Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
 
  27
  28#include "xhci.h"
 
 
  29
  30/*
  31 * Allocates a generic ring segment from the ring pool, sets the dma address,
  32 * initializes the segment to zero, and sets the private next pointer to NULL.
  33 *
  34 * Section 4.11.1.1:
  35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  36 */
  37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
 
 
 
  38{
  39	struct xhci_segment *seg;
  40	dma_addr_t	dma;
 
 
  41
  42	seg = kzalloc(sizeof *seg, flags);
  43	if (!seg)
  44		return NULL;
  45	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
  46
  47	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  48	if (!seg->trbs) {
  49		kfree(seg);
  50		return NULL;
  51	}
  52	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
  53			seg->trbs, (unsigned long long)dma);
  54
  55	memset(seg->trbs, 0, SEGMENT_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
  56	seg->dma = dma;
  57	seg->next = NULL;
  58
  59	return seg;
  60}
  61
  62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  63{
  64	if (!seg)
  65		return;
  66	if (seg->trbs) {
  67		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
  68				seg->trbs, (unsigned long long)seg->dma);
  69		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  70		seg->trbs = NULL;
  71	}
  72	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
  73	kfree(seg);
  74}
  75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76/*
  77 * Make the prev segment point to the next segment.
  78 *
  79 * Change the last TRB in the prev segment to be a Link TRB which points to the
  80 * DMA address of the next segment.  The caller needs to set any Link TRB
  81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  82 */
  83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  84		struct xhci_segment *next, bool link_trbs)
  85{
  86	u32 val;
  87
  88	if (!prev || !next)
  89		return;
  90	prev->next = next;
  91	if (link_trbs) {
  92		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
  93			cpu_to_le64(next->dma);
  94
  95		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
  96		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
  97		val &= ~TRB_TYPE_BITMASK;
  98		val |= TRB_TYPE(TRB_LINK);
  99		/* Always set the chain bit with 0.95 hardware */
 100		if (xhci_link_trb_quirk(xhci))
 
 
 
 101			val |= TRB_CHAIN;
 102		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 103	}
 104	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
 105			(unsigned long long)prev->dma,
 106			(unsigned long long)next->dma);
 107}
 108
 109/* XXX: Do we need the hcd structure in all these functions? */
 110void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111{
 112	struct xhci_segment *seg;
 113	struct xhci_segment *first_seg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114
 115	if (!ring || !ring->first_seg)
 
 
 
 
 
 
 
 116		return;
 117	first_seg = ring->first_seg;
 118	seg = first_seg->next;
 119	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
 120	while (seg != first_seg) {
 121		struct xhci_segment *next = seg->next;
 122		xhci_segment_free(xhci, seg);
 123		seg = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124	}
 125	xhci_segment_free(xhci, first_seg);
 126	ring->first_seg = NULL;
 127	kfree(ring);
 128}
 129
 130static void xhci_initialize_ring_info(struct xhci_ring *ring)
 
 131{
 132	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 133	ring->enqueue = ring->first_seg->trbs;
 134	ring->enq_seg = ring->first_seg;
 135	ring->dequeue = ring->enqueue;
 136	ring->deq_seg = ring->first_seg;
 137	/* The ring is initialized to 0. The producer must write 1 to the cycle
 138	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 139	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 
 
 
 
 
 
 
 
 
 140	 */
 141	ring->cycle_state = 1;
 142	/* Not necessary for new rings, but needed for re-initialized rings */
 143	ring->enq_updates = 0;
 144	ring->deq_updates = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 145}
 146
 147/**
 148 * Create a new ring with zero or more segments.
 149 *
 150 * Link each segment together into a ring.
 151 * Set the end flag and the cycle toggle bit on the last segment.
 152 * See section 4.9.1 and figures 15 and 16.
 153 */
 154static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 155		unsigned int num_segs, bool link_trbs, gfp_t flags)
 
 156{
 157	struct xhci_ring	*ring;
 158	struct xhci_segment	*prev;
 
 159
 160	ring = kzalloc(sizeof *(ring), flags);
 161	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
 162	if (!ring)
 163		return NULL;
 164
 
 
 165	INIT_LIST_HEAD(&ring->td_list);
 
 166	if (num_segs == 0)
 167		return ring;
 168
 169	ring->first_seg = xhci_segment_alloc(xhci, flags);
 170	if (!ring->first_seg)
 
 
 171		goto fail;
 172	num_segs--;
 173
 174	prev = ring->first_seg;
 175	while (num_segs > 0) {
 176		struct xhci_segment	*next;
 177
 178		next = xhci_segment_alloc(xhci, flags);
 179		if (!next)
 180			goto fail;
 181		xhci_link_segments(xhci, prev, next, link_trbs);
 182
 183		prev = next;
 184		num_segs--;
 185	}
 186	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
 187
 188	if (link_trbs) {
 189		/* See section 4.9.2.1 and 6.4.4.1 */
 190		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
 191			cpu_to_le32(LINK_TOGGLE);
 192		xhci_dbg(xhci, "Wrote link toggle flag to"
 193				" segment %p (virtual), 0x%llx (DMA)\n",
 194				prev, (unsigned long long)prev->dma);
 195	}
 196	xhci_initialize_ring_info(ring);
 
 197	return ring;
 198
 199fail:
 200	xhci_ring_free(xhci, ring);
 201	return NULL;
 202}
 203
 204void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 205		struct xhci_virt_device *virt_dev,
 206		unsigned int ep_index)
 207{
 208	int rings_cached;
 209
 210	rings_cached = virt_dev->num_rings_cached;
 211	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 212		virt_dev->ring_cache[rings_cached] =
 213			virt_dev->eps[ep_index].ring;
 214		virt_dev->num_rings_cached++;
 215		xhci_dbg(xhci, "Cached old ring, "
 216				"%d ring%s cached\n",
 217				virt_dev->num_rings_cached,
 218				(virt_dev->num_rings_cached > 1) ? "s" : "");
 219	} else {
 220		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 221		xhci_dbg(xhci, "Ring cache full (%d rings), "
 222				"freeing ring\n",
 223				virt_dev->num_rings_cached);
 224	}
 225	virt_dev->eps[ep_index].ring = NULL;
 226}
 227
 228/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 229 * pointers to the beginning of the ring.
 
 230 */
 231static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 232		struct xhci_ring *ring)
 233{
 234	struct xhci_segment	*seg = ring->first_seg;
 235	do {
 236		memset(seg->trbs, 0,
 237				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 238		/* All endpoint rings have link TRBs */
 239		xhci_link_segments(xhci, seg, seg->next, 1);
 240		seg = seg->next;
 241	} while (seg != ring->first_seg);
 242	xhci_initialize_ring_info(ring);
 243	/* td list should be empty since all URBs have been cancelled,
 244	 * but just in case...
 245	 */
 246	INIT_LIST_HEAD(&ring->td_list);
 247}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 
 
 
 
 250
 251static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 
 
 
 252						    int type, gfp_t flags)
 253{
 254	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
 
 
 
 
 
 
 255	if (!ctx)
 256		return NULL;
 257
 258	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
 259	ctx->type = type;
 260	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 261	if (type == XHCI_CTX_TYPE_INPUT)
 262		ctx->size += CTX_SIZE(xhci->hcc_params);
 263
 264	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 265	memset(ctx->bytes, 0, ctx->size);
 
 
 
 266	return ctx;
 267}
 268
 269static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 270			     struct xhci_container_ctx *ctx)
 271{
 272	if (!ctx)
 273		return;
 274	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 275	kfree(ctx);
 276}
 277
 278struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 279					      struct xhci_container_ctx *ctx)
 280{
 281	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
 
 
 282	return (struct xhci_input_control_ctx *)ctx->bytes;
 283}
 284
 285struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 286					struct xhci_container_ctx *ctx)
 287{
 288	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 289		return (struct xhci_slot_ctx *)ctx->bytes;
 290
 291	return (struct xhci_slot_ctx *)
 292		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 293}
 294
 295struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 296				    struct xhci_container_ctx *ctx,
 297				    unsigned int ep_index)
 298{
 299	/* increment ep index by offset of start of ep ctx array */
 300	ep_index++;
 301	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 302		ep_index++;
 303
 304	return (struct xhci_ep_ctx *)
 305		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 306}
 307
 308
 309/***************** Streams structures manipulation *************************/
 310
 311static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 312		unsigned int num_stream_ctxs,
 313		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 314{
 315	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 
 316
 317	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 318		pci_free_consistent(pdev,
 319				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 320				stream_ctx, dma);
 321	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 322		return dma_pool_free(xhci->small_streams_pool,
 323				stream_ctx, dma);
 324	else
 325		return dma_pool_free(xhci->medium_streams_pool,
 326				stream_ctx, dma);
 327}
 328
 329/*
 330 * The stream context array for each endpoint with bulk streams enabled can
 331 * vary in size, based on:
 332 *  - how many streams the endpoint supports,
 333 *  - the maximum primary stream array size the host controller supports,
 334 *  - and how many streams the device driver asks for.
 335 *
 336 * The stream context array must be a power of 2, and can be as small as
 337 * 64 bytes or as large as 1MB.
 338 */
 339static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 340		unsigned int num_stream_ctxs, dma_addr_t *dma,
 341		gfp_t mem_flags)
 342{
 343	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 
 344
 345	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 346		return pci_alloc_consistent(pdev,
 347				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 348				dma);
 349	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 350		return dma_pool_alloc(xhci->small_streams_pool,
 351				mem_flags, dma);
 352	else
 353		return dma_pool_alloc(xhci->medium_streams_pool,
 354				mem_flags, dma);
 355}
 356
 357struct xhci_ring *xhci_dma_to_transfer_ring(
 358		struct xhci_virt_ep *ep,
 359		u64 address)
 360{
 361	if (ep->ep_state & EP_HAS_STREAMS)
 362		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 363				address >> SEGMENT_SHIFT);
 364	return ep->ring;
 365}
 366
 367/* Only use this when you know stream_info is valid */
 368#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 369static struct xhci_ring *dma_to_stream_ring(
 370		struct xhci_stream_info *stream_info,
 371		u64 address)
 372{
 373	return radix_tree_lookup(&stream_info->trb_address_map,
 374			address >> SEGMENT_SHIFT);
 375}
 376#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 377
 378struct xhci_ring *xhci_stream_id_to_ring(
 379		struct xhci_virt_device *dev,
 380		unsigned int ep_index,
 381		unsigned int stream_id)
 382{
 383	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 384
 385	if (stream_id == 0)
 386		return ep->ring;
 387	if (!ep->stream_info)
 388		return NULL;
 389
 390	if (stream_id > ep->stream_info->num_streams)
 391		return NULL;
 392	return ep->stream_info->stream_rings[stream_id];
 393}
 394
 395#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 396static int xhci_test_radix_tree(struct xhci_hcd *xhci,
 397		unsigned int num_streams,
 398		struct xhci_stream_info *stream_info)
 399{
 400	u32 cur_stream;
 401	struct xhci_ring *cur_ring;
 402	u64 addr;
 403
 404	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 405		struct xhci_ring *mapped_ring;
 406		int trb_size = sizeof(union xhci_trb);
 407
 408		cur_ring = stream_info->stream_rings[cur_stream];
 409		for (addr = cur_ring->first_seg->dma;
 410				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
 411				addr += trb_size) {
 412			mapped_ring = dma_to_stream_ring(stream_info, addr);
 413			if (cur_ring != mapped_ring) {
 414				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
 415						"didn't map to stream ID %u; "
 416						"mapped to ring %p\n",
 417						(unsigned long long) addr,
 418						cur_stream,
 419						mapped_ring);
 420				return -EINVAL;
 421			}
 422		}
 423		/* One TRB after the end of the ring segment shouldn't return a
 424		 * pointer to the current ring (although it may be a part of a
 425		 * different ring).
 426		 */
 427		mapped_ring = dma_to_stream_ring(stream_info, addr);
 428		if (mapped_ring != cur_ring) {
 429			/* One TRB before should also fail */
 430			addr = cur_ring->first_seg->dma - trb_size;
 431			mapped_ring = dma_to_stream_ring(stream_info, addr);
 432		}
 433		if (mapped_ring == cur_ring) {
 434			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
 435					"mapped to valid stream ID %u; "
 436					"mapped ring = %p\n",
 437					(unsigned long long) addr,
 438					cur_stream,
 439					mapped_ring);
 440			return -EINVAL;
 441		}
 442	}
 443	return 0;
 444}
 445#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 446
 447/*
 448 * Change an endpoint's internal structure so it supports stream IDs.  The
 449 * number of requested streams includes stream 0, which cannot be used by device
 450 * drivers.
 451 *
 452 * The number of stream contexts in the stream context array may be bigger than
 453 * the number of streams the driver wants to use.  This is because the number of
 454 * stream context array entries must be a power of two.
 455 *
 456 * We need a radix tree for mapping physical addresses of TRBs to which stream
 457 * ID they belong to.  We need to do this because the host controller won't tell
 458 * us which stream ring the TRB came from.  We could store the stream ID in an
 459 * event data TRB, but that doesn't help us for the cancellation case, since the
 460 * endpoint may stop before it reaches that event data TRB.
 461 *
 462 * The radix tree maps the upper portion of the TRB DMA address to a ring
 463 * segment that has the same upper portion of DMA addresses.  For example, say I
 464 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 465 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 466 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 467 * pass the radix tree a key to get the right stream ID:
 468 *
 469 * 	0x10c90fff >> 10 = 0x43243
 470 * 	0x10c912c0 >> 10 = 0x43244
 471 * 	0x10c91400 >> 10 = 0x43245
 472 *
 473 * Obviously, only those TRBs with DMA addresses that are within the segment
 474 * will make the radix tree return the stream ID for that ring.
 475 *
 476 * Caveats for the radix tree:
 477 *
 478 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 479 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 480 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 481 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 482 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 483 * extended systems (where the DMA address can be bigger than 32-bits),
 484 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 485 */
 486struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 487		unsigned int num_stream_ctxs,
 488		unsigned int num_streams, gfp_t mem_flags)
 
 489{
 490	struct xhci_stream_info *stream_info;
 491	u32 cur_stream;
 492	struct xhci_ring *cur_ring;
 493	unsigned long key;
 494	u64 addr;
 495	int ret;
 
 496
 497	xhci_dbg(xhci, "Allocating %u streams and %u "
 498			"stream context array entries.\n",
 499			num_streams, num_stream_ctxs);
 500	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 501		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 502		return NULL;
 503	}
 504	xhci->cmd_ring_reserved_trbs++;
 505
 506	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 
 507	if (!stream_info)
 508		goto cleanup_trbs;
 509
 510	stream_info->num_streams = num_streams;
 511	stream_info->num_stream_ctxs = num_stream_ctxs;
 512
 513	/* Initialize the array of virtual pointers to stream rings. */
 514	stream_info->stream_rings = kzalloc(
 515			sizeof(struct xhci_ring *)*num_streams,
 516			mem_flags);
 517	if (!stream_info->stream_rings)
 518		goto cleanup_info;
 519
 520	/* Initialize the array of DMA addresses for stream rings for the HW. */
 521	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 522			num_stream_ctxs, &stream_info->ctx_array_dma,
 523			mem_flags);
 524	if (!stream_info->stream_ctx_array)
 525		goto cleanup_ctx;
 526	memset(stream_info->stream_ctx_array, 0,
 527			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 528
 529	/* Allocate everything needed to free the stream rings later */
 530	stream_info->free_streams_command =
 531		xhci_alloc_command(xhci, true, true, mem_flags);
 532	if (!stream_info->free_streams_command)
 533		goto cleanup_ctx;
 534
 535	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 536
 537	/* Allocate rings for all the streams that the driver will use,
 538	 * and add their segment DMA addresses to the radix tree.
 539	 * Stream 0 is reserved.
 540	 */
 
 541	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 542		stream_info->stream_rings[cur_stream] =
 543			xhci_ring_alloc(xhci, 1, true, mem_flags);
 
 544		cur_ring = stream_info->stream_rings[cur_stream];
 545		if (!cur_ring)
 546			goto cleanup_rings;
 547		cur_ring->stream_id = cur_stream;
 
 548		/* Set deq ptr, cycle bit, and stream context type */
 549		addr = cur_ring->first_seg->dma |
 550			SCT_FOR_CTX(SCT_PRI_TR) |
 551			cur_ring->cycle_state;
 552		stream_info->stream_ctx_array[cur_stream].stream_ring =
 553			cpu_to_le64(addr);
 554		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 555				cur_stream, (unsigned long long) addr);
 556
 557		key = (unsigned long)
 558			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
 559		ret = radix_tree_insert(&stream_info->trb_address_map,
 560				key, cur_ring);
 561		if (ret) {
 562			xhci_ring_free(xhci, cur_ring);
 563			stream_info->stream_rings[cur_stream] = NULL;
 564			goto cleanup_rings;
 565		}
 566	}
 567	/* Leave the other unused stream ring pointers in the stream context
 568	 * array initialized to zero.  This will cause the xHC to give us an
 569	 * error if the device asks for a stream ID we don't have setup (if it
 570	 * was any other way, the host controller would assume the ring is
 571	 * "empty" and wait forever for data to be queued to that stream ID).
 572	 */
 573#if XHCI_DEBUG
 574	/* Do a little test on the radix tree to make sure it returns the
 575	 * correct values.
 576	 */
 577	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
 578		goto cleanup_rings;
 579#endif
 580
 581	return stream_info;
 582
 583cleanup_rings:
 584	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 585		cur_ring = stream_info->stream_rings[cur_stream];
 586		if (cur_ring) {
 587			addr = cur_ring->first_seg->dma;
 588			radix_tree_delete(&stream_info->trb_address_map,
 589					addr >> SEGMENT_SHIFT);
 590			xhci_ring_free(xhci, cur_ring);
 591			stream_info->stream_rings[cur_stream] = NULL;
 592		}
 593	}
 594	xhci_free_command(xhci, stream_info->free_streams_command);
 595cleanup_ctx:
 596	kfree(stream_info->stream_rings);
 597cleanup_info:
 598	kfree(stream_info);
 599cleanup_trbs:
 600	xhci->cmd_ring_reserved_trbs--;
 601	return NULL;
 602}
 603/*
 604 * Sets the MaxPStreams field and the Linear Stream Array field.
 605 * Sets the dequeue pointer to the stream context array.
 606 */
 607void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 608		struct xhci_ep_ctx *ep_ctx,
 609		struct xhci_stream_info *stream_info)
 610{
 611	u32 max_primary_streams;
 612	/* MaxPStreams is the number of stream context array entries, not the
 613	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 614	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 615	 */
 616	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 617	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
 
