Linux Audio

Check our new training course

Loading...
v3.1
  1/* bpf_jit_comp.c: BPF JIT compiler for PPC64
  2 *
  3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  4 *
  5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
 
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12#include <linux/moduleloader.h>
 13#include <asm/cacheflush.h>
 14#include <linux/netdevice.h>
 15#include <linux/filter.h>
 16#include "bpf_jit.h"
 17
 18#ifndef __BIG_ENDIAN
 19/* There are endianness assumptions herein. */
 20#error "Little-endian PPC not supported in BPF compiler"
 21#endif
 22
 23int bpf_jit_enable __read_mostly;
 24
 
 25
 26static inline void bpf_flush_icache(void *start, void *end)
 27{
 28	smp_wmb();
 29	flush_icache_range((unsigned long)start, (unsigned long)end);
 30}
 31
 32static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
 33				   struct codegen_context *ctx)
 34{
 35	int i;
 36	const struct sock_filter *filter = fp->insns;
 37
 38	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 39		/* Make stackframe */
 40		if (ctx->seen & SEEN_DATAREF) {
 41			/* If we call any helpers (for loads), save LR */
 42			EMIT(PPC_INST_MFLR | __PPC_RT(0));
 43			PPC_STD(0, 1, 16);
 44
 45			/* Back up non-volatile regs. */
 46			PPC_STD(r_D, 1, -(8*(32-r_D)));
 47			PPC_STD(r_HL, 1, -(8*(32-r_HL)));
 48		}
 49		if (ctx->seen & SEEN_MEM) {
 50			/*
 51			 * Conditionally save regs r15-r31 as some will be used
 52			 * for M[] data.
 53			 */
 54			for (i = r_M; i < (r_M+16); i++) {
 55				if (ctx->seen & (1 << (i-r_M)))
 56					PPC_STD(i, 1, -(8*(32-i)));
 57			}
 58		}
 59		EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
 60		     (-BPF_PPC_STACKFRAME & 0xfffc));
 61	}
 62
 63	if (ctx->seen & SEEN_DATAREF) {
 64		/*
 65		 * If this filter needs to access skb data,
 66		 * prepare r_D and r_HL:
 67		 *  r_HL = skb->len - skb->data_len
 68		 *  r_D	 = skb->data
 69		 */
 70		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 71							 data_len));
 72		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 73		PPC_SUB(r_HL, r_HL, r_scratch1);
 74		PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 75	}
 76
 77	if (ctx->seen & SEEN_XREG) {
 78		/*
 79		 * TODO: Could also detect whether first instr. sets X and
 80		 * avoid this (as below, with A).
 81		 */
 82		PPC_LI(r_X, 0);
 83	}
 84
 85	switch (filter[0].code) {
 86	case BPF_S_RET_K:
 87	case BPF_S_LD_W_LEN:
 88	case BPF_S_ANC_PROTOCOL:
 89	case BPF_S_ANC_IFINDEX:
 90	case BPF_S_ANC_MARK:
 91	case BPF_S_ANC_RXHASH:
 92	case BPF_S_ANC_CPU:
 93	case BPF_S_ANC_QUEUE:
 94	case BPF_S_LD_W_ABS:
 95	case BPF_S_LD_H_ABS:
 96	case BPF_S_LD_B_ABS:
 97		/* first instruction sets A register (or is RET 'constant') */
 98		break;
 99	default:
100		/* make sure we dont leak kernel information to user */
101		PPC_LI(r_A, 0);
102	}
103}
104
105static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
106{
107	int i;
108
109	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
110		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
111		if (ctx->seen & SEEN_DATAREF) {
112			PPC_LD(0, 1, 16);
113			PPC_MTLR(0);
114			PPC_LD(r_D, 1, -(8*(32-r_D)));
115			PPC_LD(r_HL, 1, -(8*(32-r_HL)));
116		}
117		if (ctx->seen & SEEN_MEM) {
118			/* Restore any saved non-vol registers */
119			for (i = r_M; i < (r_M+16); i++) {
120				if (ctx->seen & (1 << (i-r_M)))
121					PPC_LD(i, 1, -(8*(32-i)));
122			}
123		}
124	}
125	/* The RETs have left a return value in R3. */
126
127	PPC_BLR();
128}
129
 
 
 
130/* Assemble the body code between the prologue & epilogue. */
131static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
132			      struct codegen_context *ctx,
133			      unsigned int *addrs)
134{
135	const struct sock_filter *filter = fp->insns;
136	int flen = fp->len;
137	u8 *func;
138	unsigned int true_cond;
139	int i;
140
141	/* Start of epilogue code */
142	unsigned int exit_addr = addrs[flen];
143
144	for (i = 0; i < flen; i++) {
145		unsigned int K = filter[i].k;
 
146
147		/*
148		 * addrs[] maps a BPF bytecode address into a real offset from
149		 * the start of the body code.
150		 */
151		addrs[i] = ctx->idx * 4;
152
153		switch (filter[i].code) {
154			/*** ALU ops ***/
155		case BPF_S_ALU_ADD_X: /* A += X; */
156			ctx->seen |= SEEN_XREG;
157			PPC_ADD(r_A, r_A, r_X);
158			break;
159		case BPF_S_ALU_ADD_K: /* A += K; */
160			if (!K)
161				break;
162			PPC_ADDI(r_A, r_A, IMM_L(K));
163			if (K >= 32768)
164				PPC_ADDIS(r_A, r_A, IMM_HA(K));
165			break;
166		case BPF_S_ALU_SUB_X: /* A -= X; */
167			ctx->seen |= SEEN_XREG;
168			PPC_SUB(r_A, r_A, r_X);
169			break;
170		case BPF_S_ALU_SUB_K: /* A -= K */
171			if (!K)
172				break;
173			PPC_ADDI(r_A, r_A, IMM_L(-K));
174			if (K >= 32768)
175				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
176			break;
177		case BPF_S_ALU_MUL_X: /* A *= X; */
178			ctx->seen |= SEEN_XREG;
179			PPC_MUL(r_A, r_A, r_X);
180			break;
181		case BPF_S_ALU_MUL_K: /* A *= K */
182			if (K < 32768)
183				PPC_MULI(r_A, r_A, K);
184			else {
185				PPC_LI32(r_scratch1, K);
186				PPC_MUL(r_A, r_A, r_scratch1);
187			}
188			break;
189		case BPF_S_ALU_DIV_X: /* A /= X; */
 
