Loading...
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
24#include <linux/pci.h>
25#include <linux/slab.h>
26#include <linux/dmapool.h>
27
28#include "xhci.h"
29
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38{
39 struct xhci_segment *seg;
40 dma_addr_t dma;
41
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return NULL;
45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
50 return NULL;
51 }
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
54
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
58
59 return seg;
60}
61
62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63{
64 if (!seg)
65 return;
66 if (seg->trbs) {
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 kfree(seg);
74}
75
76/*
77 * Make the prev segment point to the next segment.
78 *
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 */
83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
85{
86 u32 val;
87
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
93 cpu_to_le64(next->dma);
94
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
97 val &= ~TRB_TYPE_BITMASK;
98 val |= TRB_TYPE(TRB_LINK);
99 /* Always set the chain bit with 0.95 hardware */
100 if (xhci_link_trb_quirk(xhci))
101 val |= TRB_CHAIN;
102 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
103 }
104 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 (unsigned long long)prev->dma,
106 (unsigned long long)next->dma);
107}
108
109/* XXX: Do we need the hcd structure in all these functions? */
110void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
111{
112 struct xhci_segment *seg;
113 struct xhci_segment *first_seg;
114
115 if (!ring || !ring->first_seg)
116 return;
117 first_seg = ring->first_seg;
118 seg = first_seg->next;
119 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
120 while (seg != first_seg) {
121 struct xhci_segment *next = seg->next;
122 xhci_segment_free(xhci, seg);
123 seg = next;
124 }
125 xhci_segment_free(xhci, first_seg);
126 ring->first_seg = NULL;
127 kfree(ring);
128}
129
130static void xhci_initialize_ring_info(struct xhci_ring *ring)
131{
132 /* The ring is empty, so the enqueue pointer == dequeue pointer */
133 ring->enqueue = ring->first_seg->trbs;
134 ring->enq_seg = ring->first_seg;
135 ring->dequeue = ring->enqueue;
136 ring->deq_seg = ring->first_seg;
137 /* The ring is initialized to 0. The producer must write 1 to the cycle
138 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
139 * compare CCS to the cycle bit to check ownership, so CCS = 1.
140 */
141 ring->cycle_state = 1;
142 /* Not necessary for new rings, but needed for re-initialized rings */
143 ring->enq_updates = 0;
144 ring->deq_updates = 0;
145}
146
147/**
148 * Create a new ring with zero or more segments.
149 *
150 * Link each segment together into a ring.
151 * Set the end flag and the cycle toggle bit on the last segment.
152 * See section 4.9.1 and figures 15 and 16.
153 */
154static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
155 unsigned int num_segs, bool link_trbs, gfp_t flags)
156{
157 struct xhci_ring *ring;
158 struct xhci_segment *prev;
159
160 ring = kzalloc(sizeof *(ring), flags);
161 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
162 if (!ring)
163 return NULL;
164
165 INIT_LIST_HEAD(&ring->td_list);
166 if (num_segs == 0)
167 return ring;
168
169 ring->first_seg = xhci_segment_alloc(xhci, flags);
170 if (!ring->first_seg)
171 goto fail;
172 num_segs--;
173
174 prev = ring->first_seg;
175 while (num_segs > 0) {
176 struct xhci_segment *next;
177
178 next = xhci_segment_alloc(xhci, flags);
179 if (!next)
180 goto fail;
181 xhci_link_segments(xhci, prev, next, link_trbs);
182
183 prev = next;
184 num_segs--;
185 }
186 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
187
188 if (link_trbs) {
189 /* See section 4.9.2.1 and 6.4.4.1 */
190 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
191 cpu_to_le32(LINK_TOGGLE);
192 xhci_dbg(xhci, "Wrote link toggle flag to"
193 " segment %p (virtual), 0x%llx (DMA)\n",
194 prev, (unsigned long long)prev->dma);
195 }
196 xhci_initialize_ring_info(ring);
197 return ring;
198
199fail:
200 xhci_ring_free(xhci, ring);
201 return NULL;
202}
203
204void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
205 struct xhci_virt_device *virt_dev,
206 unsigned int ep_index)
207{
208 int rings_cached;
209
210 rings_cached = virt_dev->num_rings_cached;
211 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
212 virt_dev->ring_cache[rings_cached] =
213 virt_dev->eps[ep_index].ring;
214 virt_dev->num_rings_cached++;
215 xhci_dbg(xhci, "Cached old ring, "
216 "%d ring%s cached\n",
217 virt_dev->num_rings_cached,
218 (virt_dev->num_rings_cached > 1) ? "s" : "");
219 } else {
220 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
221 xhci_dbg(xhci, "Ring cache full (%d rings), "
222 "freeing ring\n",
223 virt_dev->num_rings_cached);
224 }
225 virt_dev->eps[ep_index].ring = NULL;
226}
227
228/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
229 * pointers to the beginning of the ring.
230 */
231static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
232 struct xhci_ring *ring)
233{
234 struct xhci_segment *seg = ring->first_seg;
235 do {
236 memset(seg->trbs, 0,
237 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
238 /* All endpoint rings have link TRBs */
239 xhci_link_segments(xhci, seg, seg->next, 1);
240 seg = seg->next;
241 } while (seg != ring->first_seg);
242 xhci_initialize_ring_info(ring);
243 /* td list should be empty since all URBs have been cancelled,
244 * but just in case...
245 */
246 INIT_LIST_HEAD(&ring->td_list);
247}
248
249#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
250
251static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
252 int type, gfp_t flags)
253{
254 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
255 if (!ctx)
256 return NULL;
257
258 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
259 ctx->type = type;
260 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
261 if (type == XHCI_CTX_TYPE_INPUT)
262 ctx->size += CTX_SIZE(xhci->hcc_params);
263
264 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
265 memset(ctx->bytes, 0, ctx->size);
266 return ctx;
267}
268
269static void xhci_free_container_ctx(struct xhci_hcd *xhci,
270 struct xhci_container_ctx *ctx)
271{
272 if (!ctx)
273 return;
274 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
275 kfree(ctx);
276}
277
278struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
279 struct xhci_container_ctx *ctx)
280{
281 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
282 return (struct xhci_input_control_ctx *)ctx->bytes;
283}
284
285struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
286 struct xhci_container_ctx *ctx)
287{
288 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
289 return (struct xhci_slot_ctx *)ctx->bytes;
290
291 return (struct xhci_slot_ctx *)
292 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
293}
294
295struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
296 struct xhci_container_ctx *ctx,
297 unsigned int ep_index)
298{
299 /* increment ep index by offset of start of ep ctx array */
300 ep_index++;
301 if (ctx->type == XHCI_CTX_TYPE_INPUT)
302 ep_index++;
303
304 return (struct xhci_ep_ctx *)
305 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
306}
307
308
309/***************** Streams structures manipulation *************************/
310
311static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
312 unsigned int num_stream_ctxs,
313 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
314{
315 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
316
317 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
318 pci_free_consistent(pdev,
319 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
320 stream_ctx, dma);
321 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
322 return dma_pool_free(xhci->small_streams_pool,
323 stream_ctx, dma);
324 else
325 return dma_pool_free(xhci->medium_streams_pool,
326 stream_ctx, dma);
327}
328
329/*
330 * The stream context array for each endpoint with bulk streams enabled can
331 * vary in size, based on:
332 * - how many streams the endpoint supports,
333 * - the maximum primary stream array size the host controller supports,
334 * - and how many streams the device driver asks for.
335 *
336 * The stream context array must be a power of 2, and can be as small as
337 * 64 bytes or as large as 1MB.
338 */
339static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
340 unsigned int num_stream_ctxs, dma_addr_t *dma,
341 gfp_t mem_flags)
342{
343 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
344
345 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
346 return pci_alloc_consistent(pdev,
347 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
348 dma);
349 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
350 return dma_pool_alloc(xhci->small_streams_pool,
351 mem_flags, dma);
352 else
353 return dma_pool_alloc(xhci->medium_streams_pool,
354 mem_flags, dma);
355}
356
357struct xhci_ring *xhci_dma_to_transfer_ring(
358 struct xhci_virt_ep *ep,
359 u64 address)
360{
361 if (ep->ep_state & EP_HAS_STREAMS)
362 return radix_tree_lookup(&ep->stream_info->trb_address_map,
363 address >> SEGMENT_SHIFT);
364 return ep->ring;
365}
366
367/* Only use this when you know stream_info is valid */
368#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
369static struct xhci_ring *dma_to_stream_ring(
370 struct xhci_stream_info *stream_info,
371 u64 address)
372{
373 return radix_tree_lookup(&stream_info->trb_address_map,
374 address >> SEGMENT_SHIFT);
375}
376#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
377
378struct xhci_ring *xhci_stream_id_to_ring(
379 struct xhci_virt_device *dev,
380 unsigned int ep_index,
381 unsigned int stream_id)
382{
383 struct xhci_virt_ep *ep = &dev->eps[ep_index];
384
385 if (stream_id == 0)
386 return ep->ring;
387 if (!ep->stream_info)
388 return NULL;
389
390 if (stream_id > ep->stream_info->num_streams)
391 return NULL;
392 return ep->stream_info->stream_rings[stream_id];
393}
394
395#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
396static int xhci_test_radix_tree(struct xhci_hcd *xhci,
397 unsigned int num_streams,
398 struct xhci_stream_info *stream_info)
399{
400 u32 cur_stream;
401 struct xhci_ring *cur_ring;
402 u64 addr;
403
404 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
405 struct xhci_ring *mapped_ring;
406 int trb_size = sizeof(union xhci_trb);
407
408 cur_ring = stream_info->stream_rings[cur_stream];
409 for (addr = cur_ring->first_seg->dma;
410 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
411 addr += trb_size) {
412 mapped_ring = dma_to_stream_ring(stream_info, addr);
413 if (cur_ring != mapped_ring) {
414 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
415 "didn't map to stream ID %u; "
416 "mapped to ring %p\n",
417 (unsigned long long) addr,
418 cur_stream,
419 mapped_ring);
420 return -EINVAL;
421 }
422 }
423 /* One TRB after the end of the ring segment shouldn't return a
424 * pointer to the current ring (although it may be a part of a
425 * different ring).
426 */
427 mapped_ring = dma_to_stream_ring(stream_info, addr);
428 if (mapped_ring != cur_ring) {
429 /* One TRB before should also fail */
430 addr = cur_ring->first_seg->dma - trb_size;
431 mapped_ring = dma_to_stream_ring(stream_info, addr);
432 }
433 if (mapped_ring == cur_ring) {
434 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
435 "mapped to valid stream ID %u; "
436 "mapped ring = %p\n",
437 (unsigned long long) addr,
438 cur_stream,
439 mapped_ring);
440 return -EINVAL;
441 }
442 }
443 return 0;
444}
445#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
446
447/*
448 * Change an endpoint's internal structure so it supports stream IDs. The
449 * number of requested streams includes stream 0, which cannot be used by device
450 * drivers.
451 *
452 * The number of stream contexts in the stream context array may be bigger than
453 * the number of streams the driver wants to use. This is because the number of
454 * stream context array entries must be a power of two.
455 *
456 * We need a radix tree for mapping physical addresses of TRBs to which stream
457 * ID they belong to. We need to do this because the host controller won't tell
458 * us which stream ring the TRB came from. We could store the stream ID in an
459 * event data TRB, but that doesn't help us for the cancellation case, since the
460 * endpoint may stop before it reaches that event data TRB.
461 *
462 * The radix tree maps the upper portion of the TRB DMA address to a ring
463 * segment that has the same upper portion of DMA addresses. For example, say I
464 * have segments of size 1KB, that are always 64-byte aligned. A segment may
465 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
466 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
467 * pass the radix tree a key to get the right stream ID:
468 *
469 * 0x10c90fff >> 10 = 0x43243
470 * 0x10c912c0 >> 10 = 0x43244
471 * 0x10c91400 >> 10 = 0x43245
472 *
473 * Obviously, only those TRBs with DMA addresses that are within the segment
474 * will make the radix tree return the stream ID for that ring.
475 *
476 * Caveats for the radix tree:
477 *
478 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
479 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
480 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
481 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
482 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
483 * extended systems (where the DMA address can be bigger than 32-bits),
484 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
485 */
486struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
487 unsigned int num_stream_ctxs,
488 unsigned int num_streams, gfp_t mem_flags)
489{
490 struct xhci_stream_info *stream_info;
491 u32 cur_stream;
492 struct xhci_ring *cur_ring;
493 unsigned long key;
494 u64 addr;
495 int ret;
496
497 xhci_dbg(xhci, "Allocating %u streams and %u "
498 "stream context array entries.\n",
499 num_streams, num_stream_ctxs);
500 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
501 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
502 return NULL;
503 }
504 xhci->cmd_ring_reserved_trbs++;
505
506 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
507 if (!stream_info)
508 goto cleanup_trbs;
509
510 stream_info->num_streams = num_streams;
511 stream_info->num_stream_ctxs = num_stream_ctxs;
512
513 /* Initialize the array of virtual pointers to stream rings. */
514 stream_info->stream_rings = kzalloc(
515 sizeof(struct xhci_ring *)*num_streams,
516 mem_flags);
517 if (!stream_info->stream_rings)
518 goto cleanup_info;
519
520 /* Initialize the array of DMA addresses for stream rings for the HW. */
521 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
522 num_stream_ctxs, &stream_info->ctx_array_dma,
523 mem_flags);
524 if (!stream_info->stream_ctx_array)
525 goto cleanup_ctx;
526 memset(stream_info->stream_ctx_array, 0,
527 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
528
529 /* Allocate everything needed to free the stream rings later */
530 stream_info->free_streams_command =
531 xhci_alloc_command(xhci, true, true, mem_flags);
532 if (!stream_info->free_streams_command)
533 goto cleanup_ctx;
534
535 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
536
537 /* Allocate rings for all the streams that the driver will use,
538 * and add their segment DMA addresses to the radix tree.
539 * Stream 0 is reserved.
540 */
541 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
542 stream_info->stream_rings[cur_stream] =
543 xhci_ring_alloc(xhci, 1, true, mem_flags);
544 cur_ring = stream_info->stream_rings[cur_stream];
545 if (!cur_ring)
546 goto cleanup_rings;
547 cur_ring->stream_id = cur_stream;
548 /* Set deq ptr, cycle bit, and stream context type */
549 addr = cur_ring->first_seg->dma |
550 SCT_FOR_CTX(SCT_PRI_TR) |
551 cur_ring->cycle_state;
552 stream_info->stream_ctx_array[cur_stream].stream_ring =
553 cpu_to_le64(addr);
554 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
555 cur_stream, (unsigned long long) addr);
556
557 key = (unsigned long)
558 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
559 ret = radix_tree_insert(&stream_info->trb_address_map,
560 key, cur_ring);
561 if (ret) {
562 xhci_ring_free(xhci, cur_ring);
563 stream_info->stream_rings[cur_stream] = NULL;
564 goto cleanup_rings;
565 }
566 }
567 /* Leave the other unused stream ring pointers in the stream context
568 * array initialized to zero. This will cause the xHC to give us an
569 * error if the device asks for a stream ID we don't have setup (if it
570 * was any other way, the host controller would assume the ring is
571 * "empty" and wait forever for data to be queued to that stream ID).
572 */
573#if XHCI_DEBUG
574 /* Do a little test on the radix tree to make sure it returns the
575 * correct values.
576 */
577 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
578 goto cleanup_rings;
579#endif
580
581 return stream_info;
582
583cleanup_rings:
584 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
585 cur_ring = stream_info->stream_rings[cur_stream];
586 if (cur_ring) {
587 addr = cur_ring->first_seg->dma;
588 radix_tree_delete(&stream_info->trb_address_map,
589 addr >> SEGMENT_SHIFT);
590 xhci_ring_free(xhci, cur_ring);
591 stream_info->stream_rings[cur_stream] = NULL;
592 }
593 }
594 xhci_free_command(xhci, stream_info->free_streams_command);
595cleanup_ctx:
596 kfree(stream_info->stream_rings);
597cleanup_info:
598 kfree(stream_info);
599cleanup_trbs:
600 xhci->cmd_ring_reserved_trbs--;
601 return NULL;
602}
603/*
604 * Sets the MaxPStreams field and the Linear Stream Array field.
605 * Sets the dequeue pointer to the stream context array.
606 */
607void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
608 struct xhci_ep_ctx *ep_ctx,
609 struct xhci_stream_info *stream_info)
610{
611 u32 max_primary_streams;
612 /* MaxPStreams is the number of stream context array entries, not the
613 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
614 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
615 */
616 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
617 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
618 1 << (max_primary_streams + 1));
619 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
620 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
621 | EP_HAS_LSA);
622 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
623}
624
625/*
626 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
627 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
628 * not at the beginning of the ring).
