Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
 
  27
  28#include "xhci.h"
 
 
  29
  30/*
  31 * Allocates a generic ring segment from the ring pool, sets the dma address,
  32 * initializes the segment to zero, and sets the private next pointer to NULL.
  33 *
  34 * Section 4.11.1.1:
  35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  36 */
  37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
 
 
 
  38{
  39	struct xhci_segment *seg;
  40	dma_addr_t	dma;
 
 
  41
  42	seg = kzalloc(sizeof *seg, flags);
  43	if (!seg)
  44		return NULL;
  45	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
  46
  47	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  48	if (!seg->trbs) {
  49		kfree(seg);
  50		return NULL;
  51	}
  52	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
  53			seg->trbs, (unsigned long long)dma);
  54
  55	memset(seg->trbs, 0, SEGMENT_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
  56	seg->dma = dma;
  57	seg->next = NULL;
  58
  59	return seg;
  60}
  61
  62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  63{
  64	if (!seg)
  65		return;
  66	if (seg->trbs) {
  67		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
  68				seg->trbs, (unsigned long long)seg->dma);
  69		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  70		seg->trbs = NULL;
  71	}
  72	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
  73	kfree(seg);
  74}
  75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76/*
  77 * Make the prev segment point to the next segment.
  78 *
  79 * Change the last TRB in the prev segment to be a Link TRB which points to the
  80 * DMA address of the next segment.  The caller needs to set any Link TRB
  81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  82 */
  83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  84		struct xhci_segment *next, bool link_trbs)
 
  85{
  86	u32 val;
  87
  88	if (!prev || !next)
  89		return;
  90	prev->next = next;
  91	if (link_trbs) {
  92		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
  93			cpu_to_le64(next->dma);
  94
  95		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
  96		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
  97		val &= ~TRB_TYPE_BITMASK;
  98		val |= TRB_TYPE(TRB_LINK);
  99		/* Always set the chain bit with 0.95 hardware */
 100		if (xhci_link_trb_quirk(xhci))
 101			val |= TRB_CHAIN;
 102		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 103	}
 104	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
 105			(unsigned long long)prev->dma,
 106			(unsigned long long)next->dma);
 107}
 108
 109/* XXX: Do we need the hcd structure in all these functions? */
 110void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111{
 112	struct xhci_segment *seg;
 113	struct xhci_segment *first_seg;
 114
 115	if (!ring || !ring->first_seg)
 116		return;
 117	first_seg = ring->first_seg;
 118	seg = first_seg->next;
 119	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
 120	while (seg != first_seg) {
 121		struct xhci_segment *next = seg->next;
 122		xhci_segment_free(xhci, seg);
 123		seg = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124	}
 125	xhci_segment_free(xhci, first_seg);
 126	ring->first_seg = NULL;
 127	kfree(ring);
 128}
 129
 130static void xhci_initialize_ring_info(struct xhci_ring *ring)
 
 131{
 132	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 133	ring->enqueue = ring->first_seg->trbs;
 134	ring->enq_seg = ring->first_seg;
 135	ring->dequeue = ring->enqueue;
 136	ring->deq_seg = ring->first_seg;
 137	/* The ring is initialized to 0. The producer must write 1 to the cycle
 138	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 139	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 
 
 
 140	 */
 141	ring->cycle_state = 1;
 142	/* Not necessary for new rings, but needed for re-initialized rings */
 143	ring->enq_updates = 0;
 144	ring->deq_updates = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 145}
 146
 147/**
 148 * Create a new ring with zero or more segments.
 149 *
 150 * Link each segment together into a ring.
 151 * Set the end flag and the cycle toggle bit on the last segment.
 152 * See section 4.9.1 and figures 15 and 16.
 153 */
 154static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 155		unsigned int num_segs, bool link_trbs, gfp_t flags)
 
 156{
 157	struct xhci_ring	*ring;
 158	struct xhci_segment	*prev;
 
 159
 160	ring = kzalloc(sizeof *(ring), flags);
 161	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
 162	if (!ring)
 163		return NULL;
 164
 
 
 165	INIT_LIST_HEAD(&ring->td_list);
 
 166	if (num_segs == 0)
 167		return ring;
 168
 169	ring->first_seg = xhci_segment_alloc(xhci, flags);
 170	if (!ring->first_seg)
 
 
 171		goto fail;
 172	num_segs--;
 173
 174	prev = ring->first_seg;
 175	while (num_segs > 0) {
 176		struct xhci_segment	*next;
 177
 178		next = xhci_segment_alloc(xhci, flags);
 179		if (!next)
 180			goto fail;
 181		xhci_link_segments(xhci, prev, next, link_trbs);
 182
 183		prev = next;
 184		num_segs--;
 185	}
 186	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
 187
 188	if (link_trbs) {
 189		/* See section 4.9.2.1 and 6.4.4.1 */
 190		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
 191			cpu_to_le32(LINK_TOGGLE);
 192		xhci_dbg(xhci, "Wrote link toggle flag to"
 193				" segment %p (virtual), 0x%llx (DMA)\n",
 194				prev, (unsigned long long)prev->dma);
 195	}
 196	xhci_initialize_ring_info(ring);
 
 197	return ring;
 198
 199fail:
 200	xhci_ring_free(xhci, ring);
 201	return NULL;
 202}
 203
 204void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 205		struct xhci_virt_device *virt_dev,
 206		unsigned int ep_index)
 207{
 208	int rings_cached;
 209
 210	rings_cached = virt_dev->num_rings_cached;
 211	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 212		virt_dev->ring_cache[rings_cached] =
 213			virt_dev->eps[ep_index].ring;
 214		virt_dev->num_rings_cached++;
 215		xhci_dbg(xhci, "Cached old ring, "
 216				"%d ring%s cached\n",
 217				virt_dev->num_rings_cached,
 218				(virt_dev->num_rings_cached > 1) ? "s" : "");
 219	} else {
 220		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 221		xhci_dbg(xhci, "Ring cache full (%d rings), "
 222				"freeing ring\n",
 223				virt_dev->num_rings_cached);
 224	}
 225	virt_dev->eps[ep_index].ring = NULL;
 226}
 227
 228/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 229 * pointers to the beginning of the ring.
 
 230 */
 231static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 232		struct xhci_ring *ring)
 233{
 234	struct xhci_segment	*seg = ring->first_seg;
 235	do {
 236		memset(seg->trbs, 0,
 237				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 238		/* All endpoint rings have link TRBs */
 239		xhci_link_segments(xhci, seg, seg->next, 1);
 240		seg = seg->next;
 241	} while (seg != ring->first_seg);
 242	xhci_initialize_ring_info(ring);
 243	/* td list should be empty since all URBs have been cancelled,
 244	 * but just in case...
 245	 */
 246	INIT_LIST_HEAD(&ring->td_list);
 247}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 
 
 
 
 250
 251static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 
 
 
 252						    int type, gfp_t flags)
 253{
 254	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
 
 
 
 
 
 
 255	if (!ctx)
 256		return NULL;
 257
 258	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
 259	ctx->type = type;
 260	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 261	if (type == XHCI_CTX_TYPE_INPUT)
 262		ctx->size += CTX_SIZE(xhci->hcc_params);
 263
 264	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 265	memset(ctx->bytes, 0, ctx->size);
 
 
 
 266	return ctx;
 267}
 268
 269static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 270			     struct xhci_container_ctx *ctx)
 271{
 272	if (!ctx)
 273		return;
 274	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 275	kfree(ctx);
 276}
 277
 278struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 279					      struct xhci_container_ctx *ctx)
 280{
 281	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
 
 
 282	return (struct xhci_input_control_ctx *)ctx->bytes;
 283}
 284
 285struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 286					struct xhci_container_ctx *ctx)
 287{
 288	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 289		return (struct xhci_slot_ctx *)ctx->bytes;
 290
 291	return (struct xhci_slot_ctx *)
 292		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 293}
 294
 295struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 296				    struct xhci_container_ctx *ctx,
 297				    unsigned int ep_index)
 298{
 299	/* increment ep index by offset of start of ep ctx array */
 300	ep_index++;
 301	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 302		ep_index++;
 303
 304	return (struct xhci_ep_ctx *)
 305		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 306}
 307
 308
 309/***************** Streams structures manipulation *************************/
 310
 311static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 312		unsigned int num_stream_ctxs,
 313		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 314{
 315	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 
 316
 317	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 318		pci_free_consistent(pdev,
 319				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 320				stream_ctx, dma);
 321	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 322		return dma_pool_free(xhci->small_streams_pool,
 323				stream_ctx, dma);
 324	else
 325		return dma_pool_free(xhci->medium_streams_pool,
 326				stream_ctx, dma);
 327}
 328
 329/*
 330 * The stream context array for each endpoint with bulk streams enabled can
 331 * vary in size, based on:
 332 *  - how many streams the endpoint supports,
 333 *  - the maximum primary stream array size the host controller supports,
 334 *  - and how many streams the device driver asks for.
 335 *
 336 * The stream context array must be a power of 2, and can be as small as
 337 * 64 bytes or as large as 1MB.
 338 */
 339static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 340		unsigned int num_stream_ctxs, dma_addr_t *dma,
 341		gfp_t mem_flags)
 342{
 343	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 
 344
 345	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 346		return pci_alloc_consistent(pdev,
 347				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 348				dma);
 349	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 350		return dma_pool_alloc(xhci->small_streams_pool,
 351				mem_flags, dma);
 352	else
 353		return dma_pool_alloc(xhci->medium_streams_pool,
 354				mem_flags, dma);
 355}
 356
 357struct xhci_ring *xhci_dma_to_transfer_ring(
 358		struct xhci_virt_ep *ep,
 359		u64 address)
 360{
 361	if (ep->ep_state & EP_HAS_STREAMS)
 362		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 363				address >> SEGMENT_SHIFT);
 364	return ep->ring;
 365}
 366
 367/* Only use this when you know stream_info is valid */
 368#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 369static struct xhci_ring *dma_to_stream_ring(
 370		struct xhci_stream_info *stream_info,
 371		u64 address)
 372{
 373	return radix_tree_lookup(&stream_info->trb_address_map,
 374			address >> SEGMENT_SHIFT);
 375}
 376#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 377
 378struct xhci_ring *xhci_stream_id_to_ring(
 379		struct xhci_virt_device *dev,
 380		unsigned int ep_index,
 381		unsigned int stream_id)
 382{
 383	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 384
 385	if (stream_id == 0)
 386		return ep->ring;
 387	if (!ep->stream_info)
 388		return NULL;
 389
 390	if (stream_id > ep->stream_info->num_streams)
 391		return NULL;
 392	return ep->stream_info->stream_rings[stream_id];
 393}
 394
 395#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 396static int xhci_test_radix_tree(struct xhci_hcd *xhci,
 397		unsigned int num_streams,
 398		struct xhci_stream_info *stream_info)
 399{
 400	u32 cur_stream;
 401	struct xhci_ring *cur_ring;
 402	u64 addr;
 403
 404	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 405		struct xhci_ring *mapped_ring;
 406		int trb_size = sizeof(union xhci_trb);
 407
 408		cur_ring = stream_info->stream_rings[cur_stream];
 409		for (addr = cur_ring->first_seg->dma;
 410				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
 411				addr += trb_size) {
 412			mapped_ring = dma_to_stream_ring(stream_info, addr);
 413			if (cur_ring != mapped_ring) {
 414				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
 415						"didn't map to stream ID %u; "
 416						"mapped to ring %p\n",
 417						(unsigned long long) addr,
 418						cur_stream,
 419						mapped_ring);
 420				return -EINVAL;
 421			}
 422		}
 423		/* One TRB after the end of the ring segment shouldn't return a
 424		 * pointer to the current ring (although it may be a part of a
 425		 * different ring).
 426		 */
 427		mapped_ring = dma_to_stream_ring(stream_info, addr);
 428		if (mapped_ring != cur_ring) {
 429			/* One TRB before should also fail */
 430			addr = cur_ring->first_seg->dma - trb_size;
 431			mapped_ring = dma_to_stream_ring(stream_info, addr);
 432		}
 433		if (mapped_ring == cur_ring) {
 434			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
 435					"mapped to valid stream ID %u; "
 436					"mapped ring = %p\n",
 437					(unsigned long long) addr,
 438					cur_stream,
 439					mapped_ring);
 440			return -EINVAL;
 441		}
 442	}
 443	return 0;
 444}
 445#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 446
 447/*
 448 * Change an endpoint's internal structure so it supports stream IDs.  The
 449 * number of requested streams includes stream 0, which cannot be used by device
 450 * drivers.
 451 *
 452 * The number of stream contexts in the stream context array may be bigger than
 453 * the number of streams the driver wants to use.  This is because the number of
 454 * stream context array entries must be a power of two.
 455 *
 456 * We need a radix tree for mapping physical addresses of TRBs to which stream
 457 * ID they belong to.  We need to do this because the host controller won't tell
 458 * us which stream ring the TRB came from.  We could store the stream ID in an
 459 * event data TRB, but that doesn't help us for the cancellation case, since the
 460 * endpoint may stop before it reaches that event data TRB.
 461 *
 462 * The radix tree maps the upper portion of the TRB DMA address to a ring
 463 * segment that has the same upper portion of DMA addresses.  For example, say I
 464 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 465 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 466 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 467 * pass the radix tree a key to get the right stream ID:
 468 *
 469 * 	0x10c90fff >> 10 = 0x43243
 470 * 	0x10c912c0 >> 10 = 0x43244
 471 * 	0x10c91400 >> 10 = 0x43245
 472 *
 473 * Obviously, only those TRBs with DMA addresses that are within the segment
 474 * will make the radix tree return the stream ID for that ring.
 475 *
 476 * Caveats for the radix tree:
 477 *
 478 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 479 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 480 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 481 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 482 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 483 * extended systems (where the DMA address can be bigger than 32-bits),
 484 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 485 */
 486struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 487		unsigned int num_stream_ctxs,
 488		unsigned int num_streams, gfp_t mem_flags)
 
 489{
 490	struct xhci_stream_info *stream_info;
 491	u32 cur_stream;
 492	struct xhci_ring *cur_ring;
 493	unsigned long key;
 494	u64 addr;
 495	int ret;
 
 496
 497	xhci_dbg(xhci, "Allocating %u streams and %u "
 498			"stream context array entries.\n",
 499			num_streams, num_stream_ctxs);
 500	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 501		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 502		return NULL;
 503	}
 504	xhci->cmd_ring_reserved_trbs++;
 505
 506	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 
 507	if (!stream_info)
 508		goto cleanup_trbs;
 509
 510	stream_info->num_streams = num_streams;
 511	stream_info->num_stream_ctxs = num_stream_ctxs;
 512
 513	/* Initialize the array of virtual pointers to stream rings. */
 514	stream_info->stream_rings = kzalloc(
 515			sizeof(struct xhci_ring *)*num_streams,
 516			mem_flags);
 517	if (!stream_info->stream_rings)
 518		goto cleanup_info;
 519
 520	/* Initialize the array of DMA addresses for stream rings for the HW. */
 521	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 522			num_stream_ctxs, &stream_info->ctx_array_dma,
 523			mem_flags);
 524	if (!stream_info->stream_ctx_array)
 525		goto cleanup_ctx;
 526	memset(stream_info->stream_ctx_array, 0,
 527			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 528
 529	/* Allocate everything needed to free the stream rings later */
 530	stream_info->free_streams_command =
 531		xhci_alloc_command(xhci, true, true, mem_flags);
 532	if (!stream_info->free_streams_command)
 533		goto cleanup_ctx;
 534
 535	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 536
 537	/* Allocate rings for all the streams that the driver will use,
 538	 * and add their segment DMA addresses to the radix tree.
 539	 * Stream 0 is reserved.
 540	 */
 
 541	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 542		stream_info->stream_rings[cur_stream] =
 543			xhci_ring_alloc(xhci, 1, true, mem_flags);
 
 544		cur_ring = stream_info->stream_rings[cur_stream];
 545		if (!cur_ring)
 546			goto cleanup_rings;
 547		cur_ring->stream_id = cur_stream;
 
 548		/* Set deq ptr, cycle bit, and stream context type */
 549		addr = cur_ring->first_seg->dma |
 550			SCT_FOR_CTX(SCT_PRI_TR) |
 551			cur_ring->cycle_state;
 552		stream_info->stream_ctx_array[cur_stream].stream_ring =
 553			cpu_to_le64(addr);
 554		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 555				cur_stream, (unsigned long long) addr);
 556
 557		key = (unsigned long)
 558			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
 559		ret = radix_tree_insert(&stream_info->trb_address_map,
 560				key, cur_ring);
 561		if (ret) {
 562			xhci_ring_free(xhci, cur_ring);
 563			stream_info->stream_rings[cur_stream] = NULL;
 564			goto cleanup_rings;
 565		}
 566	}
 567	/* Leave the other unused stream ring pointers in the stream context
 568	 * array initialized to zero.  This will cause the xHC to give us an
 569	 * error if the device asks for a stream ID we don't have setup (if it
 570	 * was any other way, the host controller would assume the ring is
 571	 * "empty" and wait forever for data to be queued to that stream ID).
 572	 */
 573#if XHCI_DEBUG
 574	/* Do a little test on the radix tree to make sure it returns the
 575	 * correct values.
 576	 */
 577	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
 578		goto cleanup_rings;
 579#endif
 580
 581	return stream_info;
 582
 583cleanup_rings:
 584	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 585		cur_ring = stream_info->stream_rings[cur_stream];
 586		if (cur_ring) {
 587			addr = cur_ring->first_seg->dma;
 588			radix_tree_delete(&stream_info->trb_address_map,
 589					addr >> SEGMENT_SHIFT);
 590			xhci_ring_free(xhci, cur_ring);
 591			stream_info->stream_rings[cur_stream] = NULL;
 592		}
 593	}
 594	xhci_free_command(xhci, stream_info->free_streams_command);
 595cleanup_ctx:
 
 
 
 
 