190			ctx->seen |= SEEN_XREG;
191			PPC_CMPWI(r_X, 0);
192			if (ctx->pc_ret0 != -1) {
193				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
194			} else {
195				/*
196				 * Exit, returning 0; first pass hits here
197				 * (longer worst-case code size).
198				 */
199				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
200				PPC_LI(r_ret, 0);
201				PPC_JMP(exit_addr);
202			}
203			PPC_DIVWU(r_A, r_A, r_X);
 
 
 
 
 
 
204			break;
205		case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
 
 
 
 
 
 
 
 
206			PPC_LI32(r_scratch1, K);
207			/* Top 32 bits of 64bit result -> A */
208			PPC_MULHWU(r_A, r_A, r_scratch1);
209			break;
210		case BPF_S_ALU_AND_X:
211			ctx->seen |= SEEN_XREG;
212			PPC_AND(r_A, r_A, r_X);
213			break;
214		case BPF_S_ALU_AND_K:
215			if (!IMM_H(K))
216				PPC_ANDI(r_A, r_A, K);
217			else {
218				PPC_LI32(r_scratch1, K);
219				PPC_AND(r_A, r_A, r_scratch1);
220			}
221			break;
222		case BPF_S_ALU_OR_X:
223			ctx->seen |= SEEN_XREG;
224			PPC_OR(r_A, r_A, r_X);
225			break;
226		case BPF_S_ALU_OR_K:
227			if (IMM_L(K))
228				PPC_ORI(r_A, r_A, IMM_L(K));
229			if (K >= 65536)
230				PPC_ORIS(r_A, r_A, IMM_H(K));
231			break;
232		case BPF_S_ALU_LSH_X: /* A <<= X; */
 
 
 
 
 
 
 
 
 
 
 
233			ctx->seen |= SEEN_XREG;
234			PPC_SLW(r_A, r_A, r_X);
235			break;
236		case BPF_S_ALU_LSH_K:
237			if (K == 0)
238				break;
239			else
240				PPC_SLWI(r_A, r_A, K);
241			break;
242		case BPF_S_ALU_RSH_X: /* A >>= X; */
243			ctx->seen |= SEEN_XREG;
244			PPC_SRW(r_A, r_A, r_X);
245			break;
246		case BPF_S_ALU_RSH_K: /* A >>= K; */
247			if (K == 0)
248				break;
249			else
250				PPC_SRWI(r_A, r_A, K);
251			break;
252		case BPF_S_ALU_NEG:
253			PPC_NEG(r_A, r_A);
254			break;
255		case BPF_S_RET_K:
256			PPC_LI32(r_ret, K);
257			if (!K) {
258				if (ctx->pc_ret0 == -1)
259					ctx->pc_ret0 = i;
260			}
261			/*
262			 * If this isn't the very last instruction, branch to
263			 * the epilogue if we've stuff to clean up.  Otherwise,
264			 * if there's nothing to tidy, just return.  If we /are/
265			 * the last instruction, we're about to fall through to
266			 * the epilogue to return.
267			 */
268			if (i != flen - 1) {
269				/*
270				 * Note: 'seen' is properly valid only on pass
271				 * #2.	Both parts of this conditional are the
272				 * same instruction size though, meaning the
273				 * first pass will still correctly determine the
274				 * code size/addresses.
275				 */
276				if (ctx->seen)
277					PPC_JMP(exit_addr);
278				else
279					PPC_BLR();
280			}
281			break;
282		case BPF_S_RET_A:
283			PPC_MR(r_ret, r_A);
284			if (i != flen - 1) {
285				if (ctx->seen)
286					PPC_JMP(exit_addr);
287				else
288					PPC_BLR();
289			}
290			break;
291		case BPF_S_MISC_TAX: /* X = A */
292			PPC_MR(r_X, r_A);
293			break;
294		case BPF_S_MISC_TXA: /* A = X */
295			ctx->seen |= SEEN_XREG;
296			PPC_MR(r_A, r_X);
297			break;
298
299			/*** Constant loads/M[] access ***/
300		case BPF_S_LD_IMM: /* A = K */
301			PPC_LI32(r_A, K);
302			break;
303		case BPF_S_LDX_IMM: /* X = K */
304			PPC_LI32(r_X, K);
305			break;
306		case BPF_S_LD_MEM: /* A = mem[K] */
307			PPC_MR(r_A, r_M + (K & 0xf));
308			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
309			break;
310		case BPF_S_LDX_MEM: /* X = mem[K] */
311			PPC_MR(r_X, r_M + (K & 0xf));
312			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313			break;
314		case BPF_S_ST: /* mem[K] = A */
315			PPC_MR(r_M + (K & 0xf), r_A);
316			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317			break;
318		case BPF_S_STX: /* mem[K] = X */
319			PPC_MR(r_M + (K & 0xf), r_X);
320			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
321			break;
322		case BPF_S_LD_W_LEN: /*	A = skb->len; */
323			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
324			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
325			break;
326		case BPF_S_LDX_W_LEN: /* X = skb->len; */
 
 
 
327			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
328			break;
329
330			/*** Ancillary info loads ***/
331
332			/* None of the BPF_S_ANC* codes appear to be passed by
333			 * sk_chk_filter().  The interpreter and the x86 BPF
334			 * compiler implement them so we do too -- they may be
335			 * planted in future.
336			 */
337		case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
338			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
339						  protocol) != 2);
340			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
341							  protocol));
342			/* ntohs is a NOP with BE loads. */
343			break;
344		case BPF_S_ANC_IFINDEX:
345			PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 
 
