Linux Audio

Check our new training course

Loading...
v3.1
  1/* bpf_jit_comp.c: BPF JIT compiler for PPC64
 
 
  2 *
  3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
 
  4 *
  5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12#include <linux/moduleloader.h>
 13#include <asm/cacheflush.h>
 
 14#include <linux/netdevice.h>
 15#include <linux/filter.h>
 16#include "bpf_jit.h"
 17
 18#ifndef __BIG_ENDIAN
 19/* There are endianness assumptions herein. */
 20#error "Little-endian PPC not supported in BPF compiler"
 21#endif
 22
 23int bpf_jit_enable __read_mostly;
 24
 25
 26static inline void bpf_flush_icache(void *start, void *end)
 27{
 28	smp_wmb();
 29	flush_icache_range((unsigned long)start, (unsigned long)end);
 30}
 31
 32static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
 33				   struct codegen_context *ctx)
 34{
 35	int i;
 36	const struct sock_filter *filter = fp->insns;
 37
 38	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 39		/* Make stackframe */
 40		if (ctx->seen & SEEN_DATAREF) {
 41			/* If we call any helpers (for loads), save LR */
 42			EMIT(PPC_INST_MFLR | __PPC_RT(0));
 43			PPC_STD(0, 1, 16);
 44
 45			/* Back up non-volatile regs. */
 46			PPC_STD(r_D, 1, -(8*(32-r_D)));
 47			PPC_STD(r_HL, 1, -(8*(32-r_HL)));
 48		}
 49		if (ctx->seen & SEEN_MEM) {
 50			/*
 51			 * Conditionally save regs r15-r31 as some will be used
 52			 * for M[] data.
 53			 */
 54			for (i = r_M; i < (r_M+16); i++) {
 55				if (ctx->seen & (1 << (i-r_M)))
 56					PPC_STD(i, 1, -(8*(32-i)));
 57			}
 58		}
 59		EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
 60		     (-BPF_PPC_STACKFRAME & 0xfffc));
 61	}
 62
 63	if (ctx->seen & SEEN_DATAREF) {
 64		/*
 65		 * If this filter needs to access skb data,
 66		 * prepare r_D and r_HL:
 67		 *  r_HL = skb->len - skb->data_len
 68		 *  r_D	 = skb->data
 69		 */
 70		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 71							 data_len));
 72		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 73		PPC_SUB(r_HL, r_HL, r_scratch1);
 74		PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 75	}
 76
 77	if (ctx->seen & SEEN_XREG) {
 78		/*
 79		 * TODO: Could also detect whether first instr. sets X and
 80		 * avoid this (as below, with A).
 81		 */
 82		PPC_LI(r_X, 0);
 83	}
 84
 85	switch (filter[0].code) {
 86	case BPF_S_RET_K:
 87	case BPF_S_LD_W_LEN:
 88	case BPF_S_ANC_PROTOCOL:
 89	case BPF_S_ANC_IFINDEX:
 90	case BPF_S_ANC_MARK:
 91	case BPF_S_ANC_RXHASH:
 92	case BPF_S_ANC_CPU:
 93	case BPF_S_ANC_QUEUE:
 94	case BPF_S_LD_W_ABS:
 95	case BPF_S_LD_H_ABS:
 96	case BPF_S_LD_B_ABS:
 97		/* first instruction sets A register (or is RET 'constant') */
 98		break;
 99	default:
100		/* make sure we dont leak kernel information to user */
101		PPC_LI(r_A, 0);
102	}
103}
104
105static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
106{
107	int i;
108
109	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
110		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
111		if (ctx->seen & SEEN_DATAREF) {
112			PPC_LD(0, 1, 16);
113			PPC_MTLR(0);
114			PPC_LD(r_D, 1, -(8*(32-r_D)));
115			PPC_LD(r_HL, 1, -(8*(32-r_HL)));
116		}
117		if (ctx->seen & SEEN_MEM) {
118			/* Restore any saved non-vol registers */
119			for (i = r_M; i < (r_M+16); i++) {
120				if (ctx->seen & (1 << (i-r_M)))
121					PPC_LD(i, 1, -(8*(32-i)));
122			}
123		}
124	}
125	/* The RETs have left a return value in R3. */
126
127	PPC_BLR();
128}
129
130/* Assemble the body code between the prologue & epilogue. */
131static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
132			      struct codegen_context *ctx,
133			      unsigned int *addrs)
134{
135	const struct sock_filter *filter = fp->insns;
136	int flen = fp->len;
137	u8 *func;
138	unsigned int true_cond;
139	int i;
140
141	/* Start of epilogue code */
142	unsigned int exit_addr = addrs[flen];
143
144	for (i = 0; i < flen; i++) {
145		unsigned int K = filter[i].k;
146
 
147		/*
148		 * addrs[] maps a BPF bytecode address into a real offset from
149		 * the start of the body code.
 