 596	kfree(stream_info->stream_rings);
 597cleanup_info:
 598	kfree(stream_info);
 599cleanup_trbs:
 600	xhci->cmd_ring_reserved_trbs--;
 601	return NULL;
 602}
 603/*
 604 * Sets the MaxPStreams field and the Linear Stream Array field.
 605 * Sets the dequeue pointer to the stream context array.
 606 */
 607void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 608		struct xhci_ep_ctx *ep_ctx,
 609		struct xhci_stream_info *stream_info)
 610{
 611	u32 max_primary_streams;
 612	/* MaxPStreams is the number of stream context array entries, not the
 613	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 614	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 615	 */
 616	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 617	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
 
 618			1 << (max_primary_streams + 1));
 619	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 620	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 621				       | EP_HAS_LSA);
 622	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 623}
 624
 625/*
 626 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 627 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 628 * not at the beginning of the ring).
 629 */
 630void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 631		struct xhci_ep_ctx *ep_ctx,
 632		struct xhci_virt_ep *ep)
 633{
 634	dma_addr_t addr;
 635	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 636	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 637	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 638}
 639
 640/* Frees all stream contexts associated with the endpoint,
 641 *
 642 * Caller should fix the endpoint context streams fields.
 643 */
 644void xhci_free_stream_info(struct xhci_hcd *xhci,
 645		struct xhci_stream_info *stream_info)
 646{
 647	int cur_stream;
 648	struct xhci_ring *cur_ring;
 649	dma_addr_t addr;
 650
 651	if (!stream_info)
 652		return;
 653
 654	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 655			cur_stream++) {
 656		cur_ring = stream_info->stream_rings[cur_stream];
 657		if (cur_ring) {
 658			addr = cur_ring->first_seg->dma;
 659			radix_tree_delete(&stream_info->trb_address_map,
 660					addr >> SEGMENT_SHIFT);
 661			xhci_ring_free(xhci, cur_ring);
 662			stream_info->stream_rings[cur_stream] = NULL;
 663		}
 664	}
 665	xhci_free_command(xhci, stream_info->free_streams_command);
 666	xhci->cmd_ring_reserved_trbs--;
 667	if (stream_info->stream_ctx_array)
 668		xhci_free_stream_ctx(xhci,
 669				stream_info->num_stream_ctxs,
 670				stream_info->stream_ctx_array,
 671				stream_info->ctx_array_dma);
 672
 673	if (stream_info)
 674		kfree(stream_info->stream_rings);
 675	kfree(stream_info);
 676}
 677
 678
 679/***************** Device context manipulation *************************/
 680
 681static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 682		struct xhci_virt_ep *ep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683{
 684	init_timer(&ep->stop_cmd_timer);
 685	ep->stop_cmd_timer.data = (unsigned long) ep;
 686	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 687	ep->xhci = xhci;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 688}
 689
 690/* All the xhci_tds in the ring's TD list should be freed at this point */
 
 
 
 
 
 691void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 692{
 693	struct xhci_virt_device *dev;
 694	int i;
 
 695
 696	/* Slot ID 0 is reserved */
 697	if (slot_id == 0 || !xhci->devs[slot_id])
 698		return;
 699
 700	dev = xhci->devs[slot_id];
 
 701	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 702	if (!dev)
 703		return;
 704
 705	for (i = 0; i < 31; ++i) {
 
 
 
 
 
 706		if (dev->eps[i].ring)
 707			xhci_ring_free(xhci, dev->eps[i].ring);
 708		if (dev->eps[i].stream_info)
 709			xhci_free_stream_info(xhci,
 710					dev->eps[i].stream_info);
 711	}
 
 
 
 
 
 
 712
 713	if (dev->ring_cache) {
 714		for (i = 0; i < dev->num_rings_cached; i++)
 715			xhci_ring_free(xhci, dev->ring_cache[i]);
 716		kfree(dev->ring_cache);
 
 717	}
 
 
 
 
 718
 719	if (dev->in_ctx)
 720		xhci_free_container_ctx(xhci, dev->in_ctx);
 721	if (dev->out_ctx)
 722		xhci_free_container_ctx(xhci, dev->out_ctx);
 723
 
 
 724	kfree(xhci->devs[slot_id]);
 725	xhci->devs[slot_id] = NULL;
 726}
 727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 729		struct usb_device *udev, gfp_t flags)
 730{
 731	struct xhci_virt_device *dev;
 732	int i;
 733
 734	/* Slot ID 0 is reserved */
 735	if (slot_id == 0 || xhci->devs[slot_id]) {
 736		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 737		return 0;
 738	}
 739
 740	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 741	if (!xhci->devs[slot_id])
 742		return 0;
 743	dev = xhci->devs[slot_id];
 
 744
 745	/* Allocate the (output) device context that will be used in the HC. */
 746	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 747	if (!dev->out_ctx)
 748		goto fail;
 749
 750	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 751			(unsigned long long)dev->out_ctx->dma);
 752
 753	/* Allocate the (input) device context for address device command */
 754	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 755	if (!dev->in_ctx)
 756		goto fail;
 757
 758	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 759			(unsigned long long)dev->in_ctx->dma);
 760
 761	/* Initialize the cancellation list and watchdog timers for each ep */
 762	for (i = 0; i < 31; i++) {
 763		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 
 
 764		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 
 765	}
 766
 767	/* Allocate endpoint 0 ring */
 768	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
 769	if (!dev->eps[0].ring)
 770		goto fail;
 771
 772	/* Allocate pointers to the ring cache */
 773	dev->ring_cache = kzalloc(
 774			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
 775			flags);
 776	if (!dev->ring_cache)
 777		goto fail;
 778	dev->num_rings_cached = 0;
 779
 780	init_completion(&dev->cmd_completion);
 781	INIT_LIST_HEAD(&dev->cmd_list);
 782	dev->udev = udev;
 783
 784	/* Point to output device context in dcbaa. */
 785	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
 786	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
 787		 slot_id,
 788		 &xhci->dcbaa->dev_context_ptrs[slot_id],
 789		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
 790
 
 
 
 
 791	return 1;
 792fail:
 793	xhci_free_virt_device(xhci, slot_id);
 
 
 
 
 
 
 794	return 0;
 795}
 796
 797void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
 798		struct usb_device *udev)
 799{
 800	struct xhci_virt_device *virt_dev;
 801	struct xhci_ep_ctx	*ep0_ctx;
 802	struct xhci_ring	*ep_ring;
 803
 804	virt_dev = xhci->devs[udev->slot_id];
 805	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
 806	ep_ring = virt_dev->eps[0].ring;
 807	/*
 808	 * FIXME we don't keep track of the dequeue pointer very well after a
 809	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
 810	 * host to our enqueue pointer.  This should only be called after a
 811	 * configured device has reset, so all control transfers should have
 812	 * been completed or cancelled before the reset.
 813	 */
 814	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
 815							ep_ring->enqueue)
 816				   | ep_ring->cycle_state);
 817}
 818
 819/*
 820 * The xHCI roothub may have ports of differing speeds in any order in the port
 821 * status registers.  xhci->port_array provides an array of the port speed for
 822 * each offset into the port status registers.
 823 *
 824 * The xHCI hardware wants to know the roothub port number that the USB device
 825 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 826 * know is the index of that port under either the USB 2.0 or the USB 3.0
 827 * roothub, but that doesn't give us the real index into the HW port status
 828 * registers.  Scan through the xHCI roothub port array, looking for the Nth
 829 * entry of the correct port speed.  Return the port number of that entry.
 830 */
 831static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
 832		struct usb_device *udev)
 833{
 834	struct usb_device *top_dev;
 835	unsigned int num_similar_speed_ports;
 836	unsigned int faked_port_num;
 837	int i;
 
 
 
 838
 839	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
 840			top_dev = top_dev->parent)
 841		/* Found device below root hub */;
 842	faked_port_num = top_dev->portnum;
 843	for (i = 0, num_similar_speed_ports = 0;
 844			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
 845		u8 port_speed = xhci->port_array[i];
 846
 847		/*
 848		 * Skip ports that don't have known speeds, or have duplicate
 849		 * Extended Capabilities port speed entries.
 850		 */
 851		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
 852			continue;
 853
 854		/*
 855		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
 856		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
 857		 * matches the device speed, it's a similar speed port.
 858		 */
 859		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
 860			num_similar_speed_ports++;
 861		if (num_similar_speed_ports == faked_port_num)
 862			/* Roothub ports are numbered from 1 to N */
 863			return i+1;
 864	}
 865	return 0;
 866}
 867
 868/* Setup an xHCI virtual device for a Set Address command */
 869int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
 870{
 871	struct xhci_virt_device *dev;
 872	struct xhci_ep_ctx	*ep0_ctx;
 873	struct xhci_slot_ctx    *slot_ctx;
 874	struct xhci_input_control_ctx *ctrl_ctx;
 875	u32			port_num;
 
 876	struct usb_device *top_dev;
 877
 878	dev = xhci->devs[udev->slot_id];
 879	/* Slot ID 0 is reserved */
 880	if (udev->slot_id == 0 || !dev) {
 881		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
 882				udev->slot_id);
 883		return -EINVAL;
 884	}
 885	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
 886	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
 887	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
 888
 889	/* 2) New slot context and endpoint 0 context are valid*/
 890	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
 891
 892	/* 3) Only the control endpoint is valid - one endpoint context */
 893	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
 894	switch (udev->speed) {
 
 
 
 
 895	case USB_SPEED_SUPER:
 896		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
 
 897		break;
 898	case USB_SPEED_HIGH:
 899		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
 
 900		break;
 
 901	case USB_SPEED_FULL:
 902		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
 
 903		break;
 904	case USB_SPEED_LOW:
 905		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
 
 906		break;
 907	case USB_SPEED_WIRELESS:
 908		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
 909		return -EINVAL;
 910		break;
 911	default:
 912		/* Speed was set earlier, this shouldn't happen. */
 913		BUG();
 914	}
 915	/* Find the root hub port this device is under */
 916	port_num = xhci_find_real_port_number(xhci, udev);
 917	if (!port_num)
 918		return -EINVAL;
 919	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
 920	/* Set the port number in the virtual_device to the faked port number */
 921	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
 922			top_dev = top_dev->parent)
 923		/* Found device below root hub */;
 924	dev->port = top_dev->portnum;
 
 925	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
 926	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927
 928	/* Is this a LS/FS device under an external HS hub? */
 929	if (udev->tt && udev->tt->hub->parent) {
 930		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
 931						(udev->ttport << 8));
 932		if (udev->tt->multi)
 933			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
 934	}
 935	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
 936	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
 937
 938	/* Step 4 - ring already allocated */
 939	/* Step 5 */
 940	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
 941	/*
 942	 * XXX: Not sure about wireless USB devices.
 943	 */
 944	switch (udev->speed) {
 945	case USB_SPEED_SUPER:
 946		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
 947		break;
 948	case USB_SPEED_HIGH:
 949	/* USB core guesses at a 64-byte max packet first for FS devices */
 950	case USB_SPEED_FULL:
 951		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
 952		break;
 953	case USB_SPEED_LOW:
 954		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
 955		break;
 956	case USB_SPEED_WIRELESS:
 957		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
 958		return -EINVAL;
 959		break;
 960	default:
 961		/* New speed? */
 962		BUG();
 963	}
 964	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
 965	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
 
 966
 967	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
 968				   dev->eps[0].ring->cycle_state);
 969
 
 
 970	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
 971
 972	return 0;
 973}
 974
 975/*
 976 * Convert interval expressed as 2^(bInterval - 1) == interval into
 977 * straight exponent value 2^n == interval.
 978 *
 979 */
 980static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
 981		struct usb_host_endpoint *ep)
 982{
 983	unsigned int interval;
 984
 985	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
 986	if (interval != ep->desc.bInterval - 1)
 987		dev_warn(&udev->dev,
 988			 "ep %#x - rounding interval to %d %sframes\n",
 989			 ep->desc.bEndpointAddress,
 990			 1 << interval,
 991			 udev->speed == USB_SPEED_FULL ? "" : "micro");
 992
 993	if (udev->speed == USB_SPEED_FULL) {
 994		/*
 995		 * Full speed isoc endpoints specify interval in frames,
 996		 * not microframes. We are using microframes everywhere,
 997		 * so adjust accordingly.
 998		 */
 999		interval += 3;	/* 1 frame = 2^3 uframes */
1000	}
1001
1002	return interval;
1003}
1004
1005/*
1006 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1007 * microframes, rounded down to nearest power of 2.
1008 */
1009static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1010		struct usb_host_endpoint *ep)
 
1011{
1012	unsigned int interval;
1013
1014	interval = fls(8 * ep->desc.bInterval) - 1;
1015	interval = clamp_val(interval, 3, 10);
1016	if ((1 << interval) != 8 * ep->desc.bInterval)
1017		dev_warn(&udev->dev,
1018			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1019			 ep->desc.bEndpointAddress,
1020			 1 << interval,
1021			 8 * ep->desc.bInterval);
1022
1023	return interval;
1024}
1025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026/* Return the polling or NAK interval.
1027 *
1028 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1029 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1030 *
1031 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1032 * is set to 0.
1033 */
1034static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1035		struct usb_host_endpoint *ep)
1036{
1037	unsigned int interval = 0;
1038
1039	switch (udev->speed) {
1040	case USB_SPEED_HIGH:
1041		/* Max NAK rate */
1042		if (usb_endpoint_xfer_control(&ep->desc) ||
1043		    usb_endpoint_xfer_bulk(&ep->desc)) {
1044			interval = ep->desc.bInterval;
1045			break;
1046		}
1047		/* Fall through - SS and HS isoc/int have same decoding */
1048
 
1049	case USB_SPEED_SUPER:
1050		if (usb_endpoint_xfer_int(&ep->desc) ||
1051		    usb_endpoint_xfer_isoc(&ep->desc)) {
1052			interval = xhci_parse_exponent_interval(udev, ep);
1053		}
1054		break;
1055
1056	case USB_SPEED_FULL:
1057		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1058			interval = xhci_parse_exponent_interval(udev, ep);
1059			break;
1060		}
1061		/*
1062		 * Fall through for interrupt endpoint interval decoding
1063		 * since it uses the same rules as low speed interrupt
1064		 * endpoints.
1065		 */
 
1066
1067	case USB_SPEED_LOW:
1068		if (usb_endpoint_xfer_int(&ep->desc) ||
1069		    usb_endpoint_xfer_isoc(&ep->desc)) {
1070
1071			interval = xhci_parse_frame_interval(udev, ep);
1072		}
1073		break;
1074
1075	default:
1076		BUG();
1077	}
1078	return EP_INTERVAL(interval);
1079}
1080
1081/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1082 * High speed endpoint descriptors can define "the number of additional
1083 * transaction opportunities per microframe", but that goes in the Max Burst
1084 * endpoint context field.
1085 */
1086static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1087		struct usb_host_endpoint *ep)
1088{
1089	if (udev->speed != USB_SPEED_SUPER ||
1090			!usb_endpoint_xfer_isoc(&ep->desc))
1091		return 0;
1092	return ep->ss_ep_comp.bmAttributes;
1093}
1094
1095static u32 xhci_get_endpoint_type(struct usb_device *udev,
1096		struct usb_host_endpoint *ep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1097{
1098	int in;
1099	u32 type;
1100
1101	in = usb_endpoint_dir_in(&ep->desc);
1102	if (usb_endpoint_xfer_control(&ep->desc)) {
1103		type = EP_TYPE(CTRL_EP);
1104	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1105		if (in)
1106			type = EP_TYPE(BULK_IN_EP);
1107		else
1108			type = EP_TYPE(BULK_OUT_EP);
1109	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1110		if (in)
1111			type = EP_TYPE(ISOC_IN_EP);
1112		else
1113			type = EP_TYPE(ISOC_OUT_EP);
1114	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1115		if (in)
1116			type = EP_TYPE(INT_IN_EP);
1117		else
1118			type = EP_TYPE(INT_OUT_EP);
1119	} else {
1120		BUG();
1121	}
1122	return type;
1123}
1124
1125/* Return the maximum endpoint service interval time (ESIT) payload.
1126 * Basically, this is the maxpacket size, multiplied by the burst size
1127 * and mult size.
1128 */
1129static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1130		struct usb_device *udev,
1131		struct usb_host_endpoint *ep)
1132{
1133	int max_burst;
1134	int max_packet;
1135
1136	/* Only applies for interrupt or isochronous endpoints */
1137	if (usb_endpoint_xfer_control(&ep->desc) ||
1138			usb_endpoint_xfer_bulk(&ep->desc))
1139		return 0;
1140
1141	if (udev->speed == USB_SPEED_SUPER)
 
 
 
 
 
1142		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1143
1144	max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1145	max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
1146	/* A 0 in max burst means 1 transfer per ESIT */
1147	return max_packet * (max_burst + 1);
1148}
1149
1150/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1151 * Drivers will have to call usb_alloc_streams() to do that.
1152 */
1153int xhci_endpoint_init(struct xhci_hcd *xhci,
1154		struct xhci_virt_device *virt_dev,
1155		struct usb_device *udev,
1156		struct usb_host_endpoint *ep,
1157		gfp_t mem_flags)
1158{
1159	unsigned int ep_index;
1160	struct xhci_ep_ctx *ep_ctx;
1161	struct xhci_ring *ep_ring;
1162	unsigned int max_packet;
1163	unsigned int max_burst;
1164	u32 max_esit_payload;
 
 
 
 
 
 
1165
1166	ep_index = xhci_get_endpoint_index(&ep->desc);
1167	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1168
1169	/* Set up the endpoint ring */
 
 
 
 
 