 
 
 
346								dev));
347			PPC_CMPDI(r_scratch1, 0);
348			if (ctx->pc_ret0 != -1) {
349				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
350			} else {
351				/* Exit, returning 0; first pass hits here. */
352				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
353				PPC_LI(r_ret, 0);
354				PPC_JMP(exit_addr);
355			}
356			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
357						  ifindex) != 4);
358			PPC_LWZ_OFFS(r_A, r_scratch1,
359				     offsetof(struct net_device, ifindex));
 
 
 
 
 
360			break;
361		case BPF_S_ANC_MARK:
362			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
363			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
364							  mark));
365			break;
366		case BPF_S_ANC_RXHASH:
367			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
368			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
369							  rxhash));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370			break;
371		case BPF_S_ANC_QUEUE:
372			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
373						  queue_mapping) != 2);
374			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375							  queue_mapping));
376			break;
377		case BPF_S_ANC_CPU:
378#ifdef CONFIG_SMP
379			/*
380			 * PACA ptr is r13:
381			 * raw_smp_processor_id() = local_paca->paca_index
382			 */
383			BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
384						  paca_index) != 2);
385			PPC_LHZ_OFFS(r_A, 13,
386				     offsetof(struct paca_struct, paca_index));
387#else
388			PPC_LI(r_A, 0);
389#endif
390			break;
391
392			/*** Absolute loads from packet header/data ***/
393		case BPF_S_LD_W_ABS:
394			func = sk_load_word;
395			goto common_load;
396		case BPF_S_LD_H_ABS:
397			func = sk_load_half;
398			goto common_load;
399		case BPF_S_LD_B_ABS:
400			func = sk_load_byte;
401		common_load:
402			/*
403			 * Load from [K].  Reference with the (negative)
404			 * SKF_NET_OFF/SKF_LL_OFF offsets is unsupported.
405			 */
406			ctx->seen |= SEEN_DATAREF;
407			if ((int)K < 0)
408				return -ENOTSUPP;
409			PPC_LI64(r_scratch1, func);
410			PPC_MTLR(r_scratch1);
411			PPC_LI32(r_addr, K);
412			PPC_BLRL();
413			/*
414			 * Helper returns 'lt' condition on error, and an
415			 * appropriate return value in r3
416			 */
417			PPC_BCC(COND_LT, exit_addr);
418			break;
419
420			/*** Indirect loads from packet header/data ***/
421		case BPF_S_LD_W_IND:
422			func = sk_load_word;
423			goto common_load_ind;
424		case BPF_S_LD_H_IND:
425			func = sk_load_half;
426			goto common_load_ind;
427		case BPF_S_LD_B_IND:
428			func = sk_load_byte;
429		common_load_ind:
430			/*
431			 * Load from [X + K].  Negative offsets are tested for
432			 * in the helper functions, and result in a 'ret 0'.
433			 */
434			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
435			PPC_LI64(r_scratch1, func);
436			PPC_MTLR(r_scratch1);
437			PPC_ADDI(r_addr, r_X, IMM_L(K));
438			if (K >= 32768)
439				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
440			PPC_BLRL();
441			/* If error, cr0.LT set */
442			PPC_BCC(COND_LT, exit_addr);
443			break;
444
445		case BPF_S_LDX_B_MSH:
446			/*
447			 * x86 version drops packet (RET 0) when K<0, whereas
448			 * interpreter does allow K<0 (__load_pointer, special
449			 * ancillary data).  common_load returns ENOTSUPP if K<0,
450			 * so we fall back to interpreter & filter works.
451			 */
452			func = sk_load_byte_msh;
453			goto common_load;
454			break;
455
456			/*** Jump and branches ***/
457		case BPF_S_JMP_JA:
458			if (K != 0)
459				PPC_JMP(addrs[i + 1 + K]);
460			break;
461
462		case BPF_S_JMP_JGT_K:
463		case BPF_S_JMP_JGT_X:
464			true_cond = COND_GT;
465			goto cond_branch;
466		case BPF_S_JMP_JGE_K:
467		case BPF_S_JMP_JGE_X:
468			true_cond = COND_GE;
469			goto cond_branch;
470		case BPF_S_JMP_JEQ_K:
471		case BPF_S_JMP_JEQ_X:
472			true_cond = COND_EQ;
473			goto cond_branch;
474		case BPF_S_JMP_JSET_K:
475		case BPF_S_JMP_JSET_X:
476			true_cond = COND_NE;
477			/* Fall through */
478		cond_branch:
479			/* same targets, can avoid doing the test :) */
480			if (filter[i].jt == filter[i].jf) {
481				if (filter[i].jt > 0)
482					PPC_JMP(addrs[i + 1 + filter[i].jt]);
483				break;
484			}
485
486			switch (filter[i].code) {
487			case BPF_S_JMP_JGT_X:
488			case BPF_S_JMP_JGE_X:
489			case BPF_S_JMP_JEQ_X:
490				ctx->seen |= SEEN_XREG;
491				PPC_CMPLW(r_A, r_X);
492				break;
493			case BPF_S_JMP_JSET_X:
494				ctx->seen |= SEEN_XREG;
495				PPC_AND_DOT(r_scratch1, r_A, r_X);
496				break;
497			case BPF_S_JMP_JEQ_K:
498			case BPF_S_JMP_JGT_K:
499			case BPF_S_JMP_JGE_K:
500				if (K < 32768)
501					PPC_CMPLWI(r_A, K);
502				else {
503					PPC_LI32(r_scratch1, K);
504					PPC_CMPLW(r_A, r_scratch1);
505				}
506				break;
507			case BPF_S_JMP_JSET_K:
508				if (K < 32768)
509					/* PPC_ANDI is /only/ dot-form */
510					PPC_ANDI(r_scratch1, r_A, K);
511				else {
512					PPC_LI32(r_scratch1, K);
513					PPC_AND_DOT(r_scratch1, r_A,
514						    r_scratch1);
515				}
516				break;
517			}
518			/* Sometimes branches are constructed "backward", with
