Linux Audio

Check our new training course

Loading...
v3.1
  1/* bpf_jit_comp.c: BPF JIT compiler for PPC64
  2 *
  3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  4 *
  5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12#include <linux/moduleloader.h>
 13#include <asm/cacheflush.h>
 14#include <linux/netdevice.h>
 15#include <linux/filter.h>
 16#include "bpf_jit.h"
 17
 18#ifndef __BIG_ENDIAN
 19/* There are endianness assumptions herein. */
 20#error "Little-endian PPC not supported in BPF compiler"
 21#endif
 22
 23int bpf_jit_enable __read_mostly;
 24
 25
 26static inline void bpf_flush_icache(void *start, void *end)
 27{
 28	smp_wmb();
 29	flush_icache_range((unsigned long)start, (unsigned long)end);
 30}
 31
 32static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
 33				   struct codegen_context *ctx)
 34{
 35	int i;
 36	const struct sock_filter *filter = fp->insns;
 37
 38	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 39		/* Make stackframe */
 40		if (ctx->seen & SEEN_DATAREF) {
 41			/* If we call any helpers (for loads), save LR */
 42			EMIT(PPC_INST_MFLR | __PPC_RT(0));
 43			PPC_STD(0, 1, 16);
 44
 45			/* Back up non-volatile regs. */
 46			PPC_STD(r_D, 1, -(8*(32-r_D)));
 47			PPC_STD(r_HL, 1, -(8*(32-r_HL)));
 48		}
 49		if (ctx->seen & SEEN_MEM) {
 50			/*
 51			 * Conditionally save regs r15-r31 as some will be used
 52			 * for M[] data.
 53			 */
 54			for (i = r_M; i < (r_M+16); i++) {
 55				if (ctx->seen & (1 << (i-r_M)))
 56					PPC_STD(i, 1, -(8*(32-i)));
 57			}
 58		}
 59		EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
 60		     (-BPF_PPC_STACKFRAME & 0xfffc));
 61	}
 62
 63	if (ctx->seen & SEEN_DATAREF) {
 64		/*
 65		 * If this filter needs to access skb data,
 66		 * prepare r_D and r_HL:
 67		 *  r_HL = skb->len - skb->data_len
 68		 *  r_D	 = skb->data
 69		 */
 70		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 71							 data_len));
 72		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 73		PPC_SUB(r_HL, r_HL, r_scratch1);
 74		PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 75	}
 76
 77	if (ctx->seen & SEEN_XREG) {
 78		/*
 79		 * TODO: Could also detect whether first instr. sets X and
 80		 * avoid this (as below, with A).
 81		 */
 82		PPC_LI(r_X, 0);
 83	}
 84
 85	switch (filter[0].code) {
 86	case BPF_S_RET_K:
 87	case BPF_S_LD_W_LEN:
 88	case BPF_S_ANC_PROTOCOL:
 89	case BPF_S_ANC_IFINDEX:
 90	case BPF_S_ANC_MARK:
 91	case BPF_S_ANC_RXHASH:
 
 
 92	case BPF_S_ANC_CPU:
 93	case BPF_S_ANC_QUEUE:
 94	case BPF_S_LD_W_ABS:
 95	case BPF_S_LD_H_ABS:
 96	case BPF_S_LD_B_ABS:
 97		/* first instruction sets A register (or is RET 'constant') */
 98		break;
 99	default:
100		/* make sure we dont leak kernel information to user */
101		PPC_LI(r_A, 0);
102	}
103}
104
105static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
106{
107	int i;
108
109	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
110		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
111		if (ctx->seen & SEEN_DATAREF) {
112			PPC_LD(0, 1, 16);
113			PPC_MTLR(0);
114			PPC_LD(r_D, 1, -(8*(32-r_D)));
115			PPC_LD(r_HL, 1, -(8*(32-r_HL)));
116		}
117		if (ctx->seen & SEEN_MEM) {
118			/* Restore any saved non-vol registers */
119			for (i = r_M; i < (r_M+16); i++) {
120				if (ctx->seen & (1 << (i-r_M)))
121					PPC_LD(i, 1, -(8*(32-i)));
122			}
123		}
124	}
125	/* The RETs have left a return value in R3. */
126
127	PPC_BLR();
128}
129
 
 
 
130/* Assemble the body code between the prologue & epilogue. */
131static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
132			      struct codegen_context *ctx,
133			      unsigned int *addrs)
134{
135	const struct sock_filter *filter = fp->insns;
136	int flen = fp->len;
137	u8 *func;
138	unsigned int true_cond;
139	int i;
140
141	/* Start of epilogue code */
142	unsigned int exit_addr = addrs[flen];
143
144	for (i = 0; i < flen; i++) {
145		unsigned int K = filter[i].k;
146
147		/*
148		 * addrs[] maps a BPF bytecode address into a real offset from
149		 * the start of the body code.
150		 */
151		addrs[i] = ctx->idx * 4;
152
153		switch (filter[i].code) {
154			/*** ALU ops ***/
155		case BPF_S_ALU_ADD_X: /* A += X; */
156			ctx->seen |= SEEN_XREG;
157			PPC_ADD(r_A, r_A, r_X);
158			break;
159		case BPF_S_ALU_ADD_K: /* A += K; */
160			if (!K)
161				break;
162			PPC_ADDI(r_A, r_A, IMM_L(K));
163			if (K >= 32768)
164				PPC_ADDIS(r_A, r_A, IMM_HA(K));
165			break;
166		case BPF_S_ALU_SUB_X: /* A -= X; */
167			ctx->seen |= SEEN_XREG;
168			PPC_SUB(r_A, r_A, r_X);
169			break;
170		case BPF_S_ALU_SUB_K: /* A -= K */
171			if (!K)
172				break;
173			PPC_ADDI(r_A, r_A, IMM_L(-K));
174			if (K >= 32768)
175				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
176			break;
177		case BPF_S_ALU_MUL_X: /* A *= X; */
178			ctx->seen |= SEEN_XREG;
179			PPC_MUL(r_A, r_A, r_X);
180			break;
181		case BPF_S_ALU_MUL_K: /* A *= K */
182			if (K < 32768)
183				PPC_MULI(r_A, r_A, K);
184			else {
185				PPC_LI32(r_scratch1, K);
186				PPC_MUL(r_A, r_A, r_scratch1);
187			}
188			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189		case BPF_S_ALU_DIV_X: /* A /= X; */
190			ctx->seen |= SEEN_XREG;
191			PPC_CMPWI(r_X, 0);
192			if (ctx->pc_ret0 != -1) {
193				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
194			} else {
195				/*
196				 * Exit, returning 0; first pass hits here
197				 * (longer worst-case code size).
198				 */
199				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
200				PPC_LI(r_ret, 0);
201				PPC_JMP(exit_addr);
202			}
203			PPC_DIVWU(r_A, r_A, r_X);
204			break;
205		case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
 