1170	/*
1171	 * Isochronous endpoint ring needs bigger size because one isoc URB
1172	 * carries multiple packets and it will insert multiple tds to the
1173	 * ring.
1174	 * This should be replaced with dynamic ring resizing in the future.
1175	 */
1176	if (usb_endpoint_xfer_isoc(&ep->desc))
1177		virt_dev->eps[ep_index].new_ring =
1178			xhci_ring_alloc(xhci, 8, true, mem_flags);
1179	else
1180		virt_dev->eps[ep_index].new_ring =
1181			xhci_ring_alloc(xhci, 1, true, mem_flags);
1182	if (!virt_dev->eps[ep_index].new_ring) {
1183		/* Attempt to use the ring cache */
1184		if (virt_dev->num_rings_cached == 0)
1185			return -ENOMEM;
1186		virt_dev->eps[ep_index].new_ring =
1187			virt_dev->ring_cache[virt_dev->num_rings_cached];
1188		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1189		virt_dev->num_rings_cached--;
1190		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1191	}
1192	virt_dev->eps[ep_index].skip = false;
1193	ep_ring = virt_dev->eps[ep_index].new_ring;
1194	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1195
1196	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1197				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
 
 
1198
1199	/* FIXME dig Mult and streams info out of ep companion desc */
1200
1201	/* Allow 3 retries for everything but isoc;
1202	 * CErr shall be set to 0 for Isoch endpoints.
1203	 */
1204	if (!usb_endpoint_xfer_isoc(&ep->desc))
1205		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1206	else
1207		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1208
1209	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1210
1211	/* Set the max packet size and max burst */
1212	switch (udev->speed) {
1213	case USB_SPEED_SUPER:
1214		max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1215		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1216		/* dig out max burst from ep companion desc */
1217		max_packet = ep->ss_ep_comp.bMaxBurst;
1218		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1219		break;
1220	case USB_SPEED_HIGH:
1221		/* bits 11:12 specify the number of additional transaction
1222		 * opportunities per microframe (USB 2.0, section 9.6.6)
1223		 */
1224		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1225				usb_endpoint_xfer_int(&ep->desc)) {
1226			max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1227				     & 0x1800) >> 11;
1228			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1229		}
1230		/* Fall through */
1231	case USB_SPEED_FULL:
1232	case USB_SPEED_LOW:
1233		max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1234		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1235		break;
1236	default:
1237		BUG();
1238	}
1239	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1240	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
 
 
 
 
1241
1242	/*
1243	 * XXX no idea how to calculate the average TRB buffer length for bulk
1244	 * endpoints, as the driver gives us no clue how big each scatter gather
1245	 * list entry (or buffer) is going to be.
1246	 *
1247	 * For isochronous and interrupt endpoints, we set it to the max
1248	 * available, until we have new API in the USB core to allow drivers to
1249	 * declare how much bandwidth they actually need.
1250	 *
1251	 * Normally, it would be calculated by taking the total of the buffer
1252	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1253	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1254	 * use Event Data TRBs, and we don't chain in a link TRB on short
1255	 * transfers, we're basically dividing by 1.
1256	 *
1257	 * xHCI 1.0 specification indicates that the Average TRB Length should
1258	 * be set to 8 for control endpoints.
1259	 */
1260	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1261		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1262	else
1263		ep_ctx->tx_info |=
1264			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1265
1266	/* FIXME Debug endpoint context */
1267	return 0;
1268}
1269
1270void xhci_endpoint_zero(struct xhci_hcd *xhci,
1271		struct xhci_virt_device *virt_dev,
1272		struct usb_host_endpoint *ep)
1273{
1274	unsigned int ep_index;
1275	struct xhci_ep_ctx *ep_ctx;
1276
1277	ep_index = xhci_get_endpoint_index(&ep->desc);
1278	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1279
1280	ep_ctx->ep_info = 0;
1281	ep_ctx->ep_info2 = 0;
1282	ep_ctx->deq = 0;
1283	ep_ctx->tx_info = 0;
1284	/* Don't free the endpoint ring until the set interface or configuration
1285	 * request succeeds.
1286	 */
1287}
1288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1290 * Useful when you want to change one particular aspect of the endpoint and then
1291 * issue a configure endpoint command.
1292 */
1293void xhci_endpoint_copy(struct xhci_hcd *xhci,
1294		struct xhci_container_ctx *in_ctx,
1295		struct xhci_container_ctx *out_ctx,
1296		unsigned int ep_index)
1297{
1298	struct xhci_ep_ctx *out_ep_ctx;
1299	struct xhci_ep_ctx *in_ep_ctx;
1300
1301	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1302	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1303
1304	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1305	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1306	in_ep_ctx->deq = out_ep_ctx->deq;
1307	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
 
 
 
 
1308}
1309
1310/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1311 * Useful when you want to change one particular aspect of the endpoint and then
1312 * issue a configure endpoint command.  Only the context entries field matters,
1313 * but we'll copy the whole thing anyway.
1314 */
1315void xhci_slot_copy(struct xhci_hcd *xhci,
1316		struct xhci_container_ctx *in_ctx,
1317		struct xhci_container_ctx *out_ctx)
1318{
1319	struct xhci_slot_ctx *in_slot_ctx;
1320	struct xhci_slot_ctx *out_slot_ctx;
1321
1322	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1323	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1324
1325	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1326	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1327	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1328	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1329}
1330
1331/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1332static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1333{
1334	int i;
1335	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1336	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1337
1338	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
 
1339
1340	if (!num_sp)
1341		return 0;
1342
1343	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
 
1344	if (!xhci->scratchpad)
1345		goto fail_sp;
1346
1347	xhci->scratchpad->sp_array =
1348		pci_alloc_consistent(to_pci_dev(dev),
1349				     num_sp * sizeof(u64),
1350				     &xhci->scratchpad->sp_dma);
1351	if (!xhci->scratchpad->sp_array)
1352		goto fail_sp2;
1353
1354	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
 
1355	if (!xhci->scratchpad->sp_buffers)
1356		goto fail_sp3;
1357
1358	xhci->scratchpad->sp_dma_buffers =
1359		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1360
1361	if (!xhci->scratchpad->sp_dma_buffers)
1362		goto fail_sp4;
1363
1364	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1365	for (i = 0; i < num_sp; i++) {
1366		dma_addr_t dma;
1367		void *buf = pci_alloc_consistent(to_pci_dev(dev),
1368						 xhci->page_size, &dma);
1369		if (!buf)
1370			goto fail_sp5;
1371
1372		xhci->scratchpad->sp_array[i] = dma;
1373		xhci->scratchpad->sp_buffers[i] = buf;
1374		xhci->scratchpad->sp_dma_buffers[i] = dma;
1375	}
1376
1377	return 0;
1378
1379 fail_sp5:
1380	for (i = i - 1; i >= 0; i--) {
1381		pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1382				    xhci->scratchpad->sp_buffers[i],
1383				    xhci->scratchpad->sp_dma_buffers[i]);
1384	}
1385	kfree(xhci->scratchpad->sp_dma_buffers);
1386
1387 fail_sp4:
1388	kfree(xhci->scratchpad->sp_buffers);
1389
1390 fail_sp3:
1391	pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1392			    xhci->scratchpad->sp_array,
1393			    xhci->scratchpad->sp_dma);
1394
1395 fail_sp2:
1396	kfree(xhci->scratchpad);
1397	xhci->scratchpad = NULL;
1398
1399 fail_sp:
1400	return -ENOMEM;
1401}
1402
1403static void scratchpad_free(struct xhci_hcd *xhci)
1404{
1405	int num_sp;
1406	int i;
1407	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1408
1409	if (!xhci->scratchpad)
1410		return;
1411
1412	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1413
1414	for (i = 0; i < num_sp; i++) {
1415		pci_free_consistent(pdev, xhci->page_size,
1416				    xhci->scratchpad->sp_buffers[i],
1417				    xhci->scratchpad->sp_dma_buffers[i]);
1418	}
1419	kfree(xhci->scratchpad->sp_dma_buffers);
1420	kfree(xhci->scratchpad->sp_buffers);
1421	pci_free_consistent(pdev, num_sp * sizeof(u64),
1422			    xhci->scratchpad->sp_array,
1423			    xhci->scratchpad->sp_dma);
1424	kfree(xhci->scratchpad);
1425	xhci->scratchpad = NULL;
1426}
1427
1428struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1429		bool allocate_in_ctx, bool allocate_completion,
1430		gfp_t mem_flags)
1431{
1432	struct xhci_command *command;
 
1433
1434	command = kzalloc(sizeof(*command), mem_flags);
1435	if (!command)
1436		return NULL;
1437
1438	if (allocate_in_ctx) {
1439		command->in_ctx =
1440			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1441					mem_flags);
1442		if (!command->in_ctx) {
1443			kfree(command);
1444			return NULL;
1445		}
1446	}
1447
1448	if (allocate_completion) {
1449		command->completion =
1450			kzalloc(sizeof(struct completion), mem_flags);
 
1451		if (!command->completion) {
1452			xhci_free_container_ctx(xhci, command->in_ctx);
1453			kfree(command);
1454			return NULL;
1455		}
1456		init_completion(command->completion);
1457	}
1458
1459	command->status = 0;
1460	INIT_LIST_HEAD(&command->cmd_list);
1461	return command;
1462}
1463
1464void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
 
1465{
1466	int last;
1467
1468	if (!urb_priv)
1469		return;
 
1470
1471	last = urb_priv->length - 1;
1472	if (last >= 0) {
1473		int	i;
1474		for (i = 0; i <= last; i++)
1475			kfree(urb_priv->td[i]);
 
1476	}
 
 
 
 
 
1477	kfree(urb_priv);
1478}
1479
1480void xhci_free_command(struct xhci_hcd *xhci,
1481		struct xhci_command *command)
1482{
1483	xhci_free_container_ctx(xhci,
1484			command->in_ctx);
1485	kfree(command->completion);
1486	kfree(command);
1487}
1488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489void xhci_mem_cleanup(struct xhci_hcd *xhci)
1490{
1491	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1492	int size;
1493	int i;
 
 
 
1494
1495	/* Free the Event Ring Segment Table and the actual Event Ring */
1496	if (xhci->ir_set) {
1497		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1498		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1499		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1500	}
1501	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1502	if (xhci->erst.entries)
1503		pci_free_consistent(pdev, size,
1504				xhci->erst.entries, xhci->erst.erst_dma_addr);
1505	xhci->erst.entries = NULL;
1506	xhci_dbg(xhci, "Freed ERST\n");
1507	if (xhci->event_ring)
1508		xhci_ring_free(xhci, xhci->event_ring);
1509	xhci->event_ring = NULL;
1510	xhci_dbg(xhci, "Freed event ring\n");
1511
1512	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1513	if (xhci->cmd_ring)
1514		xhci_ring_free(xhci, xhci->cmd_ring);
1515	xhci->cmd_ring = NULL;
1516	xhci_dbg(xhci, "Freed command ring\n");
 
1517
1518	for (i = 1; i < MAX_HC_SLOTS; ++i)
1519		xhci_free_virt_device(xhci, i);
 
 
 
 
 
 
 
 
 
 
1520
1521	if (xhci->segment_pool)
1522		dma_pool_destroy(xhci->segment_pool);
1523	xhci->segment_pool = NULL;
1524	xhci_dbg(xhci, "Freed segment pool\n");
1525
1526	if (xhci->device_pool)
1527		dma_pool_destroy(xhci->device_pool);
1528	xhci->device_pool = NULL;
1529	xhci_dbg(xhci, "Freed device context pool\n");
1530
1531	if (xhci->small_streams_pool)
1532		dma_pool_destroy(xhci->small_streams_pool);
1533	xhci->small_streams_pool = NULL;
1534	xhci_dbg(xhci, "Freed small stream array pool\n");
 
1535
1536	if (xhci->medium_streams_pool)
1537		dma_pool_destroy(xhci->medium_streams_pool);
1538	xhci->medium_streams_pool = NULL;
1539	xhci_dbg(xhci, "Freed medium stream array pool\n");
 
1540
1541	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1542	if (xhci->dcbaa)
1543		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1544				xhci->dcbaa, xhci->dcbaa->dma);
1545	xhci->dcbaa = NULL;
1546
1547	scratchpad_free(xhci);
1548
1549	xhci->num_usb2_ports = 0;
1550	xhci->num_usb3_ports = 0;
1551	kfree(xhci->usb2_ports);
1552	kfree(xhci->usb3_ports);
1553	kfree(xhci->port_array);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554
1555	xhci->page_size = 0;
1556	xhci->page_shift = 0;
1557	xhci->bus_state[0].bus_suspended = 0;
1558	xhci->bus_state[1].bus_suspended = 0;
1559}
1560
1561static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1562		struct xhci_segment *input_seg,
1563		union xhci_trb *start_trb,
1564		union xhci_trb *end_trb,
1565		dma_addr_t input_dma,
1566		struct xhci_segment *result_seg,
1567		char *test_name, int test_number)
1568{
1569	unsigned long long start_dma;
1570	unsigned long long end_dma;
1571	struct xhci_segment *seg;
1572
1573	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1574	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1575
1576	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1577	if (seg != result_seg) {
1578		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1579				test_name, test_number);
1580		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1581				"input DMA 0x%llx\n",
1582				input_seg,
1583				(unsigned long long) input_dma);
1584		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1585				"ending TRB %p (0x%llx DMA)\n",
1586				start_trb, start_dma,
1587				end_trb, end_dma);
1588		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1589				result_seg, seg);
 
 
1590		return -1;
1591	}
1592	return 0;
1593}
1594
1595/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1596static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1597{
1598	struct {
1599		dma_addr_t		input_dma;
1600		struct xhci_segment	*result_seg;
1601	} simple_test_vector [] = {
1602		/* A zeroed DMA field should fail */
1603		{ 0, NULL },
1604		/* One TRB before the ring start should fail */
1605		{ xhci->event_ring->first_seg->dma - 16, NULL },
1606		/* One byte before the ring start should fail */
1607		{ xhci->event_ring->first_seg->dma - 1, NULL },
1608		/* Starting TRB should succeed */
1609		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1610		/* Ending TRB should succeed */
1611		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1612			xhci->event_ring->first_seg },
1613		/* One byte after the ring end should fail */
1614		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1615		/* One TRB after the ring end should fail */
1616		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1617		/* An address of all ones should fail */
1618		{ (dma_addr_t) (~0), NULL },
1619	};
1620	struct {
1621		struct xhci_segment	*input_seg;
1622		union xhci_trb		*start_trb;
1623		union xhci_trb		*end_trb;
1624		dma_addr_t		input_dma;
1625		struct xhci_segment	*result_seg;
1626	} complex_test_vector [] = {
1627		/* Test feeding a valid DMA address from a different ring */
1628		{	.input_seg = xhci->event_ring->first_seg,
1629			.start_trb = xhci->event_ring->first_seg->trbs,
1630			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1631			.input_dma = xhci->cmd_ring->first_seg->dma,
1632			.result_seg = NULL,
1633		},
1634		/* Test feeding a valid end TRB from a different ring */
1635		{	.input_seg = xhci->event_ring->first_seg,
1636			.start_trb = xhci->event_ring->first_seg->trbs,
1637			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1638			.input_dma = xhci->cmd_ring->first_seg->dma,
1639			.result_seg = NULL,
1640		},
1641		/* Test feeding a valid start and end TRB from a different ring */
1642		{	.input_seg = xhci->event_ring->first_seg,
1643			.start_trb = xhci->cmd_ring->first_seg->trbs,
1644			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1645			.input_dma = xhci->cmd_ring->first_seg->dma,
1646			.result_seg = NULL,
1647		},
1648		/* TRB in this ring, but after this TD */
1649		{	.input_seg = xhci->event_ring->first_seg,
1650			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1651			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1652			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1653			.result_seg = NULL,
1654		},
1655		/* TRB in this ring, but before this TD */
1656		{	.input_seg = xhci->event_ring->first_seg,
1657			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1658			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1659			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1660			.result_seg = NULL,
1661		},
1662		/* TRB in this ring, but after this wrapped TD */
1663		{	.input_seg = xhci->event_ring->first_seg,
1664			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1665			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1666			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1667			.result_seg = NULL,
1668		},
1669		/* TRB in this ring, but before this wrapped TD */
1670		{	.input_seg = xhci->event_ring->first_seg,
1671			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1672			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1673			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1674			.result_seg = NULL,
1675		},
1676		/* TRB not in this ring, and we have a wrapped TD */
1677		{	.input_seg = xhci->event_ring->first_seg,
1678			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1679			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1680			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1681			.result_seg = NULL,
1682		},
1683	};
1684
1685	unsigned int num_tests;
1686	int i, ret;
1687
1688	num_tests = ARRAY_SIZE(simple_test_vector);
1689	for (i = 0; i < num_tests; i++) {
1690		ret = xhci_test_trb_in_td(xhci,
1691				xhci->event_ring->first_seg,
1692				xhci->event_ring->first_seg->trbs,
1693				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1694				simple_test_vector[i].input_dma,
1695				simple_test_vector[i].result_seg,
1696				"Simple", i);
1697		if (ret < 0)
1698			return ret;
1699	}
1700
1701	num_tests = ARRAY_SIZE(complex_test_vector);
1702	for (i = 0; i < num_tests; i++) {
1703		ret = xhci_test_trb_in_td(xhci,
1704				complex_test_vector[i].input_seg,
1705				complex_test_vector[i].start_trb,
1706				complex_test_vector[i].end_trb,
1707				complex_test_vector[i].input_dma,
1708				complex_test_vector[i].result_seg,
1709				"Complex", i);
1710		if (ret < 0)
1711			return ret;
1712	}
1713	xhci_dbg(xhci, "TRB math tests passed.\n");
1714	return 0;
1715}
1716
1717static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1718{
1719	u64 temp;
1720	dma_addr_t deq;
1721
1722	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1723			xhci->event_ring->dequeue);
1724	if (deq == 0 && !in_interrupt())
1725		xhci_warn(xhci, "WARN something wrong with SW event ring "
1726				"dequeue ptr.\n");
1727	/* Update HC event ring dequeue pointer */
1728	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1729	temp &= ERST_PTR_MASK;
1730	/* Don't clear the EHB bit (which is RW1C) because
1731	 * there might be more events to service.
1732	 */
1733	temp &= ~ERST_EHB;
1734	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1735			"preserving EHB bit\n");
 
