Loading...
1/* bpf_jit_comp.c: BPF JIT compiler for PPC64
2 *
3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
4 *
5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12#include <linux/moduleloader.h>
13#include <asm/cacheflush.h>
14#include <linux/netdevice.h>
15#include <linux/filter.h>
16#include "bpf_jit.h"
17
18#ifndef __BIG_ENDIAN
19/* There are endianness assumptions herein. */
20#error "Little-endian PPC not supported in BPF compiler"
21#endif
22
23int bpf_jit_enable __read_mostly;
24
25
26static inline void bpf_flush_icache(void *start, void *end)
27{
28 smp_wmb();
29 flush_icache_range((unsigned long)start, (unsigned long)end);
30}
31
32static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
33 struct codegen_context *ctx)
34{
35 int i;
36 const struct sock_filter *filter = fp->insns;
37
38 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
39 /* Make stackframe */
40 if (ctx->seen & SEEN_DATAREF) {
41 /* If we call any helpers (for loads), save LR */
42 EMIT(PPC_INST_MFLR | __PPC_RT(0));
43 PPC_STD(0, 1, 16);
44
45 /* Back up non-volatile regs. */
46 PPC_STD(r_D, 1, -(8*(32-r_D)));
47 PPC_STD(r_HL, 1, -(8*(32-r_HL)));
48 }
49 if (ctx->seen & SEEN_MEM) {
50 /*
51 * Conditionally save regs r15-r31 as some will be used
52 * for M[] data.
53 */
54 for (i = r_M; i < (r_M+16); i++) {
55 if (ctx->seen & (1 << (i-r_M)))
56 PPC_STD(i, 1, -(8*(32-i)));
57 }
58 }
59 EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
60 (-BPF_PPC_STACKFRAME & 0xfffc));
61 }
62
63 if (ctx->seen & SEEN_DATAREF) {
64 /*
65 * If this filter needs to access skb data,
66 * prepare r_D and r_HL:
67 * r_HL = skb->len - skb->data_len
68 * r_D = skb->data
69 */
70 PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
71 data_len));
72 PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
73 PPC_SUB(r_HL, r_HL, r_scratch1);
74 PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
75 }
76
77 if (ctx->seen & SEEN_XREG) {
78 /*
79 * TODO: Could also detect whether first instr. sets X and
80 * avoid this (as below, with A).
81 */
82 PPC_LI(r_X, 0);
83 }
84
85 switch (filter[0].code) {
86 case BPF_S_RET_K:
87 case BPF_S_LD_W_LEN:
88 case BPF_S_ANC_PROTOCOL:
89 case BPF_S_ANC_IFINDEX:
90 case BPF_S_ANC_MARK:
91 case BPF_S_ANC_RXHASH:
92 case BPF_S_ANC_CPU:
93 case BPF_S_ANC_QUEUE:
94 case BPF_S_LD_W_ABS:
95 case BPF_S_LD_H_ABS:
96 case BPF_S_LD_B_ABS:
97 /* first instruction sets A register (or is RET 'constant') */
98 break;
99 default:
100 /* make sure we dont leak kernel information to user */
101 PPC_LI(r_A, 0);
102 }
103}
104
105static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
106{
107 int i;
108
109 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
110 PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
111 if (ctx->seen & SEEN_DATAREF) {
112 PPC_LD(0, 1, 16);
113 PPC_MTLR(0);
114 PPC_LD(r_D, 1, -(8*(32-r_D)));
115 PPC_LD(r_HL, 1, -(8*(32-r_HL)));
116 }
117 if (ctx->seen & SEEN_MEM) {
118 /* Restore any saved non-vol registers */
119 for (i = r_M; i < (r_M+16); i++) {
120 if (ctx->seen & (1 << (i-r_M)))
121 PPC_LD(i, 1, -(8*(32-i)));
122 }
123 }
124 }
125 /* The RETs have left a return value in R3. */
126
127 PPC_BLR();
128}
129
130/* Assemble the body code between the prologue & epilogue. */
131static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
132 struct codegen_context *ctx,
133 unsigned int *addrs)
134{
135 const struct sock_filter *filter = fp->insns;
136 int flen = fp->len;
137 u8 *func;
138 unsigned int true_cond;
139 int i;
140
141 /* Start of epilogue code */
142 unsigned int exit_addr = addrs[flen];
143
144 for (i = 0; i < flen; i++) {
145 unsigned int K = filter[i].k;
146
147 /*
148 * addrs[] maps a BPF bytecode address into a real offset from
149 * the start of the body code.
150 */
151 addrs[i] = ctx->idx * 4;
152
153 switch (filter[i].code) {
154 /*** ALU ops ***/
155 case BPF_S_ALU_ADD_X: /* A += X; */
156 ctx->seen |= SEEN_XREG;
157 PPC_ADD(r_A, r_A, r_X);
158 break;
159 case BPF_S_ALU_ADD_K: /* A += K; */
160 if (!K)
161 break;
162 PPC_ADDI(r_A, r_A, IMM_L(K));
163 if (K >= 32768)
164 PPC_ADDIS(r_A, r_A, IMM_HA(K));
165 break;
166 case BPF_S_ALU_SUB_X: /* A -= X; */
167 ctx->seen |= SEEN_XREG;
168 PPC_SUB(r_A, r_A, r_X);
169 break;
170 case BPF_S_ALU_SUB_K: /* A -= K */
171 if (!K)
172 break;
173 PPC_ADDI(r_A, r_A, IMM_L(-K));
174 if (K >= 32768)
175 PPC_ADDIS(r_A, r_A, IMM_HA(-K));
176 break;
177 case BPF_S_ALU_MUL_X: /* A *= X; */
178 ctx->seen |= SEEN_XREG;
179 PPC_MUL(r_A, r_A, r_X);
180 break;
181 case BPF_S_ALU_MUL_K: /* A *= K */
182 if (K < 32768)
183 PPC_MULI(r_A, r_A, K);
184 else {
185 PPC_LI32(r_scratch1, K);
186 PPC_MUL(r_A, r_A, r_scratch1);
187 }
188 break;
189 case BPF_S_ALU_DIV_X: /* A /= X; */
190 ctx->seen |= SEEN_XREG;
191 PPC_CMPWI(r_X, 0);
192 if (ctx->pc_ret0 != -1) {
193 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
194 } else {
195 /*
196 * Exit, returning 0; first pass hits here
197 * (longer worst-case code size).