 
206			PPC_LI32(r_scratch1, K);
207			/* Top 32 bits of 64bit result -> A */
208			PPC_MULHWU(r_A, r_A, r_scratch1);
209			break;
210		case BPF_S_ALU_AND_X:
211			ctx->seen |= SEEN_XREG;
212			PPC_AND(r_A, r_A, r_X);
213			break;
214		case BPF_S_ALU_AND_K:
215			if (!IMM_H(K))
216				PPC_ANDI(r_A, r_A, K);
217			else {
218				PPC_LI32(r_scratch1, K);
219				PPC_AND(r_A, r_A, r_scratch1);
220			}
221			break;
222		case BPF_S_ALU_OR_X:
223			ctx->seen |= SEEN_XREG;
224			PPC_OR(r_A, r_A, r_X);
225			break;
226		case BPF_S_ALU_OR_K:
227			if (IMM_L(K))
228				PPC_ORI(r_A, r_A, IMM_L(K));
229			if (K >= 65536)
230				PPC_ORIS(r_A, r_A, IMM_H(K));
231			break;
 
 
 
 
 
 
 
 
 
 
 
232		case BPF_S_ALU_LSH_X: /* A <<= X; */
233			ctx->seen |= SEEN_XREG;
234			PPC_SLW(r_A, r_A, r_X);
235			break;
236		case BPF_S_ALU_LSH_K:
237			if (K == 0)
238				break;
239			else
240				PPC_SLWI(r_A, r_A, K);
241			break;
242		case BPF_S_ALU_RSH_X: /* A >>= X; */
243			ctx->seen |= SEEN_XREG;
244			PPC_SRW(r_A, r_A, r_X);
245			break;
246		case BPF_S_ALU_RSH_K: /* A >>= K; */
247			if (K == 0)
248				break;
249			else
250				PPC_SRWI(r_A, r_A, K);
251			break;
252		case BPF_S_ALU_NEG:
253			PPC_NEG(r_A, r_A);
254			break;
255		case BPF_S_RET_K:
256			PPC_LI32(r_ret, K);
257			if (!K) {
258				if (ctx->pc_ret0 == -1)
259					ctx->pc_ret0 = i;
260			}
261			/*
262			 * If this isn't the very last instruction, branch to
263			 * the epilogue if we've stuff to clean up.  Otherwise,
264			 * if there's nothing to tidy, just return.  If we /are/
265			 * the last instruction, we're about to fall through to
266			 * the epilogue to return.
267			 */
268			if (i != flen - 1) {
269				/*
270				 * Note: 'seen' is properly valid only on pass
271				 * #2.	Both parts of this conditional are the
272				 * same instruction size though, meaning the
273				 * first pass will still correctly determine the
274				 * code size/addresses.
275				 */
276				if (ctx->seen)
277					PPC_JMP(exit_addr);
278				else
279					PPC_BLR();
280			}
281			break;
282		case BPF_S_RET_A:
283			PPC_MR(r_ret, r_A);
284			if (i != flen - 1) {
285				if (ctx->seen)
286					PPC_JMP(exit_addr);
287				else
288					PPC_BLR();
289			}
290			break;
291		case BPF_S_MISC_TAX: /* X = A */
292			PPC_MR(r_X, r_A);
293			break;
294		case BPF_S_MISC_TXA: /* A = X */
295			ctx->seen |= SEEN_XREG;
296			PPC_MR(r_A, r_X);
297			break;
298
299			/*** Constant loads/M[] access ***/
300		case BPF_S_LD_IMM: /* A = K */
301			PPC_LI32(r_A, K);
302			break;
303		case BPF_S_LDX_IMM: /* X = K */
304			PPC_LI32(r_X, K);
305			break;
306		case BPF_S_LD_MEM: /* A = mem[K] */
307			PPC_MR(r_A, r_M + (K & 0xf));
308			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
309			break;
310		case BPF_S_LDX_MEM: /* X = mem[K] */
311			PPC_MR(r_X, r_M + (K & 0xf));
312			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313			break;
314		case BPF_S_ST: /* mem[K] = A */
315			PPC_MR(r_M + (K & 0xf), r_A);
316			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317			break;
318		case BPF_S_STX: /* mem[K] = X */
319			PPC_MR(r_M + (K & 0xf), r_X);
320			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
321			break;
322		case BPF_S_LD_W_LEN: /*	A = skb->len; */
323			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
324			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
325			break;
326		case BPF_S_LDX_W_LEN: /* X = skb->len; */
327			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
328			break;
329
330			/*** Ancillary info loads ***/
331
332			/* None of the BPF_S_ANC* codes appear to be passed by
333			 * sk_chk_filter().  The interpreter and the x86 BPF
334			 * compiler implement them so we do too -- they may be
335			 * planted in future.
336			 */
337		case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
338			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
339						  protocol) != 2);
340			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
341							  protocol));
342			/* ntohs is a NOP with BE loads. */
343			break;
344		case BPF_S_ANC_IFINDEX:
345			PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
346								dev));
347			PPC_CMPDI(r_scratch1, 0);
348			if (ctx->pc_ret0 != -1) {
349				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
350			} else {
351				/* Exit, returning 0; first pass hits here. */
352				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
353				PPC_LI(r_ret, 0);
354				PPC_JMP(exit_addr);
355			}
356			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
357						  ifindex) != 4);
358			PPC_LWZ_OFFS(r_A, r_scratch1,
359				     offsetof(struct net_device, ifindex));
360			break;
361		case BPF_S_ANC_MARK:
362			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
363			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
364							  mark));
365			break;
366		case BPF_S_ANC_RXHASH:
367			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
368			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
369							  rxhash));
 