519			 * the false path being the branch and true path being
520			 * a fallthrough to the next instruction.
521			 */
522			if (filter[i].jt == 0)
523				/* Swap the sense of the branch */
524				PPC_BCC(true_cond ^ COND_CMP_TRUE,
525					addrs[i + 1 + filter[i].jf]);
526			else {
527				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
528				if (filter[i].jf != 0)
529					PPC_JMP(addrs[i + 1 + filter[i].jf]);
530			}
531			break;
532		default:
533			/* The filter contains something cruel & unusual.
534			 * We don't handle it, but also there shouldn't be
535			 * anything missing from our list.
536			 */
537			if (printk_ratelimit())
538				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
539				       filter[i].code, i);
540			return -ENOTSUPP;
541		}
542
543	}
544	/* Set end-of-body-code address for exit. */
545	addrs[i] = ctx->idx * 4;
546
547	return 0;
548}
549
550void bpf_jit_compile(struct sk_filter *fp)
551{
552	unsigned int proglen;
553	unsigned int alloclen;
554	u32 *image = NULL;
555	u32 *code_base;
556	unsigned int *addrs;
557	struct codegen_context cgctx;
558	int pass;
559	int flen = fp->len;
560
561	if (!bpf_jit_enable)
562		return;
563
564	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
565	if (addrs == NULL)
566		return;
567
568	/*
569	 * There are multiple assembly passes as the generated code will change
570	 * size as it settles down, figuring out the max branch offsets/exit
571	 * paths required.
572	 *
573	 * The range of standard conditional branches is +/- 32Kbytes.	Since
574	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
575	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
576	 * used, distinct from short branches.
577	 *
578	 * Current:
579	 *
580	 * For now, both branch types assemble to 2 words (short branches padded
581	 * with a NOP); this is less efficient, but assembly will always complete
582	 * after exactly 3 passes:
583	 *
584	 * First pass: No code buffer; Program is "faux-generated" -- no code
585	 * emitted but maximum size of output determined (and addrs[] filled
586	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
587	 * All generation choices assumed to be 'worst-case', e.g. branches all
588	 * far (2 instructions), return path code reduction not available, etc.
589	 *
590	 * Second pass: Code buffer allocated with size determined previously.
591	 * Prologue generated to support features we have seen used.  Exit paths
592	 * determined and addrs[] is filled in again, as code may be slightly
593	 * smaller as a result.
594	 *
595	 * Third pass: Code generated 'for real', and branch destinations
596	 * determined from now-accurate addrs[] map.
597	 *
598	 * Ideal:
599	 *
600	 * If we optimise this, near branches will be shorter.	On the
601	 * first assembly pass, we should err on the side of caution and
602	 * generate the biggest code.  On subsequent passes, branches will be
603	 * generated short or long and code size will reduce.  With smaller
604	 * code, more branches may fall into the short category, and code will
605	 * reduce more.
606	 *
607	 * Finally, if we see one pass generate code the same size as the
608	 * previous pass we have converged and should now generate code for
609	 * real.  Allocating at the end will also save the memory that would
610	 * otherwise be wasted by the (small) current code shrinkage.
611	 * Preferably, we should do a small number of passes (e.g. 5) and if we
612	 * haven't converged by then, get impatient and force code to generate
613	 * as-is, even if the odd branch would be left long.  The chances of a
614	 * long jump are tiny with all but the most enormous of BPF filter
615	 * inputs, so we should usually converge on the third pass.
616	 */
617
618	cgctx.idx = 0;
619	cgctx.seen = 0;
620	cgctx.pc_ret0 = -1;
621	/* Scouting faux-generate pass 0 */
622	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
623		/* We hit something illegal or unsupported. */
624		goto out;
625
626	/*
627	 * Pretend to build prologue, given the features we've seen.  This will
628	 * update ctgtx.idx as it pretends to output instructions, then we can
629	 * calculate total size from idx.
630	 */
631	bpf_jit_build_prologue(fp, 0, &cgctx);
632	bpf_jit_build_epilogue(0, &cgctx);
633
634	proglen = cgctx.idx * 4;
635	alloclen = proglen + FUNCTION_DESCR_SIZE;
636	image = module_alloc(max_t(unsigned int, alloclen,
637				   sizeof(struct work_struct)));
638	if (!image)
639		goto out;
640
641	code_base = image + (FUNCTION_DESCR_SIZE/4);
642
643	/* Code generation passes 1-2 */
644	for (pass = 1; pass < 3; pass++) {
645		/* Now build the prologue, body code & epilogue for real. */
646		cgctx.idx = 0;
647		bpf_jit_build_prologue(fp, code_base, &cgctx);
648		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
649		bpf_jit_build_epilogue(code_base, &cgctx);
650
651		if (bpf_jit_enable > 1)
652			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
653				proglen - (cgctx.idx * 4), cgctx.seen);
654	}
655
656	if (bpf_jit_enable > 1)
657		pr_info("flen=%d proglen=%u pass=%d image=%p\n",
658		       flen, proglen, pass, image);
 
 
 
 
 
 
 
 
 
 
 
 
 
