Linux Audio

Check our new training course

Loading...
v3.1
  1/* bpf_jit_comp.c: BPF JIT compiler for PPC64
  2 *
  3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  4 *
  5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
 
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12#include <linux/moduleloader.h>
 13#include <asm/cacheflush.h>
 14#include <linux/netdevice.h>
 15#include <linux/filter.h>
 16#include "bpf_jit.h"
 17
 18#ifndef __BIG_ENDIAN
 19/* There are endianness assumptions herein. */
 20#error "Little-endian PPC not supported in BPF compiler"
 21#endif
 22
 23int bpf_jit_enable __read_mostly;
 24
 25
 26static inline void bpf_flush_icache(void *start, void *end)
 27{
 28	smp_wmb();
 29	flush_icache_range((unsigned long)start, (unsigned long)end);
 30}
 31
 32static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
 33				   struct codegen_context *ctx)
 34{
 35	int i;
 36	const struct sock_filter *filter = fp->insns;
 37
 38	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 39		/* Make stackframe */
 40		if (ctx->seen & SEEN_DATAREF) {
 41			/* If we call any helpers (for loads), save LR */
 42			EMIT(PPC_INST_MFLR | __PPC_RT(0));
 43			PPC_STD(0, 1, 16);
 44
 45			/* Back up non-volatile regs. */
 46			PPC_STD(r_D, 1, -(8*(32-r_D)));
 47			PPC_STD(r_HL, 1, -(8*(32-r_HL)));
 48		}
 49		if (ctx->seen & SEEN_MEM) {
 50			/*
 51			 * Conditionally save regs r15-r31 as some will be used
 52			 * for M[] data.
 53			 */
 54			for (i = r_M; i < (r_M+16); i++) {
 55				if (ctx->seen & (1 << (i-r_M)))
 56					PPC_STD(i, 1, -(8*(32-i)));
 57			}
 58		}
 59		EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
 60		     (-BPF_PPC_STACKFRAME & 0xfffc));
 61	}
 62
 63	if (ctx->seen & SEEN_DATAREF) {
 64		/*
 65		 * If this filter needs to access skb data,
 66		 * prepare r_D and r_HL:
 67		 *  r_HL = skb->len - skb->data_len
 68		 *  r_D	 = skb->data
 69		 */
 70		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 71							 data_len));
 72		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 73		PPC_SUB(r_HL, r_HL, r_scratch1);
 74		PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 75	}
 76
 77	if (ctx->seen & SEEN_XREG) {
 78		/*
 79		 * TODO: Could also detect whether first instr. sets X and
 80		 * avoid this (as below, with A).
 81		 */
 82		PPC_LI(r_X, 0);
 83	}
 84
 85	switch (filter[0].code) {
 86	case BPF_S_RET_K:
 87	case BPF_S_LD_W_LEN:
 88	case BPF_S_ANC_PROTOCOL:
 89	case BPF_S_ANC_IFINDEX:
 90	case BPF_S_ANC_MARK:
 91	case BPF_S_ANC_RXHASH:
 92	case BPF_S_ANC_CPU:
 93	case BPF_S_ANC_QUEUE:
 94	case BPF_S_LD_W_ABS:
 95	case BPF_S_LD_H_ABS:
 96	case BPF_S_LD_B_ABS:
 97		/* first instruction sets A register (or is RET 'constant') */
 98		break;
 99	default:
100		/* make sure we dont leak kernel information to user */
101		PPC_LI(r_A, 0);
102	}
103}
104
105static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
106{
107	int i;
108
109	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
110		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
111		if (ctx->seen & SEEN_DATAREF) {
112			PPC_LD(0, 1, 16);
113			PPC_MTLR(0);
114			PPC_LD(r_D, 1, -(8*(32-r_D)));
115			PPC_LD(r_HL, 1, -(8*(32-r_HL)));
116		}
117		if (ctx->seen & SEEN_MEM) {
118			/* Restore any saved non-vol registers */
119			for (i = r_M; i < (r_M+16); i++) {
120				if (ctx->seen & (1 << (i-r_M)))
121					PPC_LD(i, 1, -(8*(32-i)));
122			}
123		}
124	}
125	/* The RETs have left a return value in R3. */
126
127	PPC_BLR();
128}
129
 
 
 
130/* Assemble the body code between the prologue & epilogue. */
131static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
132			      struct codegen_context *ctx,
133			      unsigned int *addrs)
134{
135	const struct sock_filter *filter = fp->insns;
136	int flen = fp->len;
137	u8 *func;
138	unsigned int true_cond;
139	int i;
140
141	/* Start of epilogue code */
142	unsigned int exit_addr = addrs[flen];
143
144	for (i = 0; i < flen; i++) {
145		unsigned int K = filter[i].k;
 
146
147		/*
148		 * addrs[] maps a BPF bytecode address into a real offset from
149		 * the start of the body code.
150		 */
151		addrs[i] = ctx->idx * 4;
152
153		switch (filter[i].code) {
154			/*** ALU ops ***/
155		case BPF_S_ALU_ADD_X: /* A += X; */
156			ctx->seen |= SEEN_XREG;
157			PPC_ADD(r_A, r_A, r_X);
158			break;
159		case BPF_S_ALU_ADD_K: /* A += K; */
160			if (!K)
161				break;
162			PPC_ADDI(r_A, r_A, IMM_L(K));
163			if (K >= 32768)
164				PPC_ADDIS(r_A, r_A, IMM_HA(K));
165			break;
166		case BPF_S_ALU_SUB_X: /* A -= X; */
167			ctx->seen |= SEEN_XREG;
168			PPC_SUB(r_A, r_A, r_X);
169			break;
170		case BPF_S_ALU_SUB_K: /* A -= K */
171			if (!K)
172				break;
173			PPC_ADDI(r_A, r_A, IMM_L(-K));
174			if (K >= 32768)
175				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
176			break;
177		case BPF_S_ALU_MUL_X: /* A *= X; */
178			ctx->seen |= SEEN_XREG;
179			PPC_MUL(r_A, r_A, r_X);
180			break;
181		case BPF_S_ALU_MUL_K: /* A *= K */
182			if (K < 32768)
183				PPC_MULI(r_A, r_A, K);
184			else {
185				PPC_LI32(r_scratch1, K);
186				PPC_MUL(r_A, r_A, r_scratch1);
187			}
188			break;
189		case BPF_S_ALU_DIV_X: /* A /= X; */
 