 
 
 
 
 
 
 
 
 
370			break;
371		case BPF_S_ANC_QUEUE:
372			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
373						  queue_mapping) != 2);
374			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375							  queue_mapping));
376			break;
377		case BPF_S_ANC_CPU:
378#ifdef CONFIG_SMP
379			/*
380			 * PACA ptr is r13:
381			 * raw_smp_processor_id() = local_paca->paca_index
382			 */
383			BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
384						  paca_index) != 2);
385			PPC_LHZ_OFFS(r_A, 13,
386				     offsetof(struct paca_struct, paca_index));
387#else
388			PPC_LI(r_A, 0);
389#endif
390			break;
391
392			/*** Absolute loads from packet header/data ***/
393		case BPF_S_LD_W_ABS:
394			func = sk_load_word;
395			goto common_load;
396		case BPF_S_LD_H_ABS:
397			func = sk_load_half;
398			goto common_load;
399		case BPF_S_LD_B_ABS:
400			func = sk_load_byte;
401		common_load:
402			/*
403			 * Load from [K].  Reference with the (negative)
404			 * SKF_NET_OFF/SKF_LL_OFF offsets is unsupported.
405			 */
406			ctx->seen |= SEEN_DATAREF;
407			if ((int)K < 0)
408				return -ENOTSUPP;
409			PPC_LI64(r_scratch1, func);
410			PPC_MTLR(r_scratch1);
411			PPC_LI32(r_addr, K);
412			PPC_BLRL();
413			/*
414			 * Helper returns 'lt' condition on error, and an
415			 * appropriate return value in r3
416			 */
417			PPC_BCC(COND_LT, exit_addr);
418			break;
419
420			/*** Indirect loads from packet header/data ***/
421		case BPF_S_LD_W_IND:
422			func = sk_load_word;
423			goto common_load_ind;
424		case BPF_S_LD_H_IND:
425			func = sk_load_half;
426			goto common_load_ind;
427		case BPF_S_LD_B_IND:
428			func = sk_load_byte;
429		common_load_ind:
430			/*
431			 * Load from [X + K].  Negative offsets are tested for
432			 * in the helper functions, and result in a 'ret 0'.
433			 */
434			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
435			PPC_LI64(r_scratch1, func);
436			PPC_MTLR(r_scratch1);
437			PPC_ADDI(r_addr, r_X, IMM_L(K));
438			if (K >= 32768)
439				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
440			PPC_BLRL();
441			/* If error, cr0.LT set */
442			PPC_BCC(COND_LT, exit_addr);
443			break;
444
445		case BPF_S_LDX_B_MSH:
446			/*
447			 * x86 version drops packet (RET 0) when K<0, whereas
448			 * interpreter does allow K<0 (__load_pointer, special
449			 * ancillary data).  common_load returns ENOTSUPP if K<0,
450			 * so we fall back to interpreter & filter works.
451			 */
452			func = sk_load_byte_msh;
453			goto common_load;
454			break;
455
456			/*** Jump and branches ***/
457		case BPF_S_JMP_JA:
458			if (K != 0)
459				PPC_JMP(addrs[i + 1 + K]);
460			break;
461
462		case BPF_S_JMP_JGT_K:
463		case BPF_S_JMP_JGT_X:
464			true_cond = COND_GT;
465			goto cond_branch;
466		case BPF_S_JMP_JGE_K:
467		case BPF_S_JMP_JGE_X:
468			true_cond = COND_GE;
469			goto cond_branch;
470		case BPF_S_JMP_JEQ_K:
471		case BPF_S_JMP_JEQ_X:
472			true_cond = COND_EQ;
473			goto cond_branch;
474		case BPF_S_JMP_JSET_K:
475		case BPF_S_JMP_JSET_X:
476			true_cond = COND_NE;
477			/* Fall through */
478		cond_branch:
479			/* same targets, can avoid doing the test :) */
480			if (filter[i].jt == filter[i].jf) {
481				if (filter[i].jt > 0)
482					PPC_JMP(addrs[i + 1 + filter[i].jt]);
483				break;
484			}
485
486			switch (filter[i].code) {
487			case BPF_S_JMP_JGT_X:
488			case BPF_S_JMP_JGE_X:
489			case BPF_S_JMP_JEQ_X:
490				ctx->seen |= SEEN_XREG;
491				PPC_CMPLW(r_A, r_X);
492				break;
493			case BPF_S_JMP_JSET_X:
494				ctx->seen |= SEEN_XREG;
495				PPC_AND_DOT(r_scratch1, r_A, r_X);
496				break;
497			case BPF_S_JMP_JEQ_K:
498			case BPF_S_JMP_JGT_K:
499			case BPF_S_JMP_JGE_K:
500				if (K < 32768)
501					PPC_CMPLWI(r_A, K);
502				else {
503					PPC_LI32(r_scratch1, K);
504					PPC_CMPLW(r_A, r_scratch1);
505				}
506				break;
507			case BPF_S_JMP_JSET_K:
508				if (K < 32768)
509					/* PPC_ANDI is /only/ dot-form */
510					PPC_ANDI(r_scratch1, r_A, K);
511				else {
512					PPC_LI32(r_scratch1, K);
513					PPC_AND_DOT(r_scratch1, r_A,
514						    r_scratch1);
515				}
516				break;
517			}
518			/* Sometimes branches are constructed "backward", with
519			 * the false path being the branch and true path being
520			 * a fallthrough to the next instruction.
521			 */
522			if (filter[i].jt == 0)
523				/* Swap the sense of the branch */
524				PPC_BCC(true_cond ^ COND_CMP_TRUE,
525					addrs[i + 1 + filter[i].jf]);
526			else {
527				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
528				if (filter[i].jf != 0)
529					PPC_JMP(addrs[i + 1 + filter[i].jf]);
530			}
531			break;
532		default:
533			/* The filter contains something cruel & unusual.
534			 * We don't handle it, but also there shouldn't be
535			 * anything missing from our list.
536			 */
537			if (printk_ratelimit())
538				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
539				       filter[i].code, i);
540			return -ENOTSUPP;
541		}
542
543	}
544	/* Set end-of-body-code address for exit. */
545	addrs[i] = ctx->idx * 4;
546
547	return 0;
548}
549
550void bpf_jit_compile(struct sk_filter *fp)
551{
552	unsigned int proglen;
553	unsigned int alloclen;
554	u32 *image = NULL;
555	u32 *code_base;
556	unsigned int *addrs;
557	struct codegen_context cgctx;
558	int pass;
559	int flen = fp->len;
560
561	if (!bpf_jit_enable)
562		return;
563
564	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
565	if (addrs == NULL)
566		return;
567
568	/*
569	 * There are multiple assembly passes as the generated code will change
570	 * size as it settles down, figuring out the max branch offsets/exit
571	 * paths required.
572	 *
573	 * The range of standard conditional branches is +/- 32Kbytes.	Since
574	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
575	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
576	 * used, distinct from short branches.
577	 *
578	 * Current:
579	 *
580	 * For now, both branch types assemble to 2 words (short branches padded
581	 * with a NOP); this is less efficient, but assembly will always complete
582	 * after exactly 3 passes:
583	 *
584	 * First pass: No code buffer; Program is "faux-generated" -- no code
585	 * emitted but maximum size of output determined (and addrs[] filled
586	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
587	 * All generation choices assumed to be 'worst-case', e.g. branches all
588	 * far (2 instructions), return path code reduction not available, etc.
589	 *
590	 * Second pass: Code buffer allocated with size determined previously.
591	 * Prologue generated to support features we have seen used.  Exit paths
592	 * determined and addrs[] is filled in again, as code may be slightly
593	 * smaller as a result.
594	 *
595	 * Third pass: Code generated 'for real', and branch destinations
596	 * determined from now-accurate addrs[] map.
597	 *
598	 * Ideal:
599	 *
600	 * If we optimise this, near branches will be shorter.	On the
601	 * first assembly pass, we should err on the side of caution and
602	 * generate the biggest code.  On subsequent passes, branches will be
603	 * generated short or long and code size will reduce.  With smaller
604	 * code, more branches may fall into the short category, and code will
605	 * reduce more.
606	 *
607	 * Finally, if we see one pass generate code the same size as the
608	 * previous pass we have converged and should now generate code for
609	 * real.  Allocating at the end will also save the memory that would
610	 * otherwise be wasted by the (small) current code shrinkage.
611	 * Preferably, we should do a small number of passes (e.g. 5) and if we
612	 * haven't converged by then, get impatient and force code to generate
613	 * as-is, even if the odd branch would be left long.  The chances of a
614	 * long jump are tiny with all but the most enormous of BPF filter
615	 * inputs, so we should usually converge on the third pass.
616	 */
617
618	cgctx.idx = 0;
619	cgctx.seen = 0;
620	cgctx.pc_ret0 = -1;
621	/* Scouting faux-generate pass 0 */
622	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
623		/* We hit something illegal or unsupported. */
624		goto out;
625
626	/*
627	 * Pretend to build prologue, given the features we've seen.  This will
628	 * update ctgtx.idx as it pretends to output instructions, then we can
629	 * calculate total size from idx.
630	 */
631	bpf_jit_build_prologue(fp, 0, &cgctx);
632	bpf_jit_build_epilogue(0, &cgctx);
633
634	proglen = cgctx.idx * 4;
635	alloclen = proglen + FUNCTION_DESCR_SIZE;
636	image = module_alloc(max_t(unsigned int, alloclen,
637				   sizeof(struct work_struct)));
638	if (!image)
639		goto out;
640
641	code_base = image + (FUNCTION_DESCR_SIZE/4);
642
643	/* Code generation passes 1-2 */
644	for (pass = 1; pass < 3; pass++) {
645		/* Now build the prologue, body code & epilogue for real. */
646		cgctx.idx = 0;
647		bpf_jit_build_prologue(fp, code_base, &cgctx);
648		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
649		bpf_jit_build_epilogue(code_base, &cgctx);
650
651		if (bpf_jit_enable > 1)
652			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
653				proglen - (cgctx.idx * 4), cgctx.seen);
654	}
655
656	if (bpf_jit_enable > 1)
657		pr_info("flen=%d proglen=%u pass=%d image=%p\n",
658		       flen, proglen, pass, image);
 