629 */
630void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
631 struct xhci_ep_ctx *ep_ctx,
632 struct xhci_virt_ep *ep)
633{
634 dma_addr_t addr;
635 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
636 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
637 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
638}
639
640/* Frees all stream contexts associated with the endpoint,
641 *
642 * Caller should fix the endpoint context streams fields.
643 */
644void xhci_free_stream_info(struct xhci_hcd *xhci,
645 struct xhci_stream_info *stream_info)
646{
647 int cur_stream;
648 struct xhci_ring *cur_ring;
649 dma_addr_t addr;
650
651 if (!stream_info)
652 return;
653
654 for (cur_stream = 1; cur_stream < stream_info->num_streams;
655 cur_stream++) {
656 cur_ring = stream_info->stream_rings[cur_stream];
657 if (cur_ring) {
658 addr = cur_ring->first_seg->dma;
659 radix_tree_delete(&stream_info->trb_address_map,
660 addr >> SEGMENT_SHIFT);
661 xhci_ring_free(xhci, cur_ring);
662 stream_info->stream_rings[cur_stream] = NULL;
663 }
664 }
665 xhci_free_command(xhci, stream_info->free_streams_command);
666 xhci->cmd_ring_reserved_trbs--;
667 if (stream_info->stream_ctx_array)
668 xhci_free_stream_ctx(xhci,
669 stream_info->num_stream_ctxs,
670 stream_info->stream_ctx_array,
671 stream_info->ctx_array_dma);
672
673 if (stream_info)
674 kfree(stream_info->stream_rings);
675 kfree(stream_info);
676}
677
678
679/***************** Device context manipulation *************************/
680
681static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
682 struct xhci_virt_ep *ep)
683{
684 init_timer(&ep->stop_cmd_timer);
685 ep->stop_cmd_timer.data = (unsigned long) ep;
686 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
687 ep->xhci = xhci;
688}
689
690/* All the xhci_tds in the ring's TD list should be freed at this point */
691void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
692{
693 struct xhci_virt_device *dev;
694 int i;
695
696 /* Slot ID 0 is reserved */
697 if (slot_id == 0 || !xhci->devs[slot_id])
698 return;
699
700 dev = xhci->devs[slot_id];
701 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
702 if (!dev)
703 return;
704
705 for (i = 0; i < 31; ++i) {
706 if (dev->eps[i].ring)
707 xhci_ring_free(xhci, dev->eps[i].ring);
708 if (dev->eps[i].stream_info)
709 xhci_free_stream_info(xhci,
710 dev->eps[i].stream_info);
711 }
712
713 if (dev->ring_cache) {
714 for (i = 0; i < dev->num_rings_cached; i++)
715 xhci_ring_free(xhci, dev->ring_cache[i]);
716 kfree(dev->ring_cache);
717 }
718
719 if (dev->in_ctx)
720 xhci_free_container_ctx(xhci, dev->in_ctx);
721 if (dev->out_ctx)
722 xhci_free_container_ctx(xhci, dev->out_ctx);
723
724 kfree(xhci->devs[slot_id]);
725 xhci->devs[slot_id] = NULL;
726}
727
728int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
729 struct usb_device *udev, gfp_t flags)
730{
731 struct xhci_virt_device *dev;
732 int i;
733
734 /* Slot ID 0 is reserved */
735 if (slot_id == 0 || xhci->devs[slot_id]) {
736 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
737 return 0;
738 }
739
740 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
741 if (!xhci->devs[slot_id])
742 return 0;
743 dev = xhci->devs[slot_id];
744
745 /* Allocate the (output) device context that will be used in the HC. */
746 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
747 if (!dev->out_ctx)
748 goto fail;
749
750 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
751 (unsigned long long)dev->out_ctx->dma);
752
753 /* Allocate the (input) device context for address device command */
754 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
755 if (!dev->in_ctx)
756 goto fail;
757
758 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
759 (unsigned long long)dev->in_ctx->dma);
760
761 /* Initialize the cancellation list and watchdog timers for each ep */
762 for (i = 0; i < 31; i++) {
763 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
764 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
765 }
766
767 /* Allocate endpoint 0 ring */
768 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
769 if (!dev->eps[0].ring)
770 goto fail;
771
772 /* Allocate pointers to the ring cache */
773 dev->ring_cache = kzalloc(
774 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
775 flags);
776 if (!dev->ring_cache)
777 goto fail;
778 dev->num_rings_cached = 0;
779
780 init_completion(&dev->cmd_completion);
781 INIT_LIST_HEAD(&dev->cmd_list);
782 dev->udev = udev;
783
784 /* Point to output device context in dcbaa. */
785 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
786 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
787 slot_id,
788 &xhci->dcbaa->dev_context_ptrs[slot_id],
789 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
790
791 return 1;
792fail:
793 xhci_free_virt_device(xhci, slot_id);
794 return 0;
795}
796
797void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
798 struct usb_device *udev)
799{
800 struct xhci_virt_device *virt_dev;
801 struct xhci_ep_ctx *ep0_ctx;
802 struct xhci_ring *ep_ring;
803
804 virt_dev = xhci->devs[udev->slot_id];
805 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
806 ep_ring = virt_dev->eps[0].ring;
807 /*
808 * FIXME we don't keep track of the dequeue pointer very well after a
809 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
810 * host to our enqueue pointer. This should only be called after a
811 * configured device has reset, so all control transfers should have
812 * been completed or cancelled before the reset.
813 */
814 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
815 ep_ring->enqueue)
816 | ep_ring->cycle_state);
817}
818
819/*
820 * The xHCI roothub may have ports of differing speeds in any order in the port
821 * status registers. xhci->port_array provides an array of the port speed for
822 * each offset into the port status registers.
823 *
824 * The xHCI hardware wants to know the roothub port number that the USB device
825 * is attached to (or the roothub port its ancestor hub is attached to). All we
826 * know is the index of that port under either the USB 2.0 or the USB 3.0
827 * roothub, but that doesn't give us the real index into the HW port status
828 * registers. Scan through the xHCI roothub port array, looking for the Nth
829 * entry of the correct port speed. Return the port number of that entry.
830 */
831static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
832 struct usb_device *udev)
833{
834 struct usb_device *top_dev;
835 unsigned int num_similar_speed_ports;
836 unsigned int faked_port_num;
837 int i;
838
839 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
840 top_dev = top_dev->parent)
841 /* Found device below root hub */;
842 faked_port_num = top_dev->portnum;
843 for (i = 0, num_similar_speed_ports = 0;
844 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
845 u8 port_speed = xhci->port_array[i];
846
847 /*
848 * Skip ports that don't have known speeds, or have duplicate
849 * Extended Capabilities port speed entries.
850 */
851 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
852 continue;
853
854 /*
855 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
856 * 1.1 ports are under the USB 2.0 hub. If the port speed
857 * matches the device speed, it's a similar speed port.
858 */
859 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
860 num_similar_speed_ports++;
861 if (num_similar_speed_ports == faked_port_num)
862 /* Roothub ports are numbered from 1 to N */
863 return i+1;
864 }
865 return 0;
866}
867
868/* Setup an xHCI virtual device for a Set Address command */
869int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
870{
871 struct xhci_virt_device *dev;
872 struct xhci_ep_ctx *ep0_ctx;
873 struct xhci_slot_ctx *slot_ctx;
874 struct xhci_input_control_ctx *ctrl_ctx;
875 u32 port_num;
876 struct usb_device *top_dev;
877
878 dev = xhci->devs[udev->slot_id];
879 /* Slot ID 0 is reserved */
880 if (udev->slot_id == 0 || !dev) {
881 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
882 udev->slot_id);
883 return -EINVAL;
884 }
885 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
886 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
887 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
888
889 /* 2) New slot context and endpoint 0 context are valid*/
890 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
891
892 /* 3) Only the control endpoint is valid - one endpoint context */
893 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
894 switch (udev->speed) {
895 case USB_SPEED_SUPER:
896 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
897 break;
898 case USB_SPEED_HIGH:
899 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
900 break;
901 case USB_SPEED_FULL:
902 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
903 break;
904 case USB_SPEED_LOW:
905 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
906 break;
907 case USB_SPEED_WIRELESS:
908 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
909 return -EINVAL;
910 break;
911 default:
912 /* Speed was set earlier, this shouldn't happen. */
913 BUG();
914 }
915 /* Find the root hub port this device is under */
916 port_num = xhci_find_real_port_number(xhci, udev);
917 if (!port_num)
918 return -EINVAL;
919 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
920 /* Set the port number in the virtual_device to the faked port number */
921 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
922 top_dev = top_dev->parent)
923 /* Found device below root hub */;
924 dev->port = top_dev->portnum;
925 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
926 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
927
928 /* Is this a LS/FS device under an external HS hub? */
929 if (udev->tt && udev->tt->hub->parent) {
930 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
931 (udev->ttport << 8));
932 if (udev->tt->multi)
933 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
934 }
935 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
936 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
937
938 /* Step 4 - ring already allocated */
939 /* Step 5 */
940 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
941 /*
942 * XXX: Not sure about wireless USB devices.
943 */
944 switch (udev->speed) {
945 case USB_SPEED_SUPER:
946 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
947 break;
948 case USB_SPEED_HIGH:
949 /* USB core guesses at a 64-byte max packet first for FS devices */
950 case USB_SPEED_FULL:
951 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
952 break;
953 case USB_SPEED_LOW:
954 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
955 break;
956 case USB_SPEED_WIRELESS:
957 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
958 return -EINVAL;
959 break;
960 default:
961 /* New speed? */
962 BUG();
963 }
964 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
965 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
966
967 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
968 dev->eps[0].ring->cycle_state);
969
970 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
971
972 return 0;
973}
974
975/*
976 * Convert interval expressed as 2^(bInterval - 1) == interval into
977 * straight exponent value 2^n == interval.
978 *
979 */
980static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
981 struct usb_host_endpoint *ep)
982{
983 unsigned int interval;
984
985 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
986 if (interval != ep->desc.bInterval - 1)
987 dev_warn(&udev->dev,
988 "ep %#x - rounding interval to %d %sframes\n",
989 ep->desc.bEndpointAddress,
990 1 << interval,
991 udev->speed == USB_SPEED_FULL ? "" : "micro");
992
993 if (udev->speed == USB_SPEED_FULL) {
994 /*
995 * Full speed isoc endpoints specify interval in frames,
996 * not microframes. We are using microframes everywhere,
997 * so adjust accordingly.
998 */
999 interval += 3; /* 1 frame = 2^3 uframes */
1000 }
1001
1002 return interval;
1003}
1004
1005/*
1006 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1007 * microframes, rounded down to nearest power of 2.
1008 */
1009static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1010 struct usb_host_endpoint *ep)
1011{
1012 unsigned int interval;
1013
1014 interval = fls(8 * ep->desc.bInterval) - 1;
1015 interval = clamp_val(interval, 3, 10);
1016 if ((1 << interval) != 8 * ep->desc.bInterval)
1017 dev_warn(&udev->dev,
1018 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1019 ep->desc.bEndpointAddress,
1020 1 << interval,
1021 8 * ep->desc.bInterval);
1022
1023 return interval;
1024}
1025
1026/* Return the polling or NAK interval.
1027 *
1028 * The polling interval is expressed in "microframes". If xHCI's Interval field
1029 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1030 *
1031 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1032 * is set to 0.
1033 */
1034static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1035 struct usb_host_endpoint *ep)
1036{
1037 unsigned int interval = 0;
1038
1039 switch (udev->speed) {
1040 case USB_SPEED_HIGH:
1041 /* Max NAK rate */
1042 if (usb_endpoint_xfer_control(&ep->desc) ||
1043 usb_endpoint_xfer_bulk(&ep->desc)) {
1044 interval = ep->desc.bInterval;
1045 break;
1046 }
1047 /* Fall through - SS and HS isoc/int have same decoding */
1048
1049 case USB_SPEED_SUPER:
1050 if (usb_endpoint_xfer_int(&ep->desc) ||
1051 usb_endpoint_xfer_isoc(&ep->desc)) {
1052 interval = xhci_parse_exponent_interval(udev, ep);
1053 }
1054 break;
1055
1056 case USB_SPEED_FULL:
1057 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1058 interval = xhci_parse_exponent_interval(udev, ep);
1059 break;
1060 }
1061 /*
1062 * Fall through for interrupt endpoint interval decoding
1063 * since it uses the same rules as low speed interrupt
1064 * endpoints.
1065 */
1066
1067 case USB_SPEED_LOW:
1068 if (usb_endpoint_xfer_int(&ep->desc) ||
1069 usb_endpoint_xfer_isoc(&ep->desc)) {
1070
1071 interval = xhci_parse_frame_interval(udev, ep);
1072 }
1073 break;
1074
1075 default:
1076 BUG();
1077 }
1078 return EP_INTERVAL(interval);
1079}
1080
1081/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1082 * High speed endpoint descriptors can define "the number of additional
1083 * transaction opportunities per microframe", but that goes in the Max Burst
1084 * endpoint context field.
1085 */
1086static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1087 struct usb_host_endpoint *ep)
1088{
1089 if (udev->speed != USB_SPEED_SUPER ||
1090 !usb_endpoint_xfer_isoc(&ep->desc))
1091 return 0;
1092 return ep->ss_ep_comp.bmAttributes;
1093}
1094
1095static u32 xhci_get_endpoint_type(struct usb_device *udev,
1096 struct usb_host_endpoint *ep)
1097{
1098 int in;
1099 u32 type;
1100
1101 in = usb_endpoint_dir_in(&ep->desc);
1102 if (usb_endpoint_xfer_control(&ep->desc)) {
1103 type = EP_TYPE(CTRL_EP);
1104 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1105 if (in)
1106 type = EP_TYPE(BULK_IN_EP);
1107 else
1108 type = EP_TYPE(BULK_OUT_EP);
1109 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1110 if (in)
1111 type = EP_TYPE(ISOC_IN_EP);
1112 else
1113 type = EP_TYPE(ISOC_OUT_EP);
1114 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1115 if (in)
1116 type = EP_TYPE(INT_IN_EP);
1117 else
1118 type = EP_TYPE(INT_OUT_EP);
1119 } else {
1120 BUG();
1121 }
1122 return type;
1123}
1124
1125/* Return the maximum endpoint service interval time (ESIT) payload.
1126 * Basically, this is the maxpacket size, multiplied by the burst size
1127 * and mult size.
1128 */
1129static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1130 struct usb_device *udev,
1131 struct usb_host_endpoint *ep)
1132{
1133 int max_burst;
1134 int max_packet;
1135
1136 /* Only applies for interrupt or isochronous endpoints */
1137 if (usb_endpoint_xfer_control(&ep->desc) ||
1138 usb_endpoint_xfer_bulk(&ep->desc))
1139 return 0;
1140
1141 if (udev->speed == USB_SPEED_SUPER)
1142 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1143
1144 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1145 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
1146 /* A 0 in max burst means 1 transfer per ESIT */
1147 return max_packet * (max_burst + 1);
1148}
1149
1150/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1151 * Drivers will have to call usb_alloc_streams() to do that.
1152 */
1153int xhci_endpoint_init(struct xhci_hcd *xhci,
1154 struct xhci_virt_device *virt_dev,
1155 struct usb_device *udev,
1156 struct usb_host_endpoint *ep,
1157 gfp_t mem_flags)
1158{
1159 unsigned int ep_index;
1160 struct xhci_ep_ctx *ep_ctx;
1161 struct xhci_ring *ep_ring;
1162 unsigned int max_packet;
1163 unsigned int max_burst;
1164 u32 max_esit_payload;
1165
1166 ep_index = xhci_get_endpoint_index(&ep->desc);
1167 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1168
1169 /* Set up the endpoint ring */
1170 /*
1171 * Isochronous endpoint ring needs bigger size because one isoc URB
1172 * carries multiple packets and it will insert multiple tds to the
1173 * ring.
1174 * This should be replaced with dynamic ring resizing in the future.
1175 */
1176 if (usb_endpoint_xfer_isoc(&ep->desc))
1177 virt_dev->eps[ep_index].new_ring =
1178 xhci_ring_alloc(xhci, 8, true, mem_flags);
1179 else
1180 virt_dev->eps[ep_index].new_ring =
1181 xhci_ring_alloc(xhci, 1, true, mem_flags);
1182 if (!virt_dev->eps[ep_index].new_ring) {
1183 /* Attempt to use the ring cache */
1184 if (virt_dev->num_rings_cached == 0)
1185 return -ENOMEM;
1186 virt_dev->eps[ep_index].new_ring =
1187 virt_dev->ring_cache[virt_dev->num_rings_cached];
1188 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1189 virt_dev->num_rings_cached--;
1190 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1191 }
1192 virt_dev->eps[ep_index].skip = false;
1193 ep_ring = virt_dev->eps[ep_index].new_ring;
1194 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1195
1196 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1197 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1198
1199 /* FIXME dig Mult and streams info out of ep companion desc */
1200
1201 /* Allow 3 retries for everything but isoc;
1202 * CErr shall be set to 0 for Isoch endpoints.