190			ctx->seen |= SEEN_XREG;
191			PPC_CMPWI(r_X, 0);
192			if (ctx->pc_ret0 != -1) {
193				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
194			} else {
195				/*
196				 * Exit, returning 0; first pass hits here
197				 * (longer worst-case code size).
198				 */
199				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
200				PPC_LI(r_ret, 0);
201				PPC_JMP(exit_addr);
202			}
203			PPC_DIVWU(r_A, r_A, r_X);
 
 
 
 
 
 
 
 
 
 
 
 
204			break;
205		case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
 
 
206			PPC_LI32(r_scratch1, K);
207			/* Top 32 bits of 64bit result -> A */
208			PPC_MULHWU(r_A, r_A, r_scratch1);
209			break;
210		case BPF_S_ALU_AND_X:
211			ctx->seen |= SEEN_XREG;
212			PPC_AND(r_A, r_A, r_X);
213			break;
214		case BPF_S_ALU_AND_K:
215			if (!IMM_H(K))
216				PPC_ANDI(r_A, r_A, K);
217			else {
218				PPC_LI32(r_scratch1, K);
219				PPC_AND(r_A, r_A, r_scratch1);
220			}
221			break;
222		case BPF_S_ALU_OR_X:
223			ctx->seen |= SEEN_XREG;
224			PPC_OR(r_A, r_A, r_X);
225			break;
226		case BPF_S_ALU_OR_K:
227			if (IMM_L(K))
228				PPC_ORI(r_A, r_A, IMM_L(K));
229			if (K >= 65536)
230				PPC_ORIS(r_A, r_A, IMM_H(K));
231			break;
232		case BPF_S_ALU_LSH_X: /* A <<= X; */
 
 
 
 
 
 
 
 
 
 
 
233			ctx->seen |= SEEN_XREG;
234			PPC_SLW(r_A, r_A, r_X);
235			break;
236		case BPF_S_ALU_LSH_K:
237			if (K == 0)
238				break;
239			else
240				PPC_SLWI(r_A, r_A, K);
241			break;
242		case BPF_S_ALU_RSH_X: /* A >>= X; */
243			ctx->seen |= SEEN_XREG;
244			PPC_SRW(r_A, r_A, r_X);
245			break;
246		case BPF_S_ALU_RSH_K: /* A >>= K; */
247			if (K == 0)
248				break;
249			else
250				PPC_SRWI(r_A, r_A, K);
251			break;
252		case BPF_S_ALU_NEG:
253			PPC_NEG(r_A, r_A);
254			break;
255		case BPF_S_RET_K:
256			PPC_LI32(r_ret, K);
257			if (!K) {
258				if (ctx->pc_ret0 == -1)
259					ctx->pc_ret0 = i;
260			}
261			/*
262			 * If this isn't the very last instruction, branch to
263			 * the epilogue if we've stuff to clean up.  Otherwise,
264			 * if there's nothing to tidy, just return.  If we /are/
265			 * the last instruction, we're about to fall through to
266			 * the epilogue to return.
267			 */
268			if (i != flen - 1) {
269				/*
270				 * Note: 'seen' is properly valid only on pass
271				 * #2.	Both parts of this conditional are the
272				 * same instruction size though, meaning the
273				 * first pass will still correctly determine the
274				 * code size/addresses.
275				 */
276				if (ctx->seen)
277					PPC_JMP(exit_addr);
278				else
279					PPC_BLR();
280			}
281			break;
282		case BPF_S_RET_A:
283			PPC_MR(r_ret, r_A);
284			if (i != flen - 1) {
285				if (ctx->seen)
286					PPC_JMP(exit_addr);
287				else
288					PPC_BLR();
289			}
290			break;
291		case BPF_S_MISC_TAX: /* X = A */
292			PPC_MR(r_X, r_A);
293			break;
294		case BPF_S_MISC_TXA: /* A = X */
295			ctx->seen |= SEEN_XREG;
296			PPC_MR(r_A, r_X);
297			break;
298
299			/*** Constant loads/M[] access ***/
300		case BPF_S_LD_IMM: /* A = K */
301			PPC_LI32(r_A, K);
302			break;
303		case BPF_S_LDX_IMM: /* X = K */
304			PPC_LI32(r_X, K);
305			break;
306		case BPF_S_LD_MEM: /* A = mem[K] */
307			PPC_MR(r_A, r_M + (K & 0xf));
308			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
309			break;
310		case BPF_S_LDX_MEM: /* X = mem[K] */
311			PPC_MR(r_X, r_M + (K & 0xf));
312			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313			break;
314		case BPF_S_ST: /* mem[K] = A */
315			PPC_MR(r_M + (K & 0xf), r_A);
316			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317			break;
318		case BPF_S_STX: /* mem[K] = X */
319			PPC_MR(r_M + (K & 0xf), r_X);
320			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
321			break;
322		case BPF_S_LD_W_LEN: /*	A = skb->len; */
323			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
324			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
325			break;
326		case BPF_S_LDX_W_LEN: /* X = skb->len; */
327			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
328			break;
329
330			/*** Ancillary info loads ***/
331
332			/* None of the BPF_S_ANC* codes appear to be passed by
333			 * sk_chk_filter().  The interpreter and the x86 BPF
334			 * compiler implement them so we do too -- they may be
335			 * planted in future.
336			 */
337		case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
338			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
339						  protocol) != 2);
340			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
341							  protocol));
342			/* ntohs is a NOP with BE loads. */
343			break;
344		case BPF_S_ANC_IFINDEX:
345			PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 
 