 618			1 << (max_primary_streams + 1));
 619	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 620	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 621				       | EP_HAS_LSA);
 622	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 623}
 624
 625/*
 626 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 627 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 628 * not at the beginning of the ring).
 629 */
 630void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 631		struct xhci_ep_ctx *ep_ctx,
 632		struct xhci_virt_ep *ep)
 633{
 634	dma_addr_t addr;
 635	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 636	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 637	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 638}
 639
 640/* Frees all stream contexts associated with the endpoint,
 641 *
 642 * Caller should fix the endpoint context streams fields.
 643 */
 644void xhci_free_stream_info(struct xhci_hcd *xhci,
 645		struct xhci_stream_info *stream_info)
 646{
 647	int cur_stream;
 648	struct xhci_ring *cur_ring;
 649	dma_addr_t addr;
 650
 651	if (!stream_info)
 652		return;
 653
 654	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 655			cur_stream++) {
 656		cur_ring = stream_info->stream_rings[cur_stream];
 657		if (cur_ring) {
 658			addr = cur_ring->first_seg->dma;
 659			radix_tree_delete(&stream_info->trb_address_map,
 660					addr >> SEGMENT_SHIFT);
 661			xhci_ring_free(xhci, cur_ring);
 662			stream_info->stream_rings[cur_stream] = NULL;
 663		}
 664	}
 665	xhci_free_command(xhci, stream_info->free_streams_command);
 666	xhci->cmd_ring_reserved_trbs--;
 667	if (stream_info->stream_ctx_array)
 668		xhci_free_stream_ctx(xhci,
 669				stream_info->num_stream_ctxs,
 670				stream_info->stream_ctx_array,
 671				stream_info->ctx_array_dma);
 672
 673	if (stream_info)
 674		kfree(stream_info->stream_rings);
 675	kfree(stream_info);
 676}
 677
 678
 679/***************** Device context manipulation *************************/
 680
 681static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 682		struct xhci_virt_ep *ep)
 683{
 684	init_timer(&ep->stop_cmd_timer);
 685	ep->stop_cmd_timer.data = (unsigned long) ep;
 686	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 687	ep->xhci = xhci;
 688}
 689
 690/* All the xhci_tds in the ring's TD list should be freed at this point */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 692{
 693	struct xhci_virt_device *dev;
 694	int i;
 
 695
 696	/* Slot ID 0 is reserved */
 697	if (slot_id == 0 || !xhci->devs[slot_id])
 698		return;
 699
 700	dev = xhci->devs[slot_id];
 
 701	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 702	if (!dev)
 703		return;
 704
 705	for (i = 0; i < 31; ++i) {
 
 
 
 
 
 706		if (dev->eps[i].ring)
 707			xhci_ring_free(xhci, dev->eps[i].ring);
 708		if (dev->eps[i].stream_info)
 709			xhci_free_stream_info(xhci,
 710					dev->eps[i].stream_info);
 711	}
 712
 713	if (dev->ring_cache) {
 714		for (i = 0; i < dev->num_rings_cached; i++)
 715			xhci_ring_free(xhci, dev->ring_cache[i]);
 716		kfree(dev->ring_cache);
 717	}
 
 
 
 
 
 
 
 718
 719	if (dev->in_ctx)
 720		xhci_free_container_ctx(xhci, dev->in_ctx);
 721	if (dev->out_ctx)
 722		xhci_free_container_ctx(xhci, dev->out_ctx);
 723
 
 
 724	kfree(xhci->devs[slot_id]);
 725	xhci->devs[slot_id] = NULL;
 726}
 727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 729		struct usb_device *udev, gfp_t flags)
 730{
 731	struct xhci_virt_device *dev;
 732	int i;
 733
 734	/* Slot ID 0 is reserved */
 735	if (slot_id == 0 || xhci->devs[slot_id]) {
 736		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 737		return 0;
 738	}
 739
 740	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 741	if (!xhci->devs[slot_id])
 742		return 0;
 743	dev = xhci->devs[slot_id];
 744
 745	/* Allocate the (output) device context that will be used in the HC. */
 746	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 747	if (!dev->out_ctx)
 748		goto fail;
 749
 750	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 751			(unsigned long long)dev->out_ctx->dma);
 752
 753	/* Allocate the (input) device context for address device command */
 754	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 755	if (!dev->in_ctx)
 756		goto fail;
 757
 758	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 759			(unsigned long long)dev->in_ctx->dma);
 760
 761	/* Initialize the cancellation list and watchdog timers for each ep */
 762	for (i = 0; i < 31; i++) {
 763		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 764		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 
 765	}
 766
 767	/* Allocate endpoint 0 ring */
 768	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
 769	if (!dev->eps[0].ring)
 770		goto fail;
 771
 772	/* Allocate pointers to the ring cache */
 773	dev->ring_cache = kzalloc(
 774			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
 775			flags);
 776	if (!dev->ring_cache)
 777		goto fail;
 778	dev->num_rings_cached = 0;
 779
 780	init_completion(&dev->cmd_completion);
 781	INIT_LIST_HEAD(&dev->cmd_list);
 782	dev->udev = udev;
 783
 784	/* Point to output device context in dcbaa. */
 785	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
 786	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
 787		 slot_id,
 788		 &xhci->dcbaa->dev_context_ptrs[slot_id],
 789		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
 790
 
 
 
 
 791	return 1;
 792fail:
 793	xhci_free_virt_device(xhci, slot_id);
 
 
 
 
 
 
 794	return 0;
 795}
 796
 797void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
 798		struct usb_device *udev)
 799{
 800	struct xhci_virt_device *virt_dev;
 801	struct xhci_ep_ctx	*ep0_ctx;
 802	struct xhci_ring	*ep_ring;
 803
 804	virt_dev = xhci->devs[udev->slot_id];
 805	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
 806	ep_ring = virt_dev->eps[0].ring;
 807	/*
 808	 * FIXME we don't keep track of the dequeue pointer very well after a
 809	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
 810	 * host to our enqueue pointer.  This should only be called after a
 811	 * configured device has reset, so all control transfers should have
 812	 * been completed or cancelled before the reset.
 813	 */
 814	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
 815							ep_ring->enqueue)
 816				   | ep_ring->cycle_state);
 817}
 818
 819/*
 820 * The xHCI roothub may have ports of differing speeds in any order in the port
 821 * status registers.  xhci->port_array provides an array of the port speed for
 822 * each offset into the port status registers.
 823 *
 824 * The xHCI hardware wants to know the roothub port number that the USB device
 825 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 826 * know is the index of that port under either the USB 2.0 or the USB 3.0
 827 * roothub, but that doesn't give us the real index into the HW port status
 828 * registers.  Scan through the xHCI roothub port array, looking for the Nth
 829 * entry of the correct port speed.  Return the port number of that entry.
 830 */
 831static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
 832		struct usb_device *udev)
 833{
 834	struct usb_device *top_dev;
 835	unsigned int num_similar_speed_ports;
 836	unsigned int faked_port_num;
 837	int i;
 
 
 
 838
 839	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
 840			top_dev = top_dev->parent)
 841		/* Found device below root hub */;
 842	faked_port_num = top_dev->portnum;
 843	for (i = 0, num_similar_speed_ports = 0;
 844			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
 845		u8 port_speed = xhci->port_array[i];
 846
 847		/*
 848		 * Skip ports that don't have known speeds, or have duplicate
 849		 * Extended Capabilities port speed entries.
 850		 */
 851		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
 852			continue;
 853
 854		/*
 855		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
 856		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
 857		 * matches the device speed, it's a similar speed port.
 858		 */
 859		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
 860			num_similar_speed_ports++;
 861		if (num_similar_speed_ports == faked_port_num)
 862			/* Roothub ports are numbered from 1 to N */
 863			return i+1;
 864	}
 865	return 0;
 866}
 867
 868/* Setup an xHCI virtual device for a Set Address command */
 869int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
 870{
 871	struct xhci_virt_device *dev;
 872	struct xhci_ep_ctx	*ep0_ctx;
 873	struct xhci_slot_ctx    *slot_ctx;
 874	struct xhci_input_control_ctx *ctrl_ctx;
 875	u32			port_num;
 
 876	struct usb_device *top_dev;
 877
 878	dev = xhci->devs[udev->slot_id];
 879	/* Slot ID 0 is reserved */
 880	if (udev->slot_id == 0 || !dev) {
 881		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
 882				udev->slot_id);
 883		return -EINVAL;
 884	}
 885	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
 886	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
 887	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
 888
 889	/* 2) New slot context and endpoint 0 context are valid*/
 890	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
 891
 892	/* 3) Only the control endpoint is valid - one endpoint context */
 893	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
 894	switch (udev->speed) {
 
 
 
 
 895	case USB_SPEED_SUPER:
 896		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
 
 897		break;
 898	case USB_SPEED_HIGH:
 899		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
 
 900		break;
 
 901	case USB_SPEED_FULL:
 902		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
 
 903		break;
 904	case USB_SPEED_LOW:
 905		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
 
 906		break;
 907	case USB_SPEED_WIRELESS:
 908		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
 909		return -EINVAL;
 910		break;
 911	default:
 912		/* Speed was set earlier, this shouldn't happen. */
 913		BUG();
 914	}
 915	/* Find the root hub port this device is under */
 916	port_num = xhci_find_real_port_number(xhci, udev);
 917	if (!port_num)
 918		return -EINVAL;
 919	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
 920	/* Set the port number in the virtual_device to the faked port number */
 921	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
 922			top_dev = top_dev->parent)
 923		/* Found device below root hub */;
 924	dev->port = top_dev->portnum;
 
 925	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
 926	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927
 928	/* Is this a LS/FS device under an external HS hub? */
 929	if (udev->tt && udev->tt->hub->parent) {
 930		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
 931						(udev->ttport << 8));
 932		if (udev->tt->multi)
 933			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
 934	}
 935	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
 936	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
 937
 938	/* Step 4 - ring already allocated */
 939	/* Step 5 */
 940	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
 941	/*
 942	 * XXX: Not sure about wireless USB devices.
 943	 */
 944	switch (udev->speed) {
 945	case USB_SPEED_SUPER:
 946		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
 947		break;
 948	case USB_SPEED_HIGH:
 949	/* USB core guesses at a 64-byte max packet first for FS devices */
 950	case USB_SPEED_FULL:
 951		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
 952		break;
 953	case USB_SPEED_LOW:
 954		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
 955		break;
 956	case USB_SPEED_WIRELESS:
 957		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
 958		return -EINVAL;
 959		break;
 960	default:
 961		/* New speed? */
 962		BUG();
 963	}
 964	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
 965	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
 
 966
 967	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
 968				   dev->eps[0].ring->cycle_state);
 969
 
 
 970	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
 971
 972	return 0;
 973}
 974
 975/*
 976 * Convert interval expressed as 2^(bInterval - 1) == interval into
 977 * straight exponent value 2^n == interval.
 978 *
 979 */
 980static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
 981		struct usb_host_endpoint *ep)
 982{
 983	unsigned int interval;
 984
 985	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
 986	if (interval != ep->desc.bInterval - 1)
 987		dev_warn(&udev->dev,
 988			 "ep %#x - rounding interval to %d %sframes\n",
 989			 ep->desc.bEndpointAddress,
 990			 1 << interval,
 991			 udev->speed == USB_SPEED_FULL ? "" : "micro");
 992
 993	if (udev->speed == USB_SPEED_FULL) {
 994		/*
 995		 * Full speed isoc endpoints specify interval in frames,
 996		 * not microframes. We are using microframes everywhere,
 997		 * so adjust accordingly.
 998		 */
 999		interval += 3;	/* 1 frame = 2^3 uframes */
1000	}
1001
1002	return interval;
1003}
1004
1005/*
1006 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1007 * microframes, rounded down to nearest power of 2.
1008 */
1009static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1010		struct usb_host_endpoint *ep)
 
1011{
1012	unsigned int interval;
1013
1014	interval = fls(8 * ep->desc.bInterval) - 1;
1015	interval = clamp_val(interval, 3, 10);
1016	if ((1 << interval) != 8 * ep->desc.bInterval)
1017		dev_warn(&udev->dev,
1018			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1019			 ep->desc.bEndpointAddress,
1020			 1 << interval,
1021			 8 * ep->desc.bInterval);
1022
1023	return interval;
1024}
1025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026/* Return the polling or NAK interval.
1027 *
1028 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1029 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1030 *
1031 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1032 * is set to 0.
1033 */
1034static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1035		struct usb_host_endpoint *ep)
1036{
1037	unsigned int interval = 0;
1038
1039	switch (udev->speed) {
1040	case USB_SPEED_HIGH:
1041		/* Max NAK rate */
1042		if (usb_endpoint_xfer_control(&ep->desc) ||
1043		    usb_endpoint_xfer_bulk(&ep->desc)) {
1044			interval = ep->desc.bInterval;
1045			break;
1046		}
1047		/* Fall through - SS and HS isoc/int have same decoding */
1048
 
1049	case USB_SPEED_SUPER:
1050		if (usb_endpoint_xfer_int(&ep->desc) ||
1051		    usb_endpoint_xfer_isoc(&ep->desc)) {
1052			interval = xhci_parse_exponent_interval(udev, ep);
1053		}
1054		break;
1055
1056	case USB_SPEED_FULL:
1057		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1058			interval = xhci_parse_exponent_interval(udev, ep);
1059			break;
1060		}
1061		/*
1062		 * Fall through for interrupt endpoint interval decoding
1063		 * since it uses the same rules as low speed interrupt
1064		 * endpoints.
1065		 */
 
1066
1067	case USB_SPEED_LOW:
1068		if (usb_endpoint_xfer_int(&ep->desc) ||
1069		    usb_endpoint_xfer_isoc(&ep->desc)) {
1070
1071			interval = xhci_parse_frame_interval(udev, ep);
1072		}
1073		break;
1074
1075	default:
1076		BUG();
1077	}
1078	return EP_INTERVAL(interval);
1079}
1080
1081/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1082 * High speed endpoint descriptors can define "the number of additional
1083 * transaction opportunities per microframe", but that goes in the Max Burst
1084 * endpoint context field.
1085 */
1086static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1087		struct usb_host_endpoint *ep)
1088{
1089	if (udev->speed != USB_SPEED_SUPER ||
1090			!usb_endpoint_xfer_isoc(&ep->desc))
1091		return 0;
1092	return ep->ss_ep_comp.bmAttributes;
1093}
1094
1095static u32 xhci_get_endpoint_type(struct usb_device *udev,
1096		struct usb_host_endpoint *ep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1097{
1098	int in;
1099	u32 type;
1100
1101	in = usb_endpoint_dir_in(&ep->desc);
1102	if (usb_endpoint_xfer_control(&ep->desc)) {
1103		type = EP_TYPE(CTRL_EP);
1104	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1105		if (in)
1106			type = EP_TYPE(BULK_IN_EP);
1107		else
1108			type = EP_TYPE(BULK_OUT_EP);
1109	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1110		if (in)
1111			type = EP_TYPE(ISOC_IN_EP);
1112		else
1113			type = EP_TYPE(ISOC_OUT_EP);
1114	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1115		if (in)
1116			type = EP_TYPE(INT_IN_EP);
1117		else
1118			type = EP_TYPE(INT_OUT_EP);
1119	} else {
1120		BUG();
1121	}
1122	return type;
1123}
1124
1125/* Return the maximum endpoint service interval time (ESIT) payload.
1126 * Basically, this is the maxpacket size, multiplied by the burst size
1127 * and mult size.
1128 */
1129static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1130		struct usb_device *udev,
1131		struct usb_host_endpoint *ep)
1132{
1133	int max_burst;
1134	int max_packet;
1135
1136	/* Only applies for interrupt or isochronous endpoints */
1137	if (usb_endpoint_xfer_control(&ep->desc) ||
1138			usb_endpoint_xfer_bulk(&ep->desc))
1139		return 0;
1140
1141	if (udev->speed == USB_SPEED_SUPER)
 
 
 
 
 
1142		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1143
1144	max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1145	max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
1146	/* A 0 in max burst means 1 transfer per ESIT */
1147	return max_packet * (max_burst + 1);
1148}
1149
1150/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1151 * Drivers will have to call usb_alloc_streams() to do that.
1152 */
1153int xhci_endpoint_init(struct xhci_hcd *xhci,
1154		struct xhci_virt_device *virt_dev,
1155		struct usb_device *udev,
1156		struct usb_host_endpoint *ep,
1157		gfp_t mem_flags)
1158{
1159	unsigned int ep_index;
1160	struct xhci_ep_ctx *ep_ctx;
1161	struct xhci_ring *ep_ring;
1162	unsigned int max_packet;
1163	unsigned int max_burst;
1164	u32 max_esit_payload;
 
 
 
 
 
 
1165
1166	ep_index = xhci_get_endpoint_index(&ep->desc);
1167	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1168
1169	/* Set up the endpoint ring */
 
 
 
 
 