1203 */
1204 if (!usb_endpoint_xfer_isoc(&ep->desc))
1205 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1206 else
1207 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1208
1209 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1210
1211 /* Set the max packet size and max burst */
1212 switch (udev->speed) {
1213 case USB_SPEED_SUPER:
1214 max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1215 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1216 /* dig out max burst from ep companion desc */
1217 max_packet = ep->ss_ep_comp.bMaxBurst;
1218 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1219 break;
1220 case USB_SPEED_HIGH:
1221 /* bits 11:12 specify the number of additional transaction
1222 * opportunities per microframe (USB 2.0, section 9.6.6)
1223 */
1224 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1225 usb_endpoint_xfer_int(&ep->desc)) {
1226 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1227 & 0x1800) >> 11;
1228 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1229 }
1230 /* Fall through */
1231 case USB_SPEED_FULL:
1232 case USB_SPEED_LOW:
1233 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1234 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1235 break;
1236 default:
1237 BUG();
1238 }
1239 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1240 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1241
1242 /*
1243 * XXX no idea how to calculate the average TRB buffer length for bulk
1244 * endpoints, as the driver gives us no clue how big each scatter gather
1245 * list entry (or buffer) is going to be.
1246 *
1247 * For isochronous and interrupt endpoints, we set it to the max
1248 * available, until we have new API in the USB core to allow drivers to
1249 * declare how much bandwidth they actually need.
1250 *
1251 * Normally, it would be calculated by taking the total of the buffer
1252 * lengths in the TD and then dividing by the number of TRBs in a TD,
1253 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1254 * use Event Data TRBs, and we don't chain in a link TRB on short
1255 * transfers, we're basically dividing by 1.
1256 *
1257 * xHCI 1.0 specification indicates that the Average TRB Length should
1258 * be set to 8 for control endpoints.
1259 */
1260 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1261 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1262 else
1263 ep_ctx->tx_info |=
1264 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1265
1266 /* FIXME Debug endpoint context */
1267 return 0;
1268}
1269
1270void xhci_endpoint_zero(struct xhci_hcd *xhci,
1271 struct xhci_virt_device *virt_dev,
1272 struct usb_host_endpoint *ep)
1273{
1274 unsigned int ep_index;
1275 struct xhci_ep_ctx *ep_ctx;
1276
1277 ep_index = xhci_get_endpoint_index(&ep->desc);
1278 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1279
1280 ep_ctx->ep_info = 0;
1281 ep_ctx->ep_info2 = 0;
1282 ep_ctx->deq = 0;
1283 ep_ctx->tx_info = 0;
1284 /* Don't free the endpoint ring until the set interface or configuration
1285 * request succeeds.
1286 */
1287}
1288
1289/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1290 * Useful when you want to change one particular aspect of the endpoint and then
1291 * issue a configure endpoint command.
1292 */
1293void xhci_endpoint_copy(struct xhci_hcd *xhci,
1294 struct xhci_container_ctx *in_ctx,
1295 struct xhci_container_ctx *out_ctx,
1296 unsigned int ep_index)
1297{
1298 struct xhci_ep_ctx *out_ep_ctx;
1299 struct xhci_ep_ctx *in_ep_ctx;
1300
1301 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1302 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1303
1304 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1305 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1306 in_ep_ctx->deq = out_ep_ctx->deq;
1307 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1308}
1309
1310/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1311 * Useful when you want to change one particular aspect of the endpoint and then
1312 * issue a configure endpoint command. Only the context entries field matters,
1313 * but we'll copy the whole thing anyway.
1314 */
1315void xhci_slot_copy(struct xhci_hcd *xhci,
1316 struct xhci_container_ctx *in_ctx,
1317 struct xhci_container_ctx *out_ctx)
1318{
1319 struct xhci_slot_ctx *in_slot_ctx;
1320 struct xhci_slot_ctx *out_slot_ctx;
1321
1322 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1323 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1324
1325 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1326 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1327 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1328 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1329}
1330
1331/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1332static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1333{
1334 int i;
1335 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1336 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1337
1338 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1339
1340 if (!num_sp)
1341 return 0;
1342
1343 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1344 if (!xhci->scratchpad)
1345 goto fail_sp;
1346
1347 xhci->scratchpad->sp_array =
1348 pci_alloc_consistent(to_pci_dev(dev),
1349 num_sp * sizeof(u64),
1350 &xhci->scratchpad->sp_dma);
1351 if (!xhci->scratchpad->sp_array)
1352 goto fail_sp2;
1353
1354 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1355 if (!xhci->scratchpad->sp_buffers)
1356 goto fail_sp3;
1357
1358 xhci->scratchpad->sp_dma_buffers =
1359 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1360
1361 if (!xhci->scratchpad->sp_dma_buffers)
1362 goto fail_sp4;
1363
1364 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1365 for (i = 0; i < num_sp; i++) {
1366 dma_addr_t dma;
1367 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1368 xhci->page_size, &dma);
1369 if (!buf)
1370 goto fail_sp5;
1371
1372 xhci->scratchpad->sp_array[i] = dma;
1373 xhci->scratchpad->sp_buffers[i] = buf;
1374 xhci->scratchpad->sp_dma_buffers[i] = dma;
1375 }
1376
1377 return 0;
1378
1379 fail_sp5:
1380 for (i = i - 1; i >= 0; i--) {
1381 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1382 xhci->scratchpad->sp_buffers[i],
1383 xhci->scratchpad->sp_dma_buffers[i]);
1384 }
1385 kfree(xhci->scratchpad->sp_dma_buffers);
1386
1387 fail_sp4:
1388 kfree(xhci->scratchpad->sp_buffers);
1389
1390 fail_sp3:
1391 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1392 xhci->scratchpad->sp_array,
1393 xhci->scratchpad->sp_dma);
1394
1395 fail_sp2:
1396 kfree(xhci->scratchpad);
1397 xhci->scratchpad = NULL;
1398
1399 fail_sp:
1400 return -ENOMEM;
1401}
1402
1403static void scratchpad_free(struct xhci_hcd *xhci)
1404{
1405 int num_sp;
1406 int i;
1407 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1408
1409 if (!xhci->scratchpad)
1410 return;
1411
1412 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1413
1414 for (i = 0; i < num_sp; i++) {
1415 pci_free_consistent(pdev, xhci->page_size,
1416 xhci->scratchpad->sp_buffers[i],
1417 xhci->scratchpad->sp_dma_buffers[i]);
1418 }
1419 kfree(xhci->scratchpad->sp_dma_buffers);
1420 kfree(xhci->scratchpad->sp_buffers);
1421 pci_free_consistent(pdev, num_sp * sizeof(u64),
1422 xhci->scratchpad->sp_array,
1423 xhci->scratchpad->sp_dma);
1424 kfree(xhci->scratchpad);
1425 xhci->scratchpad = NULL;
1426}
1427
1428struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1429 bool allocate_in_ctx, bool allocate_completion,
1430 gfp_t mem_flags)
1431{
1432 struct xhci_command *command;
1433
1434 command = kzalloc(sizeof(*command), mem_flags);
1435 if (!command)
1436 return NULL;
1437
1438 if (allocate_in_ctx) {
1439 command->in_ctx =
1440 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1441 mem_flags);
1442 if (!command->in_ctx) {
1443 kfree(command);
1444 return NULL;
1445 }
1446 }
1447
1448 if (allocate_completion) {
1449 command->completion =
1450 kzalloc(sizeof(struct completion), mem_flags);
1451 if (!command->completion) {
1452 xhci_free_container_ctx(xhci, command->in_ctx);
1453 kfree(command);
1454 return NULL;
1455 }
1456 init_completion(command->completion);
1457 }
1458
1459 command->status = 0;
1460 INIT_LIST_HEAD(&command->cmd_list);
1461 return command;
1462}
1463
1464void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1465{
1466 int last;
1467
1468 if (!urb_priv)
1469 return;
1470
1471 last = urb_priv->length - 1;
1472 if (last >= 0) {
1473 int i;
1474 for (i = 0; i <= last; i++)
1475 kfree(urb_priv->td[i]);
1476 }
1477 kfree(urb_priv);
1478}
1479
1480void xhci_free_command(struct xhci_hcd *xhci,
1481 struct xhci_command *command)
1482{
1483 xhci_free_container_ctx(xhci,
1484 command->in_ctx);
1485 kfree(command->completion);
1486 kfree(command);
1487}
1488
1489void xhci_mem_cleanup(struct xhci_hcd *xhci)
1490{
1491 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1492 int size;
1493 int i;
1494
1495 /* Free the Event Ring Segment Table and the actual Event Ring */
1496 if (xhci->ir_set) {
1497 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1498 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1499 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1500 }
1501 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1502 if (xhci->erst.entries)
1503 pci_free_consistent(pdev, size,
1504 xhci->erst.entries, xhci->erst.erst_dma_addr);
1505 xhci->erst.entries = NULL;
1506 xhci_dbg(xhci, "Freed ERST\n");
1507 if (xhci->event_ring)
1508 xhci_ring_free(xhci, xhci->event_ring);
1509 xhci->event_ring = NULL;
1510 xhci_dbg(xhci, "Freed event ring\n");
1511
1512 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1513 if (xhci->cmd_ring)
1514 xhci_ring_free(xhci, xhci->cmd_ring);
1515 xhci->cmd_ring = NULL;
1516 xhci_dbg(xhci, "Freed command ring\n");
1517
1518 for (i = 1; i < MAX_HC_SLOTS; ++i)
1519 xhci_free_virt_device(xhci, i);
1520
1521 if (xhci->segment_pool)
1522 dma_pool_destroy(xhci->segment_pool);
1523 xhci->segment_pool = NULL;
1524 xhci_dbg(xhci, "Freed segment pool\n");
1525
1526 if (xhci->device_pool)
1527 dma_pool_destroy(xhci->device_pool);
1528 xhci->device_pool = NULL;
1529 xhci_dbg(xhci, "Freed device context pool\n");
1530
1531 if (xhci->small_streams_pool)
1532 dma_pool_destroy(xhci->small_streams_pool);
1533 xhci->small_streams_pool = NULL;
1534 xhci_dbg(xhci, "Freed small stream array pool\n");
1535
1536 if (xhci->medium_streams_pool)
1537 dma_pool_destroy(xhci->medium_streams_pool);
1538 xhci->medium_streams_pool = NULL;
1539 xhci_dbg(xhci, "Freed medium stream array pool\n");
1540
1541 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1542 if (xhci->dcbaa)
1543 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1544 xhci->dcbaa, xhci->dcbaa->dma);
1545 xhci->dcbaa = NULL;
1546
1547 scratchpad_free(xhci);
1548
1549 xhci->num_usb2_ports = 0;
1550 xhci->num_usb3_ports = 0;
1551 kfree(xhci->usb2_ports);
1552 kfree(xhci->usb3_ports);
1553 kfree(xhci->port_array);
1554
1555 xhci->page_size = 0;
1556 xhci->page_shift = 0;
1557 xhci->bus_state[0].bus_suspended = 0;
1558 xhci->bus_state[1].bus_suspended = 0;
1559}
1560
1561static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1562 struct xhci_segment *input_seg,
1563 union xhci_trb *start_trb,
1564 union xhci_trb *end_trb,
1565 dma_addr_t input_dma,
1566 struct xhci_segment *result_seg,
1567 char *test_name, int test_number)
1568{
1569 unsigned long long start_dma;
1570 unsigned long long end_dma;
1571 struct xhci_segment *seg;
1572
1573 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1574 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1575
1576 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1577 if (seg != result_seg) {
1578 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1579 test_name, test_number);
1580 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1581 "input DMA 0x%llx\n",
1582 input_seg,
1583 (unsigned long long) input_dma);
1584 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1585 "ending TRB %p (0x%llx DMA)\n",
1586 start_trb, start_dma,
1587 end_trb, end_dma);
1588 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1589 result_seg, seg);
1590 return -1;
1591 }
1592 return 0;
1593}
1594
1595/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1596static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1597{
1598 struct {
1599 dma_addr_t input_dma;
1600 struct xhci_segment *result_seg;
1601 } simple_test_vector [] = {
1602 /* A zeroed DMA field should fail */
1603 { 0, NULL },
1604 /* One TRB before the ring start should fail */
1605 { xhci->event_ring->first_seg->dma - 16, NULL },
1606 /* One byte before the ring start should fail */
1607 { xhci->event_ring->first_seg->dma - 1, NULL },
1608 /* Starting TRB should succeed */
1609 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1610 /* Ending TRB should succeed */
1611 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1612 xhci->event_ring->first_seg },
1613 /* One byte after the ring end should fail */
1614 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1615 /* One TRB after the ring end should fail */
1616 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1617 /* An address of all ones should fail */
1618 { (dma_addr_t) (~0), NULL },
1619 };
1620 struct {
1621 struct xhci_segment *input_seg;
1622 union xhci_trb *start_trb;
1623 union xhci_trb *end_trb;
1624 dma_addr_t input_dma;
1625 struct xhci_segment *result_seg;
1626 } complex_test_vector [] = {
1627 /* Test feeding a valid DMA address from a different ring */
1628 { .input_seg = xhci->event_ring->first_seg,
1629 .start_trb = xhci->event_ring->first_seg->trbs,
1630 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1631 .input_dma = xhci->cmd_ring->first_seg->dma,
1632 .result_seg = NULL,
1633 },
1634 /* Test feeding a valid end TRB from a different ring */
1635 { .input_seg = xhci->event_ring->first_seg,
1636 .start_trb = xhci->event_ring->first_seg->trbs,
1637 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1638 .input_dma = xhci->cmd_ring->first_seg->dma,
1639 .result_seg = NULL,
1640 },
1641 /* Test feeding a valid start and end TRB from a different ring */
1642 { .input_seg = xhci->event_ring->first_seg,
1643 .start_trb = xhci->cmd_ring->first_seg->trbs,
1644 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1645 .input_dma = xhci->cmd_ring->first_seg->dma,
1646 .result_seg = NULL,
1647 },
1648 /* TRB in this ring, but after this TD */
1649 { .input_seg = xhci->event_ring->first_seg,
1650 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1651 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1652 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1653 .result_seg = NULL,
1654 },
1655 /* TRB in this ring, but before this TD */
1656 { .input_seg = xhci->event_ring->first_seg,
1657 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1658 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1659 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1660 .result_seg = NULL,
1661 },
1662 /* TRB in this ring, but after this wrapped TD */
1663 { .input_seg = xhci->event_ring->first_seg,
1664 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1665 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1666 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1667 .result_seg = NULL,
1668 },
1669 /* TRB in this ring, but before this wrapped TD */
1670 { .input_seg = xhci->event_ring->first_seg,
1671 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1672 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1673 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1674 .result_seg = NULL,
1675 },
1676 /* TRB not in this ring, and we have a wrapped TD */
1677 { .input_seg = xhci->event_ring->first_seg,
1678 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1679 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1680 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1681 .result_seg = NULL,
1682 },
1683 };
1684
1685 unsigned int num_tests;
1686 int i, ret;
1687
1688 num_tests = ARRAY_SIZE(simple_test_vector);
1689 for (i = 0; i < num_tests; i++) {
1690 ret = xhci_test_trb_in_td(xhci,
1691 xhci->event_ring->first_seg,
1692 xhci->event_ring->first_seg->trbs,
1693 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1694 simple_test_vector[i].input_dma,
1695 simple_test_vector[i].result_seg,
1696 "Simple", i);
1697 if (ret < 0)
1698 return ret;
1699 }
1700
1701 num_tests = ARRAY_SIZE(complex_test_vector);
1702 for (i = 0; i < num_tests; i++) {
1703 ret = xhci_test_trb_in_td(xhci,
1704 complex_test_vector[i].input_seg,
1705 complex_test_vector[i].start_trb,
1706 complex_test_vector[i].end_trb,
1707 complex_test_vector[i].input_dma,
1708 complex_test_vector[i].result_seg,
1709 "Complex", i);
1710 if (ret < 0)
1711 return ret;
1712 }
1713 xhci_dbg(xhci, "TRB math tests passed.\n");
1714 return 0;
1715}
1716
1717static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1718{
1719 u64 temp;
1720 dma_addr_t deq;
1721
1722 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1723 xhci->event_ring->dequeue);
1724 if (deq == 0 && !in_interrupt())
1725 xhci_warn(xhci, "WARN something wrong with SW event ring "
1726 "dequeue ptr.\n");
1727 /* Update HC event ring dequeue pointer */
1728 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1729 temp &= ERST_PTR_MASK;
1730 /* Don't clear the EHB bit (which is RW1C) because
1731 * there might be more events to service.
