Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *	Generic address resolution entity
   3 *
   4 *	Authors:
   5 *	Pedro Roque		<roque@di.fc.ul.pt>
   6 *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
   7 *
   8 *	This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 *
  13 *	Fixes:
  14 *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
  15 *	Harald Welte		Add neighbour cache statistics like rtstat
  16 */
  17
 
 
  18#include <linux/slab.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/socket.h>
  23#include <linux/netdevice.h>
  24#include <linux/proc_fs.h>
  25#ifdef CONFIG_SYSCTL
  26#include <linux/sysctl.h>
  27#endif
  28#include <linux/times.h>
  29#include <net/net_namespace.h>
  30#include <net/neighbour.h>
 
  31#include <net/dst.h>
  32#include <net/sock.h>
  33#include <net/netevent.h>
  34#include <net/netlink.h>
  35#include <linux/rtnetlink.h>
  36#include <linux/random.h>
  37#include <linux/string.h>
  38#include <linux/log2.h>
 
 
  39
  40#define NEIGH_DEBUG 1
  41
  42#define NEIGH_PRINTK(x...) printk(x)
  43#define NEIGH_NOPRINTK(x...) do { ; } while(0)
  44#define NEIGH_PRINTK1 NEIGH_NOPRINTK
  45#define NEIGH_PRINTK2 NEIGH_NOPRINTK
  46
  47#if NEIGH_DEBUG >= 1
  48#undef NEIGH_PRINTK1
  49#define NEIGH_PRINTK1 NEIGH_PRINTK
  50#endif
  51#if NEIGH_DEBUG >= 2
  52#undef NEIGH_PRINTK2
  53#define NEIGH_PRINTK2 NEIGH_PRINTK
  54#endif
  55
  56#define PNEIGH_HASHMASK		0xF
  57
  58static void neigh_timer_handler(unsigned long arg);
  59static void __neigh_notify(struct neighbour *n, int type, int flags);
  60static void neigh_update_notify(struct neighbour *neigh);
  61static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
 
 
  62
  63static struct neigh_table *neigh_tables;
  64#ifdef CONFIG_PROC_FS
  65static const struct file_operations neigh_stat_seq_fops;
  66#endif
  67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68/*
  69   Neighbour hash table buckets are protected with rwlock tbl->lock.
  70
  71   - All the scans/updates to hash buckets MUST be made under this lock.
  72   - NOTHING clever should be made under this lock: no callbacks
  73     to protocol backends, no attempts to send something to network.
  74     It will result in deadlocks, if backend/driver wants to use neighbour
  75     cache.
  76   - If the entry requires some non-trivial actions, increase
  77     its reference count and release table lock.
  78
  79   Neighbour entries are protected:
  80   - with reference count.
  81   - with rwlock neigh->lock
  82
  83   Reference count prevents destruction.
  84
  85   neigh->lock mainly serializes ll address data and its validity state.
  86   However, the same lock is used to protect another entry fields:
  87    - timer
  88    - resolution queue
  89
  90   Again, nothing clever shall be made under neigh->lock,
  91   the most complicated procedure, which we allow is dev->hard_header.
  92   It is supposed, that dev->hard_header is simplistic and does
  93   not make callbacks to neighbour tables.
  94
  95   The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
  96   list of neighbour tables. This list is used only in process context,
  97 */
  98
  99static DEFINE_RWLOCK(neigh_tbl_lock);
 100
 101static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
 102{
 103	kfree_skb(skb);
 104	return -ENETDOWN;
 105}
 106
 107static void neigh_cleanup_and_release(struct neighbour *neigh)
 108{
 109	if (neigh->parms->neigh_cleanup)
 110		neigh->parms->neigh_cleanup(neigh);
 111
 112	__neigh_notify(neigh, RTM_DELNEIGH, 0);
 113	neigh_release(neigh);
 114}
 115
 116/*
 117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
 118 * It corresponds to default IPv6 settings and is not overridable,
 119 * because it is really reasonable choice.
 120 */
 121
 122unsigned long neigh_rand_reach_time(unsigned long base)
 123{
 124	return base ? (net_random() % base) + (base >> 1) : 0;
 125}
 126EXPORT_SYMBOL(neigh_rand_reach_time);
 127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128
 129static int neigh_forced_gc(struct neigh_table *tbl)
 130{
 
 
 
 
 
 131	int shrunk = 0;
 132	int i;
 133	struct neigh_hash_table *nht;
 134
 135	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
 136
 137	write_lock_bh(&tbl->lock);
 138	nht = rcu_dereference_protected(tbl->nht,
 139					lockdep_is_held(&tbl->lock));
 140	for (i = 0; i < (1 << nht->hash_shift); i++) {
 141		struct neighbour *n;
 142		struct neighbour __rcu **np;
 143
 144		np = &nht->hash_buckets[i];
 145		while ((n = rcu_dereference_protected(*np,
 146					lockdep_is_held(&tbl->lock))) != NULL) {
 147			/* Neighbour record may be discarded if:
 148			 * - nobody refers to it.
 149			 * - it is not permanent
 150			 */
 151			write_lock(&n->lock);
 152			if (atomic_read(&n->refcnt) == 1 &&
 153			    !(n->nud_state & NUD_PERMANENT)) {
 154				rcu_assign_pointer(*np,
 155					rcu_dereference_protected(n->next,
 156						  lockdep_is_held(&tbl->lock)));
 157				n->dead = 1;
 158				shrunk	= 1;
 159				write_unlock(&n->lock);
 160				neigh_cleanup_and_release(n);
 161				continue;
 162			}
 163			write_unlock(&n->lock);
 164			np = &n->next;
 
 
 
 
 
 
 
 
 
 165		}
 166	}
 167
 168	tbl->last_flush = jiffies;
 169
 170	write_unlock_bh(&tbl->lock);
 171
 172	return shrunk;
 173}
 174
 175static void neigh_add_timer(struct neighbour *n, unsigned long when)
 176{
 
 
 
 
 
 
 177	neigh_hold(n);
 
 
 
 
 178	if (unlikely(mod_timer(&n->timer, when))) {
 179		printk("NEIGH: BUG, double timer add, state is %x\n",
 180		       n->nud_state);
 181		dump_stack();
 182	}
 183}
 184
 185static int neigh_del_timer(struct neighbour *n)
 186{
 187	if ((n->nud_state & NUD_IN_TIMER) &&
 188	    del_timer(&n->timer)) {
 189		neigh_release(n);
 190		return 1;
 191	}
 192	return 0;
 193}
 194
 195static void pneigh_queue_purge(struct sk_buff_head *list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196{
 
 
 197	struct sk_buff *skb;
 198
 199	while ((skb = skb_dequeue(list)) != NULL) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200		dev_put(skb->dev);
 201		kfree_skb(skb);
 202	}
 203}
 204
 205static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
 
