Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27
  28#include "xhci.h"
  29
  30/*
  31 * Allocates a generic ring segment from the ring pool, sets the dma address,
  32 * initializes the segment to zero, and sets the private next pointer to NULL.
  33 *
  34 * Section 4.11.1.1:
  35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  36 */
  37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
 
  38{
  39	struct xhci_segment *seg;
  40	dma_addr_t	dma;
 
  41
  42	seg = kzalloc(sizeof *seg, flags);
  43	if (!seg)
  44		return NULL;
  45	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
  46
  47	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  48	if (!seg->trbs) {
  49		kfree(seg);
  50		return NULL;
  51	}
  52	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
  53			seg->trbs, (unsigned long long)dma);
  54
  55	memset(seg->trbs, 0, SEGMENT_SIZE);
 
 
 
 
 
  56	seg->dma = dma;
  57	seg->next = NULL;
  58
  59	return seg;
  60}
  61
  62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  63{
  64	if (!seg)
  65		return;
  66	if (seg->trbs) {
  67		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
  68				seg->trbs, (unsigned long long)seg->dma);
  69		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  70		seg->trbs = NULL;
  71	}
  72	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
  73	kfree(seg);
  74}
  75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76/*
  77 * Make the prev segment point to the next segment.
  78 *
  79 * Change the last TRB in the prev segment to be a Link TRB which points to the
  80 * DMA address of the next segment.  The caller needs to set any Link TRB
  81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  82 */
  83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  84		struct xhci_segment *next, bool link_trbs)
  85{
  86	u32 val;
  87
  88	if (!prev || !next)
  89		return;
  90	prev->next = next;
  91	if (link_trbs) {
  92		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
  93			cpu_to_le64(next->dma);
  94
  95		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
  96		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
  97		val &= ~TRB_TYPE_BITMASK;
  98		val |= TRB_TYPE(TRB_LINK);
  99		/* Always set the chain bit with 0.95 hardware */
 100		if (xhci_link_trb_quirk(xhci))
 
 
 
 101			val |= TRB_CHAIN;
 102		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 103	}
 104	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
 105			(unsigned long long)prev->dma,
 106			(unsigned long long)next->dma);
 107}
 108
 109/* XXX: Do we need the hcd structure in all these functions? */
 110void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 
 
 
 
 
 111{
 112	struct xhci_segment *seg;
 113	struct xhci_segment *first_seg;
 114
 115	if (!ring || !ring->first_seg)
 116		return;
 117	first_seg = ring->first_seg;
 118	seg = first_seg->next;
 119	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
 120	while (seg != first_seg) {
 121		struct xhci_segment *next = seg->next;
 122		xhci_segment_free(xhci, seg);
 123		seg = next;
 
 
 
 
 
 
 124	}
 125	xhci_segment_free(xhci, first_seg);
 126	ring->first_seg = NULL;
 
 
 
 
 
 
 
 
 
 127	kfree(ring);
 128}
 129
 130static void xhci_initialize_ring_info(struct xhci_ring *ring)
 
 131{
 132	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 133	ring->enqueue = ring->first_seg->trbs;
 134	ring->enq_seg = ring->first_seg;
 135	ring->dequeue = ring->enqueue;
 136	ring->deq_seg = ring->first_seg;
 137	/* The ring is initialized to 0. The producer must write 1 to the cycle
 138	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 139	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 
 
 
 140	 */
 141	ring->cycle_state = 1;
 142	/* Not necessary for new rings, but needed for re-initialized rings */
 143	ring->enq_updates = 0;
 144	ring->deq_updates = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 145}
 146
 147/**
 148 * Create a new ring with zero or more segments.
 149 *
 150 * Link each segment together into a ring.
 151 * Set the end flag and the cycle toggle bit on the last segment.
 152 * See section 4.9.1 and figures 15 and 16.
 153 */
 154static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 155		unsigned int num_segs, bool link_trbs, gfp_t flags)
 
 156{
 157	struct xhci_ring	*ring;
 158	struct xhci_segment	*prev;
 159
 160	ring = kzalloc(sizeof *(ring), flags);
 161	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
 162	if (!ring)
 163		return NULL;
 164
 
 165	INIT_LIST_HEAD(&ring->td_list);
 
 166	if (num_segs == 0)
 167		return ring;
 168
 169	ring->first_seg = xhci_segment_alloc(xhci, flags);
 170	if (!ring->first_seg)
 
 171		goto fail;
 172	num_segs--;
 173
 174	prev = ring->first_seg;
 175	while (num_segs > 0) {
 176		struct xhci_segment	*next;
 177
 178		next = xhci_segment_alloc(xhci, flags);
 179		if (!next)
 180			goto fail;
 181		xhci_link_segments(xhci, prev, next, link_trbs);
 182
 183		prev = next;
 184		num_segs--;
 185	}
 186	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
 187
 188	if (link_trbs) {
 189		/* See section 4.9.2.1 and 6.4.4.1 */
 190		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
 191			cpu_to_le32(LINK_TOGGLE);
 192		xhci_dbg(xhci, "Wrote link toggle flag to"
 193				" segment %p (virtual), 0x%llx (DMA)\n",
 194				prev, (unsigned long long)prev->dma);
 195	}
 196	xhci_initialize_ring_info(ring);
 197	return ring;
 198
 199fail:
 200	xhci_ring_free(xhci, ring);
 201	return NULL;
 202}
 203
 204void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 205		struct xhci_virt_device *virt_dev,
 206		unsigned int ep_index)
 207{
 208	int rings_cached;
 209
 210	rings_cached = virt_dev->num_rings_cached;
 211	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 212		virt_dev->ring_cache[rings_cached] =
 213			virt_dev->eps[ep_index].ring;
 214		virt_dev->num_rings_cached++;
 215		xhci_dbg(xhci, "Cached old ring, "
 216				"%d ring%s cached\n",
 217				virt_dev->num_rings_cached,
 218				(virt_dev->num_rings_cached > 1) ? "s" : "");
 219	} else {
 220		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 221		xhci_dbg(xhci, "Ring cache full (%d rings), "
 222				"freeing ring\n",
 223				virt_dev->num_rings_cached);
 224	}
 225	virt_dev->eps[ep_index].ring = NULL;
 226}
 227
 228/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 229 * pointers to the beginning of the ring.
 230 */
 231static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 232		struct xhci_ring *ring)
 
 233{
 234	struct xhci_segment	*seg = ring->first_seg;
 
 
 235	do {
 236		memset(seg->trbs, 0,
 237				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 
 
 
 
 238		/* All endpoint rings have link TRBs */
 239		xhci_link_segments(xhci, seg, seg->next, 1);
 240		seg = seg->next;
 241	} while (seg != ring->first_seg);
 242	xhci_initialize_ring_info(ring);
 
 243	/* td list should be empty since all URBs have been cancelled,
 244	 * but just in case...
 245	 */
 246	INIT_LIST_HEAD(&ring->td_list);
 247}
 248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 250
 251static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 252						    int type, gfp_t flags)
 253{
 254	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
 255	if (!ctx)
 256		return NULL;
 257
 258	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
 259	ctx->type = type;
 260	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 261	if (type == XHCI_CTX_TYPE_INPUT)
 262		ctx->size += CTX_SIZE(xhci->hcc_params);
 263
 264	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 265	memset(ctx->bytes, 0, ctx->size);
 266	return ctx;
 267}
 268
 269static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 270			     struct xhci_container_ctx *ctx)
 271{
 272	if (!ctx)
 273		return;
 274	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 275	kfree(ctx);
 276}
 277
 278struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 279					      struct xhci_container_ctx *ctx)
 280{
 281	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
 282	return (struct xhci_input_control_ctx *)ctx->bytes;
 283}
 284
 285struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 286					struct xhci_container_ctx *ctx)
 287{
 288	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 289		return (struct xhci_slot_ctx *)ctx->bytes;
 290
 291	return (struct xhci_slot_ctx *)
 292		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 293}
 294
 295struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 296				    struct xhci_container_ctx *ctx,
 297				    unsigned int ep_index)
 298{
 299	/* increment ep index by offset of start of ep ctx array */
 300	ep_index++;
 301	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 302		ep_index++;
 303
 304	return (struct xhci_ep_ctx *)
 305		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 306}
 307
 308
 309/***************** Streams structures manipulation *************************/
 310
 311static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 312		unsigned int num_stream_ctxs,
 313		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 314{
 315	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 316
 317	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 318		pci_free_consistent(pdev,
 319				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 320				stream_ctx, dma);
 321	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 322		return dma_pool_free(xhci->small_streams_pool,
 323				stream_ctx, dma);
 324	else
 325		return dma_pool_free(xhci->medium_streams_pool,
 326				stream_ctx, dma);
 327}
 328
 329/*
 330 * The stream context array for each endpoint with bulk streams enabled can
 331 * vary in size, based on:
 332 *  - how many streams the endpoint supports,
 333 *  - the maximum primary stream array size the host controller supports,
 334 *  - and how many streams the device driver asks for.
 335 *
 336 * The stream context array must be a power of 2, and can be as small as
 337 * 64 bytes or as large as 1MB.
 338 */
 339static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 340		unsigned int num_stream_ctxs, dma_addr_t *dma,
 341		gfp_t mem_flags)
 342{
 343	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 344
 345	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 346		return pci_alloc_consistent(pdev,
 347				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 348				dma);
 349	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 350		return dma_pool_alloc(xhci->small_streams_pool,
 351				mem_flags, dma);
 352	else
 353		return dma_pool_alloc(xhci->medium_streams_pool,
 354				mem_flags, dma);
 355}
 356
 357struct xhci_ring *xhci_dma_to_transfer_ring(
 358		struct xhci_virt_ep *ep,
 359		u64 address)
 360{
 361	if (ep->ep_state & EP_HAS_STREAMS)
 362		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 363				address >> SEGMENT_SHIFT);
 364	return ep->ring;
 365}
 366
 367/* Only use this when you know stream_info is valid */
 368#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 369static struct xhci_ring *dma_to_stream_ring(
 370		struct xhci_stream_info *stream_info,
 371		u64 address)
 372{
 373	return radix_tree_lookup(&stream_info->trb_address_map,
 374			address >> SEGMENT_SHIFT);
 375}
 376#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 377
 378struct xhci_ring *xhci_stream_id_to_ring(
 379		struct xhci_virt_device *dev,
 380		unsigned int ep_index,
 381		unsigned int stream_id)
 382{
 383	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 384
 385	if (stream_id == 0)
 386		return ep->ring;
 387	if (!ep->stream_info)
 388		return NULL;
 389
 390	if (stream_id > ep->stream_info->num_streams)
 391		return NULL;
 392	return ep->stream_info->stream_rings[stream_id];
 393}
 394
 395#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 396static int xhci_test_radix_tree(struct xhci_hcd *xhci,
 397		unsigned int num_streams,
 398		struct xhci_stream_info *stream_info)
 399{
 400	u32 cur_stream;
 401	struct xhci_ring *cur_ring;
 402	u64 addr;
 403
 404	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 405		struct xhci_ring *mapped_ring;
 406		int trb_size = sizeof(union xhci_trb);
 407
 408		cur_ring = stream_info->stream_rings[cur_stream];
 409		for (addr = cur_ring->first_seg->dma;
 410				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
 411				addr += trb_size) {
 412			mapped_ring = dma_to_stream_ring(stream_info, addr);
 413			if (cur_ring != mapped_ring) {
 414				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
 415						"didn't map to stream ID %u; "
 416						"mapped to ring %p\n",
 417						(unsigned long long) addr,
 418						cur_stream,
 419						mapped_ring);
 420				return -EINVAL;
 421			}
 422		}
 423		/* One TRB after the end of the ring segment shouldn't return a
 424		 * pointer to the current ring (although it may be a part of a
 425		 * different ring).
 426		 */
 427		mapped_ring = dma_to_stream_ring(stream_info, addr);
 428		if (mapped_ring != cur_ring) {
 429			/* One TRB before should also fail */
 430			addr = cur_ring->first_seg->dma - trb_size;
 431			mapped_ring = dma_to_stream_ring(stream_info, addr);
 432		}
 433		if (mapped_ring == cur_ring) {
 434			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
 435					"mapped to valid stream ID %u; "
 436					"mapped ring = %p\n",
 437					(unsigned long long) addr,
 438					cur_stream,
 439					mapped_ring);
 440			return -EINVAL;
 441		}
 442	}
 443	return 0;
 444}
 445#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 446
 447/*
 448 * Change an endpoint's internal structure so it supports stream IDs.  The
 449 * number of requested streams includes stream 0, which cannot be used by device
 450 * drivers.
 451 *
 452 * The number of stream contexts in the stream context array may be bigger than
 453 * the number of streams the driver wants to use.  This is because the number of
 454 * stream context array entries must be a power of two.
 455 *
 456 * We need a radix tree for mapping physical addresses of TRBs to which stream
 457 * ID they belong to.  We need to do this because the host controller won't tell
 458 * us which stream ring the TRB came from.  We could store the stream ID in an
 459 * event data TRB, but that doesn't help us for the cancellation case, since the
 460 * endpoint may stop before it reaches that event data TRB.
 461 *
 462 * The radix tree maps the upper portion of the TRB DMA address to a ring
 463 * segment that has the same upper portion of DMA addresses.  For example, say I
 464 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 465 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 466 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 467 * pass the radix tree a key to get the right stream ID:
 468 *
 469 * 	0x10c90fff >> 10 = 0x43243
 470 * 	0x10c912c0 >> 10 = 0x43244
 471 * 	0x10c91400 >> 10 = 0x43245
 472 *
 473 * Obviously, only those TRBs with DMA addresses that are within the segment
 474 * will make the radix tree return the stream ID for that ring.
 475 *
 476 * Caveats for the radix tree:
 477 *
 478 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 479 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 480 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 481 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 482 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 483 * extended systems (where the DMA address can be bigger than 32-bits),
 484 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 485 */
 486struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 487		unsigned int num_stream_ctxs,
 488		unsigned int num_streams, gfp_t mem_flags)
 489{
 490	struct xhci_stream_info *stream_info;
 491	u32 cur_stream;
 492	struct xhci_ring *cur_ring;
 493	unsigned long key;
 494	u64 addr;
 495	int ret;
 496
 497	xhci_dbg(xhci, "Allocating %u streams and %u "
 498			"stream context array entries.\n",
 499			num_streams, num_stream_ctxs);
 500	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 501		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 502		return NULL;
 503	}
 504	xhci->cmd_ring_reserved_trbs++;
 505
 506	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 507	if (!stream_info)
 508		goto cleanup_trbs;
 509
 510	stream_info->num_streams = num_streams;
 511	stream_info->num_stream_ctxs = num_stream_ctxs;
 512
 513	/* Initialize the array of virtual pointers to stream rings. */
 514	stream_info->stream_rings = kzalloc(
 515			sizeof(struct xhci_ring *)*num_streams,
 516			mem_flags);
 517	if (!stream_info->stream_rings)
 518		goto cleanup_info;
 519
 520	/* Initialize the array of DMA addresses for stream rings for the HW. */
 521	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 522			num_stream_ctxs, &stream_info->ctx_array_dma,
 523			mem_flags);
 524	if (!stream_info->stream_ctx_array)
 525		goto cleanup_ctx;
 526	memset(stream_info->stream_ctx_array, 0,
 527			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 528
 529	/* Allocate everything needed to free the stream rings later */
 530	stream_info->free_streams_command =
 531		xhci_alloc_command(xhci, true, true, mem_flags);
 532	if (!stream_info->free_streams_command)
 533		goto cleanup_ctx;
 534
 535	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 536
 537	/* Allocate rings for all the streams that the driver will use,
 538	 * and add their segment DMA addresses to the radix tree.
 539	 * Stream 0 is reserved.
 540	 */
 541	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 542		stream_info->stream_rings[cur_stream] =
 543			xhci_ring_alloc(xhci, 1, true, mem_flags);
 544		cur_ring = stream_info->stream_rings[cur_stream];
 545		if (!cur_ring)
 546			goto cleanup_rings;
 547		cur_ring->stream_id = cur_stream;
 548		/* Set deq ptr, cycle bit, and stream context type */
 549		addr = cur_ring->first_seg->dma |
 550			SCT_FOR_CTX(SCT_PRI_TR) |
 551			cur_ring->cycle_state;
 552		stream_info->stream_ctx_array[cur_stream].stream_ring =
 553			cpu_to_le64(addr);
 554		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 555				cur_stream, (unsigned long long) addr);
 556
 557		key = (unsigned long)
 558			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
 559		ret = radix_tree_insert(&stream_info->trb_address_map,
 560				key, cur_ring);
 561		if (ret) {
 562			xhci_ring_free(xhci, cur_ring);
 563			stream_info->stream_rings[cur_stream] = NULL;
 564			goto cleanup_rings;
 565		}
 566	}
 567	/* Leave the other unused stream ring pointers in the stream context
 568	 * array initialized to zero.  This will cause the xHC to give us an
 569	 * error if the device asks for a stream ID we don't have setup (if it
 570	 * was any other way, the host controller would assume the ring is
 571	 * "empty" and wait forever for data to be queued to that stream ID).
 572	 */
 573#if XHCI_DEBUG
 574	/* Do a little test on the radix tree to make sure it returns the
 575	 * correct values.
 576	 */
 577	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
 578		goto cleanup_rings;
 579#endif
 580
 581	return stream_info;
 582
 583cleanup_rings:
 584	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 585		cur_ring = stream_info->stream_rings[cur_stream];
 586		if (cur_ring) {
 587			addr = cur_ring->first_seg->dma;
 588			radix_tree_delete(&stream_info->trb_address_map,
 589					addr >> SEGMENT_SHIFT);
 590			xhci_ring_free(xhci, cur_ring);
 591			stream_info->stream_rings[cur_stream] = NULL;
 592		}
 593	}
 594	xhci_free_command(xhci, stream_info->free_streams_command);
 595cleanup_ctx:
 596	kfree(stream_info->stream_rings);
 597cleanup_info:
 598	kfree(stream_info);
 599cleanup_trbs:
 600	xhci->cmd_ring_reserved_trbs--;
 601	return NULL;
 602}
 603/*
 604 * Sets the MaxPStreams field and the Linear Stream Array field.
 605 * Sets the dequeue pointer to the stream context array.
 606 */
 607void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 608		struct xhci_ep_ctx *ep_ctx,
 609		struct xhci_stream_info *stream_info)
 610{
 611	u32 max_primary_streams;
 612	/* MaxPStreams is the number of stream context array entries, not the
 613	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 614	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 615	 */
 616	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 617	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
 618			1 << (max_primary_streams + 1));
 619	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 620	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 621				       | EP_HAS_LSA);
 622	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 623}
 624
 625/*
 626 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 627 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 628 * not at the beginning of the ring).
 629 */
 630void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 631		struct xhci_ep_ctx *ep_ctx,
 632		struct xhci_virt_ep *ep)
 633{
 634	dma_addr_t addr;
 635	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 636	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 637	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 638}
 639
 640/* Frees all stream contexts associated with the endpoint,
 641 *
 642 * Caller should fix the endpoint context streams fields.
 643 */
 644void xhci_free_stream_info(struct xhci_hcd *xhci,
 645		struct xhci_stream_info *stream_info)
 646{
 647	int cur_stream;
 648	struct xhci_ring *cur_ring;
 649	dma_addr_t addr;
 650
 651	if (!stream_info)
 652		return;
 653
 654	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 655			cur_stream++) {
 656		cur_ring = stream_info->stream_rings[cur_stream];
 657		if (cur_ring) {
 658			addr = cur_ring->first_seg->dma;
 659			radix_tree_delete(&stream_info->trb_address_map,
 660					addr >> SEGMENT_SHIFT);
 661			xhci_ring_free(xhci, cur_ring);
 662			stream_info->stream_rings[cur_stream] = NULL;
 663		}
 664	}
 665	xhci_free_command(xhci, stream_info->free_streams_command);
 666	xhci->cmd_ring_reserved_trbs--;
 667	if (stream_info->stream_ctx_array)
 668		xhci_free_stream_ctx(xhci,
 669				stream_info->num_stream_ctxs,
 670				stream_info->stream_ctx_array,
 671				stream_info->ctx_array_dma);
 672
 673	if (stream_info)
 674		kfree(stream_info->stream_rings);
 675	kfree(stream_info);
 676}
 677
 678
 679/***************** Device context manipulation *************************/
 680
 681static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 682		struct xhci_virt_ep *ep)
 683{
 684	init_timer(&ep->stop_cmd_timer);
 685	ep->stop_cmd_timer.data = (unsigned long) ep;
 686	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 687	ep->xhci = xhci;
 688}
 689
 690/* All the xhci_tds in the ring's TD list should be freed at this point */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 692{
 693	struct xhci_virt_device *dev;
 694	int i;
 