 
 
 
346								dev));
347			PPC_CMPDI(r_scratch1, 0);
348			if (ctx->pc_ret0 != -1) {
349				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
350			} else {
351				/* Exit, returning 0; first pass hits here. */
352				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
353				PPC_LI(r_ret, 0);
354				PPC_JMP(exit_addr);
355			}
356			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
357						  ifindex) != 4);
358			PPC_LWZ_OFFS(r_A, r_scratch1,
359				     offsetof(struct net_device, ifindex));
 
 
 
 
 
360			break;
361		case BPF_S_ANC_MARK:
362			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
363			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
364							  mark));
365			break;
366		case BPF_S_ANC_RXHASH:
367			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
368			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
369							  rxhash));
370			break;
371		case BPF_S_ANC_QUEUE:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
373						  queue_mapping) != 2);
374			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375							  queue_mapping));
376			break;
377		case BPF_S_ANC_CPU:
378#ifdef CONFIG_SMP
379			/*
380			 * PACA ptr is r13:
381			 * raw_smp_processor_id() = local_paca->paca_index
382			 */
383			BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
384						  paca_index) != 2);
385			PPC_LHZ_OFFS(r_A, 13,
386				     offsetof(struct paca_struct, paca_index));
387#else
388			PPC_LI(r_A, 0);
389#endif
390			break;
391
392			/*** Absolute loads from packet header/data ***/
393		case BPF_S_LD_W_ABS:
394			func = sk_load_word;
395			goto common_load;
396		case BPF_S_LD_H_ABS:
397			func = sk_load_half;
398			goto common_load;
399		case BPF_S_LD_B_ABS:
400			func = sk_load_byte;
401		common_load:
402			/*
403			 * Load from [K].  Reference with the (negative)
404			 * SKF_NET_OFF/SKF_LL_OFF offsets is unsupported.
405			 */
406			ctx->seen |= SEEN_DATAREF;
407			if ((int)K < 0)
408				return -ENOTSUPP;
409			PPC_LI64(r_scratch1, func);
410			PPC_MTLR(r_scratch1);
411			PPC_LI32(r_addr, K);
412			PPC_BLRL();
413			/*
414			 * Helper returns 'lt' condition on error, and an
415			 * appropriate return value in r3
416			 */
417			PPC_BCC(COND_LT, exit_addr);
418			break;
419
420			/*** Indirect loads from packet header/data ***/
421		case BPF_S_LD_W_IND:
422			func = sk_load_word;
423			goto common_load_ind;
424		case BPF_S_LD_H_IND:
425			func = sk_load_half;
426			goto common_load_ind;
427		case BPF_S_LD_B_IND:
428			func = sk_load_byte;
429		common_load_ind:
430			/*
431			 * Load from [X + K].  Negative offsets are tested for
432			 * in the helper functions, and result in a 'ret 0'.
433			 */
434			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
435			PPC_LI64(r_scratch1, func);
436			PPC_MTLR(r_scratch1);
437			PPC_ADDI(r_addr, r_X, IMM_L(K));
438			if (K >= 32768)
439				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
440			PPC_BLRL();
441			/* If error, cr0.LT set */
442			PPC_BCC(COND_LT, exit_addr);
443			break;
444
445		case BPF_S_LDX_B_MSH:
446			/*
447			 * x86 version drops packet (RET 0) when K<0, whereas
448			 * interpreter does allow K<0 (__load_pointer, special
449			 * ancillary data).  common_load returns ENOTSUPP if K<0,
450			 * so we fall back to interpreter & filter works.
451			 */
452			func = sk_load_byte_msh;
453			goto common_load;
454			break;
455
456			/*** Jump and branches ***/
457		case BPF_S_JMP_JA:
458			if (K != 0)
459				PPC_JMP(addrs[i + 1 + K]);
460			break;
461
462		case BPF_S_JMP_JGT_K:
463		case BPF_S_JMP_JGT_X:
464			true_cond = COND_GT;
465			goto cond_branch;
466		case BPF_S_JMP_JGE_K:
467		case BPF_S_JMP_JGE_X:
468			true_cond = COND_GE;
469			goto cond_branch;
470		case BPF_S_JMP_JEQ_K:
471		case BPF_S_JMP_JEQ_X:
472			true_cond = COND_EQ;
473			goto cond_branch;
474		case BPF_S_JMP_JSET_K:
475		case BPF_S_JMP_JSET_X:
476			true_cond = COND_NE;
477			/* Fall through */
478		cond_branch:
479			/* same targets, can avoid doing the test :) */
480			if (filter[i].jt == filter[i].jf) {
481				if (filter[i].jt > 0)
482					PPC_JMP(addrs[i + 1 + filter[i].jt]);
483				break;
484			}
485
486			switch (filter[i].code) {
487			case BPF_S_JMP_JGT_X:
488			case BPF_S_JMP_JGE_X:
489			case BPF_S_JMP_JEQ_X:
490				ctx->seen |= SEEN_XREG;
491				PPC_CMPLW(r_A, r_X);
492				break;
493			case BPF_S_JMP_JSET_X:
494				ctx->seen |= SEEN_XREG;
495				PPC_AND_DOT(r_scratch1, r_A, r_X);
496				break;
497			case BPF_S_JMP_JEQ_K:
498			case BPF_S_JMP_JGT_K:
499			case BPF_S_JMP_JGE_K:
500				if (K < 32768)
501					PPC_CMPLWI(r_A, K);
502				else {
503					PPC_LI32(r_scratch1, K);
504					PPC_CMPLW(r_A, r_scratch1);
505				}
506				break;
507			case BPF_S_JMP_JSET_K:
508				if (K < 32768)
509					/* PPC_ANDI is /only/ dot-form */
510					PPC_ANDI(r_scratch1, r_A, K);
511				else {
512					PPC_LI32(r_scratch1, K);
513					PPC_AND_DOT(r_scratch1, r_A,
514						    r_scratch1);
515				}
516				break;
517			}
518			/* Sometimes branches are constructed "backward", with
519			 * the false path being the branch and true path being
520			 * a fallthrough to the next instruction.
521			 */
522			if (filter[i].jt == 0)
523				/* Swap the sense of the branch */
524				PPC_BCC(true_cond ^ COND_CMP_TRUE,