1736	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1737			&xhci->ir_set->erst_dequeue);
1738}
1739
1740static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1741		__le32 __iomem *addr, u8 major_revision)
1742{
1743	u32 temp, port_offset, port_count;
1744	int i;
 
 
 
 
 
 
 
 
1745
1746	if (major_revision > 0x03) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1747		xhci_warn(xhci, "Ignoring unknown port speed, "
1748				"Ext Cap %p, revision = 0x%x\n",
1749				addr, major_revision);
1750		/* Ignoring port protocol we can't understand. FIXME */
1751		return;
1752	}
 
 
 
 
1753
1754	/* Port offset and count in the third dword, see section 7.2 */
1755	temp = xhci_readl(xhci, addr + 2);
1756	port_offset = XHCI_EXT_PORT_OFF(temp);
1757	port_count = XHCI_EXT_PORT_COUNT(temp);
1758	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1759			"count = %u, revision = 0x%x\n",
 
1760			addr, port_offset, port_count, major_revision);
1761	/* Port count includes the current port offset */
1762	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1763		/* WTF? "Valid values are ‘1’ to MaxPorts" */
1764		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765	port_offset--;
1766	for (i = port_offset; i < (port_offset + port_count); i++) {
 
1767		/* Duplicate entry.  Ignore the port if the revisions differ. */
1768		if (xhci->port_array[i] != 0) {
1769			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1770					" port %u\n", addr, i);
1771			xhci_warn(xhci, "Port was marked as USB %u, "
1772					"duplicated as USB %u\n",
1773					xhci->port_array[i], major_revision);
1774			/* Only adjust the roothub port counts if we haven't
1775			 * found a similar duplicate.
1776			 */
1777			if (xhci->port_array[i] != major_revision &&
1778				xhci->port_array[i] != DUPLICATE_ENTRY) {
1779				if (xhci->port_array[i] == 0x03)
1780					xhci->num_usb3_ports--;
1781				else
1782					xhci->num_usb2_ports--;
1783				xhci->port_array[i] = DUPLICATE_ENTRY;
1784			}
1785			/* FIXME: Should we disable the port? */
1786			continue;
1787		}
1788		xhci->port_array[i] = major_revision;
1789		if (major_revision == 0x03)
1790			xhci->num_usb3_ports++;
1791		else
1792			xhci->num_usb2_ports++;
1793	}
1794	/* FIXME: Should we disable ports not in the Extended Capabilities? */
1795}
1796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797/*
1798 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1799 * specify what speeds each port is supposed to be.  We can't count on the port
1800 * speed bits in the PORTSC register being correct until a device is connected,
1801 * but we need to set up the two fake roothubs with the correct number of USB
1802 * 3.0 and USB 2.0 ports at host controller initialization time.
1803 */
1804static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1805{
1806	__le32 __iomem *addr;
1807	u32 offset;
1808	unsigned int num_ports;
1809	int i, port_index;
 
 
 
1810
1811	addr = &xhci->cap_regs->hcc_params;
1812	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1813	if (offset == 0) {
1814		xhci_err(xhci, "No Extended Capability registers, "
1815				"unable to set up roothub.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816		return -ENODEV;
1817	}
1818
1819	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1820	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1821	if (!xhci->port_array)
 
 
 
 
 
 
 
 
1822		return -ENOMEM;
1823
1824	/*
1825	 * For whatever reason, the first capability offset is from the
1826	 * capability register base, not from the HCCPARAMS register.
1827	 * See section 5.3.6 for offset calculation.
1828	 */
1829	addr = &xhci->cap_regs->hc_capbase + offset;
1830	while (1) {
1831		u32 cap_id;
1832
1833		cap_id = xhci_readl(xhci, addr);
1834		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1835			xhci_add_in_port(xhci, num_ports, addr,
1836					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
1837		offset = XHCI_EXT_CAPS_NEXT(cap_id);
1838		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1839				== num_ports)
1840			break;
1841		/*
1842		 * Once you're into the Extended Capabilities, the offset is
1843		 * always relative to the register holding the offset.
1844		 */
1845		addr += offset;
1846	}
1847
1848	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1849		xhci_warn(xhci, "No ports on the roothubs?\n");
1850		return -ENODEV;
1851	}
1852	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1853			xhci->num_usb2_ports, xhci->num_usb3_ports);
 
1854
1855	/* Place limits on the number of roothub ports so that the hub
1856	 * descriptors aren't longer than the USB core will allocate.
1857	 */
1858	if (xhci->num_usb3_ports > 15) {
1859		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1860		xhci->num_usb3_ports = 15;
1861	}
1862	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1863		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
 
 
 
1864				USB_MAXCHILDREN);
1865		xhci->num_usb2_ports = USB_MAXCHILDREN;
1866	}
1867
1868	/*
1869	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1870	 * Not sure how the USB core will handle a hub with no ports...
1871	 */
1872	if (xhci->num_usb2_ports) {
1873		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1874				xhci->num_usb2_ports, flags);
1875		if (!xhci->usb2_ports)
1876			return -ENOMEM;
1877
1878		port_index = 0;
1879		for (i = 0; i < num_ports; i++) {
1880			if (xhci->port_array[i] == 0x03 ||
1881					xhci->port_array[i] == 0 ||
1882					xhci->port_array[i] == DUPLICATE_ENTRY)
1883				continue;
1884
1885			xhci->usb2_ports[port_index] =
1886				&xhci->op_regs->port_status_base +
1887				NUM_PORT_REGS*i;
1888			xhci_dbg(xhci, "USB 2.0 port at index %u, "
1889					"addr = %p\n", i,
1890					xhci->usb2_ports[port_index]);
1891			port_index++;
1892			if (port_index == xhci->num_usb2_ports)
1893				break;
1894		}
1895	}
1896	if (xhci->num_usb3_ports) {
1897		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1898				xhci->num_usb3_ports, flags);
1899		if (!xhci->usb3_ports)
1900			return -ENOMEM;
1901
1902		port_index = 0;
1903		for (i = 0; i < num_ports; i++)
1904			if (xhci->port_array[i] == 0x03) {
1905				xhci->usb3_ports[port_index] =
1906					&xhci->op_regs->port_status_base +
1907					NUM_PORT_REGS*i;
1908				xhci_dbg(xhci, "USB 3.0 port at index %u, "
1909						"addr = %p\n", i,
1910						xhci->usb3_ports[port_index]);
1911				port_index++;
1912				if (port_index == xhci->num_usb3_ports)
1913					break;
1914			}
1915	}
1916	return 0;
1917}
1918
1919int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1920{
1921	dma_addr_t	dma;
1922	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1923	unsigned int	val, val2;
1924	u64		val_64;
1925	struct xhci_segment	*seg;
1926	u32 page_size;
1927	int i;
1928
1929	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1930	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1931	for (i = 0; i < 16; i++) {
1932		if ((0x1 & page_size) != 0)
1933			break;
1934		page_size = page_size >> 1;
1935	}
 
 
 
1936	if (i < 16)
1937		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
 
1938	else
1939		xhci_warn(xhci, "WARN: no supported page size\n");
1940	/* Use 4K pages, since that's common and the minimum the HC supports */
1941	xhci->page_shift = 12;
1942	xhci->page_size = 1 << xhci->page_shift;
1943	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
 
1944
1945	/*
1946	 * Program the Number of Device Slots Enabled field in the CONFIG
1947	 * register with the max value of slots the HC can handle.
1948	 */
1949	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1950	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1951			(unsigned int) val);
1952	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1953	val |= (val2 & ~HCS_SLOTS_MASK);
1954	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1955			(unsigned int) val);
1956	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1957
1958	/*
1959	 * Section 5.4.8 - doorbell array must be
1960	 * "physically contiguous and 64-byte (cache line) aligned".
1961	 */
1962	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1963			sizeof(*xhci->dcbaa), &dma);
1964	if (!xhci->dcbaa)
1965		goto fail;
1966	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1967	xhci->dcbaa->dma = dma;
1968	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
 
1969			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1970	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1971
1972	/*
1973	 * Initialize the ring segment pool.  The ring must be a contiguous
1974	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1975	 * however, the command ring segment needs 64-byte aligned segments,
1976	 * so we pick the greater alignment need.
 
1977	 */
1978	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1979			SEGMENT_SIZE, 64, xhci->page_size);
1980
1981	/* See Table 46 and Note on Figure 55 */
1982	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1983			2112, 64, xhci->page_size);
1984	if (!xhci->segment_pool || !xhci->device_pool)
1985		goto fail;
1986
1987	/* Linear stream context arrays don't have any boundary restrictions,
1988	 * and only need to be 16-byte aligned.
1989	 */
1990	xhci->small_streams_pool =
1991		dma_pool_create("xHCI 256 byte stream ctx arrays",
1992			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1993	xhci->medium_streams_pool =
1994		dma_pool_create("xHCI 1KB stream ctx arrays",
1995			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1996	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1997	 * will be allocated with pci_alloc_consistent()
1998	 */
1999
2000	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2001		goto fail;
2002
2003	/* Set up the command ring to have one segments for now. */
2004	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
2005	if (!xhci->cmd_ring)
2006		goto fail;
2007	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2008	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
 
2009			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2010
2011	/* Set the address in the Command Ring Control register */
2012	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2013	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2014		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2015		xhci->cmd_ring->cycle_state;
2016	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
 
2017	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2018	xhci_dbg_cmd_ptrs(xhci);
2019
2020	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
 
 
 
 
 
 
2021	val &= DBOFF_MASK;
2022	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2023			" from cap regs base addr\n", val);
 
2024	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2025	xhci_dbg_regs(xhci);
2026	xhci_print_run_regs(xhci);
2027	/* Set ir_set to interrupt register set 0 */
2028	xhci->ir_set = &xhci->run_regs->ir_set[0];
2029
2030	/*
2031	 * Event ring setup: Allocate a normal ring, but also setup
2032	 * the event ring segment table (ERST).  Section 4.9.3.
2033	 */
2034	xhci_dbg(xhci, "// Allocating event ring\n");
2035	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
 
2036	if (!xhci->event_ring)
2037		goto fail;
2038	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2039		goto fail;
2040
2041	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2042			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2043	if (!xhci->erst.entries)
2044		goto fail;
2045	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2046			(unsigned long long)dma);
2047
2048	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2049	xhci->erst.num_entries = ERST_NUM_SEGS;
2050	xhci->erst.erst_dma_addr = dma;
2051	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2052			xhci->erst.num_entries,
2053			xhci->erst.entries,
2054			(unsigned long long)xhci->erst.erst_dma_addr);
2055
2056	/* set ring base address and size for each segment table entry */
2057	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2058		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2059		entry->seg_addr = cpu_to_le64(seg->dma);
2060		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2061		entry->rsvd = 0;
2062		seg = seg->next;
2063	}
2064
2065	/* set ERST count with the number of entries in the segment table */
2066	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2067	val &= ERST_SIZE_MASK;
2068	val |= ERST_NUM_SEGS;
2069	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
 
2070			val);
2071	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2072
2073	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
 
2074	/* set the segment table base address */
2075	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
 
2076			(unsigned long long)xhci->erst.erst_dma_addr);
2077	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2078	val_64 &= ERST_PTR_MASK;
2079	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2080	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2081
2082	/* Set the event ring dequeue address */
2083	xhci_set_hc_event_deq(xhci);
2084	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2085	xhci_print_ir_set(xhci, 0);
 
 
2086
2087	/*
2088	 * XXX: Might need to set the Interrupter Moderation Register to
2089	 * something other than the default (~1ms minimum between interrupts).
2090	 * See section 5.5.1.2.
2091	 */
2092	init_completion(&xhci->addr_dev);
2093	for (i = 0; i < MAX_HC_SLOTS; ++i)
2094		xhci->devs[i] = NULL;
2095	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2096		xhci->bus_state[0].resume_done[i] = 0;
2097		xhci->bus_state[1].resume_done[i] = 0;
 
 
 
2098	}
2099
2100	if (scratchpad_alloc(xhci, flags))
2101		goto fail;
2102	if (xhci_setup_port_arrays(xhci, flags))
2103		goto fail;
2104
 
 
 
 
 
 
 
 
 
2105	return 0;
2106
2107fail:
2108	xhci_warn(xhci, "Couldn't initialize memory\n");
 
2109	xhci_mem_cleanup(xhci);
2110	return -ENOMEM;
2111}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/dmapool.h>
  15#include <linux/dma-mapping.h>
  16
  17#include "xhci.h"
  18#include "xhci-trace.h"
  19#include "xhci-debugfs.h"
  20
  21/*
  22 * Allocates a generic ring segment from the ring pool, sets the dma address,
  23 * initializes the segment to zero, and sets the private next pointer to NULL.
  24 *
  25 * Section 4.11.1.1:
  26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  27 */
  28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  29					       unsigned int cycle_state,
  30					       unsigned int max_packet,
  31					       gfp_t flags)
  32{
  33	struct xhci_segment *seg;
  34	dma_addr_t	dma;
  35	int		i;
  36	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  37
  38	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  39	if (!seg)
  40		return NULL;
 
  41
  42	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  43	if (!seg->trbs) {
  44		kfree(seg);
  45		return NULL;
  46	}
 
 
  47
  48	if (max_packet) {
  49		seg->bounce_buf = kzalloc_node(max_packet, flags,
  50					dev_to_node(dev));
  51		if (!seg->bounce_buf) {
  52			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  53			kfree(seg);
  54			return NULL;
  55		}
  56	}
  57	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58	if (cycle_state == 0) {
  59		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
  61	}
  62	seg->dma = dma;
  63	seg->next = NULL;
  64
  65	return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
 
 
  70	if (seg->trbs) {
 
 
  71		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72		seg->trbs = NULL;
  73	}
  74	kfree(seg->bounce_buf);
  75	kfree(seg);
  76}
  77
  78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  79				struct xhci_segment *first)
  80{
  81	struct xhci_segment *seg;
  82
  83	seg = first->next;
  84	while (seg != first) {
  85		struct xhci_segment *next = seg->next;
  86		xhci_segment_free(xhci, seg);
  87		seg = next;
  88	}
  89	xhci_segment_free(xhci, first);
  90}
  91
  92/*
  93 * Make the prev segment point to the next segment.
  94 *
  95 * Change the last TRB in the prev segment to be a Link TRB which points to the
  96 * DMA address of the next segment.  The caller needs to set any Link TRB
  97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  98 */
  99static void xhci_link_segments(struct xhci_segment *prev,
 100			       struct xhci_segment *next,
 101			       enum xhci_ring_type type, bool chain_links)
 102{
 103	u32 val;
 104
 105	if (!prev || !next)
 106		return;
 107	prev->next = next;
 108	if (type != TYPE_EVENT) {
 109		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 110			cpu_to_le64(next->dma);
 111
 112		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 113		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 114		val &= ~TRB_TYPE_BITMASK;
 115		val |= TRB_TYPE(TRB_LINK);
 116		if (chain_links)
 
 117			val |= TRB_CHAIN;
 118		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 119	}
 
 
 
 120}
 121
 122/*
 123 * Link the ring to the new segments.
 124 * Set Toggle Cycle for the new ring if needed.
 125 */
 126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 127		struct xhci_segment *first, struct xhci_segment *last,
 128		unsigned int num_segs)
 129{
 130	struct xhci_segment *next;
 131	bool chain_links;
 132
 133	if (!ring || !first || !last)
 134		return;
 135
 136	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 137	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 138			 (ring->type == TYPE_ISOC &&
 139			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 140
 141	next = ring->enq_seg->next;
 142	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
 143	xhci_link_segments(last, next, ring->type, chain_links);
 144	ring->num_segs += num_segs;
 145	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 146
 147	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 148		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 149			&= ~cpu_to_le32(LINK_TOGGLE);
 150		last->trbs[TRBS_PER_SEGMENT-1].link.control
 151			|= cpu_to_le32(LINK_TOGGLE);
 152		ring->last_seg = last;
 153	}
 154}
 155
 156/*
 157 * We need a radix tree for mapping physical addresses of TRBs to which stream
 158 * ID they belong to.  We need to do this because the host controller won't tell
 159 * us which stream ring the TRB came from.  We could store the stream ID in an
 160 * event data TRB, but that doesn't help us for the cancellation case, since the
 161 * endpoint may stop before it reaches that event data TRB.
 162 *
 163 * The radix tree maps the upper portion of the TRB DMA address to a ring
 164 * segment that has the same upper portion of DMA addresses.  For example, say I
 165 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 166 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 167 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 168 * pass the radix tree a key to get the right stream ID:
 169 *
 170 *	0x10c90fff >> 10 = 0x43243
 171 *	0x10c912c0 >> 10 = 0x43244
 172 *	0x10c91400 >> 10 = 0x43245
 173 *
 174 * Obviously, only those TRBs with DMA addresses that are within the segment
 175 * will make the radix tree return the stream ID for that ring.
 176 *
 177 * Caveats for the radix tree:
 178 *
 179 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 181 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 183 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 184 * extended systems (where the DMA address can be bigger than 32-bits),
 185 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 186 */
 187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 188		struct xhci_ring *ring,
 189		struct xhci_segment *seg,
 190		gfp_t mem_flags)
 191{
 192	unsigned long key;
 193	int ret;
 194
 195	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 196	/* Skip any segments that were already added. */
 197	if (radix_tree_lookup(trb_address_map, key))
 198		return 0;
 199
 200	ret = radix_tree_maybe_preload(mem_flags);
 201	if (ret)
 202		return ret;
 203	ret = radix_tree_insert(trb_address_map,
 204			key, ring);
 205	radix_tree_preload_end();
 206	return ret;
 207}
 208
 209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 210		struct xhci_segment *seg)
 211{
 212	unsigned long key;
 213
 214	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 215	if (radix_tree_lookup(trb_address_map, key))
 216		radix_tree_delete(trb_address_map, key);
 217}
 218
 219static int xhci_update_stream_segment_mapping(
 220		struct radix_tree_root *trb_address_map,
 221		struct xhci_ring *ring,
 222		struct xhci_segment *first_seg,
 223		struct xhci_segment *last_seg,
 224		gfp_t mem_flags)
 225{
 226	struct xhci_segment *seg;
 227	struct xhci_segment *failed_seg;
 228	int ret;
 229
 230	if (WARN_ON_ONCE(trb_address_map == NULL))
 231		return 0;
 232
 233	seg = first_seg;
 234	do {
 235		ret = xhci_insert_segment_mapping(trb_address_map,
 236				ring, seg, mem_flags);
 237		if (ret)
 238			goto remove_streams;
 239		if (seg == last_seg)
 240			return 0;
 241		seg = seg->next;
 242	} while (seg != first_seg);
 243
 244	return 0;
 245
 246remove_streams:
 247	failed_seg = seg;
 248	seg = first_seg;
 249	do {
 250		xhci_remove_segment_mapping(trb_address_map, seg);
 251		if (seg == failed_seg)
 252			return ret;
 253		seg = seg->next;
 254	} while (seg != first_seg);
 255
 256	return ret;
 257}
 258
 259static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 260{
 261	struct xhci_segment *seg;
 
