
 416	if (chan->id & 4)
 417		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
 418	else
 419		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
 420}
 421
 422static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
 423{
 424	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 425	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
 426	u32 dma_scr, id;
 427
 428	id = chan->id;
 429	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 430
 431	if (dma_scr & STM32_DMA_SCR_EN) {
 432		dma_scr &= ~STM32_DMA_SCR_EN;
 433		stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
 434
 435		do {
 436			dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 437			dma_scr &= STM32_DMA_SCR_EN;
 438			if (!dma_scr)
 439				break;
 440
 441			if (time_after_eq(jiffies, timeout)) {
 442				dev_err(chan2dev(chan), "%s: timeout!\n",
 443					__func__);
 444				return -EBUSY;
 445			}
 446			cond_resched();
 447		} while (1);
 448	}
 449
 450	return 0;
 451}
 452
 453static void stm32_dma_stop(struct stm32_dma_chan *chan)
 454{
 455	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 456	u32 dma_scr, dma_sfcr, status;
 457	int ret;
 458
 459	/* Disable interrupts */
 460	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 461	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
 462	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 463	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 464	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
 465	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
 466
 467	/* Disable DMA */
 468	ret = stm32_dma_disable_chan(chan);
 469	if (ret < 0)
 470		return;
 471
 472	/* Clear interrupt status if it is there */
 473	status = stm32_dma_irq_status(chan);
 474	if (status) {
 475		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
 476			__func__, status);
 477		stm32_dma_irq_clear(chan, status);
 478	}
 479
 480	chan->busy = false;
 481}
 482
 483static int stm32_dma_terminate_all(struct dma_chan *c)
 484{
 485	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 486	unsigned long flags;
 487	LIST_HEAD(head);
 488
 489	spin_lock_irqsave(&chan->vchan.lock, flags);
 490
 491	if (chan->busy) {
 492		stm32_dma_stop(chan);
 493		chan->desc = NULL;
 494	}
 495
 496	vchan_get_all_descriptors(&chan->vchan, &head);
 497	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 498	vchan_dma_desc_free_list(&chan->vchan, &head);
 499
 500	return 0;
 501}
 502
 503static void stm32_dma_synchronize(struct dma_chan *c)
 504{
 505	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 506
 507	vchan_synchronize(&chan->vchan);
 508}
 509
 510static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
 511{
 512	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 513	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 514	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
 515	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
 516	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
 517	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
 518	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 519
 520	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
 521	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
 522	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
 523	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
 524	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
 525	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
 526}
 527
 528static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
 529
 530static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
 531{
 532	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 533	struct virt_dma_desc *vdesc;
 534	struct stm32_dma_sg_req *sg_req;
 535	struct stm32_dma_chan_reg *reg;
 536	u32 status;
 537	int ret;
 538
 539	ret = stm32_dma_disable_chan(chan);
 540	if (ret < 0)
 541		return;
 542
 543	if (!chan->desc) {
 544		vdesc = vchan_next_desc(&chan->vchan);
 545		if (!vdesc)
 546			return;
 547
 548		chan->desc = to_stm32_dma_desc(vdesc);
 549		chan->next_sg = 0;
 550	}
 551
 552	if (chan->next_sg == chan->desc->num_sgs)
 553		chan->next_sg = 0;
 554
 555	sg_req = &chan->desc->sg_req[chan->next_sg];
 556	reg = &sg_req->chan_reg;
 557
 558	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 559	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
 560	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
 561	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
 562	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
 563	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
 564
 565	chan->next_sg++;
 566
 567	/* Clear interrupt status if it is there */
 568	status = stm32_dma_irq_status(chan);
 569	if (status)
 570		stm32_dma_irq_clear(chan, status);
 571
 572	if (chan->desc->cyclic)
 573		stm32_dma_configure_next_sg(chan);
 574
 575	stm32_dma_dump_reg(chan);
 576
 577	/* Start DMA */
 578	reg->dma_scr |= STM32_DMA_SCR_EN;
 579	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 580
 581	chan->busy = true;
 582
 583	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
 584}
