Linux Audio

Check our new training course

Loading...
v3.1
  1/* bpf_jit_comp.c: BPF JIT compiler for PPC64
 
  2 *
  3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  4 *
  5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12#include <linux/moduleloader.h>
 13#include <asm/cacheflush.h>
 
 14#include <linux/netdevice.h>
 15#include <linux/filter.h>
 16#include "bpf_jit.h"
 17
 18#ifndef __BIG_ENDIAN
 19/* There are endianness assumptions herein. */
 20#error "Little-endian PPC not supported in BPF compiler"
 21#endif
 22
 23int bpf_jit_enable __read_mostly;
 24
 
 25
 26static inline void bpf_flush_icache(void *start, void *end)
 27{
 28	smp_wmb();
 29	flush_icache_range((unsigned long)start, (unsigned long)end);
 30}
 31
 32static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
 33				   struct codegen_context *ctx)
 34{
 35	int i;
 36	const struct sock_filter *filter = fp->insns;
 37
 38	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 39		/* Make stackframe */
 40		if (ctx->seen & SEEN_DATAREF) {
 41			/* If we call any helpers (for loads), save LR */
 42			EMIT(PPC_INST_MFLR | __PPC_RT(0));
 43			PPC_STD(0, 1, 16);
 44
 45			/* Back up non-volatile regs. */
 46			PPC_STD(r_D, 1, -(8*(32-r_D)));
 47			PPC_STD(r_HL, 1, -(8*(32-r_HL)));
 48		}
 49		if (ctx->seen & SEEN_MEM) {
 50			/*
 51			 * Conditionally save regs r15-r31 as some will be used
 52			 * for M[] data.
 53			 */
 54			for (i = r_M; i < (r_M+16); i++) {
 55				if (ctx->seen & (1 << (i-r_M)))
 56					PPC_STD(i, 1, -(8*(32-i)));
 57			}
 58		}
 59		EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
 60		     (-BPF_PPC_STACKFRAME & 0xfffc));
 61	}
 62
 63	if (ctx->seen & SEEN_DATAREF) {
 64		/*
 65		 * If this filter needs to access skb data,
 66		 * prepare r_D and r_HL:
 67		 *  r_HL = skb->len - skb->data_len
 68		 *  r_D	 = skb->data
 69		 */
 70		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 71							 data_len));
 72		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 73		PPC_SUB(r_HL, r_HL, r_scratch1);
 74		PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 75	}
 76
 77	if (ctx->seen & SEEN_XREG) {
 78		/*
 79		 * TODO: Could also detect whether first instr. sets X and
 80		 * avoid this (as below, with A).
 81		 */
 82		PPC_LI(r_X, 0);
 83	}
 84
 85	switch (filter[0].code) {
 86	case BPF_S_RET_K:
 87	case BPF_S_LD_W_LEN:
 88	case BPF_S_ANC_PROTOCOL:
 89	case BPF_S_ANC_IFINDEX:
 90	case BPF_S_ANC_MARK:
 91	case BPF_S_ANC_RXHASH:
 92	case BPF_S_ANC_CPU:
 93	case BPF_S_ANC_QUEUE:
 94	case BPF_S_LD_W_ABS:
 95	case BPF_S_LD_H_ABS:
 96	case BPF_S_LD_B_ABS:
 97		/* first instruction sets A register (or is RET 'constant') */
 98		break;
 99	default:
100		/* make sure we dont leak kernel information to user */
101		PPC_LI(r_A, 0);
102	}
103}
104
105static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
106{
107	int i;
108
109	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
110		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
111		if (ctx->seen & SEEN_DATAREF) {
112			PPC_LD(0, 1, 16);
113			PPC_MTLR(0);
114			PPC_LD(r_D, 1, -(8*(32-r_D)));
115			PPC_LD(r_HL, 1, -(8*(32-r_HL)));
116		}
117		if (ctx->seen & SEEN_MEM) {
118			/* Restore any saved non-vol registers */
119			for (i = r_M; i < (r_M+16); i++) {
120				if (ctx->seen & (1 << (i-r_M)))
121					PPC_LD(i, 1, -(8*(32-i)));
122			}
123		}
124	}
125	/* The RETs have left a return value in R3. */
126
127	PPC_BLR();
128}
129
 
 
 
130/* Assemble the body code between the prologue & epilogue. */
131static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
132			      struct codegen_context *ctx,
133			      unsigned int *addrs)
134{
135	const struct sock_filter *filter = fp->insns;
136	int flen = fp->len;
137	u8 *func;
138	unsigned int true_cond;
139	int i;
140
141	/* Start of epilogue code */
142	unsigned int exit_addr = addrs[flen];
143
144	for (i = 0; i < flen; i++) {
145		unsigned int K = filter[i].k;
 
146
147		/*
148		 * addrs[] maps a BPF bytecode address into a real offset from
149		 * the start of the body code.
150		 */
151		addrs[i] = ctx->idx * 4;
152
153		switch (filter[i].code) {
154			/*** ALU ops ***/
155		case BPF_S_ALU_ADD_X: /* A += X; */
156			ctx->seen |= SEEN_XREG;
157			PPC_ADD(r_A, r_A, r_X);
158			break;
159		case BPF_S_ALU_ADD_K: /* A += K; */
160			if (!K)
161				break;
162			PPC_ADDI(r_A, r_A, IMM_L(K));
163			if (K >= 32768)
164				PPC_ADDIS(r_A, r_A, IMM_HA(K));
165			break;
166		case BPF_S_ALU_SUB_X: /* A -= X; */
167			ctx->seen |= SEEN_XREG;
168			PPC_SUB(r_A, r_A, r_X);
169			break;
170		case BPF_S_ALU_SUB_K: /* A -= K */
171			if (!K)
172				break;
173			PPC_ADDI(r_A, r_A, IMM_L(-K));
174			if (K >= 32768)
175				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
176			break;
177		case BPF_S_ALU_MUL_X: /* A *= X; */
178			ctx->seen |= SEEN_XREG;
179			PPC_MUL(r_A, r_A, r_X);
180			break;
181		case BPF_S_ALU_MUL_K: /* A *= K */
182			if (K < 32768)
183				PPC_MULI(r_A, r_A, K);
184			else {
185				PPC_LI32(r_scratch1, K);
186				PPC_MUL(r_A, r_A, r_scratch1);
187			}
188			break;
189		case BPF_S_ALU_DIV_X: /* A /= X; */
 
