Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
 
  27
  28#include "xhci.h"
 
  29
  30/*
  31 * Allocates a generic ring segment from the ring pool, sets the dma address,
  32 * initializes the segment to zero, and sets the private next pointer to NULL.
  33 *
  34 * Section 4.11.1.1:
  35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  36 */
  37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
 
  38{
  39	struct xhci_segment *seg;
  40	dma_addr_t	dma;
 
  41
  42	seg = kzalloc(sizeof *seg, flags);
  43	if (!seg)
  44		return NULL;
  45	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
  46
  47	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  48	if (!seg->trbs) {
  49		kfree(seg);
  50		return NULL;
  51	}
  52	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
  53			seg->trbs, (unsigned long long)dma);
  54
  55	memset(seg->trbs, 0, SEGMENT_SIZE);
 
 
 
 
 
  56	seg->dma = dma;
  57	seg->next = NULL;
  58
  59	return seg;
  60}
  61
  62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  63{
  64	if (!seg)
  65		return;
  66	if (seg->trbs) {
  67		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
  68				seg->trbs, (unsigned long long)seg->dma);
  69		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  70		seg->trbs = NULL;
  71	}
  72	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
  73	kfree(seg);
  74}
  75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76/*
  77 * Make the prev segment point to the next segment.
  78 *
  79 * Change the last TRB in the prev segment to be a Link TRB which points to the
  80 * DMA address of the next segment.  The caller needs to set any Link TRB
  81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  82 */
  83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  84		struct xhci_segment *next, bool link_trbs)
  85{
  86	u32 val;
  87
  88	if (!prev || !next)
  89		return;
  90	prev->next = next;
  91	if (link_trbs) {
  92		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
  93			cpu_to_le64(next->dma);
  94
  95		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
  96		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
  97		val &= ~TRB_TYPE_BITMASK;
  98		val |= TRB_TYPE(TRB_LINK);
  99		/* Always set the chain bit with 0.95 hardware */
 100		if (xhci_link_trb_quirk(xhci))
 
 
 
 101			val |= TRB_CHAIN;
 102		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 103	}
 104	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
 105			(unsigned long long)prev->dma,
 106			(unsigned long long)next->dma);
 107}
 108
 109/* XXX: Do we need the hcd structure in all these functions? */
 110void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111{
 112	struct xhci_segment *seg;
 113	struct xhci_segment *first_seg;
 
 114
 115	if (!ring || !ring->first_seg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116		return;
 117	first_seg = ring->first_seg;
 118	seg = first_seg->next;
 119	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
 120	while (seg != first_seg) {
 121		struct xhci_segment *next = seg->next;
 122		xhci_segment_free(xhci, seg);
 123		seg = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124	}
 125	xhci_segment_free(xhci, first_seg);
 126	ring->first_seg = NULL;
 127	kfree(ring);
 128}
 129
 130static void xhci_initialize_ring_info(struct xhci_ring *ring)
 
 131{
 132	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 133	ring->enqueue = ring->first_seg->trbs;
 134	ring->enq_seg = ring->first_seg;
 135	ring->dequeue = ring->enqueue;
 136	ring->deq_seg = ring->first_seg;
 137	/* The ring is initialized to 0. The producer must write 1 to the cycle
 138	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 139	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 
 
 
 140	 */
 141	ring->cycle_state = 1;
 142	/* Not necessary for new rings, but needed for re-initialized rings */
 143	ring->enq_updates = 0;
 144	ring->deq_updates = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 145}
 146
 147/**
 148 * Create a new ring with zero or more segments.
 149 *
 150 * Link each segment together into a ring.
 151 * Set the end flag and the cycle toggle bit on the last segment.
 152 * See section 4.9.1 and figures 15 and 16.
 153 */
 154static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 155		unsigned int num_segs, bool link_trbs, gfp_t flags)
 
 156{
 157	struct xhci_ring	*ring;
 158	struct xhci_segment	*prev;
 159
 160	ring = kzalloc(sizeof *(ring), flags);
 161	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
 162	if (!ring)
 163		return NULL;
 164
 
 165	INIT_LIST_HEAD(&ring->td_list);
 
 166	if (num_segs == 0)
 167		return ring;
 168
 169	ring->first_seg = xhci_segment_alloc(xhci, flags);
 170	if (!ring->first_seg)
 
 171		goto fail;
 172	num_segs--;
 173
 174	prev = ring->first_seg;
 175	while (num_segs > 0) {
 176		struct xhci_segment	*next;
 177
 178		next = xhci_segment_alloc(xhci, flags);
 179		if (!next)
 180			goto fail;
 181		xhci_link_segments(xhci, prev, next, link_trbs);
 182
 183		prev = next;
 184		num_segs--;
 185	}
 186	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
 187
 188	if (link_trbs) {
 189		/* See section 4.9.2.1 and 6.4.4.1 */
 190		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
 191			cpu_to_le32(LINK_TOGGLE);
 192		xhci_dbg(xhci, "Wrote link toggle flag to"
 193				" segment %p (virtual), 0x%llx (DMA)\n",
 194				prev, (unsigned long long)prev->dma);
 195	}
 196	xhci_initialize_ring_info(ring);
 197	return ring;
 198
 199fail:
 200	xhci_ring_free(xhci, ring);
 201	return NULL;
 202}
 203
 204void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 205		struct xhci_virt_device *virt_dev,
 206		unsigned int ep_index)
 207{
 208	int rings_cached;
 209
 210	rings_cached = virt_dev->num_rings_cached;
 211	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 212		virt_dev->ring_cache[rings_cached] =
 213			virt_dev->eps[ep_index].ring;
 214		virt_dev->num_rings_cached++;
 215		xhci_dbg(xhci, "Cached old ring, "
 216				"%d ring%s cached\n",
 217				virt_dev->num_rings_cached,
 218				(virt_dev->num_rings_cached > 1) ? "s" : "");
 219	} else {
 220		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 221		xhci_dbg(xhci, "Ring cache full (%d rings), "
 222				"freeing ring\n",
 223				virt_dev->num_rings_cached);
 224	}
 225	virt_dev->eps[ep_index].ring = NULL;
 226}
 227
 228/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 229 * pointers to the beginning of the ring.
 230 */
 231static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 232		struct xhci_ring *ring)
 
 233{
 234	struct xhci_segment	*seg = ring->first_seg;
 
 
 235	do {
 236		memset(seg->trbs, 0,
 237				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 
 
 
 
 
 238		/* All endpoint rings have link TRBs */
 239		xhci_link_segments(xhci, seg, seg->next, 1);
 240		seg = seg->next;
 241	} while (seg != ring->first_seg);
 242	xhci_initialize_ring_info(ring);
 
 243	/* td list should be empty since all URBs have been cancelled,
 244	 * but just in case...
 245	 */
 246	INIT_LIST_HEAD(&ring->td_list);
 247}
 248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 250
 251static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 252						    int type, gfp_t flags)
 253{
 254	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
 
 
 
 
 
 255	if (!ctx)
 256		return NULL;
 257
 258	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
 259	ctx->type = type;
 260	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 261	if (type == XHCI_CTX_TYPE_INPUT)
 262		ctx->size += CTX_SIZE(xhci->hcc_params);
 263
 264	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 
 
 
 
 265	memset(ctx->bytes, 0, ctx->size);
 266	return ctx;
 267}
 268
 269static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 270			     struct xhci_container_ctx *ctx)
 271{
 272	if (!ctx)
 273		return;
 274	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 275	kfree(ctx);
 276}
 277
 278struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 279					      struct xhci_container_ctx *ctx)
 280{
 281	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
 
 
 282	return (struct xhci_input_control_ctx *)ctx->bytes;
 283}
 284
 285struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 286					struct xhci_container_ctx *ctx)
 287{
 288	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 289		return (struct xhci_slot_ctx *)ctx->bytes;
 290
 291	return (struct xhci_slot_ctx *)
 292		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 293}
 294
 295struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 296				    struct xhci_container_ctx *ctx,
 297				    unsigned int ep_index)
 298{
 299	/* increment ep index by offset of start of ep ctx array */
 300	ep_index++;
 301	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 302		ep_index++;
 303
 304	return (struct xhci_ep_ctx *)
 305		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 306}
 307
 308
 309/***************** Streams structures manipulation *************************/
 310
 311static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 312		unsigned int num_stream_ctxs,
 313		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 314{
 315	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 
 316
 317	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 318		pci_free_consistent(pdev,
 319				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 320				stream_ctx, dma);
 321	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 322		return dma_pool_free(xhci->small_streams_pool,
 323				stream_ctx, dma);
 324	else
 325		return dma_pool_free(xhci->medium_streams_pool,
 326				stream_ctx, dma);
 327}
 328
 329/*
 330 * The stream context array for each endpoint with bulk streams enabled can
 331 * vary in size, based on:
 332 *  - how many streams the endpoint supports,
 333 *  - the maximum primary stream array size the host controller supports,
 334 *  - and how many streams the device driver asks for.
 335 *
 336 * The stream context array must be a power of 2, and can be as small as
 337 * 64 bytes or as large as 1MB.
 338 */
 339static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 340		unsigned int num_stream_ctxs, dma_addr_t *dma,
 341		gfp_t mem_flags)
 342{
 343	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 
 344
 345	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 346		return pci_alloc_consistent(pdev,
 347				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 348				dma);
 349	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 350		return dma_pool_alloc(xhci->small_streams_pool,
 351				mem_flags, dma);
 352	else
 353		return dma_pool_alloc(xhci->medium_streams_pool,
 354				mem_flags, dma);
 355}
 356
 357struct xhci_ring *xhci_dma_to_transfer_ring(
 358		struct xhci_virt_ep *ep,
 359		u64 address)
 360{
 361	if (ep->ep_state & EP_HAS_STREAMS)
 362		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 363				address >> SEGMENT_SHIFT);
 364	return ep->ring;
 365}
 366
 367/* Only use this when you know stream_info is valid */
 368#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 369static struct xhci_ring *dma_to_stream_ring(
 370		struct xhci_stream_info *stream_info,
 371		u64 address)
 372{
 373	return radix_tree_lookup(&stream_info->trb_address_map,
 374			address >> SEGMENT_SHIFT);
 375}
 376#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 377
 378struct xhci_ring *xhci_stream_id_to_ring(
 379		struct xhci_virt_device *dev,
 380		unsigned int ep_index,
 381		unsigned int stream_id)
 382{
 383	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 384
 385	if (stream_id == 0)
 386		return ep->ring;
 387	if (!ep->stream_info)
 388		return NULL;
 389
 390	if (stream_id > ep->stream_info->num_streams)
 391		return NULL;
 392	return ep->stream_info->stream_rings[stream_id];
 393}
 394
 395#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 396static int xhci_test_radix_tree(struct xhci_hcd *xhci,
 397		unsigned int num_streams,
 398		struct xhci_stream_info *stream_info)
 399{
 400	u32 cur_stream;
 401	struct xhci_ring *cur_ring;
 402	u64 addr;
 403
 404	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 405		struct xhci_ring *mapped_ring;
 406		int trb_size = sizeof(union xhci_trb);
 407
 408		cur_ring = stream_info->stream_rings[cur_stream];
 409		for (addr = cur_ring->first_seg->dma;
 410				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
 411				addr += trb_size) {
 412			mapped_ring = dma_to_stream_ring(stream_info, addr);
 413			if (cur_ring != mapped_ring) {
 414				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
 415						"didn't map to stream ID %u; "
 416						"mapped to ring %p\n",
 417						(unsigned long long) addr,
 418						cur_stream,
 419						mapped_ring);
 420				return -EINVAL;
 421			}
 422		}
 423		/* One TRB after the end of the ring segment shouldn't return a
 424		 * pointer to the current ring (although it may be a part of a
 425		 * different ring).
 426		 */
 427		mapped_ring = dma_to_stream_ring(stream_info, addr);
 428		if (mapped_ring != cur_ring) {
 429			/* One TRB before should also fail */
 430			addr = cur_ring->first_seg->dma - trb_size;
 431			mapped_ring = dma_to_stream_ring(stream_info, addr);
 432		}
 433		if (mapped_ring == cur_ring) {
 434			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
 435					"mapped to valid stream ID %u; "
 436					"mapped ring = %p\n",
 437					(unsigned long long) addr,
 438					cur_stream,
 439					mapped_ring);
 440			return -EINVAL;
 441		}
 442	}
 443	return 0;
 444}
 445#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 446
 447/*
 448 * Change an endpoint's internal structure so it supports stream IDs.  The
 449 * number of requested streams includes stream 0, which cannot be used by device
 450 * drivers.
 451 *
 452 * The number of stream contexts in the stream context array may be bigger than
 453 * the number of streams the driver wants to use.  This is because the number of
 454 * stream context array entries must be a power of two.
 455 *
 456 * We need a radix tree for mapping physical addresses of TRBs to which stream
 457 * ID they belong to.  We need to do this because the host controller won't tell
 458 * us which stream ring the TRB came from.  We could store the stream ID in an
 459 * event data TRB, but that doesn't help us for the cancellation case, since the
 460 * endpoint may stop before it reaches that event data TRB.
 461 *
 462 * The radix tree maps the upper portion of the TRB DMA address to a ring
 463 * segment that has the same upper portion of DMA addresses.  For example, say I
 464 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 465 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 466 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 467 * pass the radix tree a key to get the right stream ID:
 468 *
 469 * 	0x10c90fff >> 10 = 0x43243
 470 * 	0x10c912c0 >> 10 = 0x43244
 471 * 	0x10c91400 >> 10 = 0x43245
 472 *
 473 * Obviously, only those TRBs with DMA addresses that are within the segment
 474 * will make the radix tree return the stream ID for that ring.
 475 *
 476 * Caveats for the radix tree:
 477 *
 478 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 479 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 480 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 481 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 482 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 483 * extended systems (where the DMA address can be bigger than 32-bits),
 484 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 485 */
 486struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 487		unsigned int num_stream_ctxs,
 488		unsigned int num_streams, gfp_t mem_flags)
 489{
 490	struct xhci_stream_info *stream_info;
 491	u32 cur_stream;
 492	struct xhci_ring *cur_ring;
 493	unsigned long key;
 494	u64 addr;
 495	int ret;
 496
 497	xhci_dbg(xhci, "Allocating %u streams and %u "
 498			"stream context array entries.\n",
 499			num_streams, num_stream_ctxs);
 500	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 501		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 502		return NULL;
 503	}
 504	xhci->cmd_ring_reserved_trbs++;
 505
 506	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 507	if (!stream_info)
 508		goto cleanup_trbs;
 509
 510	stream_info->num_streams = num_streams;
 511	stream_info->num_stream_ctxs = num_stream_ctxs;
 512
 513	/* Initialize the array of virtual pointers to stream rings. */
 514	stream_info->stream_rings = kzalloc(
 515			sizeof(struct xhci_ring *)*num_streams,
 516			mem_flags);
 517	if (!stream_info->stream_rings)
 518		goto cleanup_info;
 519
 520	/* Initialize the array of DMA addresses for stream rings for the HW. */
 521	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 522			num_stream_ctxs, &stream_info->ctx_array_dma,
 523			mem_flags);
 524	if (!stream_info->stream_ctx_array)
 525		goto cleanup_ctx;
 526	memset(stream_info->stream_ctx_array, 0,
 527			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 528
 529	/* Allocate everything needed to free the stream rings later */
 530	stream_info->free_streams_command =
 531		xhci_alloc_command(xhci, true, true, mem_flags);
 532	if (!stream_info->free_streams_command)
 533		goto cleanup_ctx;
 534
 535	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 536
 537	/* Allocate rings for all the streams that the driver will use,
 538	 * and add their segment DMA addresses to the radix tree.
 539	 * Stream 0 is reserved.
 540	 */
 541	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 542		stream_info->stream_rings[cur_stream] =
 543			xhci_ring_alloc(xhci, 1, true, mem_flags);
 544		cur_ring = stream_info->stream_rings[cur_stream];
 545		if (!cur_ring)
 546			goto cleanup_rings;
 547		cur_ring->stream_id = cur_stream;
 
 548		/* Set deq ptr, cycle bit, and stream context type */
 549		addr = cur_ring->first_seg->dma |
 550			SCT_FOR_CTX(SCT_PRI_TR) |
 551			cur_ring->cycle_state;
 552		stream_info->stream_ctx_array[cur_stream].stream_ring =
 553			cpu_to_le64(addr);
 554		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 555				cur_stream, (unsigned long long) addr);
 556
 557		key = (unsigned long)
 558			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
 559		ret = radix_tree_insert(&stream_info->trb_address_map,
 560				key, cur_ring);
 561		if (ret) {
 562			xhci_ring_free(xhci, cur_ring);
 563			stream_info->stream_rings[cur_stream] = NULL;
 564			goto cleanup_rings;
 565		}
 566	}
 567	/* Leave the other unused stream ring pointers in the stream context
 568	 * array initialized to zero.  This will cause the xHC to give us an
 569	 * error if the device asks for a stream ID we don't have setup (if it
 570	 * was any other way, the host controller would assume the ring is
 571	 * "empty" and wait forever for data to be queued to that stream ID).
 572	 */
 573#if XHCI_DEBUG
 574	/* Do a little test on the radix tree to make sure it returns the
 575	 * correct values.
 576	 */
 577	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
 578		goto cleanup_rings;
 579#endif
 580
 581	return stream_info;
 582
 583cleanup_rings:
 584	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 585		cur_ring = stream_info->stream_rings[cur_stream];
 586		if (cur_ring) {
 587			addr = cur_ring->first_seg->dma;
 588			radix_tree_delete(&stream_info->trb_address_map,
 589					addr >> SEGMENT_SHIFT);
 590			xhci_ring_free(xhci, cur_ring);
 591			stream_info->stream_rings[cur_stream] = NULL;
 592		}
 593	}
 594	xhci_free_command(xhci, stream_info->free_streams_command);
 595cleanup_ctx:
 596	kfree(stream_info->stream_rings);
 597cleanup_info:
 598	kfree(stream_info);
 599cleanup_trbs:
 600	xhci->cmd_ring_reserved_trbs--;
 601	return NULL;
 602}
 603/*
 604 * Sets the MaxPStreams field and the Linear Stream Array field.
 605 * Sets the dequeue pointer to the stream context array.
 606 */
 607void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 608		struct xhci_ep_ctx *ep_ctx,
 609		struct xhci_stream_info *stream_info)
 610{
 611	u32 max_primary_streams;
 612	/* MaxPStreams is the number of stream context array entries, not the
 613	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 614	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 615	 */
 616	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 617	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
 