 585
 586static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
 587{
 588	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 589	struct stm32_dma_sg_req *sg_req;
 590	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
 591
 592	id = chan->id;
 593	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 594
 595	if (dma_scr & STM32_DMA_SCR_DBM) {
 596		if (chan->next_sg == chan->desc->num_sgs)
 597			chan->next_sg = 0;
 598
 599		sg_req = &chan->desc->sg_req[chan->next_sg];
 600
 601		if (dma_scr & STM32_DMA_SCR_CT) {
 602			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
 603			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
 604			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
 605				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
 606		} else {
 607			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
 608			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
 609			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
 610				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
 611		}
 612	}
 613}
 614
 615static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
 616{
 617	if (chan->desc) {
 618		if (chan->desc->cyclic) {
 619			vchan_cyclic_callback(&chan->desc->vdesc);
 620			chan->next_sg++;
 621			stm32_dma_configure_next_sg(chan);
 622		} else {
 623			chan->busy = false;
 624			if (chan->next_sg == chan->desc->num_sgs) {
 625				list_del(&chan->desc->vdesc.node);
 626				vchan_cookie_complete(&chan->desc->vdesc);
 627				chan->desc = NULL;
 628			}
 629			stm32_dma_start_transfer(chan);
 630		}
 631	}
 632}
 633
 634static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
 635{
 636	struct stm32_dma_chan *chan = devid;
 637	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 638	u32 status, scr, sfcr;
 639
 640	spin_lock(&chan->vchan.lock);
 641
 642	status = stm32_dma_irq_status(chan);
 643	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 644	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 645
 646	if (status & STM32_DMA_TCI) {
 647		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
 648		if (scr & STM32_DMA_SCR_TCIE)
 649			stm32_dma_handle_chan_done(chan);
 650		status &= ~STM32_DMA_TCI;
 651	}
 652	if (status & STM32_DMA_HTI) {
 653		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
 654		status &= ~STM32_DMA_HTI;
 655	}
 656	if (status & STM32_DMA_FEI) {
 657		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
 658		status &= ~STM32_DMA_FEI;
 659		if (sfcr & STM32_DMA_SFCR_FEIE) {
 660			if (!(scr & STM32_DMA_SCR_EN))
 661				dev_err(chan2dev(chan), "FIFO Error\n");
 662			else
 663				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
 664		}
 665	}
 666	if (status) {
 667		stm32_dma_irq_clear(chan, status);
 668		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
 669		if (!(scr & STM32_DMA_SCR_EN))
 670			dev_err(chan2dev(chan), "chan disabled by HW\n");
 671	}
 672
 673	spin_unlock(&chan->vchan.lock);
 674
 675	return IRQ_HANDLED;
 676}
 677
 678static void stm32_dma_issue_pending(struct dma_chan *c)
 679{
 680	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 681	unsigned long flags;
 682
 683	spin_lock_irqsave(&chan->vchan.lock, flags);
 684	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
 685		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
 686		stm32_dma_start_transfer(chan);
 687
 688	}
 689	spin_unlock_irqrestore(&chan->vchan.lock, flags);
 690}
 691
 692static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
 693				    enum dma_transfer_direction direction,
 694				    enum dma_slave_buswidth *buswidth,
 695				    u32 buf_len)
 696{
 697	enum dma_slave_buswidth src_addr_width, dst_addr_width;
 698	int src_bus_width, dst_bus_width;
 699	int src_burst_size, dst_burst_size;
 700	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
 701	u32 dma_scr, threshold;
 702
 703	src_addr_width = chan->dma_sconfig.src_addr_width;
 704	dst_addr_width = chan->dma_sconfig.dst_addr_width;
 705	src_maxburst = chan->dma_sconfig.src_maxburst;
 706	dst_maxburst = chan->dma_sconfig.dst_maxburst;
 707	threshold = chan->threshold;
 708
 709	switch (direction) {
 710	case DMA_MEM_TO_DEV:
 711		/* Set device data size */
 712		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 713		if (dst_bus_width < 0)
 714			return dst_bus_width;
 715
 716		/* Set device burst size */
 717		dst_best_burst = stm32_dma_get_best_burst(buf_len,
 718							  dst_maxburst,
 719							  threshold,
 720							  dst_addr_width);
 721
 722		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 723		if (dst_burst_size < 0)
 724			return dst_burst_size;
 725
 726		/* Set memory data size */
 727		src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
 728		chan->mem_width = src_addr_width;
 729		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 730		if (src_bus_width < 0)
 731			return src_bus_width;
 732
 733		/* Set memory burst size */
 734		src_maxburst = STM32_DMA_MAX_BURST;
 735		src_best_burst = stm32_dma_get_best_burst(buf_len,
 736							  src_maxburst,
 737							  threshold,
 738							  src_addr_width);