1732 */
1733 temp &= ~ERST_EHB;
1734 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1735 "preserving EHB bit\n");
1736 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1737 &xhci->ir_set->erst_dequeue);
1738}
1739
1740static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1741 __le32 __iomem *addr, u8 major_revision)
1742{
1743 u32 temp, port_offset, port_count;
1744 int i;
1745
1746 if (major_revision > 0x03) {
1747 xhci_warn(xhci, "Ignoring unknown port speed, "
1748 "Ext Cap %p, revision = 0x%x\n",
1749 addr, major_revision);
1750 /* Ignoring port protocol we can't understand. FIXME */
1751 return;
1752 }
1753
1754 /* Port offset and count in the third dword, see section 7.2 */
1755 temp = xhci_readl(xhci, addr + 2);
1756 port_offset = XHCI_EXT_PORT_OFF(temp);
1757 port_count = XHCI_EXT_PORT_COUNT(temp);
1758 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1759 "count = %u, revision = 0x%x\n",
1760 addr, port_offset, port_count, major_revision);
1761 /* Port count includes the current port offset */
1762 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1763 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1764 return;
1765 port_offset--;
1766 for (i = port_offset; i < (port_offset + port_count); i++) {
1767 /* Duplicate entry. Ignore the port if the revisions differ. */
1768 if (xhci->port_array[i] != 0) {
1769 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1770 " port %u\n", addr, i);
1771 xhci_warn(xhci, "Port was marked as USB %u, "
1772 "duplicated as USB %u\n",
1773 xhci->port_array[i], major_revision);
1774 /* Only adjust the roothub port counts if we haven't
1775 * found a similar duplicate.
1776 */
1777 if (xhci->port_array[i] != major_revision &&
1778 xhci->port_array[i] != DUPLICATE_ENTRY) {
1779 if (xhci->port_array[i] == 0x03)
1780 xhci->num_usb3_ports--;
1781 else
1782 xhci->num_usb2_ports--;
1783 xhci->port_array[i] = DUPLICATE_ENTRY;
1784 }
1785 /* FIXME: Should we disable the port? */
1786 continue;
1787 }
1788 xhci->port_array[i] = major_revision;
1789 if (major_revision == 0x03)
1790 xhci->num_usb3_ports++;
1791 else
1792 xhci->num_usb2_ports++;
1793 }
1794 /* FIXME: Should we disable ports not in the Extended Capabilities? */
1795}
1796
1797/*
1798 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1799 * specify what speeds each port is supposed to be. We can't count on the port
1800 * speed bits in the PORTSC register being correct until a device is connected,
1801 * but we need to set up the two fake roothubs with the correct number of USB
1802 * 3.0 and USB 2.0 ports at host controller initialization time.
1803 */
1804static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1805{
1806 __le32 __iomem *addr;
1807 u32 offset;
1808 unsigned int num_ports;
1809 int i, port_index;
1810
1811 addr = &xhci->cap_regs->hcc_params;
1812 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1813 if (offset == 0) {
1814 xhci_err(xhci, "No Extended Capability registers, "
1815 "unable to set up roothub.\n");
1816 return -ENODEV;
1817 }
1818
1819 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1820 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1821 if (!xhci->port_array)
1822 return -ENOMEM;
1823
1824 /*
1825 * For whatever reason, the first capability offset is from the
1826 * capability register base, not from the HCCPARAMS register.
1827 * See section 5.3.6 for offset calculation.
1828 */
1829 addr = &xhci->cap_regs->hc_capbase + offset;
1830 while (1) {
1831 u32 cap_id;
1832
1833 cap_id = xhci_readl(xhci, addr);
1834 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1835 xhci_add_in_port(xhci, num_ports, addr,
1836 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1837 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1838 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1839 == num_ports)
1840 break;
1841 /*
1842 * Once you're into the Extended Capabilities, the offset is
1843 * always relative to the register holding the offset.
1844 */
1845 addr += offset;
1846 }
1847
1848 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1849 xhci_warn(xhci, "No ports on the roothubs?\n");
1850 return -ENODEV;
1851 }
1852 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1853 xhci->num_usb2_ports, xhci->num_usb3_ports);
1854
1855 /* Place limits on the number of roothub ports so that the hub
1856 * descriptors aren't longer than the USB core will allocate.
1857 */
1858 if (xhci->num_usb3_ports > 15) {
1859 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1860 xhci->num_usb3_ports = 15;
1861 }
1862 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1863 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1864 USB_MAXCHILDREN);
1865 xhci->num_usb2_ports = USB_MAXCHILDREN;
1866 }
1867
1868 /*
1869 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1870 * Not sure how the USB core will handle a hub with no ports...
1871 */
1872 if (xhci->num_usb2_ports) {
1873 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1874 xhci->num_usb2_ports, flags);
1875 if (!xhci->usb2_ports)
1876 return -ENOMEM;
1877
1878 port_index = 0;
1879 for (i = 0; i < num_ports; i++) {
1880 if (xhci->port_array[i] == 0x03 ||
1881 xhci->port_array[i] == 0 ||
1882 xhci->port_array[i] == DUPLICATE_ENTRY)
1883 continue;
1884
1885 xhci->usb2_ports[port_index] =
1886 &xhci->op_regs->port_status_base +
1887 NUM_PORT_REGS*i;
1888 xhci_dbg(xhci, "USB 2.0 port at index %u, "
1889 "addr = %p\n", i,
1890 xhci->usb2_ports[port_index]);
1891 port_index++;
1892 if (port_index == xhci->num_usb2_ports)
1893 break;
1894 }
1895 }
1896 if (xhci->num_usb3_ports) {
1897 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1898 xhci->num_usb3_ports, flags);
1899 if (!xhci->usb3_ports)
1900 return -ENOMEM;
1901
1902 port_index = 0;
1903 for (i = 0; i < num_ports; i++)
1904 if (xhci->port_array[i] == 0x03) {
1905 xhci->usb3_ports[port_index] =
1906 &xhci->op_regs->port_status_base +
1907 NUM_PORT_REGS*i;
1908 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1909 "addr = %p\n", i,
1910 xhci->usb3_ports[port_index]);
1911 port_index++;
1912 if (port_index == xhci->num_usb3_ports)
1913 break;
1914 }
1915 }
1916 return 0;
1917}
1918
1919int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1920{
1921 dma_addr_t dma;
1922 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1923 unsigned int val, val2;
1924 u64 val_64;
1925 struct xhci_segment *seg;
1926 u32 page_size;
1927 int i;
1928
1929 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1930 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1931 for (i = 0; i < 16; i++) {
1932 if ((0x1 & page_size) != 0)
1933 break;
1934 page_size = page_size >> 1;
1935 }
1936 if (i < 16)
1937 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1938 else
1939 xhci_warn(xhci, "WARN: no supported page size\n");
1940 /* Use 4K pages, since that's common and the minimum the HC supports */
1941 xhci->page_shift = 12;
1942 xhci->page_size = 1 << xhci->page_shift;
1943 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1944
1945 /*
1946 * Program the Number of Device Slots Enabled field in the CONFIG
1947 * register with the max value of slots the HC can handle.
1948 */
1949 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1950 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1951 (unsigned int) val);
1952 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1953 val |= (val2 & ~HCS_SLOTS_MASK);
1954 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1955 (unsigned int) val);
1956 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1957
1958 /*
1959 * Section 5.4.8 - doorbell array must be
1960 * "physically contiguous and 64-byte (cache line) aligned".
1961 */
1962 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1963 sizeof(*xhci->dcbaa), &dma);
1964 if (!xhci->dcbaa)
1965 goto fail;
1966 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1967 xhci->dcbaa->dma = dma;
1968 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1969 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1970 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1971
1972 /*
1973 * Initialize the ring segment pool. The ring must be a contiguous
1974 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1975 * however, the command ring segment needs 64-byte aligned segments,
1976 * so we pick the greater alignment need.
1977 */
1978 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1979 SEGMENT_SIZE, 64, xhci->page_size);
1980
1981 /* See Table 46 and Note on Figure 55 */
1982 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1983 2112, 64, xhci->page_size);
1984 if (!xhci->segment_pool || !xhci->device_pool)
1985 goto fail;
1986
1987 /* Linear stream context arrays don't have any boundary restrictions,
1988 * and only need to be 16-byte aligned.
1989 */
1990 xhci->small_streams_pool =
1991 dma_pool_create("xHCI 256 byte stream ctx arrays",
1992 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1993 xhci->medium_streams_pool =
1994 dma_pool_create("xHCI 1KB stream ctx arrays",
1995 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1996 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1997 * will be allocated with pci_alloc_consistent()
1998 */
1999
2000 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2001 goto fail;
2002
2003 /* Set up the command ring to have one segments for now. */
2004 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
2005 if (!xhci->cmd_ring)
2006 goto fail;
2007 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2008 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2009 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2010
2011 /* Set the address in the Command Ring Control register */
2012 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2013 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2014 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2015 xhci->cmd_ring->cycle_state;
2016 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2017 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2018 xhci_dbg_cmd_ptrs(xhci);
2019
2020 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2021 val &= DBOFF_MASK;
2022 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2023 " from cap regs base addr\n", val);
2024 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2025 xhci_dbg_regs(xhci);
2026 xhci_print_run_regs(xhci);
2027 /* Set ir_set to interrupt register set 0 */
2028 xhci->ir_set = &xhci->run_regs->ir_set[0];
2029
2030 /*
2031 * Event ring setup: Allocate a normal ring, but also setup
2032 * the event ring segment table (ERST). Section 4.9.3.
2033 */
2034 xhci_dbg(xhci, "// Allocating event ring\n");
2035 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
2036 if (!xhci->event_ring)
2037 goto fail;
2038 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2039 goto fail;
2040
2041 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2042 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2043 if (!xhci->erst.entries)
2044 goto fail;
2045 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2046 (unsigned long long)dma);
2047
2048 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2049 xhci->erst.num_entries = ERST_NUM_SEGS;
2050 xhci->erst.erst_dma_addr = dma;
2051 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2052 xhci->erst.num_entries,
2053 xhci->erst.entries,
2054 (unsigned long long)xhci->erst.erst_dma_addr);
2055
2056 /* set ring base address and size for each segment table entry */
2057 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2058 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2059 entry->seg_addr = cpu_to_le64(seg->dma);
2060 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2061 entry->rsvd = 0;
2062 seg = seg->next;
2063 }
2064
2065 /* set ERST count with the number of entries in the segment table */
2066 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2067 val &= ERST_SIZE_MASK;
2068 val |= ERST_NUM_SEGS;
2069 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2070 val);
2071 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2072
2073 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2074 /* set the segment table base address */
2075 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2076 (unsigned long long)xhci->erst.erst_dma_addr);
2077 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2078 val_64 &= ERST_PTR_MASK;
2079 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2080 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2081
2082 /* Set the event ring dequeue address */
2083 xhci_set_hc_event_deq(xhci);
2084 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2085 xhci_print_ir_set(xhci, 0);
2086
2087 /*
2088 * XXX: Might need to set the Interrupter Moderation Register to
2089 * something other than the default (~1ms minimum between interrupts).
2090 * See section 5.5.1.2.
2091 */
2092 init_completion(&xhci->addr_dev);
2093 for (i = 0; i < MAX_HC_SLOTS; ++i)
2094 xhci->devs[i] = NULL;
2095 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2096 xhci->bus_state[0].resume_done[i] = 0;
2097 xhci->bus_state[1].resume_done[i] = 0;
2098 }
2099
2100 if (scratchpad_alloc(xhci, flags))
2101 goto fail;
2102 if (xhci_setup_port_arrays(xhci, flags))
2103 goto fail;
2104
2105 return 0;
2106
2107fail:
2108 xhci_warn(xhci, "Couldn't initialize memory\n");
2109 xhci_mem_cleanup(xhci);
2110 return -ENOMEM;
2111}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/usb.h>
12#include <linux/pci.h>
13#include <linux/slab.h>
14#include <linux/dmapool.h>
15#include <linux/dma-mapping.h>
16
17#include "xhci.h"
18#include "xhci-trace.h"
19#include "xhci-debugfs.h"
20
21/*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
32{
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 if (!seg)
40 return NULL;
41
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 if (!seg->trbs) {
44 kfree(seg);
45 return NULL;
46 }
47
48 if (max_packet) {
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
50 dev_to_node(dev));
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 kfree(seg);
54 return NULL;
55 }
56 }
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 }
62 seg->dma = dma;
63 seg->next = NULL;
64
65 return seg;
66}
67
68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69{
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
73 }
74 kfree(seg->bounce_buf);
75 kfree(seg);
76}
77
78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 struct xhci_segment *first)
80{
81 struct xhci_segment *seg;
82
83 seg = first->next;
84 while (seg != first) {
85 struct xhci_segment *next = seg->next;
86 xhci_segment_free(xhci, seg);
87 seg = next;
88 }
89 xhci_segment_free(xhci, first);
90}
91
92/*
93 * Make the prev segment point to the next segment.
94 *
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
98 */
99static void xhci_link_segments(struct xhci_segment *prev,
100 struct xhci_segment *next,
101 enum xhci_ring_type type, bool chain_links)
102{
103 u32 val;
104
105 if (!prev || !next)
106 return;
107 prev->next = next;
108 if (type != TYPE_EVENT) {
109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 cpu_to_le64(next->dma);
111
112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 val &= ~TRB_TYPE_BITMASK;
115 val |= TRB_TYPE(TRB_LINK);
116 if (chain_links)
117 val |= TRB_CHAIN;
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 }
120}
121
122/*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129{
130 struct xhci_segment *next;
131 bool chain_links;
132
133 if (!ring || !first || !last)
134 return;
135
136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 (ring->type == TYPE_ISOC &&
139 (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141 next = ring->enq_seg->next;
142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 xhci_link_segments(last, next, ring->type, chain_links);
144 ring->num_segs += num_segs;
145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 &= ~cpu_to_le32(LINK_TOGGLE);
150 last->trbs[TRBS_PER_SEGMENT-1].link.control
151 |= cpu_to_le32(LINK_TOGGLE);
152 ring->last_seg = last;
153 }
154}
155
156/*
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to. We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from. We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
162 *
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses. For example, say I
165 * have segments of size 1KB, that are always 1KB aligned. A segment may
166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
169 *
170 * 0x10c90fff >> 10 = 0x43243
171 * 0x10c912c0 >> 10 = 0x43244
172 * 0x10c91400 >> 10 = 0x43245
173 *
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
176 *
177 * Caveats for the radix tree:
178 *
179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
186 */
187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 struct xhci_ring *ring,
189 struct xhci_segment *seg,
190 gfp_t mem_flags)
191{
192 unsigned long key;
193 int ret;
194
195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 /* Skip any segments that were already added. */
197 if (radix_tree_lookup(trb_address_map, key))
198 return 0;
199
200 ret = radix_tree_maybe_preload(mem_flags);
201 if (ret)
202 return ret;
203 ret = radix_tree_insert(trb_address_map,
204 key, ring);
205 radix_tree_preload_end();
206 return ret;
207}
208
209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 struct xhci_segment *seg)
211{
212 unsigned long key;
213
214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 if (radix_tree_lookup(trb_address_map, key))
216 radix_tree_delete(trb_address_map, key);
217}
218
219static int xhci_update_stream_segment_mapping(
220 struct radix_tree_root *trb_address_map,
221 struct xhci_ring *ring,
222 struct xhci_segment *first_seg,
223 struct xhci_segment *last_seg,
224 gfp_t mem_flags)
225{
226 struct xhci_segment *seg;
227 struct xhci_segment *failed_seg;
228 int ret;
229
230 if (WARN_ON_ONCE(trb_address_map == NULL))
231 return 0;
232
233 seg = first_seg;
234 do {
235 ret = xhci_insert_segment_mapping(trb_address_map,
236 ring, seg, mem_flags);
237 if (ret)
238 goto remove_streams;
239 if (seg == last_seg)
240 return 0;
241 seg = seg->next;
242 } while (seg != first_seg);
243
244 return 0;
245
246remove_streams:
247 failed_seg = seg;
248 seg = first_seg;
249 do {
250 xhci_remove_segment_mapping(trb_address_map, seg);
251 if (seg == failed_seg)
252 return ret;
253 seg = seg->next;
254 } while (seg != first_seg);
255
256 return ret;
257}
258
259static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260{
261 struct xhci_segment *seg;
262
263 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 return;
265
266 seg = ring->first_seg;
267 do {
268 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 seg = seg->next;
270 } while (seg != ring->first_seg);
271}
272
273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274{
275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 ring->first_seg, ring->last_seg, mem_flags);
277}
278
279/* XXX: Do we need the hcd structure in all these functions? */
280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281{
282 if (!ring)
283 return;
284
285 trace_xhci_ring_free(ring);
286
287 if (ring->first_seg) {
288 if (ring->type == TYPE_STREAM)
289 xhci_remove_stream_mapping(ring);
290 xhci_free_segments_for_ring(xhci, ring->first_seg);
291 }
292
293 kfree(ring);
294}
295
296void xhci_initialize_ring_info(struct xhci_ring *ring,
297 unsigned int cycle_state)
298{
299 /* The ring is empty, so the enqueue pointer == dequeue pointer */
300 ring->enqueue = ring->first_seg->trbs;
301 ring->enq_seg = ring->first_seg;
302 ring->dequeue = ring->enqueue;
303 ring->deq_seg = ring->first_seg;
304 /* The ring is initialized to 0. The producer must write 1 to the cycle
305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
306 * compare CCS to the cycle bit to check ownership, so CCS = 1.