 618			1 << (max_primary_streams + 1));
 619	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 620	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 621				       | EP_HAS_LSA);
 622	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 623}
 624
 625/*
 626 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 627 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 628 * not at the beginning of the ring).
 629 */
 630void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 631		struct xhci_ep_ctx *ep_ctx,
 632		struct xhci_virt_ep *ep)
 633{
 634	dma_addr_t addr;
 635	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 636	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 637	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 638}
 639
 640/* Frees all stream contexts associated with the endpoint,
 641 *
 642 * Caller should fix the endpoint context streams fields.
 643 */
 644void xhci_free_stream_info(struct xhci_hcd *xhci,
 645		struct xhci_stream_info *stream_info)
 646{
 647	int cur_stream;
 648	struct xhci_ring *cur_ring;
 649	dma_addr_t addr;
 650
 651	if (!stream_info)
 652		return;
 653
 654	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 655			cur_stream++) {
 656		cur_ring = stream_info->stream_rings[cur_stream];
 657		if (cur_ring) {
 658			addr = cur_ring->first_seg->dma;
 659			radix_tree_delete(&stream_info->trb_address_map,
 660					addr >> SEGMENT_SHIFT);
 661			xhci_ring_free(xhci, cur_ring);
 662			stream_info->stream_rings[cur_stream] = NULL;
 663		}
 664	}
 665	xhci_free_command(xhci, stream_info->free_streams_command);
 666	xhci->cmd_ring_reserved_trbs--;
 667	if (stream_info->stream_ctx_array)
 668		xhci_free_stream_ctx(xhci,
 669				stream_info->num_stream_ctxs,
 670				stream_info->stream_ctx_array,
 671				stream_info->ctx_array_dma);
 672
 673	if (stream_info)
 674		kfree(stream_info->stream_rings);
 675	kfree(stream_info);
 676}
 677
 678
 679/***************** Device context manipulation *************************/
 680
 681static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 682		struct xhci_virt_ep *ep)
 683{
 684	init_timer(&ep->stop_cmd_timer);
 685	ep->stop_cmd_timer.data = (unsigned long) ep;
 686	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 687	ep->xhci = xhci;
 688}
 689
 690/* All the xhci_tds in the ring's TD list should be freed at this point */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 692{
 693	struct xhci_virt_device *dev;
 694	int i;
 
 695
 696	/* Slot ID 0 is reserved */
 697	if (slot_id == 0 || !xhci->devs[slot_id])
 698		return;
 699
 700	dev = xhci->devs[slot_id];
 701	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 702	if (!dev)
 703		return;
 704
 
 
 
 705	for (i = 0; i < 31; ++i) {
 706		if (dev->eps[i].ring)
 707			xhci_ring_free(xhci, dev->eps[i].ring);
 708		if (dev->eps[i].stream_info)
 709			xhci_free_stream_info(xhci,
 710					dev->eps[i].stream_info);
 711	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 712
 713	if (dev->ring_cache) {
 714		for (i = 0; i < dev->num_rings_cached; i++)
 715			xhci_ring_free(xhci, dev->ring_cache[i]);
 716		kfree(dev->ring_cache);
 717	}
 718
 719	if (dev->in_ctx)
 720		xhci_free_container_ctx(xhci, dev->in_ctx);
 721	if (dev->out_ctx)
 722		xhci_free_container_ctx(xhci, dev->out_ctx);
 723
 724	kfree(xhci->devs[slot_id]);
 725	xhci->devs[slot_id] = NULL;
 726}
 727
 728int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 729		struct usb_device *udev, gfp_t flags)
 730{
 731	struct xhci_virt_device *dev;
 732	int i;
 733
 734	/* Slot ID 0 is reserved */
 735	if (slot_id == 0 || xhci->devs[slot_id]) {
 736		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 737		return 0;
 738	}
 739
 740	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 741	if (!xhci->devs[slot_id])
 742		return 0;
 743	dev = xhci->devs[slot_id];
 744
 745	/* Allocate the (output) device context that will be used in the HC. */
 746	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 747	if (!dev->out_ctx)
 748		goto fail;
 749
 750	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 751			(unsigned long long)dev->out_ctx->dma);
 752
 753	/* Allocate the (input) device context for address device command */
 754	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 755	if (!dev->in_ctx)
 756		goto fail;
 757
 758	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 759			(unsigned long long)dev->in_ctx->dma);
 760
 761	/* Initialize the cancellation list and watchdog timers for each ep */
 762	for (i = 0; i < 31; i++) {
 763		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 764		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 
 765	}
 766
 767	/* Allocate endpoint 0 ring */
 768	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
 769	if (!dev->eps[0].ring)
 770		goto fail;
 771
 772	/* Allocate pointers to the ring cache */
 773	dev->ring_cache = kzalloc(
 774			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
 775			flags);
 776	if (!dev->ring_cache)
 777		goto fail;
 778	dev->num_rings_cached = 0;
 779
 780	init_completion(&dev->cmd_completion);
 781	INIT_LIST_HEAD(&dev->cmd_list);
 782	dev->udev = udev;
 783
 784	/* Point to output device context in dcbaa. */
 785	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
 786	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
 787		 slot_id,
 788		 &xhci->dcbaa->dev_context_ptrs[slot_id],
 789		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
 790
 791	return 1;
 792fail:
 793	xhci_free_virt_device(xhci, slot_id);
 794	return 0;
 795}
 796
 797void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
 798		struct usb_device *udev)
 799{
 800	struct xhci_virt_device *virt_dev;
 801	struct xhci_ep_ctx	*ep0_ctx;
 802	struct xhci_ring	*ep_ring;
 803
 804	virt_dev = xhci->devs[udev->slot_id];
 805	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
 806	ep_ring = virt_dev->eps[0].ring;
 807	/*
 808	 * FIXME we don't keep track of the dequeue pointer very well after a
 809	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
 810	 * host to our enqueue pointer.  This should only be called after a
 811	 * configured device has reset, so all control transfers should have
 812	 * been completed or cancelled before the reset.
 813	 */
 814	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
 815							ep_ring->enqueue)
 816				   | ep_ring->cycle_state);
 817}
 818
 819/*
 820 * The xHCI roothub may have ports of differing speeds in any order in the port
 821 * status registers.  xhci->port_array provides an array of the port speed for
 822 * each offset into the port status registers.
 823 *
 824 * The xHCI hardware wants to know the roothub port number that the USB device
 825 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 826 * know is the index of that port under either the USB 2.0 or the USB 3.0
 827 * roothub, but that doesn't give us the real index into the HW port status
 828 * registers.  Scan through the xHCI roothub port array, looking for the Nth
 829 * entry of the correct port speed.  Return the port number of that entry.
 830 */
 831static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
 832		struct usb_device *udev)
 833{
 834	struct usb_device *top_dev;
 835	unsigned int num_similar_speed_ports;
 836	unsigned int faked_port_num;
 837	int i;
 
 
 
 838
 839	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
 840			top_dev = top_dev->parent)
 841		/* Found device below root hub */;
 842	faked_port_num = top_dev->portnum;
 843	for (i = 0, num_similar_speed_ports = 0;
 844			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
 845		u8 port_speed = xhci->port_array[i];
 846
 847		/*
 848		 * Skip ports that don't have known speeds, or have duplicate
 849		 * Extended Capabilities port speed entries.
 850		 */
 851		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
 852			continue;
 853
 854		/*
 855		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
 856		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
 857		 * matches the device speed, it's a similar speed port.
 858		 */
 859		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
 860			num_similar_speed_ports++;
 861		if (num_similar_speed_ports == faked_port_num)
 862			/* Roothub ports are numbered from 1 to N */
 863			return i+1;
 864	}
 865	return 0;
 866}
 867
 868/* Setup an xHCI virtual device for a Set Address command */
 869int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
 870{
 871	struct xhci_virt_device *dev;
 872	struct xhci_ep_ctx	*ep0_ctx;
 873	struct xhci_slot_ctx    *slot_ctx;
 874	struct xhci_input_control_ctx *ctrl_ctx;
 875	u32			port_num;
 
 876	struct usb_device *top_dev;
 877
 878	dev = xhci->devs[udev->slot_id];
 879	/* Slot ID 0 is reserved */
 880	if (udev->slot_id == 0 || !dev) {
 881		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
 882				udev->slot_id);
 883		return -EINVAL;
 884	}
 885	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
 886	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
 887	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
 888
 889	/* 2) New slot context and endpoint 0 context are valid*/
 890	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
 891
 892	/* 3) Only the control endpoint is valid - one endpoint context */
 893	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
 894	switch (udev->speed) {
 895	case USB_SPEED_SUPER:
 896		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
 
 897		break;
 898	case USB_SPEED_HIGH:
 899		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
 
 900		break;
 
 901	case USB_SPEED_FULL:
 902		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
 
 903		break;
 904	case USB_SPEED_LOW:
 905		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
 
 906		break;
 907	case USB_SPEED_WIRELESS:
 908		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
 909		return -EINVAL;
 910		break;
 911	default:
 912		/* Speed was set earlier, this shouldn't happen. */
 913		BUG();
 914	}
 915	/* Find the root hub port this device is under */
 916	port_num = xhci_find_real_port_number(xhci, udev);
 917	if (!port_num)
 918		return -EINVAL;
 919	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
 920	/* Set the port number in the virtual_device to the faked port number */
 921	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
 922			top_dev = top_dev->parent)
 923		/* Found device below root hub */;
 924	dev->port = top_dev->portnum;
 
 925	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
 926	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927
 928	/* Is this a LS/FS device under an external HS hub? */
 929	if (udev->tt && udev->tt->hub->parent) {
 930		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
 931						(udev->ttport << 8));
 932		if (udev->tt->multi)
 933			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
 934	}
 935	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
 936	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
 937
 938	/* Step 4 - ring already allocated */
 939	/* Step 5 */
 940	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
 941	/*
 942	 * XXX: Not sure about wireless USB devices.
 943	 */
 944	switch (udev->speed) {
 945	case USB_SPEED_SUPER:
 946		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
 947		break;
 948	case USB_SPEED_HIGH:
 949	/* USB core guesses at a 64-byte max packet first for FS devices */
 950	case USB_SPEED_FULL:
 951		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
 952		break;
 953	case USB_SPEED_LOW:
 954		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
 955		break;
 956	case USB_SPEED_WIRELESS:
 957		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
 958		return -EINVAL;
 959		break;
 960	default:
 961		/* New speed? */
 962		BUG();
 963	}
 964	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
 965	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
 
 966
 967	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
 968				   dev->eps[0].ring->cycle_state);
 969
 970	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
 971
 972	return 0;
 973}
 974
 975/*
 976 * Convert interval expressed as 2^(bInterval - 1) == interval into
 977 * straight exponent value 2^n == interval.
 978 *
 979 */
 980static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
 981		struct usb_host_endpoint *ep)
 982{
 983	unsigned int interval;
 984
 985	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
 986	if (interval != ep->desc.bInterval - 1)
 987		dev_warn(&udev->dev,
 988			 "ep %#x - rounding interval to %d %sframes\n",
 989			 ep->desc.bEndpointAddress,
 990			 1 << interval,
 991			 udev->speed == USB_SPEED_FULL ? "" : "micro");
 992
 993	if (udev->speed == USB_SPEED_FULL) {
 994		/*
 995		 * Full speed isoc endpoints specify interval in frames,
 996		 * not microframes. We are using microframes everywhere,
 997		 * so adjust accordingly.
 998		 */
 999		interval += 3;	/* 1 frame = 2^3 uframes */
1000	}
1001
1002	return interval;
1003}
1004
1005/*
1006 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1007 * microframes, rounded down to nearest power of 2.
1008 */
1009static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1010		struct usb_host_endpoint *ep)
 
1011{
1012	unsigned int interval;
1013
1014	interval = fls(8 * ep->desc.bInterval) - 1;
1015	interval = clamp_val(interval, 3, 10);
1016	if ((1 << interval) != 8 * ep->desc.bInterval)
1017		dev_warn(&udev->dev,
1018			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1019			 ep->desc.bEndpointAddress,
1020			 1 << interval,
1021			 8 * ep->desc.bInterval);
1022
1023	return interval;
1024}
1025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026/* Return the polling or NAK interval.
1027 *
1028 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1029 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1030 *
1031 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1032 * is set to 0.
1033 */
1034static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1035		struct usb_host_endpoint *ep)
1036{
1037	unsigned int interval = 0;
1038
1039	switch (udev->speed) {
1040	case USB_SPEED_HIGH:
1041		/* Max NAK rate */
1042		if (usb_endpoint_xfer_control(&ep->desc) ||
1043		    usb_endpoint_xfer_bulk(&ep->desc)) {
1044			interval = ep->desc.bInterval;
1045			break;
1046		}
1047		/* Fall through - SS and HS isoc/int have same decoding */
1048
1049	case USB_SPEED_SUPER:
1050		if (usb_endpoint_xfer_int(&ep->desc) ||
1051		    usb_endpoint_xfer_isoc(&ep->desc)) {
1052			interval = xhci_parse_exponent_interval(udev, ep);
1053		}
1054		break;
1055
1056	case USB_SPEED_FULL:
1057		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1058			interval = xhci_parse_exponent_interval(udev, ep);
1059			break;
1060		}
1061		/*
1062		 * Fall through for interrupt endpoint interval decoding
1063		 * since it uses the same rules as low speed interrupt
1064		 * endpoints.
1065		 */
1066
1067	case USB_SPEED_LOW:
1068		if (usb_endpoint_xfer_int(&ep->desc) ||
1069		    usb_endpoint_xfer_isoc(&ep->desc)) {
1070
1071			interval = xhci_parse_frame_interval(udev, ep);
1072		}
1073		break;
1074
1075	default:
1076		BUG();
1077	}
1078	return EP_INTERVAL(interval);
1079}
1080
1081/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1082 * High speed endpoint descriptors can define "the number of additional
1083 * transaction opportunities per microframe", but that goes in the Max Burst
1084 * endpoint context field.
1085 */
1086static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1087		struct usb_host_endpoint *ep)
1088{
1089	if (udev->speed != USB_SPEED_SUPER ||
1090			!usb_endpoint_xfer_isoc(&ep->desc))
1091		return 0;
1092	return ep->ss_ep_comp.bmAttributes;
1093}
1094
1095static u32 xhci_get_endpoint_type(struct usb_device *udev,
1096		struct usb_host_endpoint *ep)
1097{
1098	int in;
1099	u32 type;
1100
1101	in = usb_endpoint_dir_in(&ep->desc);
1102	if (usb_endpoint_xfer_control(&ep->desc)) {
1103		type = EP_TYPE(CTRL_EP);
1104	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1105		if (in)
1106			type = EP_TYPE(BULK_IN_EP);
1107		else
1108			type = EP_TYPE(BULK_OUT_EP);
1109	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1110		if (in)
1111			type = EP_TYPE(ISOC_IN_EP);
1112		else
1113			type = EP_TYPE(ISOC_OUT_EP);
1114	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1115		if (in)
1116			type = EP_TYPE(INT_IN_EP);
1117		else
1118			type = EP_TYPE(INT_OUT_EP);
1119	} else {
1120		BUG();
1121	}
1122	return type;
1123}
1124
1125/* Return the maximum endpoint service interval time (ESIT) payload.
1126 * Basically, this is the maxpacket size, multiplied by the burst size
1127 * and mult size.
1128 */
1129static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1130		struct usb_device *udev,
1131		struct usb_host_endpoint *ep)
1132{
1133	int max_burst;
1134	int max_packet;
1135
1136	/* Only applies for interrupt or isochronous endpoints */
1137	if (usb_endpoint_xfer_control(&ep->desc) ||
1138			usb_endpoint_xfer_bulk(&ep->desc))
1139		return 0;
1140
1141	if (udev->speed == USB_SPEED_SUPER)
1142		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1143
1144	max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1145	max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
1146	/* A 0 in max burst means 1 transfer per ESIT */
1147	return max_packet * (max_burst + 1);
1148}
1149
1150/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1151 * Drivers will have to call usb_alloc_streams() to do that.
1152 */
1153int xhci_endpoint_init(struct xhci_hcd *xhci,
1154		struct xhci_virt_device *virt_dev,
1155		struct usb_device *udev,
1156		struct usb_host_endpoint *ep,
1157		gfp_t mem_flags)
1158{
1159	unsigned int ep_index;
1160	struct xhci_ep_ctx *ep_ctx;
1161	struct xhci_ring *ep_ring;
1162	unsigned int max_packet;
1163	unsigned int max_burst;
 
1164	u32 max_esit_payload;
 
1165
1166	ep_index = xhci_get_endpoint_index(&ep->desc);
1167	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1168
 
 
 
 
 
 
1169	/* Set up the endpoint ring */
1170	/*
1171	 * Isochronous endpoint ring needs bigger size because one isoc URB
1172	 * carries multiple packets and it will insert multiple tds to the
1173	 * ring.
1174	 * This should be replaced with dynamic ring resizing in the future.
1175	 */
1176	if (usb_endpoint_xfer_isoc(&ep->desc))
1177		virt_dev->eps[ep_index].new_ring =
1178			xhci_ring_alloc(xhci, 8, true, mem_flags);
1179	else
1180		virt_dev->eps[ep_index].new_ring =
1181			xhci_ring_alloc(xhci, 1, true, mem_flags);
1182	if (!virt_dev->eps[ep_index].new_ring) {
1183		/* Attempt to use the ring cache */
1184		if (virt_dev->num_rings_cached == 0)
1185			return -ENOMEM;
1186		virt_dev->eps[ep_index].new_ring =
1187			virt_dev->ring_cache[virt_dev->num_rings_cached];
1188		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1189		virt_dev->num_rings_cached--;
1190		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
 