 739		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 740		if (src_burst_size < 0)
 741			return src_burst_size;
 742
 743		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
 744			STM32_DMA_SCR_PSIZE(dst_bus_width) |
 745			STM32_DMA_SCR_MSIZE(src_bus_width) |
 746			STM32_DMA_SCR_PBURST(dst_burst_size) |
 747			STM32_DMA_SCR_MBURST(src_burst_size);
 748
 749		/* Set FIFO threshold */
 750		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 751		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
 752
 753		/* Set peripheral address */
 754		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
 755		*buswidth = dst_addr_width;
 756		break;
 757
 758	case DMA_DEV_TO_MEM:
 759		/* Set device data size */
 760		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 761		if (src_bus_width < 0)
 762			return src_bus_width;
 763
 764		/* Set device burst size */
 765		src_best_burst = stm32_dma_get_best_burst(buf_len,
 766							  src_maxburst,
 767							  threshold,
 768							  src_addr_width);
 769		chan->mem_burst = src_best_burst;
 770		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 771		if (src_burst_size < 0)
 772			return src_burst_size;
 773
 774		/* Set memory data size */
 775		dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
 776		chan->mem_width = dst_addr_width;
 777		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 778		if (dst_bus_width < 0)
 779			return dst_bus_width;
 780
 781		/* Set memory burst size */
 782		dst_maxburst = STM32_DMA_MAX_BURST;
 783		dst_best_burst = stm32_dma_get_best_burst(buf_len,
 784							  dst_maxburst,
 785							  threshold,
 786							  dst_addr_width);
 787		chan->mem_burst = dst_best_burst;
 788		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 789		if (dst_burst_size < 0)
 790			return dst_burst_size;
 791
 792		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
 793			STM32_DMA_SCR_PSIZE(src_bus_width) |
 794			STM32_DMA_SCR_MSIZE(dst_bus_width) |
 795			STM32_DMA_SCR_PBURST(src_burst_size) |
 796			STM32_DMA_SCR_MBURST(dst_burst_size);
 797
 798		/* Set FIFO threshold */
 799		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 800		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
 801
 802		/* Set peripheral address */
 803		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
 804		*buswidth = chan->dma_sconfig.src_addr_width;
 805		break;
 806
 807	default:
 808		dev_err(chan2dev(chan), "Dma direction is not supported\n");
 809		return -EINVAL;
 810	}
 811
 812	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
 813
 814	/* Set DMA control register */
 815	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
 816			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
 817			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
 818	chan->chan_reg.dma_scr |= dma_scr;
 819
 820	return 0;
 821}
 822
 823static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
 824{
 825	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
 826}
 827
 828static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
 829	struct dma_chan *c, struct scatterlist *sgl,
 830	u32 sg_len, enum dma_transfer_direction direction,
 831	unsigned long flags, void *context)
 832{
 833	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 834	struct stm32_dma_desc *desc;
 835	struct scatterlist *sg;
 836	enum dma_slave_buswidth buswidth;
 837	u32 nb_data_items;
 838	int i, ret;
 839
 840	if (!chan->config_init) {
 841		dev_err(chan2dev(chan), "dma channel is not configured\n");
 842		return NULL;
 843	}
 844
 845	if (sg_len < 1) {
 846		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
 847		return NULL;
 848	}
 849
 850	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
 851	if (!desc)
 852		return NULL;
 853
 854	/* Set peripheral flow controller */
 855	if (chan->dma_sconfig.device_fc)
 856		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
 857	else
 858		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 859
 860	for_each_sg(sgl, sg, sg_len, i) {
 861		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
 862					       sg_dma_len(sg));
 863		if (ret < 0)
 864			goto err;
 865
 866		desc->sg_req[i].len = sg_dma_len(sg);
 867
 868		nb_data_items = desc->sg_req[i].len / buswidth;
 869		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 870			dev_err(chan2dev(chan), "nb items not supported\n");
 871			goto err;
 872		}
 873
 874		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 875		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 876		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 877		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 878		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
 879		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
 880		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 881	}
 882
 883	desc->num_sgs = sg_len;
 884	desc->cyclic = false;
 885
 886	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
 887
 888err:
 889	kfree(desc);
 890	return NULL;
 891}
 892
 893static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
 894	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