307 *
308 * New rings are initialized with cycle state equal to 1; if we are
309 * handling ring expansion, set the cycle state equal to the old ring.
310 */
311 ring->cycle_state = cycle_state;
312
313 /*
314 * Each segment has a link TRB, and leave an extra TRB for SW
315 * accounting purpose
316 */
317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318}
319
320/* Allocate segments and link them for a ring */
321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 struct xhci_segment **first, struct xhci_segment **last,
323 unsigned int num_segs, unsigned int cycle_state,
324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325{
326 struct xhci_segment *prev;
327 bool chain_links;
328
329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 (type == TYPE_ISOC &&
332 (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 if (!prev)
336 return -ENOMEM;
337 num_segs--;
338
339 *first = prev;
340 while (num_segs > 0) {
341 struct xhci_segment *next;
342
343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 if (!next) {
345 prev = *first;
346 while (prev) {
347 next = prev->next;
348 xhci_segment_free(xhci, prev);
349 prev = next;
350 }
351 return -ENOMEM;
352 }
353 xhci_link_segments(prev, next, type, chain_links);
354
355 prev = next;
356 num_segs--;
357 }
358 xhci_link_segments(prev, *first, type, chain_links);
359 *last = prev;
360
361 return 0;
362}
363
364/*
365 * Create a new ring with zero or more segments.
366 *
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
370 */
371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 unsigned int num_segs, unsigned int cycle_state,
373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374{
375 struct xhci_ring *ring;
376 int ret;
377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380 if (!ring)
381 return NULL;
382
383 ring->num_segs = num_segs;
384 ring->bounce_buf_len = max_packet;
385 INIT_LIST_HEAD(&ring->td_list);
386 ring->type = type;
387 if (num_segs == 0)
388 return ring;
389
390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 &ring->last_seg, num_segs, cycle_state, type,
392 max_packet, flags);
393 if (ret)
394 goto fail;
395
396 /* Only event ring does not use link TRB */
397 if (type != TYPE_EVENT) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 cpu_to_le32(LINK_TOGGLE);
401 }
402 xhci_initialize_ring_info(ring, cycle_state);
403 trace_xhci_ring_alloc(ring);
404 return ring;
405
406fail:
407 kfree(ring);
408 return NULL;
409}
410
411void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 struct xhci_virt_device *virt_dev,
413 unsigned int ep_index)
414{
415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 virt_dev->eps[ep_index].ring = NULL;
417}
418
419/*
420 * Expand an existing ring.
421 * Allocate a new ring which has same segment numbers and link the two rings.
422 */
423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 unsigned int num_trbs, gfp_t flags)
425{
426 struct xhci_segment *first;
427 struct xhci_segment *last;
428 unsigned int num_segs;
429 unsigned int num_segs_needed;
430 int ret;
431
432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 (TRBS_PER_SEGMENT - 1);
434
435 /* Allocate number of segments we needed, or double the ring size */
436 num_segs = ring->num_segs > num_segs_needed ?
437 ring->num_segs : num_segs_needed;
438
439 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440 num_segs, ring->cycle_state, ring->type,
441 ring->bounce_buf_len, flags);
442 if (ret)
443 return -ENOMEM;
444
445 if (ring->type == TYPE_STREAM)
446 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447 ring, first, last, flags);
448 if (ret) {
449 struct xhci_segment *next;
450 do {
451 next = first->next;
452 xhci_segment_free(xhci, first);
453 if (first == last)
454 break;
455 first = next;
456 } while (true);
457 return ret;
458 }
459
460 xhci_link_rings(xhci, ring, first, last, num_segs);
461 trace_xhci_ring_expansion(ring);
462 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463 "ring expansion succeed, now has %d segments",
464 ring->num_segs);
465
466 return 0;
467}
468
469struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470 int type, gfp_t flags)
471{
472 struct xhci_container_ctx *ctx;
473 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474
475 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476 return NULL;
477
478 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479 if (!ctx)
480 return NULL;
481
482 ctx->type = type;
483 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484 if (type == XHCI_CTX_TYPE_INPUT)
485 ctx->size += CTX_SIZE(xhci->hcc_params);
486
487 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488 if (!ctx->bytes) {
489 kfree(ctx);
490 return NULL;
491 }
492 return ctx;
493}
494
495void xhci_free_container_ctx(struct xhci_hcd *xhci,
496 struct xhci_container_ctx *ctx)
497{
498 if (!ctx)
499 return;
500 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501 kfree(ctx);
502}
503
504struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505 struct xhci_container_ctx *ctx)
506{
507 if (ctx->type != XHCI_CTX_TYPE_INPUT)
508 return NULL;
509
510 return (struct xhci_input_control_ctx *)ctx->bytes;
511}
512
513struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514 struct xhci_container_ctx *ctx)
515{
516 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517 return (struct xhci_slot_ctx *)ctx->bytes;
518
519 return (struct xhci_slot_ctx *)
520 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
521}
522
523struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524 struct xhci_container_ctx *ctx,
525 unsigned int ep_index)
526{
527 /* increment ep index by offset of start of ep ctx array */
528 ep_index++;
529 if (ctx->type == XHCI_CTX_TYPE_INPUT)
530 ep_index++;
531
532 return (struct xhci_ep_ctx *)
533 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534}
535
536
537/***************** Streams structures manipulation *************************/
538
539static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540 unsigned int num_stream_ctxs,
541 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542{
543 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546 if (size > MEDIUM_STREAM_ARRAY_SIZE)
547 dma_free_coherent(dev, size,
548 stream_ctx, dma);
549 else if (size <= SMALL_STREAM_ARRAY_SIZE)
550 return dma_pool_free(xhci->small_streams_pool,
551 stream_ctx, dma);
552 else
553 return dma_pool_free(xhci->medium_streams_pool,
554 stream_ctx, dma);
555}
556
557/*
558 * The stream context array for each endpoint with bulk streams enabled can
559 * vary in size, based on:
560 * - how many streams the endpoint supports,
561 * - the maximum primary stream array size the host controller supports,
562 * - and how many streams the device driver asks for.
563 *
564 * The stream context array must be a power of 2, and can be as small as
565 * 64 bytes or as large as 1MB.
566 */
567static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568 unsigned int num_stream_ctxs, dma_addr_t *dma,
569 gfp_t mem_flags)
570{
571 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574 if (size > MEDIUM_STREAM_ARRAY_SIZE)
575 return dma_alloc_coherent(dev, size,
576 dma, mem_flags);
577 else if (size <= SMALL_STREAM_ARRAY_SIZE)
578 return dma_pool_alloc(xhci->small_streams_pool,
579 mem_flags, dma);
580 else
581 return dma_pool_alloc(xhci->medium_streams_pool,
582 mem_flags, dma);
583}
584
585struct xhci_ring *xhci_dma_to_transfer_ring(
586 struct xhci_virt_ep *ep,
587 u64 address)
588{
589 if (ep->ep_state & EP_HAS_STREAMS)
590 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591 address >> TRB_SEGMENT_SHIFT);
592 return ep->ring;
593}
594
595struct xhci_ring *xhci_stream_id_to_ring(
596 struct xhci_virt_device *dev,
597 unsigned int ep_index,
598 unsigned int stream_id)
599{
600 struct xhci_virt_ep *ep = &dev->eps[ep_index];
601
602 if (stream_id == 0)
603 return ep->ring;
604 if (!ep->stream_info)
605 return NULL;
606
607 if (stream_id >= ep->stream_info->num_streams)
608 return NULL;
609 return ep->stream_info->stream_rings[stream_id];
610}
611
612/*
613 * Change an endpoint's internal structure so it supports stream IDs. The
614 * number of requested streams includes stream 0, which cannot be used by device
615 * drivers.
616 *
617 * The number of stream contexts in the stream context array may be bigger than
618 * the number of streams the driver wants to use. This is because the number of
619 * stream context array entries must be a power of two.
620 */
621struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622 unsigned int num_stream_ctxs,
623 unsigned int num_streams,
624 unsigned int max_packet, gfp_t mem_flags)
625{
626 struct xhci_stream_info *stream_info;
627 u32 cur_stream;
628 struct xhci_ring *cur_ring;
629 u64 addr;
630 int ret;
631 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
632
633 xhci_dbg(xhci, "Allocating %u streams and %u "
634 "stream context array entries.\n",
635 num_streams, num_stream_ctxs);
636 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
638 return NULL;
639 }
640 xhci->cmd_ring_reserved_trbs++;
641
642 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
643 dev_to_node(dev));
644 if (!stream_info)
645 goto cleanup_trbs;
646
647 stream_info->num_streams = num_streams;
648 stream_info->num_stream_ctxs = num_stream_ctxs;
649
650 /* Initialize the array of virtual pointers to stream rings. */
651 stream_info->stream_rings = kcalloc_node(
652 num_streams, sizeof(struct xhci_ring *), mem_flags,
653 dev_to_node(dev));
654 if (!stream_info->stream_rings)
655 goto cleanup_info;
656
657 /* Initialize the array of DMA addresses for stream rings for the HW. */
658 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659 num_stream_ctxs, &stream_info->ctx_array_dma,
660 mem_flags);
661 if (!stream_info->stream_ctx_array)
662 goto cleanup_ctx;
663 memset(stream_info->stream_ctx_array, 0,
664 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
665
666 /* Allocate everything needed to free the stream rings later */
667 stream_info->free_streams_command =
668 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669 if (!stream_info->free_streams_command)
670 goto cleanup_ctx;
671
672 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
673
674 /* Allocate rings for all the streams that the driver will use,
675 * and add their segment DMA addresses to the radix tree.
676 * Stream 0 is reserved.
677 */
678
679 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680 stream_info->stream_rings[cur_stream] =
681 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
682 mem_flags);
683 cur_ring = stream_info->stream_rings[cur_stream];
684 if (!cur_ring)
685 goto cleanup_rings;
686 cur_ring->stream_id = cur_stream;
687 cur_ring->trb_address_map = &stream_info->trb_address_map;
688 /* Set deq ptr, cycle bit, and stream context type */
689 addr = cur_ring->first_seg->dma |
690 SCT_FOR_CTX(SCT_PRI_TR) |
691 cur_ring->cycle_state;
692 stream_info->stream_ctx_array[cur_stream].stream_ring =
693 cpu_to_le64(addr);
694 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695 cur_stream, (unsigned long long) addr);
696
697 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
698 if (ret) {
699 xhci_ring_free(xhci, cur_ring);
700 stream_info->stream_rings[cur_stream] = NULL;
701 goto cleanup_rings;
702 }
703 }
704 /* Leave the other unused stream ring pointers in the stream context
705 * array initialized to zero. This will cause the xHC to give us an
706 * error if the device asks for a stream ID we don't have setup (if it
707 * was any other way, the host controller would assume the ring is
708 * "empty" and wait forever for data to be queued to that stream ID).
709 */
710
711 return stream_info;
712
713cleanup_rings:
714 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715 cur_ring = stream_info->stream_rings[cur_stream];
716 if (cur_ring) {
717 xhci_ring_free(xhci, cur_ring);
718 stream_info->stream_rings[cur_stream] = NULL;
719 }
720 }
721 xhci_free_command(xhci, stream_info->free_streams_command);
722cleanup_ctx:
723 kfree(stream_info->stream_rings);
724cleanup_info:
725 kfree(stream_info);
726cleanup_trbs:
727 xhci->cmd_ring_reserved_trbs--;
728 return NULL;
729}
730/*
731 * Sets the MaxPStreams field and the Linear Stream Array field.
732 * Sets the dequeue pointer to the stream context array.
733 */
734void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
735 struct xhci_ep_ctx *ep_ctx,
736 struct xhci_stream_info *stream_info)
737{
738 u32 max_primary_streams;
739 /* MaxPStreams is the number of stream context array entries, not the
740 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
741 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
742 */
743 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
744 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
745 "Setting number of stream ctx array entries to %u",
746 1 << (max_primary_streams + 1));
747 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
748 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
749 | EP_HAS_LSA);
750 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
751}
752
753/*
754 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
755 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
756 * not at the beginning of the ring).
757 */
758void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
759 struct xhci_virt_ep *ep)
760{
761 dma_addr_t addr;
762 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
763 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
764 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
765}
766
767/* Frees all stream contexts associated with the endpoint,
768 *
769 * Caller should fix the endpoint context streams fields.
770 */
771void xhci_free_stream_info(struct xhci_hcd *xhci,
772 struct xhci_stream_info *stream_info)
773{
774 int cur_stream;
775 struct xhci_ring *cur_ring;
776
777 if (!stream_info)
778 return;
779
780 for (cur_stream = 1; cur_stream < stream_info->num_streams;
781 cur_stream++) {
782 cur_ring = stream_info->stream_rings[cur_stream];
783 if (cur_ring) {
784 xhci_ring_free(xhci, cur_ring);
785 stream_info->stream_rings[cur_stream] = NULL;
786 }
787 }
788 xhci_free_command(xhci, stream_info->free_streams_command);
789 xhci->cmd_ring_reserved_trbs--;
790 if (stream_info->stream_ctx_array)
791 xhci_free_stream_ctx(xhci,
792 stream_info->num_stream_ctxs,
793 stream_info->stream_ctx_array,
794 stream_info->ctx_array_dma);
795
796 kfree(stream_info->stream_rings);
797 kfree(stream_info);
798}
799
800
801/***************** Device context manipulation *************************/
802
803static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
804 struct xhci_virt_ep *ep)
805{
806 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
807 0);
808 ep->xhci = xhci;
809}
810
811static void xhci_free_tt_info(struct xhci_hcd *xhci,
812 struct xhci_virt_device *virt_dev,
813 int slot_id)
814{
815 struct list_head *tt_list_head;
816 struct xhci_tt_bw_info *tt_info, *next;
817 bool slot_found = false;
818
819 /* If the device never made it past the Set Address stage,
820 * it may not have the real_port set correctly.
821 */
822 if (virt_dev->real_port == 0 ||
823 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
824 xhci_dbg(xhci, "Bad real port.\n");
825 return;
826 }
827
828 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
829 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
830 /* Multi-TT hubs will have more than one entry */
831 if (tt_info->slot_id == slot_id) {
832 slot_found = true;
833 list_del(&tt_info->tt_list);
834 kfree(tt_info);
835 } else if (slot_found) {
836 break;
837 }
838 }
839}
840
841int xhci_alloc_tt_info(struct xhci_hcd *xhci,
842 struct xhci_virt_device *virt_dev,
843 struct usb_device *hdev,
844 struct usb_tt *tt, gfp_t mem_flags)
845{
846 struct xhci_tt_bw_info *tt_info;
847 unsigned int num_ports;
848 int i, j;
849 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
850
851 if (!tt->multi)
852 num_ports = 1;
853 else
854 num_ports = hdev->maxchild;
855
856 for (i = 0; i < num_ports; i++, tt_info++) {
857 struct xhci_interval_bw_table *bw_table;
858
859 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
860 dev_to_node(dev));
861 if (!tt_info)
862 goto free_tts;
863 INIT_LIST_HEAD(&tt_info->tt_list);
864 list_add(&tt_info->tt_list,
865 &xhci->rh_bw[virt_dev->real_port - 1].tts);
866 tt_info->slot_id = virt_dev->udev->slot_id;
867 if (tt->multi)
868 tt_info->ttport = i+1;
869 bw_table = &tt_info->bw_table;
870 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
871 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
872 }
873 return 0;
874
875free_tts:
876 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
877 return -ENOMEM;
878}
879
880
881/* All the xhci_tds in the ring's TD list should be freed at this point.
882 * Should be called with xhci->lock held if there is any chance the TT lists
883 * will be manipulated by the configure endpoint, allocate device, or update
884 * hub functions while this function is removing the TT entries from the list.
885 */
886void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
887{
888 struct xhci_virt_device *dev;
889 int i;
890 int old_active_eps = 0;
891
892 /* Slot ID 0 is reserved */
893 if (slot_id == 0 || !xhci->devs[slot_id])
894 return;
895
896 dev = xhci->devs[slot_id];
897
898 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
899 if (!dev)
900 return;
901
902 trace_xhci_free_virt_device(dev);
903
904 if (dev->tt_info)
905 old_active_eps = dev->tt_info->active_eps;
906
907 for (i = 0; i < 31; i++) {
908 if (dev->eps[i].ring)
909 xhci_ring_free(xhci, dev->eps[i].ring);
910 if (dev->eps[i].stream_info)
911 xhci_free_stream_info(xhci,
912 dev->eps[i].stream_info);
913 /* Endpoints on the TT/root port lists should have been removed
914 * when usb_disable_device() was called for the device.
915 * We can't drop them anyway, because the udev might have gone
916 * away by this point, and we can't tell what speed it was.