 695
 696	/* Slot ID 0 is reserved */
 697	if (slot_id == 0 || !xhci->devs[slot_id])
 698		return;
 699
 700	dev = xhci->devs[slot_id];
 701	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 702	if (!dev)
 703		return;
 704
 
 
 
 705	for (i = 0; i < 31; ++i) {
 706		if (dev->eps[i].ring)
 707			xhci_ring_free(xhci, dev->eps[i].ring);
 708		if (dev->eps[i].stream_info)
 709			xhci_free_stream_info(xhci,
 710					dev->eps[i].stream_info);
 711	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 712
 713	if (dev->ring_cache) {
 714		for (i = 0; i < dev->num_rings_cached; i++)
 715			xhci_ring_free(xhci, dev->ring_cache[i]);
 716		kfree(dev->ring_cache);
 717	}
 718
 719	if (dev->in_ctx)
 720		xhci_free_container_ctx(xhci, dev->in_ctx);
 721	if (dev->out_ctx)
 722		xhci_free_container_ctx(xhci, dev->out_ctx);
 723
 724	kfree(xhci->devs[slot_id]);
 725	xhci->devs[slot_id] = NULL;
 726}
 727
 728int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 729		struct usb_device *udev, gfp_t flags)
 730{
 731	struct xhci_virt_device *dev;
 732	int i;
 733
 734	/* Slot ID 0 is reserved */
 735	if (slot_id == 0 || xhci->devs[slot_id]) {
 736		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 737		return 0;
 738	}
 739
 740	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 741	if (!xhci->devs[slot_id])
 742		return 0;
 743	dev = xhci->devs[slot_id];
 744
 745	/* Allocate the (output) device context that will be used in the HC. */
 746	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 747	if (!dev->out_ctx)
 748		goto fail;
 749
 750	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 751			(unsigned long long)dev->out_ctx->dma);
 752
 753	/* Allocate the (input) device context for address device command */
 754	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 755	if (!dev->in_ctx)
 756		goto fail;
 757
 758	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 759			(unsigned long long)dev->in_ctx->dma);
 760
 761	/* Initialize the cancellation list and watchdog timers for each ep */
 762	for (i = 0; i < 31; i++) {
 763		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 764		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 
 765	}
 766
 767	/* Allocate endpoint 0 ring */
 768	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
 769	if (!dev->eps[0].ring)
 770		goto fail;
 771
 772	/* Allocate pointers to the ring cache */
 773	dev->ring_cache = kzalloc(
 774			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
 775			flags);
 776	if (!dev->ring_cache)
 777		goto fail;
 778	dev->num_rings_cached = 0;
 779
 780	init_completion(&dev->cmd_completion);
 781	INIT_LIST_HEAD(&dev->cmd_list);
 782	dev->udev = udev;
 783
 784	/* Point to output device context in dcbaa. */
 785	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
 786	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
 787		 slot_id,
 788		 &xhci->dcbaa->dev_context_ptrs[slot_id],
 789		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
 790
 791	return 1;
 792fail:
 793	xhci_free_virt_device(xhci, slot_id);
 794	return 0;
 795}
 796
 797void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
 798		struct usb_device *udev)
 799{
 800	struct xhci_virt_device *virt_dev;
 801	struct xhci_ep_ctx	*ep0_ctx;
 802	struct xhci_ring	*ep_ring;
 803
 804	virt_dev = xhci->devs[udev->slot_id];
 805	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
 806	ep_ring = virt_dev->eps[0].ring;
 807	/*
 808	 * FIXME we don't keep track of the dequeue pointer very well after a
 809	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
 810	 * host to our enqueue pointer.  This should only be called after a
 811	 * configured device has reset, so all control transfers should have
 812	 * been completed or cancelled before the reset.
 813	 */
 814	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
 815							ep_ring->enqueue)
 816				   | ep_ring->cycle_state);
 817}
 818
 819/*
 820 * The xHCI roothub may have ports of differing speeds in any order in the port
 821 * status registers.  xhci->port_array provides an array of the port speed for
 822 * each offset into the port status registers.
 823 *
 824 * The xHCI hardware wants to know the roothub port number that the USB device
 825 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 826 * know is the index of that port under either the USB 2.0 or the USB 3.0
 827 * roothub, but that doesn't give us the real index into the HW port status
 828 * registers.  Scan through the xHCI roothub port array, looking for the Nth
 829 * entry of the correct port speed.  Return the port number of that entry.
 830 */
 831static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
 832		struct usb_device *udev)
 833{
 834	struct usb_device *top_dev;
 835	unsigned int num_similar_speed_ports;
 836	unsigned int faked_port_num;
 837	int i;
 838
 839	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
 840			top_dev = top_dev->parent)
 841		/* Found device below root hub */;
 842	faked_port_num = top_dev->portnum;
 843	for (i = 0, num_similar_speed_ports = 0;
 844			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
 845		u8 port_speed = xhci->port_array[i];
 846
 847		/*
 848		 * Skip ports that don't have known speeds, or have duplicate
 849		 * Extended Capabilities port speed entries.
 850		 */
 851		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
 852			continue;
 853
 854		/*
 855		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
 856		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
 857		 * matches the device speed, it's a similar speed port.
 858		 */
 859		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
 860			num_similar_speed_ports++;
 861		if (num_similar_speed_ports == faked_port_num)
 862			/* Roothub ports are numbered from 1 to N */
 863			return i+1;
 864	}
 865	return 0;
 866}
 867
 868/* Setup an xHCI virtual device for a Set Address command */
 869int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
 870{
 871	struct xhci_virt_device *dev;
 872	struct xhci_ep_ctx	*ep0_ctx;
 873	struct xhci_slot_ctx    *slot_ctx;
 874	struct xhci_input_control_ctx *ctrl_ctx;
 875	u32			port_num;
 876	struct usb_device *top_dev;
 877
 878	dev = xhci->devs[udev->slot_id];
 879	/* Slot ID 0 is reserved */
 880	if (udev->slot_id == 0 || !dev) {
 881		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
 882				udev->slot_id);
 883		return -EINVAL;
 884	}
 885	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
 886	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
 887	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
 888
 889	/* 2) New slot context and endpoint 0 context are valid*/
 890	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
 891
 892	/* 3) Only the control endpoint is valid - one endpoint context */
 893	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
 894	switch (udev->speed) {
 895	case USB_SPEED_SUPER:
 896		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
 897		break;
 898	case USB_SPEED_HIGH:
 899		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
 900		break;
 901	case USB_SPEED_FULL:
 902		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
 903		break;
 904	case USB_SPEED_LOW:
 905		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
 906		break;
 907	case USB_SPEED_WIRELESS:
 908		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
 909		return -EINVAL;
 910		break;
 911	default:
 912		/* Speed was set earlier, this shouldn't happen. */
 913		BUG();
 914	}
 915	/* Find the root hub port this device is under */
 916	port_num = xhci_find_real_port_number(xhci, udev);
 917	if (!port_num)
 918		return -EINVAL;
 919	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
 920	/* Set the port number in the virtual_device to the faked port number */
 921	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
 922			top_dev = top_dev->parent)
 923		/* Found device below root hub */;
 924	dev->port = top_dev->portnum;
 
 925	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
 926	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927
 928	/* Is this a LS/FS device under an external HS hub? */
 929	if (udev->tt && udev->tt->hub->parent) {
 930		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
 931						(udev->ttport << 8));
 932		if (udev->tt->multi)
 933			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
 934	}
 935	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
 936	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
 937
 938	/* Step 4 - ring already allocated */
 939	/* Step 5 */
 940	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
 941	/*
 942	 * XXX: Not sure about wireless USB devices.
 943	 */
 944	switch (udev->speed) {
 945	case USB_SPEED_SUPER:
 946		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
 947		break;
 948	case USB_SPEED_HIGH:
 949	/* USB core guesses at a 64-byte max packet first for FS devices */
 950	case USB_SPEED_FULL:
 951		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
 952		break;
 953	case USB_SPEED_LOW:
 954		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
 955		break;
 956	case USB_SPEED_WIRELESS:
 957		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
 958		return -EINVAL;
 959		break;
 960	default:
 961		/* New speed? */
 962		BUG();
 963	}
 964	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
 965	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
 966
 967	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
 968				   dev->eps[0].ring->cycle_state);
 969
 970	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
 971
 972	return 0;
 973}
 974
 975/*
 976 * Convert interval expressed as 2^(bInterval - 1) == interval into
 977 * straight exponent value 2^n == interval.
 978 *
 979 */
 980static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
 981		struct usb_host_endpoint *ep)
 982{
 983	unsigned int interval;
 984
 985	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
 986	if (interval != ep->desc.bInterval - 1)
 987		dev_warn(&udev->dev,
 988			 "ep %#x - rounding interval to %d %sframes\n",
 989			 ep->desc.bEndpointAddress,
 990			 1 << interval,
 991			 udev->speed == USB_SPEED_FULL ? "" : "micro");
 992
 993	if (udev->speed == USB_SPEED_FULL) {
 994		/*
 995		 * Full speed isoc endpoints specify interval in frames,
 996		 * not microframes. We are using microframes everywhere,
 997		 * so adjust accordingly.
 998		 */
 999		interval += 3;	/* 1 frame = 2^3 uframes */
1000	}
1001
1002	return interval;
1003}
1004
1005/*
1006 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1007 * microframes, rounded down to nearest power of 2.
1008 */
1009static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1010		struct usb_host_endpoint *ep)
 
1011{
1012	unsigned int interval;
1013
1014	interval = fls(8 * ep->desc.bInterval) - 1;
1015	interval = clamp_val(interval, 3, 10);
1016	if ((1 << interval) != 8 * ep->desc.bInterval)
1017		dev_warn(&udev->dev,
1018			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1019			 ep->desc.bEndpointAddress,
1020			 1 << interval,
1021			 8 * ep->desc.bInterval);
1022
1023	return interval;
1024}
1025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026/* Return the polling or NAK interval.
1027 *
1028 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1029 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1030 *
1031 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1032 * is set to 0.
1033 */
1034static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1035		struct usb_host_endpoint *ep)
1036{
1037	unsigned int interval = 0;
1038
1039	switch (udev->speed) {
1040	case USB_SPEED_HIGH:
1041		/* Max NAK rate */
1042		if (usb_endpoint_xfer_control(&ep->desc) ||
1043		    usb_endpoint_xfer_bulk(&ep->desc)) {
1044			interval = ep->desc.bInterval;
1045			break;
1046		}
1047		/* Fall through - SS and HS isoc/int have same decoding */
1048
1049	case USB_SPEED_SUPER:
1050		if (usb_endpoint_xfer_int(&ep->desc) ||
1051		    usb_endpoint_xfer_isoc(&ep->desc)) {
1052			interval = xhci_parse_exponent_interval(udev, ep);
1053		}
1054		break;
1055
1056	case USB_SPEED_FULL:
1057		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1058			interval = xhci_parse_exponent_interval(udev, ep);
1059			break;
1060		}
1061		/*
1062		 * Fall through for interrupt endpoint interval decoding
1063		 * since it uses the same rules as low speed interrupt
1064		 * endpoints.
1065		 */
1066
1067	case USB_SPEED_LOW:
1068		if (usb_endpoint_xfer_int(&ep->desc) ||
1069		    usb_endpoint_xfer_isoc(&ep->desc)) {
1070
1071			interval = xhci_parse_frame_interval(udev, ep);
1072		}
1073		break;
1074
1075	default:
1076		BUG();
1077	}
1078	return EP_INTERVAL(interval);
1079}
1080
1081/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1082 * High speed endpoint descriptors can define "the number of additional
1083 * transaction opportunities per microframe", but that goes in the Max Burst
1084 * endpoint context field.
1085 */
1086static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1087		struct usb_host_endpoint *ep)
1088{
1089	if (udev->speed != USB_SPEED_SUPER ||
1090			!usb_endpoint_xfer_isoc(&ep->desc))
1091		return 0;
1092	return ep->ss_ep_comp.bmAttributes;
1093}
1094
1095static u32 xhci_get_endpoint_type(struct usb_device *udev,
1096		struct usb_host_endpoint *ep)
1097{
1098	int in;
1099	u32 type;
1100
1101	in = usb_endpoint_dir_in(&ep->desc);
1102	if (usb_endpoint_xfer_control(&ep->desc)) {
1103		type = EP_TYPE(CTRL_EP);
1104	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1105		if (in)
1106			type = EP_TYPE(BULK_IN_EP);
1107		else
1108			type = EP_TYPE(BULK_OUT_EP);
1109	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1110		if (in)
1111			type = EP_TYPE(ISOC_IN_EP);
1112		else
1113			type = EP_TYPE(ISOC_OUT_EP);
1114	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1115		if (in)
1116			type = EP_TYPE(INT_IN_EP);
1117		else
1118			type = EP_TYPE(INT_OUT_EP);
1119	} else {
1120		BUG();
1121	}
1122	return type;
1123}
1124
1125/* Return the maximum endpoint service interval time (ESIT) payload.
1126 * Basically, this is the maxpacket size, multiplied by the burst size
1127 * and mult size.
1128 */
1129static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1130		struct usb_device *udev,
1131		struct usb_host_endpoint *ep)
1132{
1133	int max_burst;
1134	int max_packet;
1135
1136	/* Only applies for interrupt or isochronous endpoints */
1137	if (usb_endpoint_xfer_control(&ep->desc) ||
1138			usb_endpoint_xfer_bulk(&ep->desc))
1139		return 0;
1140
1141	if (udev->speed == USB_SPEED_SUPER)
1142		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1143
1144	max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1145	max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
1146	/* A 0 in max burst means 1 transfer per ESIT */
1147	return max_packet * (max_burst + 1);
1148}
1149
1150/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1151 * Drivers will have to call usb_alloc_streams() to do that.
1152 */
1153int xhci_endpoint_init(struct xhci_hcd *xhci,
1154		struct xhci_virt_device *virt_dev,
1155		struct usb_device *udev,
1156		struct usb_host_endpoint *ep,
1157		gfp_t mem_flags)
1158{
1159	unsigned int ep_index;
1160	struct xhci_ep_ctx *ep_ctx;
1161	struct xhci_ring *ep_ring;
1162	unsigned int max_packet;
1163	unsigned int max_burst;
 
1164	u32 max_esit_payload;
1165
1166	ep_index = xhci_get_endpoint_index(&ep->desc);
1167	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1168
 