1170	/*
1171	 * Isochronous endpoint ring needs bigger size because one isoc URB
1172	 * carries multiple packets and it will insert multiple tds to the
1173	 * ring.
1174	 * This should be replaced with dynamic ring resizing in the future.
1175	 */
1176	if (usb_endpoint_xfer_isoc(&ep->desc))
1177		virt_dev->eps[ep_index].new_ring =
1178			xhci_ring_alloc(xhci, 8, true, mem_flags);
1179	else
1180		virt_dev->eps[ep_index].new_ring =
1181			xhci_ring_alloc(xhci, 1, true, mem_flags);
1182	if (!virt_dev->eps[ep_index].new_ring) {
1183		/* Attempt to use the ring cache */
1184		if (virt_dev->num_rings_cached == 0)
1185			return -ENOMEM;
1186		virt_dev->eps[ep_index].new_ring =
1187			virt_dev->ring_cache[virt_dev->num_rings_cached];
1188		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1189		virt_dev->num_rings_cached--;
1190		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1191	}
1192	virt_dev->eps[ep_index].skip = false;
1193	ep_ring = virt_dev->eps[ep_index].new_ring;
1194	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1195
1196	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1197				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
 
 
1198
1199	/* FIXME dig Mult and streams info out of ep companion desc */
1200
1201	/* Allow 3 retries for everything but isoc;
1202	 * CErr shall be set to 0 for Isoch endpoints.
1203	 */
1204	if (!usb_endpoint_xfer_isoc(&ep->desc))
1205		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1206	else
1207		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
 
 
 
 
 
 
 
1208
1209	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
 
 
 
 
1210
1211	/* Set the max packet size and max burst */
1212	switch (udev->speed) {
1213	case USB_SPEED_SUPER:
1214		max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1215		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1216		/* dig out max burst from ep companion desc */
1217		max_packet = ep->ss_ep_comp.bMaxBurst;
1218		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1219		break;
1220	case USB_SPEED_HIGH:
1221		/* bits 11:12 specify the number of additional transaction
1222		 * opportunities per microframe (USB 2.0, section 9.6.6)
1223		 */
1224		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1225				usb_endpoint_xfer_int(&ep->desc)) {
1226			max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1227				     & 0x1800) >> 11;
1228			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1229		}
1230		/* Fall through */
1231	case USB_SPEED_FULL:
1232	case USB_SPEED_LOW:
1233		max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1234		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1235		break;
1236	default:
1237		BUG();
1238	}
1239	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1240	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1241
1242	/*
1243	 * XXX no idea how to calculate the average TRB buffer length for bulk
1244	 * endpoints, as the driver gives us no clue how big each scatter gather
1245	 * list entry (or buffer) is going to be.
1246	 *
1247	 * For isochronous and interrupt endpoints, we set it to the max
1248	 * available, until we have new API in the USB core to allow drivers to
1249	 * declare how much bandwidth they actually need.
1250	 *
1251	 * Normally, it would be calculated by taking the total of the buffer
1252	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1253	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1254	 * use Event Data TRBs, and we don't chain in a link TRB on short
1255	 * transfers, we're basically dividing by 1.
1256	 *
1257	 * xHCI 1.0 specification indicates that the Average TRB Length should
1258	 * be set to 8 for control endpoints.
1259	 */
1260	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1261		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1262	else
1263		ep_ctx->tx_info |=
1264			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1265
1266	/* FIXME Debug endpoint context */
1267	return 0;
1268}
1269
1270void xhci_endpoint_zero(struct xhci_hcd *xhci,
1271		struct xhci_virt_device *virt_dev,
1272		struct usb_host_endpoint *ep)
1273{
1274	unsigned int ep_index;
1275	struct xhci_ep_ctx *ep_ctx;
1276
1277	ep_index = xhci_get_endpoint_index(&ep->desc);
1278	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1279
1280	ep_ctx->ep_info = 0;
1281	ep_ctx->ep_info2 = 0;
1282	ep_ctx->deq = 0;
1283	ep_ctx->tx_info = 0;
1284	/* Don't free the endpoint ring until the set interface or configuration
1285	 * request succeeds.
1286	 */
1287}
1288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1290 * Useful when you want to change one particular aspect of the endpoint and then
1291 * issue a configure endpoint command.
1292 */
1293void xhci_endpoint_copy(struct xhci_hcd *xhci,
1294		struct xhci_container_ctx *in_ctx,
1295		struct xhci_container_ctx *out_ctx,
1296		unsigned int ep_index)
1297{
1298	struct xhci_ep_ctx *out_ep_ctx;
1299	struct xhci_ep_ctx *in_ep_ctx;
1300
1301	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1302	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1303
1304	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1305	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1306	in_ep_ctx->deq = out_ep_ctx->deq;
1307	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
 
 
 
 
1308}
1309
1310/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1311 * Useful when you want to change one particular aspect of the endpoint and then
1312 * issue a configure endpoint command.  Only the context entries field matters,
1313 * but we'll copy the whole thing anyway.
1314 */
1315void xhci_slot_copy(struct xhci_hcd *xhci,
1316		struct xhci_container_ctx *in_ctx,
1317		struct xhci_container_ctx *out_ctx)
1318{
1319	struct xhci_slot_ctx *in_slot_ctx;
1320	struct xhci_slot_ctx *out_slot_ctx;
1321
1322	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1323	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1324
1325	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1326	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1327	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1328	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1329}
1330
1331/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1332static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1333{
1334	int i;
1335	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1336	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1337
1338	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
 
1339
1340	if (!num_sp)
1341		return 0;
1342
1343	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
 
1344	if (!xhci->scratchpad)
1345		goto fail_sp;
1346
1347	xhci->scratchpad->sp_array =
1348		pci_alloc_consistent(to_pci_dev(dev),
1349				     num_sp * sizeof(u64),
1350				     &xhci->scratchpad->sp_dma);
1351	if (!xhci->scratchpad->sp_array)
1352		goto fail_sp2;
1353
1354	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
 
1355	if (!xhci->scratchpad->sp_buffers)
1356		goto fail_sp3;
1357
1358	xhci->scratchpad->sp_dma_buffers =
1359		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1360
1361	if (!xhci->scratchpad->sp_dma_buffers)
1362		goto fail_sp4;
1363
1364	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1365	for (i = 0; i < num_sp; i++) {
1366		dma_addr_t dma;
1367		void *buf = pci_alloc_consistent(to_pci_dev(dev),
1368						 xhci->page_size, &dma);
1369		if (!buf)
1370			goto fail_sp5;
1371
1372		xhci->scratchpad->sp_array[i] = dma;
1373		xhci->scratchpad->sp_buffers[i] = buf;
1374		xhci->scratchpad->sp_dma_buffers[i] = dma;
1375	}
1376
1377	return 0;
1378
1379 fail_sp5:
1380	for (i = i - 1; i >= 0; i--) {
1381		pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1382				    xhci->scratchpad->sp_buffers[i],
1383				    xhci->scratchpad->sp_dma_buffers[i]);
1384	}
1385	kfree(xhci->scratchpad->sp_dma_buffers);
1386
1387 fail_sp4:
1388	kfree(xhci->scratchpad->sp_buffers);
1389
1390 fail_sp3:
1391	pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1392			    xhci->scratchpad->sp_array,
1393			    xhci->scratchpad->sp_dma);
1394
1395 fail_sp2:
1396	kfree(xhci->scratchpad);
1397	xhci->scratchpad = NULL;
1398
1399 fail_sp:
1400	return -ENOMEM;
1401}
1402
1403static void scratchpad_free(struct xhci_hcd *xhci)
1404{
1405	int num_sp;
1406	int i;
1407	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1408
1409	if (!xhci->scratchpad)
1410		return;
1411
1412	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1413
1414	for (i = 0; i < num_sp; i++) {
1415		pci_free_consistent(pdev, xhci->page_size,
1416				    xhci->scratchpad->sp_buffers[i],
1417				    xhci->scratchpad->sp_dma_buffers[i]);
1418	}
1419	kfree(xhci->scratchpad->sp_dma_buffers);
1420	kfree(xhci->scratchpad->sp_buffers);
1421	pci_free_consistent(pdev, num_sp * sizeof(u64),
1422			    xhci->scratchpad->sp_array,
1423			    xhci->scratchpad->sp_dma);
1424	kfree(xhci->scratchpad);
1425	xhci->scratchpad = NULL;
1426}
1427
1428struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1429		bool allocate_in_ctx, bool allocate_completion,
1430		gfp_t mem_flags)
1431{
1432	struct xhci_command *command;
 
1433
1434	command = kzalloc(sizeof(*command), mem_flags);
1435	if (!command)
1436		return NULL;
1437
1438	if (allocate_in_ctx) {
1439		command->in_ctx =
1440			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1441					mem_flags);
1442		if (!command->in_ctx) {
1443			kfree(command);
1444			return NULL;
1445		}
1446	}
1447
1448	if (allocate_completion) {
1449		command->completion =
1450			kzalloc(sizeof(struct completion), mem_flags);
 
1451		if (!command->completion) {
1452			xhci_free_container_ctx(xhci, command->in_ctx);
1453			kfree(command);
1454			return NULL;
1455		}
1456		init_completion(command->completion);
1457	}
1458
1459	command->status = 0;
1460	INIT_LIST_HEAD(&command->cmd_list);
1461	return command;
1462}
1463
1464void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
 
1465{
1466	int last;
1467
1468	if (!urb_priv)
1469		return;
 
1470
1471	last = urb_priv->length - 1;
1472	if (last >= 0) {
1473		int	i;
1474		for (i = 0; i <= last; i++)
1475			kfree(urb_priv->td[i]);
 
1476	}
 
 
 
 
 
1477	kfree(urb_priv);
1478}
1479
1480void xhci_free_command(struct xhci_hcd *xhci,
1481		struct xhci_command *command)
1482{
1483	xhci_free_container_ctx(xhci,
1484			command->in_ctx);
1485	kfree(command->completion);
1486	kfree(command);
1487}
1488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489void xhci_mem_cleanup(struct xhci_hcd *xhci)
1490{
1491	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1492	int size;
1493	int i;
 
 
 
1494
1495	/* Free the Event Ring Segment Table and the actual Event Ring */
1496	if (xhci->ir_set) {
1497		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1498		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1499		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1500	}
1501	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1502	if (xhci->erst.entries)
1503		pci_free_consistent(pdev, size,
1504				xhci->erst.entries, xhci->erst.erst_dma_addr);
1505	xhci->erst.entries = NULL;
1506	xhci_dbg(xhci, "Freed ERST\n");
1507	if (xhci->event_ring)
1508		xhci_ring_free(xhci, xhci->event_ring);
1509	xhci->event_ring = NULL;
1510	xhci_dbg(xhci, "Freed event ring\n");
1511
1512	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 
 
1513	if (xhci->cmd_ring)
1514		xhci_ring_free(xhci, xhci->cmd_ring);
1515	xhci->cmd_ring = NULL;
1516	xhci_dbg(xhci, "Freed command ring\n");
 
 
 
 
 
 
 
 
 
 
 
1517
1518	for (i = 1; i < MAX_HC_SLOTS; ++i)
1519		xhci_free_virt_device(xhci, i);
1520
1521	if (xhci->segment_pool)
1522		dma_pool_destroy(xhci->segment_pool);
1523	xhci->segment_pool = NULL;
1524	xhci_dbg(xhci, "Freed segment pool\n");
1525
1526	if (xhci->device_pool)
1527		dma_pool_destroy(xhci->device_pool);
1528	xhci->device_pool = NULL;
1529	xhci_dbg(xhci, "Freed device context pool\n");
1530
1531	if (xhci->small_streams_pool)
1532		dma_pool_destroy(xhci->small_streams_pool);
1533	xhci->small_streams_pool = NULL;
1534	xhci_dbg(xhci, "Freed small stream array pool\n");
 
1535
1536	if (xhci->medium_streams_pool)
1537		dma_pool_destroy(xhci->medium_streams_pool);
1538	xhci->medium_streams_pool = NULL;
1539	xhci_dbg(xhci, "Freed medium stream array pool\n");
 
1540
1541	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1542	if (xhci->dcbaa)
1543		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1544				xhci->dcbaa, xhci->dcbaa->dma);
1545	xhci->dcbaa = NULL;
1546
1547	scratchpad_free(xhci);
1548
1549	xhci->num_usb2_ports = 0;
1550	xhci->num_usb3_ports = 0;
1551	kfree(xhci->usb2_ports);
1552	kfree(xhci->usb3_ports);
1553	kfree(xhci->port_array);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554
1555	xhci->page_size = 0;
1556	xhci->page_shift = 0;
1557	xhci->bus_state[0].bus_suspended = 0;
1558	xhci->bus_state[1].bus_suspended = 0;
1559}
1560
1561static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1562		struct xhci_segment *input_seg,
1563		union xhci_trb *start_trb,
1564		union xhci_trb *end_trb,
1565		dma_addr_t input_dma,
1566		struct xhci_segment *result_seg,
1567		char *test_name, int test_number)
1568{
1569	unsigned long long start_dma;
1570	unsigned long long end_dma;
1571	struct xhci_segment *seg;
1572
1573	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1574	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1575
1576	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1577	if (seg != result_seg) {
1578		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1579				test_name, test_number);
1580		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1581				"input DMA 0x%llx\n",
1582				input_seg,
1583				(unsigned long long) input_dma);
1584		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1585				"ending TRB %p (0x%llx DMA)\n",
1586				start_trb, start_dma,
1587				end_trb, end_dma);
1588		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1589				result_seg, seg);
 
 
1590		return -1;
1591	}
1592	return 0;
1593}
1594
1595/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1596static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1597{
1598	struct {
1599		dma_addr_t		input_dma;
1600		struct xhci_segment	*result_seg;
1601	} simple_test_vector [] = {
1602		/* A zeroed DMA field should fail */
1603		{ 0, NULL },
1604		/* One TRB before the ring start should fail */
1605		{ xhci->event_ring->first_seg->dma - 16, NULL },
1606		/* One byte before the ring start should fail */
1607		{ xhci->event_ring->first_seg->dma - 1, NULL },
1608		/* Starting TRB should succeed */
1609		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1610		/* Ending TRB should succeed */
1611		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1612			xhci->event_ring->first_seg },
1613		/* One byte after the ring end should fail */
1614		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1615		/* One TRB after the ring end should fail */
1616		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1617		/* An address of all ones should fail */
1618		{ (dma_addr_t) (~0), NULL },
1619	};
1620	struct {
1621		struct xhci_segment	*input_seg;
1622		union xhci_trb		*start_trb;
1623		union xhci_trb		*end_trb;
1624		dma_addr_t		input_dma;
1625		struct xhci_segment	*result_seg;
1626	} complex_test_vector [] = {
1627		/* Test feeding a valid DMA address from a different ring */
1628		{	.input_seg = xhci->event_ring->first_seg,
1629			.start_trb = xhci->event_ring->first_seg->trbs,
1630			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1631			.input_dma = xhci->cmd_ring->first_seg->dma,
1632			.result_seg = NULL,
1633		},
1634		/* Test feeding a valid end TRB from a different ring */
1635		{	.input_seg = xhci->event_ring->first_seg,
1636			.start_trb = xhci->event_ring->first_seg->trbs,
1637			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1638			.input_dma = xhci->cmd_ring->first_seg->dma,
1639			.result_seg = NULL,
1640		},
1641		/* Test feeding a valid start and end TRB from a different ring */
1642		{	.input_seg = xhci->event_ring->first_seg,
1643			.start_trb = xhci->cmd_ring->first_seg->trbs,
1644			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1645			.input_dma = xhci->cmd_ring->first_seg->dma,
1646			.result_seg = NULL,
1647		},
1648		/* TRB in this ring, but after this TD */
1649		{	.input_seg = xhci->event_ring->first_seg,
1650			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1651			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1652			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1653			.result_seg = NULL,
1654		},
1655		/* TRB in this ring, but before this TD */
1656		{	.input_seg = xhci->event_ring->first_seg,
1657			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1658			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1659			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1660			.result_seg = NULL,
1661		},
1662		/* TRB in this ring, but after this wrapped TD */
1663		{	.input_seg = xhci->event_ring->first_seg,
1664			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1665			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1666			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1667			.result_seg = NULL,
1668		},
1669		/* TRB in this ring, but before this wrapped TD */
1670		{	.input_seg = xhci->event_ring->first_seg,
1671			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1672			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1673			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1674			.result_seg = NULL,
1675		},
1676		/* TRB not in this ring, and we have a wrapped TD */
1677		{	.input_seg = xhci->event_ring->first_seg,
1678			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1679			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1680			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1681			.result_seg = NULL,
1682		},
1683	};
1684
1685	unsigned int num_tests;
1686	int i, ret;
1687
1688	num_tests = ARRAY_SIZE(simple_test_vector);
1689	for (i = 0; i < num_tests; i++) {
1690		ret = xhci_test_trb_in_td(xhci,
1691				xhci->event_ring->first_seg,
1692				xhci->event_ring->first_seg->trbs,
1693				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1694				simple_test_vector[i].input_dma,
1695				simple_test_vector[i].result_seg,
1696				"Simple", i);
1697		if (ret < 0)
1698			return ret;
1699	}
1700
1701	num_tests = ARRAY_SIZE(complex_test_vector);
1702	for (i = 0; i < num_tests; i++) {
1703		ret = xhci_test_trb_in_td(xhci,
1704				complex_test_vector[i].input_seg,
1705				complex_test_vector[i].start_trb,
1706				complex_test_vector[i].end_trb,
1707				complex_test_vector[i].input_dma,
1708				complex_test_vector[i].result_seg,
1709				"Complex", i);
1710		if (ret < 0)
1711			return ret;
1712	}
1713	xhci_dbg(xhci, "TRB math tests passed.\n");
1714	return 0;
1715}
1716
1717static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1718{
1719	u64 temp;
1720	dma_addr_t deq;
1721
1722	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1723			xhci->event_ring->dequeue);
1724	if (deq == 0 && !in_interrupt())
1725		xhci_warn(xhci, "WARN something wrong with SW event ring "
1726				"dequeue ptr.\n");
1727	/* Update HC event ring dequeue pointer */
1728	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1729	temp &= ERST_PTR_MASK;
1730	/* Don't clear the EHB bit (which is RW1C) because
1731	 * there might be more events to service.
1732	 */
1733	temp &= ~ERST_EHB;
1734	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1735			"preserving EHB bit\n");
 