525					addrs[i + 1 + filter[i].jf]);
526			else {
527				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
528				if (filter[i].jf != 0)
529					PPC_JMP(addrs[i + 1 + filter[i].jf]);
530			}
531			break;
532		default:
533			/* The filter contains something cruel & unusual.
534			 * We don't handle it, but also there shouldn't be
535			 * anything missing from our list.
536			 */
537			if (printk_ratelimit())
538				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
539				       filter[i].code, i);
540			return -ENOTSUPP;
541		}
542
543	}
544	/* Set end-of-body-code address for exit. */
545	addrs[i] = ctx->idx * 4;
546
547	return 0;
548}
549
550void bpf_jit_compile(struct sk_filter *fp)
551{
552	unsigned int proglen;
553	unsigned int alloclen;
554	u32 *image = NULL;
555	u32 *code_base;
556	unsigned int *addrs;
557	struct codegen_context cgctx;
558	int pass;
559	int flen = fp->len;
560
561	if (!bpf_jit_enable)
562		return;
563
564	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
565	if (addrs == NULL)
566		return;
567
568	/*
569	 * There are multiple assembly passes as the generated code will change
570	 * size as it settles down, figuring out the max branch offsets/exit
571	 * paths required.
572	 *
573	 * The range of standard conditional branches is +/- 32Kbytes.	Since
574	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
575	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
576	 * used, distinct from short branches.
577	 *
578	 * Current:
579	 *
580	 * For now, both branch types assemble to 2 words (short branches padded
581	 * with a NOP); this is less efficient, but assembly will always complete
582	 * after exactly 3 passes:
583	 *
584	 * First pass: No code buffer; Program is "faux-generated" -- no code
585	 * emitted but maximum size of output determined (and addrs[] filled
586	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
587	 * All generation choices assumed to be 'worst-case', e.g. branches all
588	 * far (2 instructions), return path code reduction not available, etc.
589	 *
590	 * Second pass: Code buffer allocated with size determined previously.
591	 * Prologue generated to support features we have seen used.  Exit paths
592	 * determined and addrs[] is filled in again, as code may be slightly
593	 * smaller as a result.
594	 *
595	 * Third pass: Code generated 'for real', and branch destinations
596	 * determined from now-accurate addrs[] map.
597	 *
598	 * Ideal:
599	 *
600	 * If we optimise this, near branches will be shorter.	On the
601	 * first assembly pass, we should err on the side of caution and
602	 * generate the biggest code.  On subsequent passes, branches will be
603	 * generated short or long and code size will reduce.  With smaller
604	 * code, more branches may fall into the short category, and code will
605	 * reduce more.
606	 *
607	 * Finally, if we see one pass generate code the same size as the
608	 * previous pass we have converged and should now generate code for
609	 * real.  Allocating at the end will also save the memory that would
610	 * otherwise be wasted by the (small) current code shrinkage.
611	 * Preferably, we should do a small number of passes (e.g. 5) and if we
612	 * haven't converged by then, get impatient and force code to generate
613	 * as-is, even if the odd branch would be left long.  The chances of a
614	 * long jump are tiny with all but the most enormous of BPF filter
615	 * inputs, so we should usually converge on the third pass.
616	 */
617
618	cgctx.idx = 0;
619	cgctx.seen = 0;
620	cgctx.pc_ret0 = -1;
621	/* Scouting faux-generate pass 0 */
622	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
623		/* We hit something illegal or unsupported. */
624		goto out;
625
626	/*
627	 * Pretend to build prologue, given the features we've seen.  This will
628	 * update ctgtx.idx as it pretends to output instructions, then we can
629	 * calculate total size from idx.
630	 */
631	bpf_jit_build_prologue(fp, 0, &cgctx);
632	bpf_jit_build_epilogue(0, &cgctx);
633
634	proglen = cgctx.idx * 4;
635	alloclen = proglen + FUNCTION_DESCR_SIZE;
636	image = module_alloc(max_t(unsigned int, alloclen,
637				   sizeof(struct work_struct)));
638	if (!image)
639		goto out;
640
641	code_base = image + (FUNCTION_DESCR_SIZE/4);
642
643	/* Code generation passes 1-2 */
644	for (pass = 1; pass < 3; pass++) {
645		/* Now build the prologue, body code & epilogue for real. */
646		cgctx.idx = 0;
647		bpf_jit_build_prologue(fp, code_base, &cgctx);
648		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
649		bpf_jit_build_epilogue(code_base, &cgctx);
650
651		if (bpf_jit_enable > 1)
652			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
653				proglen - (cgctx.idx * 4), cgctx.seen);
654	}
655
656	if (bpf_jit_enable > 1)
657		pr_info("flen=%d proglen=%u pass=%d image=%p\n",
658		       flen, proglen, pass, image);
 
 
659
660	if (image) {
661		if (bpf_jit_enable > 1)
662			print_hex_dump(KERN_ERR, "JIT code: ",
663				       DUMP_PREFIX_ADDRESS,
664				       16, 1, code_base,
665				       proglen, false);
666
667		bpf_flush_icache(code_base, code_base + (proglen/4));
 
668		/* Function descriptor nastiness: Address + TOC */
669		((u64 *)image)[0] = (u64)code_base;
670		((u64 *)image)[1] = local_paca->kernel_toc;
 