 206{
 207	int i;
 208	struct neigh_hash_table *nht;
 209
 210	nht = rcu_dereference_protected(tbl->nht,
 211					lockdep_is_held(&tbl->lock));
 212
 213	for (i = 0; i < (1 << nht->hash_shift); i++) {
 214		struct neighbour *n;
 215		struct neighbour __rcu **np = &nht->hash_buckets[i];
 216
 217		while ((n = rcu_dereference_protected(*np,
 218					lockdep_is_held(&tbl->lock))) != NULL) {
 219			if (dev && n->dev != dev) {
 220				np = &n->next;
 221				continue;
 222			}
 223			rcu_assign_pointer(*np,
 224				   rcu_dereference_protected(n->next,
 225						lockdep_is_held(&tbl->lock)));
 226			write_lock(&n->lock);
 227			neigh_del_timer(n);
 228			n->dead = 1;
 229
 230			if (atomic_read(&n->refcnt) != 1) {
 231				/* The most unpleasant situation.
 232				   We must destroy neighbour entry,
 233				   but someone still uses it.
 234
 235				   The destroy will be delayed until
 236				   the last user releases us, but
 237				   we must kill timers etc. and move
 238				   it to safe state.
 239				 */
 240				skb_queue_purge(&n->arp_queue);
 241				n->output = neigh_blackhole;
 242				if (n->nud_state & NUD_VALID)
 243					n->nud_state = NUD_NOARP;
 244				else
 245					n->nud_state = NUD_NONE;
 246				NEIGH_PRINTK2("neigh %p is stray.\n", n);
 247			}
 248			write_unlock(&n->lock);
 249			neigh_cleanup_and_release(n);
 
 
 
 250		}
 
 
 251	}
 252}
 253
 254void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
 255{
 256	write_lock_bh(&tbl->lock);
 257	neigh_flush_dev(tbl, dev);
 258	write_unlock_bh(&tbl->lock);
 259}
 260EXPORT_SYMBOL(neigh_changeaddr);
 261
 262int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
 
 263{
 264	write_lock_bh(&tbl->lock);
 265	neigh_flush_dev(tbl, dev);
 266	pneigh_ifdown(tbl, dev);
 267	write_unlock_bh(&tbl->lock);
 
 
 
 
 
 268
 269	del_timer_sync(&tbl->proxy_timer);
 270	pneigh_queue_purge(&tbl->proxy_queue);
 
 
 
 
 
 
 
 
 271	return 0;
 272}
 273EXPORT_SYMBOL(neigh_ifdown);
 274
 275static struct neighbour *neigh_alloc(struct neigh_table *tbl)
 
 
 276{
 277	struct neighbour *n = NULL;
 278	unsigned long now = jiffies;
 279	int entries;
 
 
 
 280
 281	entries = atomic_inc_return(&tbl->entries) - 1;
 282	if (entries >= tbl->gc_thresh3 ||
 283	    (entries >= tbl->gc_thresh2 &&
 284	     time_after(now, tbl->last_flush + 5 * HZ))) {
 285		if (!neigh_forced_gc(tbl) &&
 286		    entries >= tbl->gc_thresh3)
 
 
 
 287			goto out_entries;
 
 288	}
 289
 290	n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
 
 291	if (!n)
 292		goto out_entries;
 293
 294	skb_queue_head_init(&n->arp_queue);
 295	rwlock_init(&n->lock);
 296	seqlock_init(&n->ha_lock);
 297	n->updated	  = n->used = now;
 298	n->nud_state	  = NUD_NONE;
 299	n->output	  = neigh_blackhole;
 
 300	seqlock_init(&n->hh.hh_lock);
 301	n->parms	  = neigh_parms_clone(&tbl->parms);
 302	setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
 303
 304	NEIGH_CACHE_STAT_INC(tbl, allocs);
 305	n->tbl		  = tbl;
 306	atomic_set(&n->refcnt, 1);
 307	n->dead		  = 1;
 
 
 
 
 308out:
 309	return n;
 310
 311out_entries:
 312	atomic_dec(&tbl->entries);
 
 313	goto out;
 314}
 315
 
 
 
 
 
 316static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
 317{
 318	size_t size = (1 << shift) * sizeof(struct neighbour *);
 
 319	struct neigh_hash_table *ret;
 320	struct neighbour __rcu **buckets;
 321
 322	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
 323	if (!ret)
 324		return NULL;
 325	if (size <= PAGE_SIZE)
 326		buckets = kzalloc(size, GFP_ATOMIC);
 327	else
 328		buckets = (struct neighbour __rcu **)
 329			  __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
 330					   get_order(size));
 331	if (!buckets) {
 332		kfree(ret);
 333		return NULL;
 334	}
 335	ret->hash_buckets = buckets;
 336	ret->hash_shift = shift;
 337	get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
 338	ret->hash_rnd |= 1;
 339	return ret;
 340}
 341
 342static void neigh_hash_free_rcu(struct rcu_head *head)
 343{
 344	struct neigh_hash_table *nht = container_of(head,
 345						    struct neigh_hash_table,
 346						    rcu);
 347	size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
 348	struct neighbour __rcu **buckets = nht->hash_buckets;
 349
 350	if (size <= PAGE_SIZE)
 351		kfree(buckets);
 352	else
 353		free_pages((unsigned long)buckets, get_order(size));
 354	kfree(nht);
 355}
 356
 357static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
 358						unsigned long new_shift)
 359{
 360	unsigned int i, hash;
 361	struct neigh_hash_table *new_nht, *old_nht;
 362
 363	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
 364
 365	old_nht = rcu_dereference_protected(tbl->nht,
 366					    lockdep_is_held(&tbl->lock));
 367	new_nht = neigh_hash_alloc(new_shift);
 368	if (!new_nht)
 369		return old_nht;
 370
 371	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
 372		struct neighbour *n, *next;
 
 373
 374		for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
 375						   lockdep_is_held(&tbl->lock));
 376		     n != NULL;
 377		     n = next) {
 378			hash = tbl->hash(n->primary_key, n->dev,
 379					 new_nht->hash_rnd);
 380
 381			hash >>= (32 - new_nht->hash_shift);
 382			next = rcu_dereference_protected(n->next,
 383						lockdep_is_held(&tbl->lock));
 384
 385			rcu_assign_pointer(n->next,
 386					   rcu_dereference_protected(
 387						new_nht->hash_buckets[hash],
 388						lockdep_is_held(&tbl->lock)));
 389			rcu_assign_pointer(new_nht->hash_buckets[hash], n);
 390		}
 391	}
 392
 393	rcu_assign_pointer(tbl->nht, new_nht);
 394	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
 395	return new_nht;
 396}
 397
 398struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
 399			       struct net_device *dev)
 400{
 401	struct neighbour *n;
 402	int key_len = tbl->key_len;
 403	u32 hash_val;
 404	struct neigh_hash_table *nht;
 405
 406	NEIGH_CACHE_STAT_INC(tbl, lookups);
 407
 408	rcu_read_lock_bh();
 409	nht = rcu_dereference_bh(tbl->nht);
 410	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
 411
 412	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
 413	     n != NULL;
 414	     n = rcu_dereference_bh(n->next)) {
 415		if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
 416			if (!atomic_inc_not_zero(&n->refcnt))
 417				n = NULL;
 418			NEIGH_CACHE_STAT_INC(tbl, hits);
 419			break;
 420		}
 421	}
 422
 423	rcu_read_unlock_bh();
 424	return n;
 425}
 426EXPORT_SYMBOL(neigh_lookup);
 427
 428struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
 429				     const void *pkey)
 