198 */
199 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
200 PPC_LI(r_ret, 0);
201 PPC_JMP(exit_addr);
202 }
203 PPC_DIVWU(r_A, r_A, r_X);
204 break;
205 case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
206 PPC_LI32(r_scratch1, K);
207 /* Top 32 bits of 64bit result -> A */
208 PPC_MULHWU(r_A, r_A, r_scratch1);
209 break;
210 case BPF_S_ALU_AND_X:
211 ctx->seen |= SEEN_XREG;
212 PPC_AND(r_A, r_A, r_X);
213 break;
214 case BPF_S_ALU_AND_K:
215 if (!IMM_H(K))
216 PPC_ANDI(r_A, r_A, K);
217 else {
218 PPC_LI32(r_scratch1, K);
219 PPC_AND(r_A, r_A, r_scratch1);
220 }
221 break;
222 case BPF_S_ALU_OR_X:
223 ctx->seen |= SEEN_XREG;
224 PPC_OR(r_A, r_A, r_X);
225 break;
226 case BPF_S_ALU_OR_K:
227 if (IMM_L(K))
228 PPC_ORI(r_A, r_A, IMM_L(K));
229 if (K >= 65536)
230 PPC_ORIS(r_A, r_A, IMM_H(K));
231 break;
232 case BPF_S_ALU_LSH_X: /* A <<= X; */
233 ctx->seen |= SEEN_XREG;
234 PPC_SLW(r_A, r_A, r_X);
235 break;
236 case BPF_S_ALU_LSH_K:
237 if (K == 0)
238 break;
239 else
240 PPC_SLWI(r_A, r_A, K);
241 break;
242 case BPF_S_ALU_RSH_X: /* A >>= X; */
243 ctx->seen |= SEEN_XREG;
244 PPC_SRW(r_A, r_A, r_X);
245 break;
246 case BPF_S_ALU_RSH_K: /* A >>= K; */
247 if (K == 0)
248 break;
249 else
250 PPC_SRWI(r_A, r_A, K);
251 break;
252 case BPF_S_ALU_NEG:
253 PPC_NEG(r_A, r_A);
254 break;
255 case BPF_S_RET_K:
256 PPC_LI32(r_ret, K);
257 if (!K) {
258 if (ctx->pc_ret0 == -1)
259 ctx->pc_ret0 = i;
260 }
261 /*
262 * If this isn't the very last instruction, branch to
263 * the epilogue if we've stuff to clean up. Otherwise,
264 * if there's nothing to tidy, just return. If we /are/
265 * the last instruction, we're about to fall through to
266 * the epilogue to return.
267 */
268 if (i != flen - 1) {
269 /*
270 * Note: 'seen' is properly valid only on pass
271 * #2. Both parts of this conditional are the
272 * same instruction size though, meaning the
273 * first pass will still correctly determine the
274 * code size/addresses.
275 */
276 if (ctx->seen)
277 PPC_JMP(exit_addr);
278 else
279 PPC_BLR();
280 }
281 break;
282 case BPF_S_RET_A:
283 PPC_MR(r_ret, r_A);
284 if (i != flen - 1) {
285 if (ctx->seen)
286 PPC_JMP(exit_addr);
287 else
288 PPC_BLR();
289 }
290 break;
291 case BPF_S_MISC_TAX: /* X = A */
292 PPC_MR(r_X, r_A);
293 break;
294 case BPF_S_MISC_TXA: /* A = X */
295 ctx->seen |= SEEN_XREG;
296 PPC_MR(r_A, r_X);
297 break;
298
299 /*** Constant loads/M[] access ***/
300 case BPF_S_LD_IMM: /* A = K */
301 PPC_LI32(r_A, K);
302 break;
303 case BPF_S_LDX_IMM: /* X = K */
304 PPC_LI32(r_X, K);
305 break;
306 case BPF_S_LD_MEM: /* A = mem[K] */
307 PPC_MR(r_A, r_M + (K & 0xf));
308 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
309 break;
310 case BPF_S_LDX_MEM: /* X = mem[K] */
311 PPC_MR(r_X, r_M + (K & 0xf));
312 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313 break;
314 case BPF_S_ST: /* mem[K] = A */
315 PPC_MR(r_M + (K & 0xf), r_A);
316 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317 break;
318 case BPF_S_STX: /* mem[K] = X */
319 PPC_MR(r_M + (K & 0xf), r_X);
320 ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
321 break;
322 case BPF_S_LD_W_LEN: /* A = skb->len; */
323 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
324 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
325 break;
326 case BPF_S_LDX_W_LEN: /* X = skb->len; */
327 PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
328 break;
329
330 /*** Ancillary info loads ***/
331
332 /* None of the BPF_S_ANC* codes appear to be passed by
333 * sk_chk_filter(). The interpreter and the x86 BPF
334 * compiler implement them so we do too -- they may be
335 * planted in future.