1191	}
1192	virt_dev->eps[ep_index].skip = false;
1193	ep_ring = virt_dev->eps[ep_index].new_ring;
1194	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1195
1196	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1197				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1198
1199	/* FIXME dig Mult and streams info out of ep companion desc */
1200
1201	/* Allow 3 retries for everything but isoc;
1202	 * CErr shall be set to 0 for Isoch endpoints.
1203	 */
1204	if (!usb_endpoint_xfer_isoc(&ep->desc))
1205		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1206	else
1207		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1208
1209	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1210
1211	/* Set the max packet size and max burst */
 
 
1212	switch (udev->speed) {
1213	case USB_SPEED_SUPER:
1214		max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1215		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1216		/* dig out max burst from ep companion desc */
1217		max_packet = ep->ss_ep_comp.bMaxBurst;
1218		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1219		break;
1220	case USB_SPEED_HIGH:
 
 
 
1221		/* bits 11:12 specify the number of additional transaction
1222		 * opportunities per microframe (USB 2.0, section 9.6.6)
1223		 */
1224		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1225				usb_endpoint_xfer_int(&ep->desc)) {
1226			max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1227				     & 0x1800) >> 11;
1228			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1229		}
1230		/* Fall through */
1231	case USB_SPEED_FULL:
1232	case USB_SPEED_LOW:
1233		max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1234		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1235		break;
1236	default:
1237		BUG();
1238	}
 
 
1239	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1240	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1241
1242	/*
1243	 * XXX no idea how to calculate the average TRB buffer length for bulk
1244	 * endpoints, as the driver gives us no clue how big each scatter gather
1245	 * list entry (or buffer) is going to be.
1246	 *
1247	 * For isochronous and interrupt endpoints, we set it to the max
1248	 * available, until we have new API in the USB core to allow drivers to
1249	 * declare how much bandwidth they actually need.
1250	 *
1251	 * Normally, it would be calculated by taking the total of the buffer
1252	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1253	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1254	 * use Event Data TRBs, and we don't chain in a link TRB on short
1255	 * transfers, we're basically dividing by 1.
1256	 *
1257	 * xHCI 1.0 specification indicates that the Average TRB Length should
1258	 * be set to 8 for control endpoints.
1259	 */
1260	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1261		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1262	else
1263		ep_ctx->tx_info |=
1264			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1265
1266	/* FIXME Debug endpoint context */
1267	return 0;
1268}
1269
1270void xhci_endpoint_zero(struct xhci_hcd *xhci,
1271		struct xhci_virt_device *virt_dev,
1272		struct usb_host_endpoint *ep)
1273{
1274	unsigned int ep_index;
1275	struct xhci_ep_ctx *ep_ctx;
1276
1277	ep_index = xhci_get_endpoint_index(&ep->desc);
1278	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1279
1280	ep_ctx->ep_info = 0;
1281	ep_ctx->ep_info2 = 0;
1282	ep_ctx->deq = 0;
1283	ep_ctx->tx_info = 0;
1284	/* Don't free the endpoint ring until the set interface or configuration
1285	 * request succeeds.
1286	 */
1287}
1288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1290 * Useful when you want to change one particular aspect of the endpoint and then
1291 * issue a configure endpoint command.
1292 */
1293void xhci_endpoint_copy(struct xhci_hcd *xhci,
1294		struct xhci_container_ctx *in_ctx,
1295		struct xhci_container_ctx *out_ctx,
1296		unsigned int ep_index)
1297{
1298	struct xhci_ep_ctx *out_ep_ctx;
1299	struct xhci_ep_ctx *in_ep_ctx;
1300
1301	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1302	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1303
1304	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1305	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1306	in_ep_ctx->deq = out_ep_ctx->deq;
1307	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1308}
1309
1310/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1311 * Useful when you want to change one particular aspect of the endpoint and then
1312 * issue a configure endpoint command.  Only the context entries field matters,
1313 * but we'll copy the whole thing anyway.
1314 */
1315void xhci_slot_copy(struct xhci_hcd *xhci,
1316		struct xhci_container_ctx *in_ctx,
1317		struct xhci_container_ctx *out_ctx)
1318{
1319	struct xhci_slot_ctx *in_slot_ctx;
1320	struct xhci_slot_ctx *out_slot_ctx;
1321
1322	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1323	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1324
1325	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1326	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1327	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1328	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1329}
1330
1331/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1332static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1333{
1334	int i;
1335	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1336	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1337
1338	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
 
1339
1340	if (!num_sp)
1341		return 0;
1342
1343	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1344	if (!xhci->scratchpad)
1345		goto fail_sp;
1346
1347	xhci->scratchpad->sp_array =
1348		pci_alloc_consistent(to_pci_dev(dev),
1349				     num_sp * sizeof(u64),
1350				     &xhci->scratchpad->sp_dma);
1351	if (!xhci->scratchpad->sp_array)
1352		goto fail_sp2;
1353
1354	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1355	if (!xhci->scratchpad->sp_buffers)
1356		goto fail_sp3;
1357
1358	xhci->scratchpad->sp_dma_buffers =
1359		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1360
1361	if (!xhci->scratchpad->sp_dma_buffers)
1362		goto fail_sp4;
1363
1364	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1365	for (i = 0; i < num_sp; i++) {
1366		dma_addr_t dma;
1367		void *buf = pci_alloc_consistent(to_pci_dev(dev),
1368						 xhci->page_size, &dma);
1369		if (!buf)
1370			goto fail_sp5;
1371
1372		xhci->scratchpad->sp_array[i] = dma;
1373		xhci->scratchpad->sp_buffers[i] = buf;
1374		xhci->scratchpad->sp_dma_buffers[i] = dma;
1375	}
1376
1377	return 0;
1378
1379 fail_sp5:
1380	for (i = i - 1; i >= 0; i--) {
1381		pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1382				    xhci->scratchpad->sp_buffers[i],
1383				    xhci->scratchpad->sp_dma_buffers[i]);
1384	}
1385	kfree(xhci->scratchpad->sp_dma_buffers);
1386
1387 fail_sp4:
1388	kfree(xhci->scratchpad->sp_buffers);
1389
1390 fail_sp3:
1391	pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1392			    xhci->scratchpad->sp_array,
1393			    xhci->scratchpad->sp_dma);
1394
1395 fail_sp2:
1396	kfree(xhci->scratchpad);
1397	xhci->scratchpad = NULL;
1398
1399 fail_sp:
1400	return -ENOMEM;
1401}
1402
1403static void scratchpad_free(struct xhci_hcd *xhci)
1404{
1405	int num_sp;
1406	int i;
1407	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1408
1409	if (!xhci->scratchpad)
1410		return;
1411
1412	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1413
1414	for (i = 0; i < num_sp; i++) {
1415		pci_free_consistent(pdev, xhci->page_size,
1416				    xhci->scratchpad->sp_buffers[i],
1417				    xhci->scratchpad->sp_dma_buffers[i]);
1418	}
1419	kfree(xhci->scratchpad->sp_dma_buffers);
1420	kfree(xhci->scratchpad->sp_buffers);
1421	pci_free_consistent(pdev, num_sp * sizeof(u64),
1422			    xhci->scratchpad->sp_array,
1423			    xhci->scratchpad->sp_dma);
1424	kfree(xhci->scratchpad);
1425	xhci->scratchpad = NULL;
1426}
1427
1428struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1429		bool allocate_in_ctx, bool allocate_completion,
1430		gfp_t mem_flags)
1431{
1432	struct xhci_command *command;
1433
1434	command = kzalloc(sizeof(*command), mem_flags);
1435	if (!command)
1436		return NULL;
1437
1438	if (allocate_in_ctx) {
1439		command->in_ctx =
1440			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1441					mem_flags);
1442		if (!command->in_ctx) {
1443			kfree(command);
1444			return NULL;
1445		}
1446	}
1447
1448	if (allocate_completion) {
1449		command->completion =
1450			kzalloc(sizeof(struct completion), mem_flags);
1451		if (!command->completion) {
1452			xhci_free_container_ctx(xhci, command->in_ctx);
1453			kfree(command);
1454			return NULL;
1455		}
1456		init_completion(command->completion);
1457	}
1458
1459	command->status = 0;
1460	INIT_LIST_HEAD(&command->cmd_list);
1461	return command;
1462}
1463
1464void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1465{
1466	int last;
1467
1468	if (!urb_priv)
1469		return;
1470
1471	last = urb_priv->length - 1;
1472	if (last >= 0) {
1473		int	i;
1474		for (i = 0; i <= last; i++)
1475			kfree(urb_priv->td[i]);
1476	}
1477	kfree(urb_priv);
1478}
1479
1480void xhci_free_command(struct xhci_hcd *xhci,
1481		struct xhci_command *command)
1482{
1483	xhci_free_container_ctx(xhci,
1484			command->in_ctx);
1485	kfree(command->completion);
1486	kfree(command);
1487}
1488
1489void xhci_mem_cleanup(struct xhci_hcd *xhci)
1490{
1491	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 
1492	int size;
1493	int i;
1494
1495	/* Free the Event Ring Segment Table and the actual Event Ring */
1496	if (xhci->ir_set) {
1497		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1498		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1499		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1500	}
1501	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1502	if (xhci->erst.entries)
1503		pci_free_consistent(pdev, size,
1504				xhci->erst.entries, xhci->erst.erst_dma_addr);
1505	xhci->erst.entries = NULL;
1506	xhci_dbg(xhci, "Freed ERST\n");
1507	if (xhci->event_ring)
1508		xhci_ring_free(xhci, xhci->event_ring);
1509	xhci->event_ring = NULL;
1510	xhci_dbg(xhci, "Freed event ring\n");
1511
1512	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 
1513	if (xhci->cmd_ring)
1514		xhci_ring_free(xhci, xhci->cmd_ring);
1515	xhci->cmd_ring = NULL;
1516	xhci_dbg(xhci, "Freed command ring\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517
1518	for (i = 1; i < MAX_HC_SLOTS; ++i)
1519		xhci_free_virt_device(xhci, i);
1520
1521	if (xhci->segment_pool)
1522		dma_pool_destroy(xhci->segment_pool);
1523	xhci->segment_pool = NULL;
1524	xhci_dbg(xhci, "Freed segment pool\n");
1525
1526	if (xhci->device_pool)
1527		dma_pool_destroy(xhci->device_pool);
1528	xhci->device_pool = NULL;
1529	xhci_dbg(xhci, "Freed device context pool\n");
1530
1531	if (xhci->small_streams_pool)
1532		dma_pool_destroy(xhci->small_streams_pool);
1533	xhci->small_streams_pool = NULL;
1534	xhci_dbg(xhci, "Freed small stream array pool\n");
 
1535
1536	if (xhci->medium_streams_pool)
1537		dma_pool_destroy(xhci->medium_streams_pool);
1538	xhci->medium_streams_pool = NULL;
1539	xhci_dbg(xhci, "Freed medium stream array pool\n");
 
1540
1541	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1542	if (xhci->dcbaa)
1543		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1544				xhci->dcbaa, xhci->dcbaa->dma);
1545	xhci->dcbaa = NULL;
1546
1547	scratchpad_free(xhci);
1548
 
 
 
 
 
 
 
 
 
 
 
 
 
1549	xhci->num_usb2_ports = 0;
1550	xhci->num_usb3_ports = 0;
 
1551	kfree(xhci->usb2_ports);
1552	kfree(xhci->usb3_ports);
1553	kfree(xhci->port_array);
 
 
1554
1555	xhci->page_size = 0;
1556	xhci->page_shift = 0;
1557	xhci->bus_state[0].bus_suspended = 0;
1558	xhci->bus_state[1].bus_suspended = 0;
1559}
1560
1561static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1562		struct xhci_segment *input_seg,
1563		union xhci_trb *start_trb,
1564		union xhci_trb *end_trb,
1565		dma_addr_t input_dma,
1566		struct xhci_segment *result_seg,
1567		char *test_name, int test_number)
1568{
1569	unsigned long long start_dma;
1570	unsigned long long end_dma;
1571	struct xhci_segment *seg;
1572
1573	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1574	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1575
1576	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1577	if (seg != result_seg) {
1578		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1579				test_name, test_number);
1580		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1581				"input DMA 0x%llx\n",
1582				input_seg,
1583				(unsigned long long) input_dma);
1584		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1585				"ending TRB %p (0x%llx DMA)\n",
1586				start_trb, start_dma,
1587				end_trb, end_dma);
1588		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1589				result_seg, seg);
1590		return -1;
1591	}
1592	return 0;
1593}
1594
1595/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1596static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1597{
1598	struct {
1599		dma_addr_t		input_dma;
1600		struct xhci_segment	*result_seg;
1601	} simple_test_vector [] = {
1602		/* A zeroed DMA field should fail */
1603		{ 0, NULL },
1604		/* One TRB before the ring start should fail */
1605		{ xhci->event_ring->first_seg->dma - 16, NULL },
1606		/* One byte before the ring start should fail */
1607		{ xhci->event_ring->first_seg->dma - 1, NULL },
1608		/* Starting TRB should succeed */
1609		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1610		/* Ending TRB should succeed */
1611		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1612			xhci->event_ring->first_seg },
1613		/* One byte after the ring end should fail */
1614		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1615		/* One TRB after the ring end should fail */
1616		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1617		/* An address of all ones should fail */
1618		{ (dma_addr_t) (~0), NULL },
1619	};
1620	struct {
1621		struct xhci_segment	*input_seg;
1622		union xhci_trb		*start_trb;
1623		union xhci_trb		*end_trb;
1624		dma_addr_t		input_dma;
1625		struct xhci_segment	*result_seg;
1626	} complex_test_vector [] = {
1627		/* Test feeding a valid DMA address from a different ring */
1628		{	.input_seg = xhci->event_ring->first_seg,
1629			.start_trb = xhci->event_ring->first_seg->trbs,
1630			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1631			.input_dma = xhci->cmd_ring->first_seg->dma,
1632			.result_seg = NULL,
1633		},
1634		/* Test feeding a valid end TRB from a different ring */
1635		{	.input_seg = xhci->event_ring->first_seg,
1636			.start_trb = xhci->event_ring->first_seg->trbs,
1637			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1638			.input_dma = xhci->cmd_ring->first_seg->dma,
1639			.result_seg = NULL,
1640		},
1641		/* Test feeding a valid start and end TRB from a different ring */
1642		{	.input_seg = xhci->event_ring->first_seg,
1643			.start_trb = xhci->cmd_ring->first_seg->trbs,
1644			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1645			.input_dma = xhci->cmd_ring->first_seg->dma,
1646			.result_seg = NULL,
1647		},
1648		/* TRB in this ring, but after this TD */
1649		{	.input_seg = xhci->event_ring->first_seg,
1650			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1651			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1652			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1653			.result_seg = NULL,
1654		},
1655		/* TRB in this ring, but before this TD */
1656		{	.input_seg = xhci->event_ring->first_seg,
1657			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1658			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1659			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1660			.result_seg = NULL,
1661		},
1662		/* TRB in this ring, but after this wrapped TD */
1663		{	.input_seg = xhci->event_ring->first_seg,
1664			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1665			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1666			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1667			.result_seg = NULL,
1668		},
1669		/* TRB in this ring, but before this wrapped TD */
1670		{	.input_seg = xhci->event_ring->first_seg,
1671			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1672			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1673			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1674			.result_seg = NULL,
1675		},
1676		/* TRB not in this ring, and we have a wrapped TD */
1677		{	.input_seg = xhci->event_ring->first_seg,
1678			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1679			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1680			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1681			.result_seg = NULL,
1682		},
1683	};
1684
1685	unsigned int num_tests;
1686	int i, ret;
1687
1688	num_tests = ARRAY_SIZE(simple_test_vector);
1689	for (i = 0; i < num_tests; i++) {
1690		ret = xhci_test_trb_in_td(xhci,
1691				xhci->event_ring->first_seg,
1692				xhci->event_ring->first_seg->trbs,
1693				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1694				simple_test_vector[i].input_dma,
1695				simple_test_vector[i].result_seg,
1696				"Simple", i);
1697		if (ret < 0)
1698			return ret;
1699	}
1700
1701	num_tests = ARRAY_SIZE(complex_test_vector);
1702	for (i = 0; i < num_tests; i++) {
1703		ret = xhci_test_trb_in_td(xhci,
1704				complex_test_vector[i].input_seg,
1705				complex_test_vector[i].start_trb,
1706				complex_test_vector[i].end_trb,
1707				complex_test_vector[i].input_dma,
1708				complex_test_vector[i].result_seg,
1709				"Complex", i);
1710		if (ret < 0)
1711			return ret;
1712	}
1713	xhci_dbg(xhci, "TRB math tests passed.\n");
1714	return 0;
1715}
1716
1717static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1718{
1719	u64 temp;
1720	dma_addr_t deq;
1721
1722	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1723			xhci->event_ring->dequeue);
1724	if (deq == 0 && !in_interrupt())
1725		xhci_warn(xhci, "WARN something wrong with SW event ring "
1726				"dequeue ptr.\n");
1727	/* Update HC event ring dequeue pointer */
1728	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1729	temp &= ERST_PTR_MASK;
1730	/* Don't clear the EHB bit (which is RW1C) because
1731	 * there might be more events to service.
1732	 */
1733	temp &= ~ERST_EHB;
1734	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1735			"preserving EHB bit\n");
 
1736	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1737			&xhci->ir_set->erst_dequeue);
1738}
1739
1740static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1741		__le32 __iomem *addr, u8 major_revision)
1742{
1743	u32 temp, port_offset, port_count;
1744	int i;
1745
1746	if (major_revision > 0x03) {
1747		xhci_warn(xhci, "Ignoring unknown port speed, "
1748				"Ext Cap %p, revision = 0x%x\n",
1749				addr, major_revision);
1750		/* Ignoring port protocol we can't understand. FIXME */
1751		return;
1752	}
1753
1754	/* Port offset and count in the third dword, see section 7.2 */
1755	temp = xhci_readl(xhci, addr + 2);
1756	port_offset = XHCI_EXT_PORT_OFF(temp);
1757	port_count = XHCI_EXT_PORT_COUNT(temp);
1758	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1759			"count = %u, revision = 0x%x\n",
 