 262
 263	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 264		return;
 265
 266	seg = ring->first_seg;
 267	do {
 268		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 269		seg = seg->next;
 270	} while (seg != ring->first_seg);
 271}
 272
 273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 274{
 275	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 276			ring->first_seg, ring->last_seg, mem_flags);
 277}
 278
 279/* XXX: Do we need the hcd structure in all these functions? */
 280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 281{
 282	if (!ring)
 283		return;
 284
 285	trace_xhci_ring_free(ring);
 286
 287	if (ring->first_seg) {
 288		if (ring->type == TYPE_STREAM)
 289			xhci_remove_stream_mapping(ring);
 290		xhci_free_segments_for_ring(xhci, ring->first_seg);
 291	}
 292
 
 293	kfree(ring);
 294}
 295
 296void xhci_initialize_ring_info(struct xhci_ring *ring,
 297			       unsigned int cycle_state)
 298{
 299	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 300	ring->enqueue = ring->first_seg->trbs;
 301	ring->enq_seg = ring->first_seg;
 302	ring->dequeue = ring->enqueue;
 303	ring->deq_seg = ring->first_seg;
 304	/* The ring is initialized to 0. The producer must write 1 to the cycle
 305	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 306	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 307	 *
 308	 * New rings are initialized with cycle state equal to 1; if we are
 309	 * handling ring expansion, set the cycle state equal to the old ring.
 310	 */
 311	ring->cycle_state = cycle_state;
 312
 313	/*
 314	 * Each segment has a link TRB, and leave an extra TRB for SW
 315	 * accounting purpose
 316	 */
 317	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 318}
 319
 320/* Allocate segments and link them for a ring */
 321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 322		struct xhci_segment **first, struct xhci_segment **last,
 323		unsigned int num_segs, unsigned int cycle_state,
 324		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 325{
 326	struct xhci_segment *prev;
 327	bool chain_links;
 328
 329	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 330	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 331			 (type == TYPE_ISOC &&
 332			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 333
 334	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 335	if (!prev)
 336		return -ENOMEM;
 337	num_segs--;
 338
 339	*first = prev;
 340	while (num_segs > 0) {
 341		struct xhci_segment	*next;
 342
 343		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 344		if (!next) {
 345			prev = *first;
 346			while (prev) {
 347				next = prev->next;
 348				xhci_segment_free(xhci, prev);
 349				prev = next;
 350			}
 351			return -ENOMEM;
 352		}
 353		xhci_link_segments(prev, next, type, chain_links);
 354
 355		prev = next;
 356		num_segs--;
 357	}
 358	xhci_link_segments(prev, *first, type, chain_links);
 359	*last = prev;
 360
 361	return 0;
 362}
 363
 364/*
 365 * Create a new ring with zero or more segments.
 366 *
 367 * Link each segment together into a ring.
 368 * Set the end flag and the cycle toggle bit on the last segment.
 369 * See section 4.9.1 and figures 15 and 16.
 370 */
 371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 372		unsigned int num_segs, unsigned int cycle_state,
 373		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 374{
 375	struct xhci_ring	*ring;
 376	int ret;
 377	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 378
 379	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 
 380	if (!ring)
 381		return NULL;
 382
 383	ring->num_segs = num_segs;
 384	ring->bounce_buf_len = max_packet;
 385	INIT_LIST_HEAD(&ring->td_list);
 386	ring->type = type;
 387	if (num_segs == 0)
 388		return ring;
 389
 390	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 391			&ring->last_seg, num_segs, cycle_state, type,
 392			max_packet, flags);
 393	if (ret)
 394		goto fail;
 
 
 
 
 
 
 
 
 
 
 395
 396	/* Only event ring does not use link TRB */
 397	if (type != TYPE_EVENT) {
 
 
 
 
 398		/* See section 4.9.2.1 and 6.4.4.1 */
 399		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 400			cpu_to_le32(LINK_TOGGLE);
 
 
 
 401	}
 402	xhci_initialize_ring_info(ring, cycle_state);
 403	trace_xhci_ring_alloc(ring);
 404	return ring;
 405
 406fail:
 407	kfree(ring);
 408	return NULL;
 409}
 410
 411void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 412		struct xhci_virt_device *virt_dev,
 413		unsigned int ep_index)
 414{
 415	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416	virt_dev->eps[ep_index].ring = NULL;
 417}
 418
 419/*
 420 * Expand an existing ring.
 421 * Allocate a new ring which has same segment numbers and link the two rings.
 422 */
 423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 424				unsigned int num_trbs, gfp_t flags)
 425{
 426	struct xhci_segment	*first;
 427	struct xhci_segment	*last;
 428	unsigned int		num_segs;
 429	unsigned int		num_segs_needed;
 430	int			ret;
 431
 432	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 433				(TRBS_PER_SEGMENT - 1);
 434
 435	/* Allocate number of segments we needed, or double the ring size */
 436	num_segs = max(ring->num_segs, num_segs_needed);
 437
 438	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 439			num_segs, ring->cycle_state, ring->type,
 440			ring->bounce_buf_len, flags);
 441	if (ret)
 442		return -ENOMEM;
 443
 444	if (ring->type == TYPE_STREAM)
 445		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 446						ring, first, last, flags);
 447	if (ret) {
 448		struct xhci_segment *next;
 449		do {
 450			next = first->next;
 451			xhci_segment_free(xhci, first);
 452			if (first == last)
 453				break;
 454			first = next;
 455		} while (true);
 456		return ret;
 457	}
 458
 459	xhci_link_rings(xhci, ring, first, last, num_segs);
 460	trace_xhci_ring_expansion(ring);
 461	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 462			"ring expansion succeed, now has %d segments",
 463			ring->num_segs);
 464
 465	return 0;
 466}
 467
 468struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 469						    int type, gfp_t flags)
 470{
 471	struct xhci_container_ctx *ctx;
 472	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 473
 474	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 475		return NULL;
 476
 477	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 478	if (!ctx)
 479		return NULL;
 480
 
 481	ctx->type = type;
 482	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 483	if (type == XHCI_CTX_TYPE_INPUT)
 484		ctx->size += CTX_SIZE(xhci->hcc_params);
 485
 486	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 487	if (!ctx->bytes) {
 488		kfree(ctx);
 489		return NULL;
 490	}
 491	return ctx;
 492}
 493
 494void xhci_free_container_ctx(struct xhci_hcd *xhci,
 495			     struct xhci_container_ctx *ctx)
 496{
 497	if (!ctx)
 498		return;
 499	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 500	kfree(ctx);
 501}
 502
 503struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 504					      struct xhci_container_ctx *ctx)
 505{
 506	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 507		return NULL;
 508
 509	return (struct xhci_input_control_ctx *)ctx->bytes;
 510}
 511
 512struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 513					struct xhci_container_ctx *ctx)
 514{
 515	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 516		return (struct xhci_slot_ctx *)ctx->bytes;
 517
 518	return (struct xhci_slot_ctx *)
 519		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 520}
 521
 522struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 523				    struct xhci_container_ctx *ctx,
 524				    unsigned int ep_index)
 525{
 526	/* increment ep index by offset of start of ep ctx array */
 527	ep_index++;
 528	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 529		ep_index++;
 530
 531	return (struct xhci_ep_ctx *)
 532		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 533}
 534EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
 535
 536/***************** Streams structures manipulation *************************/
 537
 538static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 539		unsigned int num_stream_ctxs,
 540		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 541{
 542	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 543	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 544
 545	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 546		dma_free_coherent(dev, size,
 
 547				stream_ctx, dma);
 548	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 549		return dma_pool_free(xhci->small_streams_pool,
 550				stream_ctx, dma);
 551	else
 552		return dma_pool_free(xhci->medium_streams_pool,
 553				stream_ctx, dma);
 554}
 555
 556/*
 557 * The stream context array for each endpoint with bulk streams enabled can
 558 * vary in size, based on:
 559 *  - how many streams the endpoint supports,
 560 *  - the maximum primary stream array size the host controller supports,
 561 *  - and how many streams the device driver asks for.
 562 *
 563 * The stream context array must be a power of 2, and can be as small as
 564 * 64 bytes or as large as 1MB.
 565 */
 566static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 567		unsigned int num_stream_ctxs, dma_addr_t *dma,
 568		gfp_t mem_flags)
 569{
 570	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 571	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 572
 573	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 574		return dma_alloc_coherent(dev, size,
 575				dma, mem_flags);
 576	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 
 577		return dma_pool_alloc(xhci->small_streams_pool,
 578				mem_flags, dma);
 579	else
 580		return dma_pool_alloc(xhci->medium_streams_pool,
 581				mem_flags, dma);
 582}
 583
 584struct xhci_ring *xhci_dma_to_transfer_ring(
 585		struct xhci_virt_ep *ep,
 586		u64 address)
 587{
 588	if (ep->ep_state & EP_HAS_STREAMS)
 589		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 590				address >> TRB_SEGMENT_SHIFT);
 591	return ep->ring;
 592}
 593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594/*
 595 * Change an endpoint's internal structure so it supports stream IDs.  The
 596 * number of requested streams includes stream 0, which cannot be used by device
 597 * drivers.
 598 *
 599 * The number of stream contexts in the stream context array may be bigger than
 600 * the number of streams the driver wants to use.  This is because the number of
 601 * stream context array entries must be a power of two.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602 */
 603struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 604		unsigned int num_stream_ctxs,
 605		unsigned int num_streams,
 606		unsigned int max_packet, gfp_t mem_flags)
 607{
 608	struct xhci_stream_info *stream_info;
 609	u32 cur_stream;
 610	struct xhci_ring *cur_ring;
 
 611	u64 addr;
 612	int ret;
 613	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 614
 615	xhci_dbg(xhci, "Allocating %u streams and %u "
 616			"stream context array entries.\n",
 617			num_streams, num_stream_ctxs);
 618	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 619		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 620		return NULL;
 621	}
 622	xhci->cmd_ring_reserved_trbs++;
 623
 624	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 625			dev_to_node(dev));
 626	if (!stream_info)
 627		goto cleanup_trbs;
 628
 629	stream_info->num_streams = num_streams;
 630	stream_info->num_stream_ctxs = num_stream_ctxs;
 631
 632	/* Initialize the array of virtual pointers to stream rings. */
 633	stream_info->stream_rings = kcalloc_node(
 634			num_streams, sizeof(struct xhci_ring *), mem_flags,
 635			dev_to_node(dev));
 636	if (!stream_info->stream_rings)
 637		goto cleanup_info;
 638
 639	/* Initialize the array of DMA addresses for stream rings for the HW. */
 640	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 641			num_stream_ctxs, &stream_info->ctx_array_dma,
 642			mem_flags);
 643	if (!stream_info->stream_ctx_array)
 644		goto cleanup_ring_array;
 645	memset(stream_info->stream_ctx_array, 0,
 646			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 647
 648	/* Allocate everything needed to free the stream rings later */
 649	stream_info->free_streams_command =
 650		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 651	if (!stream_info->free_streams_command)
 652		goto cleanup_ctx;
 653
 654	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 655
 656	/* Allocate rings for all the streams that the driver will use,
 657	 * and add their segment DMA addresses to the radix tree.
 658	 * Stream 0 is reserved.
 659	 */
 660
 661	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 662		stream_info->stream_rings[cur_stream] =
 663			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 664					mem_flags);
 665		cur_ring = stream_info->stream_rings[cur_stream];
 666		if (!cur_ring)
 667			goto cleanup_rings;
 668		cur_ring->stream_id = cur_stream;
 669		cur_ring->trb_address_map = &stream_info->trb_address_map;
 670		/* Set deq ptr, cycle bit, and stream context type */
 671		addr = cur_ring->first_seg->dma |
 672			SCT_FOR_CTX(SCT_PRI_TR) |
 673			cur_ring->cycle_state;
 674		stream_info->stream_ctx_array[cur_stream].stream_ring =
 675			cpu_to_le64(addr);
 676		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 677				cur_stream, (unsigned long long) addr);
 678
 679		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 
 
 
 680		if (ret) {
 681			xhci_ring_free(xhci, cur_ring);
 682			stream_info->stream_rings[cur_stream] = NULL;
 683			goto cleanup_rings;
 684		}
 685	}
 686	/* Leave the other unused stream ring pointers in the stream context
 687	 * array initialized to zero.  This will cause the xHC to give us an
 688	 * error if the device asks for a stream ID we don't have setup (if it
 689	 * was any other way, the host controller would assume the ring is
 690	 * "empty" and wait forever for data to be queued to that stream ID).
 691	 */
 
 
 
 
 
 
 
 692
 693	return stream_info;
 694
 695cleanup_rings:
 696	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 697		cur_ring = stream_info->stream_rings[cur_stream];
 698		if (cur_ring) {
 
 
 
 699			xhci_ring_free(xhci, cur_ring);
 700			stream_info->stream_rings[cur_stream] = NULL;
 701		}
 702	}
 703	xhci_free_command(xhci, stream_info->free_streams_command);
 704cleanup_ctx:
 705	xhci_free_stream_ctx(xhci,
 706		stream_info->num_stream_ctxs,
 707		stream_info->stream_ctx_array,
 708		stream_info->ctx_array_dma);
 709cleanup_ring_array:
 710	kfree(stream_info->stream_rings);
 711cleanup_info:
 712	kfree(stream_info);
 713cleanup_trbs:
 714	xhci->cmd_ring_reserved_trbs--;
 715	return NULL;
 716}
 717/*
 718 * Sets the MaxPStreams field and the Linear Stream Array field.
 719 * Sets the dequeue pointer to the stream context array.
 720 */
 721void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 722		struct xhci_ep_ctx *ep_ctx,
 723		struct xhci_stream_info *stream_info)
 724{
 725	u32 max_primary_streams;
 726	/* MaxPStreams is the number of stream context array entries, not the
 727	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 728	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 729	 */
 730	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 731	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 732			"Setting number of stream ctx array entries to %u",
 733			1 << (max_primary_streams + 1));
 734	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 735	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 736				       | EP_HAS_LSA);
 737	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 738}
 739
 740/*
 741 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 742 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 743 * not at the beginning of the ring).
 744 */
 745void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 
 746		struct xhci_virt_ep *ep)
 747{
 748	dma_addr_t addr;
 749	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 750	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 751	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 752}
 753
 754/* Frees all stream contexts associated with the endpoint,
 755 *
 756 * Caller should fix the endpoint context streams fields.
 757 */
 758void xhci_free_stream_info(struct xhci_hcd *xhci,
 759		struct xhci_stream_info *stream_info)
 760{
 761	int cur_stream;
 762	struct xhci_ring *cur_ring;
 
 763
 764	if (!stream_info)
 765		return;
 766
 767	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 768			cur_stream++) {
 769		cur_ring = stream_info->stream_rings[cur_stream];
 770		if (cur_ring) {
 
 
 
 771			xhci_ring_free(xhci, cur_ring);
 772			stream_info->stream_rings[cur_stream] = NULL;
 773		}
 774	}
 775	xhci_free_command(xhci, stream_info->free_streams_command);
 776	xhci->cmd_ring_reserved_trbs--;
 777	if (stream_info->stream_ctx_array)
 778		xhci_free_stream_ctx(xhci,
 779				stream_info->num_stream_ctxs,
 780				stream_info->stream_ctx_array,
 781				stream_info->ctx_array_dma);
 782
 783	kfree(stream_info->stream_rings);
 