 
 
 
 
150		 */
151		addrs[i] = ctx->idx * 4;
 
 
 
 
 
 
152
153		switch (filter[i].code) {
154			/*** ALU ops ***/
155		case BPF_S_ALU_ADD_X: /* A += X; */
156			ctx->seen |= SEEN_XREG;
157			PPC_ADD(r_A, r_A, r_X);
158			break;
159		case BPF_S_ALU_ADD_K: /* A += K; */
160			if (!K)
161				break;
162			PPC_ADDI(r_A, r_A, IMM_L(K));
163			if (K >= 32768)
164				PPC_ADDIS(r_A, r_A, IMM_HA(K));
165			break;
166		case BPF_S_ALU_SUB_X: /* A -= X; */
167			ctx->seen |= SEEN_XREG;
168			PPC_SUB(r_A, r_A, r_X);
169			break;
170		case BPF_S_ALU_SUB_K: /* A -= K */
171			if (!K)
172				break;
173			PPC_ADDI(r_A, r_A, IMM_L(-K));
174			if (K >= 32768)
175				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
176			break;
177		case BPF_S_ALU_MUL_X: /* A *= X; */
178			ctx->seen |= SEEN_XREG;
179			PPC_MUL(r_A, r_A, r_X);
180			break;
181		case BPF_S_ALU_MUL_K: /* A *= K */
182			if (K < 32768)
183				PPC_MULI(r_A, r_A, K);
184			else {
185				PPC_LI32(r_scratch1, K);
186				PPC_MUL(r_A, r_A, r_scratch1);
187			}
188			break;
189		case BPF_S_ALU_DIV_X: /* A /= X; */
190			ctx->seen |= SEEN_XREG;
191			PPC_CMPWI(r_X, 0);
192			if (ctx->pc_ret0 != -1) {
193				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
194			} else {
195				/*
196				 * Exit, returning 0; first pass hits here
197				 * (longer worst-case code size).
198				 */
199				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
200				PPC_LI(r_ret, 0);
201				PPC_JMP(exit_addr);
202			}
203			PPC_DIVWU(r_A, r_A, r_X);
204			break;
205		case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
206			PPC_LI32(r_scratch1, K);
207			/* Top 32 bits of 64bit result -> A */
208			PPC_MULHWU(r_A, r_A, r_scratch1);
209			break;
210		case BPF_S_ALU_AND_X:
211			ctx->seen |= SEEN_XREG;
212			PPC_AND(r_A, r_A, r_X);
213			break;
214		case BPF_S_ALU_AND_K:
215			if (!IMM_H(K))
216				PPC_ANDI(r_A, r_A, K);
217			else {
218				PPC_LI32(r_scratch1, K);
219				PPC_AND(r_A, r_A, r_scratch1);
220			}
221			break;
222		case BPF_S_ALU_OR_X:
223			ctx->seen |= SEEN_XREG;
224			PPC_OR(r_A, r_A, r_X);
225			break;
226		case BPF_S_ALU_OR_K:
227			if (IMM_L(K))
228				PPC_ORI(r_A, r_A, IMM_L(K));
229			if (K >= 65536)
230				PPC_ORIS(r_A, r_A, IMM_H(K));
231			break;
232		case BPF_S_ALU_LSH_X: /* A <<= X; */
233			ctx->seen |= SEEN_XREG;
234			PPC_SLW(r_A, r_A, r_X);
235			break;
236		case BPF_S_ALU_LSH_K:
237			if (K == 0)
238				break;
239			else
240				PPC_SLWI(r_A, r_A, K);
241			break;
242		case BPF_S_ALU_RSH_X: /* A >>= X; */
243			ctx->seen |= SEEN_XREG;
244			PPC_SRW(r_A, r_A, r_X);
245			break;
246		case BPF_S_ALU_RSH_K: /* A >>= K; */
247			if (K == 0)
248				break;
249			else
250				PPC_SRWI(r_A, r_A, K);
251			break;
252		case BPF_S_ALU_NEG:
253			PPC_NEG(r_A, r_A);
254			break;
255		case BPF_S_RET_K:
256			PPC_LI32(r_ret, K);
257			if (!K) {
258				if (ctx->pc_ret0 == -1)
259					ctx->pc_ret0 = i;
260			}
261			/*
262			 * If this isn't the very last instruction, branch to
263			 * the epilogue if we've stuff to clean up.  Otherwise,
264			 * if there's nothing to tidy, just return.  If we /are/
265			 * the last instruction, we're about to fall through to
266			 * the epilogue to return.
267			 */
268			if (i != flen - 1) {
269				/*
270				 * Note: 'seen' is properly valid only on pass
271				 * #2.	Both parts of this conditional are the
272				 * same instruction size though, meaning the
273				 * first pass will still correctly determine the
274				 * code size/addresses.
275				 */
276				if (ctx->seen)
277					PPC_JMP(exit_addr);
278				else