671		fp->bpf_func = (void *)image;
 
672	}
673out:
674	kfree(addrs);
675	return;
676}
677
678static void jit_free_defer(struct work_struct *arg)
679{
680	module_free(NULL, arg);
681}
682
683/* run from softirq, we must use a work_struct to call
684 * module_free() from process context
685 */
686void bpf_jit_free(struct sk_filter *fp)
687{
688	if (fp->bpf_func != sk_run_filter) {
689		struct work_struct *work = (struct work_struct *)fp->bpf_func;
690
691		INIT_WORK(work, jit_free_defer);
692		schedule_work(work);
693	}
694}
v4.6
  1/* bpf_jit_comp.c: BPF JIT compiler
  2 *
  3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  4 *
  5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  6 * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; version 2
 11 * of the License.
 12 */
 13#include <linux/moduleloader.h>
 14#include <asm/cacheflush.h>
 15#include <linux/netdevice.h>
 16#include <linux/filter.h>
 17#include <linux/if_vlan.h>
 18
 19#include "bpf_jit.h"
 
 
 
 20
 21int bpf_jit_enable __read_mostly;
 22
 
 23static inline void bpf_flush_icache(void *start, void *end)
 24{
 25	smp_wmb();
 26	flush_icache_range((unsigned long)start, (unsigned long)end);
 27}
 28
 29static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
 30				   struct codegen_context *ctx)
 31{
 32	int i;
 33	const struct sock_filter *filter = fp->insns;
 34
 35	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 36		/* Make stackframe */
 37		if (ctx->seen & SEEN_DATAREF) {
 38			/* If we call any helpers (for loads), save LR */
 39			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
 40			PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
 41
 42			/* Back up non-volatile regs. */
 43			PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
 44			PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 45		}
 46		if (ctx->seen & SEEN_MEM) {
 47			/*
 48			 * Conditionally save regs r15-r31 as some will be used
 49			 * for M[] data.
 50			 */
 51			for (i = r_M; i < (r_M+16); i++) {
 52				if (ctx->seen & (1 << (i-r_M)))
 53					PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
 54			}
 55		}
 56		PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
 
 57	}
 58
 59	if (ctx->seen & SEEN_DATAREF) {
 60		/*
 61		 * If this filter needs to access skb data,
 62		 * prepare r_D and r_HL:
 63		 *  r_HL = skb->len - skb->data_len
 64		 *  r_D	 = skb->data
 65		 */
 66		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 67							 data_len));
 68		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 69		PPC_SUB(r_HL, r_HL, r_scratch1);
 70		PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 71	}
 72
 73	if (ctx->seen & SEEN_XREG) {
 74		/*
 75		 * TODO: Could also detect whether first instr. sets X and
 76		 * avoid this (as below, with A).
 77		 */
 78		PPC_LI(r_X, 0);
 79	}
 80
 81	/* make sure we dont leak kernel information to user */
 82	if (bpf_needs_clear_a(&filter[0]))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83		PPC_LI(r_A, 0);
 
 84}
 85
 86static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
 87{
 88	int i;
 89
 90	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 91		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
 92		if (ctx->seen & SEEN_DATAREF) {
 93			PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
 94			PPC_MTLR(0);
 95			PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
 96			PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 97		}
 98		if (ctx->seen & SEEN_MEM) {
 99			/* Restore any saved non-vol registers */
100			for (i = r_M; i < (r_M+16); i++) {
101				if (ctx->seen & (1 << (i-r_M)))
102					PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
103			}
104		}
105	}
106	/* The RETs have left a return value in R3. */
107
108	PPC_BLR();
109}
110
111#define CHOOSE_LOAD_FUNC(K, func) \
112	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
113
114/* Assemble the body code between the prologue & epilogue. */
115static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
116			      struct codegen_context *ctx,
117			      unsigned int *addrs)
118{
119	const struct sock_filter *filter = fp->insns;
120	int flen = fp->len;
121	u8 *func;
122	unsigned int true_cond;
123	int i;
124
125	/* Start of epilogue code */
126	unsigned int exit_addr = addrs[flen];
127
128	for (i = 0; i < flen; i++) {
129		unsigned int K = filter[i].k;
130		u16 code = bpf_anc_helper(&filter[i]);
131
132		/*
133		 * addrs[] maps a BPF bytecode address into a real offset from
134		 * the start of the body code.
135		 */
136		addrs[i] = ctx->idx * 4;
137
138		switch (code) {
139			/*** ALU ops ***/
140		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
141			ctx->seen |= SEEN_XREG;
142			PPC_ADD(r_A, r_A, r_X);
143			break;
144		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
145			if (!K)
146				break;
147			PPC_ADDI(r_A, r_A, IMM_L(K));
148			if (K >= 32768)
149				PPC_ADDIS(r_A, r_A, IMM_HA(K));
150			break;
151		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
152			ctx->seen |= SEEN_XREG;
153			PPC_SUB(r_A, r_A, r_X);
154			break;
155		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
156			if (!K)
157				break;
158			PPC_ADDI(r_A, r_A, IMM_L(-K));
159			if (K >= 32768)
160				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
161			break;
162		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
163			ctx->seen |= SEEN_XREG;
164			PPC_MUL(r_A, r_A, r_X);
165			break;
166		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
167			if (K < 32768)
168				PPC_MULI(r_A, r_A, K);
169			else {
170				PPC_LI32(r_scratch1, K);
171				PPC_MUL(r_A, r_A, r_scratch1);
172			}
173			break;
174		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
175		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
176			ctx->seen |= SEEN_XREG;
177			PPC_CMPWI(r_X, 0);
178			if (ctx->pc_ret0 != -1) {
179				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
180			} else {
 
 
 