 
 430{
 431	struct neighbour *n;
 432	int key_len = tbl->key_len;
 433	u32 hash_val;
 434	struct neigh_hash_table *nht;
 435
 436	NEIGH_CACHE_STAT_INC(tbl, lookups);
 437
 438	rcu_read_lock_bh();
 439	nht = rcu_dereference_bh(tbl->nht);
 440	hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
 441
 442	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
 443	     n != NULL;
 444	     n = rcu_dereference_bh(n->next)) {
 445		if (!memcmp(n->primary_key, pkey, key_len) &&
 446		    net_eq(dev_net(n->dev), net)) {
 447			if (!atomic_inc_not_zero(&n->refcnt))
 448				n = NULL;
 449			NEIGH_CACHE_STAT_INC(tbl, hits);
 450			break;
 451		}
 452	}
 453
 454	rcu_read_unlock_bh();
 455	return n;
 456}
 457EXPORT_SYMBOL(neigh_lookup_nodev);
 458
 459struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
 460			       struct net_device *dev)
 461{
 462	u32 hash_val;
 463	int key_len = tbl->key_len;
 464	int error;
 465	struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
 466	struct neigh_hash_table *nht;
 467
 
 
 468	if (!n) {
 469		rc = ERR_PTR(-ENOBUFS);
 470		goto out;
 471	}
 472
 473	memcpy(n->primary_key, pkey, key_len);
 474	n->dev = dev;
 475	dev_hold(dev);
 476
 477	/* Protocol specific setup. */
 478	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
 479		rc = ERR_PTR(error);
 480		goto out_neigh_release;
 481	}
 482
 
 
 
 
 
 
 
 
 483	/* Device specific setup. */
 484	if (n->parms->neigh_setup &&
 485	    (error = n->parms->neigh_setup(n)) < 0) {
 486		rc = ERR_PTR(error);
 487		goto out_neigh_release;
 488	}
 489
 490	n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
 491
 492	write_lock_bh(&tbl->lock);
 493	nht = rcu_dereference_protected(tbl->nht,
 494					lockdep_is_held(&tbl->lock));
 495
 496	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
 497		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
 498
 499	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
 500
 501	if (n->parms->dead) {
 502		rc = ERR_PTR(-EINVAL);
 503		goto out_tbl_unlock;
 504	}
 505
 506	for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
 507					    lockdep_is_held(&tbl->lock));
 508	     n1 != NULL;
 509	     n1 = rcu_dereference_protected(n1->next,
 510			lockdep_is_held(&tbl->lock))) {
 511		if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
 512			neigh_hold(n1);
 513			rc = n1;
 514			goto out_tbl_unlock;
 515		}
 516	}
 517
 518	n->dead = 0;
 519	neigh_hold(n);
 520	rcu_assign_pointer(n->next,
 521			   rcu_dereference_protected(nht->hash_buckets[hash_val],
 522						     lockdep_is_held(&tbl->lock)));
 523	rcu_assign_pointer(nht->hash_buckets[hash_val], n);
 
 
 
 
 
 
 524	write_unlock_bh(&tbl->lock);
 525	NEIGH_PRINTK2("neigh %p is created.\n", n);
 526	rc = n;
 527out:
 528	return rc;
 529out_tbl_unlock:
 530	write_unlock_bh(&tbl->lock);
 531out_neigh_release:
 
 
 532	neigh_release(n);
 533	goto out;
 534}
 535EXPORT_SYMBOL(neigh_create);
 536
 537static u32 pneigh_hash(const void *pkey, int key_len)
 
 
 
 
 
 
 
 
 
 538{
 539	u32 hash_val = *(u32 *)(pkey + key_len - 4);
 540	hash_val ^= (hash_val >> 16);
 541	hash_val ^= hash_val >> 8;
 542	hash_val ^= hash_val >> 4;
 543	hash_val &= PNEIGH_HASHMASK;
 544	return hash_val;
 545}
 546
 547static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
 548					      struct net *net,
 549					      const void *pkey,
 550					      int key_len,
 551					      struct net_device *dev)
 552{
 553	while (n) {
 554		if (!memcmp(n->key, pkey, key_len) &&
 555		    net_eq(pneigh_net(n), net) &&
 556		    (n->dev == dev || !n->dev))
 557			return n;
 558		n = n->next;
 559	}
 560	return NULL;
 561}
 562
 563struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
 564		struct net *net, const void *pkey, struct net_device *dev)
 565{
 566	int key_len = tbl->key_len;
 567	u32 hash_val = pneigh_hash(pkey, key_len);
 568
 569	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 570				 net, pkey, key_len, dev);
 571}
 572EXPORT_SYMBOL_GPL(__pneigh_lookup);
 573
 574struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
 575				    struct net *net, const void *pkey,
 576				    struct net_device *dev, int creat)
 577{
 578	struct pneigh_entry *n;
 579	int key_len = tbl->key_len;
 580	u32 hash_val = pneigh_hash(pkey, key_len);
 581
 582	read_lock_bh(&tbl->lock);
 583	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 584			      net, pkey, key_len, dev);
 585	read_unlock_bh(&tbl->lock);
 586
 587	if (n || !creat)
 588		goto out;
 589
 590	ASSERT_RTNL();
 591
 592	n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
 593	if (!n)
 594		goto out;
 595
 596	write_pnet(&n->net, hold_net(net));
 597	memcpy(n->key, pkey, key_len);
 598	n->dev = dev;
 599	if (dev)
 600		dev_hold(dev);
 601
 602	if (tbl->pconstructor && tbl->pconstructor(n)) {
 603		if (dev)
 604			dev_put(dev);
 605		release_net(net);
 606		kfree(n);
 607		n = NULL;
 608		goto out;
 609	}
 610
 611	write_lock_bh(&tbl->lock);
 612	n->next = tbl->phash_buckets[hash_val];
 613	tbl->phash_buckets[hash_val] = n;
 614	write_unlock_bh(&tbl->lock);
 615out:
 616	return n;
 617}
 618EXPORT_SYMBOL(pneigh_lookup);
 619
 620
 621int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
 622		  struct net_device *dev)
 623{
 624	struct pneigh_entry *n, **np;
 625	int key_len = tbl->key_len;
 626	u32 hash_val = pneigh_hash(pkey, key_len);
 627
 628	write_lock_bh(&tbl->lock);
 629	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
 630	     np = &n->next) {
 631		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
 632		    net_eq(pneigh_net(n), net)) {
 633			*np = n->next;
 634			write_unlock_bh(&tbl->lock);
 635			if (tbl->pdestructor)
 636				tbl->pdestructor(n);
 637			if (n->dev)
 638				dev_put(n->dev);
 639			release_net(pneigh_net(n));
 640			kfree(n);
 641			return 0;
 642		}
 643	}
 644	write_unlock_bh(&tbl->lock);
 645	return -ENOENT;
 646}
 647
 648static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
 