279					PPC_BLR();
280			}
281			break;
282		case BPF_S_RET_A:
283			PPC_MR(r_ret, r_A);
284			if (i != flen - 1) {
285				if (ctx->seen)
286					PPC_JMP(exit_addr);
287				else
288					PPC_BLR();
289			}
290			break;
291		case BPF_S_MISC_TAX: /* X = A */
292			PPC_MR(r_X, r_A);
293			break;
294		case BPF_S_MISC_TXA: /* A = X */
295			ctx->seen |= SEEN_XREG;
296			PPC_MR(r_A, r_X);
297			break;
298
299			/*** Constant loads/M[] access ***/
300		case BPF_S_LD_IMM: /* A = K */
301			PPC_LI32(r_A, K);
302			break;
303		case BPF_S_LDX_IMM: /* X = K */
304			PPC_LI32(r_X, K);
305			break;
306		case BPF_S_LD_MEM: /* A = mem[K] */
307			PPC_MR(r_A, r_M + (K & 0xf));
308			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
309			break;
310		case BPF_S_LDX_MEM: /* X = mem[K] */
311			PPC_MR(r_X, r_M + (K & 0xf));
312			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313			break;
314		case BPF_S_ST: /* mem[K] = A */
315			PPC_MR(r_M + (K & 0xf), r_A);
316			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317			break;
318		case BPF_S_STX: /* mem[K] = X */
319			PPC_MR(r_M + (K & 0xf), r_X);
320			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
321			break;
322		case BPF_S_LD_W_LEN: /*	A = skb->len; */
323			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
324			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
325			break;
326		case BPF_S_LDX_W_LEN: /* X = skb->len; */
327			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
328			break;
329
330			/*** Ancillary info loads ***/
331
332			/* None of the BPF_S_ANC* codes appear to be passed by
333			 * sk_chk_filter().  The interpreter and the x86 BPF
334			 * compiler implement them so we do too -- they may be
335			 * planted in future.
336			 */
337		case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
338			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
339						  protocol) != 2);
340			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
341							  protocol));
342			/* ntohs is a NOP with BE loads. */
343			break;
344		case BPF_S_ANC_IFINDEX:
345			PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
346								dev));
347			PPC_CMPDI(r_scratch1, 0);
348			if (ctx->pc_ret0 != -1) {
349				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
350			} else {
351				/* Exit, returning 0; first pass hits here. */
352				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
353				PPC_LI(r_ret, 0);
354				PPC_JMP(exit_addr);
355			}
356			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
357						  ifindex) != 4);
358			PPC_LWZ_OFFS(r_A, r_scratch1,
359				     offsetof(struct net_device, ifindex));
360			break;
361		case BPF_S_ANC_MARK:
362			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
363			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
364							  mark));
365			break;
366		case BPF_S_ANC_RXHASH:
367			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
368			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
369							  rxhash));
370			break;
371		case BPF_S_ANC_QUEUE:
372			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
373						  queue_mapping) != 2);
374			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375							  queue_mapping));
376			break;
377		case BPF_S_ANC_CPU:
378#ifdef CONFIG_SMP
379			/*
380			 * PACA ptr is r13:
381			 * raw_smp_processor_id() = local_paca->paca_index
382			 */
383			BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
384						  paca_index) != 2);
385			PPC_LHZ_OFFS(r_A, 13,
386				     offsetof(struct paca_struct, paca_index));
 