190			ctx->seen |= SEEN_XREG;
191			PPC_CMPWI(r_X, 0);
192			if (ctx->pc_ret0 != -1) {
193				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
194			} else {
195				/*
196				 * Exit, returning 0; first pass hits here
197				 * (longer worst-case code size).
198				 */
199				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
200				PPC_LI(r_ret, 0);
201				PPC_JMP(exit_addr);
202			}
203			PPC_DIVWU(r_A, r_A, r_X);
 
 
 
 
 
 
 
 
 
 
 
 
204			break;
205		case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
 
 
206			PPC_LI32(r_scratch1, K);
207			/* Top 32 bits of 64bit result -> A */
208			PPC_MULHWU(r_A, r_A, r_scratch1);
209			break;
210		case BPF_S_ALU_AND_X:
211			ctx->seen |= SEEN_XREG;
212			PPC_AND(r_A, r_A, r_X);
213			break;
214		case BPF_S_ALU_AND_K:
215			if (!IMM_H(K))
216				PPC_ANDI(r_A, r_A, K);
217			else {
218				PPC_LI32(r_scratch1, K);
219				PPC_AND(r_A, r_A, r_scratch1);
220			}
221			break;
222		case BPF_S_ALU_OR_X:
223			ctx->seen |= SEEN_XREG;
224			PPC_OR(r_A, r_A, r_X);
225			break;
226		case BPF_S_ALU_OR_K:
227			if (IMM_L(K))
228				PPC_ORI(r_A, r_A, IMM_L(K));
229			if (K >= 65536)
230				PPC_ORIS(r_A, r_A, IMM_H(K));
231			break;
232		case BPF_S_ALU_LSH_X: /* A <<= X; */
 
233			ctx->seen |= SEEN_XREG;
234			PPC_SLW(r_A, r_A, r_X);
235			break;
236		case BPF_S_ALU_LSH_K:
 
 
 
 
 
 
 
 
 
 
237			if (K == 0)
238				break;
239			else
240				PPC_SLWI(r_A, r_A, K);
241			break;
242		case BPF_S_ALU_RSH_X: /* A >>= X; */
243			ctx->seen |= SEEN_XREG;
244			PPC_SRW(r_A, r_A, r_X);
245			break;
246		case BPF_S_ALU_RSH_K: /* A >>= K; */
247			if (K == 0)
248				break;
249			else
250				PPC_SRWI(r_A, r_A, K);
251			break;
252		case BPF_S_ALU_NEG:
253			PPC_NEG(r_A, r_A);
254			break;
255		case BPF_S_RET_K:
256			PPC_LI32(r_ret, K);
257			if (!K) {
258				if (ctx->pc_ret0 == -1)
259					ctx->pc_ret0 = i;
260			}
261			/*
262			 * If this isn't the very last instruction, branch to
263			 * the epilogue if we've stuff to clean up.  Otherwise,
264			 * if there's nothing to tidy, just return.  If we /are/
265			 * the last instruction, we're about to fall through to
266			 * the epilogue to return.
267			 */
268			if (i != flen - 1) {
269				/*
270				 * Note: 'seen' is properly valid only on pass
271				 * #2.	Both parts of this conditional are the
272				 * same instruction size though, meaning the
273				 * first pass will still correctly determine the
274				 * code size/addresses.
275				 */
276				if (ctx->seen)
277					PPC_JMP(exit_addr);
278				else
279					PPC_BLR();
280			}
281			break;
282		case BPF_S_RET_A:
283			PPC_MR(r_ret, r_A);
284			if (i != flen - 1) {
285				if (ctx->seen)
286					PPC_JMP(exit_addr);
287				else
288					PPC_BLR();
289			}
290			break;
291		case BPF_S_MISC_TAX: /* X = A */
292			PPC_MR(r_X, r_A);
293			break;
294		case BPF_S_MISC_TXA: /* A = X */
295			ctx->seen |= SEEN_XREG;
296			PPC_MR(r_A, r_X);
297			break;
298
299			/*** Constant loads/M[] access ***/
300		case BPF_S_LD_IMM: /* A = K */
301			PPC_LI32(r_A, K);
302			break;
303		case BPF_S_LDX_IMM: /* X = K */
304			PPC_LI32(r_X, K);
305			break;
306		case BPF_S_LD_MEM: /* A = mem[K] */
307			PPC_MR(r_A, r_M + (K & 0xf));
308			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
309			break;
310		case BPF_S_LDX_MEM: /* X = mem[K] */
311			PPC_MR(r_X, r_M + (K & 0xf));
312			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313			break;
314		case BPF_S_ST: /* mem[K] = A */
315			PPC_MR(r_M + (K & 0xf), r_A);
316			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317			break;
318		case BPF_S_STX: /* mem[K] = X */
319			PPC_MR(r_M + (K & 0xf), r_X);
320			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
321			break;
322		case BPF_S_LD_W_LEN: /*	A = skb->len; */
323			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
324			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
325			break;
326		case BPF_S_LDX_W_LEN: /* X = skb->len; */
 
 
 
327			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
328			break;
329
330			/*** Ancillary info loads ***/
331
332			/* None of the BPF_S_ANC* codes appear to be passed by
333			 * sk_chk_filter().  The interpreter and the x86 BPF
334			 * compiler implement them so we do too -- they may be
335			 * planted in future.
336			 */
337		case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
338			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
339						  protocol) != 2);
340			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
341							  protocol));
342			/* ntohs is a NOP with BE loads. */
343			break;
344		case BPF_S_ANC_IFINDEX:
345			PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 
 
 
 
 
346								dev));
347			PPC_CMPDI(r_scratch1, 0);
348			if (ctx->pc_ret0 != -1) {
349				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
350			} else {
351				/* Exit, returning 0; first pass hits here. */
352				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
353				PPC_LI(r_ret, 0);
354				PPC_JMP(exit_addr);
355			}
356			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
357						  ifindex) != 4);
358			PPC_LWZ_OFFS(r_A, r_scratch1,
359				     offsetof(struct net_device, ifindex));
 