1736	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1737			&xhci->ir_set->erst_dequeue);
1738}
1739
1740static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1741		__le32 __iomem *addr, u8 major_revision)
1742{
1743	u32 temp, port_offset, port_count;
1744	int i;
1745
1746	if (major_revision > 0x03) {
 
 
 
 
 
 
 
 
 
 
 
1747		xhci_warn(xhci, "Ignoring unknown port speed, "
1748				"Ext Cap %p, revision = 0x%x\n",
1749				addr, major_revision);
1750		/* Ignoring port protocol we can't understand. FIXME */
1751		return;
1752	}
 
 
 
 
1753
1754	/* Port offset and count in the third dword, see section 7.2 */
1755	temp = xhci_readl(xhci, addr + 2);
1756	port_offset = XHCI_EXT_PORT_OFF(temp);
1757	port_count = XHCI_EXT_PORT_COUNT(temp);
1758	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1759			"count = %u, revision = 0x%x\n",
 
1760			addr, port_offset, port_count, major_revision);
1761	/* Port count includes the current port offset */
1762	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1763		/* WTF? "Valid values are ‘1’ to MaxPorts" */
1764		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765	port_offset--;
1766	for (i = port_offset; i < (port_offset + port_count); i++) {
 
1767		/* Duplicate entry.  Ignore the port if the revisions differ. */
1768		if (xhci->port_array[i] != 0) {
1769			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1770					" port %u\n", addr, i);
1771			xhci_warn(xhci, "Port was marked as USB %u, "
1772					"duplicated as USB %u\n",
1773					xhci->port_array[i], major_revision);
1774			/* Only adjust the roothub port counts if we haven't
1775			 * found a similar duplicate.
1776			 */
1777			if (xhci->port_array[i] != major_revision &&
1778				xhci->port_array[i] != DUPLICATE_ENTRY) {
1779				if (xhci->port_array[i] == 0x03)
1780					xhci->num_usb3_ports--;
1781				else
1782					xhci->num_usb2_ports--;
1783				xhci->port_array[i] = DUPLICATE_ENTRY;
1784			}
1785			/* FIXME: Should we disable the port? */
1786			continue;
1787		}
1788		xhci->port_array[i] = major_revision;
1789		if (major_revision == 0x03)
1790			xhci->num_usb3_ports++;
1791		else
1792			xhci->num_usb2_ports++;
1793	}
1794	/* FIXME: Should we disable ports not in the Extended Capabilities? */
1795}
1796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797/*
1798 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1799 * specify what speeds each port is supposed to be.  We can't count on the port
1800 * speed bits in the PORTSC register being correct until a device is connected,
1801 * but we need to set up the two fake roothubs with the correct number of USB
1802 * 3.0 and USB 2.0 ports at host controller initialization time.
1803 */
1804static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1805{
1806	__le32 __iomem *addr;
1807	u32 offset;
1808	unsigned int num_ports;
1809	int i, port_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810
1811	addr = &xhci->cap_regs->hcc_params;
1812	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1813	if (offset == 0) {
1814		xhci_err(xhci, "No Extended Capability registers, "
1815				"unable to set up roothub.\n");
 
 
 
 
 
1816		return -ENODEV;
1817	}
1818
1819	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1820	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1821	if (!xhci->port_array)
 
 
 
 
 
 
 
 
1822		return -ENOMEM;
1823
1824	/*
1825	 * For whatever reason, the first capability offset is from the
1826	 * capability register base, not from the HCCPARAMS register.
1827	 * See section 5.3.6 for offset calculation.
1828	 */
1829	addr = &xhci->cap_regs->hc_capbase + offset;
1830	while (1) {
1831		u32 cap_id;
1832
1833		cap_id = xhci_readl(xhci, addr);
1834		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1835			xhci_add_in_port(xhci, num_ports, addr,
1836					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
1837		offset = XHCI_EXT_CAPS_NEXT(cap_id);
1838		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1839				== num_ports)
1840			break;
1841		/*
1842		 * Once you're into the Extended Capabilities, the offset is
1843		 * always relative to the register holding the offset.
1844		 */
1845		addr += offset;
1846	}
1847
1848	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1849		xhci_warn(xhci, "No ports on the roothubs?\n");
1850		return -ENODEV;
1851	}
1852	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1853			xhci->num_usb2_ports, xhci->num_usb3_ports);
 
1854
1855	/* Place limits on the number of roothub ports so that the hub
1856	 * descriptors aren't longer than the USB core will allocate.
1857	 */
1858	if (xhci->num_usb3_ports > 15) {
1859		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1860		xhci->num_usb3_ports = 15;
1861	}
1862	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1863		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
 
 
 
1864				USB_MAXCHILDREN);
1865		xhci->num_usb2_ports = USB_MAXCHILDREN;
1866	}
1867
1868	/*
1869	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1870	 * Not sure how the USB core will handle a hub with no ports...
1871	 */
1872	if (xhci->num_usb2_ports) {
1873		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1874				xhci->num_usb2_ports, flags);
1875		if (!xhci->usb2_ports)
1876			return -ENOMEM;
1877
1878		port_index = 0;
1879		for (i = 0; i < num_ports; i++) {
1880			if (xhci->port_array[i] == 0x03 ||
1881					xhci->port_array[i] == 0 ||
1882					xhci->port_array[i] == DUPLICATE_ENTRY)
1883				continue;
1884
1885			xhci->usb2_ports[port_index] =
1886				&xhci->op_regs->port_status_base +
1887				NUM_PORT_REGS*i;
1888			xhci_dbg(xhci, "USB 2.0 port at index %u, "
1889					"addr = %p\n", i,
1890					xhci->usb2_ports[port_index]);
1891			port_index++;
1892			if (port_index == xhci->num_usb2_ports)
1893				break;
1894		}
1895	}
1896	if (xhci->num_usb3_ports) {
1897		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1898				xhci->num_usb3_ports, flags);
1899		if (!xhci->usb3_ports)
1900			return -ENOMEM;
1901
1902		port_index = 0;
1903		for (i = 0; i < num_ports; i++)
1904			if (xhci->port_array[i] == 0x03) {
1905				xhci->usb3_ports[port_index] =
1906					&xhci->op_regs->port_status_base +
1907					NUM_PORT_REGS*i;
1908				xhci_dbg(xhci, "USB 3.0 port at index %u, "
1909						"addr = %p\n", i,
1910						xhci->usb3_ports[port_index]);
1911				port_index++;
1912				if (port_index == xhci->num_usb3_ports)
1913					break;
1914			}
1915	}
1916	return 0;
1917}
1918
1919int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1920{
1921	dma_addr_t	dma;
1922	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1923	unsigned int	val, val2;
1924	u64		val_64;
1925	struct xhci_segment	*seg;
1926	u32 page_size;
1927	int i;
1928
1929	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1930	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
 
 
 
 
 
 
 
1931	for (i = 0; i < 16; i++) {
1932		if ((0x1 & page_size) != 0)
1933			break;
1934		page_size = page_size >> 1;
1935	}
1936	if (i < 16)
1937		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
 
1938	else
1939		xhci_warn(xhci, "WARN: no supported page size\n");
1940	/* Use 4K pages, since that's common and the minimum the HC supports */
1941	xhci->page_shift = 12;
1942	xhci->page_size = 1 << xhci->page_shift;
1943	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
 
1944
1945	/*
1946	 * Program the Number of Device Slots Enabled field in the CONFIG
1947	 * register with the max value of slots the HC can handle.
1948	 */
1949	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1950	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1951			(unsigned int) val);
1952	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1953	val |= (val2 & ~HCS_SLOTS_MASK);
1954	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1955			(unsigned int) val);
1956	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1957
1958	/*
1959	 * Section 5.4.8 - doorbell array must be
1960	 * "physically contiguous and 64-byte (cache line) aligned".
1961	 */
1962	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1963			sizeof(*xhci->dcbaa), &dma);
1964	if (!xhci->dcbaa)
1965		goto fail;
1966	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1967	xhci->dcbaa->dma = dma;
1968	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
 
1969			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1970	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1971
1972	/*
1973	 * Initialize the ring segment pool.  The ring must be a contiguous
1974	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1975	 * however, the command ring segment needs 64-byte aligned segments,
1976	 * so we pick the greater alignment need.
 
1977	 */
1978	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1979			SEGMENT_SIZE, 64, xhci->page_size);
1980
1981	/* See Table 46 and Note on Figure 55 */
1982	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1983			2112, 64, xhci->page_size);
1984	if (!xhci->segment_pool || !xhci->device_pool)
1985		goto fail;
1986
1987	/* Linear stream context arrays don't have any boundary restrictions,
1988	 * and only need to be 16-byte aligned.
1989	 */
1990	xhci->small_streams_pool =
1991		dma_pool_create("xHCI 256 byte stream ctx arrays",
1992			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1993	xhci->medium_streams_pool =
1994		dma_pool_create("xHCI 1KB stream ctx arrays",
1995			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1996	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1997	 * will be allocated with pci_alloc_consistent()
1998	 */
1999
2000	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2001		goto fail;
2002
2003	/* Set up the command ring to have one segments for now. */
2004	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
2005	if (!xhci->cmd_ring)
2006		goto fail;
2007	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2008	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
 
2009			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2010
2011	/* Set the address in the Command Ring Control register */
2012	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2013	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2014		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2015		xhci->cmd_ring->cycle_state;
2016	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
 
2017	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2018	xhci_dbg_cmd_ptrs(xhci);
2019
2020	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
 
 
 
 
 
 
 
 
 
 
2021	val &= DBOFF_MASK;
2022	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2023			" from cap regs base addr\n", val);
 
2024	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2025	xhci_dbg_regs(xhci);
2026	xhci_print_run_regs(xhci);
2027	/* Set ir_set to interrupt register set 0 */
2028	xhci->ir_set = &xhci->run_regs->ir_set[0];
2029
2030	/*
2031	 * Event ring setup: Allocate a normal ring, but also setup
2032	 * the event ring segment table (ERST).  Section 4.9.3.
2033	 */
2034	xhci_dbg(xhci, "// Allocating event ring\n");
2035	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
 
2036	if (!xhci->event_ring)
2037		goto fail;
2038	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2039		goto fail;
2040
2041	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2042			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2043	if (!xhci->erst.entries)
2044		goto fail;
2045	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2046			(unsigned long long)dma);
2047
2048	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2049	xhci->erst.num_entries = ERST_NUM_SEGS;
2050	xhci->erst.erst_dma_addr = dma;
2051	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2052			xhci->erst.num_entries,
2053			xhci->erst.entries,
2054			(unsigned long long)xhci->erst.erst_dma_addr);
2055
2056	/* set ring base address and size for each segment table entry */
2057	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2058		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2059		entry->seg_addr = cpu_to_le64(seg->dma);
2060		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2061		entry->rsvd = 0;
2062		seg = seg->next;
2063	}
2064
2065	/* set ERST count with the number of entries in the segment table */
2066	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2067	val &= ERST_SIZE_MASK;
2068	val |= ERST_NUM_SEGS;
2069	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
 
2070			val);
2071	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2072
2073	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
 
2074	/* set the segment table base address */
2075	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
 
2076			(unsigned long long)xhci->erst.erst_dma_addr);
2077	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2078	val_64 &= ERST_PTR_MASK;
2079	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2080	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2081
2082	/* Set the event ring dequeue address */
2083	xhci_set_hc_event_deq(xhci);
2084	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2085	xhci_print_ir_set(xhci, 0);
2086
2087	/*
2088	 * XXX: Might need to set the Interrupter Moderation Register to
2089	 * something other than the default (~1ms minimum between interrupts).
2090	 * See section 5.5.1.2.
2091	 */
2092	init_completion(&xhci->addr_dev);
2093	for (i = 0; i < MAX_HC_SLOTS; ++i)
2094		xhci->devs[i] = NULL;
2095	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2096		xhci->bus_state[0].resume_done[i] = 0;
2097		xhci->bus_state[1].resume_done[i] = 0;
 
 
2098	}
2099
2100	if (scratchpad_alloc(xhci, flags))
2101		goto fail;
2102	if (xhci_setup_port_arrays(xhci, flags))
2103		goto fail;
2104
 
 
 
 
 
 
 
 
 
2105	return 0;
2106
2107fail:
2108	xhci_warn(xhci, "Couldn't initialize memory\n");
 
2109	xhci_mem_cleanup(xhci);
2110	return -ENOMEM;
2111}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/dmapool.h>
  15#include <linux/dma-mapping.h>
  16
  17#include "xhci.h"
  18#include "xhci-trace.h"
  19#include "xhci-debugfs.h"
  20
  21/*
  22 * Allocates a generic ring segment from the ring pool, sets the dma address,
  23 * initializes the segment to zero, and sets the private next pointer to NULL.
  24 *
  25 * Section 4.11.1.1:
  26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  27 */
  28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  29					       unsigned int cycle_state,
  30					       unsigned int max_packet,
  31					       gfp_t flags)
  32{
  33	struct xhci_segment *seg;
  34	dma_addr_t	dma;
  35	int		i;
  36	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  37
  38	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  39	if (!seg)
  40		return NULL;
 
  41
  42	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  43	if (!seg->trbs) {
  44		kfree(seg);
  45		return NULL;
  46	}
 
 
  47
  48	if (max_packet) {
  49		seg->bounce_buf = kzalloc_node(max_packet, flags,
  50					dev_to_node(dev));
  51		if (!seg->bounce_buf) {
  52			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  53			kfree(seg);
  54			return NULL;
  55		}
  56	}
  57	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58	if (cycle_state == 0) {
  59		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  61	}
  62	seg->dma = dma;
  63	seg->next = NULL;
  64
  65	return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
 
 
  70	if (seg->trbs) {
 
 
  71		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72		seg->trbs = NULL;
  73	}
  74	kfree(seg->bounce_buf);
  75	kfree(seg);
  76}
  77
  78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  79				struct xhci_segment *first)
  80{
  81	struct xhci_segment *seg;
  82
  83	seg = first->next;
  84	while (seg != first) {
  85		struct xhci_segment *next = seg->next;
  86		xhci_segment_free(xhci, seg);
  87		seg = next;
  88	}
  89	xhci_segment_free(xhci, first);
  90}
  91
  92/*
  93 * Make the prev segment point to the next segment.
  94 *
  95 * Change the last TRB in the prev segment to be a Link TRB which points to the
  96 * DMA address of the next segment.  The caller needs to set any Link TRB
  97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  98 */
  99static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
 100		struct xhci_segment *next, enum xhci_ring_type type)
 101{
 102	u32 val;
 103
 104	if (!prev || !next)
 105		return;
 106	prev->next = next;
 107	if (type != TYPE_EVENT) {
 108		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 109			cpu_to_le64(next->dma);
 110
 111		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 112		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 113		val &= ~TRB_TYPE_BITMASK;
 114		val |= TRB_TYPE(TRB_LINK);
 115		/* Always set the chain bit with 0.95 hardware */
 116		/* Set chain bit for isoc rings on AMD 0.96 host */
 117		if (xhci_link_trb_quirk(xhci) ||
 118				(type == TYPE_ISOC &&
 119				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 120			val |= TRB_CHAIN;
 121		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 122	}
 
 
 
 123}
 124
 125/*
 126 * Link the ring to the new segments.
 127 * Set Toggle Cycle for the new ring if needed.
 128 */
 129static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 130		struct xhci_segment *first, struct xhci_segment *last,
 131		unsigned int num_segs)
 132{
 133	struct xhci_segment *next;
 134
 135	if (!ring || !first || !last)
 136		return;
 137
 138	next = ring->enq_seg->next;
 139	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 140	xhci_link_segments(xhci, last, next, ring->type);
 141	ring->num_segs += num_segs;
 142	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 143
 144	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 145		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 146			&= ~cpu_to_le32(LINK_TOGGLE);
 147		last->trbs[TRBS_PER_SEGMENT-1].link.control
 148			|= cpu_to_le32(LINK_TOGGLE);
 149		ring->last_seg = last;
 150	}
 151}
 152
 153/*
 154 * We need a radix tree for mapping physical addresses of TRBs to which stream
 155 * ID they belong to.  We need to do this because the host controller won't tell
 156 * us which stream ring the TRB came from.  We could store the stream ID in an
 157 * event data TRB, but that doesn't help us for the cancellation case, since the
 158 * endpoint may stop before it reaches that event data TRB.
 159 *
 160 * The radix tree maps the upper portion of the TRB DMA address to a ring
 161 * segment that has the same upper portion of DMA addresses.  For example, say I
 162 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 163 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 164 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 165 * pass the radix tree a key to get the right stream ID:
 166 *
 167 *	0x10c90fff >> 10 = 0x43243
 168 *	0x10c912c0 >> 10 = 0x43244
 169 *	0x10c91400 >> 10 = 0x43245
 170 *
 171 * Obviously, only those TRBs with DMA addresses that are within the segment
 172 * will make the radix tree return the stream ID for that ring.
 173 *
 174 * Caveats for the radix tree:
 175 *
 176 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 177 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 178 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 179 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 180 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 181 * extended systems (where the DMA address can be bigger than 32-bits),
 182 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 183 */
 184static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 185		struct xhci_ring *ring,
 186		struct xhci_segment *seg,
 187		gfp_t mem_flags)
 188{
 189	unsigned long key;
 190	int ret;
 191
 192	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 193	/* Skip any segments that were already added. */
 194	if (radix_tree_lookup(trb_address_map, key))
 195		return 0;
 196
 197	ret = radix_tree_maybe_preload(mem_flags);
 198	if (ret)
 199		return ret;
 200	ret = radix_tree_insert(trb_address_map,
 201			key, ring);
 202	radix_tree_preload_end();
 203	return ret;
 204}
 205
 206static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 207		struct xhci_segment *seg)
 208{
 209	unsigned long key;
 210
 211	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 212	if (radix_tree_lookup(trb_address_map, key))
 213		radix_tree_delete(trb_address_map, key);
 214}
 215
 216static int xhci_update_stream_segment_mapping(
 217		struct radix_tree_root *trb_address_map,
 218		struct xhci_ring *ring,
 219		struct xhci_segment *first_seg,
 220		struct xhci_segment *last_seg,
 221		gfp_t mem_flags)
 222{
 223	struct xhci_segment *seg;
 224	struct xhci_segment *failed_seg;
 225	int ret;
 226
 227	if (WARN_ON_ONCE(trb_address_map == NULL))
 228		return 0;
 229
 230	seg = first_seg;
 231	do {
 232		ret = xhci_insert_segment_mapping(trb_address_map,
 233				ring, seg, mem_flags);
 234		if (ret)
 235			goto remove_streams;
 236		if (seg == last_seg)
 237			return 0;
 238		seg = seg->next;
 239	} while (seg != first_seg);
 240
 241	return 0;
 242
 243remove_streams:
 244	failed_seg = seg;
 245	seg = first_seg;
 246	do {
 247		xhci_remove_segment_mapping(trb_address_map, seg);
 248		if (seg == failed_seg)
 249			return ret;
 250		seg = seg->next;
 251	} while (seg != first_seg);
 252
 253	return ret;
 254}
 255
 256static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 257{
 258	struct xhci_segment *seg;
 259
 260	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 261		return;
 262
 263	seg = ring->first_seg;
 264	do {
 265		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 266		seg = seg->next;
 267	} while (seg != ring->first_seg);
 268}
 269
 270static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 271{
 272	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 273			ring->first_seg, ring->last_seg, mem_flags);
 274}
 275
 276/* XXX: Do we need the hcd structure in all these functions? */
 277void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 278{
 279	if (!ring)
 280		return;
 281
 282	trace_xhci_ring_free(ring);
 283
 284	if (ring->first_seg) {
 285		if (ring->type == TYPE_STREAM)
 286			xhci_remove_stream_mapping(ring);
 287		xhci_free_segments_for_ring(xhci, ring->first_seg);
 288	}
 289
 