1169	/* Set up the endpoint ring */
1170	/*
1171	 * Isochronous endpoint ring needs bigger size because one isoc URB
1172	 * carries multiple packets and it will insert multiple tds to the
1173	 * ring.
1174	 * This should be replaced with dynamic ring resizing in the future.
1175	 */
1176	if (usb_endpoint_xfer_isoc(&ep->desc))
1177		virt_dev->eps[ep_index].new_ring =
1178			xhci_ring_alloc(xhci, 8, true, mem_flags);
1179	else
1180		virt_dev->eps[ep_index].new_ring =
1181			xhci_ring_alloc(xhci, 1, true, mem_flags);
1182	if (!virt_dev->eps[ep_index].new_ring) {
1183		/* Attempt to use the ring cache */
1184		if (virt_dev->num_rings_cached == 0)
1185			return -ENOMEM;
1186		virt_dev->eps[ep_index].new_ring =
1187			virt_dev->ring_cache[virt_dev->num_rings_cached];
1188		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1189		virt_dev->num_rings_cached--;
1190		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
 
1191	}
1192	virt_dev->eps[ep_index].skip = false;
1193	ep_ring = virt_dev->eps[ep_index].new_ring;
1194	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1195
1196	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1197				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1198
1199	/* FIXME dig Mult and streams info out of ep companion desc */
1200
1201	/* Allow 3 retries for everything but isoc;
1202	 * CErr shall be set to 0 for Isoch endpoints.
1203	 */
1204	if (!usb_endpoint_xfer_isoc(&ep->desc))
1205		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1206	else
1207		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1208
1209	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1210
1211	/* Set the max packet size and max burst */
1212	switch (udev->speed) {
1213	case USB_SPEED_SUPER:
1214		max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1215		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1216		/* dig out max burst from ep companion desc */
1217		max_packet = ep->ss_ep_comp.bMaxBurst;
1218		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1219		break;
1220	case USB_SPEED_HIGH:
1221		/* bits 11:12 specify the number of additional transaction
1222		 * opportunities per microframe (USB 2.0, section 9.6.6)
1223		 */
1224		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1225				usb_endpoint_xfer_int(&ep->desc)) {
1226			max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1227				     & 0x1800) >> 11;
1228			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1229		}
1230		/* Fall through */
1231	case USB_SPEED_FULL:
1232	case USB_SPEED_LOW:
1233		max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1234		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1235		break;
1236	default:
1237		BUG();
1238	}
1239	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1240	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1241
1242	/*
1243	 * XXX no idea how to calculate the average TRB buffer length for bulk
1244	 * endpoints, as the driver gives us no clue how big each scatter gather
1245	 * list entry (or buffer) is going to be.
1246	 *
1247	 * For isochronous and interrupt endpoints, we set it to the max
1248	 * available, until we have new API in the USB core to allow drivers to
1249	 * declare how much bandwidth they actually need.
1250	 *
1251	 * Normally, it would be calculated by taking the total of the buffer
1252	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1253	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1254	 * use Event Data TRBs, and we don't chain in a link TRB on short
1255	 * transfers, we're basically dividing by 1.
1256	 *
1257	 * xHCI 1.0 specification indicates that the Average TRB Length should
1258	 * be set to 8 for control endpoints.
1259	 */
1260	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1261		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1262	else
1263		ep_ctx->tx_info |=
1264			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1265
1266	/* FIXME Debug endpoint context */
1267	return 0;
1268}
1269
1270void xhci_endpoint_zero(struct xhci_hcd *xhci,
1271		struct xhci_virt_device *virt_dev,
1272		struct usb_host_endpoint *ep)
1273{
1274	unsigned int ep_index;
1275	struct xhci_ep_ctx *ep_ctx;
1276
1277	ep_index = xhci_get_endpoint_index(&ep->desc);
1278	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1279
1280	ep_ctx->ep_info = 0;
1281	ep_ctx->ep_info2 = 0;
1282	ep_ctx->deq = 0;
1283	ep_ctx->tx_info = 0;
1284	/* Don't free the endpoint ring until the set interface or configuration
1285	 * request succeeds.
1286	 */
1287}
1288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1290 * Useful when you want to change one particular aspect of the endpoint and then
1291 * issue a configure endpoint command.
1292 */
1293void xhci_endpoint_copy(struct xhci_hcd *xhci,
1294		struct xhci_container_ctx *in_ctx,
1295		struct xhci_container_ctx *out_ctx,
1296		unsigned int ep_index)
1297{
1298	struct xhci_ep_ctx *out_ep_ctx;
1299	struct xhci_ep_ctx *in_ep_ctx;
1300
1301	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1302	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1303
1304	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1305	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1306	in_ep_ctx->deq = out_ep_ctx->deq;
1307	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1308}
1309
1310/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1311 * Useful when you want to change one particular aspect of the endpoint and then
1312 * issue a configure endpoint command.  Only the context entries field matters,
1313 * but we'll copy the whole thing anyway.
1314 */
1315void xhci_slot_copy(struct xhci_hcd *xhci,
1316		struct xhci_container_ctx *in_ctx,
1317		struct xhci_container_ctx *out_ctx)
1318{
1319	struct xhci_slot_ctx *in_slot_ctx;
1320	struct xhci_slot_ctx *out_slot_ctx;
1321
1322	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1323	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1324
1325	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1326	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1327	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1328	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1329}
1330
1331/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1332static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1333{
1334	int i;
1335	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1336	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1337
1338	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1339
1340	if (!num_sp)
1341		return 0;
1342
1343	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1344	if (!xhci->scratchpad)
1345		goto fail_sp;
1346
1347	xhci->scratchpad->sp_array =
1348		pci_alloc_consistent(to_pci_dev(dev),
1349				     num_sp * sizeof(u64),
1350				     &xhci->scratchpad->sp_dma);
1351	if (!xhci->scratchpad->sp_array)
1352		goto fail_sp2;
1353
1354	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1355	if (!xhci->scratchpad->sp_buffers)
1356		goto fail_sp3;
1357
1358	xhci->scratchpad->sp_dma_buffers =
1359		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1360
1361	if (!xhci->scratchpad->sp_dma_buffers)
1362		goto fail_sp4;
1363
1364	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1365	for (i = 0; i < num_sp; i++) {
1366		dma_addr_t dma;
1367		void *buf = pci_alloc_consistent(to_pci_dev(dev),
1368						 xhci->page_size, &dma);
1369		if (!buf)
1370			goto fail_sp5;
1371
1372		xhci->scratchpad->sp_array[i] = dma;
1373		xhci->scratchpad->sp_buffers[i] = buf;
1374		xhci->scratchpad->sp_dma_buffers[i] = dma;
1375	}
1376
1377	return 0;
1378
1379 fail_sp5:
1380	for (i = i - 1; i >= 0; i--) {
1381		pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1382				    xhci->scratchpad->sp_buffers[i],
1383				    xhci->scratchpad->sp_dma_buffers[i]);
1384	}
1385	kfree(xhci->scratchpad->sp_dma_buffers);
1386
1387 fail_sp4:
1388	kfree(xhci->scratchpad->sp_buffers);
1389
1390 fail_sp3:
1391	pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1392			    xhci->scratchpad->sp_array,
1393			    xhci->scratchpad->sp_dma);
1394
1395 fail_sp2:
1396	kfree(xhci->scratchpad);
1397	xhci->scratchpad = NULL;
1398
1399 fail_sp:
1400	return -ENOMEM;
1401}
1402
1403static void scratchpad_free(struct xhci_hcd *xhci)
1404{
1405	int num_sp;
1406	int i;
1407	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1408
1409	if (!xhci->scratchpad)
1410		return;
1411
1412	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1413
1414	for (i = 0; i < num_sp; i++) {
1415		pci_free_consistent(pdev, xhci->page_size,
1416				    xhci->scratchpad->sp_buffers[i],
1417				    xhci->scratchpad->sp_dma_buffers[i]);
1418	}
1419	kfree(xhci->scratchpad->sp_dma_buffers);
1420	kfree(xhci->scratchpad->sp_buffers);
1421	pci_free_consistent(pdev, num_sp * sizeof(u64),
1422			    xhci->scratchpad->sp_array,
1423			    xhci->scratchpad->sp_dma);
1424	kfree(xhci->scratchpad);
1425	xhci->scratchpad = NULL;
1426}
1427
1428struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1429		bool allocate_in_ctx, bool allocate_completion,
1430		gfp_t mem_flags)
1431{
1432	struct xhci_command *command;
1433
1434	command = kzalloc(sizeof(*command), mem_flags);
1435	if (!command)
1436		return NULL;
1437
1438	if (allocate_in_ctx) {
1439		command->in_ctx =
1440			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1441					mem_flags);
1442		if (!command->in_ctx) {
1443			kfree(command);
1444			return NULL;
1445		}
1446	}
1447
1448	if (allocate_completion) {
1449		command->completion =
1450			kzalloc(sizeof(struct completion), mem_flags);
1451		if (!command->completion) {
1452			xhci_free_container_ctx(xhci, command->in_ctx);
1453			kfree(command);
1454			return NULL;
1455		}
1456		init_completion(command->completion);
1457	}
1458
1459	command->status = 0;
1460	INIT_LIST_HEAD(&command->cmd_list);
1461	return command;
1462}
1463
1464void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1465{
1466	int last;
1467
1468	if (!urb_priv)
1469		return;
1470
1471	last = urb_priv->length - 1;
1472	if (last >= 0) {
1473		int	i;
1474		for (i = 0; i <= last; i++)
1475			kfree(urb_priv->td[i]);
1476	}
1477	kfree(urb_priv);
1478}
1479
1480void xhci_free_command(struct xhci_hcd *xhci,
1481		struct xhci_command *command)
1482{
1483	xhci_free_container_ctx(xhci,
1484			command->in_ctx);
1485	kfree(command->completion);
1486	kfree(command);
1487}
1488
1489void xhci_mem_cleanup(struct xhci_hcd *xhci)
1490{
1491	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 
 
 
1492	int size;
1493	int i;
1494
1495	/* Free the Event Ring Segment Table and the actual Event Ring */
1496	if (xhci->ir_set) {
1497		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1498		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1499		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1500	}
1501	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1502	if (xhci->erst.entries)
1503		pci_free_consistent(pdev, size,
1504				xhci->erst.entries, xhci->erst.erst_dma_addr);
1505	xhci->erst.entries = NULL;
1506	xhci_dbg(xhci, "Freed ERST\n");
1507	if (xhci->event_ring)
1508		xhci_ring_free(xhci, xhci->event_ring);
1509	xhci->event_ring = NULL;
1510	xhci_dbg(xhci, "Freed event ring\n");
1511
1512	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 
 
1513	if (xhci->cmd_ring)
1514		xhci_ring_free(xhci, xhci->cmd_ring);
1515	xhci->cmd_ring = NULL;
1516	xhci_dbg(xhci, "Freed command ring\n");
 
 
 
 
 
1517
1518	for (i = 1; i < MAX_HC_SLOTS; ++i)
1519		xhci_free_virt_device(xhci, i);
1520
1521	if (xhci->segment_pool)
1522		dma_pool_destroy(xhci->segment_pool);
1523	xhci->segment_pool = NULL;
1524	xhci_dbg(xhci, "Freed segment pool\n");
1525
1526	if (xhci->device_pool)
1527		dma_pool_destroy(xhci->device_pool);
1528	xhci->device_pool = NULL;
1529	xhci_dbg(xhci, "Freed device context pool\n");
1530
1531	if (xhci->small_streams_pool)
1532		dma_pool_destroy(xhci->small_streams_pool);
1533	xhci->small_streams_pool = NULL;
1534	xhci_dbg(xhci, "Freed small stream array pool\n");
1535
1536	if (xhci->medium_streams_pool)
1537		dma_pool_destroy(xhci->medium_streams_pool);
1538	xhci->medium_streams_pool = NULL;
1539	xhci_dbg(xhci, "Freed medium stream array pool\n");
1540
1541	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1542	if (xhci->dcbaa)
1543		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1544				xhci->dcbaa, xhci->dcbaa->dma);
1545	xhci->dcbaa = NULL;
1546
1547	scratchpad_free(xhci);
1548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549	xhci->num_usb2_ports = 0;
1550	xhci->num_usb3_ports = 0;
 
1551	kfree(xhci->usb2_ports);
1552	kfree(xhci->usb3_ports);
1553	kfree(xhci->port_array);
 
1554
1555	xhci->page_size = 0;
1556	xhci->page_shift = 0;
1557	xhci->bus_state[0].bus_suspended = 0;
1558	xhci->bus_state[1].bus_suspended = 0;
1559}
1560
1561static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1562		struct xhci_segment *input_seg,
1563		union xhci_trb *start_trb,
1564		union xhci_trb *end_trb,
1565		dma_addr_t input_dma,
1566		struct xhci_segment *result_seg,
1567		char *test_name, int test_number)
1568{
1569	unsigned long long start_dma;
1570	unsigned long long end_dma;
1571	struct xhci_segment *seg;
1572
1573	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1574	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1575
1576	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1577	if (seg != result_seg) {
1578		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1579				test_name, test_number);
1580		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1581				"input DMA 0x%llx\n",
1582				input_seg,
1583				(unsigned long long) input_dma);
1584		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1585				"ending TRB %p (0x%llx DMA)\n",
1586				start_trb, start_dma,
1587				end_trb, end_dma);
1588		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1589				result_seg, seg);
1590		return -1;
1591	}
1592	return 0;
1593}
1594
1595/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1596static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1597{
1598	struct {
1599		dma_addr_t		input_dma;
1600		struct xhci_segment	*result_seg;
1601	} simple_test_vector [] = {
1602		/* A zeroed DMA field should fail */
1603		{ 0, NULL },
1604		/* One TRB before the ring start should fail */
1605		{ xhci->event_ring->first_seg->dma - 16, NULL },
1606		/* One byte before the ring start should fail */
1607		{ xhci->event_ring->first_seg->dma - 1, NULL },
1608		/* Starting TRB should succeed */
1609		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1610		/* Ending TRB should succeed */
1611		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1612			xhci->event_ring->first_seg },
1613		/* One byte after the ring end should fail */
1614		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1615		/* One TRB after the ring end should fail */
1616		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1617		/* An address of all ones should fail */
1618		{ (dma_addr_t) (~0), NULL },
1619	};
1620	struct {
1621		struct xhci_segment	*input_seg;
1622		union xhci_trb		*start_trb;
1623		union xhci_trb		*end_trb;
1624		dma_addr_t		input_dma;
1625		struct xhci_segment	*result_seg;
1626	} complex_test_vector [] = {
1627		/* Test feeding a valid DMA address from a different ring */
1628		{	.input_seg = xhci->event_ring->first_seg,
1629			.start_trb = xhci->event_ring->first_seg->trbs,
1630			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1631			.input_dma = xhci->cmd_ring->first_seg->dma,
1632			.result_seg = NULL,
1633		},
1634		/* Test feeding a valid end TRB from a different ring */
1635		{	.input_seg = xhci->event_ring->first_seg,
1636			.start_trb = xhci->event_ring->first_seg->trbs,
1637			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1638			.input_dma = xhci->cmd_ring->first_seg->dma,
1639			.result_seg = NULL,
1640		},
1641		/* Test feeding a valid start and end TRB from a different ring */
1642		{	.input_seg = xhci->event_ring->first_seg,
1643			.start_trb = xhci->cmd_ring->first_seg->trbs,
1644			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1645			.input_dma = xhci->cmd_ring->first_seg->dma,
1646			.result_seg = NULL,
1647		},
1648		/* TRB in this ring, but after this TD */
1649		{	.input_seg = xhci->event_ring->first_seg,
1650			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1651			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1652			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1653			.result_seg = NULL,
1654		},
1655		/* TRB in this ring, but before this TD */
1656		{	.input_seg = xhci->event_ring->first_seg,
1657			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1658			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1659			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1660			.result_seg = NULL,
1661		},
1662		/* TRB in this ring, but after this wrapped TD */
1663		{	.input_seg = xhci->event_ring->first_seg,
1664			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1665			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1666			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1667			.result_seg = NULL,
1668		},
1669		/* TRB in this ring, but before this wrapped TD */
1670		{	.input_seg = xhci->event_ring->first_seg,
1671			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1672			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1673			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1674			.result_seg = NULL,
1675		},
1676		/* TRB not in this ring, and we have a wrapped TD */
1677		{	.input_seg = xhci->event_ring->first_seg,
1678			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1679			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1680			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1681			.result_seg = NULL,
1682		},
1683	};
1684
1685	unsigned int num_tests;
1686	int i, ret;
1687
1688	num_tests = ARRAY_SIZE(simple_test_vector);
1689	for (i = 0; i < num_tests; i++) {
1690		ret = xhci_test_trb_in_td(xhci,
1691				xhci->event_ring->first_seg,
1692				xhci->event_ring->first_seg->trbs,
1693				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1694				simple_test_vector[i].input_dma,
1695				simple_test_vector[i].result_seg,
1696				"Simple", i);
1697		if (ret < 0)
1698			return ret;
1699	}
1700
1701	num_tests = ARRAY_SIZE(complex_test_vector);
1702	for (i = 0; i < num_tests; i++) {
1703		ret = xhci_test_trb_in_td(xhci,
1704				complex_test_vector[i].input_seg,
1705				complex_test_vector[i].start_trb,
1706				complex_test_vector[i].end_trb,
1707				complex_test_vector[i].input_dma,
1708				complex_test_vector[i].result_seg,
1709				"Complex", i);
1710		if (ret < 0)
1711			return ret;
1712	}
1713	xhci_dbg(xhci, "TRB math tests passed.\n");
1714	return 0;
1715}
1716
1717static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1718{
1719	u64 temp;
1720	dma_addr_t deq;
1721
1722	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1723			xhci->event_ring->dequeue);
1724	if (deq == 0 && !in_interrupt())
1725		xhci_warn(xhci, "WARN something wrong with SW event ring "
1726				"dequeue ptr.\n");
1727	/* Update HC event ring dequeue pointer */
1728	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1729	temp &= ERST_PTR_MASK;
1730	/* Don't clear the EHB bit (which is RW1C) because
1731	 * there might be more events to service.
1732	 */
1733	temp &= ~ERST_EHB;
1734	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1735			"preserving EHB bit\n");
1736	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1737			&xhci->ir_set->erst_dequeue);
1738}
1739
1740static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1741		__le32 __iomem *addr, u8 major_revision)
1742{
1743	u32 temp, port_offset, port_count;
1744	int i;
1745
1746	if (major_revision > 0x03) {
1747		xhci_warn(xhci, "Ignoring unknown port speed, "
1748				"Ext Cap %p, revision = 0x%x\n",
1749				addr, major_revision);
1750		/* Ignoring port protocol we can't understand. FIXME */
1751		return;
1752	}
1753
1754	/* Port offset and count in the third dword, see section 7.2 */
1755	temp = xhci_readl(xhci, addr + 2);
1756	port_offset = XHCI_EXT_PORT_OFF(temp);
1757	port_count = XHCI_EXT_PORT_COUNT(temp);
1758	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1759			"count = %u, revision = 0x%x\n",
1760			addr, port_offset, port_count, major_revision);
1761	/* Port count includes the current port offset */
1762	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1763		/* WTF? "Valid values are ‘1’ to MaxPorts" */
1764		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765	port_offset--;
1766	for (i = port_offset; i < (port_offset + port_count); i++) {
1767		/* Duplicate entry.  Ignore the port if the revisions differ. */
1768		if (xhci->port_array[i] != 0) {
1769			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1770					" port %u\n", addr, i);
1771			xhci_warn(xhci, "Port was marked as USB %u, "
1772					"duplicated as USB %u\n",
1773					xhci->port_array[i], major_revision);
1774			/* Only adjust the roothub port counts if we haven't
1775			 * found a similar duplicate.
1776			 */
1777			if (xhci->port_array[i] != major_revision &&
1778				xhci->port_array[i] != DUPLICATE_ENTRY) {
1779				if (xhci->port_array[i] == 0x03)
1780					xhci->num_usb3_ports--;
1781				else
1782					xhci->num_usb2_ports--;
1783				xhci->port_array[i] = DUPLICATE_ENTRY;
1784			}
1785			/* FIXME: Should we disable the port? */
1786			continue;
1787		}
1788		xhci->port_array[i] = major_revision;
1789		if (major_revision == 0x03)
1790			xhci->num_usb3_ports++;
1791		else
1792			xhci->num_usb2_ports++;
1793	}
1794	/* FIXME: Should we disable ports not in the Extended Capabilities? */
1795}
1796
1797/*
1798 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1799 * specify what speeds each port is supposed to be.  We can't count on the port
1800 * speed bits in the PORTSC register being correct until a device is connected,
1801 * but we need to set up the two fake roothubs with the correct number of USB
1802 * 3.0 and USB 2.0 ports at host controller initialization time.
1803 */
1804static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1805{
1806	__le32 __iomem *addr;
1807	u32 offset;
1808	unsigned int num_ports;
1809	int i, port_index;
1810
1811	addr = &xhci->cap_regs->hcc_params;
1812	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1813	if (offset == 0) {
1814		xhci_err(xhci, "No Extended Capability registers, "
1815				"unable to set up roothub.\n");
1816		return -ENODEV;
1817	}
1818
1819	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1820	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1821	if (!xhci->port_array)
1822		return -ENOMEM;
1823
 