 
 
 
 
360			break;
361		case BPF_S_ANC_MARK:
362			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
363			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
364							  mark));
365			break;
366		case BPF_S_ANC_RXHASH:
367			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
368			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
369							  rxhash));
370			break;
371		case BPF_S_ANC_QUEUE:
372			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 
 
 
 
 
 
 
 
 
 
 
 
 
373						  queue_mapping) != 2);
374			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375							  queue_mapping));
376			break;
377		case BPF_S_ANC_CPU:
378#ifdef CONFIG_SMP
379			/*
380			 * PACA ptr is r13:
381			 * raw_smp_processor_id() = local_paca->paca_index
382			 */
383			BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
384						  paca_index) != 2);
385			PPC_LHZ_OFFS(r_A, 13,
386				     offsetof(struct paca_struct, paca_index));
387#else
388			PPC_LI(r_A, 0);
389#endif
390			break;
391
392			/*** Absolute loads from packet header/data ***/
393		case BPF_S_LD_W_ABS:
394			func = sk_load_word;
395			goto common_load;
396		case BPF_S_LD_H_ABS:
397			func = sk_load_half;
398			goto common_load;
399		case BPF_S_LD_B_ABS:
400			func = sk_load_byte;
401		common_load:
402			/*
403			 * Load from [K].  Reference with the (negative)
404			 * SKF_NET_OFF/SKF_LL_OFF offsets is unsupported.
405			 */
406			ctx->seen |= SEEN_DATAREF;
407			if ((int)K < 0)
408				return -ENOTSUPP;
409			PPC_LI64(r_scratch1, func);
410			PPC_MTLR(r_scratch1);
411			PPC_LI32(r_addr, K);
412			PPC_BLRL();
413			/*
414			 * Helper returns 'lt' condition on error, and an
415			 * appropriate return value in r3
416			 */
417			PPC_BCC(COND_LT, exit_addr);
418			break;
419
420			/*** Indirect loads from packet header/data ***/
421		case BPF_S_LD_W_IND:
422			func = sk_load_word;
423			goto common_load_ind;
424		case BPF_S_LD_H_IND:
425			func = sk_load_half;
426			goto common_load_ind;
427		case BPF_S_LD_B_IND:
428			func = sk_load_byte;
429		common_load_ind:
430			/*
431			 * Load from [X + K].  Negative offsets are tested for
432			 * in the helper functions, and result in a 'ret 0'.
433			 */
434			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
435			PPC_LI64(r_scratch1, func);
436			PPC_MTLR(r_scratch1);
437			PPC_ADDI(r_addr, r_X, IMM_L(K));
438			if (K >= 32768)
439				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
440			PPC_BLRL();
441			/* If error, cr0.LT set */
442			PPC_BCC(COND_LT, exit_addr);
443			break;
444
445		case BPF_S_LDX_B_MSH:
446			/*
447			 * x86 version drops packet (RET 0) when K<0, whereas
448			 * interpreter does allow K<0 (__load_pointer, special
449			 * ancillary data).  common_load returns ENOTSUPP if K<0,
450			 * so we fall back to interpreter & filter works.
451			 */
452			func = sk_load_byte_msh;
453			goto common_load;
454			break;
455
456			/*** Jump and branches ***/
457		case BPF_S_JMP_JA:
458			if (K != 0)
459				PPC_JMP(addrs[i + 1 + K]);
460			break;
461
462		case BPF_S_JMP_JGT_K:
463		case BPF_S_JMP_JGT_X:
464			true_cond = COND_GT;
465			goto cond_branch;
466		case BPF_S_JMP_JGE_K:
467		case BPF_S_JMP_JGE_X:
468			true_cond = COND_GE;
469			goto cond_branch;
470		case BPF_S_JMP_JEQ_K:
471		case BPF_S_JMP_JEQ_X:
472			true_cond = COND_EQ;
473			goto cond_branch;
474		case BPF_S_JMP_JSET_K:
475		case BPF_S_JMP_JSET_X:
476			true_cond = COND_NE;
477			/* Fall through */
478		cond_branch:
479			/* same targets, can avoid doing the test :) */
480			if (filter[i].jt == filter[i].jf) {
481				if (filter[i].jt > 0)
482					PPC_JMP(addrs[i + 1 + filter[i].jt]);
483				break;
484			}
485
486			switch (filter[i].code) {
487			case BPF_S_JMP_JGT_X:
488			case BPF_S_JMP_JGE_X:
489			case BPF_S_JMP_JEQ_X:
490				ctx->seen |= SEEN_XREG;
491				PPC_CMPLW(r_A, r_X);
492				break;
493			case BPF_S_JMP_JSET_X:
494				ctx->seen |= SEEN_XREG;
495				PPC_AND_DOT(r_scratch1, r_A, r_X);
496				break;
497			case BPF_S_JMP_JEQ_K:
498			case BPF_S_JMP_JGT_K:
499			case BPF_S_JMP_JGE_K:
500				if (K < 32768)
501					PPC_CMPLWI(r_A, K);
502				else {
503					PPC_LI32(r_scratch1, K);
504					PPC_CMPLW(r_A, r_scratch1);
505				}
506				break;
507			case BPF_S_JMP_JSET_K:
508				if (K < 32768)
509					/* PPC_ANDI is /only/ dot-form */
510					PPC_ANDI(r_scratch1, r_A, K);
511				else {
512					PPC_LI32(r_scratch1, K);
513					PPC_AND_DOT(r_scratch1, r_A,
514						    r_scratch1);
515				}
516				break;
517			}
518			/* Sometimes branches are constructed "backward", with
519			 * the false path being the branch and true path being
520			 * a fallthrough to the next instruction.
521			 */
522			if (filter[i].jt == 0)
523				/* Swap the sense of the branch */
524				PPC_BCC(true_cond ^ COND_CMP_TRUE,
525					addrs[i + 1 + filter[i].jf]);
526			else {
527				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
528				if (filter[i].jf != 0)
529					PPC_JMP(addrs[i + 1 + filter[i].jf]);
530			}
531			break;
532		default:
533			/* The filter contains something cruel & unusual.
534			 * We don't handle it, but also there shouldn't be
535			 * anything missing from our list.
536			 */
537			if (printk_ratelimit())
538				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
539				       filter[i].code, i);
540			return -ENOTSUPP;
541		}
542
543	}
544	/* Set end-of-body-code address for exit. */
545	addrs[i] = ctx->idx * 4;
546
547	return 0;
548}
549
550void bpf_jit_compile(struct sk_filter *fp)
551{
552	unsigned int proglen;
553	unsigned int alloclen;
554	u32 *image = NULL;
555	u32 *code_base;
556	unsigned int *addrs;
557	struct codegen_context cgctx;
558	int pass;
559	int flen = fp->len;
560
561	if (!bpf_jit_enable)
562		return;
563
564	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
565	if (addrs == NULL)
566		return;
567
568	/*
569	 * There are multiple assembly passes as the generated code will change
570	 * size as it settles down, figuring out the max branch offsets/exit
571	 * paths required.
572	 *
573	 * The range of standard conditional branches is +/- 32Kbytes.	Since
574	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
575	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
576	 * used, distinct from short branches.
577	 *
578	 * Current:
579	 *
580	 * For now, both branch types assemble to 2 words (short branches padded
581	 * with a NOP); this is less efficient, but assembly will always complete
582	 * after exactly 3 passes:
583	 *
584	 * First pass: No code buffer; Program is "faux-generated" -- no code
585	 * emitted but maximum size of output determined (and addrs[] filled
586	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
587	 * All generation choices assumed to be 'worst-case', e.g. branches all
588	 * far (2 instructions), return path code reduction not available, etc.
589	 *
590	 * Second pass: Code buffer allocated with size determined previously.
591	 * Prologue generated to support features we have seen used.  Exit paths
592	 * determined and addrs[] is filled in again, as code may be slightly
593	 * smaller as a result.
594	 *
595	 * Third pass: Code generated 'for real', and branch destinations
596	 * determined from now-accurate addrs[] map.
597	 *
598	 * Ideal:
599	 *
600	 * If we optimise this, near branches will be shorter.	On the
601	 * first assembly pass, we should err on the side of caution and
602	 * generate the biggest code.  On subsequent passes, branches will be
603	 * generated short or long and code size will reduce.  With smaller
604	 * code, more branches may fall into the short category, and code will
605	 * reduce more.
606	 *
607	 * Finally, if we see one pass generate code the same size as the
608	 * previous pass we have converged and should now generate code for
609	 * real.  Allocating at the end will also save the memory that would
610	 * otherwise be wasted by the (small) current code shrinkage.
611	 * Preferably, we should do a small number of passes (e.g. 5) and if we
612	 * haven't converged by then, get impatient and force code to generate
613	 * as-is, even if the odd branch would be left long.  The chances of a
614	 * long jump are tiny with all but the most enormous of BPF filter
615	 * inputs, so we should usually converge on the third pass.
616	 */
617
618	cgctx.idx = 0;
619	cgctx.seen = 0;
620	cgctx.pc_ret0 = -1;
621	/* Scouting faux-generate pass 0 */
622	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
623		/* We hit something illegal or unsupported. */
624		goto out;
625
626	/*
627	 * Pretend to build prologue, given the features we've seen.  This will
628	 * update ctgtx.idx as it pretends to output instructions, then we can
629	 * calculate total size from idx.
630	 */
631	bpf_jit_build_prologue(fp, 0, &cgctx);
632	bpf_jit_build_epilogue(0, &cgctx);
633
634	proglen = cgctx.idx * 4;
635	alloclen = proglen + FUNCTION_DESCR_SIZE;
636	image = module_alloc(max_t(unsigned int, alloclen,
637				   sizeof(struct work_struct)));
638	if (!image)
639		goto out;
640
641	code_base = image + (FUNCTION_DESCR_SIZE/4);
642
643	/* Code generation passes 1-2 */
644	for (pass = 1; pass < 3; pass++) {
645		/* Now build the prologue, body code & epilogue for real. */
646		cgctx.idx = 0;
647		bpf_jit_build_prologue(fp, code_base, &cgctx);
648		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
649		bpf_jit_build_epilogue(code_base, &cgctx);
650
651		if (bpf_jit_enable > 1)
652			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
653				proglen - (cgctx.idx * 4), cgctx.seen);
654	}
655
656	if (bpf_jit_enable > 1)
657		pr_info("flen=%d proglen=%u pass=%d image=%p\n",
658		       flen, proglen, pass, image);
 