336 */
337 case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
338 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
339 protocol) != 2);
340 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
341 protocol));
342 /* ntohs is a NOP with BE loads. */
343 break;
344 case BPF_S_ANC_IFINDEX:
345 PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
346 dev));
347 PPC_CMPDI(r_scratch1, 0);
348 if (ctx->pc_ret0 != -1) {
349 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
350 } else {
351 /* Exit, returning 0; first pass hits here. */
352 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
353 PPC_LI(r_ret, 0);
354 PPC_JMP(exit_addr);
355 }
356 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
357 ifindex) != 4);
358 PPC_LWZ_OFFS(r_A, r_scratch1,
359 offsetof(struct net_device, ifindex));
360 break;
361 case BPF_S_ANC_MARK:
362 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
363 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
364 mark));
365 break;
366 case BPF_S_ANC_RXHASH:
367 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
368 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
369 rxhash));
370 break;
371 case BPF_S_ANC_QUEUE:
372 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
373 queue_mapping) != 2);
374 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375 queue_mapping));
376 break;
377 case BPF_S_ANC_CPU:
378#ifdef CONFIG_SMP
379 /*
380 * PACA ptr is r13:
381 * raw_smp_processor_id() = local_paca->paca_index
382 */
383 BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
384 paca_index) != 2);
385 PPC_LHZ_OFFS(r_A, 13,
386 offsetof(struct paca_struct, paca_index));
387#else
388 PPC_LI(r_A, 0);
389#endif
390 break;
391
392 /*** Absolute loads from packet header/data ***/
393 case BPF_S_LD_W_ABS:
394 func = sk_load_word;
395 goto common_load;
396 case BPF_S_LD_H_ABS:
397 func = sk_load_half;
398 goto common_load;
399 case BPF_S_LD_B_ABS:
400 func = sk_load_byte;
401 common_load:
402 /*
403 * Load from [K]. Reference with the (negative)
404 * SKF_NET_OFF/SKF_LL_OFF offsets is unsupported.
405 */
406 ctx->seen |= SEEN_DATAREF;
407 if ((int)K < 0)
408 return -ENOTSUPP;
409 PPC_LI64(r_scratch1, func);
410 PPC_MTLR(r_scratch1);
411 PPC_LI32(r_addr, K);
412 PPC_BLRL();
413 /*
414 * Helper returns 'lt' condition on error, and an
415 * appropriate return value in r3
416 */
417 PPC_BCC(COND_LT, exit_addr);
418 break;
419
420 /*** Indirect loads from packet header/data ***/
421 case BPF_S_LD_W_IND:
422 func = sk_load_word;
423 goto common_load_ind;
424 case BPF_S_LD_H_IND:
425 func = sk_load_half;
426 goto common_load_ind;
427 case BPF_S_LD_B_IND:
428 func = sk_load_byte;
429 common_load_ind:
430 /*
431 * Load from [X + K]. Negative offsets are tested for
432 * in the helper functions, and result in a 'ret 0'.
433 */
434 ctx->seen |= SEEN_DATAREF | SEEN_XREG;
435 PPC_LI64(r_scratch1, func);
436 PPC_MTLR(r_scratch1);
437 PPC_ADDI(r_addr, r_X, IMM_L(K));
438 if (K >= 32768)
439 PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
440 PPC_BLRL();
441 /* If error, cr0.LT set */
442 PPC_BCC(COND_LT, exit_addr);
443 break;
444
445 case BPF_S_LDX_B_MSH:
446 /*
447 * x86 version drops packet (RET 0) when K<0, whereas
448 * interpreter does allow K<0 (__load_pointer, special
449 * ancillary data). common_load returns ENOTSUPP if K<0,
450 * so we fall back to interpreter & filter works.
451 */
452 func = sk_load_byte_msh;
453 goto common_load;
454 break;
455
456 /*** Jump and branches ***/
457 case BPF_S_JMP_JA:
458 if (K != 0)
459 PPC_JMP(addrs[i + 1 + K]);
460 break;
461
462 case BPF_S_JMP_JGT_K:
463 case BPF_S_JMP_JGT_X:
464 true_cond = COND_GT;
465 goto cond_branch;
466 case BPF_S_JMP_JGE_K:
467 case BPF_S_JMP_JGE_X:
468 true_cond = COND_GE;
469 goto cond_branch;
470 case BPF_S_JMP_JEQ_K:
471 case BPF_S_JMP_JEQ_X:
472 true_cond = COND_EQ;
473 goto cond_branch;
474 case BPF_S_JMP_JSET_K:
475 case BPF_S_JMP_JSET_X:
476 true_cond = COND_NE;
477 /* Fall through */
478 cond_branch:
479 /* same targets, can avoid doing the test :) */
480 if (filter[i].jt == filter[i].jf) {
481 if (filter[i].jt > 0)
482 PPC_JMP(addrs[i + 1 + filter[i].jt]);
483 break;
484 }
485
486 switch (filter[i].code) {
487 case BPF_S_JMP_JGT_X:
488 case BPF_S_JMP_JGE_X:
489 case BPF_S_JMP_JEQ_X:
490 ctx->seen |= SEEN_XREG;
491 PPC_CMPLW(r_A, r_X);
492 break;
493 case BPF_S_JMP_JSET_X:
494 ctx->seen |= SEEN_XREG;
495 PPC_AND_DOT(r_scratch1, r_A, r_X);
496 break;
497 case BPF_S_JMP_JEQ_K:
498 case BPF_S_JMP_JGT_K:
499 case BPF_S_JMP_JGE_K:
500 if (K < 32768)
501 PPC_CMPLWI(r_A, K);
502 else {
503 PPC_LI32(r_scratch1, K);
504 PPC_CMPLW(r_A, r_scratch1);
505 }
506 break;
507 case BPF_S_JMP_JSET_K:
508 if (K < 32768)
509 /* PPC_ANDI is /only/ dot-form */
510 PPC_ANDI(r_scratch1, r_A, K);
511 else {
512 PPC_LI32(r_scratch1, K);
513 PPC_AND_DOT(r_scratch1, r_A,
514 r_scratch1);
515 }
516 break;
517 }
518 /* Sometimes branches are constructed "backward", with
519 * the false path being the branch and true path being
520 * a fallthrough to the next instruction.
521 */
522 if (filter[i].jt == 0)
523 /* Swap the sense of the branch */
524 PPC_BCC(true_cond ^ COND_CMP_TRUE,
525 addrs[i + 1 + filter[i].jf]);
526 else {
527 PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
528 if (filter[i].jf != 0)
529 PPC_JMP(addrs[i + 1 + filter[i].jf]);
530 }
531 break;
532 default:
533 /* The filter contains something cruel & unusual.
534 * We don't handle it, but also there shouldn't be
535 * anything missing from our list.