 784	kfree(stream_info);
 785}
 786
 787
 788/***************** Device context manipulation *************************/
 789
 790static void xhci_free_tt_info(struct xhci_hcd *xhci,
 791		struct xhci_virt_device *virt_dev,
 792		int slot_id)
 793{
 794	struct list_head *tt_list_head;
 795	struct xhci_tt_bw_info *tt_info, *next;
 796	bool slot_found = false;
 797
 798	/* If the device never made it past the Set Address stage,
 799	 * it may not have the real_port set correctly.
 800	 */
 801	if (virt_dev->real_port == 0 ||
 802			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 803		xhci_dbg(xhci, "Bad real port.\n");
 804		return;
 805	}
 806
 807	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 808	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 809		/* Multi-TT hubs will have more than one entry */
 810		if (tt_info->slot_id == slot_id) {
 811			slot_found = true;
 812			list_del(&tt_info->tt_list);
 813			kfree(tt_info);
 814		} else if (slot_found) {
 815			break;
 816		}
 817	}
 818}
 819
 820int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 821		struct xhci_virt_device *virt_dev,
 822		struct usb_device *hdev,
 823		struct usb_tt *tt, gfp_t mem_flags)
 824{
 825	struct xhci_tt_bw_info		*tt_info;
 826	unsigned int			num_ports;
 827	int				i, j;
 828	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 829
 830	if (!tt->multi)
 831		num_ports = 1;
 832	else
 833		num_ports = hdev->maxchild;
 834
 835	for (i = 0; i < num_ports; i++, tt_info++) {
 836		struct xhci_interval_bw_table *bw_table;
 837
 838		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 839				dev_to_node(dev));
 840		if (!tt_info)
 841			goto free_tts;
 842		INIT_LIST_HEAD(&tt_info->tt_list);
 843		list_add(&tt_info->tt_list,
 844				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 845		tt_info->slot_id = virt_dev->udev->slot_id;
 846		if (tt->multi)
 847			tt_info->ttport = i+1;
 848		bw_table = &tt_info->bw_table;
 849		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 850			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 851	}
 852	return 0;
 853
 854free_tts:
 855	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 856	return -ENOMEM;
 857}
 858
 859
 860/* All the xhci_tds in the ring's TD list should be freed at this point.
 861 * Should be called with xhci->lock held if there is any chance the TT lists
 862 * will be manipulated by the configure endpoint, allocate device, or update
 863 * hub functions while this function is removing the TT entries from the list.
 864 */
 865void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 866{
 867	struct xhci_virt_device *dev;
 868	int i;
 869	int old_active_eps = 0;
 870
 871	/* Slot ID 0 is reserved */
 872	if (slot_id == 0 || !xhci->devs[slot_id])
 873		return;
 874
 875	dev = xhci->devs[slot_id];
 876
 877	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 878	if (!dev)
 879		return;
 880
 881	trace_xhci_free_virt_device(dev);
 882
 883	if (dev->tt_info)
 884		old_active_eps = dev->tt_info->active_eps;
 885
 886	for (i = 0; i < 31; i++) {
 887		if (dev->eps[i].ring)
 888			xhci_ring_free(xhci, dev->eps[i].ring);
 889		if (dev->eps[i].stream_info)
 890			xhci_free_stream_info(xhci,
 891					dev->eps[i].stream_info);
 892		/*
 893		 * Endpoints are normally deleted from the bandwidth list when
 894		 * endpoints are dropped, before device is freed.
 895		 * If host is dying or being removed then endpoints aren't
 896		 * dropped cleanly, so delete the endpoint from list here.
 897		 * Only applicable for hosts with software bandwidth checking.
 898		 */
 899
 900		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
 901			list_del_init(&dev->eps[i].bw_endpoint_list);
 902			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
 903				 slot_id, i);
 904		}
 905	}
 906	/* If this is a hub, free the TT(s) from the TT list */
 907	xhci_free_tt_info(xhci, dev, slot_id);
 908	/* If necessary, update the number of active TTs on this root port */
 909	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 910
 911	if (dev->in_ctx)
 912		xhci_free_container_ctx(xhci, dev->in_ctx);
 913	if (dev->out_ctx)
 914		xhci_free_container_ctx(xhci, dev->out_ctx);
 915
 916	if (dev->udev && dev->udev->slot_id)
 917		dev->udev->slot_id = 0;
 918	kfree(xhci->devs[slot_id]);
 919	xhci->devs[slot_id] = NULL;
 920}
 921
 922/*
 923 * Free a virt_device structure.
 924 * If the virt_device added a tt_info (a hub) and has children pointing to
 925 * that tt_info, then free the child first. Recursive.
 926 * We can't rely on udev at this point to find child-parent relationships.
 927 */
 928static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 929{
 930	struct xhci_virt_device *vdev;
 931	struct list_head *tt_list_head;
 932	struct xhci_tt_bw_info *tt_info, *next;
 933	int i;
 934
 935	vdev = xhci->devs[slot_id];
 936	if (!vdev)
 937		return;
 938
 939	if (vdev->real_port == 0 ||
 940			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 941		xhci_dbg(xhci, "Bad vdev->real_port.\n");
 942		goto out;
 943	}
 944
 945	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 946	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 947		/* is this a hub device that added a tt_info to the tts list */
 948		if (tt_info->slot_id == slot_id) {
 949			/* are any devices using this tt_info? */
 950			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 951				vdev = xhci->devs[i];
 952				if (vdev && (vdev->tt_info == tt_info))
 953					xhci_free_virt_devices_depth_first(
 954						xhci, i);
 955			}
 956		}
 957	}
 958out:
 959	/* we are now at a leaf device */
 960	xhci_debugfs_remove_slot(xhci, slot_id);
 961	xhci_free_virt_device(xhci, slot_id);
 962}
 963
 964int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 965		struct usb_device *udev, gfp_t flags)
 966{
 967	struct xhci_virt_device *dev;
 968	int i;
 969
 970	/* Slot ID 0 is reserved */
 971	if (slot_id == 0 || xhci->devs[slot_id]) {
 972		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 973		return 0;
 974	}
 975
 976	dev = kzalloc(sizeof(*dev), flags);
 977	if (!dev)
 978		return 0;
 979
 980	dev->slot_id = slot_id;
 981
 982	/* Allocate the (output) device context that will be used in the HC. */
 983	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 984	if (!dev->out_ctx)
 985		goto fail;
 986
 987	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 988			(unsigned long long)dev->out_ctx->dma);
 989
 990	/* Allocate the (input) device context for address device command */
 991	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 992	if (!dev->in_ctx)
 993		goto fail;
 994
 995	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 996			(unsigned long long)dev->in_ctx->dma);
 997
 998	/* Initialize the cancellation and bandwidth list for each ep */
 999	for (i = 0; i < 31; i++) {
1000		dev->eps[i].ep_index = i;
1001		dev->eps[i].vdev = dev;
1002		dev->eps[i].xhci = xhci;
1003		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1005	}
1006
1007	/* Allocate endpoint 0 ring */
1008	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1009	if (!dev->eps[0].ring)
1010		goto fail;
1011
 
 
 
 
 
 
 
 
 
 
1012	dev->udev = udev;
1013
1014	/* Point to output device context in dcbaa. */
1015	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1016	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1017		 slot_id,
1018		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1019		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1020
1021	trace_xhci_alloc_virt_device(dev);
1022
1023	xhci->devs[slot_id] = dev;
1024
1025	return 1;
1026fail:
1027
1028	if (dev->in_ctx)
1029		xhci_free_container_ctx(xhci, dev->in_ctx);
1030	if (dev->out_ctx)
1031		xhci_free_container_ctx(xhci, dev->out_ctx);
1032	kfree(dev);
1033
1034	return 0;
1035}
1036
1037void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1038		struct usb_device *udev)
1039{
1040	struct xhci_virt_device *virt_dev;
1041	struct xhci_ep_ctx	*ep0_ctx;
1042	struct xhci_ring	*ep_ring;
1043
1044	virt_dev = xhci->devs[udev->slot_id];
1045	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1046	ep_ring = virt_dev->eps[0].ring;
1047	/*
1048	 * FIXME we don't keep track of the dequeue pointer very well after a
1049	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1050	 * host to our enqueue pointer.  This should only be called after a
1051	 * configured device has reset, so all control transfers should have
1052	 * been completed or cancelled before the reset.
1053	 */
1054	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1055							ep_ring->enqueue)
1056				   | ep_ring->cycle_state);
1057}
1058
1059/*
1060 * The xHCI roothub may have ports of differing speeds in any order in the port
1061 * status registers.
 
1062 *
1063 * The xHCI hardware wants to know the roothub port number that the USB device
1064 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1065 * know is the index of that port under either the USB 2.0 or the USB 3.0
1066 * roothub, but that doesn't give us the real index into the HW port status
1067 * registers. Call xhci_find_raw_port_number() to get real index.
 
1068 */
1069static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1070		struct usb_device *udev)
1071{
1072	struct usb_device *top_dev;
1073	struct usb_hcd *hcd;
1074
1075	if (udev->speed >= USB_SPEED_SUPER)
1076		hcd = xhci_get_usb3_hcd(xhci);
1077	else
1078		hcd = xhci->main_hcd;
1079
1080	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1081			top_dev = top_dev->parent)
1082		/* Found device below root hub */;
 
 
 
 
 
 
 
 
 
 
 
1083
1084	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
 
 
 
 
 
 
 
 
 
 
 
1085}
1086
1087/* Setup an xHCI virtual device for a Set Address command */
1088int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1089{
1090	struct xhci_virt_device *dev;
1091	struct xhci_ep_ctx	*ep0_ctx;
1092	struct xhci_slot_ctx    *slot_ctx;
 
1093	u32			port_num;
1094	u32			max_packets;
1095	struct usb_device *top_dev;
1096
1097	dev = xhci->devs[udev->slot_id];
1098	/* Slot ID 0 is reserved */
1099	if (udev->slot_id == 0 || !dev) {
1100		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1101				udev->slot_id);
1102		return -EINVAL;
1103	}
1104	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
 
1105	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1106
 
 
 
1107	/* 3) Only the control endpoint is valid - one endpoint context */
1108	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1109	switch (udev->speed) {
1110	case USB_SPEED_SUPER_PLUS:
1111		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1112		max_packets = MAX_PACKET(512);
1113		break;
1114	case USB_SPEED_SUPER:
1115		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1116		max_packets = MAX_PACKET(512);
1117		break;
1118	case USB_SPEED_HIGH:
1119		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1120		max_packets = MAX_PACKET(64);
1121		break;
1122	/* USB core guesses at a 64-byte max packet first for FS devices */
1123	case USB_SPEED_FULL:
1124		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1125		max_packets = MAX_PACKET(64);
1126		break;
1127	case USB_SPEED_LOW:
1128		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1129		max_packets = MAX_PACKET(8);
1130		break;
1131	case USB_SPEED_WIRELESS:
1132		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1133		return -EINVAL;
 
1134	default:
1135		/* Speed was set earlier, this shouldn't happen. */
1136		return -EINVAL;
1137	}
1138	/* Find the root hub port this device is under */
1139	port_num = xhci_find_real_port_number(xhci, udev);
1140	if (!port_num)
1141		return -EINVAL;
1142	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1143	/* Set the port number in the virtual_device to the faked port number */
1144	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1145			top_dev = top_dev->parent)
1146		/* Found device below root hub */;
1147	dev->fake_port = top_dev->portnum;
1148	dev->real_port = port_num;
1149	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1150	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1151
1152	/* Find the right bandwidth table that this device will be a part of.
1153	 * If this is a full speed device attached directly to a root port (or a
1154	 * decendent of one), it counts as a primary bandwidth domain, not a
1155	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1156	 * will never be created for the HS root hub.
1157	 */
1158	if (!udev->tt || !udev->tt->hub->parent) {
1159		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1160	} else {
1161		struct xhci_root_port_bw_info *rh_bw;
1162		struct xhci_tt_bw_info *tt_bw;
1163
1164		rh_bw = &xhci->rh_bw[port_num - 1];
1165		/* Find the right TT. */
1166		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1167			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1168				continue;
1169
1170			if (!dev->udev->tt->multi ||
1171					(udev->tt->multi &&
1172					 tt_bw->ttport == dev->udev->ttport)) {
1173				dev->bw_table = &tt_bw->bw_table;
1174				dev->tt_info = tt_bw;
1175				break;
1176			}
1177		}
1178		if (!dev->tt_info)
1179			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1180	}
1181
1182	/* Is this a LS/FS device under an external HS hub? */
1183	if (udev->tt && udev->tt->hub->parent) {
1184		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1185						(udev->ttport << 8));
1186		if (udev->tt->multi)
1187			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1188	}
1189	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1190	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1191
1192	/* Step 4 - ring already allocated */
1193	/* Step 5 */
1194	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1197	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1198					 max_packets);
1199
1200	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1201				   dev->eps[0].ring->cycle_state);
1202
1203	trace_xhci_setup_addressable_virt_device(dev);
1204
1205	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1206
1207	return 0;
1208}
1209
1210/*
1211 * Convert interval expressed as 2^(bInterval - 1) == interval into
1212 * straight exponent value 2^n == interval.
1213 *
1214 */
1215static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1216		struct usb_host_endpoint *ep)
1217{
1218	unsigned int interval;
1219
1220	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1221	if (interval != ep->desc.bInterval - 1)
1222		dev_warn(&udev->dev,
1223			 "ep %#x - rounding interval to %d %sframes\n",
1224			 ep->desc.bEndpointAddress,
1225			 1 << interval,
1226			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1227
1228	if (udev->speed == USB_SPEED_FULL) {
1229		/*
1230		 * Full speed isoc endpoints specify interval in frames,
1231		 * not microframes. We are using microframes everywhere,
1232		 * so adjust accordingly.
1233		 */
1234		interval += 3;	/* 1 frame = 2^3 uframes */
1235	}
1236
1237	return interval;
1238}
1239
1240/*
1241 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1242 * microframes, rounded down to nearest power of 2.
1243 */
1244static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1245		struct usb_host_endpoint *ep, unsigned int desc_interval,
1246		unsigned int min_exponent, unsigned int max_exponent)
1247{
1248	unsigned int interval;
1249
1250	interval = fls(desc_interval) - 1;
1251	interval = clamp_val(interval, min_exponent, max_exponent);
1252	if ((1 << interval) != desc_interval)
1253		dev_dbg(&udev->dev,
1254			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1255			 ep->desc.bEndpointAddress,
1256			 1 << interval,
1257			 desc_interval);
1258
1259	return interval;
1260}
1261
1262static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1263		struct usb_host_endpoint *ep)
1264{
1265	if (ep->desc.bInterval == 0)
1266		return 0;
1267	return xhci_microframes_to_exponent(udev, ep,
1268			ep->desc.bInterval, 0, 15);
1269}
1270
1271
1272static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1273		struct usb_host_endpoint *ep)
1274{
1275	return xhci_microframes_to_exponent(udev, ep,
1276			ep->desc.bInterval * 8, 3, 10);
1277}
1278
1279/* Return the polling or NAK interval.
1280 *
1281 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1282 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1283 *
1284 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1285 * is set to 0.
1286 */
1287static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1288		struct usb_host_endpoint *ep)
1289{
1290	unsigned int interval = 0;
1291
1292	switch (udev->speed) {
1293	case USB_SPEED_HIGH:
1294		/* Max NAK rate */
1295		if (usb_endpoint_xfer_control(&ep->desc) ||
1296		    usb_endpoint_xfer_bulk(&ep->desc)) {
1297			interval = xhci_parse_microframe_interval(udev, ep);
1298			break;
1299		}
1300		fallthrough;	/* SS and HS isoc/int have same decoding */
1301
1302	case USB_SPEED_SUPER_PLUS:
1303	case USB_SPEED_SUPER:
1304		if (usb_endpoint_xfer_int(&ep->desc) ||
1305		    usb_endpoint_xfer_isoc(&ep->desc)) {
1306			interval = xhci_parse_exponent_interval(udev, ep);
1307		}
1308		break;
1309
1310	case USB_SPEED_FULL:
1311		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1312			interval = xhci_parse_exponent_interval(udev, ep);
1313			break;
1314		}
1315		/*
1316		 * Fall through for interrupt endpoint interval decoding
1317		 * since it uses the same rules as low speed interrupt
1318		 * endpoints.
1319		 */
1320		fallthrough;
1321
1322	case USB_SPEED_LOW:
1323		if (usb_endpoint_xfer_int(&ep->desc) ||
1324		    usb_endpoint_xfer_isoc(&ep->desc)) {
1325
1326			interval = xhci_parse_frame_interval(udev, ep);
1327		}
1328		break;
1329
1330	default:
1331		BUG();
1332	}
1333	return interval;
1334}
1335
1336/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1337 * High speed endpoint descriptors can define "the number of additional
1338 * transaction opportunities per microframe", but that goes in the Max Burst
1339 * endpoint context field.
1340 */
1341static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1342		struct usb_host_endpoint *ep)
1343{
1344	if (udev->speed < USB_SPEED_SUPER ||
1345			!usb_endpoint_xfer_isoc(&ep->desc))
1346		return 0;
1347	return ep->ss_ep_comp.bmAttributes;
1348}
1349
1350static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1351				       struct usb_host_endpoint *ep)
1352{
1353	/* Super speed and Plus have max burst in ep companion desc */
1354	if (udev->speed >= USB_SPEED_SUPER)
1355		return ep->ss_ep_comp.bMaxBurst;
1356
1357	if (udev->speed == USB_SPEED_HIGH &&
1358	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1359	     usb_endpoint_xfer_int(&ep->desc)))
1360		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1361
1362	return 0;
1363}
1364
1365static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1366{
1367	int in;
 
1368
1369	in = usb_endpoint_dir_in(&ep->desc);
1370
1371	switch (usb_endpoint_type(&ep->desc)) {
1372	case USB_ENDPOINT_XFER_CONTROL:
1373		return CTRL_EP;
1374	case USB_ENDPOINT_XFER_BULK:
1375		return in ? BULK_IN_EP : BULK_OUT_EP;
1376	case USB_ENDPOINT_XFER_ISOC:
1377		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1378	case USB_ENDPOINT_XFER_INT:
1379		return in ? INT_IN_EP : INT_OUT_EP;
 
 
 
 
 
 
 
 
 
1380	}
1381	return 0;
1382}
1383
1384/* Return the maximum endpoint service interval time (ESIT) payload.
1385 * Basically, this is the maxpacket size, multiplied by the burst size
1386 * and mult size.
1387 */
1388static u32 xhci_get_max_esit_payload(struct usb_device *udev,
 