 
 
 
 
 
 
 
 
 
 
 
 
659
660	if (image) {
661		if (bpf_jit_enable > 1)
662			print_hex_dump(KERN_ERR, "JIT code: ",
663				       DUMP_PREFIX_ADDRESS,
664				       16, 1, code_base,
665				       proglen, false);
666
667		bpf_flush_icache(code_base, code_base + (proglen/4));
668		/* Function descriptor nastiness: Address + TOC */
669		((u64 *)image)[0] = (u64)code_base;
670		((u64 *)image)[1] = local_paca->kernel_toc;
671		fp->bpf_func = (void *)image;
672	}
673out:
674	kfree(addrs);
675	return;
676}
677
678static void jit_free_defer(struct work_struct *arg)
679{
680	module_free(NULL, arg);
681}
682
683/* run from softirq, we must use a work_struct to call
684 * module_free() from process context
685 */
686void bpf_jit_free(struct sk_filter *fp)
687{
688	if (fp->bpf_func != sk_run_filter) {
689		struct work_struct *work = (struct work_struct *)fp->bpf_func;
690
691		INIT_WORK(work, jit_free_defer);
692		schedule_work(work);
693	}
694}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf_jit_comp.c: BPF JIT compiler
  3 *
  4 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  5 *
  6 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  7 * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
 
 
 
 
  8 */
  9#include <linux/moduleloader.h>
 10#include <asm/cacheflush.h>
 11#include <asm/asm-compat.h>
 12#include <linux/netdevice.h>
 13#include <linux/filter.h>
 14#include <linux/if_vlan.h>
 
 
 
 
 
 
 