 
 
 
 
387#else
388			PPC_LI(r_A, 0);
 
 
 
 
389#endif
390			break;
391
392			/*** Absolute loads from packet header/data ***/
393		case BPF_S_LD_W_ABS:
394			func = sk_load_word;
395			goto common_load;
396		case BPF_S_LD_H_ABS:
397			func = sk_load_half;
398			goto common_load;
399		case BPF_S_LD_B_ABS:
400			func = sk_load_byte;
401		common_load:
402			/*
403			 * Load from [K].  Reference with the (negative)
404			 * SKF_NET_OFF/SKF_LL_OFF offsets is unsupported.
405			 */
406			ctx->seen |= SEEN_DATAREF;
407			if ((int)K < 0)
408				return -ENOTSUPP;
409			PPC_LI64(r_scratch1, func);
410			PPC_MTLR(r_scratch1);
411			PPC_LI32(r_addr, K);
412			PPC_BLRL();
413			/*
414			 * Helper returns 'lt' condition on error, and an
415			 * appropriate return value in r3
416			 */
417			PPC_BCC(COND_LT, exit_addr);
418			break;
419
420			/*** Indirect loads from packet header/data ***/
421		case BPF_S_LD_W_IND:
422			func = sk_load_word;
423			goto common_load_ind;
424		case BPF_S_LD_H_IND:
425			func = sk_load_half;
426			goto common_load_ind;
427		case BPF_S_LD_B_IND:
428			func = sk_load_byte;
429		common_load_ind:
430			/*
431			 * Load from [X + K].  Negative offsets are tested for
432			 * in the helper functions, and result in a 'ret 0'.
433			 */
434			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
435			PPC_LI64(r_scratch1, func);
436			PPC_MTLR(r_scratch1);
437			PPC_ADDI(r_addr, r_X, IMM_L(K));
438			if (K >= 32768)
439				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
440			PPC_BLRL();
441			/* If error, cr0.LT set */
442			PPC_BCC(COND_LT, exit_addr);
443			break;
444
445		case BPF_S_LDX_B_MSH:
446			/*
447			 * x86 version drops packet (RET 0) when K<0, whereas
448			 * interpreter does allow K<0 (__load_pointer, special
449			 * ancillary data).  common_load returns ENOTSUPP if K<0,
450			 * so we fall back to interpreter & filter works.
451			 */
452			func = sk_load_byte_msh;
453			goto common_load;
454			break;
455
456			/*** Jump and branches ***/
457		case BPF_S_JMP_JA:
458			if (K != 0)
459				PPC_JMP(addrs[i + 1 + K]);
460			break;
461
462		case BPF_S_JMP_JGT_K:
463		case BPF_S_JMP_JGT_X:
464			true_cond = COND_GT;
465			goto cond_branch;
466		case BPF_S_JMP_JGE_K:
467		case BPF_S_JMP_JGE_X:
468			true_cond = COND_GE;
469			goto cond_branch;
470		case BPF_S_JMP_JEQ_K:
471		case BPF_S_JMP_JEQ_X:
472			true_cond = COND_EQ;
473			goto cond_branch;
474		case BPF_S_JMP_JSET_K:
475		case BPF_S_JMP_JSET_X:
476			true_cond = COND_NE;
477			/* Fall through */
478		cond_branch:
479			/* same targets, can avoid doing the test :) */
480			if (filter[i].jt == filter[i].jf) {
481				if (filter[i].jt > 0)
482					PPC_JMP(addrs[i + 1 + filter[i].jt]);
483				break;
484			}
485
486			switch (filter[i].code) {
487			case BPF_S_JMP_JGT_X:
488			case BPF_S_JMP_JGE_X:
489			case BPF_S_JMP_JEQ_X:
490				ctx->seen |= SEEN_XREG;
491				PPC_CMPLW(r_A, r_X);
492				break;
493			case BPF_S_JMP_JSET_X:
494				ctx->seen |= SEEN_XREG;
495				PPC_AND_DOT(r_scratch1, r_A, r_X);
496				break;
497			case BPF_S_JMP_JEQ_K:
498			case BPF_S_JMP_JGT_K:
499			case BPF_S_JMP_JGE_K:
500				if (K < 32768)
501					PPC_CMPLWI(r_A, K);
502				else {
503					PPC_LI32(r_scratch1, K);
504					PPC_CMPLW(r_A, r_scratch1);
505				}
506				break;
507			case BPF_S_JMP_JSET_K:
508				if (K < 32768)
509					/* PPC_ANDI is /only/ dot-form */
510					PPC_ANDI(r_scratch1, r_A, K);
511				else {
512					PPC_LI32(r_scratch1, K);
513					PPC_AND_DOT(r_scratch1, r_A,
514						    r_scratch1);
515				}
516				break;
517			}
518			/* Sometimes branches are constructed "backward", with
519			 * the false path being the branch and true path being
520			 * a fallthrough to the next instruction.
521			 */
522			if (filter[i].jt == 0)
523				/* Swap the sense of the branch */
524				PPC_BCC(true_cond ^ COND_CMP_TRUE,
525					addrs[i + 1 + filter[i].jf]);
526			else {
527				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
528				if (filter[i].jf != 0)
529					PPC_JMP(addrs[i + 1 + filter[i].jf]);
530			}
531			break;
532		default:
533			/* The filter contains something cruel & unusual.
534			 * We don't handle it, but also there shouldn't be
535			 * anything missing from our list.
536			 */
537			if (printk_ratelimit())
538				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
539				       filter[i].code, i);
540			return -ENOTSUPP;
541		}
 
 
 
 
542
 
 
 
 
 
 
 
 
 
 
 
543	}
544	/* Set end-of-body-code address for exit. */
545	addrs[i] = ctx->idx * 4;
546
547	return 0;
548}
549
550void bpf_jit_compile(struct sk_filter *fp)
 
 
 
 
 
 
 
 
 
 
 
 
 