917 */
918 if (!list_empty(&dev->eps[i].bw_endpoint_list))
919 xhci_warn(xhci, "Slot %u endpoint %u "
920 "not removed from BW list!\n",
921 slot_id, i);
922 }
923 /* If this is a hub, free the TT(s) from the TT list */
924 xhci_free_tt_info(xhci, dev, slot_id);
925 /* If necessary, update the number of active TTs on this root port */
926 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
927
928 if (dev->in_ctx)
929 xhci_free_container_ctx(xhci, dev->in_ctx);
930 if (dev->out_ctx)
931 xhci_free_container_ctx(xhci, dev->out_ctx);
932
933 if (dev->udev && dev->udev->slot_id)
934 dev->udev->slot_id = 0;
935 kfree(xhci->devs[slot_id]);
936 xhci->devs[slot_id] = NULL;
937}
938
939/*
940 * Free a virt_device structure.
941 * If the virt_device added a tt_info (a hub) and has children pointing to
942 * that tt_info, then free the child first. Recursive.
943 * We can't rely on udev at this point to find child-parent relationships.
944 */
945static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
946{
947 struct xhci_virt_device *vdev;
948 struct list_head *tt_list_head;
949 struct xhci_tt_bw_info *tt_info, *next;
950 int i;
951
952 vdev = xhci->devs[slot_id];
953 if (!vdev)
954 return;
955
956 if (vdev->real_port == 0 ||
957 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
958 xhci_dbg(xhci, "Bad vdev->real_port.\n");
959 goto out;
960 }
961
962 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
963 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
964 /* is this a hub device that added a tt_info to the tts list */
965 if (tt_info->slot_id == slot_id) {
966 /* are any devices using this tt_info? */
967 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
968 vdev = xhci->devs[i];
969 if (vdev && (vdev->tt_info == tt_info))
970 xhci_free_virt_devices_depth_first(
971 xhci, i);
972 }
973 }
974 }
975out:
976 /* we are now at a leaf device */
977 xhci_debugfs_remove_slot(xhci, slot_id);
978 xhci_free_virt_device(xhci, slot_id);
979}
980
981int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
982 struct usb_device *udev, gfp_t flags)
983{
984 struct xhci_virt_device *dev;
985 int i;
986
987 /* Slot ID 0 is reserved */
988 if (slot_id == 0 || xhci->devs[slot_id]) {
989 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
990 return 0;
991 }
992
993 dev = kzalloc(sizeof(*dev), flags);
994 if (!dev)
995 return 0;
996
997 /* Allocate the (output) device context that will be used in the HC. */
998 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
999 if (!dev->out_ctx)
1000 goto fail;
1001
1002 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1003 (unsigned long long)dev->out_ctx->dma);
1004
1005 /* Allocate the (input) device context for address device command */
1006 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1007 if (!dev->in_ctx)
1008 goto fail;
1009
1010 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1011 (unsigned long long)dev->in_ctx->dma);
1012
1013 /* Initialize the cancellation list and watchdog timers for each ep */
1014 for (i = 0; i < 31; i++) {
1015 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1016 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1017 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1018 }
1019
1020 /* Allocate endpoint 0 ring */
1021 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1022 if (!dev->eps[0].ring)
1023 goto fail;
1024
1025 dev->udev = udev;
1026
1027 /* Point to output device context in dcbaa. */
1028 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1029 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1030 slot_id,
1031 &xhci->dcbaa->dev_context_ptrs[slot_id],
1032 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1033
1034 trace_xhci_alloc_virt_device(dev);
1035
1036 xhci->devs[slot_id] = dev;
1037
1038 return 1;
1039fail:
1040
1041 if (dev->in_ctx)
1042 xhci_free_container_ctx(xhci, dev->in_ctx);
1043 if (dev->out_ctx)
1044 xhci_free_container_ctx(xhci, dev->out_ctx);
1045 kfree(dev);
1046
1047 return 0;
1048}
1049
1050void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1051 struct usb_device *udev)
1052{
1053 struct xhci_virt_device *virt_dev;
1054 struct xhci_ep_ctx *ep0_ctx;
1055 struct xhci_ring *ep_ring;
1056
1057 virt_dev = xhci->devs[udev->slot_id];
1058 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1059 ep_ring = virt_dev->eps[0].ring;
1060 /*
1061 * FIXME we don't keep track of the dequeue pointer very well after a
1062 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1063 * host to our enqueue pointer. This should only be called after a
1064 * configured device has reset, so all control transfers should have
1065 * been completed or cancelled before the reset.
1066 */
1067 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1068 ep_ring->enqueue)
1069 | ep_ring->cycle_state);
1070}
1071
1072/*
1073 * The xHCI roothub may have ports of differing speeds in any order in the port
1074 * status registers.
1075 *
1076 * The xHCI hardware wants to know the roothub port number that the USB device
1077 * is attached to (or the roothub port its ancestor hub is attached to). All we
1078 * know is the index of that port under either the USB 2.0 or the USB 3.0
1079 * roothub, but that doesn't give us the real index into the HW port status
1080 * registers. Call xhci_find_raw_port_number() to get real index.
1081 */
1082static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1083 struct usb_device *udev)
1084{
1085 struct usb_device *top_dev;
1086 struct usb_hcd *hcd;
1087
1088 if (udev->speed >= USB_SPEED_SUPER)
1089 hcd = xhci->shared_hcd;
1090 else
1091 hcd = xhci->main_hcd;
1092
1093 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1094 top_dev = top_dev->parent)
1095 /* Found device below root hub */;
1096
1097 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1098}
1099
1100/* Setup an xHCI virtual device for a Set Address command */
1101int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1102{
1103 struct xhci_virt_device *dev;
1104 struct xhci_ep_ctx *ep0_ctx;
1105 struct xhci_slot_ctx *slot_ctx;
1106 u32 port_num;
1107 u32 max_packets;
1108 struct usb_device *top_dev;
1109
1110 dev = xhci->devs[udev->slot_id];
1111 /* Slot ID 0 is reserved */
1112 if (udev->slot_id == 0 || !dev) {
1113 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1114 udev->slot_id);
1115 return -EINVAL;
1116 }
1117 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1118 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1119
1120 /* 3) Only the control endpoint is valid - one endpoint context */
1121 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1122 switch (udev->speed) {
1123 case USB_SPEED_SUPER_PLUS:
1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1125 max_packets = MAX_PACKET(512);
1126 break;
1127 case USB_SPEED_SUPER:
1128 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1129 max_packets = MAX_PACKET(512);
1130 break;
1131 case USB_SPEED_HIGH:
1132 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1133 max_packets = MAX_PACKET(64);
1134 break;
1135 /* USB core guesses at a 64-byte max packet first for FS devices */
1136 case USB_SPEED_FULL:
1137 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1138 max_packets = MAX_PACKET(64);
1139 break;
1140 case USB_SPEED_LOW:
1141 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1142 max_packets = MAX_PACKET(8);
1143 break;
1144 case USB_SPEED_WIRELESS:
1145 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1146 return -EINVAL;
1147 break;
1148 default:
1149 /* Speed was set earlier, this shouldn't happen. */
1150 return -EINVAL;
1151 }
1152 /* Find the root hub port this device is under */
1153 port_num = xhci_find_real_port_number(xhci, udev);
1154 if (!port_num)
1155 return -EINVAL;
1156 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1157 /* Set the port number in the virtual_device to the faked port number */
1158 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1159 top_dev = top_dev->parent)
1160 /* Found device below root hub */;
1161 dev->fake_port = top_dev->portnum;
1162 dev->real_port = port_num;
1163 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1164 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1165
1166 /* Find the right bandwidth table that this device will be a part of.
1167 * If this is a full speed device attached directly to a root port (or a
1168 * decendent of one), it counts as a primary bandwidth domain, not a
1169 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1170 * will never be created for the HS root hub.
1171 */
1172 if (!udev->tt || !udev->tt->hub->parent) {
1173 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1174 } else {
1175 struct xhci_root_port_bw_info *rh_bw;
1176 struct xhci_tt_bw_info *tt_bw;
1177
1178 rh_bw = &xhci->rh_bw[port_num - 1];
1179 /* Find the right TT. */
1180 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1181 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1182 continue;
1183
1184 if (!dev->udev->tt->multi ||
1185 (udev->tt->multi &&
1186 tt_bw->ttport == dev->udev->ttport)) {
1187 dev->bw_table = &tt_bw->bw_table;
1188 dev->tt_info = tt_bw;
1189 break;
1190 }
1191 }
1192 if (!dev->tt_info)
1193 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1194 }
1195
1196 /* Is this a LS/FS device under an external HS hub? */
1197 if (udev->tt && udev->tt->hub->parent) {
1198 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1199 (udev->ttport << 8));
1200 if (udev->tt->multi)
1201 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1202 }
1203 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1204 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1205
1206 /* Step 4 - ring already allocated */
1207 /* Step 5 */
1208 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1209
1210 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1211 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1212 max_packets);
1213
1214 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1215 dev->eps[0].ring->cycle_state);
1216
1217 trace_xhci_setup_addressable_virt_device(dev);
1218
1219 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1220
1221 return 0;
1222}
1223
1224/*
1225 * Convert interval expressed as 2^(bInterval - 1) == interval into
1226 * straight exponent value 2^n == interval.
1227 *
1228 */
1229static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1230 struct usb_host_endpoint *ep)
1231{
1232 unsigned int interval;
1233
1234 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1235 if (interval != ep->desc.bInterval - 1)
1236 dev_warn(&udev->dev,
1237 "ep %#x - rounding interval to %d %sframes\n",
1238 ep->desc.bEndpointAddress,
1239 1 << interval,
1240 udev->speed == USB_SPEED_FULL ? "" : "micro");
1241
1242 if (udev->speed == USB_SPEED_FULL) {
1243 /*
1244 * Full speed isoc endpoints specify interval in frames,
1245 * not microframes. We are using microframes everywhere,
1246 * so adjust accordingly.
1247 */
1248 interval += 3; /* 1 frame = 2^3 uframes */
1249 }
1250
1251 return interval;
1252}
1253
1254/*
1255 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1256 * microframes, rounded down to nearest power of 2.
1257 */
1258static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1259 struct usb_host_endpoint *ep, unsigned int desc_interval,
1260 unsigned int min_exponent, unsigned int max_exponent)
1261{
1262 unsigned int interval;
1263
1264 interval = fls(desc_interval) - 1;
1265 interval = clamp_val(interval, min_exponent, max_exponent);
1266 if ((1 << interval) != desc_interval)
1267 dev_dbg(&udev->dev,
1268 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1269 ep->desc.bEndpointAddress,
1270 1 << interval,
1271 desc_interval);
1272
1273 return interval;
1274}
1275
1276static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1277 struct usb_host_endpoint *ep)
1278{
1279 if (ep->desc.bInterval == 0)
1280 return 0;
1281 return xhci_microframes_to_exponent(udev, ep,
1282 ep->desc.bInterval, 0, 15);
1283}
1284
1285
1286static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1287 struct usb_host_endpoint *ep)
1288{
1289 return xhci_microframes_to_exponent(udev, ep,
1290 ep->desc.bInterval * 8, 3, 10);
1291}
1292
1293/* Return the polling or NAK interval.
1294 *
1295 * The polling interval is expressed in "microframes". If xHCI's Interval field
1296 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1297 *
1298 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1299 * is set to 0.
1300 */
1301static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1302 struct usb_host_endpoint *ep)
1303{
1304 unsigned int interval = 0;
1305
1306 switch (udev->speed) {
1307 case USB_SPEED_HIGH:
1308 /* Max NAK rate */
1309 if (usb_endpoint_xfer_control(&ep->desc) ||
1310 usb_endpoint_xfer_bulk(&ep->desc)) {
1311 interval = xhci_parse_microframe_interval(udev, ep);
1312 break;
1313 }
1314 fallthrough; /* SS and HS isoc/int have same decoding */
1315
1316 case USB_SPEED_SUPER_PLUS:
1317 case USB_SPEED_SUPER:
1318 if (usb_endpoint_xfer_int(&ep->desc) ||
1319 usb_endpoint_xfer_isoc(&ep->desc)) {
1320 interval = xhci_parse_exponent_interval(udev, ep);
1321 }
1322 break;
1323
1324 case USB_SPEED_FULL:
1325 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1326 interval = xhci_parse_exponent_interval(udev, ep);
1327 break;
1328 }
1329 /*
1330 * Fall through for interrupt endpoint interval decoding
1331 * since it uses the same rules as low speed interrupt
1332 * endpoints.
1333 */
1334 fallthrough;
1335
1336 case USB_SPEED_LOW:
1337 if (usb_endpoint_xfer_int(&ep->desc) ||
1338 usb_endpoint_xfer_isoc(&ep->desc)) {
1339
1340 interval = xhci_parse_frame_interval(udev, ep);
1341 }
1342 break;
1343
1344 default:
1345 BUG();
1346 }
1347 return interval;
1348}
1349
1350/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1351 * High speed endpoint descriptors can define "the number of additional
1352 * transaction opportunities per microframe", but that goes in the Max Burst
1353 * endpoint context field.
1354 */
1355static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1356 struct usb_host_endpoint *ep)
1357{
1358 if (udev->speed < USB_SPEED_SUPER ||
1359 !usb_endpoint_xfer_isoc(&ep->desc))
1360 return 0;
1361 return ep->ss_ep_comp.bmAttributes;
1362}
1363
1364static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1365 struct usb_host_endpoint *ep)
1366{
1367 /* Super speed and Plus have max burst in ep companion desc */
1368 if (udev->speed >= USB_SPEED_SUPER)
1369 return ep->ss_ep_comp.bMaxBurst;
1370
1371 if (udev->speed == USB_SPEED_HIGH &&
1372 (usb_endpoint_xfer_isoc(&ep->desc) ||
1373 usb_endpoint_xfer_int(&ep->desc)))
1374 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1375
1376 return 0;
1377}
1378
1379static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1380{
1381 int in;
1382
1383 in = usb_endpoint_dir_in(&ep->desc);
1384
1385 switch (usb_endpoint_type(&ep->desc)) {
1386 case USB_ENDPOINT_XFER_CONTROL:
1387 return CTRL_EP;
1388 case USB_ENDPOINT_XFER_BULK:
1389 return in ? BULK_IN_EP : BULK_OUT_EP;
1390 case USB_ENDPOINT_XFER_ISOC:
1391 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1392 case USB_ENDPOINT_XFER_INT:
1393 return in ? INT_IN_EP : INT_OUT_EP;
1394 }
1395 return 0;
1396}
1397
1398/* Return the maximum endpoint service interval time (ESIT) payload.
1399 * Basically, this is the maxpacket size, multiplied by the burst size
1400 * and mult size.
1401 */
1402static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1403 struct usb_host_endpoint *ep)
1404{
1405 int max_burst;
1406 int max_packet;
1407
1408 /* Only applies for interrupt or isochronous endpoints */
1409 if (usb_endpoint_xfer_control(&ep->desc) ||
1410 usb_endpoint_xfer_bulk(&ep->desc))
1411 return 0;
1412
1413 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1414 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1415 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1416 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1417 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1418 else if (udev->speed >= USB_SPEED_SUPER)
1419 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1420
1421 max_packet = usb_endpoint_maxp(&ep->desc);
1422 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1423 /* A 0 in max burst means 1 transfer per ESIT */
1424 return max_packet * max_burst;
1425}
1426
1427/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1428 * Drivers will have to call usb_alloc_streams() to do that.
1429 */
1430int xhci_endpoint_init(struct xhci_hcd *xhci,
1431 struct xhci_virt_device *virt_dev,
1432 struct usb_device *udev,
1433 struct usb_host_endpoint *ep,
1434 gfp_t mem_flags)
1435{
1436 unsigned int ep_index;
1437 struct xhci_ep_ctx *ep_ctx;
1438 struct xhci_ring *ep_ring;
1439 unsigned int max_packet;
1440 enum xhci_ring_type ring_type;
1441 u32 max_esit_payload;
1442 u32 endpoint_type;
1443 unsigned int max_burst;
1444 unsigned int interval;
1445 unsigned int mult;
1446 unsigned int avg_trb_len;
1447 unsigned int err_count = 0;
1448
1449 ep_index = xhci_get_endpoint_index(&ep->desc);
1450 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1451
1452 endpoint_type = xhci_get_endpoint_type(ep);
1453 if (!endpoint_type)
1454 return -EINVAL;
1455
1456 ring_type = usb_endpoint_type(&ep->desc);
1457
1458 /*
1459 * Get values to fill the endpoint context, mostly from ep descriptor.