 15
 16#include "bpf_jit32.h"
 17
 18static inline void bpf_flush_icache(void *start, void *end)
 19{
 20	smp_wmb();
 21	flush_icache_range((unsigned long)start, (unsigned long)end);
 22}
 23
 24static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
 25				   struct codegen_context *ctx)
 26{
 27	int i;
 28	const struct sock_filter *filter = fp->insns;
 29
 30	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 31		/* Make stackframe */
 32		if (ctx->seen & SEEN_DATAREF) {
 33			/* If we call any helpers (for loads), save LR */
 34			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
 35			PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
 36
 37			/* Back up non-volatile regs. */
 38			PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
 39			PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 40		}
 41		if (ctx->seen & SEEN_MEM) {
 42			/*
 43			 * Conditionally save regs r15-r31 as some will be used
 44			 * for M[] data.
 45			 */
 46			for (i = r_M; i < (r_M+16); i++) {
 47				if (ctx->seen & (1 << (i-r_M)))
 48					PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
 49			}
 50		}
 51		PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
 
 52	}
 53
 54	if (ctx->seen & SEEN_DATAREF) {
 55		/*
 56		 * If this filter needs to access skb data,
 57		 * prepare r_D and r_HL:
 58		 *  r_HL = skb->len - skb->data_len
 59		 *  r_D	 = skb->data
 60		 */
 61		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 62							 data_len));
 63		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 64		EMIT(PPC_RAW_SUB(r_HL, r_HL, r_scratch1));
 65		PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 66	}
 67
 68	if (ctx->seen & SEEN_XREG) {
 69		/*
 70		 * TODO: Could also detect whether first instr. sets X and
 71		 * avoid this (as below, with A).
 72		 */
 73		EMIT(PPC_RAW_LI(r_X, 0));
 74	}
 75
 76	/* make sure we dont leak kernel information to user */
 77	if (bpf_needs_clear_a(&filter[0]))
 78		EMIT(PPC_RAW_LI(r_A, 0));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79}
 80
 81static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
 82{
 83	int i;
 84
 85	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 86		EMIT(PPC_RAW_ADDI(1, 1, BPF_PPC_STACKFRAME));
 87		if (ctx->seen & SEEN_DATAREF) {
 88			PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
 89			EMIT(PPC_RAW_MTLR(0));
 90			PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
 91			PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 92		}
 93		if (ctx->seen & SEEN_MEM) {
 94			/* Restore any saved non-vol registers */
 95			for (i = r_M; i < (r_M+16); i++) {
 96				if (ctx->seen & (1 << (i-r_M)))
 97					PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
 98			}
 99		}
100	}
101	/* The RETs have left a return value in R3. */
102
103	EMIT(PPC_RAW_BLR());
104}
105
106#define CHOOSE_LOAD_FUNC(K, func) \
107	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
108
109/* Assemble the body code between the prologue & epilogue. */
110static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
111			      struct codegen_context *ctx,
112			      unsigned int *addrs)
113{
114	const struct sock_filter *filter = fp->insns;
115	int flen = fp->len;
116	u8 *func;
117	unsigned int true_cond;
118	int i;
119
120	/* Start of epilogue code */
121	unsigned int exit_addr = addrs[flen];
122
123	for (i = 0; i < flen; i++) {
124		unsigned int K = filter[i].k;
125		u16 code = bpf_anc_helper(&filter[i]);
126
127		/*
128		 * addrs[] maps a BPF bytecode address into a real offset from
129		 * the start of the body code.
130		 */
131		addrs[i] = ctx->idx * 4;
132
133		switch (code) {
134			/*** ALU ops ***/
135		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
136			ctx->seen |= SEEN_XREG;
137			EMIT(PPC_RAW_ADD(r_A, r_A, r_X));
138			break;
139		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
140			if (!K)
141				break;
142			EMIT(PPC_RAW_ADDI(r_A, r_A, IMM_L(K)));
143			if (K >= 32768)
144				EMIT(PPC_RAW_ADDIS(r_A, r_A, IMM_HA(K)));
145			break;
146		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
147			ctx->seen |= SEEN_XREG;
148			EMIT(PPC_RAW_SUB(r_A, r_A, r_X));
149			break;
150		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
151			if (!K)
152				break;
153			EMIT(PPC_RAW_ADDI(r_A, r_A, IMM_L(-K)));
154			if (K >= 32768)
155				EMIT(PPC_RAW_ADDIS(r_A, r_A, IMM_HA(-K)));
156			break;
157		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
158			ctx->seen |= SEEN_XREG;
159			EMIT(PPC_RAW_MULW(r_A, r_A, r_X));
160			break;
161		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
162			if (K < 32768)
163				EMIT(PPC_RAW_MULI(r_A, r_A, K));
164			else {
165				PPC_LI32(r_scratch1, K);
166				EMIT(PPC_RAW_MULW(r_A, r_A, r_scratch1));
167			}
168			break;
169		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
170		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
171			ctx->seen |= SEEN_XREG;
172			EMIT(PPC_RAW_CMPWI(r_X, 0));
173			if (ctx->pc_ret0 != -1) {
174				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
175			} else {
 
 
 
 
176				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
177				EMIT(PPC_RAW_LI(r_ret, 0));
178				PPC_JMP(exit_addr);
179			}
180			if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
181				EMIT(PPC_RAW_DIVWU(r_scratch1, r_A, r_X));
182				EMIT(PPC_RAW_MULW(r_scratch1, r_X, r_scratch1));
183				EMIT(PPC_RAW_SUB(r_A, r_A, r_scratch1));
184			} else {
185				EMIT(PPC_RAW_DIVWU(r_A, r_A, r_X));
186			}
187			break;
188		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
189			PPC_LI32(r_scratch2, K);
190			EMIT(PPC_RAW_DIVWU(r_scratch1, r_A, r_scratch2));
191			EMIT(PPC_RAW_MULW(r_scratch1, r_scratch2, r_scratch1));
192			EMIT(PPC_RAW_SUB(r_A, r_A, r_scratch1));
193			break;
194		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
195			if (K == 1)
196				break;
197			PPC_LI32(r_scratch1, K);
198			EMIT(PPC_RAW_DIVWU(r_A, r_A, r_scratch1));
 