 
 
 
 
 
 
 
 
 
 
 
1824	/*
1825	 * For whatever reason, the first capability offset is from the
1826	 * capability register base, not from the HCCPARAMS register.
1827	 * See section 5.3.6 for offset calculation.
1828	 */
1829	addr = &xhci->cap_regs->hc_capbase + offset;
1830	while (1) {
1831		u32 cap_id;
1832
1833		cap_id = xhci_readl(xhci, addr);
1834		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1835			xhci_add_in_port(xhci, num_ports, addr,
1836					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
1837		offset = XHCI_EXT_CAPS_NEXT(cap_id);
1838		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1839				== num_ports)
1840			break;
1841		/*
1842		 * Once you're into the Extended Capabilities, the offset is
1843		 * always relative to the register holding the offset.
1844		 */
1845		addr += offset;
1846	}
1847
1848	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1849		xhci_warn(xhci, "No ports on the roothubs?\n");
1850		return -ENODEV;
1851	}
1852	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1853			xhci->num_usb2_ports, xhci->num_usb3_ports);
1854
1855	/* Place limits on the number of roothub ports so that the hub
1856	 * descriptors aren't longer than the USB core will allocate.
1857	 */
1858	if (xhci->num_usb3_ports > 15) {
1859		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1860		xhci->num_usb3_ports = 15;
1861	}
1862	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1863		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1864				USB_MAXCHILDREN);
1865		xhci->num_usb2_ports = USB_MAXCHILDREN;
1866	}
1867
1868	/*
1869	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1870	 * Not sure how the USB core will handle a hub with no ports...
1871	 */
1872	if (xhci->num_usb2_ports) {
1873		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1874				xhci->num_usb2_ports, flags);
1875		if (!xhci->usb2_ports)
1876			return -ENOMEM;
1877
1878		port_index = 0;
1879		for (i = 0; i < num_ports; i++) {
1880			if (xhci->port_array[i] == 0x03 ||
1881					xhci->port_array[i] == 0 ||
1882					xhci->port_array[i] == DUPLICATE_ENTRY)
1883				continue;
1884
1885			xhci->usb2_ports[port_index] =
1886				&xhci->op_regs->port_status_base +
1887				NUM_PORT_REGS*i;
1888			xhci_dbg(xhci, "USB 2.0 port at index %u, "
1889					"addr = %p\n", i,
1890					xhci->usb2_ports[port_index]);
1891			port_index++;
1892			if (port_index == xhci->num_usb2_ports)
1893				break;
1894		}
1895	}
1896	if (xhci->num_usb3_ports) {
1897		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1898				xhci->num_usb3_ports, flags);
1899		if (!xhci->usb3_ports)
1900			return -ENOMEM;
1901
1902		port_index = 0;
1903		for (i = 0; i < num_ports; i++)
1904			if (xhci->port_array[i] == 0x03) {
1905				xhci->usb3_ports[port_index] =
1906					&xhci->op_regs->port_status_base +
1907					NUM_PORT_REGS*i;
1908				xhci_dbg(xhci, "USB 3.0 port at index %u, "
1909						"addr = %p\n", i,
1910						xhci->usb3_ports[port_index]);
1911				port_index++;
1912				if (port_index == xhci->num_usb3_ports)
1913					break;
1914			}
1915	}
1916	return 0;
1917}
1918
1919int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1920{
1921	dma_addr_t	dma;
1922	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1923	unsigned int	val, val2;
1924	u64		val_64;
1925	struct xhci_segment	*seg;
1926	u32 page_size;
1927	int i;
1928
1929	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1930	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1931	for (i = 0; i < 16; i++) {
1932		if ((0x1 & page_size) != 0)
1933			break;
1934		page_size = page_size >> 1;
1935	}
1936	if (i < 16)
1937		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1938	else
1939		xhci_warn(xhci, "WARN: no supported page size\n");
1940	/* Use 4K pages, since that's common and the minimum the HC supports */
1941	xhci->page_shift = 12;
1942	xhci->page_size = 1 << xhci->page_shift;
1943	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1944
1945	/*
1946	 * Program the Number of Device Slots Enabled field in the CONFIG
1947	 * register with the max value of slots the HC can handle.
1948	 */
1949	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1950	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1951			(unsigned int) val);
1952	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1953	val |= (val2 & ~HCS_SLOTS_MASK);
1954	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1955			(unsigned int) val);
1956	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1957
1958	/*
1959	 * Section 5.4.8 - doorbell array must be
1960	 * "physically contiguous and 64-byte (cache line) aligned".
1961	 */
1962	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1963			sizeof(*xhci->dcbaa), &dma);
1964	if (!xhci->dcbaa)
1965		goto fail;
1966	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1967	xhci->dcbaa->dma = dma;
1968	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1969			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1970	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1971
1972	/*
1973	 * Initialize the ring segment pool.  The ring must be a contiguous
1974	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1975	 * however, the command ring segment needs 64-byte aligned segments,
1976	 * so we pick the greater alignment need.
1977	 */
1978	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1979			SEGMENT_SIZE, 64, xhci->page_size);
1980
1981	/* See Table 46 and Note on Figure 55 */
1982	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1983			2112, 64, xhci->page_size);
1984	if (!xhci->segment_pool || !xhci->device_pool)
1985		goto fail;
1986
1987	/* Linear stream context arrays don't have any boundary restrictions,
1988	 * and only need to be 16-byte aligned.
1989	 */
1990	xhci->small_streams_pool =
1991		dma_pool_create("xHCI 256 byte stream ctx arrays",
1992			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1993	xhci->medium_streams_pool =
1994		dma_pool_create("xHCI 1KB stream ctx arrays",
1995			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1996	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1997	 * will be allocated with pci_alloc_consistent()
1998	 */
1999
2000	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2001		goto fail;
2002
2003	/* Set up the command ring to have one segments for now. */
2004	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
2005	if (!xhci->cmd_ring)
2006		goto fail;
 
2007	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2008	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2009			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2010
2011	/* Set the address in the Command Ring Control register */
2012	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2013	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2014		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2015		xhci->cmd_ring->cycle_state;
2016	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2017	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2018	xhci_dbg_cmd_ptrs(xhci);
2019
 
 
 
 
 
 
 
 
 
 
2020	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2021	val &= DBOFF_MASK;
2022	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2023			" from cap regs base addr\n", val);
2024	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2025	xhci_dbg_regs(xhci);
2026	xhci_print_run_regs(xhci);
2027	/* Set ir_set to interrupt register set 0 */
2028	xhci->ir_set = &xhci->run_regs->ir_set[0];
2029
2030	/*
2031	 * Event ring setup: Allocate a normal ring, but also setup
2032	 * the event ring segment table (ERST).  Section 4.9.3.
2033	 */
2034	xhci_dbg(xhci, "// Allocating event ring\n");
2035	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
 
2036	if (!xhci->event_ring)
2037		goto fail;
2038	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2039		goto fail;
2040
2041	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2042			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
 
2043	if (!xhci->erst.entries)
2044		goto fail;
2045	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2046			(unsigned long long)dma);
2047
2048	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2049	xhci->erst.num_entries = ERST_NUM_SEGS;
2050	xhci->erst.erst_dma_addr = dma;
2051	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2052			xhci->erst.num_entries,
2053			xhci->erst.entries,
2054			(unsigned long long)xhci->erst.erst_dma_addr);
2055
2056	/* set ring base address and size for each segment table entry */
2057	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2058		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2059		entry->seg_addr = cpu_to_le64(seg->dma);
2060		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2061		entry->rsvd = 0;
2062		seg = seg->next;
2063	}
2064
2065	/* set ERST count with the number of entries in the segment table */
2066	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2067	val &= ERST_SIZE_MASK;
2068	val |= ERST_NUM_SEGS;
2069	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2070			val);
2071	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2072
2073	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2074	/* set the segment table base address */
2075	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2076			(unsigned long long)xhci->erst.erst_dma_addr);
2077	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2078	val_64 &= ERST_PTR_MASK;
2079	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2080	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2081
2082	/* Set the event ring dequeue address */
2083	xhci_set_hc_event_deq(xhci);
2084	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2085	xhci_print_ir_set(xhci, 0);
2086
2087	/*
2088	 * XXX: Might need to set the Interrupter Moderation Register to
2089	 * something other than the default (~1ms minimum between interrupts).
2090	 * See section 5.5.1.2.
2091	 */
2092	init_completion(&xhci->addr_dev);
2093	for (i = 0; i < MAX_HC_SLOTS; ++i)
2094		xhci->devs[i] = NULL;
2095	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2096		xhci->bus_state[0].resume_done[i] = 0;
2097		xhci->bus_state[1].resume_done[i] = 0;
2098	}
2099
2100	if (scratchpad_alloc(xhci, flags))
2101		goto fail;
2102	if (xhci_setup_port_arrays(xhci, flags))
2103		goto fail;
2104
 
 
 
 
 
 
 
 
 
 
 
2105	return 0;
2106
2107fail:
2108	xhci_warn(xhci, "Couldn't initialize memory\n");
 
 
2109	xhci_mem_cleanup(xhci);
2110	return -ENOMEM;
2111}
v3.5.6
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27
  28#include "xhci.h"
  29
  30/*
  31 * Allocates a generic ring segment from the ring pool, sets the dma address,
  32 * initializes the segment to zero, and sets the private next pointer to NULL.
  33 *
  34 * Section 4.11.1.1:
  35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  36 */
  37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  38					unsigned int cycle_state, gfp_t flags)
  39{
  40	struct xhci_segment *seg;
  41	dma_addr_t	dma;
  42	int		i;
  43
  44	seg = kzalloc(sizeof *seg, flags);
  45	if (!seg)
  46		return NULL;
 
  47
  48	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  49	if (!seg->trbs) {
  50		kfree(seg);
  51		return NULL;
  52	}
 
 
  53
  54	memset(seg->trbs, 0, SEGMENT_SIZE);
  55	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  56	if (cycle_state == 0) {
  57		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  58			seg->trbs[i].link.control |= TRB_CYCLE;
  59	}
  60	seg->dma = dma;
  61	seg->next = NULL;
  62
  63	return seg;
  64}
  65
  66static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  67{
 
 
  68	if (seg->trbs) {
 
 
  69		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  70		seg->trbs = NULL;
  71	}
 
  72	kfree(seg);
  73}
  74
  75static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  76				struct xhci_segment *first)
  77{
  78	struct xhci_segment *seg;
  79
  80	seg = first->next;
  81	while (seg != first) {
  82		struct xhci_segment *next = seg->next;
  83		xhci_segment_free(xhci, seg);
  84		seg = next;
  85	}
  86	xhci_segment_free(xhci, first);
  87}
  88
  89/*
  90 * Make the prev segment point to the next segment.
  91 *
  92 * Change the last TRB in the prev segment to be a Link TRB which points to the
  93 * DMA address of the next segment.  The caller needs to set any Link TRB
  94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  95 */
  96static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  97		struct xhci_segment *next, enum xhci_ring_type type)
  98{
  99	u32 val;
 100
 101	if (!prev || !next)
 102		return;
 103	prev->next = next;
 104	if (type != TYPE_EVENT) {
 105		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 106			cpu_to_le64(next->dma);
 107
 108		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 109		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 110		val &= ~TRB_TYPE_BITMASK;
 111		val |= TRB_TYPE(TRB_LINK);
 112		/* Always set the chain bit with 0.95 hardware */
 113		/* Set chain bit for isoc rings on AMD 0.96 host */
 114		if (xhci_link_trb_quirk(xhci) ||
 115				(type == TYPE_ISOC &&
 116				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 117			val |= TRB_CHAIN;
 118		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 119	}
 
 
 
 120}
 121
 122/*
 123 * Link the ring to the new segments.
 124 * Set Toggle Cycle for the new ring if needed.
 125 */
 126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 127		struct xhci_segment *first, struct xhci_segment *last,
 128		unsigned int num_segs)
 129{
 130	struct xhci_segment *next;
 
 131
 132	if (!ring || !first || !last)
 133		return;
 134
 135	next = ring->enq_seg->next;
 136	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 137	xhci_link_segments(xhci, last, next, ring->type);
 138	ring->num_segs += num_segs;
 139	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 140
 141	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 142		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 143			&= ~cpu_to_le32(LINK_TOGGLE);
 144		last->trbs[TRBS_PER_SEGMENT-1].link.control
 145			|= cpu_to_le32(LINK_TOGGLE);
 146		ring->last_seg = last;
 147	}
 148}
 149
 150/* XXX: Do we need the hcd structure in all these functions? */
 151void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 152{
 153	if (!ring)
 154		return;
 155
 156	if (ring->first_seg)
 157		xhci_free_segments_for_ring(xhci, ring->first_seg);
 158
 159	kfree(ring);
 160}
 161
 162static void xhci_initialize_ring_info(struct xhci_ring *ring,
 163					unsigned int cycle_state)
 164{
 165	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 166	ring->enqueue = ring->first_seg->trbs;
 167	ring->enq_seg = ring->first_seg;
 168	ring->dequeue = ring->enqueue;
 169	ring->deq_seg = ring->first_seg;
 170	/* The ring is initialized to 0. The producer must write 1 to the cycle
 171	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 172	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 173	 *
 174	 * New rings are initialized with cycle state equal to 1; if we are
 175	 * handling ring expansion, set the cycle state equal to the old ring.
 176	 */
 177	ring->cycle_state = cycle_state;
 178	/* Not necessary for new rings, but needed for re-initialized rings */
 179	ring->enq_updates = 0;
 180	ring->deq_updates = 0;
 181
 182	/*
 183	 * Each segment has a link TRB, and leave an extra TRB for SW
 184	 * accounting purpose
 185	 */
 186	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 187}
 188
 189/* Allocate segments and link them for a ring */
 190static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 191		struct xhci_segment **first, struct xhci_segment **last,
 192		unsigned int num_segs, unsigned int cycle_state,
 193		enum xhci_ring_type type, gfp_t flags)
 194{
 195	struct xhci_segment *prev;
 196
 197	prev = xhci_segment_alloc(xhci, cycle_state, flags);
 198	if (!prev)
 199		return -ENOMEM;
 200	num_segs--;
 201
 202	*first = prev;
 203	while (num_segs > 0) {
 204		struct xhci_segment	*next;
 205
 206		next = xhci_segment_alloc(xhci, cycle_state, flags);
 207		if (!next) {
 208			xhci_free_segments_for_ring(xhci, *first);
 209			return -ENOMEM;
 210		}
 211		xhci_link_segments(xhci, prev, next, type);
 212
 213		prev = next;
 214		num_segs--;
 215	}
 216	xhci_link_segments(xhci, prev, *first, type);
 217	*last = prev;
 218
 219	return 0;
 220}
 221
 222/**
 223 * Create a new ring with zero or more segments.
 224 *
 225 * Link each segment together into a ring.
 226 * Set the end flag and the cycle toggle bit on the last segment.
 227 * See section 4.9.1 and figures 15 and 16.
 228 */
 229static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 230		unsigned int num_segs, unsigned int cycle_state,
 231		enum xhci_ring_type type, gfp_t flags)
 232{
 233	struct xhci_ring	*ring;
 234	int ret;
 235
 236	ring = kzalloc(sizeof *(ring), flags);
 