 
659
660	if (image) {
661		if (bpf_jit_enable > 1)
662			print_hex_dump(KERN_ERR, "JIT code: ",
663				       DUMP_PREFIX_ADDRESS,
664				       16, 1, code_base,
665				       proglen, false);
666
667		bpf_flush_icache(code_base, code_base + (proglen/4));
668		/* Function descriptor nastiness: Address + TOC */
669		((u64 *)image)[0] = (u64)code_base;
670		((u64 *)image)[1] = local_paca->kernel_toc;
671		fp->bpf_func = (void *)image;
 
672	}
673out:
674	kfree(addrs);
675	return;
676}
677
678static void jit_free_defer(struct work_struct *arg)
679{
680	module_free(NULL, arg);
681}
682
683/* run from softirq, we must use a work_struct to call
684 * module_free() from process context
685 */
686void bpf_jit_free(struct sk_filter *fp)
687{
688	if (fp->bpf_func != sk_run_filter) {
689		struct work_struct *work = (struct work_struct *)fp->bpf_func;
690
691		INIT_WORK(work, jit_free_defer);
692		schedule_work(work);
693	}
694}
v3.15
  1/* bpf_jit_comp.c: BPF JIT compiler for PPC64
  2 *
  3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  4 *
  5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12#include <linux/moduleloader.h>
 13#include <asm/cacheflush.h>
 14#include <linux/netdevice.h>
 15#include <linux/filter.h>
 16#include <linux/if_vlan.h>
 17
 18#include "bpf_jit.h"
 