1460 * The average TRB buffer lengt for bulk endpoints is unclear as we
1461 * have no clue on scatter gather list entry size. For Isoc and Int,
1462 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1463 */
1464 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1465 interval = xhci_get_endpoint_interval(udev, ep);
1466
1467 /* Periodic endpoint bInterval limit quirk */
1468 if (usb_endpoint_xfer_int(&ep->desc) ||
1469 usb_endpoint_xfer_isoc(&ep->desc)) {
1470 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1471 udev->speed >= USB_SPEED_HIGH &&
1472 interval >= 7) {
1473 interval = 6;
1474 }
1475 }
1476
1477 mult = xhci_get_endpoint_mult(udev, ep);
1478 max_packet = usb_endpoint_maxp(&ep->desc);
1479 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1480 avg_trb_len = max_esit_payload;
1481
1482 /* FIXME dig Mult and streams info out of ep companion desc */
1483
1484 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1485 if (!usb_endpoint_xfer_isoc(&ep->desc))
1486 err_count = 3;
1487 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1488 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1489 if (udev->speed == USB_SPEED_HIGH)
1490 max_packet = 512;
1491 if (udev->speed == USB_SPEED_FULL) {
1492 max_packet = rounddown_pow_of_two(max_packet);
1493 max_packet = clamp_val(max_packet, 8, 64);
1494 }
1495 }
1496 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1497 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1498 avg_trb_len = 8;
1499 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1500 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1501 mult = 0;
1502
1503 /* Set up the endpoint ring */
1504 virt_dev->eps[ep_index].new_ring =
1505 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1506 if (!virt_dev->eps[ep_index].new_ring)
1507 return -ENOMEM;
1508
1509 virt_dev->eps[ep_index].skip = false;
1510 ep_ring = virt_dev->eps[ep_index].new_ring;
1511
1512 /* Fill the endpoint context */
1513 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1514 EP_INTERVAL(interval) |
1515 EP_MULT(mult));
1516 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1517 MAX_PACKET(max_packet) |
1518 MAX_BURST(max_burst) |
1519 ERROR_COUNT(err_count));
1520 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1521 ep_ring->cycle_state);
1522
1523 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1524 EP_AVG_TRB_LENGTH(avg_trb_len));
1525
1526 return 0;
1527}
1528
1529void xhci_endpoint_zero(struct xhci_hcd *xhci,
1530 struct xhci_virt_device *virt_dev,
1531 struct usb_host_endpoint *ep)
1532{
1533 unsigned int ep_index;
1534 struct xhci_ep_ctx *ep_ctx;
1535
1536 ep_index = xhci_get_endpoint_index(&ep->desc);
1537 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1538
1539 ep_ctx->ep_info = 0;
1540 ep_ctx->ep_info2 = 0;
1541 ep_ctx->deq = 0;
1542 ep_ctx->tx_info = 0;
1543 /* Don't free the endpoint ring until the set interface or configuration
1544 * request succeeds.
1545 */
1546}
1547
1548void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1549{
1550 bw_info->ep_interval = 0;
1551 bw_info->mult = 0;
1552 bw_info->num_packets = 0;
1553 bw_info->max_packet_size = 0;
1554 bw_info->type = 0;
1555 bw_info->max_esit_payload = 0;
1556}
1557
1558void xhci_update_bw_info(struct xhci_hcd *xhci,
1559 struct xhci_container_ctx *in_ctx,
1560 struct xhci_input_control_ctx *ctrl_ctx,
1561 struct xhci_virt_device *virt_dev)
1562{
1563 struct xhci_bw_info *bw_info;
1564 struct xhci_ep_ctx *ep_ctx;
1565 unsigned int ep_type;
1566 int i;
1567
1568 for (i = 1; i < 31; i++) {
1569 bw_info = &virt_dev->eps[i].bw_info;
1570
1571 /* We can't tell what endpoint type is being dropped, but
1572 * unconditionally clearing the bandwidth info for non-periodic
1573 * endpoints should be harmless because the info will never be
1574 * set in the first place.
1575 */
1576 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1577 /* Dropped endpoint */
1578 xhci_clear_endpoint_bw_info(bw_info);
1579 continue;
1580 }
1581
1582 if (EP_IS_ADDED(ctrl_ctx, i)) {
1583 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1584 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1585
1586 /* Ignore non-periodic endpoints */
1587 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1588 ep_type != ISOC_IN_EP &&
1589 ep_type != INT_IN_EP)
1590 continue;
1591
1592 /* Added or changed endpoint */
1593 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1594 le32_to_cpu(ep_ctx->ep_info));
1595 /* Number of packets and mult are zero-based in the
1596 * input context, but we want one-based for the
1597 * interval table.
1598 */
1599 bw_info->mult = CTX_TO_EP_MULT(
1600 le32_to_cpu(ep_ctx->ep_info)) + 1;
1601 bw_info->num_packets = CTX_TO_MAX_BURST(
1602 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1603 bw_info->max_packet_size = MAX_PACKET_DECODED(
1604 le32_to_cpu(ep_ctx->ep_info2));
1605 bw_info->type = ep_type;
1606 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1607 le32_to_cpu(ep_ctx->tx_info));
1608 }
1609 }
1610}
1611
1612/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1613 * Useful when you want to change one particular aspect of the endpoint and then
1614 * issue a configure endpoint command.
1615 */
1616void xhci_endpoint_copy(struct xhci_hcd *xhci,
1617 struct xhci_container_ctx *in_ctx,
1618 struct xhci_container_ctx *out_ctx,
1619 unsigned int ep_index)
1620{
1621 struct xhci_ep_ctx *out_ep_ctx;
1622 struct xhci_ep_ctx *in_ep_ctx;
1623
1624 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1625 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1626
1627 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1628 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1629 in_ep_ctx->deq = out_ep_ctx->deq;
1630 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1631 if (xhci->quirks & XHCI_MTK_HOST) {
1632 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1633 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1634 }
1635}
1636
1637/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1638 * Useful when you want to change one particular aspect of the endpoint and then
1639 * issue a configure endpoint command. Only the context entries field matters,
1640 * but we'll copy the whole thing anyway.
1641 */
1642void xhci_slot_copy(struct xhci_hcd *xhci,
1643 struct xhci_container_ctx *in_ctx,
1644 struct xhci_container_ctx *out_ctx)
1645{
1646 struct xhci_slot_ctx *in_slot_ctx;
1647 struct xhci_slot_ctx *out_slot_ctx;
1648
1649 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1650 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1651
1652 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1653 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1654 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1655 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1656}
1657
1658/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1659static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1660{
1661 int i;
1662 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1663 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1664
1665 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1666 "Allocating %d scratchpad buffers", num_sp);
1667
1668 if (!num_sp)
1669 return 0;
1670
1671 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1672 dev_to_node(dev));
1673 if (!xhci->scratchpad)
1674 goto fail_sp;
1675
1676 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1677 num_sp * sizeof(u64),
1678 &xhci->scratchpad->sp_dma, flags);
1679 if (!xhci->scratchpad->sp_array)
1680 goto fail_sp2;
1681
1682 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1683 flags, dev_to_node(dev));
1684 if (!xhci->scratchpad->sp_buffers)
1685 goto fail_sp3;
1686
1687 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1688 for (i = 0; i < num_sp; i++) {
1689 dma_addr_t dma;
1690 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1691 flags);
1692 if (!buf)
1693 goto fail_sp4;
1694
1695 xhci->scratchpad->sp_array[i] = dma;
1696 xhci->scratchpad->sp_buffers[i] = buf;
1697 }
1698
1699 return 0;
1700
1701 fail_sp4:
1702 for (i = i - 1; i >= 0; i--) {
1703 dma_free_coherent(dev, xhci->page_size,
1704 xhci->scratchpad->sp_buffers[i],
1705 xhci->scratchpad->sp_array[i]);
1706 }
1707
1708 kfree(xhci->scratchpad->sp_buffers);
1709
1710 fail_sp3:
1711 dma_free_coherent(dev, num_sp * sizeof(u64),
1712 xhci->scratchpad->sp_array,
1713 xhci->scratchpad->sp_dma);
1714
1715 fail_sp2:
1716 kfree(xhci->scratchpad);
1717 xhci->scratchpad = NULL;
1718
1719 fail_sp:
1720 return -ENOMEM;
1721}
1722
1723static void scratchpad_free(struct xhci_hcd *xhci)
1724{
1725 int num_sp;
1726 int i;
1727 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1728
1729 if (!xhci->scratchpad)
1730 return;
1731
1732 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1733
1734 for (i = 0; i < num_sp; i++) {
1735 dma_free_coherent(dev, xhci->page_size,
1736 xhci->scratchpad->sp_buffers[i],
1737 xhci->scratchpad->sp_array[i]);
1738 }
1739 kfree(xhci->scratchpad->sp_buffers);
1740 dma_free_coherent(dev, num_sp * sizeof(u64),
1741 xhci->scratchpad->sp_array,
1742 xhci->scratchpad->sp_dma);
1743 kfree(xhci->scratchpad);
1744 xhci->scratchpad = NULL;
1745}
1746
1747struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1748 bool allocate_completion, gfp_t mem_flags)
1749{
1750 struct xhci_command *command;
1751 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1752
1753 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1754 if (!command)
1755 return NULL;
1756
1757 if (allocate_completion) {
1758 command->completion =
1759 kzalloc_node(sizeof(struct completion), mem_flags,
1760 dev_to_node(dev));
1761 if (!command->completion) {
1762 kfree(command);
1763 return NULL;
1764 }
1765 init_completion(command->completion);
1766 }
1767
1768 command->status = 0;
1769 INIT_LIST_HEAD(&command->cmd_list);
1770 return command;
1771}
1772
1773struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1774 bool allocate_completion, gfp_t mem_flags)
1775{
1776 struct xhci_command *command;
1777
1778 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1779 if (!command)
1780 return NULL;
1781
1782 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1783 mem_flags);
1784 if (!command->in_ctx) {
1785 kfree(command->completion);
1786 kfree(command);
1787 return NULL;
1788 }
1789 return command;
1790}
1791
1792void xhci_urb_free_priv(struct urb_priv *urb_priv)
1793{
1794 kfree(urb_priv);
1795}
1796
1797void xhci_free_command(struct xhci_hcd *xhci,
1798 struct xhci_command *command)
1799{
1800 xhci_free_container_ctx(xhci,
1801 command->in_ctx);
1802 kfree(command->completion);
1803 kfree(command);
1804}
1805
1806int xhci_alloc_erst(struct xhci_hcd *xhci,
1807 struct xhci_ring *evt_ring,
1808 struct xhci_erst *erst,
1809 gfp_t flags)
1810{
1811 size_t size;
1812 unsigned int val;
1813 struct xhci_segment *seg;
1814 struct xhci_erst_entry *entry;
1815
1816 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1817 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1818 size, &erst->erst_dma_addr, flags);
1819 if (!erst->entries)
1820 return -ENOMEM;
1821
1822 erst->num_entries = evt_ring->num_segs;
1823
1824 seg = evt_ring->first_seg;
1825 for (val = 0; val < evt_ring->num_segs; val++) {
1826 entry = &erst->entries[val];
1827 entry->seg_addr = cpu_to_le64(seg->dma);
1828 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1829 entry->rsvd = 0;
1830 seg = seg->next;
1831 }
1832
1833 return 0;
1834}
1835
1836void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1837{
1838 size_t size;
1839 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1840
1841 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1842 if (erst->entries)
1843 dma_free_coherent(dev, size,
1844 erst->entries,
1845 erst->erst_dma_addr);
1846 erst->entries = NULL;
1847}
1848
1849void xhci_mem_cleanup(struct xhci_hcd *xhci)
1850{
1851 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1852 int i, j, num_ports;
1853
1854 cancel_delayed_work_sync(&xhci->cmd_timer);
1855
1856 xhci_free_erst(xhci, &xhci->erst);
1857
1858 if (xhci->event_ring)
1859 xhci_ring_free(xhci, xhci->event_ring);
1860 xhci->event_ring = NULL;
1861 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1862
1863 if (xhci->lpm_command)
1864 xhci_free_command(xhci, xhci->lpm_command);
1865 xhci->lpm_command = NULL;
1866 if (xhci->cmd_ring)
1867 xhci_ring_free(xhci, xhci->cmd_ring);
1868 xhci->cmd_ring = NULL;
1869 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1870 xhci_cleanup_command_queue(xhci);
1871
1872 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1873 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1874 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1875 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1876 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1877 while (!list_empty(ep))
1878 list_del_init(ep->next);
1879 }
1880 }
1881
1882 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1883 xhci_free_virt_devices_depth_first(xhci, i);
1884
1885 dma_pool_destroy(xhci->segment_pool);
1886 xhci->segment_pool = NULL;
1887 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1888
1889 dma_pool_destroy(xhci->device_pool);
1890 xhci->device_pool = NULL;
1891 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1892
1893 dma_pool_destroy(xhci->small_streams_pool);
1894 xhci->small_streams_pool = NULL;
1895 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1896 "Freed small stream array pool");
1897
1898 dma_pool_destroy(xhci->medium_streams_pool);
1899 xhci->medium_streams_pool = NULL;
1900 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1901 "Freed medium stream array pool");
1902
1903 if (xhci->dcbaa)
1904 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1905 xhci->dcbaa, xhci->dcbaa->dma);
1906 xhci->dcbaa = NULL;
1907
1908 scratchpad_free(xhci);
1909
1910 if (!xhci->rh_bw)
1911 goto no_bw;
1912
1913 for (i = 0; i < num_ports; i++) {
1914 struct xhci_tt_bw_info *tt, *n;
1915 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1916 list_del(&tt->tt_list);
1917 kfree(tt);
1918 }
1919 }
1920
1921no_bw:
1922 xhci->cmd_ring_reserved_trbs = 0;
1923 xhci->usb2_rhub.num_ports = 0;
1924 xhci->usb3_rhub.num_ports = 0;
1925 xhci->num_active_eps = 0;
1926 kfree(xhci->usb2_rhub.ports);
1927 kfree(xhci->usb3_rhub.ports);
1928 kfree(xhci->hw_ports);
1929 kfree(xhci->rh_bw);
1930 kfree(xhci->ext_caps);
1931 for (i = 0; i < xhci->num_port_caps; i++)
1932 kfree(xhci->port_caps[i].psi);
1933 kfree(xhci->port_caps);
1934 xhci->num_port_caps = 0;
1935
1936 xhci->usb2_rhub.ports = NULL;
1937 xhci->usb3_rhub.ports = NULL;
1938 xhci->hw_ports = NULL;
1939 xhci->rh_bw = NULL;
1940 xhci->ext_caps = NULL;
1941
1942 xhci->page_size = 0;
1943 xhci->page_shift = 0;
1944 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1945 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1946}
1947
1948static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1949 struct xhci_segment *input_seg,
1950 union xhci_trb *start_trb,
1951 union xhci_trb *end_trb,
1952 dma_addr_t input_dma,
1953 struct xhci_segment *result_seg,
1954 char *test_name, int test_number)
1955{
1956 unsigned long long start_dma;
1957 unsigned long long end_dma;
1958 struct xhci_segment *seg;
1959
1960 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1961 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1962
1963 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1964 if (seg != result_seg) {
1965 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1966 test_name, test_number);
1967 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1968 "input DMA 0x%llx\n",
1969 input_seg,
1970 (unsigned long long) input_dma);
1971 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1972 "ending TRB %p (0x%llx DMA)\n",
1973 start_trb, start_dma,
1974 end_trb, end_dma);
1975 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1976 result_seg, seg);
1977 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1978 true);
1979 return -1;
1980 }
1981 return 0;
1982}
1983
1984/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1985static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1986{
1987 struct {
1988 dma_addr_t input_dma;
1989 struct xhci_segment *result_seg;
1990 } simple_test_vector [] = {
1991 /* A zeroed DMA field should fail */
1992 { 0, NULL },
1993 /* One TRB before the ring start should fail */
1994 { xhci->event_ring->first_seg->dma - 16, NULL },
1995 /* One byte before the ring start should fail */
1996 { xhci->event_ring->first_seg->dma - 1, NULL },
1997 /* Starting TRB should succeed */
1998 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1999 /* Ending TRB should succeed */
2000 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2001 xhci->event_ring->first_seg },
2002 /* One byte after the ring end should fail */
2003 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2004 /* One TRB after the ring end should fail */
2005 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2006 /* An address of all ones should fail */
2007 { (dma_addr_t) (~0), NULL },
2008 };
2009 struct {
2010 struct xhci_segment *input_seg;
2011 union xhci_trb *start_trb;
2012 union xhci_trb *end_trb;
2013 dma_addr_t input_dma;
2014 struct xhci_segment *result_seg;
2015 } complex_test_vector [] = {
2016 /* Test feeding a valid DMA address from a different ring */
2017 { .input_seg = xhci->event_ring->first_seg,
2018 .start_trb = xhci->event_ring->first_seg->trbs,
2019 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2020 .input_dma = xhci->cmd_ring->first_seg->dma,
2021 .result_seg = NULL,
2022 },
2023 /* Test feeding a valid end TRB from a different ring */
2024 { .input_seg = xhci->event_ring->first_seg,
2025 .start_trb = xhci->event_ring->first_seg->trbs,
2026 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2027 .input_dma = xhci->cmd_ring->first_seg->dma,
2028 .result_seg = NULL,
2029 },
2030 /* Test feeding a valid start and end TRB from a different ring */
2031 { .input_seg = xhci->event_ring->first_seg,
2032 .start_trb = xhci->cmd_ring->first_seg->trbs,
2033 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034 .input_dma = xhci->cmd_ring->first_seg->dma,
2035 .result_seg = NULL,
2036 },
2037 /* TRB in this ring, but after this TD */
2038 { .input_seg = xhci->event_ring->first_seg,
2039 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2040 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2041 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2042 .result_seg = NULL,
2043 },
2044 /* TRB in this ring, but before this TD */
2045 { .input_seg = xhci->event_ring->first_seg,
2046 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2047 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2048 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2049 .result_seg = NULL,
2050 },
2051 /* TRB in this ring, but after this wrapped TD */
2052 { .input_seg = xhci->event_ring->first_seg,
2053 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2054 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2055 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2056 .result_seg = NULL,
2057 },
2058 /* TRB in this ring, but before this wrapped TD */
2059 { .input_seg = xhci->event_ring->first_seg,
2060 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2061 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2062 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2063 .result_seg = NULL,
2064 },
2065 /* TRB not in this ring, and we have a wrapped TD */
2066 { .input_seg = xhci->event_ring->first_seg,
2067 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2069 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2070 .result_seg = NULL,
2071 },
2072 };
2073
2074 unsigned int num_tests;
2075 int i, ret;
2076
2077 num_tests = ARRAY_SIZE(simple_test_vector);
2078 for (i = 0; i < num_tests; i++) {
2079 ret = xhci_test_trb_in_td(xhci,
2080 xhci->event_ring->first_seg,
2081 xhci->event_ring->first_seg->trbs,
2082 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2083 simple_test_vector[i].input_dma,
2084 simple_test_vector[i].result_seg,
2085 "Simple", i);
2086 if (ret < 0)
2087 return ret;
2088 }
2089
2090 num_tests = ARRAY_SIZE(complex_test_vector);
2091 for (i = 0; i < num_tests; i++) {
2092 ret = xhci_test_trb_in_td(xhci,
2093 complex_test_vector[i].input_seg,
2094 complex_test_vector[i].start_trb,
2095 complex_test_vector[i].end_trb,
2096 complex_test_vector[i].input_dma,
2097 complex_test_vector[i].result_seg,
2098 "Complex", i);
2099 if (ret < 0)
2100 return ret;
2101 }
2102 xhci_dbg(xhci, "TRB math tests passed.\n");
2103 return 0;
2104}
2105
2106static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2107{
2108 u64 temp;
2109 dma_addr_t deq;
2110
2111 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2112 xhci->event_ring->dequeue);
2113 if (deq == 0 && !in_interrupt())
2114 xhci_warn(xhci, "WARN something wrong with SW event ring "
2115 "dequeue ptr.\n");
2116 /* Update HC event ring dequeue pointer */
2117 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2118 temp &= ERST_PTR_MASK;
2119 /* Don't clear the EHB bit (which is RW1C) because
2120 * there might be more events to service.