536 */
537 if (printk_ratelimit())
538 pr_err("BPF filter opcode %04x (@%d) unsupported\n",
539 filter[i].code, i);
540 return -ENOTSUPP;
541 }
542
543 }
544 /* Set end-of-body-code address for exit. */
545 addrs[i] = ctx->idx * 4;
546
547 return 0;
548}
549
550void bpf_jit_compile(struct sk_filter *fp)
551{
552 unsigned int proglen;
553 unsigned int alloclen;
554 u32 *image = NULL;
555 u32 *code_base;
556 unsigned int *addrs;
557 struct codegen_context cgctx;
558 int pass;
559 int flen = fp->len;
560
561 if (!bpf_jit_enable)
562 return;
563
564 addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
565 if (addrs == NULL)
566 return;
567
568 /*
569 * There are multiple assembly passes as the generated code will change
570 * size as it settles down, figuring out the max branch offsets/exit
571 * paths required.
572 *
573 * The range of standard conditional branches is +/- 32Kbytes. Since
574 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
575 * finish with 8 bytes/instruction. Not feasible, so long jumps are
576 * used, distinct from short branches.
577 *
578 * Current:
579 *
580 * For now, both branch types assemble to 2 words (short branches padded
581 * with a NOP); this is less efficient, but assembly will always complete
582 * after exactly 3 passes:
583 *
584 * First pass: No code buffer; Program is "faux-generated" -- no code
585 * emitted but maximum size of output determined (and addrs[] filled
586 * in). Also, we note whether we use M[], whether we use skb data, etc.
587 * All generation choices assumed to be 'worst-case', e.g. branches all
588 * far (2 instructions), return path code reduction not available, etc.
589 *
590 * Second pass: Code buffer allocated with size determined previously.
591 * Prologue generated to support features we have seen used. Exit paths
592 * determined and addrs[] is filled in again, as code may be slightly
593 * smaller as a result.
594 *
595 * Third pass: Code generated 'for real', and branch destinations
596 * determined from now-accurate addrs[] map.
597 *
598 * Ideal:
599 *
600 * If we optimise this, near branches will be shorter. On the
601 * first assembly pass, we should err on the side of caution and
602 * generate the biggest code. On subsequent passes, branches will be
603 * generated short or long and code size will reduce. With smaller
604 * code, more branches may fall into the short category, and code will
605 * reduce more.
606 *
607 * Finally, if we see one pass generate code the same size as the
608 * previous pass we have converged and should now generate code for
609 * real. Allocating at the end will also save the memory that would
610 * otherwise be wasted by the (small) current code shrinkage.
611 * Preferably, we should do a small number of passes (e.g. 5) and if we
612 * haven't converged by then, get impatient and force code to generate
613 * as-is, even if the odd branch would be left long. The chances of a
614 * long jump are tiny with all but the most enormous of BPF filter
615 * inputs, so we should usually converge on the third pass.
616 */
617
618 cgctx.idx = 0;
619 cgctx.seen = 0;
620 cgctx.pc_ret0 = -1;
621 /* Scouting faux-generate pass 0 */
622 if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
623 /* We hit something illegal or unsupported. */
624 goto out;
625
626 /*
627 * Pretend to build prologue, given the features we've seen. This will
628 * update ctgtx.idx as it pretends to output instructions, then we can
629 * calculate total size from idx.
630 */
631 bpf_jit_build_prologue(fp, 0, &cgctx);
632 bpf_jit_build_epilogue(0, &cgctx);
633
634 proglen = cgctx.idx * 4;
635 alloclen = proglen + FUNCTION_DESCR_SIZE;
636 image = module_alloc(max_t(unsigned int, alloclen,
637 sizeof(struct work_struct)));
638 if (!image)
639 goto out;
640
641 code_base = image + (FUNCTION_DESCR_SIZE/4);
642
643 /* Code generation passes 1-2 */
644 for (pass = 1; pass < 3; pass++) {
645 /* Now build the prologue, body code & epilogue for real. */
646 cgctx.idx = 0;
647 bpf_jit_build_prologue(fp, code_base, &cgctx);
648 bpf_jit_build_body(fp, code_base, &cgctx, addrs);
649 bpf_jit_build_epilogue(code_base, &cgctx);
650
651 if (bpf_jit_enable > 1)
652 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
653 proglen - (cgctx.idx * 4), cgctx.seen);
654 }
655
656 if (bpf_jit_enable > 1)
657 pr_info("flen=%d proglen=%u pass=%d image=%p\n",
658 flen, proglen, pass, image);
659
660 if (image) {
661 if (bpf_jit_enable > 1)
662 print_hex_dump(KERN_ERR, "JIT code: ",
663 DUMP_PREFIX_ADDRESS,
664 16, 1, code_base,
665 proglen, false);
666
667 bpf_flush_icache(code_base, code_base + (proglen/4));
668 /* Function descriptor nastiness: Address + TOC */
669 ((u64 *)image)[0] = (u64)code_base;
670 ((u64 *)image)[1] = local_paca->kernel_toc;
671 fp->bpf_func = (void *)image;
672 }
673out:
674 kfree(addrs);
675 return;
676}
677
678static void jit_free_defer(struct work_struct *arg)
679{
680 module_free(NULL, arg);
681}
682
683/* run from softirq, we must use a work_struct to call
684 * module_free() from process context
685 */
686void bpf_jit_free(struct sk_filter *fp)
687{
688 if (fp->bpf_func != sk_run_filter) {
689 struct work_struct *work = (struct work_struct *)fp->bpf_func;
690
691 INIT_WORK(work, jit_free_defer);
692 schedule_work(work);
693 }
694}
1// SPDX-License-Identifier: GPL-2.0-only
2/* bpf_jit_comp.c: BPF JIT compiler
3 *
4 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
5 *
6 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
7 * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
8 */
9#include <linux/moduleloader.h>
10#include <asm/cacheflush.h>
11#include <asm/asm-compat.h>
12#include <linux/netdevice.h>
13#include <linux/filter.h>
14#include <linux/if_vlan.h>
15
16#include "bpf_jit32.h"
17
18static inline void bpf_flush_icache(void *start, void *end)
19{
20 smp_wmb();
21 flush_icache_range((unsigned long)start, (unsigned long)end);
22}
23
24static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
25 struct codegen_context *ctx)
26{
27 int i;
28 const struct sock_filter *filter = fp->insns;
29
30 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
31 /* Make stackframe */
32 if (ctx->seen & SEEN_DATAREF) {
33 /* If we call any helpers (for loads), save LR */
34 EMIT(PPC_INST_MFLR | __PPC_RT(R0));
35 PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
36
37 /* Back up non-volatile regs. */
38 PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
39 PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
40 }
41 if (ctx->seen & SEEN_MEM) {
42 /*
43 * Conditionally save regs r15-r31 as some will be used
44 * for M[] data.