 649{
 650	struct pneigh_entry *n, **np;
 651	u32 h;
 652
 653	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
 654		np = &tbl->phash_buckets[h];
 655		while ((n = *np) != NULL) {
 656			if (!dev || n->dev == dev) {
 657				*np = n->next;
 658				if (tbl->pdestructor)
 659					tbl->pdestructor(n);
 660				if (n->dev)
 661					dev_put(n->dev);
 662				release_net(pneigh_net(n));
 663				kfree(n);
 664				continue;
 665			}
 666			np = &n->next;
 667		}
 668	}
 
 
 
 
 
 
 
 
 
 669	return -ENOENT;
 670}
 671
 672static void neigh_parms_destroy(struct neigh_parms *parms);
 673
 674static inline void neigh_parms_put(struct neigh_parms *parms)
 675{
 676	if (atomic_dec_and_test(&parms->refcnt))
 677		neigh_parms_destroy(parms);
 678}
 679
 680static void neigh_destroy_rcu(struct rcu_head *head)
 681{
 682	struct neighbour *neigh = container_of(head, struct neighbour, rcu);
 683
 684	kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
 685}
 686/*
 687 *	neighbour must already be out of the table;
 688 *
 689 */
 690void neigh_destroy(struct neighbour *neigh)
 691{
 
 
 692	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
 693
 694	if (!neigh->dead) {
 695		printk(KERN_WARNING
 696		       "Destroying alive neighbour %p\n", neigh);
 697		dump_stack();
 698		return;
 699	}
 700
 701	if (neigh_del_timer(neigh))
 702		printk(KERN_WARNING "Impossible event.\n");
 
 
 
 
 
 703
 704	skb_queue_purge(&neigh->arp_queue);
 
 705
 706	dev_put(neigh->dev);
 707	neigh_parms_put(neigh->parms);
 708
 709	NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
 710
 711	atomic_dec(&neigh->tbl->entries);
 712	call_rcu(&neigh->rcu, neigh_destroy_rcu);
 713}
 714EXPORT_SYMBOL(neigh_destroy);
 715
 716/* Neighbour state is suspicious;
 717   disable fast path.
 718
 719   Called with write_locked neigh.
 720 */
 721static void neigh_suspect(struct neighbour *neigh)
 722{
 723	NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
 724
 725	neigh->output = neigh->ops->output;
 726}
 727
 728/* Neighbour state is OK;
 729   enable fast path.
 730
 731   Called with write_locked neigh.
 732 */
 733static void neigh_connect(struct neighbour *neigh)
 734{
 735	NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
 736
 737	neigh->output = neigh->ops->connected_output;
 738}
 739
 740static void neigh_periodic_work(struct work_struct *work)
 741{
 742	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
 
 
 743	struct neighbour *n;
 744	struct neighbour __rcu **np;
 745	unsigned int i;
 746	struct neigh_hash_table *nht;
 747
 748	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
 749
 750	write_lock_bh(&tbl->lock);
 751	nht = rcu_dereference_protected(tbl->nht,
 752					lockdep_is_held(&tbl->lock));
 753
 754	/*
 755	 *	periodically recompute ReachableTime from random function
 756	 */
 757
 758	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
 759		struct neigh_parms *p;
 760		tbl->last_rand = jiffies;
 761		for (p = &tbl->parms; p; p = p->next)
 
 762			p->reachable_time =
 763				neigh_rand_reach_time(p->base_reachable_time);
 764	}
 765
 766	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
 767		np = &nht->hash_buckets[i];
 768
 769		while ((n = rcu_dereference_protected(*np,
 770				lockdep_is_held(&tbl->lock))) != NULL) {
 771			unsigned int state;
 772
 773			write_lock(&n->lock);
 774
 775			state = n->nud_state;
 776			if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
 
 777				write_unlock(&n->lock);
 778				goto next_elt;
 779			}
 780
 781			if (time_before(n->used, n->confirmed))
 
 782				n->used = n->confirmed;
 783
 784			if (atomic_read(&n->refcnt) == 1 &&
 785			    (state == NUD_FAILED ||
 786			     time_after(jiffies, n->used + n->parms->gc_staletime))) {
 787				*np = n->next;
 788				n->dead = 1;
 
 
 789				write_unlock(&n->lock);
 790				neigh_cleanup_and_release(n);
 791				continue;
 792			}
 793			write_unlock(&n->lock);
 794
 795next_elt:
 796			np = &n->next;
 797		}
 798		/*
 799		 * It's fine to release lock here, even if hash table
 800		 * grows while we are preempted.
 801		 */
 802		write_unlock_bh(&tbl->lock);
 803		cond_resched();
 804		write_lock_bh(&tbl->lock);
 
 
 805	}
 806	/* Cycle through all hash buckets every base_reachable_time/2 ticks.
 807	 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
 808	 * base_reachable_time.
 
 809	 */
 810	schedule_delayed_work(&tbl->gc_work,
 811			      tbl->parms.base_reachable_time >> 1);
 812	write_unlock_bh(&tbl->lock);
 813}
 814
 815static __inline__ int neigh_max_probes(struct neighbour *n)
 816{
 817	struct neigh_parms *p = n->parms;
 818	return (n->nud_state & NUD_PROBE) ?
 819		p->ucast_probes :
 820		p->ucast_probes + p->app_probes + p->mcast_probes;
 821}
 822
 823static void neigh_invalidate(struct neighbour *neigh)
 824	__releases(neigh->lock)
 825	__acquires(neigh->lock)
 826{
 827	struct sk_buff *skb;
 828
 829	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
 830	NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
 831	neigh->updated = jiffies;
 832
 833	/* It is very thin place. report_unreachable is very complicated
 834	   routine. Particularly, it can hit the same neighbour entry!
 835
 836	   So that, we try to be accurate and avoid dead loop. --ANK
 837	 */
 838	while (neigh->nud_state == NUD_FAILED &&
 839	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
 840		write_unlock(&neigh->lock);
 841		neigh->ops->error_report(neigh, skb);
 842		write_lock(&neigh->lock);
 843	}
 844	skb_queue_purge(&neigh->arp_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845}
 846
 847/* Called when a timer expires for a neighbour entry. */
 848
 849static void neigh_timer_handler(unsigned long arg)
 850{
 851	unsigned long now, next;
 852	struct neighbour *neigh = (struct neighbour *)arg;
 853	unsigned state;
 854	int notify = 0;
 855
 856	write_lock(&neigh->lock);
 857
 858	state = neigh->nud_state;
 859	now = jiffies;
 860	next = now + HZ;
 861
 862	if (!(state & NUD_IN_TIMER)) {
 863#ifndef CONFIG_SMP
 864		printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
 865#endif
 866		goto out;
 867	}
 868
 869	if (state & NUD_REACHABLE) {
 870		if (time_before_eq(now,
 871				   neigh->confirmed + neigh->parms->reachable_time)) {
 872			NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
 873			next = neigh->confirmed + neigh->parms->reachable_time;
 874		} else if (time_before_eq(now,
 875					  neigh->used + neigh->parms->delay_probe_time)) {
 876			NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
 877			neigh->nud_state = NUD_DELAY;
 