 237	if (!ring)
 238		return NULL;
 239
 240	ring->num_segs = num_segs;
 241	INIT_LIST_HEAD(&ring->td_list);
 242	ring->type = type;
 243	if (num_segs == 0)
 244		return ring;
 245
 246	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 247			&ring->last_seg, num_segs, cycle_state, type, flags);
 248	if (ret)
 249		goto fail;
 
 
 
 
 
 
 
 
 
 
 250
 251	/* Only event ring does not use link TRB */
 252	if (type != TYPE_EVENT) {
 
 
 
 
 253		/* See section 4.9.2.1 and 6.4.4.1 */
 254		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 255			cpu_to_le32(LINK_TOGGLE);
 
 
 
 256	}
 257	xhci_initialize_ring_info(ring, cycle_state);
 258	return ring;
 259
 260fail:
 261	xhci_ring_free(xhci, ring);
 262	return NULL;
 263}
 264
 265void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 266		struct xhci_virt_device *virt_dev,
 267		unsigned int ep_index)
 268{
 269	int rings_cached;
 270
 271	rings_cached = virt_dev->num_rings_cached;
 272	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 273		virt_dev->ring_cache[rings_cached] =
 274			virt_dev->eps[ep_index].ring;
 275		virt_dev->num_rings_cached++;
 276		xhci_dbg(xhci, "Cached old ring, "
 277				"%d ring%s cached\n",
 278				virt_dev->num_rings_cached,
 279				(virt_dev->num_rings_cached > 1) ? "s" : "");
 280	} else {
 281		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 282		xhci_dbg(xhci, "Ring cache full (%d rings), "
 283				"freeing ring\n",
 284				virt_dev->num_rings_cached);
 285	}
 286	virt_dev->eps[ep_index].ring = NULL;
 287}
 288
 289/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 290 * pointers to the beginning of the ring.
 291 */
 292static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 293			struct xhci_ring *ring, unsigned int cycle_state,
 294			enum xhci_ring_type type)
 295{
 296	struct xhci_segment	*seg = ring->first_seg;
 297	int i;
 298
 299	do {
 300		memset(seg->trbs, 0,
 301				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 302		if (cycle_state == 0) {
 303			for (i = 0; i < TRBS_PER_SEGMENT; i++)
 304				seg->trbs[i].link.control |= TRB_CYCLE;
 305		}
 306		/* All endpoint rings have link TRBs */
 307		xhci_link_segments(xhci, seg, seg->next, type);
 308		seg = seg->next;
 309	} while (seg != ring->first_seg);
 310	ring->type = type;
 311	xhci_initialize_ring_info(ring, cycle_state);
 312	/* td list should be empty since all URBs have been cancelled,
 313	 * but just in case...
 314	 */
 315	INIT_LIST_HEAD(&ring->td_list);
 316}
 317
 318/*
 319 * Expand an existing ring.
 320 * Look for a cached ring or allocate a new ring which has same segment numbers
 321 * and link the two rings.
 322 */
 323int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 324				unsigned int num_trbs, gfp_t flags)
 325{
 326	struct xhci_segment	*first;
 327	struct xhci_segment	*last;
 328	unsigned int		num_segs;
 329	unsigned int		num_segs_needed;
 330	int			ret;
 331
 332	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 333				(TRBS_PER_SEGMENT - 1);
 334
 335	/* Allocate number of segments we needed, or double the ring size */
 336	num_segs = ring->num_segs > num_segs_needed ?
 337			ring->num_segs : num_segs_needed;
 338
 339	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 340			num_segs, ring->cycle_state, ring->type, flags);
 341	if (ret)
 342		return -ENOMEM;
 343
 344	xhci_link_rings(xhci, ring, first, last, num_segs);
 345	xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
 346			ring->num_segs);
 347
 348	return 0;
 349}
 350
 351#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 352
 353static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 354						    int type, gfp_t flags)
 355{
 356	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
 357	if (!ctx)
 358		return NULL;
 359
 360	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
 361	ctx->type = type;
 362	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 363	if (type == XHCI_CTX_TYPE_INPUT)
 364		ctx->size += CTX_SIZE(xhci->hcc_params);
 365
 366	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 367	memset(ctx->bytes, 0, ctx->size);
 368	return ctx;
 369}
 370
 371static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 372			     struct xhci_container_ctx *ctx)
 373{
 374	if (!ctx)
 375		return;
 376	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 377	kfree(ctx);
 378}
 379
 380struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 381					      struct xhci_container_ctx *ctx)
 382{
 383	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
 384	return (struct xhci_input_control_ctx *)ctx->bytes;
 385}
 386
 387struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 388					struct xhci_container_ctx *ctx)
 389{
 390	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 391		return (struct xhci_slot_ctx *)ctx->bytes;
 392
 393	return (struct xhci_slot_ctx *)
 394		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 395}
 396
 397struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 398				    struct xhci_container_ctx *ctx,
 399				    unsigned int ep_index)
 400{
 401	/* increment ep index by offset of start of ep ctx array */
 402	ep_index++;
 403	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 404		ep_index++;
 405
 406	return (struct xhci_ep_ctx *)
 407		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 408}
 409
 410
 411/***************** Streams structures manipulation *************************/
 412
 413static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 414		unsigned int num_stream_ctxs,
 415		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 416{
 417	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 418
 419	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 420		dma_free_coherent(&pdev->dev,
 421				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 422				stream_ctx, dma);
 423	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 424		return dma_pool_free(xhci->small_streams_pool,
 425				stream_ctx, dma);
 426	else
 427		return dma_pool_free(xhci->medium_streams_pool,
 428				stream_ctx, dma);
 429}
 430
 431/*
 432 * The stream context array for each endpoint with bulk streams enabled can
 433 * vary in size, based on:
 434 *  - how many streams the endpoint supports,
 435 *  - the maximum primary stream array size the host controller supports,
 436 *  - and how many streams the device driver asks for.
 437 *
 438 * The stream context array must be a power of 2, and can be as small as
 439 * 64 bytes or as large as 1MB.
 440 */
 441static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 442		unsigned int num_stream_ctxs, dma_addr_t *dma,
 443		gfp_t mem_flags)
 444{
 445	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 446
 447	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 448		return dma_alloc_coherent(&pdev->dev,
 449				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 450				dma, mem_flags);
 451	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 452		return dma_pool_alloc(xhci->small_streams_pool,
 453				mem_flags, dma);
 454	else
 455		return dma_pool_alloc(xhci->medium_streams_pool,
 456				mem_flags, dma);
 457}
 458
 459struct xhci_ring *xhci_dma_to_transfer_ring(
 460		struct xhci_virt_ep *ep,
 461		u64 address)
 462{
 463	if (ep->ep_state & EP_HAS_STREAMS)
 464		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 465				address >> SEGMENT_SHIFT);
 466	return ep->ring;
 467}
 468
 469/* Only use this when you know stream_info is valid */
 470#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 471static struct xhci_ring *dma_to_stream_ring(
 472		struct xhci_stream_info *stream_info,
 473		u64 address)
 474{
 475	return radix_tree_lookup(&stream_info->trb_address_map,
 476			address >> SEGMENT_SHIFT);
 477}
 478#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 479
 480struct xhci_ring *xhci_stream_id_to_ring(
 481		struct xhci_virt_device *dev,
 482		unsigned int ep_index,
 483		unsigned int stream_id)
 484{
 485	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 486
 487	if (stream_id == 0)
 488		return ep->ring;
 489	if (!ep->stream_info)
 490		return NULL;
 491
 492	if (stream_id > ep->stream_info->num_streams)
 493		return NULL;
 494	return ep->stream_info->stream_rings[stream_id];
 495}
 496
 497#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 498static int xhci_test_radix_tree(struct xhci_hcd *xhci,
 499		unsigned int num_streams,
 500		struct xhci_stream_info *stream_info)
 501{
 502	u32 cur_stream;
 503	struct xhci_ring *cur_ring;
 504	u64 addr;
 505
 506	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 507		struct xhci_ring *mapped_ring;
 508		int trb_size = sizeof(union xhci_trb);
 509
 510		cur_ring = stream_info->stream_rings[cur_stream];
 511		for (addr = cur_ring->first_seg->dma;
 512				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
 513				addr += trb_size) {
 514			mapped_ring = dma_to_stream_ring(stream_info, addr);
 515			if (cur_ring != mapped_ring) {
 516				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
 517						"didn't map to stream ID %u; "
 518						"mapped to ring %p\n",
 519						(unsigned long long) addr,
 520						cur_stream,
 521						mapped_ring);
 522				return -EINVAL;
 523			}
 524		}
 525		/* One TRB after the end of the ring segment shouldn't return a
 526		 * pointer to the current ring (although it may be a part of a
 527		 * different ring).
 528		 */
 529		mapped_ring = dma_to_stream_ring(stream_info, addr);
 530		if (mapped_ring != cur_ring) {
 531			/* One TRB before should also fail */
 532			addr = cur_ring->first_seg->dma - trb_size;
 533			mapped_ring = dma_to_stream_ring(stream_info, addr);
 534		}
 535		if (mapped_ring == cur_ring) {
 536			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
 537					"mapped to valid stream ID %u; "
 538					"mapped ring = %p\n",
 539					(unsigned long long) addr,
 540					cur_stream,
 541					mapped_ring);
 542			return -EINVAL;
 543		}
 544	}
 545	return 0;
 546}
 547#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 548
 549/*
 550 * Change an endpoint's internal structure so it supports stream IDs.  The
 551 * number of requested streams includes stream 0, which cannot be used by device
 552 * drivers.
 553 *
 554 * The number of stream contexts in the stream context array may be bigger than
 555 * the number of streams the driver wants to use.  This is because the number of
 556 * stream context array entries must be a power of two.
 557 *
 558 * We need a radix tree for mapping physical addresses of TRBs to which stream
 559 * ID they belong to.  We need to do this because the host controller won't tell
 560 * us which stream ring the TRB came from.  We could store the stream ID in an
 561 * event data TRB, but that doesn't help us for the cancellation case, since the
 562 * endpoint may stop before it reaches that event data TRB.
 563 *
 564 * The radix tree maps the upper portion of the TRB DMA address to a ring
 565 * segment that has the same upper portion of DMA addresses.  For example, say I
 566 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 567 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 568 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 569 * pass the radix tree a key to get the right stream ID:
 570 *
 571 * 	0x10c90fff >> 10 = 0x43243
 572 * 	0x10c912c0 >> 10 = 0x43244
 573 * 	0x10c91400 >> 10 = 0x43245
 574 *
 575 * Obviously, only those TRBs with DMA addresses that are within the segment
 576 * will make the radix tree return the stream ID for that ring.
 577 *
 578 * Caveats for the radix tree:
 579 *
 580 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 581 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 582 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 583 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 584 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 585 * extended systems (where the DMA address can be bigger than 32-bits),
 586 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 587 */
 588struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 589		unsigned int num_stream_ctxs,
 590		unsigned int num_streams, gfp_t mem_flags)
 591{
 592	struct xhci_stream_info *stream_info;
 593	u32 cur_stream;
 594	struct xhci_ring *cur_ring;
 595	unsigned long key;
 596	u64 addr;
 597	int ret;
 598
 599	xhci_dbg(xhci, "Allocating %u streams and %u "
 600			"stream context array entries.\n",
 601			num_streams, num_stream_ctxs);
 602	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 603		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 604		return NULL;
 605	}
 606	xhci->cmd_ring_reserved_trbs++;
 607
 608	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 609	if (!stream_info)
 610		goto cleanup_trbs;
 611
 612	stream_info->num_streams = num_streams;
 613	stream_info->num_stream_ctxs = num_stream_ctxs;
 614
 615	/* Initialize the array of virtual pointers to stream rings. */
 616	stream_info->stream_rings = kzalloc(
 617			sizeof(struct xhci_ring *)*num_streams,
 618			mem_flags);
 619	if (!stream_info->stream_rings)
 620		goto cleanup_info;
 621
 622	/* Initialize the array of DMA addresses for stream rings for the HW. */
 623	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 624			num_stream_ctxs, &stream_info->ctx_array_dma,
 625			mem_flags);
 626	if (!stream_info->stream_ctx_array)
 627		goto cleanup_ctx;
 628	memset(stream_info->stream_ctx_array, 0,
 629			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 630
 631	/* Allocate everything needed to free the stream rings later */
 632	stream_info->free_streams_command =
 633		xhci_alloc_command(xhci, true, true, mem_flags);
 634	if (!stream_info->free_streams_command)
 635		goto cleanup_ctx;
 636
 637	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 638
 639	/* Allocate rings for all the streams that the driver will use,
 640	 * and add their segment DMA addresses to the radix tree.
 641	 * Stream 0 is reserved.
 642	 */
 643	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 644		stream_info->stream_rings[cur_stream] =
 645			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
 646		cur_ring = stream_info->stream_rings[cur_stream];
 647		if (!cur_ring)
 648			goto cleanup_rings;
 649		cur_ring->stream_id = cur_stream;
 650		/* Set deq ptr, cycle bit, and stream context type */
 651		addr = cur_ring->first_seg->dma |
 652			SCT_FOR_CTX(SCT_PRI_TR) |
 653			cur_ring->cycle_state;
 654		stream_info->stream_ctx_array[cur_stream].stream_ring =
 655			cpu_to_le64(addr);
 656		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 657				cur_stream, (unsigned long long) addr);
 658
 659		key = (unsigned long)
 660			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
 661		ret = radix_tree_insert(&stream_info->trb_address_map,
 662				key, cur_ring);
 663		if (ret) {
 664			xhci_ring_free(xhci, cur_ring);
 665			stream_info->stream_rings[cur_stream] = NULL;
 666			goto cleanup_rings;
 667		}
 668	}
 669	/* Leave the other unused stream ring pointers in the stream context
 670	 * array initialized to zero.  This will cause the xHC to give us an
 671	 * error if the device asks for a stream ID we don't have setup (if it
 672	 * was any other way, the host controller would assume the ring is
 673	 * "empty" and wait forever for data to be queued to that stream ID).
 674	 */
 675#if XHCI_DEBUG
 676	/* Do a little test on the radix tree to make sure it returns the
 677	 * correct values.
 678	 */
 679	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
 680		goto cleanup_rings;
 681#endif
 682
 683	return stream_info;
 684
 685cleanup_rings:
 686	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 687		cur_ring = stream_info->stream_rings[cur_stream];
 688		if (cur_ring) {
 689			addr = cur_ring->first_seg->dma;
 690			radix_tree_delete(&stream_info->trb_address_map,
 691					addr >> SEGMENT_SHIFT);
 692			xhci_ring_free(xhci, cur_ring);
 693			stream_info->stream_rings[cur_stream] = NULL;
 694		}
 695	}
 696	xhci_free_command(xhci, stream_info->free_streams_command);
 697cleanup_ctx:
 698	kfree(stream_info->stream_rings);
 699cleanup_info:
 700	kfree(stream_info);
 701cleanup_trbs:
 702	xhci->cmd_ring_reserved_trbs--;
 703	return NULL;
 704}
 705/*
 706 * Sets the MaxPStreams field and the Linear Stream Array field.
 707 * Sets the dequeue pointer to the stream context array.
 708 */
 709void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 710		struct xhci_ep_ctx *ep_ctx,
 711		struct xhci_stream_info *stream_info)
 712{
 713	u32 max_primary_streams;
 714	/* MaxPStreams is the number of stream context array entries, not the
 715	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 716	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 717	 */
 718	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 719	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
 720			1 << (max_primary_streams + 1));
 721	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 722	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 723				       | EP_HAS_LSA);
 724	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 725}
 726
 727/*
 728 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 729 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 730 * not at the beginning of the ring).
 731 */
 732void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 733		struct xhci_ep_ctx *ep_ctx,
 734		struct xhci_virt_ep *ep)
 735{
 736	dma_addr_t addr;
 737	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 738	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 739	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 740}
 741
 742/* Frees all stream contexts associated with the endpoint,
 743 *
 744 * Caller should fix the endpoint context streams fields.
 745 */
 746void xhci_free_stream_info(struct xhci_hcd *xhci,
 747		struct xhci_stream_info *stream_info)
 748{
 749	int cur_stream;
 750	struct xhci_ring *cur_ring;
 751	dma_addr_t addr;
 752
 753	if (!stream_info)
 754		return;
 755
 756	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 757			cur_stream++) {
 758		cur_ring = stream_info->stream_rings[cur_stream];
 759		if (cur_ring) {
 760			addr = cur_ring->first_seg->dma;
 761			radix_tree_delete(&stream_info->trb_address_map,
 762					addr >> SEGMENT_SHIFT);
 763			xhci_ring_free(xhci, cur_ring);
 764			stream_info->stream_rings[cur_stream] = NULL;
 765		}
 766	}
 767	xhci_free_command(xhci, stream_info->free_streams_command);
 768	xhci->cmd_ring_reserved_trbs--;
 769	if (stream_info->stream_ctx_array)
 770		xhci_free_stream_ctx(xhci,
 771				stream_info->num_stream_ctxs,
 772				stream_info->stream_ctx_array,
 773				stream_info->ctx_array_dma);
 774
 775	if (stream_info)
 776		kfree(stream_info->stream_rings);
 777	kfree(stream_info);
 778}
 779
 780
 781/***************** Device context manipulation *************************/
 782
 783static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 784		struct xhci_virt_ep *ep)
 785{
 786	init_timer(&ep->stop_cmd_timer);
 787	ep->stop_cmd_timer.data = (unsigned long) ep;
 788	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 789	ep->xhci = xhci;
 790}
 791
 792static void xhci_free_tt_info(struct xhci_hcd *xhci,
 793		struct xhci_virt_device *virt_dev,
 794		int slot_id)
 795{
 796	struct list_head *tt_list_head;
 797	struct xhci_tt_bw_info *tt_info, *next;
 798	bool slot_found = false;
 799
 800	/* If the device never made it past the Set Address stage,
 801	 * it may not have the real_port set correctly.
 802	 */
 803	if (virt_dev->real_port == 0 ||
 804			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 805		xhci_dbg(xhci, "Bad real port.\n");
 806		return;
 807	}
 808
 809	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 810	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 811		/* Multi-TT hubs will have more than one entry */
 812		if (tt_info->slot_id == slot_id) {
 813			slot_found = true;
 814			list_del(&tt_info->tt_list);
 815			kfree(tt_info);
 816		} else if (slot_found) {
 817			break;
 818		}
 819	}
 820}
 821
 822int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 823		struct xhci_virt_device *virt_dev,
 824		struct usb_device *hdev,
 825		struct usb_tt *tt, gfp_t mem_flags)
 826{
 827	struct xhci_tt_bw_info		*tt_info;
 828	unsigned int			num_ports;
 829	int				i, j;
 830
 831	if (!tt->multi)
 832		num_ports = 1;
 833	else
 834		num_ports = hdev->maxchild;
 835
 836	for (i = 0; i < num_ports; i++, tt_info++) {
 837		struct xhci_interval_bw_table *bw_table;
 838
 839		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 840		if (!tt_info)
 841			goto free_tts;
 842		INIT_LIST_HEAD(&tt_info->tt_list);
 843		list_add(&tt_info->tt_list,
 844				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 845		tt_info->slot_id = virt_dev->udev->slot_id;
 846		if (tt->multi)
 847			tt_info->ttport = i+1;
 848		bw_table = &tt_info->bw_table;
 849		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 850			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 851	}
 852	return 0;
 853
 854free_tts:
 855	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 856	return -ENOMEM;
 857}
 858
 859
 860/* All the xhci_tds in the ring's TD list should be freed at this point.
 861 * Should be called with xhci->lock held if there is any chance the TT lists
 862 * will be manipulated by the configure endpoint, allocate device, or update
 863 * hub functions while this function is removing the TT entries from the list.
 864 */
 865void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 866{
 867	struct xhci_virt_device *dev;
 868	int i;
 869	int old_active_eps = 0;
 870
 871	/* Slot ID 0 is reserved */
 872	if (slot_id == 0 || !xhci->devs[slot_id])
 873		return;
 874
 875	dev = xhci->devs[slot_id];
 876	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 877	if (!dev)
 878		return;
 879
 880	if (dev->tt_info)
 881		old_active_eps = dev->tt_info->active_eps;
 882
 883	for (i = 0; i < 31; ++i) {
 884		if (dev->eps[i].ring)
 885			xhci_ring_free(xhci, dev->eps[i].ring);
 886		if (dev->eps[i].stream_info)
 887			xhci_free_stream_info(xhci,
 888					dev->eps[i].stream_info);
 889		/* Endpoints on the TT/root port lists should have been removed
 890		 * when usb_disable_device() was called for the device.
 891		 * We can't drop them anyway, because the udev might have gone
 892		 * away by this point, and we can't tell what speed it was.
 893		 */
 894		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 895			xhci_warn(xhci, "Slot %u endpoint %u "
 896					"not removed from BW list!\n",
 897					slot_id, i);
 898	}
 899	/* If this is a hub, free the TT(s) from the TT list */
 900	xhci_free_tt_info(xhci, dev, slot_id);
 901	/* If necessary, update the number of active TTs on this root port */
 902	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 903
 904	if (dev->ring_cache) {
 905		for (i = 0; i < dev->num_rings_cached; i++)
 906			xhci_ring_free(xhci, dev->ring_cache[i]);
 907		kfree(dev->ring_cache);
 908	}
 909
 910	if (dev->in_ctx)
 911		xhci_free_container_ctx(xhci, dev->in_ctx);
 912	if (dev->out_ctx)
 913		xhci_free_container_ctx(xhci, dev->out_ctx);
 914
 915	kfree(xhci->devs[slot_id]);
 916	xhci->devs[slot_id] = NULL;
 917}
 918
 919int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 920		struct usb_device *udev, gfp_t flags)
 921{
 922	struct xhci_virt_device *dev;
 923	int i;
 924
 925	/* Slot ID 0 is reserved */
 926	if (slot_id == 0 || xhci->devs[slot_id]) {
 927		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 928		return 0;
 929	}
 930
 931	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 932	if (!xhci->devs[slot_id])
 933		return 0;
 934	dev = xhci->devs[slot_id];
 935
 936	/* Allocate the (output) device context that will be used in the HC. */
 937	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 938	if (!dev->out_ctx)
 939		goto fail;
 940
 941	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 942			(unsigned long long)dev->out_ctx->dma);
 943
 944	/* Allocate the (input) device context for address device command */
 945	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 946	if (!dev->in_ctx)
 947		goto fail;
 948
 949	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 950			(unsigned long long)dev->in_ctx->dma);
 951
 952	/* Initialize the cancellation list and watchdog timers for each ep */
 953	for (i = 0; i < 31; i++) {
 954		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 955		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 956		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
 957	}
 958
 959	/* Allocate endpoint 0 ring */
 960	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
 961	if (!dev->eps[0].ring)
 962		goto fail;
 963
 964	/* Allocate pointers to the ring cache */
 965	dev->ring_cache = kzalloc(
 966			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
 967			flags);
 968	if (!dev->ring_cache)
 969		goto fail;
 970	dev->num_rings_cached = 0;
 971
 972	init_completion(&dev->cmd_completion);
 973	INIT_LIST_HEAD(&dev->cmd_list);
 974	dev->udev = udev;
 975
 976	/* Point to output device context in dcbaa. */
 977	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
 978	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
 979		 slot_id,
 980		 &xhci->dcbaa->dev_context_ptrs[slot_id],
 981		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
 982
 983	return 1;
 984fail:
 985	xhci_free_virt_device(xhci, slot_id);
 986	return 0;
 987}
 988
 989void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
 990		struct usb_device *udev)
 991{
 992	struct xhci_virt_device *virt_dev;
 993	struct xhci_ep_ctx	*ep0_ctx;
 994	struct xhci_ring	*ep_ring;
 995
 996	virt_dev = xhci->devs[udev->slot_id];
 997	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
 998	ep_ring = virt_dev->eps[0].ring;
 999	/*
1000	 * FIXME we don't keep track of the dequeue pointer very well after a
1001	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1002	 * host to our enqueue pointer.  This should only be called after a
1003	 * configured device has reset, so all control transfers should have
1004	 * been completed or cancelled before the reset.
1005	 */
1006	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1007							ep_ring->enqueue)
1008				   | ep_ring->cycle_state);
1009}
1010
1011/*
1012 * The xHCI roothub may have ports of differing speeds in any order in the port
1013 * status registers.  xhci->port_array provides an array of the port speed for
1014 * each offset into the port status registers.
1015 *
1016 * The xHCI hardware wants to know the roothub port number that the USB device
1017 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1018 * know is the index of that port under either the USB 2.0 or the USB 3.0
1019 * roothub, but that doesn't give us the real index into the HW port status
1020 * registers.  Scan through the xHCI roothub port array, looking for the Nth
1021 * entry of the correct port speed.  Return the port number of that entry.
1022 */
1023static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1024		struct usb_device *udev)
1025{
1026	struct usb_device *top_dev;
1027	unsigned int num_similar_speed_ports;
1028	unsigned int faked_port_num;
1029	int i;
1030
1031	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1032			top_dev = top_dev->parent)
1033		/* Found device below root hub */;
1034	faked_port_num = top_dev->portnum;
1035	for (i = 0, num_similar_speed_ports = 0;
1036			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
1037		u8 port_speed = xhci->port_array[i];
1038
1039		/*
1040		 * Skip ports that don't have known speeds, or have duplicate
1041		 * Extended Capabilities port speed entries.
1042		 */
1043		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1044			continue;
1045
1046		/*
1047		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1048		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1049		 * matches the device speed, it's a similar speed port.
1050		 */
1051		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
1052			num_similar_speed_ports++;
1053		if (num_similar_speed_ports == faked_port_num)
1054			/* Roothub ports are numbered from 1 to N */
1055			return i+1;
1056	}
1057	return 0;
1058}
1059
1060/* Setup an xHCI virtual device for a Set Address command */
1061int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1062{
1063	struct xhci_virt_device *dev;
1064	struct xhci_ep_ctx	*ep0_ctx;
1065	struct xhci_slot_ctx    *slot_ctx;
 