551{
552	unsigned int proglen;
553	unsigned int alloclen;
554	u32 *image = NULL;
555	u32 *code_base;
556	unsigned int *addrs;
 
557	struct codegen_context cgctx;
558	int pass;
559	int flen = fp->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560
561	if (!bpf_jit_enable)
562		return;
 
 
 
 
 
 
 
563
564	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
565	if (addrs == NULL)
566		return;
 
 
 
 
 
 
 
567
568	/*
569	 * There are multiple assembly passes as the generated code will change
570	 * size as it settles down, figuring out the max branch offsets/exit
571	 * paths required.
572	 *
573	 * The range of standard conditional branches is +/- 32Kbytes.	Since
574	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
575	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
576	 * used, distinct from short branches.
577	 *
578	 * Current:
579	 *
580	 * For now, both branch types assemble to 2 words (short branches padded
581	 * with a NOP); this is less efficient, but assembly will always complete
582	 * after exactly 3 passes:
583	 *
584	 * First pass: No code buffer; Program is "faux-generated" -- no code
585	 * emitted but maximum size of output determined (and addrs[] filled
586	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
587	 * All generation choices assumed to be 'worst-case', e.g. branches all
588	 * far (2 instructions), return path code reduction not available, etc.
589	 *
590	 * Second pass: Code buffer allocated with size determined previously.
591	 * Prologue generated to support features we have seen used.  Exit paths
592	 * determined and addrs[] is filled in again, as code may be slightly
593	 * smaller as a result.
594	 *
595	 * Third pass: Code generated 'for real', and branch destinations
596	 * determined from now-accurate addrs[] map.
597	 *
598	 * Ideal:
599	 *
600	 * If we optimise this, near branches will be shorter.	On the
601	 * first assembly pass, we should err on the side of caution and
602	 * generate the biggest code.  On subsequent passes, branches will be
603	 * generated short or long and code size will reduce.  With smaller
604	 * code, more branches may fall into the short category, and code will
605	 * reduce more.
606	 *
607	 * Finally, if we see one pass generate code the same size as the
608	 * previous pass we have converged and should now generate code for
609	 * real.  Allocating at the end will also save the memory that would
610	 * otherwise be wasted by the (small) current code shrinkage.
611	 * Preferably, we should do a small number of passes (e.g. 5) and if we
612	 * haven't converged by then, get impatient and force code to generate
613	 * as-is, even if the odd branch would be left long.  The chances of a
614	 * long jump are tiny with all but the most enormous of BPF filter
615	 * inputs, so we should usually converge on the third pass.
616	 */
617
618	cgctx.idx = 0;
619	cgctx.seen = 0;
620	cgctx.pc_ret0 = -1;
621	/* Scouting faux-generate pass 0 */
622	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
623		/* We hit something illegal or unsupported. */
624		goto out;
 
 
625
626	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627	 * Pretend to build prologue, given the features we've seen.  This will
628	 * update ctgtx.idx as it pretends to output instructions, then we can
629	 * calculate total size from idx.
630	 */
631	bpf_jit_build_prologue(fp, 0, &cgctx);
 
632	bpf_jit_build_epilogue(0, &cgctx);
633
 
 
 
634	proglen = cgctx.idx * 4;
635	alloclen = proglen + FUNCTION_DESCR_SIZE;
636	image = module_alloc(max_t(unsigned int, alloclen,
637				   sizeof(struct work_struct)));
638	if (!image)
639		goto out;
 
 
640
641	code_base = image + (FUNCTION_DESCR_SIZE/4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642
643	/* Code generation passes 1-2 */
644	for (pass = 1; pass < 3; pass++) {
645		/* Now build the prologue, body code & epilogue for real. */
646		cgctx.idx = 0;
647		bpf_jit_build_prologue(fp, code_base, &cgctx);
648		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
 
 
 
 
 
649		bpf_jit_build_epilogue(code_base, &cgctx);
650
651		if (bpf_jit_enable > 1)
652			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
653				proglen - (cgctx.idx * 4), cgctx.seen);
654	}
655
 
656	if (bpf_jit_enable > 1)
657		pr_info("flen=%d proglen=%u pass=%d image=%p\n",
658		       flen, proglen, pass, image);
 
 
 
659
660	if (image) {
661		if (bpf_jit_enable > 1)
662			print_hex_dump(KERN_ERR, "JIT code: ",
663				       DUMP_PREFIX_ADDRESS,
664				       16, 1, code_base,
665				       proglen, false);
666
667		bpf_flush_icache(code_base, code_base + (proglen/4));
668		/* Function descriptor nastiness: Address + TOC */
669		((u64 *)image)[0] = (u64)code_base;
670		((u64 *)image)[1] = local_paca->kernel_toc;
671		fp->bpf_func = (void *)image;
 
 
 
 
 
 
 