 878			neigh->updated = jiffies;
 879			neigh_suspect(neigh);
 880			next = now + neigh->parms->delay_probe_time;
 881		} else {
 882			NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
 883			neigh->nud_state = NUD_STALE;
 884			neigh->updated = jiffies;
 885			neigh_suspect(neigh);
 886			notify = 1;
 887		}
 888	} else if (state & NUD_DELAY) {
 889		if (time_before_eq(now,
 890				   neigh->confirmed + neigh->parms->delay_probe_time)) {
 891			NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
 892			neigh->nud_state = NUD_REACHABLE;
 
 893			neigh->updated = jiffies;
 894			neigh_connect(neigh);
 895			notify = 1;
 896			next = neigh->confirmed + neigh->parms->reachable_time;
 897		} else {
 898			NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
 899			neigh->nud_state = NUD_PROBE;
 900			neigh->updated = jiffies;
 901			atomic_set(&neigh->probes, 0);
 902			next = now + neigh->parms->retrans_time;
 
 
 903		}
 904	} else {
 905		/* NUD_PROBE|NUD_INCOMPLETE */
 906		next = now + neigh->parms->retrans_time;
 907	}
 908
 909	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
 910	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
 911		neigh->nud_state = NUD_FAILED;
 912		notify = 1;
 913		neigh_invalidate(neigh);
 
 914	}
 915
 916	if (neigh->nud_state & NUD_IN_TIMER) {
 917		if (time_before(next, jiffies + HZ/2))
 918			next = jiffies + HZ/2;
 919		if (!mod_timer(&neigh->timer, next))
 920			neigh_hold(neigh);
 921	}
 922	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
 923		struct sk_buff *skb = skb_peek(&neigh->arp_queue);
 924		/* keep skb alive even if arp_queue overflows */
 925		if (skb)
 926			skb = skb_copy(skb, GFP_ATOMIC);
 927		write_unlock(&neigh->lock);
 928		neigh->ops->solicit(neigh, skb);
 929		atomic_inc(&neigh->probes);
 930		kfree_skb(skb);
 931	} else {
 932out:
 933		write_unlock(&neigh->lock);
 934	}
 935
 936	if (notify)
 937		neigh_update_notify(neigh);
 
 
 938
 939	neigh_release(neigh);
 940}
 941
 942int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
 
 943{
 944	int rc;
 945	unsigned long now;
 946
 947	write_lock_bh(&neigh->lock);
 948
 949	rc = 0;
 950	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
 951		goto out_unlock_bh;
 952
 953	now = jiffies;
 954
 955	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
 956		if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
 957			atomic_set(&neigh->probes, neigh->parms->ucast_probes);
 958			neigh->nud_state     = NUD_INCOMPLETE;
 959			neigh->updated = jiffies;
 960			neigh_add_timer(neigh, now + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 961		} else {
 962			neigh->nud_state = NUD_FAILED;
 963			neigh->updated = jiffies;
 964			write_unlock_bh(&neigh->lock);
 965
 966			kfree_skb(skb);
 967			return 1;
 968		}
 969	} else if (neigh->nud_state & NUD_STALE) {
 970		NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
 971		neigh->nud_state = NUD_DELAY;
 
 972		neigh->updated = jiffies;
 973		neigh_add_timer(neigh,
 974				jiffies + neigh->parms->delay_probe_time);
 975	}
 976
 977	if (neigh->nud_state == NUD_INCOMPLETE) {
 978		if (skb) {
 979			if (skb_queue_len(&neigh->arp_queue) >=
 980			    neigh->parms->queue_len) {
 981				struct sk_buff *buff;
 
 982				buff = __skb_dequeue(&neigh->arp_queue);
 983				kfree_skb(buff);
 
 
 
 984				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
 985			}
 986			skb_dst_force(skb);
 987			__skb_queue_tail(&neigh->arp_queue, skb);
 
 988		}
 989		rc = 1;
 990	}
 991out_unlock_bh:
 992	write_unlock_bh(&neigh->lock);
 
 
 
 
 
 993	return rc;
 
 
 
 
 
 
 
 
 994}
 995EXPORT_SYMBOL(__neigh_event_send);
 996
 997static void neigh_update_hhs(struct neighbour *neigh)
 998{
 999	struct hh_cache *hh;
1000	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1001		= NULL;
1002
1003	if (neigh->dev->header_ops)
1004		update = neigh->dev->header_ops->cache_update;
1005
1006	if (update) {
1007		hh = &neigh->hh;
1008		if (hh->hh_len) {
1009			write_seqlock_bh(&hh->hh_lock);
1010			update(hh, neigh->dev, neigh->ha);
1011			write_sequnlock_bh(&hh->hh_lock);
1012		}
1013	}
1014}
1015
1016
1017
1018/* Generic update routine.
1019   -- lladdr is new lladdr or NULL, if it is not supplied.
1020   -- new    is new state.
1021   -- flags
1022	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1023				if it is different.
1024	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1025				lladdr instead of overriding it
1026				if it is different.
1027				It also allows to retain current state
1028				if lladdr is unchanged.
1029	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1030
 
1031	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1032				NTF_ROUTER flag.
1033	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1034				a router.
1035
1036   Caller MUST hold reference count on the entry.
1037 */
1038
1039int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1040		 u32 flags)
1041{
1042	u8 old;
1043	int err;
1044	int notify = 0;
1045	struct net_device *dev;
1046	int update_isrouter = 0;
 
 
 
 
 
1047
1048	write_lock_bh(&neigh->lock);
1049
1050	dev    = neigh->dev;
1051	old    = neigh->nud_state;
1052	err    = -EPERM;
1053
 
 
 
 
 
1054	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1055	    (old & (NUD_NOARP | NUD_PERMANENT)))
1056		goto out;
1057
 
 
 
 
 
 
 
 
1058	if (!(new & NUD_VALID)) {
1059		neigh_del_timer(neigh);
1060		if (old & NUD_CONNECTED)
1061			neigh_suspect(neigh);
1062		neigh->nud_state = new;
1063		err = 0;
1064		notify = old & NUD_VALID;
1065		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1066		    (new & NUD_FAILED)) {
1067			neigh_invalidate(neigh);
1068			notify = 1;
1069		}
1070		goto out;
1071	}
1072
1073	/* Compare new lladdr with cached one */
1074	if (!dev->addr_len) {
1075		/* First case: device needs no address. */
1076		lladdr = neigh->ha;
1077	} else if (lladdr) {
1078		/* The second case: if something is already cached
1079		   and a new address is proposed:
1080		   - compare new & old
1081		   - if they are different, check override flag
1082		 */
1083		if ((old & NUD_VALID) &&
1084		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1085			lladdr = neigh->ha;
1086	} else {
1087		/* No address is supplied; if we know something,
1088		   use it, otherwise discard the request.
1089		 */
1090		err = -EINVAL;
1091		if (!(old & NUD_VALID))
 
1092			goto out;
 
1093		lladdr = neigh->ha;
1094	}
1095
 
 
 