199			break;
200		case BPF_ALU | BPF_AND | BPF_X:
201			ctx->seen |= SEEN_XREG;
202			EMIT(PPC_RAW_AND(r_A, r_A, r_X));
203			break;
204		case BPF_ALU | BPF_AND | BPF_K:
205			if (!IMM_H(K))
206				EMIT(PPC_RAW_ANDI(r_A, r_A, K));
207			else {
208				PPC_LI32(r_scratch1, K);
209				EMIT(PPC_RAW_AND(r_A, r_A, r_scratch1));
210			}
211			break;
212		case BPF_ALU | BPF_OR | BPF_X:
213			ctx->seen |= SEEN_XREG;
214			EMIT(PPC_RAW_OR(r_A, r_A, r_X));
215			break;
216		case BPF_ALU | BPF_OR | BPF_K:
217			if (IMM_L(K))
218				EMIT(PPC_RAW_ORI(r_A, r_A, IMM_L(K)));
219			if (K >= 65536)
220				EMIT(PPC_RAW_ORIS(r_A, r_A, IMM_H(K)));
221			break;
222		case BPF_ANC | SKF_AD_ALU_XOR_X:
223		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
224			ctx->seen |= SEEN_XREG;
225			EMIT(PPC_RAW_XOR(r_A, r_A, r_X));
226			break;
227		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
228			if (IMM_L(K))
229				EMIT(PPC_RAW_XORI(r_A, r_A, IMM_L(K)));
230			if (K >= 65536)
231				EMIT(PPC_RAW_XORIS(r_A, r_A, IMM_H(K)));
232			break;
233		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
234			ctx->seen |= SEEN_XREG;
235			EMIT(PPC_RAW_SLW(r_A, r_A, r_X));
236			break;
237		case BPF_ALU | BPF_LSH | BPF_K:
238			if (K == 0)
239				break;
240			else
241				EMIT(PPC_RAW_SLWI(r_A, r_A, K));
242			break;
243		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
244			ctx->seen |= SEEN_XREG;
245			EMIT(PPC_RAW_SRW(r_A, r_A, r_X));
246			break;
247		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
248			if (K == 0)
249				break;
250			else
251				EMIT(PPC_RAW_SRWI(r_A, r_A, K));
252			break;
253		case BPF_ALU | BPF_NEG:
254			EMIT(PPC_RAW_NEG(r_A, r_A));
255			break;
256		case BPF_RET | BPF_K:
257			PPC_LI32(r_ret, K);
258			if (!K) {
259				if (ctx->pc_ret0 == -1)
260					ctx->pc_ret0 = i;
261			}
262			/*
263			 * If this isn't the very last instruction, branch to
264			 * the epilogue if we've stuff to clean up.  Otherwise,
265			 * if there's nothing to tidy, just return.  If we /are/
266			 * the last instruction, we're about to fall through to
267			 * the epilogue to return.
268			 */
269			if (i != flen - 1) {
270				/*
271				 * Note: 'seen' is properly valid only on pass
272				 * #2.	Both parts of this conditional are the
273				 * same instruction size though, meaning the
274				 * first pass will still correctly determine the
275				 * code size/addresses.
276				 */
277				if (ctx->seen)
278					PPC_JMP(exit_addr);
279				else
280					EMIT(PPC_RAW_BLR());
281			}
282			break;
283		case BPF_RET | BPF_A:
284			EMIT(PPC_RAW_MR(r_ret, r_A));
285			if (i != flen - 1) {
286				if (ctx->seen)
287					PPC_JMP(exit_addr);
288				else
289					EMIT(PPC_RAW_BLR());
290			}
291			break;
292		case BPF_MISC | BPF_TAX: /* X = A */
293			EMIT(PPC_RAW_MR(r_X, r_A));
294			break;
295		case BPF_MISC | BPF_TXA: /* A = X */
296			ctx->seen |= SEEN_XREG;
297			EMIT(PPC_RAW_MR(r_A, r_X));
298			break;
299
300			/*** Constant loads/M[] access ***/
301		case BPF_LD | BPF_IMM: /* A = K */
302			PPC_LI32(r_A, K);
303			break;
304		case BPF_LDX | BPF_IMM: /* X = K */
305			PPC_LI32(r_X, K);
306			break;
307		case BPF_LD | BPF_MEM: /* A = mem[K] */
308			EMIT(PPC_RAW_MR(r_A, r_M + (K & 0xf)));
309			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
310			break;
311		case BPF_LDX | BPF_MEM: /* X = mem[K] */
312			EMIT(PPC_RAW_MR(r_X, r_M + (K & 0xf)));
313			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
314			break;
315		case BPF_ST: /* mem[K] = A */
316			EMIT(PPC_RAW_MR(r_M + (K & 0xf), r_A));
317			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
318			break;
319		case BPF_STX: /* mem[K] = X */
320			EMIT(PPC_RAW_MR(r_M + (K & 0xf), r_X));
321			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
322			break;
323		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
324			BUILD_BUG_ON(sizeof_field(struct sk_buff, len) != 4);
325			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
326			break;
327		case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */
328			PPC_LWZ_OFFS(r_A, r_skb, K);
329			break;
330		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
331			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
332			break;
333
334			/*** Ancillary info loads ***/
335		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
336			BUILD_BUG_ON(sizeof_field(struct sk_buff,
 
 
 
 
 
 
337						  protocol) != 2);
338			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
339							    protocol));
 
340			break;
341		case BPF_ANC | SKF_AD_IFINDEX:
342		case BPF_ANC | SKF_AD_HATYPE:
343			BUILD_BUG_ON(sizeof_field(struct net_device,
344						ifindex) != 4);
345			BUILD_BUG_ON(sizeof_field(struct net_device,
346						type) != 2);
347			PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
348								dev));
349			EMIT(PPC_RAW_CMPDI(r_scratch1, 0));
350			if (ctx->pc_ret0 != -1) {
351				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
352			} else {
353				/* Exit, returning 0; first pass hits here. */
354				PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
355				EMIT(PPC_RAW_LI(r_ret, 0));
356				PPC_JMP(exit_addr);
357			}
358			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
359				PPC_LWZ_OFFS(r_A, r_scratch1,
 