 290	kfree(ring);
 291}
 292
 293static void xhci_initialize_ring_info(struct xhci_ring *ring,
 294					unsigned int cycle_state)
 295{
 296	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 297	ring->enqueue = ring->first_seg->trbs;
 298	ring->enq_seg = ring->first_seg;
 299	ring->dequeue = ring->enqueue;
 300	ring->deq_seg = ring->first_seg;
 301	/* The ring is initialized to 0. The producer must write 1 to the cycle
 302	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 303	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 304	 *
 305	 * New rings are initialized with cycle state equal to 1; if we are
 306	 * handling ring expansion, set the cycle state equal to the old ring.
 307	 */
 308	ring->cycle_state = cycle_state;
 309
 310	/*
 311	 * Each segment has a link TRB, and leave an extra TRB for SW
 312	 * accounting purpose
 313	 */
 314	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 315}
 316
 317/* Allocate segments and link them for a ring */
 318static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 319		struct xhci_segment **first, struct xhci_segment **last,
 320		unsigned int num_segs, unsigned int cycle_state,
 321		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 322{
 323	struct xhci_segment *prev;
 324
 325	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 326	if (!prev)
 327		return -ENOMEM;
 328	num_segs--;
 329
 330	*first = prev;
 331	while (num_segs > 0) {
 332		struct xhci_segment	*next;
 333
 334		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 335		if (!next) {
 336			prev = *first;
 337			while (prev) {
 338				next = prev->next;
 339				xhci_segment_free(xhci, prev);
 340				prev = next;
 341			}
 342			return -ENOMEM;
 343		}
 344		xhci_link_segments(xhci, prev, next, type);
 345
 346		prev = next;
 347		num_segs--;
 348	}
 349	xhci_link_segments(xhci, prev, *first, type);
 350	*last = prev;
 351
 352	return 0;
 353}
 354
 355/**
 356 * Create a new ring with zero or more segments.
 357 *
 358 * Link each segment together into a ring.
 359 * Set the end flag and the cycle toggle bit on the last segment.
 360 * See section 4.9.1 and figures 15 and 16.
 361 */
 362struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 363		unsigned int num_segs, unsigned int cycle_state,
 364		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 365{
 366	struct xhci_ring	*ring;
 367	int ret;
 368	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 369
 370	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 
 371	if (!ring)
 372		return NULL;
 373
 374	ring->num_segs = num_segs;
 375	ring->bounce_buf_len = max_packet;
 376	INIT_LIST_HEAD(&ring->td_list);
 377	ring->type = type;
 378	if (num_segs == 0)
 379		return ring;
 380
 381	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 382			&ring->last_seg, num_segs, cycle_state, type,
 383			max_packet, flags);
 384	if (ret)
 385		goto fail;
 
 
 
 
 
 386
 387	/* Only event ring does not use link TRB */
 388	if (type != TYPE_EVENT) {
 
 
 
 
 
 
 
 
 
 389		/* See section 4.9.2.1 and 6.4.4.1 */
 390		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 391			cpu_to_le32(LINK_TOGGLE);
 
 
 
 392	}
 393	xhci_initialize_ring_info(ring, cycle_state);
 394	trace_xhci_ring_alloc(ring);
 395	return ring;
 396
 397fail:
 398	kfree(ring);
 399	return NULL;
 400}
 401
 402void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 403		struct xhci_virt_device *virt_dev,
 404		unsigned int ep_index)
 405{
 406	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407	virt_dev->eps[ep_index].ring = NULL;
 408}
 409
 410/*
 411 * Expand an existing ring.
 412 * Allocate a new ring which has same segment numbers and link the two rings.
 413 */
 414int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 415				unsigned int num_trbs, gfp_t flags)
 416{
 417	struct xhci_segment	*first;
 418	struct xhci_segment	*last;
 419	unsigned int		num_segs;
 420	unsigned int		num_segs_needed;
 421	int			ret;
 422
 423	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 424				(TRBS_PER_SEGMENT - 1);
 425
 426	/* Allocate number of segments we needed, or double the ring size */
 427	num_segs = ring->num_segs > num_segs_needed ?
 428			ring->num_segs : num_segs_needed;
 429
 430	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 431			num_segs, ring->cycle_state, ring->type,
 432			ring->bounce_buf_len, flags);
 433	if (ret)
 434		return -ENOMEM;
 435
 436	if (ring->type == TYPE_STREAM)
 437		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 438						ring, first, last, flags);
 439	if (ret) {
 440		struct xhci_segment *next;
 441		do {
 442			next = first->next;
 443			xhci_segment_free(xhci, first);
 444			if (first == last)
 445				break;
 446			first = next;
 447		} while (true);
 448		return ret;
 449	}
 450
 451	xhci_link_rings(xhci, ring, first, last, num_segs);
 452	trace_xhci_ring_expansion(ring);
 453	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 454			"ring expansion succeed, now has %d segments",
 455			ring->num_segs);
 456
 457	return 0;
 458}
 459
 460struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 461						    int type, gfp_t flags)
 462{
 463	struct xhci_container_ctx *ctx;
 464	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 465
 466	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 467		return NULL;
 468
 469	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 470	if (!ctx)
 471		return NULL;
 472
 
 473	ctx->type = type;
 474	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 475	if (type == XHCI_CTX_TYPE_INPUT)
 476		ctx->size += CTX_SIZE(xhci->hcc_params);
 477
 478	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 479	if (!ctx->bytes) {
 480		kfree(ctx);
 481		return NULL;
 482	}
 483	return ctx;
 484}
 485
 486void xhci_free_container_ctx(struct xhci_hcd *xhci,
 487			     struct xhci_container_ctx *ctx)
 488{
 489	if (!ctx)
 490		return;
 491	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 492	kfree(ctx);
 493}
 494
 495struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 496					      struct xhci_container_ctx *ctx)
 497{
 498	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 499		return NULL;
 500
 501	return (struct xhci_input_control_ctx *)ctx->bytes;
 502}
 503
 504struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 505					struct xhci_container_ctx *ctx)
 506{
 507	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 508		return (struct xhci_slot_ctx *)ctx->bytes;
 509
 510	return (struct xhci_slot_ctx *)
 511		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 512}
 513
 514struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 515				    struct xhci_container_ctx *ctx,
 516				    unsigned int ep_index)
 517{
 518	/* increment ep index by offset of start of ep ctx array */
 519	ep_index++;
 520	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 521		ep_index++;
 522
 523	return (struct xhci_ep_ctx *)
 524		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 525}
 526
 527
 528/***************** Streams structures manipulation *************************/
 529
 530static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 531		unsigned int num_stream_ctxs,
 532		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 533{
 534	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 535	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 536
 537	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 538		dma_free_coherent(dev, size,
 
 539				stream_ctx, dma);
 540	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 541		return dma_pool_free(xhci->small_streams_pool,
 542				stream_ctx, dma);
 543	else
 544		return dma_pool_free(xhci->medium_streams_pool,
 545				stream_ctx, dma);
 546}
 547
 548/*
 549 * The stream context array for each endpoint with bulk streams enabled can
 550 * vary in size, based on:
 551 *  - how many streams the endpoint supports,
 552 *  - the maximum primary stream array size the host controller supports,
 553 *  - and how many streams the device driver asks for.
 554 *
 555 * The stream context array must be a power of 2, and can be as small as
 556 * 64 bytes or as large as 1MB.
 557 */
 558static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 559		unsigned int num_stream_ctxs, dma_addr_t *dma,
 560		gfp_t mem_flags)
 561{
 562	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 563	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 564
 565	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 566		return dma_alloc_coherent(dev, size,
 567				dma, mem_flags);
 568	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 
 569		return dma_pool_alloc(xhci->small_streams_pool,
 570				mem_flags, dma);
 571	else
 572		return dma_pool_alloc(xhci->medium_streams_pool,
 573				mem_flags, dma);
 574}
 575
 576struct xhci_ring *xhci_dma_to_transfer_ring(
 577		struct xhci_virt_ep *ep,
 578		u64 address)
 579{
 580	if (ep->ep_state & EP_HAS_STREAMS)
 581		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 582				address >> TRB_SEGMENT_SHIFT);
 583	return ep->ring;
 584}
 585
 
 
 
 
 
 
 
 
 
 
 
 586struct xhci_ring *xhci_stream_id_to_ring(
 587		struct xhci_virt_device *dev,
 588		unsigned int ep_index,
 589		unsigned int stream_id)
 590{
 591	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 592
 593	if (stream_id == 0)
 594		return ep->ring;
 595	if (!ep->stream_info)
 596		return NULL;
 597
 598	if (stream_id >= ep->stream_info->num_streams)
 599		return NULL;
 600	return ep->stream_info->stream_rings[stream_id];
 601}
 602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603/*
 604 * Change an endpoint's internal structure so it supports stream IDs.  The
 605 * number of requested streams includes stream 0, which cannot be used by device
 606 * drivers.
 607 *
 608 * The number of stream contexts in the stream context array may be bigger than
 609 * the number of streams the driver wants to use.  This is because the number of
 610 * stream context array entries must be a power of two.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611 */
 612struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 613		unsigned int num_stream_ctxs,
 614		unsigned int num_streams,
 615		unsigned int max_packet, gfp_t mem_flags)
 616{
 617	struct xhci_stream_info *stream_info;
 618	u32 cur_stream;
 619	struct xhci_ring *cur_ring;
 
 620	u64 addr;
 621	int ret;
 622	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 623
 624	xhci_dbg(xhci, "Allocating %u streams and %u "
 625			"stream context array entries.\n",
 626			num_streams, num_stream_ctxs);
 627	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 628		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 629		return NULL;
 630	}
 631	xhci->cmd_ring_reserved_trbs++;
 632
 633	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 634			dev_to_node(dev));
 635	if (!stream_info)
 636		goto cleanup_trbs;
 637
 638	stream_info->num_streams = num_streams;
 639	stream_info->num_stream_ctxs = num_stream_ctxs;
 640
 641	/* Initialize the array of virtual pointers to stream rings. */
 642	stream_info->stream_rings = kcalloc_node(
 643			num_streams, sizeof(struct xhci_ring *), mem_flags,
 644			dev_to_node(dev));
 645	if (!stream_info->stream_rings)
 646		goto cleanup_info;
 647
 648	/* Initialize the array of DMA addresses for stream rings for the HW. */
 649	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 650			num_stream_ctxs, &stream_info->ctx_array_dma,
 651			mem_flags);
 652	if (!stream_info->stream_ctx_array)
 653		goto cleanup_ctx;
 654	memset(stream_info->stream_ctx_array, 0,
 655			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 656
 657	/* Allocate everything needed to free the stream rings later */
 658	stream_info->free_streams_command =
 659		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 660	if (!stream_info->free_streams_command)
 661		goto cleanup_ctx;
 662
 663	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 664
 665	/* Allocate rings for all the streams that the driver will use,
 666	 * and add their segment DMA addresses to the radix tree.
 667	 * Stream 0 is reserved.
 668	 */
 669
 670	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 671		stream_info->stream_rings[cur_stream] =
 672			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 673					mem_flags);
 674		cur_ring = stream_info->stream_rings[cur_stream];
 675		if (!cur_ring)
 676			goto cleanup_rings;
 677		cur_ring->stream_id = cur_stream;
 678		cur_ring->trb_address_map = &stream_info->trb_address_map;
 679		/* Set deq ptr, cycle bit, and stream context type */
 680		addr = cur_ring->first_seg->dma |
 681			SCT_FOR_CTX(SCT_PRI_TR) |
 682			cur_ring->cycle_state;
 683		stream_info->stream_ctx_array[cur_stream].stream_ring =
 684			cpu_to_le64(addr);
 685		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 686				cur_stream, (unsigned long long) addr);
 687
 688		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 
 
 
 689		if (ret) {
 690			xhci_ring_free(xhci, cur_ring);
 691			stream_info->stream_rings[cur_stream] = NULL;
 692			goto cleanup_rings;
 693		}
 694	}
 695	/* Leave the other unused stream ring pointers in the stream context
 696	 * array initialized to zero.  This will cause the xHC to give us an
 697	 * error if the device asks for a stream ID we don't have setup (if it
 698	 * was any other way, the host controller would assume the ring is
 699	 * "empty" and wait forever for data to be queued to that stream ID).
 700	 */
 
 
 
 
 
 
 
 701
 702	return stream_info;
 703
 704cleanup_rings:
 705	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 706		cur_ring = stream_info->stream_rings[cur_stream];
 707		if (cur_ring) {
 
 
 
 708			xhci_ring_free(xhci, cur_ring);
 709			stream_info->stream_rings[cur_stream] = NULL;
 710		}
 711	}
 712	xhci_free_command(xhci, stream_info->free_streams_command);
 713cleanup_ctx:
 714	kfree(stream_info->stream_rings);
 715cleanup_info:
 716	kfree(stream_info);
 717cleanup_trbs:
 718	xhci->cmd_ring_reserved_trbs--;
 719	return NULL;
 720}
 721/*
 722 * Sets the MaxPStreams field and the Linear Stream Array field.
 723 * Sets the dequeue pointer to the stream context array.
 724 */
 725void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 726		struct xhci_ep_ctx *ep_ctx,
 727		struct xhci_stream_info *stream_info)
 728{
 729	u32 max_primary_streams;
 730	/* MaxPStreams is the number of stream context array entries, not the
 731	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 732	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 733	 */
 734	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 735	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 736			"Setting number of stream ctx array entries to %u",
 737			1 << (max_primary_streams + 1));
 738	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 739	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 740				       | EP_HAS_LSA);
 741	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 742}
 743
 744/*
 745 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 746 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 747 * not at the beginning of the ring).
 748 */
 749void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 
 750		struct xhci_virt_ep *ep)
 751{
 752	dma_addr_t addr;
 753	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 754	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 755	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 756}
 757
 758/* Frees all stream contexts associated with the endpoint,
 759 *
 760 * Caller should fix the endpoint context streams fields.
 761 */
 762void xhci_free_stream_info(struct xhci_hcd *xhci,
 763		struct xhci_stream_info *stream_info)
 764{
 765	int cur_stream;
 766	struct xhci_ring *cur_ring;
 
 767
 768	if (!stream_info)
 769		return;
 770
 771	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 772			cur_stream++) {
 773		cur_ring = stream_info->stream_rings[cur_stream];
 774		if (cur_ring) {
 
 
 
 775			xhci_ring_free(xhci, cur_ring);
 776			stream_info->stream_rings[cur_stream] = NULL;
 777		}
 778	}
 779	xhci_free_command(xhci, stream_info->free_streams_command);
 780	xhci->cmd_ring_reserved_trbs--;
 781	if (stream_info->stream_ctx_array)
 782		xhci_free_stream_ctx(xhci,
 783				stream_info->num_stream_ctxs,
 784				stream_info->stream_ctx_array,
 785				stream_info->ctx_array_dma);
 786
 787	kfree(stream_info->stream_rings);
 
 788	kfree(stream_info);
 789}
 790
 791
 792/***************** Device context manipulation *************************/
 793
 794static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 795		struct xhci_virt_ep *ep)
 796{
 797	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 798		    0);
 