 
 
 19
 20int bpf_jit_enable __read_mostly;
 21
 
 22static inline void bpf_flush_icache(void *start, void *end)
 23{
 24	smp_wmb();
 25	flush_icache_range((unsigned long)start, (unsigned long)end);
 26}
 27
 28static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
 29				   struct codegen_context *ctx)
 30{
 31	int i;
 32	const struct sock_filter *filter = fp->insns;
 33
 34	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 35		/* Make stackframe */
 36		if (ctx->seen & SEEN_DATAREF) {
 37			/* If we call any helpers (for loads), save LR */
 38			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
 39			PPC_STD(0, 1, 16);
 40
 41			/* Back up non-volatile regs. */
 42			PPC_STD(r_D, 1, -(8*(32-r_D)));
 43			PPC_STD(r_HL, 1, -(8*(32-r_HL)));
 44		}
 45		if (ctx->seen & SEEN_MEM) {
 46			/*
 47			 * Conditionally save regs r15-r31 as some will be used
 48			 * for M[] data.
 49			 */
 50			for (i = r_M; i < (r_M+16); i++) {
 51				if (ctx->seen & (1 << (i-r_M)))
 52					PPC_STD(i, 1, -(8*(32-i)));
 53			}
 54		}
 55		EMIT(PPC_INST_STDU | __PPC_RS(R1) | __PPC_RA(R1) |
 56		     (-BPF_PPC_STACKFRAME & 0xfffc));
 57	}
 58
 59	if (ctx->seen & SEEN_DATAREF) {
 60		/*
 61		 * If this filter needs to access skb data,
 62		 * prepare r_D and r_HL:
 63		 *  r_HL = skb->len - skb->data_len
 64		 *  r_D	 = skb->data
 65		 */
 66		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 67							 data_len));
 68		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 69		PPC_SUB(r_HL, r_HL, r_scratch1);
 70		PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 71	}
 72
 73	if (ctx->seen & SEEN_XREG) {
 74		/*
 75		 * TODO: Could also detect whether first instr. sets X and
 76		 * avoid this (as below, with A).
 77		 */
 78		PPC_LI(r_X, 0);
 79	}
 80
 81	switch (filter[0].code) {
 82	case BPF_S_RET_K:
 83	case BPF_S_LD_W_LEN:
 84	case BPF_S_ANC_PROTOCOL:
 85	case BPF_S_ANC_IFINDEX:
 86	case BPF_S_ANC_MARK:
 87	case BPF_S_ANC_RXHASH:
 88	case BPF_S_ANC_VLAN_TAG:
 89	case BPF_S_ANC_VLAN_TAG_PRESENT:
 90	case BPF_S_ANC_CPU:
 91	case BPF_S_ANC_QUEUE:
 92	case BPF_S_LD_W_ABS:
 93	case BPF_S_LD_H_ABS:
 94	case BPF_S_LD_B_ABS:
 95		/* first instruction sets A register (or is RET 'constant') */
 96		break;
 97	default:
 98		/* make sure we dont leak kernel information to user */
 99		PPC_LI(r_A, 0);
100	}
101}
102
103static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
104{
105	int i;
106
107	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
108		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
109		if (ctx->seen & SEEN_DATAREF) {
110			PPC_LD(0, 1, 16);
111			PPC_MTLR(0);
112			PPC_LD(r_D, 1, -(8*(32-r_D)));
113			PPC_LD(r_HL, 1, -(8*(32-r_HL)));
114		}
115		if (ctx->seen & SEEN_MEM) {
116			/* Restore any saved non-vol registers */
117			for (i = r_M; i < (r_M+16); i++) {
118				if (ctx->seen & (1 << (i-r_M)))
119					PPC_LD(i, 1, -(8*(32-i)));
120			}
121		}
122	}
123	/* The RETs have left a return value in R3. */
124
125	PPC_BLR();
126}
127
128#define CHOOSE_LOAD_FUNC(K, func) \
129	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
130
131/* Assemble the body code between the prologue & epilogue. */
132static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
133			      struct codegen_context *ctx,
134			      unsigned int *addrs)
135{
136	const struct sock_filter *filter = fp->insns;
137	int flen = fp->len;
138	u8 *func;
139	unsigned int true_cond;
140	int i;
141
142	/* Start of epilogue code */
143	unsigned int exit_addr = addrs[flen];
144
145	for (i = 0; i < flen; i++) {
146		unsigned int K = filter[i].k;
147
148		/*
149		 * addrs[] maps a BPF bytecode address into a real offset from
150		 * the start of the body code.
151		 */
152		addrs[i] = ctx->idx * 4;
153
154		switch (filter[i].code) {
155			/*** ALU ops ***/
156		case BPF_S_ALU_ADD_X: /* A += X; */
157			ctx->seen |= SEEN_XREG;
158			PPC_ADD(r_A, r_A, r_X);
159			break;
160		case BPF_S_ALU_ADD_K: /* A += K; */
161			if (!K)
162				break;
163			PPC_ADDI(r_A, r_A, IMM_L(K));
164			if (K >= 32768)
165				PPC_ADDIS(r_A, r_A, IMM_HA(K));
166			break;
167		case BPF_S_ALU_SUB_X: /* A -= X; */
168			ctx->seen |= SEEN_XREG;
169			PPC_SUB(r_A, r_A, r_X);
170			break;
171		case BPF_S_ALU_SUB_K: /* A -= K */
172			if (!K)
173				break;
174			PPC_ADDI(r_A, r_A, IMM_L(-K));
175			if (K >= 32768)
176				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
177			break;
178		case BPF_S_ALU_MUL_X: /* A *= X; */
179			ctx->seen |= SEEN_XREG;
180			PPC_MUL(r_A, r_A, r_X);
181			break;
182		case BPF_S_ALU_MUL_K: /* A *= K */
183			if (K < 32768)
184				PPC_MULI(r_A, r_A, K);
185			else {
186				PPC_LI32(r_scratch1, K);
187				PPC_MUL(r_A, r_A, r_scratch1);
188			}
189			break;
190		case BPF_S_ALU_MOD_X: /* A %= X; */
191			ctx->seen |= SEEN_XREG;
192			PPC_CMPWI(r_X, 0);
193			if (ctx->pc_ret0 != -1) {
194				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
195			} else {
196				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
197				PPC_LI(r_ret, 0);
198				PPC_JMP(exit_addr);
199			}
200			PPC_DIVWU(r_scratch1, r_A, r_X);
201			PPC_MUL(r_scratch1, r_X, r_scratch1);
202			PPC_SUB(r_A, r_A, r_scratch1);
203			break;
204		case BPF_S_ALU_MOD_K: /* A %= K; */
205			PPC_LI32(r_scratch2, K);
206			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
207			PPC_MUL(r_scratch1, r_scratch2, r_scratch1);
208			PPC_SUB(r_A, r_A, r_scratch1);
209			break;
210		case BPF_S_ALU_DIV_X: /* A /= X; */
211			ctx->seen |= SEEN_XREG;
212			PPC_CMPWI(r_X, 0);
213			if (ctx->pc_ret0 != -1) {
214				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
215			} else {
216				/*
217				 * Exit, returning 0; first pass hits here
218				 * (longer worst-case code size).
219				 */
220				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
221				PPC_LI(r_ret, 0);
222				PPC_JMP(exit_addr);
223			}
224			PPC_DIVWU(r_A, r_A, r_X);
225			break;
226		case BPF_S_ALU_DIV_K: /* A /= K */
227			if (K == 1)
228				break;
229			PPC_LI32(r_scratch1, K);
230			PPC_DIVWU(r_A, r_A, r_scratch1);
 