1760			addr, port_offset, port_count, major_revision);
1761	/* Port count includes the current port offset */
1762	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1763		/* WTF? "Valid values are ‘1’ to MaxPorts" */
1764		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765	port_offset--;
1766	for (i = port_offset; i < (port_offset + port_count); i++) {
1767		/* Duplicate entry.  Ignore the port if the revisions differ. */
1768		if (xhci->port_array[i] != 0) {
1769			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1770					" port %u\n", addr, i);
1771			xhci_warn(xhci, "Port was marked as USB %u, "
1772					"duplicated as USB %u\n",
1773					xhci->port_array[i], major_revision);
1774			/* Only adjust the roothub port counts if we haven't
1775			 * found a similar duplicate.
1776			 */
1777			if (xhci->port_array[i] != major_revision &&
1778				xhci->port_array[i] != DUPLICATE_ENTRY) {
1779				if (xhci->port_array[i] == 0x03)
1780					xhci->num_usb3_ports--;
1781				else
1782					xhci->num_usb2_ports--;
1783				xhci->port_array[i] = DUPLICATE_ENTRY;
1784			}
1785			/* FIXME: Should we disable the port? */
1786			continue;
1787		}
1788		xhci->port_array[i] = major_revision;
1789		if (major_revision == 0x03)
1790			xhci->num_usb3_ports++;
1791		else
1792			xhci->num_usb2_ports++;
1793	}
1794	/* FIXME: Should we disable ports not in the Extended Capabilities? */
1795}
1796
1797/*
1798 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1799 * specify what speeds each port is supposed to be.  We can't count on the port
1800 * speed bits in the PORTSC register being correct until a device is connected,
1801 * but we need to set up the two fake roothubs with the correct number of USB
1802 * 3.0 and USB 2.0 ports at host controller initialization time.
1803 */
1804static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1805{
1806	__le32 __iomem *addr;
1807	u32 offset;
1808	unsigned int num_ports;
1809	int i, port_index;
 
1810
1811	addr = &xhci->cap_regs->hcc_params;
1812	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1813	if (offset == 0) {
1814		xhci_err(xhci, "No Extended Capability registers, "
1815				"unable to set up roothub.\n");
1816		return -ENODEV;
1817	}
1818
1819	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1820	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1821	if (!xhci->port_array)
1822		return -ENOMEM;
1823
 
 
 
 
 
 
 
 
 
 
 
 
1824	/*
1825	 * For whatever reason, the first capability offset is from the
1826	 * capability register base, not from the HCCPARAMS register.
1827	 * See section 5.3.6 for offset calculation.
1828	 */
1829	addr = &xhci->cap_regs->hc_capbase + offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1830	while (1) {
1831		u32 cap_id;
1832
1833		cap_id = xhci_readl(xhci, addr);
1834		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1835			xhci_add_in_port(xhci, num_ports, addr,
1836					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
 
1837		offset = XHCI_EXT_CAPS_NEXT(cap_id);
1838		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1839				== num_ports)
1840			break;
1841		/*
1842		 * Once you're into the Extended Capabilities, the offset is
1843		 * always relative to the register holding the offset.
1844		 */
1845		addr += offset;
1846	}
1847
1848	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1849		xhci_warn(xhci, "No ports on the roothubs?\n");
1850		return -ENODEV;
1851	}
1852	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
 
1853			xhci->num_usb2_ports, xhci->num_usb3_ports);
1854
1855	/* Place limits on the number of roothub ports so that the hub
1856	 * descriptors aren't longer than the USB core will allocate.
1857	 */
1858	if (xhci->num_usb3_ports > 15) {
1859		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
 
1860		xhci->num_usb3_ports = 15;
1861	}
1862	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1863		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
 
1864				USB_MAXCHILDREN);
1865		xhci->num_usb2_ports = USB_MAXCHILDREN;
1866	}
1867
1868	/*
1869	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1870	 * Not sure how the USB core will handle a hub with no ports...
1871	 */
1872	if (xhci->num_usb2_ports) {
1873		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1874				xhci->num_usb2_ports, flags);
1875		if (!xhci->usb2_ports)
1876			return -ENOMEM;
1877
1878		port_index = 0;
1879		for (i = 0; i < num_ports; i++) {
1880			if (xhci->port_array[i] == 0x03 ||
1881					xhci->port_array[i] == 0 ||
1882					xhci->port_array[i] == DUPLICATE_ENTRY)
1883				continue;
1884
1885			xhci->usb2_ports[port_index] =
1886				&xhci->op_regs->port_status_base +
1887				NUM_PORT_REGS*i;
1888			xhci_dbg(xhci, "USB 2.0 port at index %u, "
1889					"addr = %p\n", i,
 
1890					xhci->usb2_ports[port_index]);
1891			port_index++;
1892			if (port_index == xhci->num_usb2_ports)
1893				break;
1894		}
1895	}
1896	if (xhci->num_usb3_ports) {
1897		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1898				xhci->num_usb3_ports, flags);
1899		if (!xhci->usb3_ports)
1900			return -ENOMEM;
1901
1902		port_index = 0;
1903		for (i = 0; i < num_ports; i++)
1904			if (xhci->port_array[i] == 0x03) {
1905				xhci->usb3_ports[port_index] =
1906					&xhci->op_regs->port_status_base +
1907					NUM_PORT_REGS*i;
1908				xhci_dbg(xhci, "USB 3.0 port at index %u, "
1909						"addr = %p\n", i,
 
1910						xhci->usb3_ports[port_index]);
1911				port_index++;
1912				if (port_index == xhci->num_usb3_ports)
1913					break;
1914			}
1915	}
1916	return 0;
1917}
1918
1919int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1920{
1921	dma_addr_t	dma;
1922	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1923	unsigned int	val, val2;
1924	u64		val_64;
1925	struct xhci_segment	*seg;
1926	u32 page_size;
1927	int i;
1928
1929	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1930	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
 
 
 
1931	for (i = 0; i < 16; i++) {
1932		if ((0x1 & page_size) != 0)
1933			break;
1934		page_size = page_size >> 1;
1935	}
1936	if (i < 16)
1937		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
 
1938	else
1939		xhci_warn(xhci, "WARN: no supported page size\n");
1940	/* Use 4K pages, since that's common and the minimum the HC supports */
1941	xhci->page_shift = 12;
1942	xhci->page_size = 1 << xhci->page_shift;
1943	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
 
1944
1945	/*
1946	 * Program the Number of Device Slots Enabled field in the CONFIG
1947	 * register with the max value of slots the HC can handle.
1948	 */
1949	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1950	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1951			(unsigned int) val);
1952	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1953	val |= (val2 & ~HCS_SLOTS_MASK);
1954	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1955			(unsigned int) val);
1956	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1957
1958	/*
1959	 * Section 5.4.8 - doorbell array must be
1960	 * "physically contiguous and 64-byte (cache line) aligned".
1961	 */
1962	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1963			sizeof(*xhci->dcbaa), &dma);
1964	if (!xhci->dcbaa)
1965		goto fail;
1966	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1967	xhci->dcbaa->dma = dma;
1968	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
 
1969			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1970	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1971
1972	/*
1973	 * Initialize the ring segment pool.  The ring must be a contiguous
1974	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1975	 * however, the command ring segment needs 64-byte aligned segments,
1976	 * so we pick the greater alignment need.
 
1977	 */
1978	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1979			SEGMENT_SIZE, 64, xhci->page_size);
1980
1981	/* See Table 46 and Note on Figure 55 */
1982	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1983			2112, 64, xhci->page_size);
1984	if (!xhci->segment_pool || !xhci->device_pool)
1985		goto fail;
1986
1987	/* Linear stream context arrays don't have any boundary restrictions,
1988	 * and only need to be 16-byte aligned.
1989	 */
1990	xhci->small_streams_pool =
1991		dma_pool_create("xHCI 256 byte stream ctx arrays",
1992			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1993	xhci->medium_streams_pool =
1994		dma_pool_create("xHCI 1KB stream ctx arrays",
1995			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1996	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1997	 * will be allocated with pci_alloc_consistent()
1998	 */
1999
2000	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2001		goto fail;
2002
2003	/* Set up the command ring to have one segments for now. */
2004	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
2005	if (!xhci->cmd_ring)
2006		goto fail;
2007	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2008	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
 
2009			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2010
2011	/* Set the address in the Command Ring Control register */
2012	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2013	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2014		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2015		xhci->cmd_ring->cycle_state;
2016	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
 
2017	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2018	xhci_dbg_cmd_ptrs(xhci);
2019
2020	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
 
 
 
 
 
 
 
 
 
 
2021	val &= DBOFF_MASK;
2022	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2023			" from cap regs base addr\n", val);
 
2024	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2025	xhci_dbg_regs(xhci);
2026	xhci_print_run_regs(xhci);
2027	/* Set ir_set to interrupt register set 0 */
2028	xhci->ir_set = &xhci->run_regs->ir_set[0];
2029
2030	/*
2031	 * Event ring setup: Allocate a normal ring, but also setup
2032	 * the event ring segment table (ERST).  Section 4.9.3.
2033	 */
2034	xhci_dbg(xhci, "// Allocating event ring\n");
2035	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
 
2036	if (!xhci->event_ring)
2037		goto fail;
2038	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2039		goto fail;
2040
2041	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2042			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
 
2043	if (!xhci->erst.entries)
2044		goto fail;
2045	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
 
2046			(unsigned long long)dma);
2047
2048	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2049	xhci->erst.num_entries = ERST_NUM_SEGS;
2050	xhci->erst.erst_dma_addr = dma;
2051	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
 
2052			xhci->erst.num_entries,
2053			xhci->erst.entries,
2054			(unsigned long long)xhci->erst.erst_dma_addr);
2055
2056	/* set ring base address and size for each segment table entry */
2057	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2058		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2059		entry->seg_addr = cpu_to_le64(seg->dma);
2060		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2061		entry->rsvd = 0;
2062		seg = seg->next;
2063	}
2064
2065	/* set ERST count with the number of entries in the segment table */
2066	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2067	val &= ERST_SIZE_MASK;
2068	val |= ERST_NUM_SEGS;
2069	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
 
2070			val);
2071	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2072
2073	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
 
2074	/* set the segment table base address */
2075	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
 
2076			(unsigned long long)xhci->erst.erst_dma_addr);
2077	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2078	val_64 &= ERST_PTR_MASK;
2079	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2080	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2081
2082	/* Set the event ring dequeue address */
2083	xhci_set_hc_event_deq(xhci);
2084	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
 
2085	xhci_print_ir_set(xhci, 0);
2086
2087	/*
2088	 * XXX: Might need to set the Interrupter Moderation Register to
2089	 * something other than the default (~1ms minimum between interrupts).
2090	 * See section 5.5.1.2.
2091	 */
2092	init_completion(&xhci->addr_dev);
2093	for (i = 0; i < MAX_HC_SLOTS; ++i)
2094		xhci->devs[i] = NULL;
2095	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2096		xhci->bus_state[0].resume_done[i] = 0;
2097		xhci->bus_state[1].resume_done[i] = 0;
 
 
2098	}
2099
2100	if (scratchpad_alloc(xhci, flags))
2101		goto fail;
2102	if (xhci_setup_port_arrays(xhci, flags))
2103		goto fail;
2104
 
 
 
 
 
 
 
 
 
2105	return 0;
2106
2107fail:
2108	xhci_warn(xhci, "Couldn't initialize memory\n");
 
 
2109	xhci_mem_cleanup(xhci);
2110	return -ENOMEM;
2111}
v3.15
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27#include <linux/dma-mapping.h>
  28
  29#include "xhci.h"
  30#include "xhci-trace.h"
  31
  32/*
  33 * Allocates a generic ring segment from the ring pool, sets the dma address,
  34 * initializes the segment to zero, and sets the private next pointer to NULL.
  35 *
  36 * Section 4.11.1.1:
  37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  38 */
  39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  40					unsigned int cycle_state, gfp_t flags)
  41{
  42	struct xhci_segment *seg;
  43	dma_addr_t	dma;
  44	int		i;
  45
  46	seg = kzalloc(sizeof *seg, flags);
  47	if (!seg)
  48		return NULL;
 
  49
  50	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  51	if (!seg->trbs) {
  52		kfree(seg);
  53		return NULL;
  54	}
 
 
  55
  56	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
  57	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58	if (cycle_state == 0) {
  59		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  61	}
  62	seg->dma = dma;
  63	seg->next = NULL;
  64
  65	return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
 
 
  70	if (seg->trbs) {
 
 
  71		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72		seg->trbs = NULL;
  73	}
 
  74	kfree(seg);
  75}
  76
  77static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  78				struct xhci_segment *first)
  79{
  80	struct xhci_segment *seg;
  81
  82	seg = first->next;
  83	while (seg != first) {
  84		struct xhci_segment *next = seg->next;
  85		xhci_segment_free(xhci, seg);
  86		seg = next;
  87	}
  88	xhci_segment_free(xhci, first);
  89}
  90
  91/*
  92 * Make the prev segment point to the next segment.
  93 *
  94 * Change the last TRB in the prev segment to be a Link TRB which points to the
  95 * DMA address of the next segment.  The caller needs to set any Link TRB
  96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  97 */
  98static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  99		struct xhci_segment *next, enum xhci_ring_type type)
 100{
 101	u32 val;
 102
 103	if (!prev || !next)
 104		return;
 105	prev->next = next;
 106	if (type != TYPE_EVENT) {
 107		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 108			cpu_to_le64(next->dma);
 109
 110		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 111		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 112		val &= ~TRB_TYPE_BITMASK;
 113		val |= TRB_TYPE(TRB_LINK);
 114		/* Always set the chain bit with 0.95 hardware */
 115		/* Set chain bit for isoc rings on AMD 0.96 host */
 116		if (xhci_link_trb_quirk(xhci) ||
 117				(type == TYPE_ISOC &&
 118				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 119			val |= TRB_CHAIN;
 120		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 121	}
 
 
 
 122}
 123
 124/*
 125 * Link the ring to the new segments.
 126 * Set Toggle Cycle for the new ring if needed.
 127 */
 128static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 129		struct xhci_segment *first, struct xhci_segment *last,
 130		unsigned int num_segs)
 131{
 132	struct xhci_segment *next;
 133
 134	if (!ring || !first || !last)
 135		return;
 136
 137	next = ring->enq_seg->next;
 138	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 139	xhci_link_segments(xhci, last, next, ring->type);
 140	ring->num_segs += num_segs;
 141	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 142
 143	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 144		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 145			&= ~cpu_to_le32(LINK_TOGGLE);
 146		last->trbs[TRBS_PER_SEGMENT-1].link.control
 147			|= cpu_to_le32(LINK_TOGGLE);
 148		ring->last_seg = last;
 149	}
 150}
 151
 152/*
 153 * We need a radix tree for mapping physical addresses of TRBs to which stream
 154 * ID they belong to.  We need to do this because the host controller won't tell
 155 * us which stream ring the TRB came from.  We could store the stream ID in an
 156 * event data TRB, but that doesn't help us for the cancellation case, since the
 157 * endpoint may stop before it reaches that event data TRB.
 158 *
 159 * The radix tree maps the upper portion of the TRB DMA address to a ring
 160 * segment that has the same upper portion of DMA addresses.  For example, say I
 161 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 162 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 163 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 164 * pass the radix tree a key to get the right stream ID:
 165 *
 166 *	0x10c90fff >> 10 = 0x43243
 167 *	0x10c912c0 >> 10 = 0x43244
 168 *	0x10c91400 >> 10 = 0x43245
 169 *
 170 * Obviously, only those TRBs with DMA addresses that are within the segment
 171 * will make the radix tree return the stream ID for that ring.
 172 *
 173 * Caveats for the radix tree:
 174 *
 175 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 176 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 177 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 178 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 179 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 180 * extended systems (where the DMA address can be bigger than 32-bits),
 181 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 182 */
 183static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 184		struct xhci_ring *ring,
 185		struct xhci_segment *seg,
 186		gfp_t mem_flags)
 187{
 188	unsigned long key;
 189	int ret;
 190
 191	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 192	/* Skip any segments that were already added. */
 193	if (radix_tree_lookup(trb_address_map, key))
 194		return 0;
 195
 196	ret = radix_tree_maybe_preload(mem_flags);
 197	if (ret)
 198		return ret;
 199	ret = radix_tree_insert(trb_address_map,
 200			key, ring);
 201	radix_tree_preload_end();
 202	return ret;
 203}
 204
 205static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 206		struct xhci_segment *seg)
 207{
 208	unsigned long key;
 209
 210	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 211	if (radix_tree_lookup(trb_address_map, key))
 212		radix_tree_delete(trb_address_map, key);
 213}
 214
 215static int xhci_update_stream_segment_mapping(
 216		struct radix_tree_root *trb_address_map,
 217		struct xhci_ring *ring,
 218		struct xhci_segment *first_seg,
 219		struct xhci_segment *last_seg,
 220		gfp_t mem_flags)
 221{
 222	struct xhci_segment *seg;
 223	struct xhci_segment *failed_seg;
 224	int ret;
 225
 226	if (WARN_ON_ONCE(trb_address_map == NULL))
 227		return 0;
 228
 229	seg = first_seg;
 230	do {
 231		ret = xhci_insert_segment_mapping(trb_address_map,
 232				ring, seg, mem_flags);
 233		if (ret)
 234			goto remove_streams;
 235		if (seg == last_seg)
 236			return 0;
 237		seg = seg->next;
 238	} while (seg != first_seg);
 239
 240	return 0;
 241
 242remove_streams:
 243	failed_seg = seg;
 244	seg = first_seg;
 245	do {
 246		xhci_remove_segment_mapping(trb_address_map, seg);
 247		if (seg == failed_seg)
 248			return ret;
 249		seg = seg->next;
 250	} while (seg != first_seg);
 251
 252	return ret;
 253}
 254
 255static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 256{
 257	struct xhci_segment *seg;
 258
 259	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 260		return;
 261
 262	seg = ring->first_seg;
 263	do {
 264		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 265		seg = seg->next;
 266	} while (seg != ring->first_seg);
 267}
 268
 269static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 270{
 271	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 272			ring->first_seg, ring->last_seg, mem_flags);
 273}
 274
 275/* XXX: Do we need the hcd structure in all these functions? */
 276void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 277{
 278	if (!ring)
 279		return;
 280
 281	if (ring->first_seg) {
 282		if (ring->type == TYPE_STREAM)
 283			xhci_remove_stream_mapping(ring);
 284		xhci_free_segments_for_ring(xhci, ring->first_seg);
 285	}
 286
 