360				     offsetof(struct net_device, ifindex));
361			} else {
362				PPC_LHZ_OFFS(r_A, r_scratch1,
363				     offsetof(struct net_device, type));
364			}
365
366			break;
367		case BPF_ANC | SKF_AD_MARK:
368			BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
369			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
370							  mark));
371			break;
372		case BPF_ANC | SKF_AD_RXHASH:
373			BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
374			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375							  hash));
376			break;
377		case BPF_ANC | SKF_AD_VLAN_TAG:
378			BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
379
380			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
381							  vlan_tci));
382			break;
383		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
384			PPC_LBZ_OFFS(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET());
385			if (PKT_VLAN_PRESENT_BIT)
386				EMIT(PPC_RAW_SRWI(r_A, r_A, PKT_VLAN_PRESENT_BIT));
387			if (PKT_VLAN_PRESENT_BIT < 7)
388				EMIT(PPC_RAW_ANDI(r_A, r_A, 1));
389			break;
390		case BPF_ANC | SKF_AD_QUEUE:
391			BUILD_BUG_ON(sizeof_field(struct sk_buff,
392						  queue_mapping) != 2);
393			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
394							  queue_mapping));
395			break;
396		case BPF_ANC | SKF_AD_PKTTYPE:
397			PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
398			EMIT(PPC_RAW_ANDI(r_A, r_A, PKT_TYPE_MAX));
399			EMIT(PPC_RAW_SRWI(r_A, r_A, 5));
400			break;
401		case BPF_ANC | SKF_AD_CPU:
402			PPC_BPF_LOAD_CPU(r_A);
 
 
 
 
 
 
403			break;
 
404			/*** Absolute loads from packet header/data ***/
405		case BPF_LD | BPF_W | BPF_ABS:
406			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
407			goto common_load;
408		case BPF_LD | BPF_H | BPF_ABS:
409			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
410			goto common_load;
411		case BPF_LD | BPF_B | BPF_ABS:
412			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
413		common_load:
414			/* Load from [K]. */
 
 
 
415			ctx->seen |= SEEN_DATAREF;
416			PPC_FUNC_ADDR(r_scratch1, func);
417			EMIT(PPC_RAW_MTLR(r_scratch1));
 
 
418			PPC_LI32(r_addr, K);
419			EMIT(PPC_RAW_BLRL());
420			/*
421			 * Helper returns 'lt' condition on error, and an
422			 * appropriate return value in r3
423			 */
424			PPC_BCC(COND_LT, exit_addr);
425			break;
426
427			/*** Indirect loads from packet header/data ***/
428		case BPF_LD | BPF_W | BPF_IND:
429			func = sk_load_word;
430			goto common_load_ind;
431		case BPF_LD | BPF_H | BPF_IND:
432			func = sk_load_half;
433			goto common_load_ind;
434		case BPF_LD | BPF_B | BPF_IND:
435			func = sk_load_byte;
436		common_load_ind:
437			/*
438			 * Load from [X + K].  Negative offsets are tested for
439			 * in the helper functions.
440			 */
441			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
442			PPC_FUNC_ADDR(r_scratch1, func);
443			EMIT(PPC_RAW_MTLR(r_scratch1));
444			EMIT(PPC_RAW_ADDI(r_addr, r_X, IMM_L(K)));
445			if (K >= 32768)
446				EMIT(PPC_RAW_ADDIS(r_addr, r_addr, IMM_HA(K)));
447			EMIT(PPC_RAW_BLRL());
448			/* If error, cr0.LT set */
449			PPC_BCC(COND_LT, exit_addr);
450			break;
451
452		case BPF_LDX | BPF_B | BPF_MSH:
453			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
 
 
 
 
 
 
454			goto common_load;
455			break;
456
457			/*** Jump and branches ***/
458		case BPF_JMP | BPF_JA:
459			if (K != 0)
460				PPC_JMP(addrs[i + 1 + K]);
461			break;
462
463		case BPF_JMP | BPF_JGT | BPF_K:
464		case BPF_JMP | BPF_JGT | BPF_X:
465			true_cond = COND_GT;
466			goto cond_branch;
467		case BPF_JMP | BPF_JGE | BPF_K:
468		case BPF_JMP | BPF_JGE | BPF_X:
469			true_cond = COND_GE;
470			goto cond_branch;
471		case BPF_JMP | BPF_JEQ | BPF_K:
472		case BPF_JMP | BPF_JEQ | BPF_X:
473			true_cond = COND_EQ;
474			goto cond_branch;
475		case BPF_JMP | BPF_JSET | BPF_K:
476		case BPF_JMP | BPF_JSET | BPF_X:
477			true_cond = COND_NE;
 