1066	u32			port_num;
1067	struct usb_device *top_dev;
1068
1069	dev = xhci->devs[udev->slot_id];
1070	/* Slot ID 0 is reserved */
1071	if (udev->slot_id == 0 || !dev) {
1072		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1073				udev->slot_id);
1074		return -EINVAL;
1075	}
1076	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
 
1077	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1078
 
 
 
1079	/* 3) Only the control endpoint is valid - one endpoint context */
1080	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1081	switch (udev->speed) {
1082	case USB_SPEED_SUPER:
1083		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1084		break;
1085	case USB_SPEED_HIGH:
1086		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1087		break;
1088	case USB_SPEED_FULL:
1089		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1090		break;
1091	case USB_SPEED_LOW:
1092		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1093		break;
1094	case USB_SPEED_WIRELESS:
1095		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1096		return -EINVAL;
1097		break;
1098	default:
1099		/* Speed was set earlier, this shouldn't happen. */
1100		BUG();
1101	}
1102	/* Find the root hub port this device is under */
1103	port_num = xhci_find_real_port_number(xhci, udev);
1104	if (!port_num)
1105		return -EINVAL;
1106	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1107	/* Set the port number in the virtual_device to the faked port number */
1108	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1109			top_dev = top_dev->parent)
1110		/* Found device below root hub */;
1111	dev->fake_port = top_dev->portnum;
1112	dev->real_port = port_num;
1113	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1114	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1115
1116	/* Find the right bandwidth table that this device will be a part of.
1117	 * If this is a full speed device attached directly to a root port (or a
1118	 * decendent of one), it counts as a primary bandwidth domain, not a
1119	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1120	 * will never be created for the HS root hub.
1121	 */
1122	if (!udev->tt || !udev->tt->hub->parent) {
1123		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1124	} else {
1125		struct xhci_root_port_bw_info *rh_bw;
1126		struct xhci_tt_bw_info *tt_bw;
1127
1128		rh_bw = &xhci->rh_bw[port_num - 1];
1129		/* Find the right TT. */
1130		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1131			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1132				continue;
1133
1134			if (!dev->udev->tt->multi ||
1135					(udev->tt->multi &&
1136					 tt_bw->ttport == dev->udev->ttport)) {
1137				dev->bw_table = &tt_bw->bw_table;
1138				dev->tt_info = tt_bw;
1139				break;
1140			}
1141		}
1142		if (!dev->tt_info)
1143			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1144	}
1145
1146	/* Is this a LS/FS device under an external HS hub? */
1147	if (udev->tt && udev->tt->hub->parent) {
1148		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1149						(udev->ttport << 8));
1150		if (udev->tt->multi)
1151			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1152	}
1153	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1154	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1155
1156	/* Step 4 - ring already allocated */
1157	/* Step 5 */
1158	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1159	/*
1160	 * XXX: Not sure about wireless USB devices.
1161	 */
1162	switch (udev->speed) {
1163	case USB_SPEED_SUPER:
1164		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1165		break;
1166	case USB_SPEED_HIGH:
1167	/* USB core guesses at a 64-byte max packet first for FS devices */
1168	case USB_SPEED_FULL:
1169		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1170		break;
1171	case USB_SPEED_LOW:
1172		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1173		break;
1174	case USB_SPEED_WIRELESS:
1175		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1176		return -EINVAL;
1177		break;
1178	default:
1179		/* New speed? */
1180		BUG();
1181	}
1182	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1183	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1184
1185	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1186				   dev->eps[0].ring->cycle_state);
1187
1188	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1189
1190	return 0;
1191}
1192
1193/*
1194 * Convert interval expressed as 2^(bInterval - 1) == interval into
1195 * straight exponent value 2^n == interval.
1196 *
1197 */
1198static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1199		struct usb_host_endpoint *ep)
1200{
1201	unsigned int interval;
1202
1203	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1204	if (interval != ep->desc.bInterval - 1)
1205		dev_warn(&udev->dev,
1206			 "ep %#x - rounding interval to %d %sframes\n",
1207			 ep->desc.bEndpointAddress,
1208			 1 << interval,
1209			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1210
1211	if (udev->speed == USB_SPEED_FULL) {
1212		/*
1213		 * Full speed isoc endpoints specify interval in frames,
1214		 * not microframes. We are using microframes everywhere,
1215		 * so adjust accordingly.
1216		 */
1217		interval += 3;	/* 1 frame = 2^3 uframes */
1218	}
1219
1220	return interval;
1221}
1222
1223/*
1224 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1225 * microframes, rounded down to nearest power of 2.
1226 */
1227static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1228		struct usb_host_endpoint *ep, unsigned int desc_interval,
1229		unsigned int min_exponent, unsigned int max_exponent)
1230{
1231	unsigned int interval;
1232
1233	interval = fls(desc_interval) - 1;
1234	interval = clamp_val(interval, min_exponent, max_exponent);
1235	if ((1 << interval) != desc_interval)
1236		dev_warn(&udev->dev,
1237			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1238			 ep->desc.bEndpointAddress,
1239			 1 << interval,
1240			 desc_interval);
1241
1242	return interval;
1243}
1244
1245static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1246		struct usb_host_endpoint *ep)
1247{
1248	return xhci_microframes_to_exponent(udev, ep,
1249			ep->desc.bInterval, 0, 15);
1250}
1251
1252
1253static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1254		struct usb_host_endpoint *ep)
1255{
1256	return xhci_microframes_to_exponent(udev, ep,
1257			ep->desc.bInterval * 8, 3, 10);
1258}
1259
1260/* Return the polling or NAK interval.
1261 *
1262 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1263 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1264 *
1265 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1266 * is set to 0.
1267 */
1268static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1269		struct usb_host_endpoint *ep)
1270{
1271	unsigned int interval = 0;
1272
1273	switch (udev->speed) {
1274	case USB_SPEED_HIGH:
1275		/* Max NAK rate */
1276		if (usb_endpoint_xfer_control(&ep->desc) ||
1277		    usb_endpoint_xfer_bulk(&ep->desc)) {
1278			interval = xhci_parse_microframe_interval(udev, ep);
1279			break;
1280		}
1281		/* Fall through - SS and HS isoc/int have same decoding */
1282
1283	case USB_SPEED_SUPER:
1284		if (usb_endpoint_xfer_int(&ep->desc) ||
1285		    usb_endpoint_xfer_isoc(&ep->desc)) {
1286			interval = xhci_parse_exponent_interval(udev, ep);
1287		}
1288		break;
1289
1290	case USB_SPEED_FULL:
1291		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1292			interval = xhci_parse_exponent_interval(udev, ep);
1293			break;
1294		}
1295		/*
1296		 * Fall through for interrupt endpoint interval decoding
1297		 * since it uses the same rules as low speed interrupt
1298		 * endpoints.
1299		 */
1300
1301	case USB_SPEED_LOW:
1302		if (usb_endpoint_xfer_int(&ep->desc) ||
1303		    usb_endpoint_xfer_isoc(&ep->desc)) {
1304
1305			interval = xhci_parse_frame_interval(udev, ep);
1306		}
1307		break;
1308
1309	default:
1310		BUG();
1311	}
1312	return EP_INTERVAL(interval);
1313}
1314
1315/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1316 * High speed endpoint descriptors can define "the number of additional
1317 * transaction opportunities per microframe", but that goes in the Max Burst
1318 * endpoint context field.
1319 */
1320static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1321		struct usb_host_endpoint *ep)
1322{
1323	if (udev->speed != USB_SPEED_SUPER ||
1324			!usb_endpoint_xfer_isoc(&ep->desc))
1325		return 0;
1326	return ep->ss_ep_comp.bmAttributes;
1327}
1328
1329static u32 xhci_get_endpoint_type(struct usb_device *udev,
1330		struct usb_host_endpoint *ep)
1331{
1332	int in;
1333	u32 type;
1334
1335	in = usb_endpoint_dir_in(&ep->desc);
1336	if (usb_endpoint_xfer_control(&ep->desc)) {
1337		type = EP_TYPE(CTRL_EP);
1338	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1339		if (in)
1340			type = EP_TYPE(BULK_IN_EP);
1341		else
1342			type = EP_TYPE(BULK_OUT_EP);
1343	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1344		if (in)
1345			type = EP_TYPE(ISOC_IN_EP);
1346		else
1347			type = EP_TYPE(ISOC_OUT_EP);
1348	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1349		if (in)
1350			type = EP_TYPE(INT_IN_EP);
1351		else
1352			type = EP_TYPE(INT_OUT_EP);
1353	} else {
1354		BUG();
1355	}
1356	return type;
1357}
1358
1359/* Return the maximum endpoint service interval time (ESIT) payload.
1360 * Basically, this is the maxpacket size, multiplied by the burst size
1361 * and mult size.
1362 */
1363static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1364		struct usb_device *udev,
1365		struct usb_host_endpoint *ep)
1366{
1367	int max_burst;
1368	int max_packet;
1369
1370	/* Only applies for interrupt or isochronous endpoints */
1371	if (usb_endpoint_xfer_control(&ep->desc) ||
1372			usb_endpoint_xfer_bulk(&ep->desc))
1373		return 0;
1374
1375	if (udev->speed == USB_SPEED_SUPER)
1376		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1377
1378	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1379	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1380	/* A 0 in max burst means 1 transfer per ESIT */
1381	return max_packet * (max_burst + 1);
1382}
1383
1384/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1385 * Drivers will have to call usb_alloc_streams() to do that.
1386 */
1387int xhci_endpoint_init(struct xhci_hcd *xhci,
1388		struct xhci_virt_device *virt_dev,
1389		struct usb_device *udev,
1390		struct usb_host_endpoint *ep,
1391		gfp_t mem_flags)
1392{
1393	unsigned int ep_index;
1394	struct xhci_ep_ctx *ep_ctx;
1395	struct xhci_ring *ep_ring;
1396	unsigned int max_packet;
1397	unsigned int max_burst;
1398	enum xhci_ring_type type;
1399	u32 max_esit_payload;
1400
1401	ep_index = xhci_get_endpoint_index(&ep->desc);
1402	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1403
1404	type = usb_endpoint_type(&ep->desc);
1405	/* Set up the endpoint ring */
1406	virt_dev->eps[ep_index].new_ring =
1407		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
 