45 */
46 for (i = r_M; i < (r_M+16); i++) {
47 if (ctx->seen & (1 << (i-r_M)))
48 PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
49 }
50 }
51 PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
52 }
53
54 if (ctx->seen & SEEN_DATAREF) {
55 /*
56 * If this filter needs to access skb data,
57 * prepare r_D and r_HL:
58 * r_HL = skb->len - skb->data_len
59 * r_D = skb->data
60 */
61 PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
62 data_len));
63 PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
64 EMIT(PPC_RAW_SUB(r_HL, r_HL, r_scratch1));
65 PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
66 }
67
68 if (ctx->seen & SEEN_XREG) {
69 /*
70 * TODO: Could also detect whether first instr. sets X and
71 * avoid this (as below, with A).
72 */
73 EMIT(PPC_RAW_LI(r_X, 0));
74 }
75
76 /* make sure we dont leak kernel information to user */
77 if (bpf_needs_clear_a(&filter[0]))
78 EMIT(PPC_RAW_LI(r_A, 0));
79}
80
81static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
82{
83 int i;
84
85 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
86 EMIT(PPC_RAW_ADDI(1, 1, BPF_PPC_STACKFRAME));
87 if (ctx->seen & SEEN_DATAREF) {
88 PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
89 EMIT(PPC_RAW_MTLR(0));
90 PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
91 PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
92 }
93 if (ctx->seen & SEEN_MEM) {
94 /* Restore any saved non-vol registers */
95 for (i = r_M; i < (r_M+16); i++) {
96 if (ctx->seen & (1 << (i-r_M)))
97 PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
98 }
99 }
100 }
101 /* The RETs have left a return value in R3. */
102
103 EMIT(PPC_RAW_BLR());
104}
105
106#define CHOOSE_LOAD_FUNC(K, func) \
107 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
108
109/* Assemble the body code between the prologue & epilogue. */
110static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
111 struct codegen_context *ctx,
112 unsigned int *addrs)
113{
114 const struct sock_filter *filter = fp->insns;
115 int flen = fp->len;
116 u8 *func;
117 unsigned int true_cond;
118 int i;
119
120 /* Start of epilogue code */
121 unsigned int exit_addr = addrs[flen];
122
123 for (i = 0; i < flen; i++) {
124 unsigned int K = filter[i].k;
125 u16 code = bpf_anc_helper(&filter[i]);
126
127 /*
128 * addrs[] maps a BPF bytecode address into a real offset from
129 * the start of the body code.
130 */
131 addrs[i] = ctx->idx * 4;
132
133 switch (code) {
134 /*** ALU ops ***/
135 case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
136 ctx->seen |= SEEN_XREG;
137 EMIT(PPC_RAW_ADD(r_A, r_A, r_X));
138 break;
139 case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
140 if (!K)
141 break;
142 EMIT(PPC_RAW_ADDI(r_A, r_A, IMM_L(K)));
143 if (K >= 32768)
144 EMIT(PPC_RAW_ADDIS(r_A, r_A, IMM_HA(K)));
145 break;
146 case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
147 ctx->seen |= SEEN_XREG;
148 EMIT(PPC_RAW_SUB(r_A, r_A, r_X));
149 break;
150 case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
151 if (!K)
152 break;
153 EMIT(PPC_RAW_ADDI(r_A, r_A, IMM_L(-K)));
154 if (K >= 32768)
155 EMIT(PPC_RAW_ADDIS(r_A, r_A, IMM_HA(-K)));
156 break;
157 case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
158 ctx->seen |= SEEN_XREG;
159 EMIT(PPC_RAW_MULW(r_A, r_A, r_X));
160 break;
161 case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
162 if (K < 32768)
163 EMIT(PPC_RAW_MULI(r_A, r_A, K));
164 else {
165 PPC_LI32(r_scratch1, K);
166 EMIT(PPC_RAW_MULW(r_A, r_A, r_scratch1));
167 }
168 break;
169 case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
170 case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
171 ctx->seen |= SEEN_XREG;
172 EMIT(PPC_RAW_CMPWI(r_X, 0));
173 if (ctx->pc_ret0 != -1) {
174 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
175 } else {
176 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
177 EMIT(PPC_RAW_LI(r_ret, 0));
178 PPC_JMP(exit_addr);
179 }
180 if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
181 EMIT(PPC_RAW_DIVWU(r_scratch1, r_A, r_X));
182 EMIT(PPC_RAW_MULW(r_scratch1, r_X, r_scratch1));
183 EMIT(PPC_RAW_SUB(r_A, r_A, r_scratch1));
184 } else {
185 EMIT(PPC_RAW_DIVWU(r_A, r_A, r_X));
186 }
187 break;
188 case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
189 PPC_LI32(r_scratch2, K);
190 EMIT(PPC_RAW_DIVWU(r_scratch1, r_A, r_scratch2));
191 EMIT(PPC_RAW_MULW(r_scratch1, r_scratch2, r_scratch1));
192 EMIT(PPC_RAW_SUB(r_A, r_A, r_scratch1));
193 break;
194 case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
195 if (K == 1)
196 break;
197 PPC_LI32(r_scratch1, K);
198 EMIT(PPC_RAW_DIVWU(r_A, r_A, r_scratch1));
199 break;
200 case BPF_ALU | BPF_AND | BPF_X:
201 ctx->seen |= SEEN_XREG;
202 EMIT(PPC_RAW_AND(r_A, r_A, r_X));
203 break;