 895	size_t period_len, enum dma_transfer_direction direction,
 896	unsigned long flags)
 897{
 898	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 899	struct stm32_dma_desc *desc;
 900	enum dma_slave_buswidth buswidth;
 901	u32 num_periods, nb_data_items;
 902	int i, ret;
 903
 904	if (!buf_len || !period_len) {
 905		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
 906		return NULL;
 907	}
 908
 909	if (!chan->config_init) {
 910		dev_err(chan2dev(chan), "dma channel is not configured\n");
 911		return NULL;
 912	}
 913
 914	if (buf_len % period_len) {
 915		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
 916		return NULL;
 917	}
 918
 919	/*
 920	 * We allow to take more number of requests till DMA is
 921	 * not started. The driver will loop over all requests.
 922	 * Once DMA is started then new requests can be queued only after
 923	 * terminating the DMA.
 924	 */
 925	if (chan->busy) {
 926		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
 927		return NULL;
 928	}
 929
 930	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
 931	if (ret < 0)
 932		return NULL;
 933
 934	nb_data_items = period_len / buswidth;
 935	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 936		dev_err(chan2dev(chan), "number of items not supported\n");
 937		return NULL;
 938	}
 939
 940	/*  Enable Circular mode or double buffer mode */
 941	if (buf_len == period_len)
 942		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
 943	else
 944		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
 945
 946	/* Clear periph ctrl if client set it */
 947	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 948
 949	num_periods = buf_len / period_len;
 950
 951	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
 952	if (!desc)
 953		return NULL;
 954
 955	for (i = 0; i < num_periods; i++) {
 956		desc->sg_req[i].len = period_len;
 957
 958		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 959		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 960		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 961		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 962		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
 963		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
 964		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 965		buf_addr += period_len;
 966	}
 967
 968	desc->num_sgs = num_periods;
 969	desc->cyclic = true;
 970
 971	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
 972}
 973
 974static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
 975	struct dma_chan *c, dma_addr_t dest,
 976	dma_addr_t src, size_t len, unsigned long flags)
 977{
 978	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 979	enum dma_slave_buswidth max_width;
 980	struct stm32_dma_desc *desc;
 981	size_t xfer_count, offset;
 982	u32 num_sgs, best_burst, dma_burst, threshold;
 983	int i;
 984
 985	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
 986	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
 987	if (!desc)
 988		return NULL;
 989
 990	threshold = chan->threshold;
 991
 992	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
 993		xfer_count = min_t(size_t, len - offset,
 994				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
 995
 996		/* Compute best burst size */
 997		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 998		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
 999						      threshold, max_width);
1000		dma_burst = stm32_dma_get_burst(chan, best_burst);
1001
1002		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1003		desc->sg_req[i].chan_reg.dma_scr =
1004			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1005			STM32_DMA_SCR_PBURST(dma_burst) |
1006			STM32_DMA_SCR_MBURST(dma_burst) |
1007			STM32_DMA_SCR_MINC |
1008			STM32_DMA_SCR_PINC |
1009			STM32_DMA_SCR_TCIE |
1010			STM32_DMA_SCR_TEIE;
1011		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1012		desc->sg_req[i].chan_reg.dma_sfcr |=
1013			STM32_DMA_SFCR_FTH(threshold);
1014		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1015		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1016		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1017		desc->sg_req[i].len = xfer_count;
1018	}
1019
1020	desc->num_sgs = num_sgs;
1021	desc->cyclic = false;
1022
1023	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1024}
1025
1026static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1027{
1028	u32 dma_scr, width, ndtr;
1029	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1030
1031	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1032	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1033	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1034
1035	return ndtr << width;
1036}
1037
1038/**
1039 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1040 * @chan: dma channel
1041 *
1042 * This function called when IRQ are disable, checks that the hardware has not
1043 * switched on the next transfer in double buffer mode. The test is done by
1044 * comparing the next_sg memory address with the hardware related register
1045 * (based on CT bit value).