659
660	if (image) {
661		if (bpf_jit_enable > 1)
662			print_hex_dump(KERN_ERR, "JIT code: ",
663				       DUMP_PREFIX_ADDRESS,
664				       16, 1, code_base,
665				       proglen, false);
666
667		bpf_flush_icache(code_base, code_base + (proglen/4));
668		/* Function descriptor nastiness: Address + TOC */
669		((u64 *)image)[0] = (u64)code_base;
670		((u64 *)image)[1] = local_paca->kernel_toc;
671		fp->bpf_func = (void *)image;
672	}
673out:
674	kfree(addrs);
675	return;
676}
677
678static void jit_free_defer(struct work_struct *arg)
679{
680	module_free(NULL, arg);
681}
682
683/* run from softirq, we must use a work_struct to call
684 * module_free() from process context
685 */
686void bpf_jit_free(struct sk_filter *fp)
687{
688	if (fp->bpf_func != sk_run_filter) {
689		struct work_struct *work = (struct work_struct *)fp->bpf_func;
690
691		INIT_WORK(work, jit_free_defer);
692		schedule_work(work);
693	}
694}
v4.17
  1/* bpf_jit_comp.c: BPF JIT compiler
  2 *
  3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  4 *
  5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  6 * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; version 2
 11 * of the License.
 12 */
 13#include <linux/moduleloader.h>
 14#include <asm/cacheflush.h>
 15#include <linux/netdevice.h>
 16#include <linux/filter.h>
 17#include <linux/if_vlan.h>
 
 
 
 
 
 
 
 18
 19#include "bpf_jit32.h"
 20
 21static inline void bpf_flush_icache(void *start, void *end)
 22{
 23	smp_wmb();
 24	flush_icache_range((unsigned long)start, (unsigned long)end);
 25}
 26
 27static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
 28				   struct codegen_context *ctx)
 29{
 30	int i;
 31	const struct sock_filter *filter = fp->insns;
 32
 33	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 34		/* Make stackframe */
 35		if (ctx->seen & SEEN_DATAREF) {
 36			/* If we call any helpers (for loads), save LR */
 37			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
 38			PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
 39
 40			/* Back up non-volatile regs. */
 41			PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
 42			PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 43		}
 44		if (ctx->seen & SEEN_MEM) {
 45			/*
 46			 * Conditionally save regs r15-r31 as some will be used
 47			 * for M[] data.
 48			 */
 49			for (i = r_M; i < (r_M+16); i++) {
 50				if (ctx->seen & (1 << (i-r_M)))
 51					PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
 52			}
 53		}
 54		PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
 
 55	}
 56
 57	if (ctx->seen & SEEN_DATAREF) {
 58		/*
 59		 * If this filter needs to access skb data,
 60		 * prepare r_D and r_HL:
 61		 *  r_HL = skb->len - skb->data_len
 62		 *  r_D	 = skb->data
 63		 */
 64		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 65							 data_len));
 66		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 67		PPC_SUB(r_HL, r_HL, r_scratch1);
 68		PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 69	}
 70
 71	if (ctx->seen & SEEN_XREG) {
 72		/*
 73		 * TODO: Could also detect whether first instr. sets X and
 74		 * avoid this (as below, with A).
 75		 */
 76		PPC_LI(r_X, 0);
 77	}
 78
 79	/* make sure we dont leak kernel information to user */
 80	if (bpf_needs_clear_a(&filter[0]))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81		PPC_LI(r_A, 0);
 
 82}
 83
 84static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
 85{
 86	int i;
 87
 88	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 89		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
 90		if (ctx->seen & SEEN_DATAREF) {
 91			PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
 92			PPC_MTLR(0);
 93			PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
 94			PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 95		}
 96		if (ctx->seen & SEEN_MEM) {
 97			/* Restore any saved non-vol registers */
 98			for (i = r_M; i < (r_M+16); i++) {
 99				if (ctx->seen & (1 << (i-r_M)))
100					PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
101			}
102		}
103	}
104	/* The RETs have left a return value in R3. */
105
106	PPC_BLR();
107}
108
109#define CHOOSE_LOAD_FUNC(K, func) \
110	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
111
112/* Assemble the body code between the prologue & epilogue. */
113static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
114			      struct codegen_context *ctx,
115			      unsigned int *addrs)
116{
117	const struct sock_filter *filter = fp->insns;
118	int flen = fp->len;
119	u8 *func;
120	unsigned int true_cond;
121	int i;
122
123	/* Start of epilogue code */
124	unsigned int exit_addr = addrs[flen];
125
126	for (i = 0; i < flen; i++) {
127		unsigned int K = filter[i].k;
128		u16 code = bpf_anc_helper(&filter[i]);
129
130		/*
131		 * addrs[] maps a BPF bytecode address into a real offset from
132		 * the start of the body code.
133		 */
134		addrs[i] = ctx->idx * 4;
135
136		switch (code) {
137			/*** ALU ops ***/
138		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
139			ctx->seen |= SEEN_XREG;
140			PPC_ADD(r_A, r_A, r_X);
141			break;
142		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
143			if (!K)
144				break;
145			PPC_ADDI(r_A, r_A, IMM_L(K));
146			if (K >= 32768)
147				PPC_ADDIS(r_A, r_A, IMM_HA(K));
148			break;
149		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
150			ctx->seen |= SEEN_XREG;
151			PPC_SUB(r_A, r_A, r_X);
152			break;
153		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
154			if (!K)
155				break;
156			PPC_ADDI(r_A, r_A, IMM_L(-K));
157			if (K >= 32768)
158				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
159			break;
160		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
161			ctx->seen |= SEEN_XREG;
162			PPC_MULW(r_A, r_A, r_X);
163			break;
164		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
165			if (K < 32768)
166				PPC_MULI(r_A, r_A, K);
167			else {
168				PPC_LI32(r_scratch1, K);
169				PPC_MULW(r_A, r_A, r_scratch1);
170			}
171			break;
172		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
173		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
174			ctx->seen |= SEEN_XREG;
175			PPC_CMPWI(r_X, 0);
176			if (ctx->pc_ret0 != -1) {
177				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
178			} else {
 
 
 