1096	if (new & NUD_CONNECTED)
1097		neigh->confirmed = jiffies;
1098	neigh->updated = jiffies;
1099
1100	/* If entry was valid and address is not changed,
1101	   do not change entry state, if new one is STALE.
1102	 */
1103	err = 0;
1104	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1105	if (old & NUD_VALID) {
1106		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1107			update_isrouter = 0;
1108			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1109			    (old & NUD_CONNECTED)) {
1110				lladdr = neigh->ha;
1111				new = NUD_STALE;
1112			} else
1113				goto out;
1114		} else {
1115			if (lladdr == neigh->ha && new == NUD_STALE &&
1116			    ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1117			     (old & NUD_CONNECTED))
1118			    )
1119				new = old;
1120		}
1121	}
1122
 
 
 
 
 
 
 
1123	if (new != old) {
1124		neigh_del_timer(neigh);
 
 
1125		if (new & NUD_IN_TIMER)
1126			neigh_add_timer(neigh, (jiffies +
1127						((new & NUD_REACHABLE) ?
1128						 neigh->parms->reachable_time :
1129						 0)));
1130		neigh->nud_state = new;
 
1131	}
1132
1133	if (lladdr != neigh->ha) {
1134		write_seqlock(&neigh->ha_lock);
1135		memcpy(&neigh->ha, lladdr, dev->addr_len);
1136		write_sequnlock(&neigh->ha_lock);
1137		neigh_update_hhs(neigh);
1138		if (!(new & NUD_CONNECTED))
1139			neigh->confirmed = jiffies -
1140				      (neigh->parms->base_reachable_time << 1);
1141		notify = 1;
1142	}
1143	if (new == old)
1144		goto out;
1145	if (new & NUD_CONNECTED)
1146		neigh_connect(neigh);
1147	else
1148		neigh_suspect(neigh);
1149	if (!(old & NUD_VALID)) {
1150		struct sk_buff *skb;
1151
1152		/* Again: avoid dead loop if something went wrong */
1153
1154		while (neigh->nud_state & NUD_VALID &&
1155		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1156			struct dst_entry *dst = skb_dst(skb);
1157			struct neighbour *n2, *n1 = neigh;
1158			write_unlock_bh(&neigh->lock);
1159			/* On shaper/eql skb->dst->neighbour != neigh :( */
1160			if (dst && (n2 = dst_get_neighbour(dst)) != NULL)
1161				n1 = n2;
1162			n1->output(n1, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163			write_lock_bh(&neigh->lock);
1164		}
1165		skb_queue_purge(&neigh->arp_queue);
 
1166	}
1167out:
1168	if (update_isrouter) {
1169		neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1170			(neigh->flags | NTF_ROUTER) :
1171			(neigh->flags & ~NTF_ROUTER);
1172	}
1173	write_unlock_bh(&neigh->lock);
1174
 
 
 
1175	if (notify)
1176		neigh_update_notify(neigh);
1177
1178	return err;
1179}
 
 
 
 
 
 
1180EXPORT_SYMBOL(neigh_update);
1181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1183				 u8 *lladdr, void *saddr,
1184				 struct net_device *dev)
1185{
1186	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1187						 lladdr || !dev->addr_len);
1188	if (neigh)
1189		neigh_update(neigh, lladdr, NUD_STALE,
1190			     NEIGH_UPDATE_F_OVERRIDE);
1191	return neigh;
1192}
1193EXPORT_SYMBOL(neigh_event_ns);
1194
1195/* called with read_lock_bh(&n->lock); */
1196static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1197{
1198	struct net_device *dev = dst->dev;
1199	__be16 prot = dst->ops->protocol;
1200	struct hh_cache	*hh = &n->hh;
1201
1202	write_lock_bh(&n->lock);
1203
1204	/* Only one thread can come in here and initialize the
1205	 * hh_cache entry.
1206	 */
1207	if (!hh->hh_len)
1208		dev->header_ops->cache(n, hh, prot);
1209
1210	write_unlock_bh(&n->lock);
1211}
1212
1213/* This function can be used in contexts, where only old dev_queue_xmit
1214 * worked, f.e. if you want to override normal output path (eql, shaper),
1215 * but resolution is not made yet.
1216 */
1217
1218int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1219{
1220	struct net_device *dev = skb->dev;
1221
1222	__skb_pull(skb, skb_network_offset(skb));
1223
1224	if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1225			    skb->len) < 0 &&
1226	    dev->header_ops->rebuild(skb))
1227		return 0;
1228
1229	return dev_queue_xmit(skb);
1230}
1231EXPORT_SYMBOL(neigh_compat_output);
1232
1233/* Slow and careful. */
1234
1235int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1236{
1237	struct dst_entry *dst = skb_dst(skb);
1238	int rc = 0;
1239
1240	if (!dst)
1241		goto discard;
1242
1243	__skb_pull(skb, skb_network_offset(skb));
1244
1245	if (!neigh_event_send(neigh, skb)) {
1246		int err;
1247		struct net_device *dev = neigh->dev;
1248		unsigned int seq;
1249
1250		if (dev->header_ops->cache && !neigh->hh.hh_len)
1251			neigh_hh_init(neigh, dst);
1252
1253		do {
 
1254			seq = read_seqbegin(&neigh->ha_lock);
1255			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1256					      neigh->ha, NULL, skb->len);
1257		} while (read_seqretry(&neigh->ha_lock, seq));
1258
1259		if (err >= 0)
1260			rc = dev_queue_xmit(skb);
1261		else
1262			goto out_kfree_skb;
1263	}
1264out:
1265	return rc;
1266discard:
1267	NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1268		      dst, neigh);
1269out_kfree_skb:
1270	rc = -EINVAL;
1271	kfree_skb(skb);
1272	goto out;
1273}
1274EXPORT_SYMBOL(neigh_resolve_output);
1275
1276/* As fast as possible without hh cache */
1277
1278int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1279{
1280	struct net_device *dev = neigh->dev;
1281	unsigned int seq;
1282	int err;
1283
1284	__skb_pull(skb, skb_network_offset(skb));
1285
1286	do {
 
1287		seq = read_seqbegin(&neigh->ha_lock);
1288		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1289				      neigh->ha, NULL, skb->len);
1290	} while (read_seqretry(&neigh->ha_lock, seq));
1291
1292	if (err >= 0)
1293		err = dev_queue_xmit(skb);
1294	else {
1295		err = -EINVAL;
1296		kfree_skb(skb);
1297	}
1298	return err;
1299}
1300EXPORT_SYMBOL(neigh_connected_output);
1301
1302int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1303{
1304	return dev_queue_xmit(skb);
1305}
1306EXPORT_SYMBOL(neigh_direct_output);
1307
1308static void neigh_proxy_process(unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309{
1310	struct neigh_table *tbl = (struct neigh_table *)arg;
1311	long sched_next = 0;
1312	unsigned long now = jiffies;
1313	struct sk_buff *skb, *n;
1314
1315	spin_lock(&tbl->proxy_queue.lock);
1316
1317	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1318		long tdif = NEIGH_CB(skb)->sched_next - now;
1319
1320		if (tdif <= 0) {
1321			struct net_device *dev = skb->dev;
1322
 