1046 *
1047 * Returns true if expected current transfer is still running or double
1048 * buffer mode is not activated.
1049 */
1050static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1051{
1052	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1053	struct stm32_dma_sg_req *sg_req;
1054	u32 dma_scr, dma_smar, id;
1055
1056	id = chan->id;
1057	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1058
1059	if (!(dma_scr & STM32_DMA_SCR_DBM))
1060		return true;
1061
1062	sg_req = &chan->desc->sg_req[chan->next_sg];
1063
1064	if (dma_scr & STM32_DMA_SCR_CT) {
1065		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1066		return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1067	}
1068
1069	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1070
1071	return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1072}
1073
1074static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1075				     struct stm32_dma_desc *desc,
1076				     u32 next_sg)
1077{
1078	u32 modulo, burst_size;
1079	u32 residue;
1080	u32 n_sg = next_sg;
1081	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1082	int i;
1083
1084	/*
1085	 * Calculate the residue means compute the descriptors
1086	 * information:
1087	 * - the sg_req currently transferred
1088	 * - the Hardware remaining position in this sg (NDTR bits field).
1089	 *
1090	 * A race condition may occur if DMA is running in cyclic or double
1091	 * buffer mode, since the DMA register are automatically reloaded at end
1092	 * of period transfer. The hardware may have switched to the next
1093	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1094	 * read.
1095	 * In this case the SxNDTR reg could (or not) correspond to the new
1096	 * transfer position, and not the expected one.
1097	 * The strategy implemented in the stm32 driver is to:
1098	 *  - read the SxNDTR register
1099	 *  - crosscheck that hardware is still in current transfer.
1100	 * In case of switch, we can assume that the DMA is at the beginning of
1101	 * the next transfer. So we approximate the residue in consequence, by
1102	 * pointing on the beginning of next transfer.
1103	 *
1104	 * This race condition doesn't apply for none cyclic mode, as double
1105	 * buffer is not used. In such situation registers are updated by the
1106	 * software.
1107	 */
1108
1109	residue = stm32_dma_get_remaining_bytes(chan);
1110
1111	if (!stm32_dma_is_current_sg(chan)) {
1112		n_sg++;
1113		if (n_sg == chan->desc->num_sgs)
1114			n_sg = 0;
1115		residue = sg_req->len;
1116	}
1117
1118	/*
1119	 * In cyclic mode, for the last period, residue = remaining bytes
1120	 * from NDTR,
1121	 * else for all other periods in cyclic mode, and in sg mode,
1122	 * residue = remaining bytes from NDTR + remaining
1123	 * periods/sg to be transferred
1124	 */
1125	if (!chan->desc->cyclic || n_sg != 0)
1126		for (i = n_sg; i < desc->num_sgs; i++)
1127			residue += desc->sg_req[i].len;
1128
1129	if (!chan->mem_burst)
1130		return residue;
1131
1132	burst_size = chan->mem_burst * chan->mem_width;
1133	modulo = residue % burst_size;
1134	if (modulo)
1135		residue = residue - modulo + burst_size;
1136
1137	return residue;
1138}
1139
1140static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1141					   dma_cookie_t cookie,
1142					   struct dma_tx_state *state)
1143{
1144	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1145	struct virt_dma_desc *vdesc;
1146	enum dma_status status;
1147	unsigned long flags;
1148	u32 residue = 0;
1149
1150	status = dma_cookie_status(c, cookie, state);
1151	if (status == DMA_COMPLETE || !state)
1152		return status;
1153
1154	spin_lock_irqsave(&chan->vchan.lock, flags);
1155	vdesc = vchan_find_desc(&chan->vchan, cookie);
1156	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1157		residue = stm32_dma_desc_residue(chan, chan->desc,
1158						 chan->next_sg);
1159	else if (vdesc)
1160		residue = stm32_dma_desc_residue(chan,
1161						 to_stm32_dma_desc(vdesc), 0);
1162	dma_set_residue(state, residue);
1163
1164	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1165
1166	return status;
1167}
1168