204 case BPF_ALU | BPF_AND | BPF_K:
205 if (!IMM_H(K))
206 EMIT(PPC_RAW_ANDI(r_A, r_A, K));
207 else {
208 PPC_LI32(r_scratch1, K);
209 EMIT(PPC_RAW_AND(r_A, r_A, r_scratch1));
210 }
211 break;
212 case BPF_ALU | BPF_OR | BPF_X:
213 ctx->seen |= SEEN_XREG;
214 EMIT(PPC_RAW_OR(r_A, r_A, r_X));
215 break;
216 case BPF_ALU | BPF_OR | BPF_K:
217 if (IMM_L(K))
218 EMIT(PPC_RAW_ORI(r_A, r_A, IMM_L(K)));
219 if (K >= 65536)
220 EMIT(PPC_RAW_ORIS(r_A, r_A, IMM_H(K)));
221 break;
222 case BPF_ANC | SKF_AD_ALU_XOR_X:
223 case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
224 ctx->seen |= SEEN_XREG;
225 EMIT(PPC_RAW_XOR(r_A, r_A, r_X));
226 break;
227 case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
228 if (IMM_L(K))
229 EMIT(PPC_RAW_XORI(r_A, r_A, IMM_L(K)));
230 if (K >= 65536)
231 EMIT(PPC_RAW_XORIS(r_A, r_A, IMM_H(K)));
232 break;
233 case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
234 ctx->seen |= SEEN_XREG;
235 EMIT(PPC_RAW_SLW(r_A, r_A, r_X));
236 break;
237 case BPF_ALU | BPF_LSH | BPF_K:
238 if (K == 0)
239 break;
240 else
241 EMIT(PPC_RAW_SLWI(r_A, r_A, K));
242 break;
243 case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
244 ctx->seen |= SEEN_XREG;
245 EMIT(PPC_RAW_SRW(r_A, r_A, r_X));
246 break;
247 case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
248 if (K == 0)
249 break;
250 else
251 EMIT(PPC_RAW_SRWI(r_A, r_A, K));
252 break;
253 case BPF_ALU | BPF_NEG:
254 EMIT(PPC_RAW_NEG(r_A, r_A));
255 break;
256 case BPF_RET | BPF_K:
257 PPC_LI32(r_ret, K);
258 if (!K) {
259 if (ctx->pc_ret0 == -1)
260 ctx->pc_ret0 = i;
261 }
262 /*
263 * If this isn't the very last instruction, branch to
264 * the epilogue if we've stuff to clean up. Otherwise,
265 * if there's nothing to tidy, just return. If we /are/
266 * the last instruction, we're about to fall through to
267 * the epilogue to return.
268 */
269 if (i != flen - 1) {
270 /*
271 * Note: 'seen' is properly valid only on pass
272 * #2. Both parts of this conditional are the
273 * same instruction size though, meaning the
274 * first pass will still correctly determine the
275 * code size/addresses.
276 */
277 if (ctx->seen)
278 PPC_JMP(exit_addr);
279 else
280 EMIT(PPC_RAW_BLR());
281 }
282 break;
283 case BPF_RET | BPF_A:
284 EMIT(PPC_RAW_MR(r_ret, r_A));
285 if (i != flen - 1) {
286 if (ctx->seen)
287 PPC_JMP(exit_addr);
288 else
289 EMIT(PPC_RAW_BLR());
290 }
291 break;
292 case BPF_MISC | BPF_TAX: /* X = A */
293 EMIT(PPC_RAW_MR(r_X, r_A));
294 break;
295 case BPF_MISC | BPF_TXA: /* A = X */
296 ctx->seen |= SEEN_XREG;
297 EMIT(PPC_RAW_MR(r_A, r_X));
298 break;
299
300 /*** Constant loads/M[] access ***/
301 case BPF_LD | BPF_IMM: /* A = K */
302 PPC_LI32(r_A, K);
303 break;
304 case BPF_LDX | BPF_IMM: /* X = K */
305 PPC_LI32(r_X, K);
306 break;
307 case BPF_LD | BPF_MEM: /* A = mem[K] */
308 EMIT(PPC_RAW_MR(r_A, r_M + (K & 0xf)));
309 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
310 break;
311 case BPF_LDX | BPF_MEM: /* X = mem[K] */
312 EMIT(PPC_RAW_MR(r_X, r_M + (K & 0xf)));
313 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
314 break;
315 case BPF_ST: /* mem[K] = A */
316 EMIT(PPC_RAW_MR(r_M + (K & 0xf), r_A));
317 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
318 break;
319 case BPF_STX: /* mem[K] = X */
320 EMIT(PPC_RAW_MR(r_M + (K & 0xf), r_X));
321 ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
322 break;
323 case BPF_LD | BPF_W | BPF_LEN: /* A = skb->len; */
324 BUILD_BUG_ON(sizeof_field(struct sk_buff, len) != 4);
325 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
326 break;
327 case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */
328 PPC_LWZ_OFFS(r_A, r_skb, K);
329 break;
330 case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
331 PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
332 break;
333
334 /*** Ancillary info loads ***/
335 case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
336 BUILD_BUG_ON(sizeof_field(struct sk_buff,
337 protocol) != 2);
338 PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
339 protocol));
340 break;
341 case BPF_ANC | SKF_AD_IFINDEX:
342 case BPF_ANC | SKF_AD_HATYPE:
343 BUILD_BUG_ON(sizeof_field(struct net_device,
344 ifindex) != 4);
345 BUILD_BUG_ON(sizeof_field(struct net_device,
346 type) != 2);
347 PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
348 dev));
349 EMIT(PPC_RAW_CMPDI(r_scratch1, 0));
350 if (ctx->pc_ret0 != -1) {
351 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
352 } else {
353 /* Exit, returning 0; first pass hits here. */
354 PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
355 EMIT(PPC_RAW_LI(r_ret, 0));
356 PPC_JMP(exit_addr);
357 }
358 if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
359 PPC_LWZ_OFFS(r_A, r_scratch1,
360 offsetof(struct net_device, ifindex));