 287	kfree(ring);
 288}
 289
 290static void xhci_initialize_ring_info(struct xhci_ring *ring,
 291					unsigned int cycle_state)
 292{
 293	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 294	ring->enqueue = ring->first_seg->trbs;
 295	ring->enq_seg = ring->first_seg;
 296	ring->dequeue = ring->enqueue;
 297	ring->deq_seg = ring->first_seg;
 298	/* The ring is initialized to 0. The producer must write 1 to the cycle
 299	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 300	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 301	 *
 302	 * New rings are initialized with cycle state equal to 1; if we are
 303	 * handling ring expansion, set the cycle state equal to the old ring.
 304	 */
 305	ring->cycle_state = cycle_state;
 306	/* Not necessary for new rings, but needed for re-initialized rings */
 307	ring->enq_updates = 0;
 308	ring->deq_updates = 0;
 309
 310	/*
 311	 * Each segment has a link TRB, and leave an extra TRB for SW
 312	 * accounting purpose
 313	 */
 314	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 315}
 316
 317/* Allocate segments and link them for a ring */
 318static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 319		struct xhci_segment **first, struct xhci_segment **last,
 320		unsigned int num_segs, unsigned int cycle_state,
 321		enum xhci_ring_type type, gfp_t flags)
 322{
 323	struct xhci_segment *prev;
 324
 325	prev = xhci_segment_alloc(xhci, cycle_state, flags);
 326	if (!prev)
 327		return -ENOMEM;
 328	num_segs--;
 329
 330	*first = prev;
 331	while (num_segs > 0) {
 332		struct xhci_segment	*next;
 333
 334		next = xhci_segment_alloc(xhci, cycle_state, flags);
 335		if (!next) {
 336			prev = *first;
 337			while (prev) {
 338				next = prev->next;
 339				xhci_segment_free(xhci, prev);
 340				prev = next;
 341			}
 342			return -ENOMEM;
 343		}
 344		xhci_link_segments(xhci, prev, next, type);
 345
 346		prev = next;
 347		num_segs--;
 348	}
 349	xhci_link_segments(xhci, prev, *first, type);
 350	*last = prev;
 351
 352	return 0;
 353}
 354
 355/**
 356 * Create a new ring with zero or more segments.
 357 *
 358 * Link each segment together into a ring.
 359 * Set the end flag and the cycle toggle bit on the last segment.
 360 * See section 4.9.1 and figures 15 and 16.
 361 */
 362static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 363		unsigned int num_segs, unsigned int cycle_state,
 364		enum xhci_ring_type type, gfp_t flags)
 365{
 366	struct xhci_ring	*ring;
 367	int ret;
 368
 369	ring = kzalloc(sizeof *(ring), flags);
 
 370	if (!ring)
 371		return NULL;
 372
 373	ring->num_segs = num_segs;
 374	INIT_LIST_HEAD(&ring->td_list);
 375	ring->type = type;
 376	if (num_segs == 0)
 377		return ring;
 378
 379	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 380			&ring->last_seg, num_segs, cycle_state, type, flags);
 381	if (ret)
 382		goto fail;
 
 383
 384	/* Only event ring does not use link TRB */
 385	if (type != TYPE_EVENT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 386		/* See section 4.9.2.1 and 6.4.4.1 */
 387		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 388			cpu_to_le32(LINK_TOGGLE);
 
 
 
 389	}
 390	xhci_initialize_ring_info(ring, cycle_state);
 391	return ring;
 392
 393fail:
 394	kfree(ring);
 395	return NULL;
 396}
 397
 398void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 399		struct xhci_virt_device *virt_dev,
 400		unsigned int ep_index)
 401{
 402	int rings_cached;
 403
 404	rings_cached = virt_dev->num_rings_cached;
 405	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 406		virt_dev->ring_cache[rings_cached] =
 407			virt_dev->eps[ep_index].ring;
 408		virt_dev->num_rings_cached++;
 409		xhci_dbg(xhci, "Cached old ring, "
 410				"%d ring%s cached\n",
 411				virt_dev->num_rings_cached,
 412				(virt_dev->num_rings_cached > 1) ? "s" : "");
 413	} else {
 414		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 415		xhci_dbg(xhci, "Ring cache full (%d rings), "
 416				"freeing ring\n",
 417				virt_dev->num_rings_cached);
 418	}
 419	virt_dev->eps[ep_index].ring = NULL;
 420}
 421
 422/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 423 * pointers to the beginning of the ring.
 424 */
 425static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 426			struct xhci_ring *ring, unsigned int cycle_state,
 427			enum xhci_ring_type type)
 428{
 429	struct xhci_segment	*seg = ring->first_seg;
 430	int i;
 431
 432	do {
 433		memset(seg->trbs, 0,
 434				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 435		if (cycle_state == 0) {
 436			for (i = 0; i < TRBS_PER_SEGMENT; i++)
 437				seg->trbs[i].link.control |=
 438					cpu_to_le32(TRB_CYCLE);
 439		}
 440		/* All endpoint rings have link TRBs */
 441		xhci_link_segments(xhci, seg, seg->next, type);
 442		seg = seg->next;
 443	} while (seg != ring->first_seg);
 444	ring->type = type;
 445	xhci_initialize_ring_info(ring, cycle_state);
 446	/* td list should be empty since all URBs have been cancelled,
 447	 * but just in case...
 448	 */
 449	INIT_LIST_HEAD(&ring->td_list);
 450}
 451
 452/*
 453 * Expand an existing ring.
 454 * Look for a cached ring or allocate a new ring which has same segment numbers
 455 * and link the two rings.
 456 */
 457int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 458				unsigned int num_trbs, gfp_t flags)
 459{
 460	struct xhci_segment	*first;
 461	struct xhci_segment	*last;
 462	unsigned int		num_segs;
 463	unsigned int		num_segs_needed;
 464	int			ret;
 465
 466	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 467				(TRBS_PER_SEGMENT - 1);
 468
 469	/* Allocate number of segments we needed, or double the ring size */
 470	num_segs = ring->num_segs > num_segs_needed ?
 471			ring->num_segs : num_segs_needed;
 472
 473	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 474			num_segs, ring->cycle_state, ring->type, flags);
 475	if (ret)
 476		return -ENOMEM;
 477
 478	if (ring->type == TYPE_STREAM)
 479		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 480						ring, first, last, flags);
 481	if (ret) {
 482		struct xhci_segment *next;
 483		do {
 484			next = first->next;
 485			xhci_segment_free(xhci, first);
 486			if (first == last)
 487				break;
 488			first = next;
 489		} while (true);
 490		return ret;
 491	}
 492
 493	xhci_link_rings(xhci, ring, first, last, num_segs);
 494	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 495			"ring expansion succeed, now has %d segments",
 496			ring->num_segs);
 497
 498	return 0;
 499}
 500
 501#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 502
 503static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 504						    int type, gfp_t flags)
 505{
 506	struct xhci_container_ctx *ctx;
 507
 508	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 509		return NULL;
 510
 511	ctx = kzalloc(sizeof(*ctx), flags);
 512	if (!ctx)
 513		return NULL;
 514
 
 515	ctx->type = type;
 516	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 517	if (type == XHCI_CTX_TYPE_INPUT)
 518		ctx->size += CTX_SIZE(xhci->hcc_params);
 519
 520	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 521	if (!ctx->bytes) {
 522		kfree(ctx);
 523		return NULL;
 524	}
 525	memset(ctx->bytes, 0, ctx->size);
 526	return ctx;
 527}
 528
 529static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 530			     struct xhci_container_ctx *ctx)
 531{
 532	if (!ctx)
 533		return;
 534	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 535	kfree(ctx);
 536}
 537
 538struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 539					      struct xhci_container_ctx *ctx)
 540{
 541	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 542		return NULL;
 543
 544	return (struct xhci_input_control_ctx *)ctx->bytes;
 545}
 546
 547struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 548					struct xhci_container_ctx *ctx)
 549{
 550	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 551		return (struct xhci_slot_ctx *)ctx->bytes;
 552
 553	return (struct xhci_slot_ctx *)
 554		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 555}
 556
 557struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 558				    struct xhci_container_ctx *ctx,
 559				    unsigned int ep_index)
 560{
 561	/* increment ep index by offset of start of ep ctx array */
 562	ep_index++;
 563	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 564		ep_index++;
 565
 566	return (struct xhci_ep_ctx *)
 567		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 568}
 569
 570
 571/***************** Streams structures manipulation *************************/
 572
 573static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 574		unsigned int num_stream_ctxs,
 575		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 576{
 577	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 578	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 579
 580	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 581		dma_free_coherent(dev, size,
 
 582				stream_ctx, dma);
 583	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 584		return dma_pool_free(xhci->small_streams_pool,
 585				stream_ctx, dma);
 586	else
 587		return dma_pool_free(xhci->medium_streams_pool,
 588				stream_ctx, dma);
 589}
 590
 591/*
 592 * The stream context array for each endpoint with bulk streams enabled can
 593 * vary in size, based on:
 594 *  - how many streams the endpoint supports,
 595 *  - the maximum primary stream array size the host controller supports,
 596 *  - and how many streams the device driver asks for.
 597 *
 598 * The stream context array must be a power of 2, and can be as small as
 599 * 64 bytes or as large as 1MB.
 600 */
 601static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 602		unsigned int num_stream_ctxs, dma_addr_t *dma,
 603		gfp_t mem_flags)
 604{
 605	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 606	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 607
 608	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 609		return dma_alloc_coherent(dev, size,
 610				dma, mem_flags);
 611	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 
 612		return dma_pool_alloc(xhci->small_streams_pool,
 613				mem_flags, dma);
 614	else
 615		return dma_pool_alloc(xhci->medium_streams_pool,
 616				mem_flags, dma);
 617}
 618
 619struct xhci_ring *xhci_dma_to_transfer_ring(
 620		struct xhci_virt_ep *ep,
 621		u64 address)
 622{
 623	if (ep->ep_state & EP_HAS_STREAMS)
 624		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 625				address >> TRB_SEGMENT_SHIFT);
 626	return ep->ring;
 627}
 628
 
 
 
 
 
 
 
 
 
 
 
 629struct xhci_ring *xhci_stream_id_to_ring(
 630		struct xhci_virt_device *dev,
 631		unsigned int ep_index,
 632		unsigned int stream_id)
 633{
 634	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 635
 636	if (stream_id == 0)
 637		return ep->ring;
 638	if (!ep->stream_info)
 639		return NULL;
 640
 641	if (stream_id > ep->stream_info->num_streams)
 642		return NULL;
 643	return ep->stream_info->stream_rings[stream_id];
 644}
 645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646/*
 647 * Change an endpoint's internal structure so it supports stream IDs.  The
 648 * number of requested streams includes stream 0, which cannot be used by device
 649 * drivers.
 650 *
 651 * The number of stream contexts in the stream context array may be bigger than
 652 * the number of streams the driver wants to use.  This is because the number of
 653 * stream context array entries must be a power of two.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654 */
 655struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 656		unsigned int num_stream_ctxs,
 657		unsigned int num_streams, gfp_t mem_flags)
 658{
 659	struct xhci_stream_info *stream_info;
 660	u32 cur_stream;
 661	struct xhci_ring *cur_ring;
 
 662	u64 addr;
 663	int ret;
 664
 665	xhci_dbg(xhci, "Allocating %u streams and %u "
 666			"stream context array entries.\n",
 667			num_streams, num_stream_ctxs);
 668	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 669		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 670		return NULL;
 671	}
 672	xhci->cmd_ring_reserved_trbs++;
 673
 674	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 675	if (!stream_info)
 676		goto cleanup_trbs;
 677
 678	stream_info->num_streams = num_streams;
 679	stream_info->num_stream_ctxs = num_stream_ctxs;
 680
 681	/* Initialize the array of virtual pointers to stream rings. */
 682	stream_info->stream_rings = kzalloc(
 683			sizeof(struct xhci_ring *)*num_streams,
 684			mem_flags);
 685	if (!stream_info->stream_rings)
 686		goto cleanup_info;
 687
 688	/* Initialize the array of DMA addresses for stream rings for the HW. */
 689	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 690			num_stream_ctxs, &stream_info->ctx_array_dma,
 691			mem_flags);
 692	if (!stream_info->stream_ctx_array)
 693		goto cleanup_ctx;
 694	memset(stream_info->stream_ctx_array, 0,
 695			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 696
 697	/* Allocate everything needed to free the stream rings later */
 698	stream_info->free_streams_command =
 699		xhci_alloc_command(xhci, true, true, mem_flags);
 700	if (!stream_info->free_streams_command)
 701		goto cleanup_ctx;
 702
 703	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 704
 705	/* Allocate rings for all the streams that the driver will use,
 706	 * and add their segment DMA addresses to the radix tree.
 707	 * Stream 0 is reserved.
 708	 */
 709	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 710		stream_info->stream_rings[cur_stream] =
 711			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
 712		cur_ring = stream_info->stream_rings[cur_stream];
 713		if (!cur_ring)
 714			goto cleanup_rings;
 715		cur_ring->stream_id = cur_stream;
 716		cur_ring->trb_address_map = &stream_info->trb_address_map;
 717		/* Set deq ptr, cycle bit, and stream context type */
 718		addr = cur_ring->first_seg->dma |
 719			SCT_FOR_CTX(SCT_PRI_TR) |
 720			cur_ring->cycle_state;
 721		stream_info->stream_ctx_array[cur_stream].stream_ring =
 722			cpu_to_le64(addr);
 723		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 724				cur_stream, (unsigned long long) addr);
 725
 726		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 
 
 
 727		if (ret) {
 728			xhci_ring_free(xhci, cur_ring);
 729			stream_info->stream_rings[cur_stream] = NULL;
 730			goto cleanup_rings;
 731		}
 732	}
 733	/* Leave the other unused stream ring pointers in the stream context
 734	 * array initialized to zero.  This will cause the xHC to give us an
 735	 * error if the device asks for a stream ID we don't have setup (if it
 736	 * was any other way, the host controller would assume the ring is
 737	 * "empty" and wait forever for data to be queued to that stream ID).
 738	 */
 
 
 
 
 
 
 
 739
 740	return stream_info;
 741
 742cleanup_rings:
 743	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 744		cur_ring = stream_info->stream_rings[cur_stream];
 745		if (cur_ring) {
 
 
 
 746			xhci_ring_free(xhci, cur_ring);
 747			stream_info->stream_rings[cur_stream] = NULL;
 748		}
 749	}
 750	xhci_free_command(xhci, stream_info->free_streams_command);
 751cleanup_ctx:
 752	kfree(stream_info->stream_rings);
 753cleanup_info:
 754	kfree(stream_info);
 755cleanup_trbs:
 756	xhci->cmd_ring_reserved_trbs--;
 757	return NULL;
 758}
 759/*
 760 * Sets the MaxPStreams field and the Linear Stream Array field.
 761 * Sets the dequeue pointer to the stream context array.
 762 */
 763void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 764		struct xhci_ep_ctx *ep_ctx,
 765		struct xhci_stream_info *stream_info)
 766{
 767	u32 max_primary_streams;
 768	/* MaxPStreams is the number of stream context array entries, not the
 769	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 770	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 771	 */
 772	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 773	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 774			"Setting number of stream ctx array entries to %u",
 775			1 << (max_primary_streams + 1));
 776	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 777	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 778				       | EP_HAS_LSA);
 779	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 780}
 781
 782/*
 783 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 784 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 785 * not at the beginning of the ring).
 786 */
 787void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 788		struct xhci_ep_ctx *ep_ctx,
 789		struct xhci_virt_ep *ep)
 790{
 791	dma_addr_t addr;
 792	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 793	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 794	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 795}
 796
 797/* Frees all stream contexts associated with the endpoint,
 798 *
 799 * Caller should fix the endpoint context streams fields.
 800 */
 801void xhci_free_stream_info(struct xhci_hcd *xhci,
 802		struct xhci_stream_info *stream_info)
 803{
 804	int cur_stream;
 805	struct xhci_ring *cur_ring;
 
 806
 807	if (!stream_info)
 808		return;
 809
 810	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 811			cur_stream++) {
 812		cur_ring = stream_info->stream_rings[cur_stream];
 813		if (cur_ring) {
 
 
 
 814			xhci_ring_free(xhci, cur_ring);
 815			stream_info->stream_rings[cur_stream] = NULL;
 816		}
 817	}
 818	xhci_free_command(xhci, stream_info->free_streams_command);
 819	xhci->cmd_ring_reserved_trbs--;
 820	if (stream_info->stream_ctx_array)
 821		xhci_free_stream_ctx(xhci,
 822				stream_info->num_stream_ctxs,
 823				stream_info->stream_ctx_array,
 824				stream_info->ctx_array_dma);
 825
 826	kfree(stream_info->stream_rings);
 