 799	ep->xhci = xhci;
 800}
 801
 802static void xhci_free_tt_info(struct xhci_hcd *xhci,
 803		struct xhci_virt_device *virt_dev,
 804		int slot_id)
 805{
 806	struct list_head *tt_list_head;
 807	struct xhci_tt_bw_info *tt_info, *next;
 808	bool slot_found = false;
 809
 810	/* If the device never made it past the Set Address stage,
 811	 * it may not have the real_port set correctly.
 812	 */
 813	if (virt_dev->real_port == 0 ||
 814			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 815		xhci_dbg(xhci, "Bad real port.\n");
 816		return;
 817	}
 818
 819	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 820	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 821		/* Multi-TT hubs will have more than one entry */
 822		if (tt_info->slot_id == slot_id) {
 823			slot_found = true;
 824			list_del(&tt_info->tt_list);
 825			kfree(tt_info);
 826		} else if (slot_found) {
 827			break;
 828		}
 829	}
 830}
 831
 832int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 833		struct xhci_virt_device *virt_dev,
 834		struct usb_device *hdev,
 835		struct usb_tt *tt, gfp_t mem_flags)
 836{
 837	struct xhci_tt_bw_info		*tt_info;
 838	unsigned int			num_ports;
 839	int				i, j;
 840	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 841
 842	if (!tt->multi)
 843		num_ports = 1;
 844	else
 845		num_ports = hdev->maxchild;
 846
 847	for (i = 0; i < num_ports; i++, tt_info++) {
 848		struct xhci_interval_bw_table *bw_table;
 849
 850		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 851				dev_to_node(dev));
 852		if (!tt_info)
 853			goto free_tts;
 854		INIT_LIST_HEAD(&tt_info->tt_list);
 855		list_add(&tt_info->tt_list,
 856				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 857		tt_info->slot_id = virt_dev->udev->slot_id;
 858		if (tt->multi)
 859			tt_info->ttport = i+1;
 860		bw_table = &tt_info->bw_table;
 861		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 862			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 863	}
 864	return 0;
 865
 866free_tts:
 867	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 868	return -ENOMEM;
 869}
 870
 871
 872/* All the xhci_tds in the ring's TD list should be freed at this point.
 873 * Should be called with xhci->lock held if there is any chance the TT lists
 874 * will be manipulated by the configure endpoint, allocate device, or update
 875 * hub functions while this function is removing the TT entries from the list.
 876 */
 877void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 878{
 879	struct xhci_virt_device *dev;
 880	int i;
 881	int old_active_eps = 0;
 882
 883	/* Slot ID 0 is reserved */
 884	if (slot_id == 0 || !xhci->devs[slot_id])
 885		return;
 886
 887	dev = xhci->devs[slot_id];
 888
 889	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 890	if (!dev)
 891		return;
 892
 893	trace_xhci_free_virt_device(dev);
 894
 895	if (dev->tt_info)
 896		old_active_eps = dev->tt_info->active_eps;
 897
 898	for (i = 0; i < 31; i++) {
 899		if (dev->eps[i].ring)
 900			xhci_ring_free(xhci, dev->eps[i].ring);
 901		if (dev->eps[i].stream_info)
 902			xhci_free_stream_info(xhci,
 903					dev->eps[i].stream_info);
 904		/* Endpoints on the TT/root port lists should have been removed
 905		 * when usb_disable_device() was called for the device.
 906		 * We can't drop them anyway, because the udev might have gone
 907		 * away by this point, and we can't tell what speed it was.
 908		 */
 909		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 910			xhci_warn(xhci, "Slot %u endpoint %u "
 911					"not removed from BW list!\n",
 912					slot_id, i);
 913	}
 914	/* If this is a hub, free the TT(s) from the TT list */
 915	xhci_free_tt_info(xhci, dev, slot_id);
 916	/* If necessary, update the number of active TTs on this root port */
 917	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 918
 919	if (dev->in_ctx)
 920		xhci_free_container_ctx(xhci, dev->in_ctx);
 921	if (dev->out_ctx)
 922		xhci_free_container_ctx(xhci, dev->out_ctx);
 923
 924	if (dev->udev && dev->udev->slot_id)
 925		dev->udev->slot_id = 0;
 926	kfree(xhci->devs[slot_id]);
 927	xhci->devs[slot_id] = NULL;
 928}
 929
 930/*
 931 * Free a virt_device structure.
 932 * If the virt_device added a tt_info (a hub) and has children pointing to
 933 * that tt_info, then free the child first. Recursive.
 934 * We can't rely on udev at this point to find child-parent relationships.
 935 */
 936static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 937{
 938	struct xhci_virt_device *vdev;
 939	struct list_head *tt_list_head;
 940	struct xhci_tt_bw_info *tt_info, *next;
 941	int i;
 942
 943	vdev = xhci->devs[slot_id];
 944	if (!vdev)
 945		return;
 946
 947	if (vdev->real_port == 0 ||
 948			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 949		xhci_dbg(xhci, "Bad vdev->real_port.\n");
 950		goto out;
 951	}
 952
 953	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 954	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 955		/* is this a hub device that added a tt_info to the tts list */
 956		if (tt_info->slot_id == slot_id) {
 957			/* are any devices using this tt_info? */
 958			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 959				vdev = xhci->devs[i];
 960				if (vdev && (vdev->tt_info == tt_info))
 961					xhci_free_virt_devices_depth_first(
 962						xhci, i);
 963			}
 964		}
 965	}
 966out:
 967	/* we are now at a leaf device */
 968	xhci_debugfs_remove_slot(xhci, slot_id);
 969	xhci_free_virt_device(xhci, slot_id);
 970}
 971
 972int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 973		struct usb_device *udev, gfp_t flags)
 974{
 975	struct xhci_virt_device *dev;
 976	int i;
 977
 978	/* Slot ID 0 is reserved */
 979	if (slot_id == 0 || xhci->devs[slot_id]) {
 980		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 981		return 0;
 982	}
 983
 984	dev = kzalloc(sizeof(*dev), flags);
 985	if (!dev)
 986		return 0;
 
 987
 988	/* Allocate the (output) device context that will be used in the HC. */
 989	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 990	if (!dev->out_ctx)
 991		goto fail;
 992
 993	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 994			(unsigned long long)dev->out_ctx->dma);
 995
 996	/* Allocate the (input) device context for address device command */
 997	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 998	if (!dev->in_ctx)
 999		goto fail;
1000
1001	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1002			(unsigned long long)dev->in_ctx->dma);
1003
1004	/* Initialize the cancellation list and watchdog timers for each ep */
1005	for (i = 0; i < 31; i++) {
1006		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1007		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1008		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1009	}
1010
1011	/* Allocate endpoint 0 ring */
1012	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1013	if (!dev->eps[0].ring)
1014		goto fail;
1015
 
 
 
 
 
 
 
 
 
 
1016	dev->udev = udev;
1017
1018	/* Point to output device context in dcbaa. */
1019	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1020	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1021		 slot_id,
1022		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1023		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1024
1025	trace_xhci_alloc_virt_device(dev);
1026
1027	xhci->devs[slot_id] = dev;
1028
1029	return 1;
1030fail:
1031
1032	if (dev->in_ctx)
1033		xhci_free_container_ctx(xhci, dev->in_ctx);
1034	if (dev->out_ctx)
1035		xhci_free_container_ctx(xhci, dev->out_ctx);
1036	kfree(dev);
1037
1038	return 0;
1039}
1040
1041void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1042		struct usb_device *udev)
1043{
1044	struct xhci_virt_device *virt_dev;
1045	struct xhci_ep_ctx	*ep0_ctx;
1046	struct xhci_ring	*ep_ring;
1047
1048	virt_dev = xhci->devs[udev->slot_id];
1049	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1050	ep_ring = virt_dev->eps[0].ring;
1051	/*
1052	 * FIXME we don't keep track of the dequeue pointer very well after a
1053	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1054	 * host to our enqueue pointer.  This should only be called after a
1055	 * configured device has reset, so all control transfers should have
1056	 * been completed or cancelled before the reset.
1057	 */
1058	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1059							ep_ring->enqueue)
1060				   | ep_ring->cycle_state);
1061}
1062
1063/*
1064 * The xHCI roothub may have ports of differing speeds in any order in the port
1065 * status registers.
 
1066 *
1067 * The xHCI hardware wants to know the roothub port number that the USB device
1068 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1069 * know is the index of that port under either the USB 2.0 or the USB 3.0
1070 * roothub, but that doesn't give us the real index into the HW port status
1071 * registers. Call xhci_find_raw_port_number() to get real index.
 
1072 */
1073static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1074		struct usb_device *udev)
1075{
1076	struct usb_device *top_dev;
1077	struct usb_hcd *hcd;
1078
1079	if (udev->speed >= USB_SPEED_SUPER)
1080		hcd = xhci->shared_hcd;
1081	else
1082		hcd = xhci->main_hcd;
1083
1084	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1085			top_dev = top_dev->parent)
1086		/* Found device below root hub */;
 
 
 
 
 
 
 
 
 
 
 
1087
1088	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
 
 
 
 
 
 
 
 
 
 
 
1089}
1090
1091/* Setup an xHCI virtual device for a Set Address command */
1092int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1093{
1094	struct xhci_virt_device *dev;
1095	struct xhci_ep_ctx	*ep0_ctx;
1096	struct xhci_slot_ctx    *slot_ctx;
 
1097	u32			port_num;
1098	u32			max_packets;
1099	struct usb_device *top_dev;
1100
1101	dev = xhci->devs[udev->slot_id];
1102	/* Slot ID 0 is reserved */
1103	if (udev->slot_id == 0 || !dev) {
1104		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1105				udev->slot_id);
1106		return -EINVAL;
1107	}
1108	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
 
1109	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1110
 
 
 
1111	/* 3) Only the control endpoint is valid - one endpoint context */
1112	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1113	switch (udev->speed) {
1114	case USB_SPEED_SUPER_PLUS:
1115		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1116		max_packets = MAX_PACKET(512);
1117		break;
1118	case USB_SPEED_SUPER:
1119		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1120		max_packets = MAX_PACKET(512);
1121		break;
1122	case USB_SPEED_HIGH:
1123		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1124		max_packets = MAX_PACKET(64);
1125		break;
1126	/* USB core guesses at a 64-byte max packet first for FS devices */
1127	case USB_SPEED_FULL:
1128		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1129		max_packets = MAX_PACKET(64);
1130		break;
1131	case USB_SPEED_LOW:
1132		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1133		max_packets = MAX_PACKET(8);
1134		break;
1135	case USB_SPEED_WIRELESS:
1136		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1137		return -EINVAL;
1138		break;
1139	default:
1140		/* Speed was set earlier, this shouldn't happen. */
1141		return -EINVAL;
1142	}
1143	/* Find the root hub port this device is under */
1144	port_num = xhci_find_real_port_number(xhci, udev);
1145	if (!port_num)
1146		return -EINVAL;
1147	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1148	/* Set the port number in the virtual_device to the faked port number */
1149	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1150			top_dev = top_dev->parent)
1151		/* Found device below root hub */;
1152	dev->fake_port = top_dev->portnum;
1153	dev->real_port = port_num;
1154	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1155	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1156
1157	/* Find the right bandwidth table that this device will be a part of.
1158	 * If this is a full speed device attached directly to a root port (or a
1159	 * decendent of one), it counts as a primary bandwidth domain, not a
1160	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1161	 * will never be created for the HS root hub.
1162	 */
1163	if (!udev->tt || !udev->tt->hub->parent) {
1164		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1165	} else {
1166		struct xhci_root_port_bw_info *rh_bw;
1167		struct xhci_tt_bw_info *tt_bw;
1168
1169		rh_bw = &xhci->rh_bw[port_num - 1];
1170		/* Find the right TT. */
1171		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1172			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1173				continue;
1174
1175			if (!dev->udev->tt->multi ||
1176					(udev->tt->multi &&
1177					 tt_bw->ttport == dev->udev->ttport)) {
1178				dev->bw_table = &tt_bw->bw_table;
1179				dev->tt_info = tt_bw;
1180				break;
1181			}
1182		}
1183		if (!dev->tt_info)
1184			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1185	}
1186
1187	/* Is this a LS/FS device under an external HS hub? */
1188	if (udev->tt && udev->tt->hub->parent) {
1189		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1190						(udev->ttport << 8));
1191		if (udev->tt->multi)
1192			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1193	}
1194	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1195	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1196
1197	/* Step 4 - ring already allocated */
1198	/* Step 5 */
1199	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1202	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1203					 max_packets);
1204
1205	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1206				   dev->eps[0].ring->cycle_state);
1207
1208	trace_xhci_setup_addressable_virt_device(dev);
1209
1210	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1211
1212	return 0;
1213}
1214
1215/*
1216 * Convert interval expressed as 2^(bInterval - 1) == interval into
1217 * straight exponent value 2^n == interval.
1218 *
1219 */
1220static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1221		struct usb_host_endpoint *ep)
1222{
1223	unsigned int interval;
1224
1225	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1226	if (interval != ep->desc.bInterval - 1)
1227		dev_warn(&udev->dev,
1228			 "ep %#x - rounding interval to %d %sframes\n",
1229			 ep->desc.bEndpointAddress,
1230			 1 << interval,
1231			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1232
1233	if (udev->speed == USB_SPEED_FULL) {
1234		/*
1235		 * Full speed isoc endpoints specify interval in frames,
1236		 * not microframes. We are using microframes everywhere,
1237		 * so adjust accordingly.
1238		 */
1239		interval += 3;	/* 1 frame = 2^3 uframes */
1240	}
1241
1242	return interval;
1243}
1244
1245/*
1246 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1247 * microframes, rounded down to nearest power of 2.
1248 */
1249static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1250		struct usb_host_endpoint *ep, unsigned int desc_interval,
1251		unsigned int min_exponent, unsigned int max_exponent)
1252{
1253	unsigned int interval;
1254
1255	interval = fls(desc_interval) - 1;
1256	interval = clamp_val(interval, min_exponent, max_exponent);
1257	if ((1 << interval) != desc_interval)
1258		dev_dbg(&udev->dev,
1259			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1260			 ep->desc.bEndpointAddress,
1261			 1 << interval,
1262			 desc_interval);
1263
1264	return interval;
1265}
1266
1267static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1268		struct usb_host_endpoint *ep)
1269{
1270	if (ep->desc.bInterval == 0)
1271		return 0;
1272	return xhci_microframes_to_exponent(udev, ep,
1273			ep->desc.bInterval, 0, 15);
1274}
1275
1276
1277static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1278		struct usb_host_endpoint *ep)
1279{
1280	return xhci_microframes_to_exponent(udev, ep,
1281			ep->desc.bInterval * 8, 3, 10);
1282}
1283
1284/* Return the polling or NAK interval.
1285 *
1286 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1287 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1288 *
1289 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1290 * is set to 0.
1291 */
1292static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1293		struct usb_host_endpoint *ep)
1294{
1295	unsigned int interval = 0;
1296
1297	switch (udev->speed) {
1298	case USB_SPEED_HIGH:
1299		/* Max NAK rate */
1300		if (usb_endpoint_xfer_control(&ep->desc) ||
1301		    usb_endpoint_xfer_bulk(&ep->desc)) {
1302			interval = xhci_parse_microframe_interval(udev, ep);
1303			break;
1304		}
1305		/* Fall through - SS and HS isoc/int have same decoding */
1306
1307	case USB_SPEED_SUPER_PLUS:
1308	case USB_SPEED_SUPER:
1309		if (usb_endpoint_xfer_int(&ep->desc) ||
1310		    usb_endpoint_xfer_isoc(&ep->desc)) {
1311			interval = xhci_parse_exponent_interval(udev, ep);
1312		}
1313		break;
1314
1315	case USB_SPEED_FULL:
1316		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1317			interval = xhci_parse_exponent_interval(udev, ep);
1318			break;
1319		}
1320		/*
1321		 * Fall through for interrupt endpoint interval decoding
1322		 * since it uses the same rules as low speed interrupt
1323		 * endpoints.
1324		 */
1325		/* fall through */
1326
1327	case USB_SPEED_LOW:
1328		if (usb_endpoint_xfer_int(&ep->desc) ||
1329		    usb_endpoint_xfer_isoc(&ep->desc)) {
1330
1331			interval = xhci_parse_frame_interval(udev, ep);
1332		}
1333		break;
1334
1335	default:
1336		BUG();
1337	}
1338	return interval;
1339}
1340
1341/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1342 * High speed endpoint descriptors can define "the number of additional
1343 * transaction opportunities per microframe", but that goes in the Max Burst
1344 * endpoint context field.
1345 */
1346static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1347		struct usb_host_endpoint *ep)
1348{
1349	if (udev->speed < USB_SPEED_SUPER ||
1350			!usb_endpoint_xfer_isoc(&ep->desc))
1351		return 0;
1352	return ep->ss_ep_comp.bmAttributes;
1353}
1354
1355static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1356				       struct usb_host_endpoint *ep)
1357{
1358	/* Super speed and Plus have max burst in ep companion desc */
1359	if (udev->speed >= USB_SPEED_SUPER)
1360		return ep->ss_ep_comp.bMaxBurst;
1361
1362	if (udev->speed == USB_SPEED_HIGH &&
1363	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1364	     usb_endpoint_xfer_int(&ep->desc)))
1365		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1366
1367	return 0;
1368}
1369
1370static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1371{
1372	int in;
 
1373
1374	in = usb_endpoint_dir_in(&ep->desc);
1375
1376	switch (usb_endpoint_type(&ep->desc)) {
1377	case USB_ENDPOINT_XFER_CONTROL:
1378		return CTRL_EP;
1379	case USB_ENDPOINT_XFER_BULK:
1380		return in ? BULK_IN_EP : BULK_OUT_EP;
1381	case USB_ENDPOINT_XFER_ISOC:
1382		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1383	case USB_ENDPOINT_XFER_INT:
1384		return in ? INT_IN_EP : INT_OUT_EP;
 
 
 
 
 
 
 
 
 
1385	}
1386	return 0;
1387}
1388
1389/* Return the maximum endpoint service interval time (ESIT) payload.
1390 * Basically, this is the maxpacket size, multiplied by the burst size
1391 * and mult size.
1392 */
1393static u32 xhci_get_max_esit_payload(struct usb_device *udev,
 