 
181				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
182				PPC_LI(r_ret, 0);
183				PPC_JMP(exit_addr);
184			}
185			if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
186				PPC_DIVWU(r_scratch1, r_A, r_X);
187				PPC_MUL(r_scratch1, r_X, r_scratch1);
188				PPC_SUB(r_A, r_A, r_scratch1);
189			} else {
190				PPC_DIVWU(r_A, r_A, r_X);
191			}
192			break;
193		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
194			PPC_LI32(r_scratch2, K);
195			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
196			PPC_MUL(r_scratch1, r_scratch2, r_scratch1);
197			PPC_SUB(r_A, r_A, r_scratch1);
198			break;
199		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
200			if (K == 1)
201				break;
202			PPC_LI32(r_scratch1, K);
203			PPC_DIVWU(r_A, r_A, r_scratch1);
 
204			break;
205		case BPF_ALU | BPF_AND | BPF_X:
206			ctx->seen |= SEEN_XREG;
207			PPC_AND(r_A, r_A, r_X);
208			break;
209		case BPF_ALU | BPF_AND | BPF_K:
210			if (!IMM_H(K))
211				PPC_ANDI(r_A, r_A, K);
212			else {
213				PPC_LI32(r_scratch1, K);
214				PPC_AND(r_A, r_A, r_scratch1);
215			}
216			break;
217		case BPF_ALU | BPF_OR | BPF_X:
218			ctx->seen |= SEEN_XREG;
219			PPC_OR(r_A, r_A, r_X);
220			break;
221		case BPF_ALU | BPF_OR | BPF_K:
222			if (IMM_L(K))
223				PPC_ORI(r_A, r_A, IMM_L(K));
224			if (K >= 65536)
225				PPC_ORIS(r_A, r_A, IMM_H(K));
226			break;
227		case BPF_ANC | SKF_AD_ALU_XOR_X:
228		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
229			ctx->seen |= SEEN_XREG;
230			PPC_XOR(r_A, r_A, r_X);
231			break;
232		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
233			if (IMM_L(K))
234				PPC_XORI(r_A, r_A, IMM_L(K));
235			if (K >= 65536)
236				PPC_XORIS(r_A, r_A, IMM_H(K));
237			break;
238		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
239			ctx->seen |= SEEN_XREG;
240			PPC_SLW(r_A, r_A, r_X);
241			break;
242		case BPF_ALU | BPF_LSH | BPF_K:
243			if (K == 0)
244				break;
245			else
246				PPC_SLWI(r_A, r_A, K);
247			break;
248		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
249			ctx->seen |= SEEN_XREG;
250			PPC_SRW(r_A, r_A, r_X);
251			break;
252		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
253			if (K == 0)
254				break;
255			else
256				PPC_SRWI(r_A, r_A, K);
257			break;
258		case BPF_ALU | BPF_NEG:
259			PPC_NEG(r_A, r_A);
260			break;
261		case BPF_RET | BPF_K:
262			PPC_LI32(r_ret, K);
263			if (!K) {
264				if (ctx->pc_ret0 == -1)
265					ctx->pc_ret0 = i;
266			}
267			/*
268			 * If this isn't the very last instruction, branch to
269			 * the epilogue if we've stuff to clean up.  Otherwise,
270			 * if there's nothing to tidy, just return.  If we /are/
271			 * the last instruction, we're about to fall through to
272			 * the epilogue to return.
273			 */
274			if (i != flen - 1) {
275				/*
276				 * Note: 'seen' is properly valid only on pass
277				 * #2.	Both parts of this conditional are the
278				 * same instruction size though, meaning the
279				 * first pass will still correctly determine the
280				 * code size/addresses.
281				 */
282				if (ctx->seen)
283					PPC_JMP(exit_addr);
284				else
285					PPC_BLR();
286			}
287			break;
288		case BPF_RET | BPF_A:
289			PPC_MR(r_ret, r_A);
290			if (i != flen - 1) {
291				if (ctx->seen)
292					PPC_JMP(exit_addr);
293				else
294					PPC_BLR();
295			}
296			break;
297		case BPF_MISC | BPF_TAX: /* X = A */
298			PPC_MR(r_X, r_A);
299			break;
300		case BPF_MISC | BPF_TXA: /* A = X */
301			ctx->seen |= SEEN_XREG;
302			PPC_MR(r_A, r_X);
303			break;
304
305			/*** Constant loads/M[] access ***/
306		case BPF_LD | BPF_IMM: /* A = K */
307			PPC_LI32(r_A, K);
308			break;
309		case BPF_LDX | BPF_IMM: /* X = K */
310			PPC_LI32(r_X, K);
311			break;
312		case BPF_LD | BPF_MEM: /* A = mem[K] */
313			PPC_MR(r_A, r_M + (K & 0xf));
314			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
315			break;
316		case BPF_LDX | BPF_MEM: /* X = mem[K] */
317			PPC_MR(r_X, r_M + (K & 0xf));
318			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
319			break;
320		case BPF_ST: /* mem[K] = A */
321			PPC_MR(r_M + (K & 0xf), r_A);
322			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
323			break;
324		case BPF_STX: /* mem[K] = X */
325			PPC_MR(r_M + (K & 0xf), r_X);
326			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
327			break;
328		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
329			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
330			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
331			break;
332		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
333			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
334			break;
335
336			/*** Ancillary info loads ***/
337		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
 
 
 
 
 
 
338			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
339						  protocol) != 2);
340			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
341							    protocol));
 
342			break;
343		case BPF_ANC | SKF_AD_IFINDEX:
344		case BPF_ANC | SKF_AD_HATYPE:
345			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
346						ifindex) != 4);
347			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
348						type) != 2);
349			PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
350								dev));
351			PPC_CMPDI(r_scratch1, 0);
352			if (ctx->pc_ret0 != -1) {
353				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
354			} else {
355				/* Exit, returning 0; first pass hits here. */
356				PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
357				PPC_LI(r_ret, 0);
358				PPC_JMP(exit_addr);
359			}
360			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
361				PPC_LWZ_OFFS(r_A, r_scratch1,
 