 
179				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
180				PPC_LI(r_ret, 0);
181				PPC_JMP(exit_addr);
182			}
183			if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
184				PPC_DIVWU(r_scratch1, r_A, r_X);
185				PPC_MULW(r_scratch1, r_X, r_scratch1);
186				PPC_SUB(r_A, r_A, r_scratch1);
187			} else {
188				PPC_DIVWU(r_A, r_A, r_X);
189			}
190			break;
191		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
192			PPC_LI32(r_scratch2, K);
193			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
194			PPC_MULW(r_scratch1, r_scratch2, r_scratch1);
195			PPC_SUB(r_A, r_A, r_scratch1);
196			break;
197		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
198			if (K == 1)
199				break;
200			PPC_LI32(r_scratch1, K);
201			PPC_DIVWU(r_A, r_A, r_scratch1);
 
202			break;
203		case BPF_ALU | BPF_AND | BPF_X:
204			ctx->seen |= SEEN_XREG;
205			PPC_AND(r_A, r_A, r_X);
206			break;
207		case BPF_ALU | BPF_AND | BPF_K:
208			if (!IMM_H(K))
209				PPC_ANDI(r_A, r_A, K);
210			else {
211				PPC_LI32(r_scratch1, K);
212				PPC_AND(r_A, r_A, r_scratch1);
213			}
214			break;
215		case BPF_ALU | BPF_OR | BPF_X:
216			ctx->seen |= SEEN_XREG;
217			PPC_OR(r_A, r_A, r_X);
218			break;
219		case BPF_ALU | BPF_OR | BPF_K:
220			if (IMM_L(K))
221				PPC_ORI(r_A, r_A, IMM_L(K));
222			if (K >= 65536)
223				PPC_ORIS(r_A, r_A, IMM_H(K));
224			break;
225		case BPF_ANC | SKF_AD_ALU_XOR_X:
226		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
227			ctx->seen |= SEEN_XREG;
228			PPC_XOR(r_A, r_A, r_X);
229			break;
230		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
231			if (IMM_L(K))
232				PPC_XORI(r_A, r_A, IMM_L(K));
233			if (K >= 65536)
234				PPC_XORIS(r_A, r_A, IMM_H(K));
235			break;
236		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
237			ctx->seen |= SEEN_XREG;
238			PPC_SLW(r_A, r_A, r_X);
239			break;
240		case BPF_ALU | BPF_LSH | BPF_K:
241			if (K == 0)
242				break;
243			else
244				PPC_SLWI(r_A, r_A, K);
245			break;
246		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
247			ctx->seen |= SEEN_XREG;
248			PPC_SRW(r_A, r_A, r_X);
249			break;
250		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
251			if (K == 0)
252				break;
253			else
254				PPC_SRWI(r_A, r_A, K);
255			break;
256		case BPF_ALU | BPF_NEG:
257			PPC_NEG(r_A, r_A);
258			break;
259		case BPF_RET | BPF_K:
260			PPC_LI32(r_ret, K);
261			if (!K) {
262				if (ctx->pc_ret0 == -1)
263					ctx->pc_ret0 = i;
264			}
265			/*
266			 * If this isn't the very last instruction, branch to
267			 * the epilogue if we've stuff to clean up.  Otherwise,
268			 * if there's nothing to tidy, just return.  If we /are/
269			 * the last instruction, we're about to fall through to
270			 * the epilogue to return.
271			 */
272			if (i != flen - 1) {
273				/*
274				 * Note: 'seen' is properly valid only on pass
275				 * #2.	Both parts of this conditional are the
276				 * same instruction size though, meaning the
277				 * first pass will still correctly determine the
278				 * code size/addresses.
279				 */
280				if (ctx->seen)
281					PPC_JMP(exit_addr);
282				else
283					PPC_BLR();
284			}
285			break;
286		case BPF_RET | BPF_A:
287			PPC_MR(r_ret, r_A);
288			if (i != flen - 1) {
289				if (ctx->seen)
290					PPC_JMP(exit_addr);
291				else
292					PPC_BLR();
293			}
294			break;
295		case BPF_MISC | BPF_TAX: /* X = A */
296			PPC_MR(r_X, r_A);
297			break;
298		case BPF_MISC | BPF_TXA: /* A = X */
299			ctx->seen |= SEEN_XREG;
300			PPC_MR(r_A, r_X);
301			break;
302
303			/*** Constant loads/M[] access ***/
304		case BPF_LD | BPF_IMM: /* A = K */
305			PPC_LI32(r_A, K);
306			break;
307		case BPF_LDX | BPF_IMM: /* X = K */
308			PPC_LI32(r_X, K);
309			break;
310		case BPF_LD | BPF_MEM: /* A = mem[K] */
311			PPC_MR(r_A, r_M + (K & 0xf));
312			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313			break;
314		case BPF_LDX | BPF_MEM: /* X = mem[K] */
315			PPC_MR(r_X, r_M + (K & 0xf));
316			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317			break;
318		case BPF_ST: /* mem[K] = A */
319			PPC_MR(r_M + (K & 0xf), r_A);
320			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
321			break;
322		case BPF_STX: /* mem[K] = X */
323			PPC_MR(r_M + (K & 0xf), r_X);
324			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
325			break;
326		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
327			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
328			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
329			break;
330		case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */
331			PPC_LWZ_OFFS(r_A, r_skb, K);
332			break;
333		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
334			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
335			break;
336
337			/*** Ancillary info loads ***/
338		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
 
 
 
 
 
 
339			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
340						  protocol) != 2);
341			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
342							    protocol));
 
343			break;
344		case BPF_ANC | SKF_AD_IFINDEX:
345		case BPF_ANC | SKF_AD_HATYPE:
346			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
347						ifindex) != 4);
348			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
349						type) != 2);
350			PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
351								dev));
352			PPC_CMPDI(r_scratch1, 0);
353			if (ctx->pc_ret0 != -1) {
354				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
355			} else {
356				/* Exit, returning 0; first pass hits here. */
357				PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
358				PPC_LI(r_ret, 0);
359				PPC_JMP(exit_addr);
360			}
361			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
362				PPC_LWZ_OFFS(r_A, r_scratch1,
 