478		cond_branch:
479			/* same targets, can avoid doing the test :) */
480			if (filter[i].jt == filter[i].jf) {
481				if (filter[i].jt > 0)
482					PPC_JMP(addrs[i + 1 + filter[i].jt]);
483				break;
484			}
485
486			switch (code) {
487			case BPF_JMP | BPF_JGT | BPF_X:
488			case BPF_JMP | BPF_JGE | BPF_X:
489			case BPF_JMP | BPF_JEQ | BPF_X:
490				ctx->seen |= SEEN_XREG;
491				EMIT(PPC_RAW_CMPLW(r_A, r_X));
492				break;
493			case BPF_JMP | BPF_JSET | BPF_X:
494				ctx->seen |= SEEN_XREG;
495				EMIT(PPC_RAW_AND_DOT(r_scratch1, r_A, r_X));
496				break;
497			case BPF_JMP | BPF_JEQ | BPF_K:
498			case BPF_JMP | BPF_JGT | BPF_K:
499			case BPF_JMP | BPF_JGE | BPF_K:
500				if (K < 32768)
501					EMIT(PPC_RAW_CMPLWI(r_A, K));
502				else {
503					PPC_LI32(r_scratch1, K);
504					EMIT(PPC_RAW_CMPLW(r_A, r_scratch1));
505				}
506				break;
507			case BPF_JMP | BPF_JSET | BPF_K:
508				if (K < 32768)
509					/* PPC_ANDI is /only/ dot-form */
510					EMIT(PPC_RAW_ANDI(r_scratch1, r_A, K));
511				else {
512					PPC_LI32(r_scratch1, K);
513					EMIT(PPC_RAW_AND_DOT(r_scratch1, r_A,
514						    r_scratch1));
515				}
516				break;
517			}
518			/* Sometimes branches are constructed "backward", with
519			 * the false path being the branch and true path being
520			 * a fallthrough to the next instruction.
521			 */
522			if (filter[i].jt == 0)
523				/* Swap the sense of the branch */
524				PPC_BCC(true_cond ^ COND_CMP_TRUE,
525					addrs[i + 1 + filter[i].jf]);
526			else {
527				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
528				if (filter[i].jf != 0)
529					PPC_JMP(addrs[i + 1 + filter[i].jf]);
530			}
531			break;
532		default:
533			/* The filter contains something cruel & unusual.
534			 * We don't handle it, but also there shouldn't be
535			 * anything missing from our list.
536			 */
537			if (printk_ratelimit())
538				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
539				       filter[i].code, i);
540			return -ENOTSUPP;
541		}
542
543	}
544	/* Set end-of-body-code address for exit. */
545	addrs[i] = ctx->idx * 4;
546
547	return 0;
548}
549
550void bpf_jit_compile(struct bpf_prog *fp)
551{
552	unsigned int proglen;
553	unsigned int alloclen;
554	u32 *image = NULL;
555	u32 *code_base;
556	unsigned int *addrs;
557	struct codegen_context cgctx;
558	int pass;
559	int flen = fp->len;
560
561	if (!bpf_jit_enable)
562		return;
563
564	addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
565	if (addrs == NULL)
566		return;
567
568	/*
569	 * There are multiple assembly passes as the generated code will change
570	 * size as it settles down, figuring out the max branch offsets/exit
571	 * paths required.
572	 *
573	 * The range of standard conditional branches is +/- 32Kbytes.	Since
574	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
575	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
576	 * used, distinct from short branches.
577	 *
578	 * Current:
579	 *
580	 * For now, both branch types assemble to 2 words (short branches padded
581	 * with a NOP); this is less efficient, but assembly will always complete
582	 * after exactly 3 passes:
583	 *
584	 * First pass: No code buffer; Program is "faux-generated" -- no code
585	 * emitted but maximum size of output determined (and addrs[] filled
586	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
587	 * All generation choices assumed to be 'worst-case', e.g. branches all
588	 * far (2 instructions), return path code reduction not available, etc.
589	 *
590	 * Second pass: Code buffer allocated with size determined previously.
591	 * Prologue generated to support features we have seen used.  Exit paths
592	 * determined and addrs[] is filled in again, as code may be slightly
593	 * smaller as a result.
594	 *
595	 * Third pass: Code generated 'for real', and branch destinations
596	 * determined from now-accurate addrs[] map.
597	 *
598	 * Ideal:
599	 *
600	 * If we optimise this, near branches will be shorter.	On the
601	 * first assembly pass, we should err on the side of caution and
602	 * generate the biggest code.  On subsequent passes, branches will be
603	 * generated short or long and code size will reduce.  With smaller
604	 * code, more branches may fall into the short category, and code will
605	 * reduce more.
606	 *
607	 * Finally, if we see one pass generate code the same size as the
608	 * previous pass we have converged and should now generate code for
609	 * real.  Allocating at the end will also save the memory that would
610	 * otherwise be wasted by the (small) current code shrinkage.
611	 * Preferably, we should do a small number of passes (e.g. 5) and if we
612	 * haven't converged by then, get impatient and force code to generate
613	 * as-is, even if the odd branch would be left long.  The chances of a
614	 * long jump are tiny with all but the most enormous of BPF filter
615	 * inputs, so we should usually converge on the third pass.
616	 */
617
618	cgctx.idx = 0;
619	cgctx.seen = 0;
620	cgctx.pc_ret0 = -1;
621	/* Scouting faux-generate pass 0 */
622	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
623		/* We hit something illegal or unsupported. */
624		goto out;
625
626	/*
627	 * Pretend to build prologue, given the features we've seen.  This will
628	 * update ctgtx.idx as it pretends to output instructions, then we can
629	 * calculate total size from idx.
630	 */
631	bpf_jit_build_prologue(fp, 0, &cgctx);
632	bpf_jit_build_epilogue(0, &cgctx);
633
634	proglen = cgctx.idx * 4;
635	alloclen = proglen + FUNCTION_DESCR_SIZE;
636	image = module_alloc(alloclen);
 
637	if (!image)
638		goto out;
639
640	code_base = image + (FUNCTION_DESCR_SIZE/4);
641
642	/* Code generation passes 1-2 */
643	for (pass = 1; pass < 3; pass++) {
644		/* Now build the prologue, body code & epilogue for real. */
645		cgctx.idx = 0;
646		bpf_jit_build_prologue(fp, code_base, &cgctx);
647		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
648		bpf_jit_build_epilogue(code_base, &cgctx);
649
650		if (bpf_jit_enable > 1)
651			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
652				proglen - (cgctx.idx * 4), cgctx.seen);
653	}
654
655	if (bpf_jit_enable > 1)
656		/* Note that we output the base address of the code_base
657		 * rather than image, since opcodes are in code_base.
658		 */
659		bpf_jit_dump(flen, proglen, pass, code_base);
660
661	bpf_flush_icache(code_base, code_base + (proglen/4));
662
663#ifdef CONFIG_PPC64
664	/* Function descriptor nastiness: Address + TOC */
665	((u64 *)image)[0] = (u64)code_base;
666	((u64 *)image)[1] = local_paca->kernel_toc;
667#endif
668
669	fp->bpf_func = (void *)image;
670	fp->jited = 1;
671
 
 
 
 
 
 
 
 
 
 
 
 
 
672out:
673	kfree(addrs);
674	return;
675}
676
677void bpf_jit_free(struct bpf_prog *fp)
 
 
 
 
 
 
 
 
678{
679	if (fp->jited)
680		module_memfree(fp->bpf_func);
681
682	bpf_prog_unlock_free(fp);
 
 
683}