231			break;
232		case BPF_S_ALU_AND_X:
233			ctx->seen |= SEEN_XREG;
234			PPC_AND(r_A, r_A, r_X);
235			break;
236		case BPF_S_ALU_AND_K:
237			if (!IMM_H(K))
238				PPC_ANDI(r_A, r_A, K);
239			else {
240				PPC_LI32(r_scratch1, K);
241				PPC_AND(r_A, r_A, r_scratch1);
242			}
243			break;
244		case BPF_S_ALU_OR_X:
245			ctx->seen |= SEEN_XREG;
246			PPC_OR(r_A, r_A, r_X);
247			break;
248		case BPF_S_ALU_OR_K:
249			if (IMM_L(K))
250				PPC_ORI(r_A, r_A, IMM_L(K));
251			if (K >= 65536)
252				PPC_ORIS(r_A, r_A, IMM_H(K));
253			break;
254		case BPF_S_ANC_ALU_XOR_X:
255		case BPF_S_ALU_XOR_X: /* A ^= X */
256			ctx->seen |= SEEN_XREG;
257			PPC_XOR(r_A, r_A, r_X);
258			break;
259		case BPF_S_ALU_XOR_K: /* A ^= K */
260			if (IMM_L(K))
261				PPC_XORI(r_A, r_A, IMM_L(K));
262			if (K >= 65536)
263				PPC_XORIS(r_A, r_A, IMM_H(K));
264			break;
265		case BPF_S_ALU_LSH_X: /* A <<= X; */
266			ctx->seen |= SEEN_XREG;
267			PPC_SLW(r_A, r_A, r_X);
268			break;
269		case BPF_S_ALU_LSH_K:
270			if (K == 0)
271				break;
272			else
273				PPC_SLWI(r_A, r_A, K);
274			break;
275		case BPF_S_ALU_RSH_X: /* A >>= X; */
276			ctx->seen |= SEEN_XREG;
277			PPC_SRW(r_A, r_A, r_X);
278			break;
279		case BPF_S_ALU_RSH_K: /* A >>= K; */
280			if (K == 0)
281				break;
282			else
283				PPC_SRWI(r_A, r_A, K);
284			break;
285		case BPF_S_ALU_NEG:
286			PPC_NEG(r_A, r_A);
287			break;
288		case BPF_S_RET_K:
289			PPC_LI32(r_ret, K);
290			if (!K) {
291				if (ctx->pc_ret0 == -1)
292					ctx->pc_ret0 = i;
293			}
294			/*
295			 * If this isn't the very last instruction, branch to
296			 * the epilogue if we've stuff to clean up.  Otherwise,
297			 * if there's nothing to tidy, just return.  If we /are/
298			 * the last instruction, we're about to fall through to
299			 * the epilogue to return.
300			 */
301			if (i != flen - 1) {
302				/*
303				 * Note: 'seen' is properly valid only on pass
304				 * #2.	Both parts of this conditional are the
305				 * same instruction size though, meaning the
306				 * first pass will still correctly determine the
307				 * code size/addresses.
308				 */
309				if (ctx->seen)
310					PPC_JMP(exit_addr);
311				else
312					PPC_BLR();
313			}
314			break;
315		case BPF_S_RET_A:
316			PPC_MR(r_ret, r_A);
317			if (i != flen - 1) {
318				if (ctx->seen)
319					PPC_JMP(exit_addr);
320				else
321					PPC_BLR();
322			}
323			break;
324		case BPF_S_MISC_TAX: /* X = A */
325			PPC_MR(r_X, r_A);
326			break;
327		case BPF_S_MISC_TXA: /* A = X */
328			ctx->seen |= SEEN_XREG;
329			PPC_MR(r_A, r_X);
330			break;
331
332			/*** Constant loads/M[] access ***/
333		case BPF_S_LD_IMM: /* A = K */
334			PPC_LI32(r_A, K);
335			break;
336		case BPF_S_LDX_IMM: /* X = K */
337			PPC_LI32(r_X, K);
338			break;
339		case BPF_S_LD_MEM: /* A = mem[K] */
340			PPC_MR(r_A, r_M + (K & 0xf));
341			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
342			break;
343		case BPF_S_LDX_MEM: /* X = mem[K] */
344			PPC_MR(r_X, r_M + (K & 0xf));
345			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
346			break;
347		case BPF_S_ST: /* mem[K] = A */
348			PPC_MR(r_M + (K & 0xf), r_A);
349			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
350			break;
351		case BPF_S_STX: /* mem[K] = X */
352			PPC_MR(r_M + (K & 0xf), r_X);
353			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
354			break;
355		case BPF_S_LD_W_LEN: /*	A = skb->len; */
356			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
357			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
358			break;
359		case BPF_S_LDX_W_LEN: /* X = skb->len; */
360			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
361			break;
362
363			/*** Ancillary info loads ***/
 