1394		struct usb_host_endpoint *ep)
1395{
1396	int max_burst;
1397	int max_packet;
1398
1399	/* Only applies for interrupt or isochronous endpoints */
1400	if (usb_endpoint_xfer_control(&ep->desc) ||
1401			usb_endpoint_xfer_bulk(&ep->desc))
1402		return 0;
1403
1404	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1405	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1406	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1407		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1408	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1409	else if (udev->speed >= USB_SPEED_SUPER)
1410		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1411
1412	max_packet = usb_endpoint_maxp(&ep->desc);
1413	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1414	/* A 0 in max burst means 1 transfer per ESIT */
1415	return max_packet * max_burst;
1416}
1417
1418/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1419 * Drivers will have to call usb_alloc_streams() to do that.
1420 */
1421int xhci_endpoint_init(struct xhci_hcd *xhci,
1422		struct xhci_virt_device *virt_dev,
1423		struct usb_device *udev,
1424		struct usb_host_endpoint *ep,
1425		gfp_t mem_flags)
1426{
1427	unsigned int ep_index;
1428	struct xhci_ep_ctx *ep_ctx;
1429	struct xhci_ring *ep_ring;
1430	unsigned int max_packet;
1431	enum xhci_ring_type ring_type;
1432	u32 max_esit_payload;
1433	u32 endpoint_type;
1434	unsigned int max_burst;
1435	unsigned int interval;
1436	unsigned int mult;
1437	unsigned int avg_trb_len;
1438	unsigned int err_count = 0;
1439
1440	ep_index = xhci_get_endpoint_index(&ep->desc);
1441	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1442
1443	endpoint_type = xhci_get_endpoint_type(ep);
1444	if (!endpoint_type)
1445		return -EINVAL;
1446
1447	ring_type = usb_endpoint_type(&ep->desc);
1448
1449	/*
1450	 * Get values to fill the endpoint context, mostly from ep descriptor.
1451	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1452	 * have no clue on scatter gather list entry size. For Isoc and Int,
1453	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1454	 */
1455	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1456	interval = xhci_get_endpoint_interval(udev, ep);
1457
1458	/* Periodic endpoint bInterval limit quirk */
1459	if (usb_endpoint_xfer_int(&ep->desc) ||
1460	    usb_endpoint_xfer_isoc(&ep->desc)) {
1461		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1462		    udev->speed >= USB_SPEED_HIGH &&
1463		    interval >= 7) {
1464			interval = 6;
1465		}
 
 
 
 
1466	}
 
 
 
1467
1468	mult = xhci_get_endpoint_mult(udev, ep);
1469	max_packet = usb_endpoint_maxp(&ep->desc);
1470	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1471	avg_trb_len = max_esit_payload;
1472
1473	/* FIXME dig Mult and streams info out of ep companion desc */
1474
1475	/* Allow 3 retries for everything but isoc, set CErr = 3 */
 
 
1476	if (!usb_endpoint_xfer_isoc(&ep->desc))
1477		err_count = 3;
1478	/* Some devices get this wrong */
1479	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1480		max_packet = 512;
1481	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1482	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1483		avg_trb_len = 8;
1484	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1485	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1486		mult = 0;
1487
1488	/* Set up the endpoint ring */
1489	virt_dev->eps[ep_index].new_ring =
1490		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1491	if (!virt_dev->eps[ep_index].new_ring)
1492		return -ENOMEM;
1493
1494	virt_dev->eps[ep_index].skip = false;
1495	ep_ring = virt_dev->eps[ep_index].new_ring;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496
1497	/* Fill the endpoint context */
1498	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1499				      EP_INTERVAL(interval) |
1500				      EP_MULT(mult));
1501	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1502				       MAX_PACKET(max_packet) |
1503				       MAX_BURST(max_burst) |
1504				       ERROR_COUNT(err_count));
1505	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1506				  ep_ring->cycle_state);
1507
1508	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1509				      EP_AVG_TRB_LENGTH(avg_trb_len));
 
 
 
 
 
 
 
 
 
 
1510
 
1511	return 0;
1512}
1513
1514void xhci_endpoint_zero(struct xhci_hcd *xhci,
1515		struct xhci_virt_device *virt_dev,
1516		struct usb_host_endpoint *ep)
1517{
1518	unsigned int ep_index;
1519	struct xhci_ep_ctx *ep_ctx;
1520
1521	ep_index = xhci_get_endpoint_index(&ep->desc);
1522	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1523
1524	ep_ctx->ep_info = 0;
1525	ep_ctx->ep_info2 = 0;
1526	ep_ctx->deq = 0;
1527	ep_ctx->tx_info = 0;
1528	/* Don't free the endpoint ring until the set interface or configuration
1529	 * request succeeds.
1530	 */
1531}
1532
1533void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1534{
1535	bw_info->ep_interval = 0;
1536	bw_info->mult = 0;
1537	bw_info->num_packets = 0;
1538	bw_info->max_packet_size = 0;
1539	bw_info->type = 0;
1540	bw_info->max_esit_payload = 0;
1541}
1542
1543void xhci_update_bw_info(struct xhci_hcd *xhci,
1544		struct xhci_container_ctx *in_ctx,
1545		struct xhci_input_control_ctx *ctrl_ctx,
1546		struct xhci_virt_device *virt_dev)
1547{
1548	struct xhci_bw_info *bw_info;
1549	struct xhci_ep_ctx *ep_ctx;
1550	unsigned int ep_type;
1551	int i;
1552
1553	for (i = 1; i < 31; i++) {
1554		bw_info = &virt_dev->eps[i].bw_info;
1555
1556		/* We can't tell what endpoint type is being dropped, but
1557		 * unconditionally clearing the bandwidth info for non-periodic
1558		 * endpoints should be harmless because the info will never be
1559		 * set in the first place.
1560		 */
1561		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1562			/* Dropped endpoint */
1563			xhci_clear_endpoint_bw_info(bw_info);
1564			continue;
1565		}
1566
1567		if (EP_IS_ADDED(ctrl_ctx, i)) {
1568			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1569			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1570
1571			/* Ignore non-periodic endpoints */
1572			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1573					ep_type != ISOC_IN_EP &&
1574					ep_type != INT_IN_EP)
1575				continue;
1576
1577			/* Added or changed endpoint */
1578			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1579					le32_to_cpu(ep_ctx->ep_info));
1580			/* Number of packets and mult are zero-based in the
1581			 * input context, but we want one-based for the
1582			 * interval table.
1583			 */
1584			bw_info->mult = CTX_TO_EP_MULT(
1585					le32_to_cpu(ep_ctx->ep_info)) + 1;
1586			bw_info->num_packets = CTX_TO_MAX_BURST(
1587					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1588			bw_info->max_packet_size = MAX_PACKET_DECODED(
1589					le32_to_cpu(ep_ctx->ep_info2));
1590			bw_info->type = ep_type;
1591			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1592					le32_to_cpu(ep_ctx->tx_info));
1593		}
1594	}
1595}
1596
1597/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1598 * Useful when you want to change one particular aspect of the endpoint and then
1599 * issue a configure endpoint command.
1600 */
1601void xhci_endpoint_copy(struct xhci_hcd *xhci,
1602		struct xhci_container_ctx *in_ctx,
1603		struct xhci_container_ctx *out_ctx,
1604		unsigned int ep_index)
1605{
1606	struct xhci_ep_ctx *out_ep_ctx;
1607	struct xhci_ep_ctx *in_ep_ctx;
1608
1609	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1610	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1611
1612	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1613	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1614	in_ep_ctx->deq = out_ep_ctx->deq;
1615	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1616	if (xhci->quirks & XHCI_MTK_HOST) {
1617		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1618		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1619	}
1620}
1621
1622/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1623 * Useful when you want to change one particular aspect of the endpoint and then
1624 * issue a configure endpoint command.  Only the context entries field matters,
1625 * but we'll copy the whole thing anyway.
1626 */
1627void xhci_slot_copy(struct xhci_hcd *xhci,
1628		struct xhci_container_ctx *in_ctx,
1629		struct xhci_container_ctx *out_ctx)
1630{
1631	struct xhci_slot_ctx *in_slot_ctx;
1632	struct xhci_slot_ctx *out_slot_ctx;
1633
1634	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1635	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1636
1637	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1638	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1639	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1640	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1641}
1642
1643/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1644static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1645{
1646	int i;
1647	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1648	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1649
1650	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1651			"Allocating %d scratchpad buffers", num_sp);
1652
1653	if (!num_sp)
1654		return 0;
1655
1656	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1657				dev_to_node(dev));
1658	if (!xhci->scratchpad)
1659		goto fail_sp;
1660
1661	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
 
1662				     num_sp * sizeof(u64),
1663				     &xhci->scratchpad->sp_dma, flags);
1664	if (!xhci->scratchpad->sp_array)
1665		goto fail_sp2;
1666
1667	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1668					flags, dev_to_node(dev));
1669	if (!xhci->scratchpad->sp_buffers)
1670		goto fail_sp3;
1671
 
 
 
 
 
 
1672	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1673	for (i = 0; i < num_sp; i++) {
1674		dma_addr_t dma;
1675		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1676					       flags);
1677		if (!buf)
1678			goto fail_sp4;
1679
1680		xhci->scratchpad->sp_array[i] = dma;
1681		xhci->scratchpad->sp_buffers[i] = buf;
 
1682	}
1683
1684	return 0;
1685
1686 fail_sp4:
1687	for (i = i - 1; i >= 0; i--) {
1688		dma_free_coherent(dev, xhci->page_size,
1689				    xhci->scratchpad->sp_buffers[i],
1690				    xhci->scratchpad->sp_array[i]);
1691	}
 
1692
 
1693	kfree(xhci->scratchpad->sp_buffers);
1694
1695 fail_sp3:
1696	dma_free_coherent(dev, num_sp * sizeof(u64),
1697			    xhci->scratchpad->sp_array,
1698			    xhci->scratchpad->sp_dma);
1699
1700 fail_sp2:
1701	kfree(xhci->scratchpad);
1702	xhci->scratchpad = NULL;
1703
1704 fail_sp:
1705	return -ENOMEM;
1706}
1707
1708static void scratchpad_free(struct xhci_hcd *xhci)
1709{
1710	int num_sp;
1711	int i;
1712	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1713
1714	if (!xhci->scratchpad)
1715		return;
1716
1717	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1718
1719	for (i = 0; i < num_sp; i++) {
1720		dma_free_coherent(dev, xhci->page_size,
1721				    xhci->scratchpad->sp_buffers[i],
1722				    xhci->scratchpad->sp_array[i]);
1723	}
 
1724	kfree(xhci->scratchpad->sp_buffers);
1725	dma_free_coherent(dev, num_sp * sizeof(u64),
1726			    xhci->scratchpad->sp_array,
1727			    xhci->scratchpad->sp_dma);
1728	kfree(xhci->scratchpad);
1729	xhci->scratchpad = NULL;
1730}
1731
1732struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1733		bool allocate_completion, gfp_t mem_flags)
 
1734{
1735	struct xhci_command *command;
1736	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1737
1738	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1739	if (!command)
1740		return NULL;
1741
 
 
 
 
 
 
 
 
 
 
1742	if (allocate_completion) {
1743		command->completion =
1744			kzalloc_node(sizeof(struct completion), mem_flags,
1745				dev_to_node(dev));
1746		if (!command->completion) {
 
1747			kfree(command);
1748			return NULL;
1749		}
1750		init_completion(command->completion);
1751	}
1752
1753	command->status = 0;
1754	INIT_LIST_HEAD(&command->cmd_list);
1755	return command;
1756}
1757
1758struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1759		bool allocate_completion, gfp_t mem_flags)
1760{
1761	struct xhci_command *command;
1762
1763	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1764	if (!command)
1765		return NULL;
1766
1767	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1768						   mem_flags);
1769	if (!command->in_ctx) {
1770		kfree(command->completion);
1771		kfree(command);
1772		return NULL;
1773	}
1774	return command;
1775}
1776
1777void xhci_urb_free_priv(struct urb_priv *urb_priv)
1778{
1779	kfree(urb_priv);
1780}
1781
1782void xhci_free_command(struct xhci_hcd *xhci,
1783		struct xhci_command *command)
1784{
1785	xhci_free_container_ctx(xhci,
1786			command->in_ctx);
1787	kfree(command->completion);
1788	kfree(command);
1789}
1790
1791int xhci_alloc_erst(struct xhci_hcd *xhci,
1792		    struct xhci_ring *evt_ring,
1793		    struct xhci_erst *erst,
1794		    gfp_t flags)
1795{
1796	size_t size;
1797	unsigned int val;
1798	struct xhci_segment *seg;
1799	struct xhci_erst_entry *entry;
1800
1801	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1802	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1803					   size, &erst->erst_dma_addr, flags);
1804	if (!erst->entries)
1805		return -ENOMEM;
1806
1807	erst->num_entries = evt_ring->num_segs;
1808
1809	seg = evt_ring->first_seg;
1810	for (val = 0; val < evt_ring->num_segs; val++) {
1811		entry = &erst->entries[val];
1812		entry->seg_addr = cpu_to_le64(seg->dma);
1813		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1814		entry->rsvd = 0;
1815		seg = seg->next;
1816	}
1817
1818	return 0;
1819}
1820
1821void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1822{
1823	size_t size;
1824	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1825
1826	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1827	if (erst->entries)
1828		dma_free_coherent(dev, size,
1829				erst->entries,
1830				erst->erst_dma_addr);
1831	erst->entries = NULL;
1832}
1833
1834void xhci_mem_cleanup(struct xhci_hcd *xhci)
1835{
1836	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1837	int i, j, num_ports;
1838
1839	cancel_delayed_work_sync(&xhci->cmd_timer);
1840
1841	xhci_free_erst(xhci, &xhci->erst);
1842
 
 
 
 
 
 
 
 
 
 
 
 
1843	if (xhci->event_ring)
1844		xhci_ring_free(xhci, xhci->event_ring);
1845	xhci->event_ring = NULL;
1846	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1847
1848	if (xhci->lpm_command)
1849		xhci_free_command(xhci, xhci->lpm_command);
1850	xhci->lpm_command = NULL;
1851	if (xhci->cmd_ring)
1852		xhci_ring_free(xhci, xhci->cmd_ring);
1853	xhci->cmd_ring = NULL;
1854	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1855	xhci_cleanup_command_queue(xhci);
1856
1857	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1858	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1859		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1860		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1861			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1862			while (!list_empty(ep))
1863				list_del_init(ep->next);
1864		}
1865	}
1866
1867	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1868		xhci_free_virt_devices_depth_first(xhci, i);
1869
1870	dma_pool_destroy(xhci->segment_pool);
 
1871	xhci->segment_pool = NULL;
1872	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1873
1874	dma_pool_destroy(xhci->device_pool);
 
1875	xhci->device_pool = NULL;
1876	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1877
1878	dma_pool_destroy(xhci->small_streams_pool);
 
1879	xhci->small_streams_pool = NULL;
1880	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1881			"Freed small stream array pool");
1882
1883	dma_pool_destroy(xhci->medium_streams_pool);
 
1884	xhci->medium_streams_pool = NULL;
1885	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1886			"Freed medium stream array pool");
1887
 