 
 
 
 
 
672	}
 
673out:
674	kfree(addrs);
675	return;
676}
677
678static void jit_free_defer(struct work_struct *arg)
679{
680	module_free(NULL, arg);
681}
682
683/* run from softirq, we must use a work_struct to call
684 * module_free() from process context
 
685 */
686void bpf_jit_free(struct sk_filter *fp)
 
687{
688	if (fp->bpf_func != sk_run_filter) {
689		struct work_struct *work = (struct work_struct *)fp->bpf_func;
 
 
690
691		INIT_WORK(work, jit_free_defer);
692		schedule_work(work);
693	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * eBPF JIT compiler
  4 *
  5 * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
  6 *		  IBM Corporation
  7 *
  8 * Based on the powerpc classic BPF JIT compiler by Matt Evans
 
 
 
 
 
  9 */
 10#include <linux/moduleloader.h>
 11#include <asm/cacheflush.h>
 12#include <asm/asm-compat.h>
 13#include <linux/netdevice.h>
 14#include <linux/filter.h>
 15#include <linux/if_vlan.h>
 16#include <asm/kprobes.h>
 17#include <linux/bpf.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 18
 19#include "bpf_jit.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20
 21static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
 22{
 23	memset32(area, BREAKPOINT_INSTRUCTION, size / 4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24}
 25
 26/* Fix updated addresses (for subprog calls, ldimm64, et al) during extra pass */
 27static int bpf_jit_fixup_addresses(struct bpf_prog *fp, u32 *image,
 28				   struct codegen_context *ctx, u32 *addrs)
 
 29{
 30	const struct bpf_insn *insn = fp->insnsi;
 31	bool func_addr_fixed;
 32	u64 func_addr;
 33	u32 tmp_idx;
 34	int i, j, ret;
 
 
 
 
 
 
 35
 36	for (i = 0; i < fp->len; i++) {
 37		/*
 38		 * During the extra pass, only the branch target addresses for
 39		 * the subprog calls need to be fixed. All other instructions
 40		 * can left untouched.
 41		 *
 42		 * The JITed image length does not change because we already
 43		 * ensure that the JITed instruction sequence for these calls
 44		 * are of fixed length by padding them with NOPs.
 45		 */
 46		if (insn[i].code == (BPF_JMP | BPF_CALL) &&
 47		    insn[i].src_reg == BPF_PSEUDO_CALL) {
 48			ret = bpf_jit_get_func_addr(fp, &insn[i], true,
 49						    &func_addr,
 50						    &func_addr_fixed);
 51			if (ret < 0)
 52				return ret;
 53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54			/*
 55			 * Save ctx->idx as this would currently point to the
 56			 * end of the JITed image and set it to the offset of
 57			 * the instruction sequence corresponding to the
 58			 * subprog call temporarily.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59			 */
 60			tmp_idx = ctx->idx;
 61			ctx->idx = addrs[i] / 4;
 62			ret = bpf_jit_emit_func_call_rel(image, ctx, func_addr);
 63			if (ret)
 64				return ret;
 65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 66			/*
 67			 * Restore ctx->idx here. This is safe as the length
 68			 * of the JITed sequence remains unchanged.
 69			 */
 70			ctx->idx = tmp_idx;
 71		} else if (insn[i].code == (BPF_LD | BPF_IMM | BPF_DW)) {
 72			tmp_idx = ctx->idx;
 73			ctx->idx = addrs[i] / 4;
 74#ifdef CONFIG_PPC32
 75			PPC_LI32(bpf_to_ppc(insn[i].dst_reg) - 1, (u32)insn[i + 1].imm);
 76			PPC_LI32(bpf_to_ppc(insn[i].dst_reg), (u32)insn[i].imm);
 77			for (j = ctx->idx - addrs[i] / 4; j < 4; j++)
 78				EMIT(PPC_RAW_NOP());
 79#else
 80			func_addr = ((u64)(u32)insn[i].imm) | (((u64)(u32)insn[i + 1].imm) << 32);
 81			PPC_LI64(bpf_to_ppc(insn[i].dst_reg), func_addr);
 82			/* overwrite rest with nops */
 83			for (j = ctx->idx - addrs[i] / 4; j < 5; j++)
 84				EMIT(PPC_RAW_NOP());
 85#endif
 86			ctx->idx = tmp_idx;
 87			i++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88		}
 89	}
 90
 91	return 0;
 92}
 93
 94int bpf_jit_emit_exit_insn(u32 *image, struct codegen_context *ctx, int tmp_reg, long exit_addr)
 95{
 96	if (!exit_addr || is_offset_in_branch_range(exit_addr - (ctx->idx * 4))) {
 97		PPC_JMP(exit_addr);
 98	} else if (ctx->alt_exit_addr) {
 99		if (WARN_ON(!is_offset_in_branch_range((long)ctx->alt_exit_addr - (ctx->idx * 4))))
100			return -1;
101		PPC_JMP(ctx->alt_exit_addr);
102	} else {
103		ctx->alt_exit_addr = ctx->idx * 4;
104		bpf_jit_build_epilogue(image, ctx);
105	}
 