1389		struct usb_host_endpoint *ep)
1390{
1391	int max_burst;
1392	int max_packet;
1393
1394	/* Only applies for interrupt or isochronous endpoints */
1395	if (usb_endpoint_xfer_control(&ep->desc) ||
1396			usb_endpoint_xfer_bulk(&ep->desc))
1397		return 0;
1398
1399	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1400	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1401	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1402		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1403	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1404	else if (udev->speed >= USB_SPEED_SUPER)
1405		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1406
1407	max_packet = usb_endpoint_maxp(&ep->desc);
1408	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1409	/* A 0 in max burst means 1 transfer per ESIT */
1410	return max_packet * max_burst;
1411}
1412
1413/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1414 * Drivers will have to call usb_alloc_streams() to do that.
1415 */
1416int xhci_endpoint_init(struct xhci_hcd *xhci,
1417		struct xhci_virt_device *virt_dev,
1418		struct usb_device *udev,
1419		struct usb_host_endpoint *ep,
1420		gfp_t mem_flags)
1421{
1422	unsigned int ep_index;
1423	struct xhci_ep_ctx *ep_ctx;
1424	struct xhci_ring *ep_ring;
1425	unsigned int max_packet;
1426	enum xhci_ring_type ring_type;
1427	u32 max_esit_payload;
1428	u32 endpoint_type;
1429	unsigned int max_burst;
1430	unsigned int interval;
1431	unsigned int mult;
1432	unsigned int avg_trb_len;
1433	unsigned int err_count = 0;
1434
1435	ep_index = xhci_get_endpoint_index(&ep->desc);
1436	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1437
1438	endpoint_type = xhci_get_endpoint_type(ep);
1439	if (!endpoint_type)
1440		return -EINVAL;
1441
1442	ring_type = usb_endpoint_type(&ep->desc);
1443
1444	/*
1445	 * Get values to fill the endpoint context, mostly from ep descriptor.
1446	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1447	 * have no clue on scatter gather list entry size. For Isoc and Int,
1448	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1449	 */
1450	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1451	interval = xhci_get_endpoint_interval(udev, ep);
1452
1453	/* Periodic endpoint bInterval limit quirk */
1454	if (usb_endpoint_xfer_int(&ep->desc) ||
1455	    usb_endpoint_xfer_isoc(&ep->desc)) {
1456		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1457		    udev->speed >= USB_SPEED_HIGH &&
1458		    interval >= 7) {
1459			interval = 6;
1460		}
 
 
 
 
1461	}
 
 
 
1462
1463	mult = xhci_get_endpoint_mult(udev, ep);
1464	max_packet = usb_endpoint_maxp(&ep->desc);
1465	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1466	avg_trb_len = max_esit_payload;
1467
1468	/* FIXME dig Mult and streams info out of ep companion desc */
1469
1470	/* Allow 3 retries for everything but isoc, set CErr = 3 */
 
 
1471	if (!usb_endpoint_xfer_isoc(&ep->desc))
1472		err_count = 3;
1473	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1474	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1475		if (udev->speed == USB_SPEED_HIGH)
1476			max_packet = 512;
1477		if (udev->speed == USB_SPEED_FULL) {
1478			max_packet = rounddown_pow_of_two(max_packet);
1479			max_packet = clamp_val(max_packet, 8, 64);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480		}
 
 
 
 
 
 
 
 
1481	}
1482	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1483	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1484		avg_trb_len = 8;
1485	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1486	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1487		mult = 0;
1488
1489	/* Set up the endpoint ring */
1490	virt_dev->eps[ep_index].new_ring =
1491		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1492	if (!virt_dev->eps[ep_index].new_ring)
1493		return -ENOMEM;
1494
1495	virt_dev->eps[ep_index].skip = false;
1496	ep_ring = virt_dev->eps[ep_index].new_ring;
1497
1498	/* Fill the endpoint context */
1499	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1500				      EP_INTERVAL(interval) |
1501				      EP_MULT(mult));
1502	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1503				       MAX_PACKET(max_packet) |
1504				       MAX_BURST(max_burst) |
1505				       ERROR_COUNT(err_count));
1506	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1507				  ep_ring->cycle_state);
1508
1509	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1510				      EP_AVG_TRB_LENGTH(avg_trb_len));
 
1511
 
1512	return 0;
1513}
1514
1515void xhci_endpoint_zero(struct xhci_hcd *xhci,
1516		struct xhci_virt_device *virt_dev,
1517		struct usb_host_endpoint *ep)
1518{
1519	unsigned int ep_index;
1520	struct xhci_ep_ctx *ep_ctx;
1521
1522	ep_index = xhci_get_endpoint_index(&ep->desc);
1523	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1524
1525	ep_ctx->ep_info = 0;
1526	ep_ctx->ep_info2 = 0;
1527	ep_ctx->deq = 0;
1528	ep_ctx->tx_info = 0;
1529	/* Don't free the endpoint ring until the set interface or configuration
1530	 * request succeeds.
1531	 */
1532}
1533
1534void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1535{
1536	bw_info->ep_interval = 0;
1537	bw_info->mult = 0;
1538	bw_info->num_packets = 0;
1539	bw_info->max_packet_size = 0;
1540	bw_info->type = 0;
1541	bw_info->max_esit_payload = 0;
1542}
1543
1544void xhci_update_bw_info(struct xhci_hcd *xhci,
1545		struct xhci_container_ctx *in_ctx,
1546		struct xhci_input_control_ctx *ctrl_ctx,
1547		struct xhci_virt_device *virt_dev)
1548{
1549	struct xhci_bw_info *bw_info;
1550	struct xhci_ep_ctx *ep_ctx;
1551	unsigned int ep_type;
1552	int i;
1553
1554	for (i = 1; i < 31; i++) {
1555		bw_info = &virt_dev->eps[i].bw_info;
1556
1557		/* We can't tell what endpoint type is being dropped, but
1558		 * unconditionally clearing the bandwidth info for non-periodic
1559		 * endpoints should be harmless because the info will never be
1560		 * set in the first place.
1561		 */
1562		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1563			/* Dropped endpoint */
1564			xhci_clear_endpoint_bw_info(bw_info);
1565			continue;
1566		}
1567
1568		if (EP_IS_ADDED(ctrl_ctx, i)) {
1569			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1570			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1571
1572			/* Ignore non-periodic endpoints */
1573			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1574					ep_type != ISOC_IN_EP &&
1575					ep_type != INT_IN_EP)
1576				continue;
1577
1578			/* Added or changed endpoint */
1579			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1580					le32_to_cpu(ep_ctx->ep_info));
1581			/* Number of packets and mult are zero-based in the
1582			 * input context, but we want one-based for the
1583			 * interval table.
1584			 */
1585			bw_info->mult = CTX_TO_EP_MULT(
1586					le32_to_cpu(ep_ctx->ep_info)) + 1;
1587			bw_info->num_packets = CTX_TO_MAX_BURST(
1588					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1589			bw_info->max_packet_size = MAX_PACKET_DECODED(
1590					le32_to_cpu(ep_ctx->ep_info2));
1591			bw_info->type = ep_type;
1592			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1593					le32_to_cpu(ep_ctx->tx_info));
1594		}
1595	}
1596}
1597
1598/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1599 * Useful when you want to change one particular aspect of the endpoint and then
1600 * issue a configure endpoint command.
1601 */
1602void xhci_endpoint_copy(struct xhci_hcd *xhci,
1603		struct xhci_container_ctx *in_ctx,
1604		struct xhci_container_ctx *out_ctx,
1605		unsigned int ep_index)
1606{
1607	struct xhci_ep_ctx *out_ep_ctx;
1608	struct xhci_ep_ctx *in_ep_ctx;
1609
1610	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1611	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1612
1613	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1614	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1615	in_ep_ctx->deq = out_ep_ctx->deq;
1616	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1617	if (xhci->quirks & XHCI_MTK_HOST) {
1618		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1619		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1620	}
1621}
1622
1623/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1624 * Useful when you want to change one particular aspect of the endpoint and then
1625 * issue a configure endpoint command.  Only the context entries field matters,
1626 * but we'll copy the whole thing anyway.
1627 */
1628void xhci_slot_copy(struct xhci_hcd *xhci,
1629		struct xhci_container_ctx *in_ctx,
1630		struct xhci_container_ctx *out_ctx)
1631{
1632	struct xhci_slot_ctx *in_slot_ctx;
1633	struct xhci_slot_ctx *out_slot_ctx;
1634
1635	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1636	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1637
1638	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1639	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1640	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1641	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1642}
1643
1644/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1645static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1646{
1647	int i;
1648	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1649	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1650
1651	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1652			"Allocating %d scratchpad buffers", num_sp);
1653
1654	if (!num_sp)
1655		return 0;
1656
1657	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1658				dev_to_node(dev));
1659	if (!xhci->scratchpad)
1660		goto fail_sp;
1661
1662	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
 
1663				     num_sp * sizeof(u64),
1664				     &xhci->scratchpad->sp_dma, flags);
1665	if (!xhci->scratchpad->sp_array)
1666		goto fail_sp2;
1667
1668	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1669					flags, dev_to_node(dev));
1670	if (!xhci->scratchpad->sp_buffers)
1671		goto fail_sp3;
1672
 
 
 
 
 
 
1673	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1674	for (i = 0; i < num_sp; i++) {
1675		dma_addr_t dma;
1676		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1677					       flags);
1678		if (!buf)
1679			goto fail_sp4;
1680
1681		xhci->scratchpad->sp_array[i] = dma;
1682		xhci->scratchpad->sp_buffers[i] = buf;
 
1683	}
1684
1685	return 0;
1686
1687 fail_sp4:
1688	for (i = i - 1; i >= 0; i--) {
1689		dma_free_coherent(dev, xhci->page_size,
1690				    xhci->scratchpad->sp_buffers[i],
1691				    xhci->scratchpad->sp_array[i]);
1692	}
 
1693
 
1694	kfree(xhci->scratchpad->sp_buffers);
1695
1696 fail_sp3:
1697	dma_free_coherent(dev, num_sp * sizeof(u64),
1698			    xhci->scratchpad->sp_array,
1699			    xhci->scratchpad->sp_dma);
1700
1701 fail_sp2:
1702	kfree(xhci->scratchpad);
1703	xhci->scratchpad = NULL;
1704
1705 fail_sp:
1706	return -ENOMEM;
1707}
1708
1709static void scratchpad_free(struct xhci_hcd *xhci)
1710{
1711	int num_sp;
1712	int i;
1713	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1714
1715	if (!xhci->scratchpad)
1716		return;
1717
1718	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1719
1720	for (i = 0; i < num_sp; i++) {
1721		dma_free_coherent(dev, xhci->page_size,
1722				    xhci->scratchpad->sp_buffers[i],
1723				    xhci->scratchpad->sp_array[i]);
1724	}
 
1725	kfree(xhci->scratchpad->sp_buffers);
1726	dma_free_coherent(dev, num_sp * sizeof(u64),
1727			    xhci->scratchpad->sp_array,
1728			    xhci->scratchpad->sp_dma);
1729	kfree(xhci->scratchpad);
1730	xhci->scratchpad = NULL;
1731}
1732
1733struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1734		bool allocate_completion, gfp_t mem_flags)
 
1735{
1736	struct xhci_command *command;
1737	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1738
1739	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1740	if (!command)
1741		return NULL;
1742
 
 
 
 
 
 
 
 
 
 
1743	if (allocate_completion) {
1744		command->completion =
1745			kzalloc_node(sizeof(struct completion), mem_flags,
1746				dev_to_node(dev));
1747		if (!command->completion) {
 
1748			kfree(command);
1749			return NULL;
1750		}
1751		init_completion(command->completion);
1752	}
1753
1754	command->status = 0;
1755	INIT_LIST_HEAD(&command->cmd_list);
1756	return command;
1757}
1758
1759struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1760		bool allocate_completion, gfp_t mem_flags)
1761{
1762	struct xhci_command *command;
1763
1764	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1765	if (!command)
1766		return NULL;
1767
1768	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1769						   mem_flags);
1770	if (!command->in_ctx) {
1771		kfree(command->completion);
1772		kfree(command);
1773		return NULL;
1774	}
1775	return command;
1776}
1777
1778void xhci_urb_free_priv(struct urb_priv *urb_priv)
1779{
1780	kfree(urb_priv);
1781}
1782
1783void xhci_free_command(struct xhci_hcd *xhci,
1784		struct xhci_command *command)
1785{
1786	xhci_free_container_ctx(xhci,
1787			command->in_ctx);
1788	kfree(command->completion);
1789	kfree(command);
1790}
1791
1792int xhci_alloc_erst(struct xhci_hcd *xhci,
1793		    struct xhci_ring *evt_ring,
1794		    struct xhci_erst *erst,
1795		    gfp_t flags)
1796{
1797	size_t size;
1798	unsigned int val;
1799	struct xhci_segment *seg;
1800	struct xhci_erst_entry *entry;
1801
1802	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1803	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1804					   size, &erst->erst_dma_addr, flags);
1805	if (!erst->entries)
1806		return -ENOMEM;
1807
1808	erst->num_entries = evt_ring->num_segs;
1809
1810	seg = evt_ring->first_seg;
1811	for (val = 0; val < evt_ring->num_segs; val++) {
1812		entry = &erst->entries[val];
1813		entry->seg_addr = cpu_to_le64(seg->dma);
1814		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1815		entry->rsvd = 0;
1816		seg = seg->next;
1817	}
1818
1819	return 0;
1820}
1821
1822void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1823{
1824	size_t size;
1825	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1826
1827	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1828	if (erst->entries)
1829		dma_free_coherent(dev, size,
1830				erst->entries,
1831				erst->erst_dma_addr);
1832	erst->entries = NULL;
1833}
1834
1835void xhci_mem_cleanup(struct xhci_hcd *xhci)
1836{
1837	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1838	int i, j, num_ports;
1839
1840	cancel_delayed_work_sync(&xhci->cmd_timer);
1841
1842	xhci_free_erst(xhci, &xhci->erst);
1843
 
 
 
 
 
 
 
 
 
 
 
 
1844	if (xhci->event_ring)
1845		xhci_ring_free(xhci, xhci->event_ring);
1846	xhci->event_ring = NULL;
1847	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1848
 
1849	if (xhci->cmd_ring)
1850		xhci_ring_free(xhci, xhci->cmd_ring);
1851	xhci->cmd_ring = NULL;
1852	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1853	xhci_cleanup_command_queue(xhci);
1854
1855	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1856	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1857		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1858		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1859			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1860			while (!list_empty(ep))
1861				list_del_init(ep->next);
1862		}
1863	}
1864
1865	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1866		xhci_free_virt_devices_depth_first(xhci, i);
1867
1868	dma_pool_destroy(xhci->segment_pool);
 
1869	xhci->segment_pool = NULL;
1870	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1871
1872	dma_pool_destroy(xhci->device_pool);
 
1873	xhci->device_pool = NULL;
1874	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1875
1876	dma_pool_destroy(xhci->small_streams_pool);
 
1877	xhci->small_streams_pool = NULL;
1878	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1879			"Freed small stream array pool");
1880
1881	dma_pool_destroy(xhci->medium_streams_pool);
 
1882	xhci->medium_streams_pool = NULL;
1883	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1884			"Freed medium stream array pool");
1885
 