1888	if (xhci->dcbaa)
1889		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1890				xhci->dcbaa, xhci->dcbaa->dma);
1891	xhci->dcbaa = NULL;
1892
1893	scratchpad_free(xhci);
1894
1895	if (!xhci->rh_bw)
1896		goto no_bw;
1897
1898	for (i = 0; i < num_ports; i++) {
1899		struct xhci_tt_bw_info *tt, *n;
1900		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1901			list_del(&tt->tt_list);
1902			kfree(tt);
1903		}
1904	}
1905
1906no_bw:
1907	xhci->cmd_ring_reserved_trbs = 0;
1908	xhci->usb2_rhub.num_ports = 0;
1909	xhci->usb3_rhub.num_ports = 0;
1910	xhci->num_active_eps = 0;
1911	kfree(xhci->usb2_rhub.ports);
1912	kfree(xhci->usb3_rhub.ports);
1913	kfree(xhci->hw_ports);
1914	kfree(xhci->rh_bw);
1915	kfree(xhci->ext_caps);
1916
1917	xhci->usb2_rhub.ports = NULL;
1918	xhci->usb3_rhub.ports = NULL;
1919	xhci->hw_ports = NULL;
1920	xhci->rh_bw = NULL;
1921	xhci->ext_caps = NULL;
1922
1923	xhci->page_size = 0;
1924	xhci->page_shift = 0;
1925	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1926	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1927}
1928
1929static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1930		struct xhci_segment *input_seg,
1931		union xhci_trb *start_trb,
1932		union xhci_trb *end_trb,
1933		dma_addr_t input_dma,
1934		struct xhci_segment *result_seg,
1935		char *test_name, int test_number)
1936{
1937	unsigned long long start_dma;
1938	unsigned long long end_dma;
1939	struct xhci_segment *seg;
1940
1941	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1942	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1943
1944	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1945	if (seg != result_seg) {
1946		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1947				test_name, test_number);
1948		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1949				"input DMA 0x%llx\n",
1950				input_seg,
1951				(unsigned long long) input_dma);
1952		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1953				"ending TRB %p (0x%llx DMA)\n",
1954				start_trb, start_dma,
1955				end_trb, end_dma);
1956		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1957				result_seg, seg);
1958		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1959			  true);
1960		return -1;
1961	}
1962	return 0;
1963}
1964
1965/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1966static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1967{
1968	struct {
1969		dma_addr_t		input_dma;
1970		struct xhci_segment	*result_seg;
1971	} simple_test_vector [] = {
1972		/* A zeroed DMA field should fail */
1973		{ 0, NULL },
1974		/* One TRB before the ring start should fail */
1975		{ xhci->event_ring->first_seg->dma - 16, NULL },
1976		/* One byte before the ring start should fail */
1977		{ xhci->event_ring->first_seg->dma - 1, NULL },
1978		/* Starting TRB should succeed */
1979		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1980		/* Ending TRB should succeed */
1981		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1982			xhci->event_ring->first_seg },
1983		/* One byte after the ring end should fail */
1984		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1985		/* One TRB after the ring end should fail */
1986		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1987		/* An address of all ones should fail */
1988		{ (dma_addr_t) (~0), NULL },
1989	};
1990	struct {
1991		struct xhci_segment	*input_seg;
1992		union xhci_trb		*start_trb;
1993		union xhci_trb		*end_trb;
1994		dma_addr_t		input_dma;
1995		struct xhci_segment	*result_seg;
1996	} complex_test_vector [] = {
1997		/* Test feeding a valid DMA address from a different ring */
1998		{	.input_seg = xhci->event_ring->first_seg,
1999			.start_trb = xhci->event_ring->first_seg->trbs,
2000			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2001			.input_dma = xhci->cmd_ring->first_seg->dma,
2002			.result_seg = NULL,
2003		},
2004		/* Test feeding a valid end TRB from a different ring */
2005		{	.input_seg = xhci->event_ring->first_seg,
2006			.start_trb = xhci->event_ring->first_seg->trbs,
2007			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2008			.input_dma = xhci->cmd_ring->first_seg->dma,
2009			.result_seg = NULL,
2010		},
2011		/* Test feeding a valid start and end TRB from a different ring */
2012		{	.input_seg = xhci->event_ring->first_seg,
2013			.start_trb = xhci->cmd_ring->first_seg->trbs,
2014			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2015			.input_dma = xhci->cmd_ring->first_seg->dma,
2016			.result_seg = NULL,
2017		},
2018		/* TRB in this ring, but after this TD */
2019		{	.input_seg = xhci->event_ring->first_seg,
2020			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2021			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2022			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2023			.result_seg = NULL,
2024		},
2025		/* TRB in this ring, but before this TD */
2026		{	.input_seg = xhci->event_ring->first_seg,
2027			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2028			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2029			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2030			.result_seg = NULL,
2031		},
2032		/* TRB in this ring, but after this wrapped TD */
2033		{	.input_seg = xhci->event_ring->first_seg,
2034			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2035			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2036			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2037			.result_seg = NULL,
2038		},
2039		/* TRB in this ring, but before this wrapped TD */
2040		{	.input_seg = xhci->event_ring->first_seg,
2041			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2042			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2043			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2044			.result_seg = NULL,
2045		},
2046		/* TRB not in this ring, and we have a wrapped TD */
2047		{	.input_seg = xhci->event_ring->first_seg,
2048			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2049			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2050			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2051			.result_seg = NULL,
2052		},
2053	};
2054
2055	unsigned int num_tests;
2056	int i, ret;
2057
2058	num_tests = ARRAY_SIZE(simple_test_vector);
2059	for (i = 0; i < num_tests; i++) {
2060		ret = xhci_test_trb_in_td(xhci,
2061				xhci->event_ring->first_seg,
2062				xhci->event_ring->first_seg->trbs,
2063				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2064				simple_test_vector[i].input_dma,
2065				simple_test_vector[i].result_seg,
2066				"Simple", i);
2067		if (ret < 0)
2068			return ret;
2069	}
2070
2071	num_tests = ARRAY_SIZE(complex_test_vector);
2072	for (i = 0; i < num_tests; i++) {
2073		ret = xhci_test_trb_in_td(xhci,
2074				complex_test_vector[i].input_seg,
2075				complex_test_vector[i].start_trb,
2076				complex_test_vector[i].end_trb,
2077				complex_test_vector[i].input_dma,
2078				complex_test_vector[i].result_seg,
2079				"Complex", i);
2080		if (ret < 0)
2081			return ret;
2082	}
2083	xhci_dbg(xhci, "TRB math tests passed.\n");
2084	return 0;
2085}
2086
2087static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2088{
2089	u64 temp;
2090	dma_addr_t deq;
2091
2092	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2093			xhci->event_ring->dequeue);
2094	if (deq == 0 && !in_interrupt())
2095		xhci_warn(xhci, "WARN something wrong with SW event ring "
2096				"dequeue ptr.\n");
2097	/* Update HC event ring dequeue pointer */
2098	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2099	temp &= ERST_PTR_MASK;
2100	/* Don't clear the EHB bit (which is RW1C) because
2101	 * there might be more events to service.
2102	 */
2103	temp &= ~ERST_EHB;
2104	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2105			"// Write event ring dequeue pointer, "
2106			"preserving EHB bit");
2107	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2108			&xhci->ir_set->erst_dequeue);
2109}
2110
2111static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2112		__le32 __iomem *addr, int max_caps)
2113{
2114	u32 temp, port_offset, port_count;
2115	int i;
2116	u8 major_revision, minor_revision;
2117	struct xhci_hub *rhub;
2118	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2119
2120	temp = readl(addr);
2121	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2122	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2123
2124	if (major_revision == 0x03) {
2125		rhub = &xhci->usb3_rhub;
2126	} else if (major_revision <= 0x02) {
2127		rhub = &xhci->usb2_rhub;
2128	} else {
2129		xhci_warn(xhci, "Ignoring unknown port speed, "
2130				"Ext Cap %p, revision = 0x%x\n",
2131				addr, major_revision);
2132		/* Ignoring port protocol we can't understand. FIXME */
2133		return;
2134	}
2135	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2136
2137	if (rhub->min_rev < minor_revision)
2138		rhub->min_rev = minor_revision;
2139
2140	/* Port offset and count in the third dword, see section 7.2 */
2141	temp = readl(addr + 2);
2142	port_offset = XHCI_EXT_PORT_OFF(temp);
2143	port_count = XHCI_EXT_PORT_COUNT(temp);
2144	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2145			"Ext Cap %p, port offset = %u, "
2146			"count = %u, revision = 0x%x",
2147			addr, port_offset, port_count, major_revision);
2148	/* Port count includes the current port offset */
2149	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2150		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2151		return;
2152
2153	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2154	if (rhub->psi_count) {
2155		rhub->psi = kcalloc_node(rhub->psi_count, sizeof(*rhub->psi),
2156				    GFP_KERNEL, dev_to_node(dev));
2157		if (!rhub->psi)
2158			rhub->psi_count = 0;
2159
2160		rhub->psi_uid_count++;
2161		for (i = 0; i < rhub->psi_count; i++) {
2162			rhub->psi[i] = readl(addr + 4 + i);
2163
2164			/* count unique ID values, two consecutive entries can
2165			 * have the same ID if link is assymetric
2166			 */
2167			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2168				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2169				rhub->psi_uid_count++;
2170
2171			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2172				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2173				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2174				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2175				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2176				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2177				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2178		}
2179	}
2180	/* cache usb2 port capabilities */
2181	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2182		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2183
2184	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2185		 (temp & XHCI_HLC)) {
2186		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2187			       "xHCI 1.0: support USB2 hardware lpm");
2188		xhci->hw_lpm_support = 1;
2189	}
2190
2191	port_offset--;
2192	for (i = port_offset; i < (port_offset + port_count); i++) {
2193		struct xhci_port *hw_port = &xhci->hw_ports[i];
2194		/* Duplicate entry.  Ignore the port if the revisions differ. */
2195		if (hw_port->rhub) {
2196			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2197					" port %u\n", addr, i);
2198			xhci_warn(xhci, "Port was marked as USB %u, "
2199					"duplicated as USB %u\n",
2200					hw_port->rhub->maj_rev, major_revision);
2201			/* Only adjust the roothub port counts if we haven't
2202			 * found a similar duplicate.
2203			 */
2204			if (hw_port->rhub != rhub &&
2205				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2206				hw_port->rhub->num_ports--;
2207				hw_port->hcd_portnum = DUPLICATE_ENTRY;
 
 
 
2208			}
 
2209			continue;
2210		}
2211		hw_port->rhub = rhub;
2212		rhub->num_ports++;
 
 
 
2213	}
2214	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2215}
2216
2217static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2218					struct xhci_hub *rhub, gfp_t flags)
2219{
2220	int port_index = 0;
2221	int i;
2222	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2223
2224	if (!rhub->num_ports)
2225		return;
2226	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(rhub->ports), flags,
2227			dev_to_node(dev));
2228	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2229		if (xhci->hw_ports[i].rhub != rhub ||
2230		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2231			continue;
2232		xhci->hw_ports[i].hcd_portnum = port_index;
2233		rhub->ports[port_index] = &xhci->hw_ports[i];
2234		port_index++;
2235		if (port_index == rhub->num_ports)
2236			break;
2237	}
2238}
2239
2240/*
2241 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2242 * specify what speeds each port is supposed to be.  We can't count on the port
2243 * speed bits in the PORTSC register being correct until a device is connected,
2244 * but we need to set up the two fake roothubs with the correct number of USB
2245 * 3.0 and USB 2.0 ports at host controller initialization time.
2246 */
2247static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2248{
2249	void __iomem *base;
2250	u32 offset;
2251	unsigned int num_ports;
2252	int i, j;
2253	int cap_count = 0;
2254	u32 cap_start;
2255	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2256
2257	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2258	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2259				flags, dev_to_node(dev));
2260	if (!xhci->hw_ports)
2261		return -ENOMEM;
2262
2263	for (i = 0; i < num_ports; i++) {
2264		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2265			NUM_PORT_REGS * i;
2266		xhci->hw_ports[i].hw_portnum = i;
2267	}
2268
2269	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2270				   dev_to_node(dev));
2271	if (!xhci->rh_bw)
2272		return -ENOMEM;
2273	for (i = 0; i < num_ports; i++) {
2274		struct xhci_interval_bw_table *bw_table;
2275
2276		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2277		bw_table = &xhci->rh_bw[i].bw_table;
2278		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2279			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2280	}
2281	base = &xhci->cap_regs->hc_capbase;
2282
2283	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2284	if (!cap_start) {
2285		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2286		return -ENODEV;
2287	}
2288
2289	offset = cap_start;
2290	/* count extended protocol capability entries for later caching */
2291	while (offset) {
2292		cap_count++;
2293		offset = xhci_find_next_ext_cap(base, offset,
2294						      XHCI_EXT_CAPS_PROTOCOL);
2295	}
2296
2297	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2298				flags, dev_to_node(dev));
2299	if (!xhci->ext_caps)
2300		return -ENOMEM;
2301
2302	offset = cap_start;
2303
2304	while (offset) {
2305		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2306		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2307		    num_ports)
 
 
 
 
 
 
 
 
 
 
2308			break;
2309		offset = xhci_find_next_ext_cap(base, offset,
2310						XHCI_EXT_CAPS_PROTOCOL);
 
 
 
2311	}
2312	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
 
2313		xhci_warn(xhci, "No ports on the roothubs?\n");
2314		return -ENODEV;
2315	}
2316	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2317		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2318		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2319
2320	/* Place limits on the number of roothub ports so that the hub
2321	 * descriptors aren't longer than the USB core will allocate.
2322	 */
2323	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2324		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2325				"Limiting USB 3.0 roothub ports to %u.",
2326				USB_SS_MAXPORTS);
2327		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2328	}
2329	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2330		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2331				"Limiting USB 2.0 roothub ports to %u.",
2332				USB_MAXCHILDREN);
2333		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2334	}
2335
2336	/*
2337	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2338	 * Not sure how the USB core will handle a hub with no ports...
2339	 */
 
 
 
 
 
 
 
 
 
 
 
 
2340
2341	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2342	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344	return 0;
2345}
2346
2347int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2348{
2349	dma_addr_t	dma;
2350	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2351	unsigned int	val, val2;
2352	u64		val_64;
2353	u32		page_size, temp;
2354	int		i, ret;
 
2355
2356	INIT_LIST_HEAD(&xhci->cmd_list);
2357
2358	/* init command timeout work */
2359	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2360	init_completion(&xhci->cmd_ring_stop_completion);
2361
2362	page_size = readl(&xhci->op_regs->page_size);
2363	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2364			"Supported page size register = 0x%x", page_size);
2365	for (i = 0; i < 16; i++) {
2366		if ((0x1 & page_size) != 0)
2367			break;
2368		page_size = page_size >> 1;
2369	}
2370	if (i < 16)
2371		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2372			"Supported page size of %iK", (1 << (i+12)) / 1024);
2373	else
2374		xhci_warn(xhci, "WARN: no supported page size\n");
2375	/* Use 4K pages, since that's common and the minimum the HC supports */
2376	xhci->page_shift = 12;
2377	xhci->page_size = 1 << xhci->page_shift;
2378	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2379			"HCD page size set to %iK", xhci->page_size / 1024);
2380
2381	/*
2382	 * Program the Number of Device Slots Enabled field in the CONFIG
2383	 * register with the max value of slots the HC can handle.
2384	 */
2385	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2386	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2387			"// xHC can handle at most %d device slots.", val);
2388	val2 = readl(&xhci->op_regs->config_reg);
2389	val |= (val2 & ~HCS_SLOTS_MASK);
2390	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2391			"// Setting Max device slots reg = 0x%x.", val);
2392	writel(val, &xhci->op_regs->config_reg);
2393
2394	/*
2395	 * xHCI section 5.4.6 - doorbell array must be
2396	 * "physically contiguous and 64-byte (cache line) aligned".
2397	 */
2398	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2399			flags);
2400	if (!xhci->dcbaa)
2401		goto fail;
 
2402	xhci->dcbaa->dma = dma;
2403	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2404			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2405			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2406	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2407
2408	/*
2409	 * Initialize the ring segment pool.  The ring must be a contiguous
2410	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2411	 * however, the command ring segment needs 64-byte aligned segments
2412	 * and our use of dma addresses in the trb_address_map radix tree needs
2413	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2414	 */
2415	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2416			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2417
2418	/* See Table 46 and Note on Figure 55 */
2419	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2420			2112, 64, xhci->page_size);
2421	if (!xhci->segment_pool || !xhci->device_pool)
2422		goto fail;
2423
2424	/* Linear stream context arrays don't have any boundary restrictions,
2425	 * and only need to be 16-byte aligned.
2426	 */
2427	xhci->small_streams_pool =
2428		dma_pool_create("xHCI 256 byte stream ctx arrays",
2429			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2430	xhci->medium_streams_pool =
2431		dma_pool_create("xHCI 1KB stream ctx arrays",
2432			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2433	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2434	 * will be allocated with dma_alloc_coherent()
2435	 */
2436
2437	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2438		goto fail;
2439
2440	/* Set up the command ring to have one segments for now. */
2441	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2442	if (!xhci->cmd_ring)
2443		goto fail;
2444	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2445			"Allocated command ring at %p", xhci->cmd_ring);
2446	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2447			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2448
2449	/* Set the address in the Command Ring Control register */
2450	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2451	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2452		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2453		xhci->cmd_ring->cycle_state;
2454	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2455			"// Setting command ring address to 0x%016llx", val_64);
2456	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 
2457
2458	xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2459	if (!xhci->lpm_command)
2460		goto fail;
2461
2462	/* Reserve one command ring TRB for disabling LPM.
2463	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2464	 * disabling LPM, we only need to reserve one TRB for all devices.
2465	 */
2466	xhci->cmd_ring_reserved_trbs++;
2467
2468	val = readl(&xhci->cap_regs->db_off);
2469	val &= DBOFF_MASK;
2470	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2471			"// Doorbell array is located at offset 0x%x"
2472			" from cap regs base addr", val);
2473	xhci->dba = (void __iomem *) xhci->cap_regs + val;
 
 
2474	/* Set ir_set to interrupt register set 0 */
2475	xhci->ir_set = &xhci->run_regs->ir_set[0];
2476
2477	/*
2478	 * Event ring setup: Allocate a normal ring, but also setup
2479	 * the event ring segment table (ERST).  Section 4.9.3.
2480	 */
2481	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2482	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2483					0, flags);
2484	if (!xhci->event_ring)
2485		goto fail;
2486	if (xhci_check_trb_in_td_math(xhci) < 0)
2487		goto fail;
2488
2489	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2490	if (ret)
 
2491		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2492
2493	/* set ERST count with the number of entries in the segment table */
2494	val = readl(&xhci->ir_set->erst_size);
2495	val &= ERST_SIZE_MASK;
2496	val |= ERST_NUM_SEGS;
2497	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2498			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2499			val);
2500	writel(val, &xhci->ir_set->erst_size);
2501
2502	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2503			"// Set ERST entries to point to event ring.");
2504	/* set the segment table base address */
2505	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2506			"// Set ERST base address for ir_set 0 = 0x%llx",
2507			(unsigned long long)xhci->erst.erst_dma_addr);
2508	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2509	val_64 &= ERST_PTR_MASK;
2510	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2511	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2512
2513	/* Set the event ring dequeue address */
2514	xhci_set_hc_event_deq(xhci);
2515	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2516			"Wrote ERST address to ir_set 0.");
2517
2518	/*
2519	 * XXX: Might need to set the Interrupter Moderation Register to
2520	 * something other than the default (~1ms minimum between interrupts).
2521	 * See section 5.5.1.2.
2522	 */
2523	for (i = 0; i < MAX_HC_SLOTS; i++)
 
2524		xhci->devs[i] = NULL;
2525	for (i = 0; i < USB_MAXCHILDREN; i++) {
2526		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2527		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2528		/* Only the USB 2.0 completions will ever be used. */
2529		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2530	}
2531
2532	if (scratchpad_alloc(xhci, flags))
2533		goto fail;
2534	if (xhci_setup_port_arrays(xhci, flags))
2535		goto fail;
2536
2537	/* Enable USB 3.0 device notifications for function remote wake, which
2538	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2539	 * U3 (device suspend).
2540	 */
2541	temp = readl(&xhci->op_regs->dev_notification);
2542	temp &= ~DEV_NOTE_MASK;
2543	temp |= DEV_NOTE_FWAKE;
2544	writel(temp, &xhci->op_regs->dev_notification);
2545
2546	return 0;
2547
2548fail:
2549	xhci_halt(xhci);
2550	xhci_reset(xhci);
2551	xhci_mem_cleanup(xhci);
2552	return -ENOMEM;
2553}