2121 */
2122 temp &= ~ERST_EHB;
2123 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2124 "// Write event ring dequeue pointer, "
2125 "preserving EHB bit");
2126 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2127 &xhci->ir_set->erst_dequeue);
2128}
2129
2130static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2131 __le32 __iomem *addr, int max_caps)
2132{
2133 u32 temp, port_offset, port_count;
2134 int i;
2135 u8 major_revision, minor_revision;
2136 struct xhci_hub *rhub;
2137 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2138 struct xhci_port_cap *port_cap;
2139
2140 temp = readl(addr);
2141 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2142 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2143
2144 if (major_revision == 0x03) {
2145 rhub = &xhci->usb3_rhub;
2146 } else if (major_revision <= 0x02) {
2147 rhub = &xhci->usb2_rhub;
2148 } else {
2149 xhci_warn(xhci, "Ignoring unknown port speed, "
2150 "Ext Cap %p, revision = 0x%x\n",
2151 addr, major_revision);
2152 /* Ignoring port protocol we can't understand. FIXME */
2153 return;
2154 }
2155 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2156
2157 if (rhub->min_rev < minor_revision)
2158 rhub->min_rev = minor_revision;
2159
2160 /* Port offset and count in the third dword, see section 7.2 */
2161 temp = readl(addr + 2);
2162 port_offset = XHCI_EXT_PORT_OFF(temp);
2163 port_count = XHCI_EXT_PORT_COUNT(temp);
2164 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2165 "Ext Cap %p, port offset = %u, "
2166 "count = %u, revision = 0x%x",
2167 addr, port_offset, port_count, major_revision);
2168 /* Port count includes the current port offset */
2169 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2170 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2171 return;
2172
2173 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2174 if (xhci->num_port_caps > max_caps)
2175 return;
2176
2177 port_cap->maj_rev = major_revision;
2178 port_cap->min_rev = minor_revision;
2179 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2180
2181 if (port_cap->psi_count) {
2182 port_cap->psi = kcalloc_node(port_cap->psi_count,
2183 sizeof(*port_cap->psi),
2184 GFP_KERNEL, dev_to_node(dev));
2185 if (!port_cap->psi)
2186 port_cap->psi_count = 0;
2187
2188 port_cap->psi_uid_count++;
2189 for (i = 0; i < port_cap->psi_count; i++) {
2190 port_cap->psi[i] = readl(addr + 4 + i);
2191
2192 /* count unique ID values, two consecutive entries can
2193 * have the same ID if link is assymetric
2194 */
2195 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2196 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2197 port_cap->psi_uid_count++;
2198
2199 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2200 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2201 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2202 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2203 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2204 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2205 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2206 }
2207 }
2208 /* cache usb2 port capabilities */
2209 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2210 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2211
2212 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2213 (temp & XHCI_HLC)) {
2214 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2215 "xHCI 1.0: support USB2 hardware lpm");
2216 xhci->hw_lpm_support = 1;
2217 }
2218
2219 port_offset--;
2220 for (i = port_offset; i < (port_offset + port_count); i++) {
2221 struct xhci_port *hw_port = &xhci->hw_ports[i];
2222 /* Duplicate entry. Ignore the port if the revisions differ. */
2223 if (hw_port->rhub) {
2224 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2225 " port %u\n", addr, i);
2226 xhci_warn(xhci, "Port was marked as USB %u, "
2227 "duplicated as USB %u\n",
2228 hw_port->rhub->maj_rev, major_revision);
2229 /* Only adjust the roothub port counts if we haven't
2230 * found a similar duplicate.
2231 */
2232 if (hw_port->rhub != rhub &&
2233 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2234 hw_port->rhub->num_ports--;
2235 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2236 }
2237 continue;
2238 }
2239 hw_port->rhub = rhub;
2240 hw_port->port_cap = port_cap;
2241 rhub->num_ports++;
2242 }
2243 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2244}
2245
2246static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2247 struct xhci_hub *rhub, gfp_t flags)
2248{
2249 int port_index = 0;
2250 int i;
2251 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2252
2253 if (!rhub->num_ports)
2254 return;
2255 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(rhub->ports), flags,
2256 dev_to_node(dev));
2257 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2258 if (xhci->hw_ports[i].rhub != rhub ||
2259 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2260 continue;
2261 xhci->hw_ports[i].hcd_portnum = port_index;
2262 rhub->ports[port_index] = &xhci->hw_ports[i];
2263 port_index++;
2264 if (port_index == rhub->num_ports)
2265 break;
2266 }
2267}
2268
2269/*
2270 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2271 * specify what speeds each port is supposed to be. We can't count on the port
2272 * speed bits in the PORTSC register being correct until a device is connected,
2273 * but we need to set up the two fake roothubs with the correct number of USB
2274 * 3.0 and USB 2.0 ports at host controller initialization time.
2275 */
2276static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2277{
2278 void __iomem *base;
2279 u32 offset;
2280 unsigned int num_ports;
2281 int i, j;
2282 int cap_count = 0;
2283 u32 cap_start;
2284 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2285
2286 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2287 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2288 flags, dev_to_node(dev));
2289 if (!xhci->hw_ports)
2290 return -ENOMEM;
2291
2292 for (i = 0; i < num_ports; i++) {
2293 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2294 NUM_PORT_REGS * i;
2295 xhci->hw_ports[i].hw_portnum = i;
2296 }
2297
2298 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2299 dev_to_node(dev));
2300 if (!xhci->rh_bw)
2301 return -ENOMEM;
2302 for (i = 0; i < num_ports; i++) {
2303 struct xhci_interval_bw_table *bw_table;
2304
2305 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2306 bw_table = &xhci->rh_bw[i].bw_table;
2307 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2308 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2309 }
2310 base = &xhci->cap_regs->hc_capbase;
2311
2312 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2313 if (!cap_start) {
2314 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2315 return -ENODEV;
2316 }
2317
2318 offset = cap_start;
2319 /* count extended protocol capability entries for later caching */
2320 while (offset) {
2321 cap_count++;
2322 offset = xhci_find_next_ext_cap(base, offset,
2323 XHCI_EXT_CAPS_PROTOCOL);
2324 }
2325
2326 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2327 flags, dev_to_node(dev));
2328 if (!xhci->ext_caps)
2329 return -ENOMEM;
2330
2331 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2332 flags, dev_to_node(dev));
2333 if (!xhci->port_caps)
2334 return -ENOMEM;
2335
2336 offset = cap_start;
2337
2338 while (offset) {
2339 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2340 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2341 num_ports)
2342 break;
2343 offset = xhci_find_next_ext_cap(base, offset,
2344 XHCI_EXT_CAPS_PROTOCOL);
2345 }
2346 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2347 xhci_warn(xhci, "No ports on the roothubs?\n");
2348 return -ENODEV;
2349 }
2350 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2351 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2352 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2353
2354 /* Place limits on the number of roothub ports so that the hub
2355 * descriptors aren't longer than the USB core will allocate.
2356 */
2357 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2358 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2359 "Limiting USB 3.0 roothub ports to %u.",
2360 USB_SS_MAXPORTS);
2361 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2362 }
2363 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2364 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2365 "Limiting USB 2.0 roothub ports to %u.",
2366 USB_MAXCHILDREN);
2367 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2368 }
2369
2370 /*
2371 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2372 * Not sure how the USB core will handle a hub with no ports...
2373 */
2374
2375 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2376 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2377
2378 return 0;
2379}
2380
2381int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2382{
2383 dma_addr_t dma;
2384 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2385 unsigned int val, val2;
2386 u64 val_64;
2387 u32 page_size, temp;
2388 int i, ret;
2389
2390 INIT_LIST_HEAD(&xhci->cmd_list);
2391
2392 /* init command timeout work */
2393 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2394 init_completion(&xhci->cmd_ring_stop_completion);
2395
2396 page_size = readl(&xhci->op_regs->page_size);
2397 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398 "Supported page size register = 0x%x", page_size);
2399 for (i = 0; i < 16; i++) {
2400 if ((0x1 & page_size) != 0)
2401 break;
2402 page_size = page_size >> 1;
2403 }
2404 if (i < 16)
2405 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406 "Supported page size of %iK", (1 << (i+12)) / 1024);
2407 else
2408 xhci_warn(xhci, "WARN: no supported page size\n");
2409 /* Use 4K pages, since that's common and the minimum the HC supports */
2410 xhci->page_shift = 12;
2411 xhci->page_size = 1 << xhci->page_shift;
2412 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2413 "HCD page size set to %iK", xhci->page_size / 1024);
2414
2415 /*
2416 * Program the Number of Device Slots Enabled field in the CONFIG
2417 * register with the max value of slots the HC can handle.
2418 */
2419 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2420 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2421 "// xHC can handle at most %d device slots.", val);
2422 val2 = readl(&xhci->op_regs->config_reg);
2423 val |= (val2 & ~HCS_SLOTS_MASK);
2424 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2425 "// Setting Max device slots reg = 0x%x.", val);
2426 writel(val, &xhci->op_regs->config_reg);
2427
2428 /*
2429 * xHCI section 5.4.6 - doorbell array must be
2430 * "physically contiguous and 64-byte (cache line) aligned".
2431 */
2432 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2433 flags);
2434 if (!xhci->dcbaa)
2435 goto fail;
2436 xhci->dcbaa->dma = dma;
2437 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2438 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2439 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2440 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2441
2442 /*
2443 * Initialize the ring segment pool. The ring must be a contiguous
2444 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2445 * however, the command ring segment needs 64-byte aligned segments
2446 * and our use of dma addresses in the trb_address_map radix tree needs
2447 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2448 */
2449 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2450 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2451
2452 /* See Table 46 and Note on Figure 55 */
2453 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2454 2112, 64, xhci->page_size);
2455 if (!xhci->segment_pool || !xhci->device_pool)
2456 goto fail;
2457
2458 /* Linear stream context arrays don't have any boundary restrictions,
2459 * and only need to be 16-byte aligned.
2460 */
2461 xhci->small_streams_pool =
2462 dma_pool_create("xHCI 256 byte stream ctx arrays",
2463 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2464 xhci->medium_streams_pool =
2465 dma_pool_create("xHCI 1KB stream ctx arrays",
2466 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2467 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2468 * will be allocated with dma_alloc_coherent()
2469 */
2470
2471 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2472 goto fail;
2473
2474 /* Set up the command ring to have one segments for now. */
2475 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2476 if (!xhci->cmd_ring)
2477 goto fail;
2478 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2479 "Allocated command ring at %p", xhci->cmd_ring);
2480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2481 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2482
2483 /* Set the address in the Command Ring Control register */
2484 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2485 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2486 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2487 xhci->cmd_ring->cycle_state;
2488 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2489 "// Setting command ring address to 0x%016llx", val_64);
2490 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2491
2492 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2493 if (!xhci->lpm_command)
2494 goto fail;
2495
2496 /* Reserve one command ring TRB for disabling LPM.
2497 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2498 * disabling LPM, we only need to reserve one TRB for all devices.
2499 */
2500 xhci->cmd_ring_reserved_trbs++;
2501
2502 val = readl(&xhci->cap_regs->db_off);
2503 val &= DBOFF_MASK;
2504 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2505 "// Doorbell array is located at offset 0x%x"
2506 " from cap regs base addr", val);
2507 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2508 /* Set ir_set to interrupt register set 0 */
2509 xhci->ir_set = &xhci->run_regs->ir_set[0];
2510
2511 /*
2512 * Event ring setup: Allocate a normal ring, but also setup
2513 * the event ring segment table (ERST). Section 4.9.3.
2514 */
2515 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2516 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2517 0, flags);
2518 if (!xhci->event_ring)
2519 goto fail;
2520 if (xhci_check_trb_in_td_math(xhci) < 0)
2521 goto fail;
2522
2523 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2524 if (ret)
2525 goto fail;
2526
2527 /* set ERST count with the number of entries in the segment table */
2528 val = readl(&xhci->ir_set->erst_size);
2529 val &= ERST_SIZE_MASK;
2530 val |= ERST_NUM_SEGS;
2531 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2532 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2533 val);
2534 writel(val, &xhci->ir_set->erst_size);
2535
2536 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2537 "// Set ERST entries to point to event ring.");
2538 /* set the segment table base address */
2539 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2540 "// Set ERST base address for ir_set 0 = 0x%llx",
2541 (unsigned long long)xhci->erst.erst_dma_addr);
2542 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2543 val_64 &= ERST_PTR_MASK;
2544 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2545 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2546
2547 /* Set the event ring dequeue address */
2548 xhci_set_hc_event_deq(xhci);
2549 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2550 "Wrote ERST address to ir_set 0.");
2551
2552 /*
2553 * XXX: Might need to set the Interrupter Moderation Register to
2554 * something other than the default (~1ms minimum between interrupts).
2555 * See section 5.5.1.2.
2556 */
2557 for (i = 0; i < MAX_HC_SLOTS; i++)
2558 xhci->devs[i] = NULL;
2559 for (i = 0; i < USB_MAXCHILDREN; i++) {
2560 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2561 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2562 /* Only the USB 2.0 completions will ever be used. */
2563 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2564 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2565 }
2566
2567 if (scratchpad_alloc(xhci, flags))
2568 goto fail;
2569 if (xhci_setup_port_arrays(xhci, flags))
2570 goto fail;
2571
2572 /* Enable USB 3.0 device notifications for function remote wake, which
2573 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2574 * U3 (device suspend).
2575 */
2576 temp = readl(&xhci->op_regs->dev_notification);
2577 temp &= ~DEV_NOTE_MASK;
2578 temp |= DEV_NOTE_FWAKE;
2579 writel(temp, &xhci->op_regs->dev_notification);
2580
2581 return 0;
2582
2583fail:
2584 xhci_halt(xhci);
2585 xhci_reset(xhci);
2586 xhci_mem_cleanup(xhci);
2587 return -ENOMEM;
2588}