1323			__skb_unlink(skb, &tbl->proxy_queue);
 
1324			if (tbl->proxy_redo && netif_running(dev)) {
1325				rcu_read_lock();
1326				tbl->proxy_redo(skb);
1327				rcu_read_unlock();
1328			} else {
1329				kfree_skb(skb);
1330			}
1331
1332			dev_put(dev);
1333		} else if (!sched_next || tdif < sched_next)
1334			sched_next = tdif;
1335	}
1336	del_timer(&tbl->proxy_timer);
1337	if (sched_next)
1338		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1339	spin_unlock(&tbl->proxy_queue.lock);
1340}
1341
 
 
 
 
 
 
 
 
 
 
 
1342void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1343		    struct sk_buff *skb)
1344{
1345	unsigned long now = jiffies;
1346	unsigned long sched_next = now + (net_random() % p->proxy_delay);
1347
1348	if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1349		kfree_skb(skb);
1350		return;
1351	}
1352
1353	NEIGH_CB(skb)->sched_next = sched_next;
1354	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1355
1356	spin_lock(&tbl->proxy_queue.lock);
1357	if (del_timer(&tbl->proxy_timer)) {
1358		if (time_before(tbl->proxy_timer.expires, sched_next))
1359			sched_next = tbl->proxy_timer.expires;
1360	}
1361	skb_dst_drop(skb);
1362	dev_hold(skb->dev);
1363	__skb_queue_tail(&tbl->proxy_queue, skb);
 
1364	mod_timer(&tbl->proxy_timer, sched_next);
1365	spin_unlock(&tbl->proxy_queue.lock);
1366}
1367EXPORT_SYMBOL(pneigh_enqueue);
1368
1369static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1370						      struct net *net, int ifindex)
1371{
1372	struct neigh_parms *p;
1373
1374	for (p = &tbl->parms; p; p = p->next) {
1375		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1376		    (!p->dev && !ifindex))
1377			return p;
1378	}
1379
1380	return NULL;
1381}
1382
1383struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1384				      struct neigh_table *tbl)
1385{
1386	struct neigh_parms *p, *ref;
1387	struct net *net = dev_net(dev);
1388	const struct net_device_ops *ops = dev->netdev_ops;
1389
1390	ref = lookup_neigh_parms(tbl, net, 0);
1391	if (!ref)
1392		return NULL;
1393
1394	p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1395	if (p) {
1396		p->tbl		  = tbl;
1397		atomic_set(&p->refcnt, 1);
1398		p->reachable_time =
1399				neigh_rand_reach_time(p->base_reachable_time);
 
 
 
 
 
1400
1401		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
 
1402			kfree(p);
1403			return NULL;
1404		}
1405
1406		dev_hold(dev);
1407		p->dev = dev;
1408		write_pnet(&p->net, hold_net(net));
1409		p->sysctl_table = NULL;
1410		write_lock_bh(&tbl->lock);
1411		p->next		= tbl->parms.next;
1412		tbl->parms.next = p;
1413		write_unlock_bh(&tbl->lock);
 
 
1414	}
1415	return p;
1416}
1417EXPORT_SYMBOL(neigh_parms_alloc);
1418
1419static void neigh_rcu_free_parms(struct rcu_head *head)
1420{
1421	struct neigh_parms *parms =
1422		container_of(head, struct neigh_parms, rcu_head);
1423
1424	neigh_parms_put(parms);
1425}
1426
1427void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1428{
1429	struct neigh_parms **p;
1430
1431	if (!parms || parms == &tbl->parms)
1432		return;
1433	write_lock_bh(&tbl->lock);
1434	for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1435		if (*p == parms) {
1436			*p = parms->next;
1437			parms->dead = 1;
1438			write_unlock_bh(&tbl->lock);
1439			if (parms->dev)
1440				dev_put(parms->dev);
1441			call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1442			return;
1443		}
1444	}
1445	write_unlock_bh(&tbl->lock);
1446	NEIGH_PRINTK1("neigh_parms_release: not found\n");
 
1447}
1448EXPORT_SYMBOL(neigh_parms_release);
1449
1450static void neigh_parms_destroy(struct neigh_parms *parms)
1451{
1452	release_net(neigh_parms_net(parms));
1453	kfree(parms);
1454}
1455
1456static struct lock_class_key neigh_table_proxy_queue_class;
1457
1458void neigh_table_init_no_netlink(struct neigh_table *tbl)
 
 
1459{
1460	unsigned long now = jiffies;
1461	unsigned long phsize;
1462
 
 
 
 
 
1463	write_pnet(&tbl->parms.net, &init_net);
1464	atomic_set(&tbl->parms.refcnt, 1);
1465	tbl->parms.reachable_time =
1466			  neigh_rand_reach_time(tbl->parms.base_reachable_time);
 
1467
1468	if (!tbl->kmem_cachep)
1469		tbl->kmem_cachep =
1470			kmem_cache_create(tbl->id, tbl->entry_size, 0,
1471					  SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1472					  NULL);
1473	tbl->stats = alloc_percpu(struct neigh_statistics);
1474	if (!tbl->stats)
1475		panic("cannot create neighbour cache statistics");
1476
1477#ifdef CONFIG_PROC_FS
1478	if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1479			      &neigh_stat_seq_fops, tbl))
1480		panic("cannot create neighbour proc dir entry");
1481#endif
1482
1483	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1484
1485	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1486	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1487
1488	if (!tbl->nht || !tbl->phash_buckets)
1489		panic("cannot allocate neighbour cache hashes");
1490
 
 
 
 
 
 
1491	rwlock_init(&tbl->lock);
1492	INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1493	schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1494	setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
 
 
 
 
 
1495	skb_queue_head_init_class(&tbl->proxy_queue,
1496			&neigh_table_proxy_queue_class);
1497
1498	tbl->last_flush = now;
1499	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
1500}
1501EXPORT_SYMBOL(neigh_table_init_no_netlink);
1502
1503void neigh_table_init(struct neigh_table *tbl)
1504{
1505	struct neigh_table *tmp;
1506
1507	neigh_table_init_no_netlink(tbl);
1508	write_lock(&neigh_tbl_lock);
1509	for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1510		if (tmp->family == tbl->family)
1511			break;
1512	}
1513	tbl->next	= neigh_tables;
1514	neigh_tables	= tbl;
1515	write_unlock(&neigh_tbl_lock);
1516
1517	if (unlikely(tmp)) {
1518		printk(KERN_ERR "NEIGH: Registering multiple tables for "
1519		       "family %d\n", tbl->family);
1520		dump_stack();
1521	}
1522}
1523EXPORT_SYMBOL(neigh_table_init);
1524
1525int neigh_table_clear(struct neigh_table *tbl)
 
 
 
 
1526{
1527	struct neigh_table **tp;
 