361 } else {
362 PPC_LHZ_OFFS(r_A, r_scratch1,
363 offsetof(struct net_device, type));
364 }
365
366 break;
367 case BPF_ANC | SKF_AD_MARK:
368 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
369 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
370 mark));
371 break;
372 case BPF_ANC | SKF_AD_RXHASH:
373 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
374 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375 hash));
376 break;
377 case BPF_ANC | SKF_AD_VLAN_TAG:
378 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
379
380 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
381 vlan_tci));
382 break;
383 case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
384 PPC_LBZ_OFFS(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET());
385 if (PKT_VLAN_PRESENT_BIT)
386 EMIT(PPC_RAW_SRWI(r_A, r_A, PKT_VLAN_PRESENT_BIT));
387 if (PKT_VLAN_PRESENT_BIT < 7)
388 EMIT(PPC_RAW_ANDI(r_A, r_A, 1));
389 break;
390 case BPF_ANC | SKF_AD_QUEUE:
391 BUILD_BUG_ON(sizeof_field(struct sk_buff,
392 queue_mapping) != 2);
393 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
394 queue_mapping));
395 break;
396 case BPF_ANC | SKF_AD_PKTTYPE:
397 PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
398 EMIT(PPC_RAW_ANDI(r_A, r_A, PKT_TYPE_MAX));
399 EMIT(PPC_RAW_SRWI(r_A, r_A, 5));
400 break;
401 case BPF_ANC | SKF_AD_CPU:
402 PPC_BPF_LOAD_CPU(r_A);
403 break;
404 /*** Absolute loads from packet header/data ***/
405 case BPF_LD | BPF_W | BPF_ABS:
406 func = CHOOSE_LOAD_FUNC(K, sk_load_word);
407 goto common_load;
408 case BPF_LD | BPF_H | BPF_ABS:
409 func = CHOOSE_LOAD_FUNC(K, sk_load_half);
410 goto common_load;
411 case BPF_LD | BPF_B | BPF_ABS:
412 func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
413 common_load:
414 /* Load from [K]. */
415 ctx->seen |= SEEN_DATAREF;
416 PPC_FUNC_ADDR(r_scratch1, func);
417 EMIT(PPC_RAW_MTLR(r_scratch1));
418 PPC_LI32(r_addr, K);
419 EMIT(PPC_RAW_BLRL());
420 /*
421 * Helper returns 'lt' condition on error, and an
422 * appropriate return value in r3
423 */
424 PPC_BCC(COND_LT, exit_addr);
425 break;
426
427 /*** Indirect loads from packet header/data ***/
428 case BPF_LD | BPF_W | BPF_IND:
429 func = sk_load_word;
430 goto common_load_ind;
431 case BPF_LD | BPF_H | BPF_IND:
432 func = sk_load_half;
433 goto common_load_ind;
434 case BPF_LD | BPF_B | BPF_IND:
435 func = sk_load_byte;
436 common_load_ind:
437 /*
438 * Load from [X + K]. Negative offsets are tested for
439 * in the helper functions.
440 */
441 ctx->seen |= SEEN_DATAREF | SEEN_XREG;
442 PPC_FUNC_ADDR(r_scratch1, func);
443 EMIT(PPC_RAW_MTLR(r_scratch1));
444 EMIT(PPC_RAW_ADDI(r_addr, r_X, IMM_L(K)));
445 if (K >= 32768)
446 EMIT(PPC_RAW_ADDIS(r_addr, r_addr, IMM_HA(K)));
447 EMIT(PPC_RAW_BLRL());
448 /* If error, cr0.LT set */
449 PPC_BCC(COND_LT, exit_addr);
450 break;
451
452 case BPF_LDX | BPF_B | BPF_MSH:
453 func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
454 goto common_load;
455 break;
456
457 /*** Jump and branches ***/
458 case BPF_JMP | BPF_JA:
459 if (K != 0)
460 PPC_JMP(addrs[i + 1 + K]);
461 break;
462
463 case BPF_JMP | BPF_JGT | BPF_K:
464 case BPF_JMP | BPF_JGT | BPF_X:
465 true_cond = COND_GT;
466 goto cond_branch;
467 case BPF_JMP | BPF_JGE | BPF_K:
468 case BPF_JMP | BPF_JGE | BPF_X:
469 true_cond = COND_GE;
470 goto cond_branch;
471 case BPF_JMP | BPF_JEQ | BPF_K:
472 case BPF_JMP | BPF_JEQ | BPF_X:
473 true_cond = COND_EQ;
474 goto cond_branch;
475 case BPF_JMP | BPF_JSET | BPF_K:
476 case BPF_JMP | BPF_JSET | BPF_X:
477 true_cond = COND_NE;
478 cond_branch:
479 /* same targets, can avoid doing the test :) */
480 if (filter[i].jt == filter[i].jf) {
481 if (filter[i].jt > 0)
482 PPC_JMP(addrs[i + 1 + filter[i].jt]);
483 break;
484 }
485
486 switch (code) {
487 case BPF_JMP | BPF_JGT | BPF_X:
488 case BPF_JMP | BPF_JGE | BPF_X:
489 case BPF_JMP | BPF_JEQ | BPF_X:
490 ctx->seen |= SEEN_XREG;
491 EMIT(PPC_RAW_CMPLW(r_A, r_X));
492 break;
493 case BPF_JMP | BPF_JSET | BPF_X:
494 ctx->seen |= SEEN_XREG;
495 EMIT(PPC_RAW_AND_DOT(r_scratch1, r_A, r_X));
496 break;
497 case BPF_JMP | BPF_JEQ | BPF_K:
498 case BPF_JMP | BPF_JGT | BPF_K:
499 case BPF_JMP | BPF_JGE | BPF_K:
500 if (K < 32768)
501 EMIT(PPC_RAW_CMPLWI(r_A, K));
502 else {
503 PPC_LI32(r_scratch1, K);
504 EMIT(PPC_RAW_CMPLW(r_A, r_scratch1));
505 }
506 break;
507 case BPF_JMP | BPF_JSET | BPF_K:
508 if (K < 32768)
509 /* PPC_ANDI is /only/ dot-form */
510 EMIT(PPC_RAW_ANDI(r_scratch1, r_A, K));
511 else {
512 PPC_LI32(r_scratch1, K);
513 EMIT(PPC_RAW_AND_DOT(r_scratch1, r_A,
514 r_scratch1));
515 }
516 break;
517 }
518 /* Sometimes branches are constructed "backward", with
519 * the false path being the branch and true path being
520 * a fallthrough to the next instruction.