362				     offsetof(struct net_device, ifindex));
363			} else {
364				PPC_LHZ_OFFS(r_A, r_scratch1,
365				     offsetof(struct net_device, type));
366			}
367
368			break;
369		case BPF_ANC | SKF_AD_MARK:
370			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
371			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
372							  mark));
373			break;
374		case BPF_ANC | SKF_AD_RXHASH:
375			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
376			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
377							  hash));
378			break;
379		case BPF_ANC | SKF_AD_VLAN_TAG:
380		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
381			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
382			BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
383
384			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
385							  vlan_tci));
386			if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
387				PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT);
388			} else {
389				PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT);
390				PPC_SRWI(r_A, r_A, 12);
391			}
392			break;
393		case BPF_ANC | SKF_AD_QUEUE:
394			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
395						  queue_mapping) != 2);
396			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
397							  queue_mapping));
398			break;
399		case BPF_ANC | SKF_AD_PKTTYPE:
400			PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
401			PPC_ANDI(r_A, r_A, PKT_TYPE_MAX);
402			PPC_SRWI(r_A, r_A, 5);
403			break;
404		case BPF_ANC | SKF_AD_CPU:
405			PPC_BPF_LOAD_CPU(r_A);
 
 
 
 
 
 
406			break;
 
407			/*** Absolute loads from packet header/data ***/
408		case BPF_LD | BPF_W | BPF_ABS:
409			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
410			goto common_load;
411		case BPF_LD | BPF_H | BPF_ABS:
412			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
413			goto common_load;
414		case BPF_LD | BPF_B | BPF_ABS:
415			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
416		common_load:
417			/* Load from [K]. */
 
 
 
418			ctx->seen |= SEEN_DATAREF;
419			PPC_FUNC_ADDR(r_scratch1, func);
 
 
420			PPC_MTLR(r_scratch1);
421			PPC_LI32(r_addr, K);
422			PPC_BLRL();
423			/*
424			 * Helper returns 'lt' condition on error, and an
425			 * appropriate return value in r3
426			 */
427			PPC_BCC(COND_LT, exit_addr);
428			break;
429
430			/*** Indirect loads from packet header/data ***/
431		case BPF_LD | BPF_W | BPF_IND:
432			func = sk_load_word;
433			goto common_load_ind;
434		case BPF_LD | BPF_H | BPF_IND:
435			func = sk_load_half;
436			goto common_load_ind;
437		case BPF_LD | BPF_B | BPF_IND:
438			func = sk_load_byte;
439		common_load_ind:
440			/*
441			 * Load from [X + K].  Negative offsets are tested for
442			 * in the helper functions.
443			 */
444			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
445			PPC_FUNC_ADDR(r_scratch1, func);
446			PPC_MTLR(r_scratch1);
447			PPC_ADDI(r_addr, r_X, IMM_L(K));
448			if (K >= 32768)
449				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
450			PPC_BLRL();
451			/* If error, cr0.LT set */
452			PPC_BCC(COND_LT, exit_addr);
453			break;
454
455		case BPF_LDX | BPF_B | BPF_MSH:
456			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
 
 
 
 
 