 827	kfree(stream_info);
 828}
 829
 830
 831/***************** Device context manipulation *************************/
 832
 833static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 834		struct xhci_virt_ep *ep)
 835{
 836	init_timer(&ep->stop_cmd_timer);
 837	ep->stop_cmd_timer.data = (unsigned long) ep;
 838	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 839	ep->xhci = xhci;
 840}
 841
 842static void xhci_free_tt_info(struct xhci_hcd *xhci,
 843		struct xhci_virt_device *virt_dev,
 844		int slot_id)
 845{
 846	struct list_head *tt_list_head;
 847	struct xhci_tt_bw_info *tt_info, *next;
 848	bool slot_found = false;
 849
 850	/* If the device never made it past the Set Address stage,
 851	 * it may not have the real_port set correctly.
 852	 */
 853	if (virt_dev->real_port == 0 ||
 854			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 855		xhci_dbg(xhci, "Bad real port.\n");
 856		return;
 857	}
 858
 859	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 860	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 861		/* Multi-TT hubs will have more than one entry */
 862		if (tt_info->slot_id == slot_id) {
 863			slot_found = true;
 864			list_del(&tt_info->tt_list);
 865			kfree(tt_info);
 866		} else if (slot_found) {
 867			break;
 868		}
 869	}
 870}
 871
 872int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 873		struct xhci_virt_device *virt_dev,
 874		struct usb_device *hdev,
 875		struct usb_tt *tt, gfp_t mem_flags)
 876{
 877	struct xhci_tt_bw_info		*tt_info;
 878	unsigned int			num_ports;
 879	int				i, j;
 880
 881	if (!tt->multi)
 882		num_ports = 1;
 883	else
 884		num_ports = hdev->maxchild;
 885
 886	for (i = 0; i < num_ports; i++, tt_info++) {
 887		struct xhci_interval_bw_table *bw_table;
 888
 889		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 890		if (!tt_info)
 891			goto free_tts;
 892		INIT_LIST_HEAD(&tt_info->tt_list);
 893		list_add(&tt_info->tt_list,
 894				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 895		tt_info->slot_id = virt_dev->udev->slot_id;
 896		if (tt->multi)
 897			tt_info->ttport = i+1;
 898		bw_table = &tt_info->bw_table;
 899		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 900			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 901	}
 902	return 0;
 903
 904free_tts:
 905	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 906	return -ENOMEM;
 907}
 908
 909
 910/* All the xhci_tds in the ring's TD list should be freed at this point.
 911 * Should be called with xhci->lock held if there is any chance the TT lists
 912 * will be manipulated by the configure endpoint, allocate device, or update
 913 * hub functions while this function is removing the TT entries from the list.
 914 */
 915void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 916{
 917	struct xhci_virt_device *dev;
 918	int i;
 919	int old_active_eps = 0;
 920
 921	/* Slot ID 0 is reserved */
 922	if (slot_id == 0 || !xhci->devs[slot_id])
 923		return;
 924
 925	dev = xhci->devs[slot_id];
 926	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 927	if (!dev)
 928		return;
 929
 930	if (dev->tt_info)
 931		old_active_eps = dev->tt_info->active_eps;
 932
 933	for (i = 0; i < 31; ++i) {
 934		if (dev->eps[i].ring)
 935			xhci_ring_free(xhci, dev->eps[i].ring);
 936		if (dev->eps[i].stream_info)
 937			xhci_free_stream_info(xhci,
 938					dev->eps[i].stream_info);
 939		/* Endpoints on the TT/root port lists should have been removed
 940		 * when usb_disable_device() was called for the device.
 941		 * We can't drop them anyway, because the udev might have gone
 942		 * away by this point, and we can't tell what speed it was.
 943		 */
 944		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 945			xhci_warn(xhci, "Slot %u endpoint %u "
 946					"not removed from BW list!\n",
 947					slot_id, i);
 948	}
 949	/* If this is a hub, free the TT(s) from the TT list */
 950	xhci_free_tt_info(xhci, dev, slot_id);
 951	/* If necessary, update the number of active TTs on this root port */
 952	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 953
 954	if (dev->ring_cache) {
 955		for (i = 0; i < dev->num_rings_cached; i++)
 956			xhci_ring_free(xhci, dev->ring_cache[i]);
 957		kfree(dev->ring_cache);
 958	}
 959
 960	if (dev->in_ctx)
 961		xhci_free_container_ctx(xhci, dev->in_ctx);
 962	if (dev->out_ctx)
 963		xhci_free_container_ctx(xhci, dev->out_ctx);
 964
 965	kfree(xhci->devs[slot_id]);
 966	xhci->devs[slot_id] = NULL;
 967}
 968
 969int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 970		struct usb_device *udev, gfp_t flags)
 971{
 972	struct xhci_virt_device *dev;
 973	int i;
 974
 975	/* Slot ID 0 is reserved */
 976	if (slot_id == 0 || xhci->devs[slot_id]) {
 977		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 978		return 0;
 979	}
 980
 981	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 982	if (!xhci->devs[slot_id])
 983		return 0;
 984	dev = xhci->devs[slot_id];
 985
 986	/* Allocate the (output) device context that will be used in the HC. */
 987	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 988	if (!dev->out_ctx)
 989		goto fail;
 990
 991	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 992			(unsigned long long)dev->out_ctx->dma);
 993
 994	/* Allocate the (input) device context for address device command */
 995	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 996	if (!dev->in_ctx)
 997		goto fail;
 998
 999	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1000			(unsigned long long)dev->in_ctx->dma);
1001
1002	/* Initialize the cancellation list and watchdog timers for each ep */
1003	for (i = 0; i < 31; i++) {
1004		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1005		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1006		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007	}
1008
1009	/* Allocate endpoint 0 ring */
1010	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1011	if (!dev->eps[0].ring)
1012		goto fail;
1013
1014	/* Allocate pointers to the ring cache */
1015	dev->ring_cache = kzalloc(
1016			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1017			flags);
1018	if (!dev->ring_cache)
1019		goto fail;
1020	dev->num_rings_cached = 0;
1021
1022	init_completion(&dev->cmd_completion);
1023	INIT_LIST_HEAD(&dev->cmd_list);
1024	dev->udev = udev;
1025
1026	/* Point to output device context in dcbaa. */
1027	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1028	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1029		 slot_id,
1030		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1031		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1032
1033	return 1;
1034fail:
1035	xhci_free_virt_device(xhci, slot_id);
1036	return 0;
1037}
1038
1039void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1040		struct usb_device *udev)
1041{
1042	struct xhci_virt_device *virt_dev;
1043	struct xhci_ep_ctx	*ep0_ctx;
1044	struct xhci_ring	*ep_ring;
1045
1046	virt_dev = xhci->devs[udev->slot_id];
1047	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1048	ep_ring = virt_dev->eps[0].ring;
1049	/*
1050	 * FIXME we don't keep track of the dequeue pointer very well after a
1051	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1052	 * host to our enqueue pointer.  This should only be called after a
1053	 * configured device has reset, so all control transfers should have
1054	 * been completed or cancelled before the reset.
1055	 */
1056	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1057							ep_ring->enqueue)
1058				   | ep_ring->cycle_state);
1059}
1060
1061/*
1062 * The xHCI roothub may have ports of differing speeds in any order in the port
1063 * status registers.  xhci->port_array provides an array of the port speed for
1064 * each offset into the port status registers.
1065 *
1066 * The xHCI hardware wants to know the roothub port number that the USB device
1067 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1068 * know is the index of that port under either the USB 2.0 or the USB 3.0
1069 * roothub, but that doesn't give us the real index into the HW port status
1070 * registers. Call xhci_find_raw_port_number() to get real index.
 
1071 */
1072static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1073		struct usb_device *udev)
1074{
1075	struct usb_device *top_dev;
1076	struct usb_hcd *hcd;
1077
1078	if (udev->speed == USB_SPEED_SUPER)
1079		hcd = xhci->shared_hcd;
1080	else
1081		hcd = xhci->main_hcd;
1082
1083	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1084			top_dev = top_dev->parent)
1085		/* Found device below root hub */;
 
 
 
 
1086
1087	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088}
1089
1090/* Setup an xHCI virtual device for a Set Address command */
1091int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1092{
1093	struct xhci_virt_device *dev;
1094	struct xhci_ep_ctx	*ep0_ctx;
1095	struct xhci_slot_ctx    *slot_ctx;
 
1096	u32			port_num;
1097	u32			max_packets;
1098	struct usb_device *top_dev;
1099
1100	dev = xhci->devs[udev->slot_id];
1101	/* Slot ID 0 is reserved */
1102	if (udev->slot_id == 0 || !dev) {
1103		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1104				udev->slot_id);
1105		return -EINVAL;
1106	}
1107	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
 
1108	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1109
 
 
 
1110	/* 3) Only the control endpoint is valid - one endpoint context */
1111	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1112	switch (udev->speed) {
1113	case USB_SPEED_SUPER:
1114		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1115		max_packets = MAX_PACKET(512);
1116		break;
1117	case USB_SPEED_HIGH:
1118		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1119		max_packets = MAX_PACKET(64);
1120		break;
1121	/* USB core guesses at a 64-byte max packet first for FS devices */
1122	case USB_SPEED_FULL:
1123		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1124		max_packets = MAX_PACKET(64);
1125		break;
1126	case USB_SPEED_LOW:
1127		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1128		max_packets = MAX_PACKET(8);
1129		break;
1130	case USB_SPEED_WIRELESS:
1131		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1132		return -EINVAL;
1133		break;
1134	default:
1135		/* Speed was set earlier, this shouldn't happen. */
1136		return -EINVAL;
1137	}
1138	/* Find the root hub port this device is under */
1139	port_num = xhci_find_real_port_number(xhci, udev);
1140	if (!port_num)
1141		return -EINVAL;
1142	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1143	/* Set the port number in the virtual_device to the faked port number */
1144	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1145			top_dev = top_dev->parent)
1146		/* Found device below root hub */;
1147	dev->fake_port = top_dev->portnum;
1148	dev->real_port = port_num;
1149	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1150	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1151
1152	/* Find the right bandwidth table that this device will be a part of.
1153	 * If this is a full speed device attached directly to a root port (or a
1154	 * decendent of one), it counts as a primary bandwidth domain, not a
1155	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1156	 * will never be created for the HS root hub.
1157	 */
1158	if (!udev->tt || !udev->tt->hub->parent) {
1159		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1160	} else {
1161		struct xhci_root_port_bw_info *rh_bw;
1162		struct xhci_tt_bw_info *tt_bw;
1163
1164		rh_bw = &xhci->rh_bw[port_num - 1];
1165		/* Find the right TT. */
1166		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1167			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1168				continue;
1169
1170			if (!dev->udev->tt->multi ||
1171					(udev->tt->multi &&
1172					 tt_bw->ttport == dev->udev->ttport)) {
1173				dev->bw_table = &tt_bw->bw_table;
1174				dev->tt_info = tt_bw;
1175				break;
1176			}
1177		}
1178		if (!dev->tt_info)
1179			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1180	}
1181
1182	/* Is this a LS/FS device under an external HS hub? */
1183	if (udev->tt && udev->tt->hub->parent) {
1184		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1185						(udev->ttport << 8));
1186		if (udev->tt->multi)
1187			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1188	}
1189	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1190	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1191
1192	/* Step 4 - ring already allocated */
1193	/* Step 5 */
1194	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1197	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1198					 max_packets);
1199
1200	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1201				   dev->eps[0].ring->cycle_state);
1202
1203	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1204
1205	return 0;
1206}
1207
1208/*
1209 * Convert interval expressed as 2^(bInterval - 1) == interval into
1210 * straight exponent value 2^n == interval.
1211 *
1212 */
1213static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1214		struct usb_host_endpoint *ep)
1215{
1216	unsigned int interval;
1217
1218	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1219	if (interval != ep->desc.bInterval - 1)
1220		dev_warn(&udev->dev,
1221			 "ep %#x - rounding interval to %d %sframes\n",
1222			 ep->desc.bEndpointAddress,
1223			 1 << interval,
1224			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1225
1226	if (udev->speed == USB_SPEED_FULL) {
1227		/*
1228		 * Full speed isoc endpoints specify interval in frames,
1229		 * not microframes. We are using microframes everywhere,
1230		 * so adjust accordingly.
1231		 */
1232		interval += 3;	/* 1 frame = 2^3 uframes */
1233	}
1234
1235	return interval;
1236}
1237
1238/*
1239 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1240 * microframes, rounded down to nearest power of 2.
1241 */
1242static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1243		struct usb_host_endpoint *ep, unsigned int desc_interval,
1244		unsigned int min_exponent, unsigned int max_exponent)
1245{
1246	unsigned int interval;
1247
1248	interval = fls(desc_interval) - 1;
1249	interval = clamp_val(interval, min_exponent, max_exponent);
1250	if ((1 << interval) != desc_interval)
1251		dev_warn(&udev->dev,
1252			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1253			 ep->desc.bEndpointAddress,
1254			 1 << interval,
1255			 desc_interval);
1256
1257	return interval;
1258}
1259
1260static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1261		struct usb_host_endpoint *ep)
1262{
1263	if (ep->desc.bInterval == 0)
1264		return 0;
1265	return xhci_microframes_to_exponent(udev, ep,
1266			ep->desc.bInterval, 0, 15);
1267}
1268
1269
1270static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1271		struct usb_host_endpoint *ep)
1272{
1273	return xhci_microframes_to_exponent(udev, ep,
1274			ep->desc.bInterval * 8, 3, 10);
1275}
1276
1277/* Return the polling or NAK interval.
1278 *
1279 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1280 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1281 *
1282 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1283 * is set to 0.
1284 */
1285static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1286		struct usb_host_endpoint *ep)
1287{
1288	unsigned int interval = 0;
1289
1290	switch (udev->speed) {
1291	case USB_SPEED_HIGH:
1292		/* Max NAK rate */
1293		if (usb_endpoint_xfer_control(&ep->desc) ||
1294		    usb_endpoint_xfer_bulk(&ep->desc)) {
1295			interval = xhci_parse_microframe_interval(udev, ep);
1296			break;
1297		}
1298		/* Fall through - SS and HS isoc/int have same decoding */
1299
1300	case USB_SPEED_SUPER:
1301		if (usb_endpoint_xfer_int(&ep->desc) ||
1302		    usb_endpoint_xfer_isoc(&ep->desc)) {
1303			interval = xhci_parse_exponent_interval(udev, ep);
1304		}
1305		break;
1306
1307	case USB_SPEED_FULL:
1308		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309			interval = xhci_parse_exponent_interval(udev, ep);
1310			break;
1311		}
1312		/*
1313		 * Fall through for interrupt endpoint interval decoding
1314		 * since it uses the same rules as low speed interrupt
1315		 * endpoints.
1316		 */
1317
1318	case USB_SPEED_LOW:
1319		if (usb_endpoint_xfer_int(&ep->desc) ||
1320		    usb_endpoint_xfer_isoc(&ep->desc)) {
1321
1322			interval = xhci_parse_frame_interval(udev, ep);
1323		}
1324		break;
1325
1326	default:
1327		BUG();
1328	}
1329	return EP_INTERVAL(interval);
1330}
1331
1332/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333 * High speed endpoint descriptors can define "the number of additional
1334 * transaction opportunities per microframe", but that goes in the Max Burst
1335 * endpoint context field.
1336 */
1337static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1338		struct usb_host_endpoint *ep)
1339{
1340	if (udev->speed != USB_SPEED_SUPER ||
1341			!usb_endpoint_xfer_isoc(&ep->desc))
1342		return 0;
1343	return ep->ss_ep_comp.bmAttributes;
1344}
1345
1346static u32 xhci_get_endpoint_type(struct usb_device *udev,
1347		struct usb_host_endpoint *ep)
1348{
1349	int in;
1350	u32 type;
1351
1352	in = usb_endpoint_dir_in(&ep->desc);
1353	if (usb_endpoint_xfer_control(&ep->desc)) {
1354		type = EP_TYPE(CTRL_EP);
1355	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1356		if (in)
1357			type = EP_TYPE(BULK_IN_EP);
1358		else
1359			type = EP_TYPE(BULK_OUT_EP);
1360	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1361		if (in)
1362			type = EP_TYPE(ISOC_IN_EP);
1363		else
1364			type = EP_TYPE(ISOC_OUT_EP);
1365	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1366		if (in)
1367			type = EP_TYPE(INT_IN_EP);
1368		else
1369			type = EP_TYPE(INT_OUT_EP);
1370	} else {
1371		type = 0;
1372	}
1373	return type;
1374}
1375
1376/* Return the maximum endpoint service interval time (ESIT) payload.
1377 * Basically, this is the maxpacket size, multiplied by the burst size
1378 * and mult size.
1379 */
1380static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1381		struct usb_device *udev,
1382		struct usb_host_endpoint *ep)
1383{
1384	int max_burst;
1385	int max_packet;
1386
1387	/* Only applies for interrupt or isochronous endpoints */
1388	if (usb_endpoint_xfer_control(&ep->desc) ||
1389			usb_endpoint_xfer_bulk(&ep->desc))
1390		return 0;
1391
1392	if (udev->speed == USB_SPEED_SUPER)
1393		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1394
1395	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1396	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1397	/* A 0 in max burst means 1 transfer per ESIT */
1398	return max_packet * (max_burst + 1);
1399}
1400
1401/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1402 * Drivers will have to call usb_alloc_streams() to do that.
1403 */
1404int xhci_endpoint_init(struct xhci_hcd *xhci,
1405		struct xhci_virt_device *virt_dev,
1406		struct usb_device *udev,
1407		struct usb_host_endpoint *ep,
1408		gfp_t mem_flags)
1409{
1410	unsigned int ep_index;
1411	struct xhci_ep_ctx *ep_ctx;
1412	struct xhci_ring *ep_ring;
1413	unsigned int max_packet;
1414	unsigned int max_burst;
1415	enum xhci_ring_type type;
1416	u32 max_esit_payload;
1417	u32 endpoint_type;
1418
1419	ep_index = xhci_get_endpoint_index(&ep->desc);
1420	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1421
1422	endpoint_type = xhci_get_endpoint_type(udev, ep);
1423	if (!endpoint_type)
1424		return -EINVAL;
1425	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1426
1427	type = usb_endpoint_type(&ep->desc);
1428	/* Set up the endpoint ring */
1429	virt_dev->eps[ep_index].new_ring =
1430		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
 
 
 