 
 
 
 
 
 
 
 
 
1408	if (!virt_dev->eps[ep_index].new_ring) {
1409		/* Attempt to use the ring cache */
1410		if (virt_dev->num_rings_cached == 0)
1411			return -ENOMEM;
1412		virt_dev->eps[ep_index].new_ring =
1413			virt_dev->ring_cache[virt_dev->num_rings_cached];
1414		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1415		virt_dev->num_rings_cached--;
1416		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1417					1, type);
1418	}
1419	virt_dev->eps[ep_index].skip = false;
1420	ep_ring = virt_dev->eps[ep_index].new_ring;
1421	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1422
1423	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1424				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1425
1426	/* FIXME dig Mult and streams info out of ep companion desc */
1427
1428	/* Allow 3 retries for everything but isoc;
1429	 * CErr shall be set to 0 for Isoch endpoints.
1430	 */
1431	if (!usb_endpoint_xfer_isoc(&ep->desc))
1432		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1433	else
1434		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1435
1436	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1437
1438	/* Set the max packet size and max burst */
1439	switch (udev->speed) {
1440	case USB_SPEED_SUPER:
1441		max_packet = usb_endpoint_maxp(&ep->desc);
1442		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1443		/* dig out max burst from ep companion desc */
1444		max_packet = ep->ss_ep_comp.bMaxBurst;
1445		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1446		break;
1447	case USB_SPEED_HIGH:
1448		/* bits 11:12 specify the number of additional transaction
1449		 * opportunities per microframe (USB 2.0, section 9.6.6)
1450		 */
1451		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1452				usb_endpoint_xfer_int(&ep->desc)) {
1453			max_burst = (usb_endpoint_maxp(&ep->desc)
1454				     & 0x1800) >> 11;
1455			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1456		}
1457		/* Fall through */
1458	case USB_SPEED_FULL:
1459	case USB_SPEED_LOW:
1460		max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1461		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1462		break;
1463	default:
1464		BUG();
1465	}
1466	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1467	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1468
1469	/*
1470	 * XXX no idea how to calculate the average TRB buffer length for bulk
1471	 * endpoints, as the driver gives us no clue how big each scatter gather
1472	 * list entry (or buffer) is going to be.
1473	 *
1474	 * For isochronous and interrupt endpoints, we set it to the max
1475	 * available, until we have new API in the USB core to allow drivers to
1476	 * declare how much bandwidth they actually need.
1477	 *
1478	 * Normally, it would be calculated by taking the total of the buffer
1479	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1480	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1481	 * use Event Data TRBs, and we don't chain in a link TRB on short
1482	 * transfers, we're basically dividing by 1.
1483	 *
1484	 * xHCI 1.0 specification indicates that the Average TRB Length should
1485	 * be set to 8 for control endpoints.
1486	 */
1487	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1488		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1489	else
1490		ep_ctx->tx_info |=
1491			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1492
1493	/* FIXME Debug endpoint context */
1494	return 0;
1495}
1496
1497void xhci_endpoint_zero(struct xhci_hcd *xhci,
1498		struct xhci_virt_device *virt_dev,
1499		struct usb_host_endpoint *ep)
1500{
1501	unsigned int ep_index;
1502	struct xhci_ep_ctx *ep_ctx;
1503
1504	ep_index = xhci_get_endpoint_index(&ep->desc);
1505	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1506
1507	ep_ctx->ep_info = 0;
1508	ep_ctx->ep_info2 = 0;
1509	ep_ctx->deq = 0;
1510	ep_ctx->tx_info = 0;
1511	/* Don't free the endpoint ring until the set interface or configuration
1512	 * request succeeds.
1513	 */
1514}
1515
1516void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1517{
1518	bw_info->ep_interval = 0;
1519	bw_info->mult = 0;
1520	bw_info->num_packets = 0;
1521	bw_info->max_packet_size = 0;
1522	bw_info->type = 0;
1523	bw_info->max_esit_payload = 0;
1524}
1525
1526void xhci_update_bw_info(struct xhci_hcd *xhci,
1527		struct xhci_container_ctx *in_ctx,
1528		struct xhci_input_control_ctx *ctrl_ctx,
1529		struct xhci_virt_device *virt_dev)
1530{
1531	struct xhci_bw_info *bw_info;
1532	struct xhci_ep_ctx *ep_ctx;
1533	unsigned int ep_type;
1534	int i;
1535
1536	for (i = 1; i < 31; ++i) {
1537		bw_info = &virt_dev->eps[i].bw_info;
1538
1539		/* We can't tell what endpoint type is being dropped, but
1540		 * unconditionally clearing the bandwidth info for non-periodic
1541		 * endpoints should be harmless because the info will never be
1542		 * set in the first place.
1543		 */
1544		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1545			/* Dropped endpoint */
1546			xhci_clear_endpoint_bw_info(bw_info);
1547			continue;
1548		}
1549
1550		if (EP_IS_ADDED(ctrl_ctx, i)) {
1551			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1552			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1553
1554			/* Ignore non-periodic endpoints */
1555			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1556					ep_type != ISOC_IN_EP &&
1557					ep_type != INT_IN_EP)
1558				continue;
1559
1560			/* Added or changed endpoint */
1561			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1562					le32_to_cpu(ep_ctx->ep_info));
1563			/* Number of packets and mult are zero-based in the
1564			 * input context, but we want one-based for the
1565			 * interval table.
1566			 */
1567			bw_info->mult = CTX_TO_EP_MULT(
1568					le32_to_cpu(ep_ctx->ep_info)) + 1;
1569			bw_info->num_packets = CTX_TO_MAX_BURST(
1570					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1571			bw_info->max_packet_size = MAX_PACKET_DECODED(
1572					le32_to_cpu(ep_ctx->ep_info2));
1573			bw_info->type = ep_type;
1574			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1575					le32_to_cpu(ep_ctx->tx_info));
1576		}
1577	}
1578}
1579
1580/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1581 * Useful when you want to change one particular aspect of the endpoint and then
1582 * issue a configure endpoint command.
1583 */
1584void xhci_endpoint_copy(struct xhci_hcd *xhci,
1585		struct xhci_container_ctx *in_ctx,
1586		struct xhci_container_ctx *out_ctx,
1587		unsigned int ep_index)
1588{
1589	struct xhci_ep_ctx *out_ep_ctx;
1590	struct xhci_ep_ctx *in_ep_ctx;
1591
1592	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1593	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1594
1595	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1596	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1597	in_ep_ctx->deq = out_ep_ctx->deq;
1598	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1599}
1600
1601/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1602 * Useful when you want to change one particular aspect of the endpoint and then
1603 * issue a configure endpoint command.  Only the context entries field matters,
1604 * but we'll copy the whole thing anyway.
1605 */
1606void xhci_slot_copy(struct xhci_hcd *xhci,
1607		struct xhci_container_ctx *in_ctx,
1608		struct xhci_container_ctx *out_ctx)
1609{
1610	struct xhci_slot_ctx *in_slot_ctx;
1611	struct xhci_slot_ctx *out_slot_ctx;
1612
1613	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1614	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1615
1616	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1617	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1618	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1619	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1620}
1621
1622/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1623static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1624{
1625	int i;
1626	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1627	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1628
1629	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1630
1631	if (!num_sp)
1632		return 0;
1633
1634	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1635	if (!xhci->scratchpad)
1636		goto fail_sp;
1637
1638	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
 
1639				     num_sp * sizeof(u64),
1640				     &xhci->scratchpad->sp_dma, flags);
1641	if (!xhci->scratchpad->sp_array)
1642		goto fail_sp2;
1643
1644	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1645	if (!xhci->scratchpad->sp_buffers)
1646		goto fail_sp3;
1647
1648	xhci->scratchpad->sp_dma_buffers =
1649		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1650
1651	if (!xhci->scratchpad->sp_dma_buffers)
1652		goto fail_sp4;
1653
1654	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1655	for (i = 0; i < num_sp; i++) {
1656		dma_addr_t dma;
1657		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1658				flags);
1659		if (!buf)
1660			goto fail_sp5;
1661
1662		xhci->scratchpad->sp_array[i] = dma;
1663		xhci->scratchpad->sp_buffers[i] = buf;
1664		xhci->scratchpad->sp_dma_buffers[i] = dma;
1665	}
1666
1667	return 0;
1668
1669 fail_sp5:
1670	for (i = i - 1; i >= 0; i--) {
1671		dma_free_coherent(dev, xhci->page_size,
1672				    xhci->scratchpad->sp_buffers[i],
1673				    xhci->scratchpad->sp_dma_buffers[i]);
1674	}
1675	kfree(xhci->scratchpad->sp_dma_buffers);
1676
1677 fail_sp4:
1678	kfree(xhci->scratchpad->sp_buffers);
1679
1680 fail_sp3:
1681	dma_free_coherent(dev, num_sp * sizeof(u64),
1682			    xhci->scratchpad->sp_array,
1683			    xhci->scratchpad->sp_dma);
1684
1685 fail_sp2:
1686	kfree(xhci->scratchpad);
1687	xhci->scratchpad = NULL;
1688
1689 fail_sp:
1690	return -ENOMEM;
1691}
1692
1693static void scratchpad_free(struct xhci_hcd *xhci)
1694{
1695	int num_sp;
1696	int i;
1697	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1698
1699	if (!xhci->scratchpad)
1700		return;
1701
1702	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1703
1704	for (i = 0; i < num_sp; i++) {
1705		dma_free_coherent(&pdev->dev, xhci->page_size,
1706				    xhci->scratchpad->sp_buffers[i],
1707				    xhci->scratchpad->sp_dma_buffers[i]);
1708	}
1709	kfree(xhci->scratchpad->sp_dma_buffers);
1710	kfree(xhci->scratchpad->sp_buffers);
1711	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1712			    xhci->scratchpad->sp_array,
1713			    xhci->scratchpad->sp_dma);
1714	kfree(xhci->scratchpad);
1715	xhci->scratchpad = NULL;
1716}
1717
1718struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1719		bool allocate_in_ctx, bool allocate_completion,
1720		gfp_t mem_flags)
1721{
1722	struct xhci_command *command;
1723
1724	command = kzalloc(sizeof(*command), mem_flags);
1725	if (!command)
1726		return NULL;
1727
1728	if (allocate_in_ctx) {
1729		command->in_ctx =
1730			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1731					mem_flags);
1732		if (!command->in_ctx) {
1733			kfree(command);
1734			return NULL;
1735		}
1736	}
1737
1738	if (allocate_completion) {
1739		command->completion =
1740			kzalloc(sizeof(struct completion), mem_flags);
1741		if (!command->completion) {
1742			xhci_free_container_ctx(xhci, command->in_ctx);
1743			kfree(command);
1744			return NULL;
1745		}
1746		init_completion(command->completion);
1747	}
1748
1749	command->status = 0;
1750	INIT_LIST_HEAD(&command->cmd_list);
1751	return command;
1752}
1753
1754void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1755{
1756	if (urb_priv) {
1757		kfree(urb_priv->td[0]);
1758		kfree(urb_priv);
 
 
 
 
 
 
 
1759	}
 
1760}
1761
1762void xhci_free_command(struct xhci_hcd *xhci,
1763		struct xhci_command *command)
1764{
1765	xhci_free_container_ctx(xhci,
1766			command->in_ctx);
1767	kfree(command->completion);
1768	kfree(command);
1769}
1770
1771void xhci_mem_cleanup(struct xhci_hcd *xhci)
1772{
1773	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1774	struct dev_info	*dev_info, *next;
1775	struct xhci_cd  *cur_cd, *next_cd;
1776	unsigned long	flags;
1777	int size;
1778	int i, j, num_ports;
1779
1780	/* Free the Event Ring Segment Table and the actual Event Ring */
 
 
 
 
 
1781	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1782	if (xhci->erst.entries)
1783		dma_free_coherent(&pdev->dev, size,
1784				xhci->erst.entries, xhci->erst.erst_dma_addr);
1785	xhci->erst.entries = NULL;
1786	xhci_dbg(xhci, "Freed ERST\n");
1787	if (xhci->event_ring)
1788		xhci_ring_free(xhci, xhci->event_ring);
1789	xhci->event_ring = NULL;
1790	xhci_dbg(xhci, "Freed event ring\n");
1791
1792	if (xhci->lpm_command)
1793		xhci_free_command(xhci, xhci->lpm_command);
1794	xhci->cmd_ring_reserved_trbs = 0;
1795	if (xhci->cmd_ring)
1796		xhci_ring_free(xhci, xhci->cmd_ring);
1797	xhci->cmd_ring = NULL;
1798	xhci_dbg(xhci, "Freed command ring\n");
1799	list_for_each_entry_safe(cur_cd, next_cd,
1800			&xhci->cancel_cmd_list, cancel_cmd_list) {
1801		list_del(&cur_cd->cancel_cmd_list);
1802		kfree(cur_cd);
1803	}
1804
1805	for (i = 1; i < MAX_HC_SLOTS; ++i)
1806		xhci_free_virt_device(xhci, i);
1807
1808	if (xhci->segment_pool)
1809		dma_pool_destroy(xhci->segment_pool);
1810	xhci->segment_pool = NULL;
1811	xhci_dbg(xhci, "Freed segment pool\n");
1812
1813	if (xhci->device_pool)
1814		dma_pool_destroy(xhci->device_pool);
1815	xhci->device_pool = NULL;
1816	xhci_dbg(xhci, "Freed device context pool\n");
1817
1818	if (xhci->small_streams_pool)
1819		dma_pool_destroy(xhci->small_streams_pool);
1820	xhci->small_streams_pool = NULL;
1821	xhci_dbg(xhci, "Freed small stream array pool\n");
1822
1823	if (xhci->medium_streams_pool)
1824		dma_pool_destroy(xhci->medium_streams_pool);
1825	xhci->medium_streams_pool = NULL;
1826	xhci_dbg(xhci, "Freed medium stream array pool\n");
1827
 