 
457			goto common_load;
458			break;
459
460			/*** Jump and branches ***/
461		case BPF_JMP | BPF_JA:
462			if (K != 0)
463				PPC_JMP(addrs[i + 1 + K]);
464			break;
465
466		case BPF_JMP | BPF_JGT | BPF_K:
467		case BPF_JMP | BPF_JGT | BPF_X:
468			true_cond = COND_GT;
469			goto cond_branch;
470		case BPF_JMP | BPF_JGE | BPF_K:
471		case BPF_JMP | BPF_JGE | BPF_X:
472			true_cond = COND_GE;
473			goto cond_branch;
474		case BPF_JMP | BPF_JEQ | BPF_K:
475		case BPF_JMP | BPF_JEQ | BPF_X:
476			true_cond = COND_EQ;
477			goto cond_branch;
478		case BPF_JMP | BPF_JSET | BPF_K:
479		case BPF_JMP | BPF_JSET | BPF_X:
480			true_cond = COND_NE;
481			/* Fall through */
482		cond_branch:
483			/* same targets, can avoid doing the test :) */
484			if (filter[i].jt == filter[i].jf) {
485				if (filter[i].jt > 0)
486					PPC_JMP(addrs[i + 1 + filter[i].jt]);
487				break;
488			}
489
490			switch (code) {
491			case BPF_JMP | BPF_JGT | BPF_X:
492			case BPF_JMP | BPF_JGE | BPF_X:
493			case BPF_JMP | BPF_JEQ | BPF_X:
494				ctx->seen |= SEEN_XREG;
495				PPC_CMPLW(r_A, r_X);
496				break;
497			case BPF_JMP | BPF_JSET | BPF_X:
498				ctx->seen |= SEEN_XREG;
499				PPC_AND_DOT(r_scratch1, r_A, r_X);
500				break;
501			case BPF_JMP | BPF_JEQ | BPF_K:
502			case BPF_JMP | BPF_JGT | BPF_K:
503			case BPF_JMP | BPF_JGE | BPF_K:
504				if (K < 32768)
505					PPC_CMPLWI(r_A, K);
506				else {
507					PPC_LI32(r_scratch1, K);
508					PPC_CMPLW(r_A, r_scratch1);
509				}
510				break;
511			case BPF_JMP | BPF_JSET | BPF_K:
512				if (K < 32768)
513					/* PPC_ANDI is /only/ dot-form */
514					PPC_ANDI(r_scratch1, r_A, K);
515				else {
516					PPC_LI32(r_scratch1, K);
517					PPC_AND_DOT(r_scratch1, r_A,
518						    r_scratch1);
519				}
520				break;
521			}
522			/* Sometimes branches are constructed "backward", with
523			 * the false path being the branch and true path being
524			 * a fallthrough to the next instruction.
525			 */
526			if (filter[i].jt == 0)
527				/* Swap the sense of the branch */
528				PPC_BCC(true_cond ^ COND_CMP_TRUE,
529					addrs[i + 1 + filter[i].jf]);
530			else {
531				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
532				if (filter[i].jf != 0)
533					PPC_JMP(addrs[i + 1 + filter[i].jf]);
534			}
535			break;
536		default:
537			/* The filter contains something cruel & unusual.
538			 * We don't handle it, but also there shouldn't be
539			 * anything missing from our list.
540			 */
541			if (printk_ratelimit())
542				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
543				       filter[i].code, i);
544			return -ENOTSUPP;
545		}
546
547	}
548	/* Set end-of-body-code address for exit. */
549	addrs[i] = ctx->idx * 4;
550
551	return 0;
552}
553
554void bpf_jit_compile(struct bpf_prog *fp)
555{
556	unsigned int proglen;
557	unsigned int alloclen;
558	u32 *image = NULL;
559	u32 *code_base;
560	unsigned int *addrs;
561	struct codegen_context cgctx;
562	int pass;
563	int flen = fp->len;
564
565	if (!bpf_jit_enable)
566		return;
567
568	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
569	if (addrs == NULL)
570		return;
571
572	/*
573	 * There are multiple assembly passes as the generated code will change
574	 * size as it settles down, figuring out the max branch offsets/exit
575	 * paths required.
576	 *
577	 * The range of standard conditional branches is +/- 32Kbytes.	Since
578	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
579	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
580	 * used, distinct from short branches.
581	 *
582	 * Current:
583	 *
584	 * For now, both branch types assemble to 2 words (short branches padded
585	 * with a NOP); this is less efficient, but assembly will always complete
586	 * after exactly 3 passes:
587	 *
588	 * First pass: No code buffer; Program is "faux-generated" -- no code
589	 * emitted but maximum size of output determined (and addrs[] filled
590	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
591	 * All generation choices assumed to be 'worst-case', e.g. branches all
592	 * far (2 instructions), return path code reduction not available, etc.
593	 *
594	 * Second pass: Code buffer allocated with size determined previously.
595	 * Prologue generated to support features we have seen used.  Exit paths
596	 * determined and addrs[] is filled in again, as code may be slightly
597	 * smaller as a result.
598	 *
599	 * Third pass: Code generated 'for real', and branch destinations
600	 * determined from now-accurate addrs[] map.
601	 *
602	 * Ideal:
603	 *
604	 * If we optimise this, near branches will be shorter.	On the
605	 * first assembly pass, we should err on the side of caution and
606	 * generate the biggest code.  On subsequent passes, branches will be
607	 * generated short or long and code size will reduce.  With smaller
608	 * code, more branches may fall into the short category, and code will
609	 * reduce more.
610	 *
611	 * Finally, if we see one pass generate code the same size as the
612	 * previous pass we have converged and should now generate code for
613	 * real.  Allocating at the end will also save the memory that would
614	 * otherwise be wasted by the (small) current code shrinkage.
615	 * Preferably, we should do a small number of passes (e.g. 5) and if we
616	 * haven't converged by then, get impatient and force code to generate
617	 * as-is, even if the odd branch would be left long.  The chances of a
618	 * long jump are tiny with all but the most enormous of BPF filter
619	 * inputs, so we should usually converge on the third pass.
620	 */
621
622	cgctx.idx = 0;
623	cgctx.seen = 0;
624	cgctx.pc_ret0 = -1;
625	/* Scouting faux-generate pass 0 */
626	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
627		/* We hit something illegal or unsupported. */
628		goto out;
629
630	/*
631	 * Pretend to build prologue, given the features we've seen.  This will
632	 * update ctgtx.idx as it pretends to output instructions, then we can
633	 * calculate total size from idx.
634	 */
635	bpf_jit_build_prologue(fp, 0, &cgctx);
636	bpf_jit_build_epilogue(0, &cgctx);
637
638	proglen = cgctx.idx * 4;
639	alloclen = proglen + FUNCTION_DESCR_SIZE;
640	image = module_alloc(alloclen);
 
641	if (!image)
642		goto out;
643
644	code_base = image + (FUNCTION_DESCR_SIZE/4);
645
646	/* Code generation passes 1-2 */
647	for (pass = 1; pass < 3; pass++) {
648		/* Now build the prologue, body code & epilogue for real. */
649		cgctx.idx = 0;
650		bpf_jit_build_prologue(fp, code_base, &cgctx);
651		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
652		bpf_jit_build_epilogue(code_base, &cgctx);
653
654		if (bpf_jit_enable > 1)
655			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
656				proglen - (cgctx.idx * 4), cgctx.seen);
657	}
658
659	if (bpf_jit_enable > 1)
660		/* Note that we output the base address of the code_base
661		 * rather than image, since opcodes are in code_base.
662		 */
663		bpf_jit_dump(flen, proglen, pass, code_base);
664
665	if (image) {
 
 
 
 
 
 
666		bpf_flush_icache(code_base, code_base + (proglen/4));
667#ifdef CONFIG_PPC64
668		/* Function descriptor nastiness: Address + TOC */
669		((u64 *)image)[0] = (u64)code_base;
670		((u64 *)image)[1] = local_paca->kernel_toc;
671#endif
672		fp->bpf_func = (void *)image;
673		fp->jited = 1;
674	}
675out:
676	kfree(addrs);
677	return;
678}
679
680void bpf_jit_free(struct bpf_prog *fp)
 
 
 
 
 
 
 
 
681{
682	if (fp->jited)
683		module_memfree(fp->bpf_func);
684
685	bpf_prog_unlock_free(fp);
 
 
686}