363				     offsetof(struct net_device, ifindex));
364			} else {
365				PPC_LHZ_OFFS(r_A, r_scratch1,
366				     offsetof(struct net_device, type));
367			}
368
369			break;
370		case BPF_ANC | SKF_AD_MARK:
371			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
372			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
373							  mark));
374			break;
375		case BPF_ANC | SKF_AD_RXHASH:
376			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
377			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
378							  hash));
379			break;
380		case BPF_ANC | SKF_AD_VLAN_TAG:
381		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
382			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
383			BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
384
385			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
386							  vlan_tci));
387			if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
388				PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT);
389			} else {
390				PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT);
391				PPC_SRWI(r_A, r_A, 12);
392			}
393			break;
394		case BPF_ANC | SKF_AD_QUEUE:
395			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
396						  queue_mapping) != 2);
397			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
398							  queue_mapping));
399			break;
400		case BPF_ANC | SKF_AD_PKTTYPE:
401			PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
402			PPC_ANDI(r_A, r_A, PKT_TYPE_MAX);
403			PPC_SRWI(r_A, r_A, 5);
404			break;
405		case BPF_ANC | SKF_AD_CPU:
406			PPC_BPF_LOAD_CPU(r_A);
 
 
 
 
 
 
407			break;
 
408			/*** Absolute loads from packet header/data ***/
409		case BPF_LD | BPF_W | BPF_ABS:
410			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
411			goto common_load;
412		case BPF_LD | BPF_H | BPF_ABS:
413			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
414			goto common_load;
415		case BPF_LD | BPF_B | BPF_ABS:
416			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
417		common_load:
418			/* Load from [K]. */
 
 
 
419			ctx->seen |= SEEN_DATAREF;
420			PPC_FUNC_ADDR(r_scratch1, func);
 
 
421			PPC_MTLR(r_scratch1);
422			PPC_LI32(r_addr, K);
423			PPC_BLRL();
424			/*
425			 * Helper returns 'lt' condition on error, and an
426			 * appropriate return value in r3
427			 */
428			PPC_BCC(COND_LT, exit_addr);
429			break;
430
431			/*** Indirect loads from packet header/data ***/
432		case BPF_LD | BPF_W | BPF_IND:
433			func = sk_load_word;
434			goto common_load_ind;
435		case BPF_LD | BPF_H | BPF_IND:
436			func = sk_load_half;
437			goto common_load_ind;
438		case BPF_LD | BPF_B | BPF_IND:
439			func = sk_load_byte;
440		common_load_ind:
441			/*
442			 * Load from [X + K].  Negative offsets are tested for
443			 * in the helper functions.
444			 */
445			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
446			PPC_FUNC_ADDR(r_scratch1, func);
447			PPC_MTLR(r_scratch1);
448			PPC_ADDI(r_addr, r_X, IMM_L(K));
449			if (K >= 32768)
450				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
451			PPC_BLRL();
452			/* If error, cr0.LT set */
453			PPC_BCC(COND_LT, exit_addr);
454			break;
455
456		case BPF_LDX | BPF_B | BPF_MSH:
457			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
 
 
 
 
 