1828	if (xhci->dcbaa)
1829		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1830				xhci->dcbaa, xhci->dcbaa->dma);
1831	xhci->dcbaa = NULL;
1832
1833	scratchpad_free(xhci);
1834
1835	spin_lock_irqsave(&xhci->lock, flags);
1836	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1837		list_del(&dev_info->list);
1838		kfree(dev_info);
1839	}
1840	spin_unlock_irqrestore(&xhci->lock, flags);
1841
1842	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1843	for (i = 0; i < num_ports; i++) {
1844		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1845		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1846			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1847			while (!list_empty(ep))
1848				list_del_init(ep->next);
1849		}
1850	}
1851
1852	for (i = 0; i < num_ports; i++) {
1853		struct xhci_tt_bw_info *tt, *n;
1854		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1855			list_del(&tt->tt_list);
1856			kfree(tt);
1857		}
1858	}
1859
1860	xhci->num_usb2_ports = 0;
1861	xhci->num_usb3_ports = 0;
1862	xhci->num_active_eps = 0;
1863	kfree(xhci->usb2_ports);
1864	kfree(xhci->usb3_ports);
1865	kfree(xhci->port_array);
1866	kfree(xhci->rh_bw);
1867
1868	xhci->page_size = 0;
1869	xhci->page_shift = 0;
1870	xhci->bus_state[0].bus_suspended = 0;
1871	xhci->bus_state[1].bus_suspended = 0;
1872}
1873
1874static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1875		struct xhci_segment *input_seg,
1876		union xhci_trb *start_trb,
1877		union xhci_trb *end_trb,
1878		dma_addr_t input_dma,
1879		struct xhci_segment *result_seg,
1880		char *test_name, int test_number)
1881{
1882	unsigned long long start_dma;
1883	unsigned long long end_dma;
1884	struct xhci_segment *seg;
1885
1886	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1887	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1888
1889	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1890	if (seg != result_seg) {
1891		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1892				test_name, test_number);
1893		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1894				"input DMA 0x%llx\n",
1895				input_seg,
1896				(unsigned long long) input_dma);
1897		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1898				"ending TRB %p (0x%llx DMA)\n",
1899				start_trb, start_dma,
1900				end_trb, end_dma);
1901		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1902				result_seg, seg);
1903		return -1;
1904	}
1905	return 0;
1906}
1907
1908/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1909static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1910{
1911	struct {
1912		dma_addr_t		input_dma;
1913		struct xhci_segment	*result_seg;
1914	} simple_test_vector [] = {
1915		/* A zeroed DMA field should fail */
1916		{ 0, NULL },
1917		/* One TRB before the ring start should fail */
1918		{ xhci->event_ring->first_seg->dma - 16, NULL },
1919		/* One byte before the ring start should fail */
1920		{ xhci->event_ring->first_seg->dma - 1, NULL },
1921		/* Starting TRB should succeed */
1922		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1923		/* Ending TRB should succeed */
1924		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1925			xhci->event_ring->first_seg },
1926		/* One byte after the ring end should fail */
1927		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1928		/* One TRB after the ring end should fail */
1929		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1930		/* An address of all ones should fail */
1931		{ (dma_addr_t) (~0), NULL },
1932	};
1933	struct {
1934		struct xhci_segment	*input_seg;
1935		union xhci_trb		*start_trb;
1936		union xhci_trb		*end_trb;
1937		dma_addr_t		input_dma;
1938		struct xhci_segment	*result_seg;
1939	} complex_test_vector [] = {
1940		/* Test feeding a valid DMA address from a different ring */
1941		{	.input_seg = xhci->event_ring->first_seg,
1942			.start_trb = xhci->event_ring->first_seg->trbs,
1943			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1944			.input_dma = xhci->cmd_ring->first_seg->dma,
1945			.result_seg = NULL,
1946		},
1947		/* Test feeding a valid end TRB from a different ring */
1948		{	.input_seg = xhci->event_ring->first_seg,
1949			.start_trb = xhci->event_ring->first_seg->trbs,
1950			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1951			.input_dma = xhci->cmd_ring->first_seg->dma,
1952			.result_seg = NULL,
1953		},
1954		/* Test feeding a valid start and end TRB from a different ring */
1955		{	.input_seg = xhci->event_ring->first_seg,
1956			.start_trb = xhci->cmd_ring->first_seg->trbs,
1957			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1958			.input_dma = xhci->cmd_ring->first_seg->dma,
1959			.result_seg = NULL,
1960		},
1961		/* TRB in this ring, but after this TD */
1962		{	.input_seg = xhci->event_ring->first_seg,
1963			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1964			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1965			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1966			.result_seg = NULL,
1967		},
1968		/* TRB in this ring, but before this TD */
1969		{	.input_seg = xhci->event_ring->first_seg,
1970			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1971			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1972			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1973			.result_seg = NULL,
1974		},
1975		/* TRB in this ring, but after this wrapped TD */
1976		{	.input_seg = xhci->event_ring->first_seg,
1977			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1978			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1979			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1980			.result_seg = NULL,
1981		},
1982		/* TRB in this ring, but before this wrapped TD */
1983		{	.input_seg = xhci->event_ring->first_seg,
1984			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1985			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1986			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1987			.result_seg = NULL,
1988		},
1989		/* TRB not in this ring, and we have a wrapped TD */
1990		{	.input_seg = xhci->event_ring->first_seg,
1991			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1992			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1993			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1994			.result_seg = NULL,
1995		},
1996	};
1997
1998	unsigned int num_tests;
1999	int i, ret;
2000
2001	num_tests = ARRAY_SIZE(simple_test_vector);
2002	for (i = 0; i < num_tests; i++) {
2003		ret = xhci_test_trb_in_td(xhci,
2004				xhci->event_ring->first_seg,
2005				xhci->event_ring->first_seg->trbs,
2006				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2007				simple_test_vector[i].input_dma,
2008				simple_test_vector[i].result_seg,
2009				"Simple", i);
2010		if (ret < 0)
2011			return ret;
2012	}
2013
2014	num_tests = ARRAY_SIZE(complex_test_vector);
2015	for (i = 0; i < num_tests; i++) {
2016		ret = xhci_test_trb_in_td(xhci,
2017				complex_test_vector[i].input_seg,
2018				complex_test_vector[i].start_trb,
2019				complex_test_vector[i].end_trb,
2020				complex_test_vector[i].input_dma,
2021				complex_test_vector[i].result_seg,
2022				"Complex", i);
2023		if (ret < 0)
2024			return ret;
2025	}
2026	xhci_dbg(xhci, "TRB math tests passed.\n");
2027	return 0;
2028}
2029
2030static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2031{
2032	u64 temp;
2033	dma_addr_t deq;
2034
2035	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2036			xhci->event_ring->dequeue);
2037	if (deq == 0 && !in_interrupt())
2038		xhci_warn(xhci, "WARN something wrong with SW event ring "
2039				"dequeue ptr.\n");
2040	/* Update HC event ring dequeue pointer */
2041	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2042	temp &= ERST_PTR_MASK;
2043	/* Don't clear the EHB bit (which is RW1C) because
2044	 * there might be more events to service.
2045	 */
2046	temp &= ~ERST_EHB;
2047	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2048			"preserving EHB bit\n");
2049	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2050			&xhci->ir_set->erst_dequeue);
2051}
2052
2053static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2054		__le32 __iomem *addr, u8 major_revision)
2055{
2056	u32 temp, port_offset, port_count;
2057	int i;
2058
2059	if (major_revision > 0x03) {
2060		xhci_warn(xhci, "Ignoring unknown port speed, "
2061				"Ext Cap %p, revision = 0x%x\n",
2062				addr, major_revision);
2063		/* Ignoring port protocol we can't understand. FIXME */
2064		return;
2065	}
2066
2067	/* Port offset and count in the third dword, see section 7.2 */
2068	temp = xhci_readl(xhci, addr + 2);
2069	port_offset = XHCI_EXT_PORT_OFF(temp);
2070	port_count = XHCI_EXT_PORT_COUNT(temp);
2071	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2072			"count = %u, revision = 0x%x\n",
2073			addr, port_offset, port_count, major_revision);
2074	/* Port count includes the current port offset */
2075	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2076		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2077		return;
2078
2079	/* Check the host's USB2 LPM capability */
2080	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2081			(temp & XHCI_L1C)) {
2082		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2083		xhci->sw_lpm_support = 1;
2084	}
2085
2086	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2087		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2088		xhci->sw_lpm_support = 1;
2089		if (temp & XHCI_HLC) {
2090			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2091			xhci->hw_lpm_support = 1;
2092		}
2093	}
2094
2095	port_offset--;
2096	for (i = port_offset; i < (port_offset + port_count); i++) {
2097		/* Duplicate entry.  Ignore the port if the revisions differ. */
2098		if (xhci->port_array[i] != 0) {
2099			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2100					" port %u\n", addr, i);
2101			xhci_warn(xhci, "Port was marked as USB %u, "
2102					"duplicated as USB %u\n",
2103					xhci->port_array[i], major_revision);
2104			/* Only adjust the roothub port counts if we haven't
2105			 * found a similar duplicate.
2106			 */
2107			if (xhci->port_array[i] != major_revision &&
2108				xhci->port_array[i] != DUPLICATE_ENTRY) {
2109				if (xhci->port_array[i] == 0x03)
2110					xhci->num_usb3_ports--;
2111				else
2112					xhci->num_usb2_ports--;
2113				xhci->port_array[i] = DUPLICATE_ENTRY;
2114			}
2115			/* FIXME: Should we disable the port? */
2116			continue;
2117		}
2118		xhci->port_array[i] = major_revision;
2119		if (major_revision == 0x03)
2120			xhci->num_usb3_ports++;
2121		else
2122			xhci->num_usb2_ports++;
2123	}
2124	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2125}
2126
2127/*
2128 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2129 * specify what speeds each port is supposed to be.  We can't count on the port
2130 * speed bits in the PORTSC register being correct until a device is connected,
2131 * but we need to set up the two fake roothubs with the correct number of USB
2132 * 3.0 and USB 2.0 ports at host controller initialization time.
2133 */
2134static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2135{
2136	__le32 __iomem *addr;
2137	u32 offset;
2138	unsigned int num_ports;
2139	int i, j, port_index;
2140
2141	addr = &xhci->cap_regs->hcc_params;
2142	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2143	if (offset == 0) {
2144		xhci_err(xhci, "No Extended Capability registers, "
2145				"unable to set up roothub.\n");
2146		return -ENODEV;
2147	}
2148
2149	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2150	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2151	if (!xhci->port_array)
2152		return -ENOMEM;
2153
2154	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2155	if (!xhci->rh_bw)
2156		return -ENOMEM;
2157	for (i = 0; i < num_ports; i++) {
2158		struct xhci_interval_bw_table *bw_table;
2159
2160		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2161		bw_table = &xhci->rh_bw[i].bw_table;
2162		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2163			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2164	}
2165
2166	/*
2167	 * For whatever reason, the first capability offset is from the
2168	 * capability register base, not from the HCCPARAMS register.
2169	 * See section 5.3.6 for offset calculation.
2170	 */
2171	addr = &xhci->cap_regs->hc_capbase + offset;
2172	while (1) {
2173		u32 cap_id;
2174
2175		cap_id = xhci_readl(xhci, addr);
2176		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2177			xhci_add_in_port(xhci, num_ports, addr,
2178					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
2179		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2180		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2181				== num_ports)
2182			break;
2183		/*
2184		 * Once you're into the Extended Capabilities, the offset is
2185		 * always relative to the register holding the offset.
2186		 */
2187		addr += offset;
2188	}
2189
2190	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2191		xhci_warn(xhci, "No ports on the roothubs?\n");
2192		return -ENODEV;
2193	}
2194	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2195			xhci->num_usb2_ports, xhci->num_usb3_ports);
2196
2197	/* Place limits on the number of roothub ports so that the hub
2198	 * descriptors aren't longer than the USB core will allocate.
2199	 */
2200	if (xhci->num_usb3_ports > 15) {
2201		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2202		xhci->num_usb3_ports = 15;
2203	}
2204	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2205		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2206				USB_MAXCHILDREN);
2207		xhci->num_usb2_ports = USB_MAXCHILDREN;
2208	}
2209
2210	/*
2211	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2212	 * Not sure how the USB core will handle a hub with no ports...
2213	 */
2214	if (xhci->num_usb2_ports) {
2215		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2216				xhci->num_usb2_ports, flags);
2217		if (!xhci->usb2_ports)
2218			return -ENOMEM;
2219
2220		port_index = 0;
2221		for (i = 0; i < num_ports; i++) {
2222			if (xhci->port_array[i] == 0x03 ||
2223					xhci->port_array[i] == 0 ||
2224					xhci->port_array[i] == DUPLICATE_ENTRY)
2225				continue;
2226
2227			xhci->usb2_ports[port_index] =
2228				&xhci->op_regs->port_status_base +
2229				NUM_PORT_REGS*i;
2230			xhci_dbg(xhci, "USB 2.0 port at index %u, "
2231					"addr = %p\n", i,
2232					xhci->usb2_ports[port_index]);
2233			port_index++;
2234			if (port_index == xhci->num_usb2_ports)
2235				break;
2236		}
2237	}
2238	if (xhci->num_usb3_ports) {
2239		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2240				xhci->num_usb3_ports, flags);
2241		if (!xhci->usb3_ports)
2242			return -ENOMEM;
2243
2244		port_index = 0;
2245		for (i = 0; i < num_ports; i++)
2246			if (xhci->port_array[i] == 0x03) {
2247				xhci->usb3_ports[port_index] =
2248					&xhci->op_regs->port_status_base +
2249					NUM_PORT_REGS*i;
2250				xhci_dbg(xhci, "USB 3.0 port at index %u, "
2251						"addr = %p\n", i,
2252						xhci->usb3_ports[port_index]);
2253				port_index++;
2254				if (port_index == xhci->num_usb3_ports)
2255					break;
2256			}
2257	}
2258	return 0;
2259}
2260
2261int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2262{
2263	dma_addr_t	dma;
2264	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2265	unsigned int	val, val2;
2266	u64		val_64;
2267	struct xhci_segment	*seg;
2268	u32 page_size, temp;
2269	int i;
2270
2271	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2272	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2273	for (i = 0; i < 16; i++) {
2274		if ((0x1 & page_size) != 0)
2275			break;
2276		page_size = page_size >> 1;
2277	}
2278	if (i < 16)
2279		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2280	else
2281		xhci_warn(xhci, "WARN: no supported page size\n");
2282	/* Use 4K pages, since that's common and the minimum the HC supports */
2283	xhci->page_shift = 12;
2284	xhci->page_size = 1 << xhci->page_shift;
2285	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2286
2287	/*
2288	 * Program the Number of Device Slots Enabled field in the CONFIG
2289	 * register with the max value of slots the HC can handle.
2290	 */
2291	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2292	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2293			(unsigned int) val);
2294	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2295	val |= (val2 & ~HCS_SLOTS_MASK);
2296	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2297			(unsigned int) val);
2298	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2299
2300	/*
2301	 * Section 5.4.8 - doorbell array must be
2302	 * "physically contiguous and 64-byte (cache line) aligned".
2303	 */
2304	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2305			GFP_KERNEL);
2306	if (!xhci->dcbaa)
2307		goto fail;
2308	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2309	xhci->dcbaa->dma = dma;
2310	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2311			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2312	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2313
2314	/*
2315	 * Initialize the ring segment pool.  The ring must be a contiguous
2316	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2317	 * however, the command ring segment needs 64-byte aligned segments,
2318	 * so we pick the greater alignment need.
2319	 */
2320	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2321			SEGMENT_SIZE, 64, xhci->page_size);
2322
2323	/* See Table 46 and Note on Figure 55 */
2324	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2325			2112, 64, xhci->page_size);
2326	if (!xhci->segment_pool || !xhci->device_pool)
2327		goto fail;
2328
2329	/* Linear stream context arrays don't have any boundary restrictions,
2330	 * and only need to be 16-byte aligned.
2331	 */
2332	xhci->small_streams_pool =
2333		dma_pool_create("xHCI 256 byte stream ctx arrays",
2334			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2335	xhci->medium_streams_pool =
2336		dma_pool_create("xHCI 1KB stream ctx arrays",
2337			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2338	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2339	 * will be allocated with dma_alloc_coherent()
2340	 */
2341
2342	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2343		goto fail;
2344
2345	/* Set up the command ring to have one segments for now. */
2346	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2347	if (!xhci->cmd_ring)
2348		goto fail;
2349	INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2350	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2351	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2352			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2353
2354	/* Set the address in the Command Ring Control register */
2355	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2356	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2357		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2358		xhci->cmd_ring->cycle_state;
2359	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2360	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2361	xhci_dbg_cmd_ptrs(xhci);
2362
2363	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2364	if (!xhci->lpm_command)
2365		goto fail;
2366
2367	/* Reserve one command ring TRB for disabling LPM.
2368	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2369	 * disabling LPM, we only need to reserve one TRB for all devices.
2370	 */
2371	xhci->cmd_ring_reserved_trbs++;
2372
2373	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2374	val &= DBOFF_MASK;
2375	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2376			" from cap regs base addr\n", val);
2377	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2378	xhci_dbg_regs(xhci);
2379	xhci_print_run_regs(xhci);
2380	/* Set ir_set to interrupt register set 0 */
2381	xhci->ir_set = &xhci->run_regs->ir_set[0];
2382
2383	/*
2384	 * Event ring setup: Allocate a normal ring, but also setup
2385	 * the event ring segment table (ERST).  Section 4.9.3.
2386	 */
2387	xhci_dbg(xhci, "// Allocating event ring\n");
2388	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2389						flags);
2390	if (!xhci->event_ring)
2391		goto fail;
2392	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2393		goto fail;
2394
2395	xhci->erst.entries = dma_alloc_coherent(dev,
2396			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2397			GFP_KERNEL);
2398	if (!xhci->erst.entries)
2399		goto fail;
2400	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2401			(unsigned long long)dma);
2402
2403	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2404	xhci->erst.num_entries = ERST_NUM_SEGS;
2405	xhci->erst.erst_dma_addr = dma;
2406	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2407			xhci->erst.num_entries,
2408			xhci->erst.entries,
2409			(unsigned long long)xhci->erst.erst_dma_addr);
2410
2411	/* set ring base address and size for each segment table entry */
2412	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2413		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2414		entry->seg_addr = cpu_to_le64(seg->dma);
2415		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2416		entry->rsvd = 0;
2417		seg = seg->next;
2418	}
2419
2420	/* set ERST count with the number of entries in the segment table */
2421	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2422	val &= ERST_SIZE_MASK;
2423	val |= ERST_NUM_SEGS;
2424	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2425			val);
2426	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2427
2428	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2429	/* set the segment table base address */
2430	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2431			(unsigned long long)xhci->erst.erst_dma_addr);
2432	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2433	val_64 &= ERST_PTR_MASK;
2434	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2435	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2436
2437	/* Set the event ring dequeue address */
2438	xhci_set_hc_event_deq(xhci);
2439	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2440	xhci_print_ir_set(xhci, 0);
2441
2442	/*
2443	 * XXX: Might need to set the Interrupter Moderation Register to
2444	 * something other than the default (~1ms minimum between interrupts).
2445	 * See section 5.5.1.2.
2446	 */
2447	init_completion(&xhci->addr_dev);
2448	for (i = 0; i < MAX_HC_SLOTS; ++i)
2449		xhci->devs[i] = NULL;
2450	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2451		xhci->bus_state[0].resume_done[i] = 0;
2452		xhci->bus_state[1].resume_done[i] = 0;
2453	}
2454
2455	if (scratchpad_alloc(xhci, flags))
2456		goto fail;
2457	if (xhci_setup_port_arrays(xhci, flags))
2458		goto fail;
2459
2460	INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2461
2462	/* Enable USB 3.0 device notifications for function remote wake, which
2463	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2464	 * U3 (device suspend).
2465	 */
2466	temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2467	temp &= ~DEV_NOTE_MASK;
2468	temp |= DEV_NOTE_FWAKE;
2469	xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2470
2471	return 0;
2472
2473fail:
2474	xhci_warn(xhci, "Couldn't initialize memory\n");
2475	xhci_halt(xhci);
2476	xhci_reset(xhci);
2477	xhci_mem_cleanup(xhci);
2478	return -ENOMEM;
2479}