 
 
 
 
 
364		case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
365			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
366						  protocol) != 2);
367			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
368							    protocol));
 
369			break;
370		case BPF_S_ANC_IFINDEX:
371			PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
372								dev));
373			PPC_CMPDI(r_scratch1, 0);
374			if (ctx->pc_ret0 != -1) {
375				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
376			} else {
377				/* Exit, returning 0; first pass hits here. */
378				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
379				PPC_LI(r_ret, 0);
380				PPC_JMP(exit_addr);
381			}
382			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
383						  ifindex) != 4);
384			PPC_LWZ_OFFS(r_A, r_scratch1,
385				     offsetof(struct net_device, ifindex));
386			break;
387		case BPF_S_ANC_MARK:
388			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
389			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
390							  mark));
391			break;
392		case BPF_S_ANC_RXHASH:
393			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
394			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
395							  hash));
396			break;
397		case BPF_S_ANC_VLAN_TAG:
398		case BPF_S_ANC_VLAN_TAG_PRESENT:
399			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
400			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
401							  vlan_tci));
402			if (filter[i].code == BPF_S_ANC_VLAN_TAG)
403				PPC_ANDI(r_A, r_A, VLAN_VID_MASK);
404			else
405				PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT);
406			break;
407		case BPF_S_ANC_QUEUE:
408			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
409						  queue_mapping) != 2);
410			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
411							  queue_mapping));
412			break;
413		case BPF_S_ANC_CPU:
414#ifdef CONFIG_SMP
415			/*
416			 * PACA ptr is r13:
417			 * raw_smp_processor_id() = local_paca->paca_index
418			 */
419			BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
420						  paca_index) != 2);
421			PPC_LHZ_OFFS(r_A, 13,
422				     offsetof(struct paca_struct, paca_index));
423#else
424			PPC_LI(r_A, 0);
425#endif
426			break;
427
428			/*** Absolute loads from packet header/data ***/
429		case BPF_S_LD_W_ABS:
430			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
431			goto common_load;
432		case BPF_S_LD_H_ABS:
433			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
434			goto common_load;
435		case BPF_S_LD_B_ABS:
436			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
437		common_load:
438			/* Load from [K]. */
 
 
 
439			ctx->seen |= SEEN_DATAREF;
 
 
440			PPC_LI64(r_scratch1, func);
441			PPC_MTLR(r_scratch1);
442			PPC_LI32(r_addr, K);
443			PPC_BLRL();
444			/*
445			 * Helper returns 'lt' condition on error, and an
446			 * appropriate return value in r3
447			 */
448			PPC_BCC(COND_LT, exit_addr);
449			break;
450
451			/*** Indirect loads from packet header/data ***/
452		case BPF_S_LD_W_IND:
453			func = sk_load_word;
454			goto common_load_ind;
455		case BPF_S_LD_H_IND:
456			func = sk_load_half;
457			goto common_load_ind;
458		case BPF_S_LD_B_IND:
459			func = sk_load_byte;
460		common_load_ind:
461			/*
462			 * Load from [X + K].  Negative offsets are tested for
463			 * in the helper functions.
464			 */
465			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
466			PPC_LI64(r_scratch1, func);
467			PPC_MTLR(r_scratch1);
468			PPC_ADDI(r_addr, r_X, IMM_L(K));
469			if (K >= 32768)
470				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
471			PPC_BLRL();
472			/* If error, cr0.LT set */
473			PPC_BCC(COND_LT, exit_addr);
474			break;
475
476		case BPF_S_LDX_B_MSH:
477			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
 
 
 
 
 