1169static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1170{
1171	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1172	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1173	int ret;
1174
1175	chan->config_init = false;
1176
1177	ret = pm_runtime_get_sync(dmadev->ddev.dev);
1178	if (ret < 0)
1179		return ret;
1180
1181	ret = stm32_dma_disable_chan(chan);
1182	if (ret < 0)
1183		pm_runtime_put(dmadev->ddev.dev);
1184
1185	return ret;
1186}
1187
1188static void stm32_dma_free_chan_resources(struct dma_chan *c)
1189{
1190	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1191	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1192	unsigned long flags;
1193
1194	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1195
1196	if (chan->busy) {
1197		spin_lock_irqsave(&chan->vchan.lock, flags);
1198		stm32_dma_stop(chan);
1199		chan->desc = NULL;
1200		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1201	}
1202
1203	pm_runtime_put(dmadev->ddev.dev);
1204
1205	vchan_free_chan_resources(to_virt_chan(c));
1206}
1207
1208static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1209{
1210	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1211}
1212
1213static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1214				 struct stm32_dma_cfg *cfg)
1215{
1216	stm32_dma_clear_reg(&chan->chan_reg);
1217
1218	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1219	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1220
1221	/* Enable Interrupts  */
1222	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1223
1224	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1225}
1226
1227static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1228					   struct of_dma *ofdma)
1229{
1230	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1231	struct device *dev = dmadev->ddev.dev;
1232	struct stm32_dma_cfg cfg;
1233	struct stm32_dma_chan *chan;
1234	struct dma_chan *c;
1235
1236	if (dma_spec->args_count < 4) {
1237		dev_err(dev, "Bad number of cells\n");
1238		return NULL;
1239	}
1240
1241	cfg.channel_id = dma_spec->args[0];
1242	cfg.request_line = dma_spec->args[1];
1243	cfg.stream_config = dma_spec->args[2];
1244	cfg.features = dma_spec->args[3];
1245
1246	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1247	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1248		dev_err(dev, "Bad channel and/or request id\n");
1249		return NULL;
1250	}
1251
1252	chan = &dmadev->chan[cfg.channel_id];
1253
1254	c = dma_get_slave_channel(&chan->vchan.chan);
1255	if (!c) {
1256		dev_err(dev, "No more channels available\n");
1257		return NULL;
1258	}
1259
1260	stm32_dma_set_config(chan, &cfg);
1261
1262	return c;
1263}
1264
1265static const struct of_device_id stm32_dma_of_match[] = {
1266	{ .compatible = "st,stm32-dma", },
1267	{ /* sentinel */ },
1268};
1269MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1270
1271static int stm32_dma_probe(struct platform_device *pdev)
1272{
1273	struct stm32_dma_chan *chan;
1274	struct stm32_dma_device *dmadev;
1275	struct dma_device *dd;
1276	const struct of_device_id *match;
1277	struct resource *res;
1278	int i, ret;
1279
1280	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1281	if (!match) {
1282		dev_err(&pdev->dev, "Error: No device match found\n");
1283		return -ENODEV;
1284	}
1285
1286	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1287	if (!dmadev)
1288		return -ENOMEM;
1289
1290	dd = &dmadev->ddev;
1291
1292	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1293	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1294	if (IS_ERR(dmadev->base))
1295		return PTR_ERR(dmadev->base);
1296
1297	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1298	if (IS_ERR(dmadev->clk)) {
1299		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1300		return PTR_ERR(dmadev->clk);
1301	}
1302
1303	ret = clk_prepare_enable(dmadev->clk);
1304	if (ret < 0) {
1305		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1306		return ret;
1307	}
1308
1309	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1310						"st,mem2mem");
1311
1312	dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1313	if (!IS_ERR(dmadev->rst)) {