 
106
107	return 0;
108}
109
110struct powerpc64_jit_data {
111	struct bpf_binary_header *header;
112	u32 *addrs;
113	u8 *image;
114	u32 proglen;
115	struct codegen_context ctx;
116};
117
118bool bpf_jit_needs_zext(void)
119{
120	return true;
121}
122
123struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
124{
125	u32 proglen;
126	u32 alloclen;
127	u8 *image = NULL;
128	u32 *code_base;
129	u32 *addrs;
130	struct powerpc64_jit_data *jit_data;
131	struct codegen_context cgctx;
132	int pass;
133	int flen;
134	struct bpf_binary_header *bpf_hdr;
135	struct bpf_prog *org_fp = fp;
136	struct bpf_prog *tmp_fp;
137	bool bpf_blinded = false;
138	bool extra_pass = false;
139	u32 extable_len;
140	u32 fixup_len;
141
142	if (!fp->jit_requested)
143		return org_fp;
144
145	tmp_fp = bpf_jit_blind_constants(org_fp);
146	if (IS_ERR(tmp_fp))
147		return org_fp;
148
149	if (tmp_fp != org_fp) {
150		bpf_blinded = true;
151		fp = tmp_fp;
152	}
153
154	jit_data = fp->aux->jit_data;
155	if (!jit_data) {
156		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
157		if (!jit_data) {
158			fp = org_fp;
159			goto out;
160		}
161		fp->aux->jit_data = jit_data;
162	}
163
164	flen = fp->len;
165	addrs = jit_data->addrs;
166	if (addrs) {
167		cgctx = jit_data->ctx;
168		image = jit_data->image;
169		bpf_hdr = jit_data->header;
170		proglen = jit_data->proglen;
171		extra_pass = true;
172		goto skip_init_ctx;
173	}
174
175	addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
176	if (addrs == NULL) {
177		fp = org_fp;
178		goto out_addrs;
179	}
180
181	memset(&cgctx, 0, sizeof(struct codegen_context));
182	bpf_jit_init_reg_mapping(&cgctx);
183
184	/* Make sure that the stack is quadword aligned. */
185	cgctx.stack_size = round_up(fp->aux->stack_depth, 16);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
 
 
 