 
 
 
 
 
 
 
1431	if (!virt_dev->eps[ep_index].new_ring) {
1432		/* Attempt to use the ring cache */
1433		if (virt_dev->num_rings_cached == 0)
1434			return -ENOMEM;
1435		virt_dev->eps[ep_index].new_ring =
1436			virt_dev->ring_cache[virt_dev->num_rings_cached];
1437		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1438		virt_dev->num_rings_cached--;
1439		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1440					1, type);
1441	}
1442	virt_dev->eps[ep_index].skip = false;
1443	ep_ring = virt_dev->eps[ep_index].new_ring;
1444	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1445
1446	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1447				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1448
1449	/* FIXME dig Mult and streams info out of ep companion desc */
1450
1451	/* Allow 3 retries for everything but isoc;
1452	 * CErr shall be set to 0 for Isoch endpoints.
1453	 */
1454	if (!usb_endpoint_xfer_isoc(&ep->desc))
1455		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1456	else
1457		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
 
 
1458
1459	/* Set the max packet size and max burst */
1460	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1461	max_burst = 0;
1462	switch (udev->speed) {
1463	case USB_SPEED_SUPER:
 
 
1464		/* dig out max burst from ep companion desc */
1465		max_burst = ep->ss_ep_comp.bMaxBurst;
 
1466		break;
1467	case USB_SPEED_HIGH:
1468		/* Some devices get this wrong */
1469		if (usb_endpoint_xfer_bulk(&ep->desc))
1470			max_packet = 512;
1471		/* bits 11:12 specify the number of additional transaction
1472		 * opportunities per microframe (USB 2.0, section 9.6.6)
1473		 */
1474		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1475				usb_endpoint_xfer_int(&ep->desc)) {
1476			max_burst = (usb_endpoint_maxp(&ep->desc)
1477				     & 0x1800) >> 11;
 
1478		}
1479		break;
1480	case USB_SPEED_FULL:
1481	case USB_SPEED_LOW:
 
 
1482		break;
1483	default:
1484		BUG();
1485	}
1486	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1487			MAX_BURST(max_burst));
1488	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1489	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1490
1491	/*
1492	 * XXX no idea how to calculate the average TRB buffer length for bulk
1493	 * endpoints, as the driver gives us no clue how big each scatter gather
1494	 * list entry (or buffer) is going to be.
1495	 *
1496	 * For isochronous and interrupt endpoints, we set it to the max
1497	 * available, until we have new API in the USB core to allow drivers to
1498	 * declare how much bandwidth they actually need.
1499	 *
1500	 * Normally, it would be calculated by taking the total of the buffer
1501	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1502	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1503	 * use Event Data TRBs, and we don't chain in a link TRB on short
1504	 * transfers, we're basically dividing by 1.
1505	 *
1506	 * xHCI 1.0 specification indicates that the Average TRB Length should
1507	 * be set to 8 for control endpoints.
1508	 */
1509	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1510		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1511	else
1512		ep_ctx->tx_info |=
1513			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1514
1515	/* FIXME Debug endpoint context */
1516	return 0;
1517}
1518
1519void xhci_endpoint_zero(struct xhci_hcd *xhci,
1520		struct xhci_virt_device *virt_dev,
1521		struct usb_host_endpoint *ep)
1522{
1523	unsigned int ep_index;
1524	struct xhci_ep_ctx *ep_ctx;
1525
1526	ep_index = xhci_get_endpoint_index(&ep->desc);
1527	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1528
1529	ep_ctx->ep_info = 0;
1530	ep_ctx->ep_info2 = 0;
1531	ep_ctx->deq = 0;
1532	ep_ctx->tx_info = 0;
1533	/* Don't free the endpoint ring until the set interface or configuration
1534	 * request succeeds.
1535	 */
1536}
1537
1538void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1539{
1540	bw_info->ep_interval = 0;
1541	bw_info->mult = 0;
1542	bw_info->num_packets = 0;
1543	bw_info->max_packet_size = 0;
1544	bw_info->type = 0;
1545	bw_info->max_esit_payload = 0;
1546}
1547
1548void xhci_update_bw_info(struct xhci_hcd *xhci,
1549		struct xhci_container_ctx *in_ctx,
1550		struct xhci_input_control_ctx *ctrl_ctx,
1551		struct xhci_virt_device *virt_dev)
1552{
1553	struct xhci_bw_info *bw_info;
1554	struct xhci_ep_ctx *ep_ctx;
1555	unsigned int ep_type;
1556	int i;
1557
1558	for (i = 1; i < 31; ++i) {
1559		bw_info = &virt_dev->eps[i].bw_info;
1560
1561		/* We can't tell what endpoint type is being dropped, but
1562		 * unconditionally clearing the bandwidth info for non-periodic
1563		 * endpoints should be harmless because the info will never be
1564		 * set in the first place.
1565		 */
1566		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1567			/* Dropped endpoint */
1568			xhci_clear_endpoint_bw_info(bw_info);
1569			continue;
1570		}
1571
1572		if (EP_IS_ADDED(ctrl_ctx, i)) {
1573			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1574			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1575
1576			/* Ignore non-periodic endpoints */
1577			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1578					ep_type != ISOC_IN_EP &&
1579					ep_type != INT_IN_EP)
1580				continue;
1581
1582			/* Added or changed endpoint */
1583			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1584					le32_to_cpu(ep_ctx->ep_info));
1585			/* Number of packets and mult are zero-based in the
1586			 * input context, but we want one-based for the
1587			 * interval table.
1588			 */
1589			bw_info->mult = CTX_TO_EP_MULT(
1590					le32_to_cpu(ep_ctx->ep_info)) + 1;
1591			bw_info->num_packets = CTX_TO_MAX_BURST(
1592					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1593			bw_info->max_packet_size = MAX_PACKET_DECODED(
1594					le32_to_cpu(ep_ctx->ep_info2));
1595			bw_info->type = ep_type;
1596			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1597					le32_to_cpu(ep_ctx->tx_info));
1598		}
1599	}
1600}
1601
1602/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1603 * Useful when you want to change one particular aspect of the endpoint and then
1604 * issue a configure endpoint command.
1605 */
1606void xhci_endpoint_copy(struct xhci_hcd *xhci,
1607		struct xhci_container_ctx *in_ctx,
1608		struct xhci_container_ctx *out_ctx,
1609		unsigned int ep_index)
1610{
1611	struct xhci_ep_ctx *out_ep_ctx;
1612	struct xhci_ep_ctx *in_ep_ctx;
1613
1614	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1615	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1616
1617	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1618	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1619	in_ep_ctx->deq = out_ep_ctx->deq;
1620	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1621}
1622
1623/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1624 * Useful when you want to change one particular aspect of the endpoint and then
1625 * issue a configure endpoint command.  Only the context entries field matters,
1626 * but we'll copy the whole thing anyway.
1627 */
1628void xhci_slot_copy(struct xhci_hcd *xhci,
1629		struct xhci_container_ctx *in_ctx,
1630		struct xhci_container_ctx *out_ctx)
1631{
1632	struct xhci_slot_ctx *in_slot_ctx;
1633	struct xhci_slot_ctx *out_slot_ctx;
1634
1635	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1636	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1637
1638	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1639	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1640	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1641	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1642}
1643
1644/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1645static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1646{
1647	int i;
1648	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1649	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1650
1651	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1652			"Allocating %d scratchpad buffers", num_sp);
1653
1654	if (!num_sp)
1655		return 0;
1656
1657	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1658	if (!xhci->scratchpad)
1659		goto fail_sp;
1660
1661	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
 
1662				     num_sp * sizeof(u64),
1663				     &xhci->scratchpad->sp_dma, flags);
1664	if (!xhci->scratchpad->sp_array)
1665		goto fail_sp2;
1666
1667	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1668	if (!xhci->scratchpad->sp_buffers)
1669		goto fail_sp3;
1670
1671	xhci->scratchpad->sp_dma_buffers =
1672		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1673
1674	if (!xhci->scratchpad->sp_dma_buffers)
1675		goto fail_sp4;
1676
1677	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1678	for (i = 0; i < num_sp; i++) {
1679		dma_addr_t dma;
1680		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1681				flags);
1682		if (!buf)
1683			goto fail_sp5;
1684
1685		xhci->scratchpad->sp_array[i] = dma;
1686		xhci->scratchpad->sp_buffers[i] = buf;
1687		xhci->scratchpad->sp_dma_buffers[i] = dma;
1688	}
1689
1690	return 0;
1691
1692 fail_sp5:
1693	for (i = i - 1; i >= 0; i--) {
1694		dma_free_coherent(dev, xhci->page_size,
1695				    xhci->scratchpad->sp_buffers[i],
1696				    xhci->scratchpad->sp_dma_buffers[i]);
1697	}
1698	kfree(xhci->scratchpad->sp_dma_buffers);
1699
1700 fail_sp4:
1701	kfree(xhci->scratchpad->sp_buffers);
1702
1703 fail_sp3:
1704	dma_free_coherent(dev, num_sp * sizeof(u64),
1705			    xhci->scratchpad->sp_array,
1706			    xhci->scratchpad->sp_dma);
1707
1708 fail_sp2:
1709	kfree(xhci->scratchpad);
1710	xhci->scratchpad = NULL;
1711
1712 fail_sp:
1713	return -ENOMEM;
1714}
1715
1716static void scratchpad_free(struct xhci_hcd *xhci)
1717{
1718	int num_sp;
1719	int i;
1720	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1721
1722	if (!xhci->scratchpad)
1723		return;
1724
1725	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1726
1727	for (i = 0; i < num_sp; i++) {
1728		dma_free_coherent(dev, xhci->page_size,
1729				    xhci->scratchpad->sp_buffers[i],
1730				    xhci->scratchpad->sp_dma_buffers[i]);
1731	}
1732	kfree(xhci->scratchpad->sp_dma_buffers);
1733	kfree(xhci->scratchpad->sp_buffers);
1734	dma_free_coherent(dev, num_sp * sizeof(u64),
1735			    xhci->scratchpad->sp_array,
1736			    xhci->scratchpad->sp_dma);
1737	kfree(xhci->scratchpad);
1738	xhci->scratchpad = NULL;
1739}
1740
1741struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1742		bool allocate_in_ctx, bool allocate_completion,
1743		gfp_t mem_flags)
1744{
1745	struct xhci_command *command;
1746
1747	command = kzalloc(sizeof(*command), mem_flags);
1748	if (!command)
1749		return NULL;
1750
1751	if (allocate_in_ctx) {
1752		command->in_ctx =
1753			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1754					mem_flags);
1755		if (!command->in_ctx) {
1756			kfree(command);
1757			return NULL;
1758		}
1759	}
1760
1761	if (allocate_completion) {
1762		command->completion =
1763			kzalloc(sizeof(struct completion), mem_flags);
1764		if (!command->completion) {
1765			xhci_free_container_ctx(xhci, command->in_ctx);
1766			kfree(command);
1767			return NULL;
1768		}
1769		init_completion(command->completion);
1770	}
1771
1772	command->status = 0;
1773	INIT_LIST_HEAD(&command->cmd_list);
1774	return command;
1775}
1776
1777void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1778{
1779	if (urb_priv) {
1780		kfree(urb_priv->td[0]);
1781		kfree(urb_priv);
 
 
 
 
 
 
 
1782	}
 
1783}
1784
1785void xhci_free_command(struct xhci_hcd *xhci,
1786		struct xhci_command *command)
1787{
1788	xhci_free_container_ctx(xhci,
1789			command->in_ctx);
1790	kfree(command->completion);
1791	kfree(command);
1792}
1793
1794void xhci_mem_cleanup(struct xhci_hcd *xhci)
1795{
1796	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1797	struct xhci_cd  *cur_cd, *next_cd;
1798	int size;
1799	int i, j, num_ports;
1800
1801	/* Free the Event Ring Segment Table and the actual Event Ring */
 
 
 
 
 
1802	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1803	if (xhci->erst.entries)
1804		dma_free_coherent(dev, size,
1805				xhci->erst.entries, xhci->erst.erst_dma_addr);
1806	xhci->erst.entries = NULL;
1807	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1808	if (xhci->event_ring)
1809		xhci_ring_free(xhci, xhci->event_ring);
1810	xhci->event_ring = NULL;
1811	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1812
1813	if (xhci->lpm_command)
1814		xhci_free_command(xhci, xhci->lpm_command);
1815	if (xhci->cmd_ring)
1816		xhci_ring_free(xhci, xhci->cmd_ring);
1817	xhci->cmd_ring = NULL;
1818	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1819	list_for_each_entry_safe(cur_cd, next_cd,
1820			&xhci->cancel_cmd_list, cancel_cmd_list) {
1821		list_del(&cur_cd->cancel_cmd_list);
1822		kfree(cur_cd);
1823	}
1824
1825	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1826	for (i = 0; i < num_ports; i++) {
1827		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1828		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1829			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1830			while (!list_empty(ep))
1831				list_del_init(ep->next);
1832		}
1833	}
1834
1835	for (i = 1; i < MAX_HC_SLOTS; ++i)
1836		xhci_free_virt_device(xhci, i);
1837
1838	if (xhci->segment_pool)
1839		dma_pool_destroy(xhci->segment_pool);
1840	xhci->segment_pool = NULL;
1841	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1842
1843	if (xhci->device_pool)
1844		dma_pool_destroy(xhci->device_pool);
1845	xhci->device_pool = NULL;
1846	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1847
1848	if (xhci->small_streams_pool)
1849		dma_pool_destroy(xhci->small_streams_pool);
1850	xhci->small_streams_pool = NULL;
1851	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1852			"Freed small stream array pool");
1853
1854	if (xhci->medium_streams_pool)
1855		dma_pool_destroy(xhci->medium_streams_pool);
1856	xhci->medium_streams_pool = NULL;
1857	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1858			"Freed medium stream array pool");
1859
 