1314		reset_control_assert(dmadev->rst);
1315		udelay(2);
1316		reset_control_deassert(dmadev->rst);
1317	}
1318
1319	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1320	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1321	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1322	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1323	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1324	dd->device_tx_status = stm32_dma_tx_status;
1325	dd->device_issue_pending = stm32_dma_issue_pending;
1326	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1327	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1328	dd->device_config = stm32_dma_slave_config;
1329	dd->device_terminate_all = stm32_dma_terminate_all;
1330	dd->device_synchronize = stm32_dma_synchronize;
1331	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1332		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1333		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1334	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1335		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1336		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1337	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1338	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1339	dd->max_burst = STM32_DMA_MAX_BURST;
1340	dd->dev = &pdev->dev;
1341	INIT_LIST_HEAD(&dd->channels);
1342
1343	if (dmadev->mem2mem) {
1344		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1345		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1346		dd->directions |= BIT(DMA_MEM_TO_MEM);
1347	}
1348
1349	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1350		chan = &dmadev->chan[i];
1351		chan->id = i;
1352		chan->vchan.desc_free = stm32_dma_desc_free;
1353		vchan_init(&chan->vchan, dd);
1354	}
1355
1356	ret = dma_async_device_register(dd);
1357	if (ret)
1358		goto clk_free;
1359
1360	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1361		chan = &dmadev->chan[i];
1362		ret = platform_get_irq(pdev, i);
1363		if (ret < 0)
1364			goto err_unregister;
1365		chan->irq = ret;
1366
1367		ret = devm_request_irq(&pdev->dev, chan->irq,
1368				       stm32_dma_chan_irq, 0,
1369				       dev_name(chan2dev(chan)), chan);
1370		if (ret) {
1371			dev_err(&pdev->dev,
1372				"request_irq failed with err %d channel %d\n",
1373				ret, i);
1374			goto err_unregister;
1375		}
1376	}
1377
1378	ret = of_dma_controller_register(pdev->dev.of_node,
1379					 stm32_dma_of_xlate, dmadev);
1380	if (ret < 0) {
1381		dev_err(&pdev->dev,
1382			"STM32 DMA DMA OF registration failed %d\n", ret);
1383		goto err_unregister;
1384	}
1385
1386	platform_set_drvdata(pdev, dmadev);
1387
1388	pm_runtime_set_active(&pdev->dev);
1389	pm_runtime_enable(&pdev->dev);
1390	pm_runtime_get_noresume(&pdev->dev);
1391	pm_runtime_put(&pdev->dev);
1392
1393	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1394
1395	return 0;
1396
1397err_unregister:
1398	dma_async_device_unregister(dd);
1399clk_free:
1400	clk_disable_unprepare(dmadev->clk);
1401
1402	return ret;
1403}
1404
1405#ifdef CONFIG_PM
1406static int stm32_dma_runtime_suspend(struct device *dev)
1407{
1408	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1409
1410	clk_disable_unprepare(dmadev->clk);
1411
1412	return 0;
1413}
1414
1415static int stm32_dma_runtime_resume(struct device *dev)
1416{
1417	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1418	int ret;
1419
1420	ret = clk_prepare_enable(dmadev->clk);
1421	if (ret) {
1422		dev_err(dev, "failed to prepare_enable clock\n");
1423		return ret;
1424	}
1425
1426	return 0;
1427}
1428#endif
1429
1430static const struct dev_pm_ops stm32_dma_pm_ops = {
1431	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1432			   stm32_dma_runtime_resume, NULL)
1433};
1434
1435static struct platform_driver stm32_dma_driver = {
1436	.driver = {
1437		.name = "stm32-dma",
1438		.of_match_table = stm32_dma_of_match,
1439		.pm = &stm32_dma_pm_ops,
1440	},
1441};
1442
1443static int __init stm32_dma_init(void)
1444{
1445	return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1446}
1447subsys_initcall(stm32_dma_init);