 
478			goto common_load;
479			break;
480
481			/*** Jump and branches ***/
482		case BPF_S_JMP_JA:
483			if (K != 0)
484				PPC_JMP(addrs[i + 1 + K]);
485			break;
486
487		case BPF_S_JMP_JGT_K:
488		case BPF_S_JMP_JGT_X:
489			true_cond = COND_GT;
490			goto cond_branch;
491		case BPF_S_JMP_JGE_K:
492		case BPF_S_JMP_JGE_X:
493			true_cond = COND_GE;
494			goto cond_branch;
495		case BPF_S_JMP_JEQ_K:
496		case BPF_S_JMP_JEQ_X:
497			true_cond = COND_EQ;
498			goto cond_branch;
499		case BPF_S_JMP_JSET_K:
500		case BPF_S_JMP_JSET_X:
501			true_cond = COND_NE;
502			/* Fall through */
503		cond_branch:
504			/* same targets, can avoid doing the test :) */
505			if (filter[i].jt == filter[i].jf) {
506				if (filter[i].jt > 0)
507					PPC_JMP(addrs[i + 1 + filter[i].jt]);
508				break;
509			}
510
511			switch (filter[i].code) {
512			case BPF_S_JMP_JGT_X:
513			case BPF_S_JMP_JGE_X:
514			case BPF_S_JMP_JEQ_X:
515				ctx->seen |= SEEN_XREG;
516				PPC_CMPLW(r_A, r_X);
517				break;
518			case BPF_S_JMP_JSET_X:
519				ctx->seen |= SEEN_XREG;
520				PPC_AND_DOT(r_scratch1, r_A, r_X);
521				break;
522			case BPF_S_JMP_JEQ_K:
523			case BPF_S_JMP_JGT_K:
524			case BPF_S_JMP_JGE_K:
525				if (K < 32768)
526					PPC_CMPLWI(r_A, K);
527				else {
528					PPC_LI32(r_scratch1, K);
529					PPC_CMPLW(r_A, r_scratch1);
530				}
531				break;
532			case BPF_S_JMP_JSET_K:
533				if (K < 32768)
534					/* PPC_ANDI is /only/ dot-form */
535					PPC_ANDI(r_scratch1, r_A, K);
536				else {
537					PPC_LI32(r_scratch1, K);
538					PPC_AND_DOT(r_scratch1, r_A,
539						    r_scratch1);
540				}
541				break;
542			}
543			/* Sometimes branches are constructed "backward", with
544			 * the false path being the branch and true path being
545			 * a fallthrough to the next instruction.
546			 */
547			if (filter[i].jt == 0)
548				/* Swap the sense of the branch */
549				PPC_BCC(true_cond ^ COND_CMP_TRUE,
550					addrs[i + 1 + filter[i].jf]);
551			else {
552				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
553				if (filter[i].jf != 0)
554					PPC_JMP(addrs[i + 1 + filter[i].jf]);
555			}
556			break;
557		default:
558			/* The filter contains something cruel & unusual.
559			 * We don't handle it, but also there shouldn't be
560			 * anything missing from our list.
561			 */
562			if (printk_ratelimit())
563				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
564				       filter[i].code, i);
565			return -ENOTSUPP;
566		}
567
568	}
569	/* Set end-of-body-code address for exit. */
570	addrs[i] = ctx->idx * 4;
571
572	return 0;
573}
574
575void bpf_jit_compile(struct sk_filter *fp)
576{
577	unsigned int proglen;
578	unsigned int alloclen;
579	u32 *image = NULL;
580	u32 *code_base;
581	unsigned int *addrs;
582	struct codegen_context cgctx;
583	int pass;
584	int flen = fp->len;
585
586	if (!bpf_jit_enable)
587		return;
588
589	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
590	if (addrs == NULL)
591		return;
592
593	/*
594	 * There are multiple assembly passes as the generated code will change
595	 * size as it settles down, figuring out the max branch offsets/exit
596	 * paths required.
597	 *
598	 * The range of standard conditional branches is +/- 32Kbytes.	Since
599	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
600	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
601	 * used, distinct from short branches.
602	 *
603	 * Current:
604	 *
605	 * For now, both branch types assemble to 2 words (short branches padded
606	 * with a NOP); this is less efficient, but assembly will always complete
607	 * after exactly 3 passes:
608	 *
609	 * First pass: No code buffer; Program is "faux-generated" -- no code
610	 * emitted but maximum size of output determined (and addrs[] filled
611	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
612	 * All generation choices assumed to be 'worst-case', e.g. branches all
613	 * far (2 instructions), return path code reduction not available, etc.
614	 *
615	 * Second pass: Code buffer allocated with size determined previously.
616	 * Prologue generated to support features we have seen used.  Exit paths
617	 * determined and addrs[] is filled in again, as code may be slightly
618	 * smaller as a result.
619	 *
620	 * Third pass: Code generated 'for real', and branch destinations
621	 * determined from now-accurate addrs[] map.
622	 *
623	 * Ideal:
624	 *
625	 * If we optimise this, near branches will be shorter.	On the
626	 * first assembly pass, we should err on the side of caution and
627	 * generate the biggest code.  On subsequent passes, branches will be
628	 * generated short or long and code size will reduce.  With smaller
629	 * code, more branches may fall into the short category, and code will
630	 * reduce more.
631	 *
632	 * Finally, if we see one pass generate code the same size as the
633	 * previous pass we have converged and should now generate code for
634	 * real.  Allocating at the end will also save the memory that would
635	 * otherwise be wasted by the (small) current code shrinkage.
636	 * Preferably, we should do a small number of passes (e.g. 5) and if we
637	 * haven't converged by then, get impatient and force code to generate
638	 * as-is, even if the odd branch would be left long.  The chances of a
639	 * long jump are tiny with all but the most enormous of BPF filter
640	 * inputs, so we should usually converge on the third pass.
641	 */
642
643	cgctx.idx = 0;
644	cgctx.seen = 0;
645	cgctx.pc_ret0 = -1;
646	/* Scouting faux-generate pass 0 */
647	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
648		/* We hit something illegal or unsupported. */
649		goto out;
650
651	/*
652	 * Pretend to build prologue, given the features we've seen.  This will
653	 * update ctgtx.idx as it pretends to output instructions, then we can
654	 * calculate total size from idx.
655	 */
656	bpf_jit_build_prologue(fp, 0, &cgctx);
657	bpf_jit_build_epilogue(0, &cgctx);
658
659	proglen = cgctx.idx * 4;
660	alloclen = proglen + FUNCTION_DESCR_SIZE;
661	image = module_alloc(alloclen);
 
662	if (!image)
663		goto out;
664
665	code_base = image + (FUNCTION_DESCR_SIZE/4);
666
667	/* Code generation passes 1-2 */
668	for (pass = 1; pass < 3; pass++) {
669		/* Now build the prologue, body code & epilogue for real. */
670		cgctx.idx = 0;
671		bpf_jit_build_prologue(fp, code_base, &cgctx);
672		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
673		bpf_jit_build_epilogue(code_base, &cgctx);
674
675		if (bpf_jit_enable > 1)
676			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
677				proglen - (cgctx.idx * 4), cgctx.seen);
678	}
679
680	if (bpf_jit_enable > 1)
681		/* Note that we output the base address of the code_base
682		 * rather than image, since opcodes are in code_base.
683		 */
684		bpf_jit_dump(flen, proglen, pass, code_base);
685
686	if (image) {
 
 
 
 
 
 
687		bpf_flush_icache(code_base, code_base + (proglen/4));
688		/* Function descriptor nastiness: Address + TOC */
689		((u64 *)image)[0] = (u64)code_base;
690		((u64 *)image)[1] = local_paca->kernel_toc;
691		fp->bpf_func = (void *)image;
692		fp->jited = 1;
693	}
694out:
695	kfree(addrs);
696	return;
697}
698
 
 
 
 
 
 
 
 
699void bpf_jit_free(struct sk_filter *fp)
700{
701	if (fp->jited)
702		module_free(NULL, fp->bpf_func);
703	kfree(fp);
 
 
 
704}