 
458			goto common_load;
459			break;
460
461			/*** Jump and branches ***/
462		case BPF_JMP | BPF_JA:
463			if (K != 0)
464				PPC_JMP(addrs[i + 1 + K]);
465			break;
466
467		case BPF_JMP | BPF_JGT | BPF_K:
468		case BPF_JMP | BPF_JGT | BPF_X:
469			true_cond = COND_GT;
470			goto cond_branch;
471		case BPF_JMP | BPF_JGE | BPF_K:
472		case BPF_JMP | BPF_JGE | BPF_X:
473			true_cond = COND_GE;
474			goto cond_branch;
475		case BPF_JMP | BPF_JEQ | BPF_K:
476		case BPF_JMP | BPF_JEQ | BPF_X:
477			true_cond = COND_EQ;
478			goto cond_branch;
479		case BPF_JMP | BPF_JSET | BPF_K:
480		case BPF_JMP | BPF_JSET | BPF_X:
481			true_cond = COND_NE;
482			/* Fall through */
483		cond_branch:
484			/* same targets, can avoid doing the test :) */
485			if (filter[i].jt == filter[i].jf) {
486				if (filter[i].jt > 0)
487					PPC_JMP(addrs[i + 1 + filter[i].jt]);
488				break;
489			}
490
491			switch (code) {
492			case BPF_JMP | BPF_JGT | BPF_X:
493			case BPF_JMP | BPF_JGE | BPF_X:
494			case BPF_JMP | BPF_JEQ | BPF_X:
495				ctx->seen |= SEEN_XREG;
496				PPC_CMPLW(r_A, r_X);
497				break;
498			case BPF_JMP | BPF_JSET | BPF_X:
499				ctx->seen |= SEEN_XREG;
500				PPC_AND_DOT(r_scratch1, r_A, r_X);
501				break;
502			case BPF_JMP | BPF_JEQ | BPF_K:
503			case BPF_JMP | BPF_JGT | BPF_K:
504			case BPF_JMP | BPF_JGE | BPF_K:
505				if (K < 32768)
506					PPC_CMPLWI(r_A, K);
507				else {
508					PPC_LI32(r_scratch1, K);
509					PPC_CMPLW(r_A, r_scratch1);
510				}
511				break;
512			case BPF_JMP | BPF_JSET | BPF_K:
513				if (K < 32768)
514					/* PPC_ANDI is /only/ dot-form */
515					PPC_ANDI(r_scratch1, r_A, K);
516				else {
517					PPC_LI32(r_scratch1, K);
518					PPC_AND_DOT(r_scratch1, r_A,
519						    r_scratch1);
520				}
521				break;
522			}
523			/* Sometimes branches are constructed "backward", with
524			 * the false path being the branch and true path being
525			 * a fallthrough to the next instruction.
526			 */
527			if (filter[i].jt == 0)
528				/* Swap the sense of the branch */
529				PPC_BCC(true_cond ^ COND_CMP_TRUE,
530					addrs[i + 1 + filter[i].jf]);
531			else {
532				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
533				if (filter[i].jf != 0)
534					PPC_JMP(addrs[i + 1 + filter[i].jf]);
535			}
536			break;
537		default:
538			/* The filter contains something cruel & unusual.
539			 * We don't handle it, but also there shouldn't be
540			 * anything missing from our list.
541			 */
542			if (printk_ratelimit())
543				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
544				       filter[i].code, i);
545			return -ENOTSUPP;
546		}
547
548	}
549	/* Set end-of-body-code address for exit. */
550	addrs[i] = ctx->idx * 4;
551
552	return 0;
553}
554
555void bpf_jit_compile(struct bpf_prog *fp)
556{
557	unsigned int proglen;
558	unsigned int alloclen;
559	u32 *image = NULL;
560	u32 *code_base;
561	unsigned int *addrs;
562	struct codegen_context cgctx;
563	int pass;
564	int flen = fp->len;
565
566	if (!bpf_jit_enable)
567		return;
568
569	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
570	if (addrs == NULL)
571		return;
572
573	/*
574	 * There are multiple assembly passes as the generated code will change
575	 * size as it settles down, figuring out the max branch offsets/exit
576	 * paths required.
577	 *
578	 * The range of standard conditional branches is +/- 32Kbytes.	Since
579	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
580	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
581	 * used, distinct from short branches.
582	 *
583	 * Current:
584	 *
585	 * For now, both branch types assemble to 2 words (short branches padded
586	 * with a NOP); this is less efficient, but assembly will always complete
587	 * after exactly 3 passes:
588	 *
589	 * First pass: No code buffer; Program is "faux-generated" -- no code
590	 * emitted but maximum size of output determined (and addrs[] filled
591	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
592	 * All generation choices assumed to be 'worst-case', e.g. branches all
593	 * far (2 instructions), return path code reduction not available, etc.
594	 *
595	 * Second pass: Code buffer allocated with size determined previously.
596	 * Prologue generated to support features we have seen used.  Exit paths
597	 * determined and addrs[] is filled in again, as code may be slightly
598	 * smaller as a result.
599	 *
600	 * Third pass: Code generated 'for real', and branch destinations
601	 * determined from now-accurate addrs[] map.
602	 *
603	 * Ideal:
604	 *
605	 * If we optimise this, near branches will be shorter.	On the
606	 * first assembly pass, we should err on the side of caution and
607	 * generate the biggest code.  On subsequent passes, branches will be
608	 * generated short or long and code size will reduce.  With smaller
609	 * code, more branches may fall into the short category, and code will
610	 * reduce more.
611	 *
612	 * Finally, if we see one pass generate code the same size as the
613	 * previous pass we have converged and should now generate code for
614	 * real.  Allocating at the end will also save the memory that would
615	 * otherwise be wasted by the (small) current code shrinkage.
616	 * Preferably, we should do a small number of passes (e.g. 5) and if we
617	 * haven't converged by then, get impatient and force code to generate
618	 * as-is, even if the odd branch would be left long.  The chances of a
619	 * long jump are tiny with all but the most enormous of BPF filter
620	 * inputs, so we should usually converge on the third pass.
621	 */
622
623	cgctx.idx = 0;
624	cgctx.seen = 0;
625	cgctx.pc_ret0 = -1;
626	/* Scouting faux-generate pass 0 */
627	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
628		/* We hit something illegal or unsupported. */
629		goto out;
630
631	/*
632	 * Pretend to build prologue, given the features we've seen.  This will
633	 * update ctgtx.idx as it pretends to output instructions, then we can
634	 * calculate total size from idx.
635	 */
636	bpf_jit_build_prologue(fp, 0, &cgctx);
637	bpf_jit_build_epilogue(0, &cgctx);
638
639	proglen = cgctx.idx * 4;
640	alloclen = proglen + FUNCTION_DESCR_SIZE;
641	image = module_alloc(alloclen);
 
642	if (!image)
643		goto out;
644
645	code_base = image + (FUNCTION_DESCR_SIZE/4);
646
647	/* Code generation passes 1-2 */
648	for (pass = 1; pass < 3; pass++) {
649		/* Now build the prologue, body code & epilogue for real. */
650		cgctx.idx = 0;
651		bpf_jit_build_prologue(fp, code_base, &cgctx);
652		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
653		bpf_jit_build_epilogue(code_base, &cgctx);
654
655		if (bpf_jit_enable > 1)
656			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
657				proglen - (cgctx.idx * 4), cgctx.seen);
658	}
659
660	if (bpf_jit_enable > 1)
661		/* Note that we output the base address of the code_base
662		 * rather than image, since opcodes are in code_base.
663		 */
664		bpf_jit_dump(flen, proglen, pass, code_base);
665
666	bpf_flush_icache(code_base, code_base + (proglen/4));
667
668#ifdef CONFIG_PPC64
669	/* Function descriptor nastiness: Address + TOC */
670	((u64 *)image)[0] = (u64)code_base;
671	((u64 *)image)[1] = local_paca->kernel_toc;
672#endif
673
674	fp->bpf_func = (void *)image;
675	fp->jited = 1;
676
 
 
 
 
 
 
 
 
 
 
 
 
 
677out:
678	kfree(addrs);
679	return;
680}
681
682void bpf_jit_free(struct bpf_prog *fp)
683{
684	if (fp->jited)
685		module_memfree(fp->bpf_func);
686
687	bpf_prog_unlock_free(fp);
 
 
 
 
 
 
 
 
 
 
688}