521 */
522 if (filter[i].jt == 0)
523 /* Swap the sense of the branch */
524 PPC_BCC(true_cond ^ COND_CMP_TRUE,
525 addrs[i + 1 + filter[i].jf]);
526 else {
527 PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
528 if (filter[i].jf != 0)
529 PPC_JMP(addrs[i + 1 + filter[i].jf]);
530 }
531 break;
532 default:
533 /* The filter contains something cruel & unusual.
534 * We don't handle it, but also there shouldn't be
535 * anything missing from our list.
536 */
537 if (printk_ratelimit())
538 pr_err("BPF filter opcode %04x (@%d) unsupported\n",
539 filter[i].code, i);
540 return -ENOTSUPP;
541 }
542
543 }
544 /* Set end-of-body-code address for exit. */
545 addrs[i] = ctx->idx * 4;
546
547 return 0;
548}
549
550void bpf_jit_compile(struct bpf_prog *fp)
551{
552 unsigned int proglen;
553 unsigned int alloclen;
554 u32 *image = NULL;
555 u32 *code_base;
556 unsigned int *addrs;
557 struct codegen_context cgctx;
558 int pass;
559 int flen = fp->len;
560
561 if (!bpf_jit_enable)
562 return;
563
564 addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
565 if (addrs == NULL)
566 return;
567
568 /*
569 * There are multiple assembly passes as the generated code will change
570 * size as it settles down, figuring out the max branch offsets/exit
571 * paths required.
572 *
573 * The range of standard conditional branches is +/- 32Kbytes. Since
574 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
575 * finish with 8 bytes/instruction. Not feasible, so long jumps are
576 * used, distinct from short branches.
577 *
578 * Current:
579 *
580 * For now, both branch types assemble to 2 words (short branches padded
581 * with a NOP); this is less efficient, but assembly will always complete
582 * after exactly 3 passes:
583 *
584 * First pass: No code buffer; Program is "faux-generated" -- no code
585 * emitted but maximum size of output determined (and addrs[] filled
586 * in). Also, we note whether we use M[], whether we use skb data, etc.
587 * All generation choices assumed to be 'worst-case', e.g. branches all
588 * far (2 instructions), return path code reduction not available, etc.
589 *
590 * Second pass: Code buffer allocated with size determined previously.
591 * Prologue generated to support features we have seen used. Exit paths
592 * determined and addrs[] is filled in again, as code may be slightly
593 * smaller as a result.
594 *
595 * Third pass: Code generated 'for real', and branch destinations
596 * determined from now-accurate addrs[] map.
597 *
598 * Ideal:
599 *
600 * If we optimise this, near branches will be shorter. On the
601 * first assembly pass, we should err on the side of caution and
602 * generate the biggest code. On subsequent passes, branches will be
603 * generated short or long and code size will reduce. With smaller
604 * code, more branches may fall into the short category, and code will
605 * reduce more.
606 *
607 * Finally, if we see one pass generate code the same size as the
608 * previous pass we have converged and should now generate code for
609 * real. Allocating at the end will also save the memory that would
610 * otherwise be wasted by the (small) current code shrinkage.
611 * Preferably, we should do a small number of passes (e.g. 5) and if we
612 * haven't converged by then, get impatient and force code to generate
613 * as-is, even if the odd branch would be left long. The chances of a
614 * long jump are tiny with all but the most enormous of BPF filter
615 * inputs, so we should usually converge on the third pass.
616 */
617
618 cgctx.idx = 0;
619 cgctx.seen = 0;
620 cgctx.pc_ret0 = -1;
621 /* Scouting faux-generate pass 0 */
622 if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
623 /* We hit something illegal or unsupported. */
624 goto out;
625
626 /*
627 * Pretend to build prologue, given the features we've seen. This will
628 * update ctgtx.idx as it pretends to output instructions, then we can
629 * calculate total size from idx.
630 */
631 bpf_jit_build_prologue(fp, 0, &cgctx);
632 bpf_jit_build_epilogue(0, &cgctx);
633
634 proglen = cgctx.idx * 4;
635 alloclen = proglen + FUNCTION_DESCR_SIZE;
636 image = module_alloc(alloclen);
637 if (!image)
638 goto out;
639
640 code_base = image + (FUNCTION_DESCR_SIZE/4);
641
642 /* Code generation passes 1-2 */
643 for (pass = 1; pass < 3; pass++) {
644 /* Now build the prologue, body code & epilogue for real. */
645 cgctx.idx = 0;
646 bpf_jit_build_prologue(fp, code_base, &cgctx);
647 bpf_jit_build_body(fp, code_base, &cgctx, addrs);
648 bpf_jit_build_epilogue(code_base, &cgctx);
649
650 if (bpf_jit_enable > 1)
651 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
652 proglen - (cgctx.idx * 4), cgctx.seen);
653 }
654
655 if (bpf_jit_enable > 1)
656 /* Note that we output the base address of the code_base
657 * rather than image, since opcodes are in code_base.
658 */
659 bpf_jit_dump(flen, proglen, pass, code_base);
660
661 bpf_flush_icache(code_base, code_base + (proglen/4));
662
663#ifdef CONFIG_PPC64
664 /* Function descriptor nastiness: Address + TOC */
665 ((u64 *)image)[0] = (u64)code_base;
666 ((u64 *)image)[1] = local_paca->kernel_toc;
667#endif
668
669 fp->bpf_func = (void *)image;
670 fp->jited = 1;
671
672out:
673 kfree(addrs);
674 return;
675}
676
677void bpf_jit_free(struct bpf_prog *fp)
678{
679 if (fp->jited)
680 module_memfree(fp->bpf_func);
681
682 bpf_prog_unlock_free(fp);
683}