187	/* Scouting faux-generate pass 0 */
188	if (bpf_jit_build_body(fp, 0, &cgctx, addrs, 0)) {
189		/* We hit something illegal or unsupported. */
190		fp = org_fp;
191		goto out_addrs;
192	}
193
194	/*
195	 * If we have seen a tail call, we need a second pass.
196	 * This is because bpf_jit_emit_common_epilogue() is called
197	 * from bpf_jit_emit_tail_call() with a not yet stable ctx->seen.
198	 * We also need a second pass if we ended up with too large
199	 * a program so as to ensure BPF_EXIT branches are in range.
200	 */
201	if (cgctx.seen & SEEN_TAILCALL || !is_offset_in_branch_range((long)cgctx.idx * 4)) {
202		cgctx.idx = 0;
203		if (bpf_jit_build_body(fp, 0, &cgctx, addrs, 0)) {
204			fp = org_fp;
205			goto out_addrs;
206		}
207	}
208
209	bpf_jit_realloc_regs(&cgctx);
210	/*
211	 * Pretend to build prologue, given the features we've seen.  This will
212	 * update ctgtx.idx as it pretends to output instructions, then we can
213	 * calculate total size from idx.
214	 */
215	bpf_jit_build_prologue(0, &cgctx);
216	addrs[fp->len] = cgctx.idx * 4;
217	bpf_jit_build_epilogue(0, &cgctx);
218
219	fixup_len = fp->aux->num_exentries * BPF_FIXUP_LEN * 4;
220	extable_len = fp->aux->num_exentries * sizeof(struct exception_table_entry);
221
222	proglen = cgctx.idx * 4;
223	alloclen = proglen + FUNCTION_DESCR_SIZE + fixup_len + extable_len;
224
225	bpf_hdr = bpf_jit_binary_alloc(alloclen, &image, 4, bpf_jit_fill_ill_insns);
226	if (!bpf_hdr) {
227		fp = org_fp;
228		goto out_addrs;
229	}
230
231	if (extable_len)
232		fp->aux->extable = (void *)image + FUNCTION_DESCR_SIZE + proglen + fixup_len;
233
234skip_init_ctx:
235	code_base = (u32 *)(image + FUNCTION_DESCR_SIZE);
236
237	if (extra_pass) {
238		/*
239		 * Do not touch the prologue and epilogue as they will remain
240		 * unchanged. Only fix the branch target address for subprog
241		 * calls in the body, and ldimm64 instructions.
242		 *
243		 * This does not change the offsets and lengths of the subprog
244		 * call instruction sequences and hence, the size of the JITed
245		 * image as well.
246		 */
247		bpf_jit_fixup_addresses(fp, code_base, &cgctx, addrs);
248
249		/* There is no need to perform the usual passes. */
250		goto skip_codegen_passes;
251	}
252
253	/* Code generation passes 1-2 */
254	for (pass = 1; pass < 3; pass++) {
255		/* Now build the prologue, body code & epilogue for real. */
256		cgctx.idx = 0;
257		cgctx.alt_exit_addr = 0;
258		bpf_jit_build_prologue(code_base, &cgctx);
259		if (bpf_jit_build_body(fp, code_base, &cgctx, addrs, pass)) {
260			bpf_jit_binary_free(bpf_hdr);
261			fp = org_fp;
262			goto out_addrs;
263		}
264		bpf_jit_build_epilogue(code_base, &cgctx);
265
266		if (bpf_jit_enable > 1)
267			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
268				proglen - (cgctx.idx * 4), cgctx.seen);
269	}
270
271skip_codegen_passes:
272	if (bpf_jit_enable > 1)
273		/*
274		 * Note that we output the base address of the code_base
275		 * rather than image, since opcodes are in code_base.
276		 */
277		bpf_jit_dump(flen, proglen, pass, code_base);
278
279#ifdef CONFIG_PPC64_ELF_ABI_V1
280	/* Function descriptor nastiness: Address + TOC */
281	((u64 *)image)[0] = (u64)code_base;
282	((u64 *)image)[1] = local_paca->kernel_toc;
283#endif
284
285	fp->bpf_func = (void *)image;
286	fp->jited = 1;
287	fp->jited_len = proglen + FUNCTION_DESCR_SIZE;
288
289	bpf_flush_icache(bpf_hdr, (u8 *)bpf_hdr + bpf_hdr->size);
290	if (!fp->is_func || extra_pass) {
291		bpf_jit_binary_lock_ro(bpf_hdr);
292		bpf_prog_fill_jited_linfo(fp, addrs);
293out_addrs:
294		kfree(addrs);
295		kfree(jit_data);
296		fp->aux->jit_data = NULL;
297	} else {
298		jit_data->addrs = addrs;
299		jit_data->ctx = cgctx;
300		jit_data->proglen = proglen;
301		jit_data->image = image;
302		jit_data->header = bpf_hdr;
303	}
304
305out:
306	if (bpf_blinded)
307		bpf_jit_prog_release_other(fp, fp == org_fp ? tmp_fp : org_fp);
 
308
309	return fp;
 
 
310}
311
312/*
313 * The caller should check for (BPF_MODE(code) == BPF_PROBE_MEM) before calling
314 * this function, as this only applies to BPF_PROBE_MEM, for now.
315 */
316int bpf_add_extable_entry(struct bpf_prog *fp, u32 *image, int pass, struct codegen_context *ctx,
317			  int insn_idx, int jmp_off, int dst_reg)
318{
319	off_t offset;
320	unsigned long pc;
321	struct exception_table_entry *ex;
322	u32 *fixup;
323
324	/* Populate extable entries only in the last pass */
325	if (pass != 2)
326		return 0;
327
328	if (!fp->aux->extable ||
329	    WARN_ON_ONCE(ctx->exentry_idx >= fp->aux->num_exentries))
330		return -EINVAL;
331
332	pc = (unsigned long)&image[insn_idx];
333
334	fixup = (void *)fp->aux->extable -
335		(fp->aux->num_exentries * BPF_FIXUP_LEN * 4) +
336		(ctx->exentry_idx * BPF_FIXUP_LEN * 4);
337
338	fixup[0] = PPC_RAW_LI(dst_reg, 0);
339	if (IS_ENABLED(CONFIG_PPC32))
340		fixup[1] = PPC_RAW_LI(dst_reg - 1, 0); /* clear higher 32-bit register too */
341
342	fixup[BPF_FIXUP_LEN - 1] =
343		PPC_RAW_BRANCH((long)(pc + jmp_off) - (long)&fixup[BPF_FIXUP_LEN - 1]);
344
345	ex = &fp->aux->extable[ctx->exentry_idx];
346
347	offset = pc - (long)&ex->insn;
348	if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
349		return -ERANGE;
350	ex->insn = offset;
351
352	offset = (long)fixup - (long)&ex->fixup;
353	if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
354		return -ERANGE;
355	ex->fixup = offset;
356
357	ctx->exentry_idx++;
358	return 0;
359}