1886	if (xhci->dcbaa)
1887		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1888				xhci->dcbaa, xhci->dcbaa->dma);
1889	xhci->dcbaa = NULL;
1890
1891	scratchpad_free(xhci);
1892
1893	if (!xhci->rh_bw)
1894		goto no_bw;
1895
1896	for (i = 0; i < num_ports; i++) {
1897		struct xhci_tt_bw_info *tt, *n;
1898		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1899			list_del(&tt->tt_list);
1900			kfree(tt);
1901		}
1902	}
1903
1904no_bw:
1905	xhci->cmd_ring_reserved_trbs = 0;
1906	xhci->usb2_rhub.num_ports = 0;
1907	xhci->usb3_rhub.num_ports = 0;
1908	xhci->num_active_eps = 0;
1909	kfree(xhci->usb2_rhub.ports);
1910	kfree(xhci->usb3_rhub.ports);
1911	kfree(xhci->hw_ports);
1912	kfree(xhci->rh_bw);
1913	kfree(xhci->ext_caps);
1914	for (i = 0; i < xhci->num_port_caps; i++)
1915		kfree(xhci->port_caps[i].psi);
1916	kfree(xhci->port_caps);
1917	xhci->num_port_caps = 0;
1918
1919	xhci->usb2_rhub.ports = NULL;
1920	xhci->usb3_rhub.ports = NULL;
1921	xhci->hw_ports = NULL;
1922	xhci->rh_bw = NULL;
1923	xhci->ext_caps = NULL;
1924	xhci->port_caps = NULL;
1925
1926	xhci->page_size = 0;
1927	xhci->page_shift = 0;
1928	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1929	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1930}
1931
1932static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1933		struct xhci_segment *input_seg,
1934		union xhci_trb *start_trb,
1935		union xhci_trb *end_trb,
1936		dma_addr_t input_dma,
1937		struct xhci_segment *result_seg,
1938		char *test_name, int test_number)
1939{
1940	unsigned long long start_dma;
1941	unsigned long long end_dma;
1942	struct xhci_segment *seg;
1943
1944	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1945	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1946
1947	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1948	if (seg != result_seg) {
1949		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1950				test_name, test_number);
1951		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1952				"input DMA 0x%llx\n",
1953				input_seg,
1954				(unsigned long long) input_dma);
1955		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1956				"ending TRB %p (0x%llx DMA)\n",
1957				start_trb, start_dma,
1958				end_trb, end_dma);
1959		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1960				result_seg, seg);
1961		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1962			  true);
1963		return -1;
1964	}
1965	return 0;
1966}
1967
1968/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1969static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1970{
1971	struct {
1972		dma_addr_t		input_dma;
1973		struct xhci_segment	*result_seg;
1974	} simple_test_vector [] = {
1975		/* A zeroed DMA field should fail */
1976		{ 0, NULL },
1977		/* One TRB before the ring start should fail */
1978		{ xhci->event_ring->first_seg->dma - 16, NULL },
1979		/* One byte before the ring start should fail */
1980		{ xhci->event_ring->first_seg->dma - 1, NULL },
1981		/* Starting TRB should succeed */
1982		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1983		/* Ending TRB should succeed */
1984		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1985			xhci->event_ring->first_seg },
1986		/* One byte after the ring end should fail */
1987		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1988		/* One TRB after the ring end should fail */
1989		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1990		/* An address of all ones should fail */
1991		{ (dma_addr_t) (~0), NULL },
1992	};
1993	struct {
1994		struct xhci_segment	*input_seg;
1995		union xhci_trb		*start_trb;
1996		union xhci_trb		*end_trb;
1997		dma_addr_t		input_dma;
1998		struct xhci_segment	*result_seg;
1999	} complex_test_vector [] = {
2000		/* Test feeding a valid DMA address from a different ring */
2001		{	.input_seg = xhci->event_ring->first_seg,
2002			.start_trb = xhci->event_ring->first_seg->trbs,
2003			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2004			.input_dma = xhci->cmd_ring->first_seg->dma,
2005			.result_seg = NULL,
2006		},
2007		/* Test feeding a valid end TRB from a different ring */
2008		{	.input_seg = xhci->event_ring->first_seg,
2009			.start_trb = xhci->event_ring->first_seg->trbs,
2010			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2011			.input_dma = xhci->cmd_ring->first_seg->dma,
2012			.result_seg = NULL,
2013		},
2014		/* Test feeding a valid start and end TRB from a different ring */
2015		{	.input_seg = xhci->event_ring->first_seg,
2016			.start_trb = xhci->cmd_ring->first_seg->trbs,
2017			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2018			.input_dma = xhci->cmd_ring->first_seg->dma,
2019			.result_seg = NULL,
2020		},
2021		/* TRB in this ring, but after this TD */
2022		{	.input_seg = xhci->event_ring->first_seg,
2023			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2024			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2025			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2026			.result_seg = NULL,
2027		},
2028		/* TRB in this ring, but before this TD */
2029		{	.input_seg = xhci->event_ring->first_seg,
2030			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2031			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2032			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2033			.result_seg = NULL,
2034		},
2035		/* TRB in this ring, but after this wrapped TD */
2036		{	.input_seg = xhci->event_ring->first_seg,
2037			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2038			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2039			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2040			.result_seg = NULL,
2041		},
2042		/* TRB in this ring, but before this wrapped TD */
2043		{	.input_seg = xhci->event_ring->first_seg,
2044			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2045			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2046			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2047			.result_seg = NULL,
2048		},
2049		/* TRB not in this ring, and we have a wrapped TD */
2050		{	.input_seg = xhci->event_ring->first_seg,
2051			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2052			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2053			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2054			.result_seg = NULL,
2055		},
2056	};
2057
2058	unsigned int num_tests;
2059	int i, ret;
2060
2061	num_tests = ARRAY_SIZE(simple_test_vector);
2062	for (i = 0; i < num_tests; i++) {
2063		ret = xhci_test_trb_in_td(xhci,
2064				xhci->event_ring->first_seg,
2065				xhci->event_ring->first_seg->trbs,
2066				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2067				simple_test_vector[i].input_dma,
2068				simple_test_vector[i].result_seg,
2069				"Simple", i);
2070		if (ret < 0)
2071			return ret;
2072	}
2073
2074	num_tests = ARRAY_SIZE(complex_test_vector);
2075	for (i = 0; i < num_tests; i++) {
2076		ret = xhci_test_trb_in_td(xhci,
2077				complex_test_vector[i].input_seg,
2078				complex_test_vector[i].start_trb,
2079				complex_test_vector[i].end_trb,
2080				complex_test_vector[i].input_dma,
2081				complex_test_vector[i].result_seg,
2082				"Complex", i);
2083		if (ret < 0)
2084			return ret;
2085	}
2086	xhci_dbg(xhci, "TRB math tests passed.\n");
2087	return 0;
2088}
2089
2090static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2091{
2092	u64 temp;
2093	dma_addr_t deq;
2094
2095	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2096			xhci->event_ring->dequeue);
2097	if (!deq)
2098		xhci_warn(xhci, "WARN something wrong with SW event ring "
2099				"dequeue ptr.\n");
2100	/* Update HC event ring dequeue pointer */
2101	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2102	temp &= ERST_PTR_MASK;
2103	/* Don't clear the EHB bit (which is RW1C) because
2104	 * there might be more events to service.
2105	 */
2106	temp &= ~ERST_EHB;
2107	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2108			"// Write event ring dequeue pointer, "
2109			"preserving EHB bit");
2110	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2111			&xhci->ir_set->erst_dequeue);
2112}
2113
2114static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2115		__le32 __iomem *addr, int max_caps)
2116{
2117	u32 temp, port_offset, port_count;
2118	int i;
2119	u8 major_revision, minor_revision;
2120	struct xhci_hub *rhub;
2121	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2122	struct xhci_port_cap *port_cap;
2123
2124	temp = readl(addr);
2125	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2126	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2127
2128	if (major_revision == 0x03) {
2129		rhub = &xhci->usb3_rhub;
2130		/*
2131		 * Some hosts incorrectly use sub-minor version for minor
2132		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2133		 * for bcdUSB 0x310). Since there is no USB release with sub
2134		 * minor version 0x301 to 0x309, we can assume that they are
2135		 * incorrect and fix it here.
2136		 */
2137		if (minor_revision > 0x00 && minor_revision < 0x10)
2138			minor_revision <<= 4;
2139	} else if (major_revision <= 0x02) {
2140		rhub = &xhci->usb2_rhub;
2141	} else {
2142		xhci_warn(xhci, "Ignoring unknown port speed, "
2143				"Ext Cap %p, revision = 0x%x\n",
2144				addr, major_revision);
2145		/* Ignoring port protocol we can't understand. FIXME */
2146		return;
2147	}
2148	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2149
2150	if (rhub->min_rev < minor_revision)
2151		rhub->min_rev = minor_revision;
2152
2153	/* Port offset and count in the third dword, see section 7.2 */
2154	temp = readl(addr + 2);
2155	port_offset = XHCI_EXT_PORT_OFF(temp);
2156	port_count = XHCI_EXT_PORT_COUNT(temp);
2157	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2158			"Ext Cap %p, port offset = %u, "
2159			"count = %u, revision = 0x%x",
2160			addr, port_offset, port_count, major_revision);
2161	/* Port count includes the current port offset */
2162	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2163		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2164		return;
2165
2166	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2167	if (xhci->num_port_caps > max_caps)
2168		return;
2169
2170	port_cap->maj_rev = major_revision;
2171	port_cap->min_rev = minor_revision;
2172	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2173
2174	if (port_cap->psi_count) {
2175		port_cap->psi = kcalloc_node(port_cap->psi_count,
2176					     sizeof(*port_cap->psi),
2177					     GFP_KERNEL, dev_to_node(dev));
2178		if (!port_cap->psi)
2179			port_cap->psi_count = 0;
2180
2181		port_cap->psi_uid_count++;
2182		for (i = 0; i < port_cap->psi_count; i++) {
2183			port_cap->psi[i] = readl(addr + 4 + i);
2184
2185			/* count unique ID values, two consecutive entries can
2186			 * have the same ID if link is assymetric
2187			 */
2188			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2189				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2190				port_cap->psi_uid_count++;
2191
2192			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2193				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2194				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2195				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2196				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2197				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2198				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2199		}
2200	}
2201	/* cache usb2 port capabilities */
2202	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2203		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2204
2205	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2206		 (temp & XHCI_HLC)) {
2207		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2208			       "xHCI 1.0: support USB2 hardware lpm");
2209		xhci->hw_lpm_support = 1;
2210	}
2211
2212	port_offset--;
2213	for (i = port_offset; i < (port_offset + port_count); i++) {
2214		struct xhci_port *hw_port = &xhci->hw_ports[i];
2215		/* Duplicate entry.  Ignore the port if the revisions differ. */
2216		if (hw_port->rhub) {
2217			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2218					" port %u\n", addr, i);
2219			xhci_warn(xhci, "Port was marked as USB %u, "
2220					"duplicated as USB %u\n",
2221					hw_port->rhub->maj_rev, major_revision);
2222			/* Only adjust the roothub port counts if we haven't
2223			 * found a similar duplicate.
2224			 */
2225			if (hw_port->rhub != rhub &&
2226				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2227				hw_port->rhub->num_ports--;
2228				hw_port->hcd_portnum = DUPLICATE_ENTRY;
 
 
 
2229			}
 
2230			continue;
2231		}
2232		hw_port->rhub = rhub;
2233		hw_port->port_cap = port_cap;
2234		rhub->num_ports++;
 
 
2235	}
2236	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2237}
2238
2239static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2240					struct xhci_hub *rhub, gfp_t flags)
2241{
2242	int port_index = 0;
2243	int i;
2244	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2245
2246	if (!rhub->num_ports)
2247		return;
2248	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2249			flags, dev_to_node(dev));
2250	if (!rhub->ports)
2251		return;
2252
2253	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2254		if (xhci->hw_ports[i].rhub != rhub ||
2255		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2256			continue;
2257		xhci->hw_ports[i].hcd_portnum = port_index;
2258		rhub->ports[port_index] = &xhci->hw_ports[i];
2259		port_index++;
2260		if (port_index == rhub->num_ports)
2261			break;
2262	}
2263}
2264
2265/*
2266 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2267 * specify what speeds each port is supposed to be.  We can't count on the port
2268 * speed bits in the PORTSC register being correct until a device is connected,
2269 * but we need to set up the two fake roothubs with the correct number of USB
2270 * 3.0 and USB 2.0 ports at host controller initialization time.
2271 */
2272static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2273{
2274	void __iomem *base;
2275	u32 offset;
2276	unsigned int num_ports;
2277	int i, j;
2278	int cap_count = 0;
2279	u32 cap_start;
2280	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2281
2282	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2283	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2284				flags, dev_to_node(dev));
2285	if (!xhci->hw_ports)
2286		return -ENOMEM;
2287
2288	for (i = 0; i < num_ports; i++) {
2289		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2290			NUM_PORT_REGS * i;
2291		xhci->hw_ports[i].hw_portnum = i;
2292	}
2293
2294	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2295				   dev_to_node(dev));
2296	if (!xhci->rh_bw)
2297		return -ENOMEM;
2298	for (i = 0; i < num_ports; i++) {
2299		struct xhci_interval_bw_table *bw_table;
2300
2301		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2302		bw_table = &xhci->rh_bw[i].bw_table;
2303		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2304			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2305	}
2306	base = &xhci->cap_regs->hc_capbase;
2307
2308	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2309	if (!cap_start) {
2310		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2311		return -ENODEV;
2312	}
2313
2314	offset = cap_start;
2315	/* count extended protocol capability entries for later caching */
2316	while (offset) {
2317		cap_count++;
2318		offset = xhci_find_next_ext_cap(base, offset,
2319						      XHCI_EXT_CAPS_PROTOCOL);
2320	}
2321
2322	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2323				flags, dev_to_node(dev));
2324	if (!xhci->ext_caps)
2325		return -ENOMEM;
2326
2327	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2328				flags, dev_to_node(dev));
2329	if (!xhci->port_caps)
2330		return -ENOMEM;
2331
2332	offset = cap_start;
2333
2334	while (offset) {
2335		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2336		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2337		    num_ports)
 
 
 
 
 
2338			break;
2339		offset = xhci_find_next_ext_cap(base, offset,
2340						XHCI_EXT_CAPS_PROTOCOL);
 
 
 
2341	}
2342	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
 
2343		xhci_warn(xhci, "No ports on the roothubs?\n");
2344		return -ENODEV;
2345	}
2346	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2347		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2348		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2349
2350	/* Place limits on the number of roothub ports so that the hub
2351	 * descriptors aren't longer than the USB core will allocate.
2352	 */
2353	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2354		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2355				"Limiting USB 3.0 roothub ports to %u.",
2356				USB_SS_MAXPORTS);
2357		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2358	}
2359	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2360		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2361				"Limiting USB 2.0 roothub ports to %u.",
2362				USB_MAXCHILDREN);
2363		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2364	}
2365
2366	if (!xhci->usb2_rhub.num_ports)
2367		xhci_info(xhci, "USB2 root hub has no ports\n");
 
 
 
 
 
 
 
2368
2369	if (!xhci->usb3_rhub.num_ports)
2370		xhci_info(xhci, "USB3 root hub has no ports\n");
 
 
 
 
2371
2372	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2373	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2375	return 0;
2376}
2377
2378int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2379{
2380	dma_addr_t	dma;
2381	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2382	unsigned int	val, val2;
2383	u64		val_64;
2384	u32		page_size, temp;
2385	int		i, ret;
 
2386
2387	INIT_LIST_HEAD(&xhci->cmd_list);
2388
2389	/* init command timeout work */
2390	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2391	init_completion(&xhci->cmd_ring_stop_completion);
2392
2393	page_size = readl(&xhci->op_regs->page_size);
2394	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2395			"Supported page size register = 0x%x", page_size);
2396	i = ffs(page_size);
2397	if (i < 16)
2398		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2399			"Supported page size of %iK", (1 << (i+12)) / 1024);
2400	else
2401		xhci_warn(xhci, "WARN: no supported page size\n");
2402	/* Use 4K pages, since that's common and the minimum the HC supports */
2403	xhci->page_shift = 12;
2404	xhci->page_size = 1 << xhci->page_shift;
2405	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406			"HCD page size set to %iK", xhci->page_size / 1024);
2407
2408	/*
2409	 * Program the Number of Device Slots Enabled field in the CONFIG
2410	 * register with the max value of slots the HC can handle.
2411	 */
2412	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2413	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2414			"// xHC can handle at most %d device slots.", val);
2415	val2 = readl(&xhci->op_regs->config_reg);
2416	val |= (val2 & ~HCS_SLOTS_MASK);
2417	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418			"// Setting Max device slots reg = 0x%x.", val);
2419	writel(val, &xhci->op_regs->config_reg);
2420
2421	/*
2422	 * xHCI section 5.4.6 - Device Context array must be
2423	 * "physically contiguous and 64-byte (cache line) aligned".
2424	 */
2425	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2426			flags);
2427	if (!xhci->dcbaa)
2428		goto fail;
 
2429	xhci->dcbaa->dma = dma;
2430	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2431			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2432			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2433	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2434
2435	/*
2436	 * Initialize the ring segment pool.  The ring must be a contiguous
2437	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2438	 * however, the command ring segment needs 64-byte aligned segments
2439	 * and our use of dma addresses in the trb_address_map radix tree needs
2440	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2441	 */
2442	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2443			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2444
2445	/* See Table 46 and Note on Figure 55 */
2446	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2447			2112, 64, xhci->page_size);
2448	if (!xhci->segment_pool || !xhci->device_pool)
2449		goto fail;
2450
2451	/* Linear stream context arrays don't have any boundary restrictions,
2452	 * and only need to be 16-byte aligned.
2453	 */
2454	xhci->small_streams_pool =
2455		dma_pool_create("xHCI 256 byte stream ctx arrays",
2456			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2457	xhci->medium_streams_pool =
2458		dma_pool_create("xHCI 1KB stream ctx arrays",
2459			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2460	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2461	 * will be allocated with dma_alloc_coherent()
2462	 */
2463
2464	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2465		goto fail;
2466
2467	/* Set up the command ring to have one segments for now. */
2468	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2469	if (!xhci->cmd_ring)
2470		goto fail;
2471	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472			"Allocated command ring at %p", xhci->cmd_ring);
2473	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2474			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2475
2476	/* Set the address in the Command Ring Control register */
2477	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2478	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2479		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2480		xhci->cmd_ring->cycle_state;
2481	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2482			"// Setting command ring address to 0x%016llx", val_64);
2483	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 
2484
2485	/* Reserve one command ring TRB for disabling LPM.
2486	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2487	 * disabling LPM, we only need to reserve one TRB for all devices.
2488	 */
2489	xhci->cmd_ring_reserved_trbs++;
2490
2491	val = readl(&xhci->cap_regs->db_off);
2492	val &= DBOFF_MASK;
2493	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494			"// Doorbell array is located at offset 0x%x"
2495			" from cap regs base addr", val);
2496	xhci->dba = (void __iomem *) xhci->cap_regs + val;
 
 
2497	/* Set ir_set to interrupt register set 0 */
2498	xhci->ir_set = &xhci->run_regs->ir_set[0];
2499
2500	/*
2501	 * Event ring setup: Allocate a normal ring, but also setup
2502	 * the event ring segment table (ERST).  Section 4.9.3.
2503	 */
2504	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2505	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2506					0, flags);
2507	if (!xhci->event_ring)
2508		goto fail;
2509	if (xhci_check_trb_in_td_math(xhci) < 0)
2510		goto fail;
2511
2512	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2513	if (ret)
 
2514		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2515
2516	/* set ERST count with the number of entries in the segment table */
2517	val = readl(&xhci->ir_set->erst_size);
2518	val &= ERST_SIZE_MASK;
2519	val |= ERST_NUM_SEGS;
2520	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2521			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2522			val);
2523	writel(val, &xhci->ir_set->erst_size);
2524
2525	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2526			"// Set ERST entries to point to event ring.");
2527	/* set the segment table base address */
2528	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2529			"// Set ERST base address for ir_set 0 = 0x%llx",
2530			(unsigned long long)xhci->erst.erst_dma_addr);
2531	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2532	val_64 &= ERST_PTR_MASK;
2533	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2534	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2535
2536	/* Set the event ring dequeue address */
2537	xhci_set_hc_event_deq(xhci);
2538	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2539			"Wrote ERST address to ir_set 0.");
2540
2541	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2542
2543	/*
2544	 * XXX: Might need to set the Interrupter Moderation Register to
2545	 * something other than the default (~1ms minimum between interrupts).
2546	 * See section 5.5.1.2.
2547	 */
2548	for (i = 0; i < MAX_HC_SLOTS; i++)
 
2549		xhci->devs[i] = NULL;
2550	for (i = 0; i < USB_MAXCHILDREN; i++) {
2551		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2552		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2553		/* Only the USB 2.0 completions will ever be used. */
2554		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2555		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2556	}
2557
2558	if (scratchpad_alloc(xhci, flags))
2559		goto fail;
2560	if (xhci_setup_port_arrays(xhci, flags))
2561		goto fail;
2562
2563	/* Enable USB 3.0 device notifications for function remote wake, which
2564	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2565	 * U3 (device suspend).
2566	 */
2567	temp = readl(&xhci->op_regs->dev_notification);
2568	temp &= ~DEV_NOTE_MASK;
2569	temp |= DEV_NOTE_FWAKE;
2570	writel(temp, &xhci->op_regs->dev_notification);
2571
2572	return 0;
2573
2574fail:
2575	xhci_halt(xhci);
2576	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2577	xhci_mem_cleanup(xhci);
2578	return -ENOMEM;
2579}