1860	if (xhci->dcbaa)
1861		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1862				xhci->dcbaa, xhci->dcbaa->dma);
1863	xhci->dcbaa = NULL;
1864
1865	scratchpad_free(xhci);
1866
1867	if (!xhci->rh_bw)
1868		goto no_bw;
1869
1870	for (i = 0; i < num_ports; i++) {
1871		struct xhci_tt_bw_info *tt, *n;
1872		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1873			list_del(&tt->tt_list);
1874			kfree(tt);
1875		}
1876	}
1877
1878no_bw:
1879	xhci->cmd_ring_reserved_trbs = 0;
1880	xhci->num_usb2_ports = 0;
1881	xhci->num_usb3_ports = 0;
1882	xhci->num_active_eps = 0;
1883	kfree(xhci->usb2_ports);
1884	kfree(xhci->usb3_ports);
1885	kfree(xhci->port_array);
1886	kfree(xhci->rh_bw);
1887	kfree(xhci->ext_caps);
1888
1889	xhci->page_size = 0;
1890	xhci->page_shift = 0;
1891	xhci->bus_state[0].bus_suspended = 0;
1892	xhci->bus_state[1].bus_suspended = 0;
1893}
1894
1895static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1896		struct xhci_segment *input_seg,
1897		union xhci_trb *start_trb,
1898		union xhci_trb *end_trb,
1899		dma_addr_t input_dma,
1900		struct xhci_segment *result_seg,
1901		char *test_name, int test_number)
1902{
1903	unsigned long long start_dma;
1904	unsigned long long end_dma;
1905	struct xhci_segment *seg;
1906
1907	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1908	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1909
1910	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1911	if (seg != result_seg) {
1912		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1913				test_name, test_number);
1914		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1915				"input DMA 0x%llx\n",
1916				input_seg,
1917				(unsigned long long) input_dma);
1918		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1919				"ending TRB %p (0x%llx DMA)\n",
1920				start_trb, start_dma,
1921				end_trb, end_dma);
1922		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1923				result_seg, seg);
1924		return -1;
1925	}
1926	return 0;
1927}
1928
1929/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1930static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1931{
1932	struct {
1933		dma_addr_t		input_dma;
1934		struct xhci_segment	*result_seg;
1935	} simple_test_vector [] = {
1936		/* A zeroed DMA field should fail */
1937		{ 0, NULL },
1938		/* One TRB before the ring start should fail */
1939		{ xhci->event_ring->first_seg->dma - 16, NULL },
1940		/* One byte before the ring start should fail */
1941		{ xhci->event_ring->first_seg->dma - 1, NULL },
1942		/* Starting TRB should succeed */
1943		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1944		/* Ending TRB should succeed */
1945		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1946			xhci->event_ring->first_seg },
1947		/* One byte after the ring end should fail */
1948		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1949		/* One TRB after the ring end should fail */
1950		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1951		/* An address of all ones should fail */
1952		{ (dma_addr_t) (~0), NULL },
1953	};
1954	struct {
1955		struct xhci_segment	*input_seg;
1956		union xhci_trb		*start_trb;
1957		union xhci_trb		*end_trb;
1958		dma_addr_t		input_dma;
1959		struct xhci_segment	*result_seg;
1960	} complex_test_vector [] = {
1961		/* Test feeding a valid DMA address from a different ring */
1962		{	.input_seg = xhci->event_ring->first_seg,
1963			.start_trb = xhci->event_ring->first_seg->trbs,
1964			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1965			.input_dma = xhci->cmd_ring->first_seg->dma,
1966			.result_seg = NULL,
1967		},
1968		/* Test feeding a valid end TRB from a different ring */
1969		{	.input_seg = xhci->event_ring->first_seg,
1970			.start_trb = xhci->event_ring->first_seg->trbs,
1971			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1972			.input_dma = xhci->cmd_ring->first_seg->dma,
1973			.result_seg = NULL,
1974		},
1975		/* Test feeding a valid start and end TRB from a different ring */
1976		{	.input_seg = xhci->event_ring->first_seg,
1977			.start_trb = xhci->cmd_ring->first_seg->trbs,
1978			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1979			.input_dma = xhci->cmd_ring->first_seg->dma,
1980			.result_seg = NULL,
1981		},
1982		/* TRB in this ring, but after this TD */
1983		{	.input_seg = xhci->event_ring->first_seg,
1984			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1985			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1986			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1987			.result_seg = NULL,
1988		},
1989		/* TRB in this ring, but before this TD */
1990		{	.input_seg = xhci->event_ring->first_seg,
1991			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1992			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1993			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1994			.result_seg = NULL,
1995		},
1996		/* TRB in this ring, but after this wrapped TD */
1997		{	.input_seg = xhci->event_ring->first_seg,
1998			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1999			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2000			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2001			.result_seg = NULL,
2002		},
2003		/* TRB in this ring, but before this wrapped TD */
2004		{	.input_seg = xhci->event_ring->first_seg,
2005			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2006			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2007			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2008			.result_seg = NULL,
2009		},
2010		/* TRB not in this ring, and we have a wrapped TD */
2011		{	.input_seg = xhci->event_ring->first_seg,
2012			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2013			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2014			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2015			.result_seg = NULL,
2016		},
2017	};
2018
2019	unsigned int num_tests;
2020	int i, ret;
2021
2022	num_tests = ARRAY_SIZE(simple_test_vector);
2023	for (i = 0; i < num_tests; i++) {
2024		ret = xhci_test_trb_in_td(xhci,
2025				xhci->event_ring->first_seg,
2026				xhci->event_ring->first_seg->trbs,
2027				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2028				simple_test_vector[i].input_dma,
2029				simple_test_vector[i].result_seg,
2030				"Simple", i);
2031		if (ret < 0)
2032			return ret;
2033	}
2034
2035	num_tests = ARRAY_SIZE(complex_test_vector);
2036	for (i = 0; i < num_tests; i++) {
2037		ret = xhci_test_trb_in_td(xhci,
2038				complex_test_vector[i].input_seg,
2039				complex_test_vector[i].start_trb,
2040				complex_test_vector[i].end_trb,
2041				complex_test_vector[i].input_dma,
2042				complex_test_vector[i].result_seg,
2043				"Complex", i);
2044		if (ret < 0)
2045			return ret;
2046	}
2047	xhci_dbg(xhci, "TRB math tests passed.\n");
2048	return 0;
2049}
2050
2051static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2052{
2053	u64 temp;
2054	dma_addr_t deq;
2055
2056	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2057			xhci->event_ring->dequeue);
2058	if (deq == 0 && !in_interrupt())
2059		xhci_warn(xhci, "WARN something wrong with SW event ring "
2060				"dequeue ptr.\n");
2061	/* Update HC event ring dequeue pointer */
2062	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2063	temp &= ERST_PTR_MASK;
2064	/* Don't clear the EHB bit (which is RW1C) because
2065	 * there might be more events to service.
2066	 */
2067	temp &= ~ERST_EHB;
2068	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2069			"// Write event ring dequeue pointer, "
2070			"preserving EHB bit");
2071	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2072			&xhci->ir_set->erst_dequeue);
2073}
2074
2075static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2076		__le32 __iomem *addr, u8 major_revision, int max_caps)
2077{
2078	u32 temp, port_offset, port_count;
2079	int i;
2080
2081	if (major_revision > 0x03) {
2082		xhci_warn(xhci, "Ignoring unknown port speed, "
2083				"Ext Cap %p, revision = 0x%x\n",
2084				addr, major_revision);
2085		/* Ignoring port protocol we can't understand. FIXME */
2086		return;
2087	}
2088
2089	/* Port offset and count in the third dword, see section 7.2 */
2090	temp = readl(addr + 2);
2091	port_offset = XHCI_EXT_PORT_OFF(temp);
2092	port_count = XHCI_EXT_PORT_COUNT(temp);
2093	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2094			"Ext Cap %p, port offset = %u, "
2095			"count = %u, revision = 0x%x",
2096			addr, port_offset, port_count, major_revision);
2097	/* Port count includes the current port offset */
2098	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2099		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2100		return;
2101
2102	/* cache usb2 port capabilities */
2103	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2104		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2105
2106	/* Check the host's USB2 LPM capability */
2107	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2108			(temp & XHCI_L1C)) {
2109		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2110				"xHCI 0.96: support USB2 software lpm");
2111		xhci->sw_lpm_support = 1;
2112	}
2113
2114	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2115		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2116				"xHCI 1.0: support USB2 software lpm");
2117		xhci->sw_lpm_support = 1;
2118		if (temp & XHCI_HLC) {
2119			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2120					"xHCI 1.0: support USB2 hardware lpm");
2121			xhci->hw_lpm_support = 1;
2122		}
2123	}
2124
2125	port_offset--;
2126	for (i = port_offset; i < (port_offset + port_count); i++) {
2127		/* Duplicate entry.  Ignore the port if the revisions differ. */
2128		if (xhci->port_array[i] != 0) {
2129			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2130					" port %u\n", addr, i);
2131			xhci_warn(xhci, "Port was marked as USB %u, "
2132					"duplicated as USB %u\n",
2133					xhci->port_array[i], major_revision);
2134			/* Only adjust the roothub port counts if we haven't
2135			 * found a similar duplicate.
2136			 */
2137			if (xhci->port_array[i] != major_revision &&
2138				xhci->port_array[i] != DUPLICATE_ENTRY) {
2139				if (xhci->port_array[i] == 0x03)
2140					xhci->num_usb3_ports--;
2141				else
2142					xhci->num_usb2_ports--;
2143				xhci->port_array[i] = DUPLICATE_ENTRY;
2144			}
2145			/* FIXME: Should we disable the port? */
2146			continue;
2147		}
2148		xhci->port_array[i] = major_revision;
2149		if (major_revision == 0x03)
2150			xhci->num_usb3_ports++;
2151		else
2152			xhci->num_usb2_ports++;
2153	}
2154	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2155}
2156
2157/*
2158 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2159 * specify what speeds each port is supposed to be.  We can't count on the port
2160 * speed bits in the PORTSC register being correct until a device is connected,
2161 * but we need to set up the two fake roothubs with the correct number of USB
2162 * 3.0 and USB 2.0 ports at host controller initialization time.
2163 */
2164static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2165{
2166	__le32 __iomem *addr, *tmp_addr;
2167	u32 offset, tmp_offset;
2168	unsigned int num_ports;
2169	int i, j, port_index;
2170	int cap_count = 0;
2171
2172	addr = &xhci->cap_regs->hcc_params;
2173	offset = XHCI_HCC_EXT_CAPS(readl(addr));
2174	if (offset == 0) {
2175		xhci_err(xhci, "No Extended Capability registers, "
2176				"unable to set up roothub.\n");
2177		return -ENODEV;
2178	}
2179
2180	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2181	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2182	if (!xhci->port_array)
2183		return -ENOMEM;
2184
2185	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2186	if (!xhci->rh_bw)
2187		return -ENOMEM;
2188	for (i = 0; i < num_ports; i++) {
2189		struct xhci_interval_bw_table *bw_table;
2190
2191		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2192		bw_table = &xhci->rh_bw[i].bw_table;
2193		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2194			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2195	}
2196
2197	/*
2198	 * For whatever reason, the first capability offset is from the
2199	 * capability register base, not from the HCCPARAMS register.
2200	 * See section 5.3.6 for offset calculation.
2201	 */
2202	addr = &xhci->cap_regs->hc_capbase + offset;
2203
2204	tmp_addr = addr;
2205	tmp_offset = offset;
2206
2207	/* count extended protocol capability entries for later caching */
2208	do {
2209		u32 cap_id;
2210		cap_id = readl(tmp_addr);
2211		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2212			cap_count++;
2213		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2214		tmp_addr += tmp_offset;
2215	} while (tmp_offset);
2216
2217	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2218	if (!xhci->ext_caps)
2219		return -ENOMEM;
2220
2221	while (1) {
2222		u32 cap_id;
2223
2224		cap_id = readl(addr);
2225		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2226			xhci_add_in_port(xhci, num_ports, addr,
2227					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
2228					cap_count);
2229		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2230		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2231				== num_ports)
2232			break;
2233		/*
2234		 * Once you're into the Extended Capabilities, the offset is
2235		 * always relative to the register holding the offset.
2236		 */
2237		addr += offset;
2238	}
2239
2240	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2241		xhci_warn(xhci, "No ports on the roothubs?\n");
2242		return -ENODEV;
2243	}
2244	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2245			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2246			xhci->num_usb2_ports, xhci->num_usb3_ports);
2247
2248	/* Place limits on the number of roothub ports so that the hub
2249	 * descriptors aren't longer than the USB core will allocate.
2250	 */
2251	if (xhci->num_usb3_ports > 15) {
2252		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253				"Limiting USB 3.0 roothub ports to 15.");
2254		xhci->num_usb3_ports = 15;
2255	}
2256	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2257		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2258				"Limiting USB 2.0 roothub ports to %u.",
2259				USB_MAXCHILDREN);
2260		xhci->num_usb2_ports = USB_MAXCHILDREN;
2261	}
2262
2263	/*
2264	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2265	 * Not sure how the USB core will handle a hub with no ports...
2266	 */
2267	if (xhci->num_usb2_ports) {
2268		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2269				xhci->num_usb2_ports, flags);
2270		if (!xhci->usb2_ports)
2271			return -ENOMEM;
2272
2273		port_index = 0;
2274		for (i = 0; i < num_ports; i++) {
2275			if (xhci->port_array[i] == 0x03 ||
2276					xhci->port_array[i] == 0 ||
2277					xhci->port_array[i] == DUPLICATE_ENTRY)
2278				continue;
2279
2280			xhci->usb2_ports[port_index] =
2281				&xhci->op_regs->port_status_base +
2282				NUM_PORT_REGS*i;
2283			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2284					"USB 2.0 port at index %u, "
2285					"addr = %p", i,
2286					xhci->usb2_ports[port_index]);
2287			port_index++;
2288			if (port_index == xhci->num_usb2_ports)
2289				break;
2290		}
2291	}
2292	if (xhci->num_usb3_ports) {
2293		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2294				xhci->num_usb3_ports, flags);
2295		if (!xhci->usb3_ports)
2296			return -ENOMEM;
2297
2298		port_index = 0;
2299		for (i = 0; i < num_ports; i++)
2300			if (xhci->port_array[i] == 0x03) {
2301				xhci->usb3_ports[port_index] =
2302					&xhci->op_regs->port_status_base +
2303					NUM_PORT_REGS*i;
2304				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2305						"USB 3.0 port at index %u, "
2306						"addr = %p", i,
2307						xhci->usb3_ports[port_index]);
2308				port_index++;
2309				if (port_index == xhci->num_usb3_ports)
2310					break;
2311			}
2312	}
2313	return 0;
2314}
2315
2316int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2317{
2318	dma_addr_t	dma;
2319	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2320	unsigned int	val, val2;
2321	u64		val_64;
2322	struct xhci_segment	*seg;
2323	u32 page_size, temp;
2324	int i;
2325
2326	INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2327
2328	page_size = readl(&xhci->op_regs->page_size);
2329	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2330			"Supported page size register = 0x%x", page_size);
2331	for (i = 0; i < 16; i++) {
2332		if ((0x1 & page_size) != 0)
2333			break;
2334		page_size = page_size >> 1;
2335	}
2336	if (i < 16)
2337		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2338			"Supported page size of %iK", (1 << (i+12)) / 1024);
2339	else
2340		xhci_warn(xhci, "WARN: no supported page size\n");
2341	/* Use 4K pages, since that's common and the minimum the HC supports */
2342	xhci->page_shift = 12;
2343	xhci->page_size = 1 << xhci->page_shift;
2344	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2345			"HCD page size set to %iK", xhci->page_size / 1024);
2346
2347	/*
2348	 * Program the Number of Device Slots Enabled field in the CONFIG
2349	 * register with the max value of slots the HC can handle.
2350	 */
2351	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2352	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2353			"// xHC can handle at most %d device slots.", val);
2354	val2 = readl(&xhci->op_regs->config_reg);
2355	val |= (val2 & ~HCS_SLOTS_MASK);
2356	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2357			"// Setting Max device slots reg = 0x%x.", val);
2358	writel(val, &xhci->op_regs->config_reg);
2359
2360	/*
2361	 * Section 5.4.8 - doorbell array must be
2362	 * "physically contiguous and 64-byte (cache line) aligned".
2363	 */
2364	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2365			GFP_KERNEL);
2366	if (!xhci->dcbaa)
2367		goto fail;
2368	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2369	xhci->dcbaa->dma = dma;
2370	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2371			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2372			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2373	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2374
2375	/*
2376	 * Initialize the ring segment pool.  The ring must be a contiguous
2377	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2378	 * however, the command ring segment needs 64-byte aligned segments
2379	 * and our use of dma addresses in the trb_address_map radix tree needs
2380	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2381	 */
2382	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2383			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2384
2385	/* See Table 46 and Note on Figure 55 */
2386	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2387			2112, 64, xhci->page_size);
2388	if (!xhci->segment_pool || !xhci->device_pool)
2389		goto fail;
2390
2391	/* Linear stream context arrays don't have any boundary restrictions,
2392	 * and only need to be 16-byte aligned.
2393	 */
2394	xhci->small_streams_pool =
2395		dma_pool_create("xHCI 256 byte stream ctx arrays",
2396			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2397	xhci->medium_streams_pool =
2398		dma_pool_create("xHCI 1KB stream ctx arrays",
2399			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2400	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2401	 * will be allocated with dma_alloc_coherent()
2402	 */
2403
2404	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2405		goto fail;
2406
2407	/* Set up the command ring to have one segments for now. */
2408	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2409	if (!xhci->cmd_ring)
2410		goto fail;
2411	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412			"Allocated command ring at %p", xhci->cmd_ring);
2413	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2414			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2415
2416	/* Set the address in the Command Ring Control register */
2417	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2418	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2419		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2420		xhci->cmd_ring->cycle_state;
2421	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422			"// Setting command ring address to 0x%x", val);
2423	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2424	xhci_dbg_cmd_ptrs(xhci);
2425
2426	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2427	if (!xhci->lpm_command)
2428		goto fail;
2429
2430	/* Reserve one command ring TRB for disabling LPM.
2431	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2432	 * disabling LPM, we only need to reserve one TRB for all devices.
2433	 */
2434	xhci->cmd_ring_reserved_trbs++;
2435
2436	val = readl(&xhci->cap_regs->db_off);
2437	val &= DBOFF_MASK;
2438	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439			"// Doorbell array is located at offset 0x%x"
2440			" from cap regs base addr", val);
2441	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2442	xhci_dbg_regs(xhci);
2443	xhci_print_run_regs(xhci);
2444	/* Set ir_set to interrupt register set 0 */
2445	xhci->ir_set = &xhci->run_regs->ir_set[0];
2446
2447	/*
2448	 * Event ring setup: Allocate a normal ring, but also setup
2449	 * the event ring segment table (ERST).  Section 4.9.3.
2450	 */
2451	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2452	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2453						flags);
2454	if (!xhci->event_ring)
2455		goto fail;
2456	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2457		goto fail;
2458
2459	xhci->erst.entries = dma_alloc_coherent(dev,
2460			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2461			GFP_KERNEL);
2462	if (!xhci->erst.entries)
2463		goto fail;
2464	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2465			"// Allocated event ring segment table at 0x%llx",
2466			(unsigned long long)dma);
2467
2468	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2469	xhci->erst.num_entries = ERST_NUM_SEGS;
2470	xhci->erst.erst_dma_addr = dma;
2471	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2473			xhci->erst.num_entries,
2474			xhci->erst.entries,
2475			(unsigned long long)xhci->erst.erst_dma_addr);
2476
2477	/* set ring base address and size for each segment table entry */
2478	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2479		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2480		entry->seg_addr = cpu_to_le64(seg->dma);
2481		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2482		entry->rsvd = 0;
2483		seg = seg->next;
2484	}
2485
2486	/* set ERST count with the number of entries in the segment table */
2487	val = readl(&xhci->ir_set->erst_size);
2488	val &= ERST_SIZE_MASK;
2489	val |= ERST_NUM_SEGS;
2490	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2491			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2492			val);
2493	writel(val, &xhci->ir_set->erst_size);
2494
2495	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496			"// Set ERST entries to point to event ring.");
2497	/* set the segment table base address */
2498	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2499			"// Set ERST base address for ir_set 0 = 0x%llx",
2500			(unsigned long long)xhci->erst.erst_dma_addr);
2501	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2502	val_64 &= ERST_PTR_MASK;
2503	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2504	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2505
2506	/* Set the event ring dequeue address */
2507	xhci_set_hc_event_deq(xhci);
2508	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2509			"Wrote ERST address to ir_set 0.");
2510	xhci_print_ir_set(xhci, 0);
2511
2512	/*
2513	 * XXX: Might need to set the Interrupter Moderation Register to
2514	 * something other than the default (~1ms minimum between interrupts).
2515	 * See section 5.5.1.2.
2516	 */
2517	init_completion(&xhci->addr_dev);
2518	for (i = 0; i < MAX_HC_SLOTS; ++i)
2519		xhci->devs[i] = NULL;
2520	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2521		xhci->bus_state[0].resume_done[i] = 0;
2522		xhci->bus_state[1].resume_done[i] = 0;
2523		/* Only the USB 2.0 completions will ever be used. */
2524		init_completion(&xhci->bus_state[1].rexit_done[i]);
2525	}
2526
2527	if (scratchpad_alloc(xhci, flags))
2528		goto fail;
2529	if (xhci_setup_port_arrays(xhci, flags))
2530		goto fail;
2531
2532	/* Enable USB 3.0 device notifications for function remote wake, which
2533	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2534	 * U3 (device suspend).
2535	 */
2536	temp = readl(&xhci->op_regs->dev_notification);
2537	temp &= ~DEV_NOTE_MASK;
2538	temp |= DEV_NOTE_FWAKE;
2539	writel(temp, &xhci->op_regs->dev_notification);
2540
2541	return 0;
2542
2543fail:
2544	xhci_warn(xhci, "Couldn't initialize memory\n");
2545	xhci_halt(xhci);
2546	xhci_reset(xhci);
2547	xhci_mem_cleanup(xhci);
2548	return -ENOMEM;
2549}