1528
1529	/* It is not clean... Fix it to unload IPv6 module safely */
 
1530	cancel_delayed_work_sync(&tbl->gc_work);
1531	del_timer_sync(&tbl->proxy_timer);
1532	pneigh_queue_purge(&tbl->proxy_queue);
1533	neigh_ifdown(tbl, NULL);
1534	if (atomic_read(&tbl->entries))
1535		printk(KERN_CRIT "neighbour leakage\n");
1536	write_lock(&neigh_tbl_lock);
1537	for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1538		if (*tp == tbl) {
1539			*tp = tbl->next;
1540			break;
1541		}
1542	}
1543	write_unlock(&neigh_tbl_lock);
1544
1545	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1546		 neigh_hash_free_rcu);
1547	tbl->nht = NULL;
1548
1549	kfree(tbl->phash_buckets);
1550	tbl->phash_buckets = NULL;
1551
1552	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1553
1554	free_percpu(tbl->stats);
1555	tbl->stats = NULL;
1556
1557	kmem_cache_destroy(tbl->kmem_cachep);
1558	tbl->kmem_cachep = NULL;
1559
1560	return 0;
1561}
1562EXPORT_SYMBOL(neigh_table_clear);
1563
1564static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565{
1566	struct net *net = sock_net(skb->sk);
1567	struct ndmsg *ndm;
1568	struct nlattr *dst_attr;
1569	struct neigh_table *tbl;
 
1570	struct net_device *dev = NULL;
1571	int err = -EINVAL;
1572
1573	ASSERT_RTNL();
1574	if (nlmsg_len(nlh) < sizeof(*ndm))
1575		goto out;
1576
1577	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1578	if (dst_attr == NULL)
 
1579		goto out;
 
1580
1581	ndm = nlmsg_data(nlh);
1582	if (ndm->ndm_ifindex) {
1583		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1584		if (dev == NULL) {
1585			err = -ENODEV;
1586			goto out;
1587		}
1588	}
1589
1590	read_lock(&neigh_tbl_lock);
1591	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1592		struct neighbour *neigh;
1593
1594		if (tbl->family != ndm->ndm_family)
1595			continue;
1596		read_unlock(&neigh_tbl_lock);
1597
1598		if (nla_len(dst_attr) < tbl->key_len)
1599			goto out;
1600
1601		if (ndm->ndm_flags & NTF_PROXY) {
1602			err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1603			goto out;
1604		}
1605
1606		if (dev == NULL)
1607			goto out;
 
 
1608
1609		neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1610		if (neigh == NULL) {
1611			err = -ENOENT;
1612			goto out;
1613		}
1614
1615		err = neigh_update(neigh, NULL, NUD_FAILED,
1616				   NEIGH_UPDATE_F_OVERRIDE |
1617				   NEIGH_UPDATE_F_ADMIN);
1618		neigh_release(neigh);
1619		goto out;
1620	}
1621	read_unlock(&neigh_tbl_lock);
1622	err = -EAFNOSUPPORT;
 
 
 
 
 
 
1623
1624out:
1625	return err;
1626}
1627
1628static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
 
1629{
 
 
1630	struct net *net = sock_net(skb->sk);
1631	struct ndmsg *ndm;
1632	struct nlattr *tb[NDA_MAX+1];
1633	struct neigh_table *tbl;
1634	struct net_device *dev = NULL;
 
 
 
 
1635	int err;
1636
1637	ASSERT_RTNL();
1638	err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
 
1639	if (err < 0)
1640		goto out;
1641
1642	err = -EINVAL;
1643	if (tb[NDA_DST] == NULL)
 
1644		goto out;
 
1645
1646	ndm = nlmsg_data(nlh);
 
 
 
 
 
 
 
 
 
1647	if (ndm->ndm_ifindex) {
1648		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1649		if (dev == NULL) {
1650			err = -ENODEV;
1651			goto out;
1652		}
1653
1654		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
 
1655			goto out;
 
1656	}
1657
1658	read_lock(&neigh_tbl_lock);
1659	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1660		int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1661		struct neighbour *neigh;
1662		void *dst, *lladdr;
1663
1664		if (tbl->family != ndm->ndm_family)
1665			continue;
1666		read_unlock(&neigh_tbl_lock);
 
1667
1668		if (nla_len(tb[NDA_DST]) < tbl->key_len)
1669			goto out;
1670		dst = nla_data(tb[NDA_DST]);
1671		lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1672
1673		if (ndm->ndm_flags & NTF_PROXY) {
1674			struct pneigh_entry *pn;
 
 
1675
1676			err = -ENOBUFS;
1677			pn = pneigh_lookup(tbl, net, dst, dev, 1);
1678			if (pn) {
1679				pn->flags = ndm->ndm_flags;
1680				err = 0;
1681			}
1682			goto out;
1683		}
1684
1685		if (dev == NULL)
1686			goto out;
 
 
 
 
 
 
 
 
1687
1688		neigh = neigh_lookup(tbl, dst, dev);
1689		if (neigh == NULL) {
1690			if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1691				err = -ENOENT;
1692				goto out;
1693			}
1694
1695			neigh = __neigh_lookup_errno(tbl, dst, dev);
1696			if (IS_ERR(neigh)) {
1697				err = PTR_ERR(neigh);
1698				goto out;
1699			}
1700		} else {
1701			if (nlh->nlmsg_flags & NLM_F_EXCL) {
1702				err = -EEXIST;
1703				neigh_release(neigh);
1704				goto out;
1705			}
 
 
 
 
 
 
 
 
 
1706
1707			if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1708				flags &= ~NEIGH_UPDATE_F_OVERRIDE;
 
 
 
 
 
 
 
 
 
 
 
1709		}
1710
1711		if (ndm->ndm_flags & NTF_USE) {
1712			neigh_event_send(neigh, NULL);
1713			err = 0;
1714		} else
1715			err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1716		neigh_release(neigh);
1717		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718	}
1719
1720	read_unlock(&neigh_tbl_lock);
1721	err = -EAFNOSUPPORT;
1722out:
1723	return err;
1724}
1725
1726static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1727{
1728	struct nlattr *nest;
1729
1730	nest = nla_nest_start(skb, NDTA_PARMS);
1731	if (nest == NULL)
1732		return -ENOBUFS;
1733
1734	if (parms->dev)
1735		NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1736
1737	NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1738	NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1739	NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1740	NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1741	NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1742	NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1743	NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1744	NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1745		      parms->base_reachable_time);
1746	NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1747	NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1748	NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1749	NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1750	NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1751	NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753	return nla_nest_end(skb, nest);
1754
1755nla_put_failure:
1756	nla_nest_cancel(skb, nest);
1757	return -EMSGSIZE;
1758}
1759
1760static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1761			      u32 pid, u32 seq, int type, int flags)
1762{
1763	struct nlmsghdr *nlh;
1764	struct ndtmsg *ndtmsg;
1765
1766	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1767	if (nlh == NULL)
1768		return -EMSGSIZE;
1769
1770	ndtmsg = nlmsg_data(nlh);
1771
1772	read_lock_bh(&tbl->lock);
1773	ndtmsg->ndtm_family = tbl->family;
1774	ndtmsg->ndtm_pad1   = 0;
1775	ndtmsg->ndtm_pad2   = 0;
1776
1777	NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1778	NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1779	NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1780	NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1781	NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1782
 
1783	{
1784		unsigned long now = jiffies;
1785		unsigned int flush_delta = now - tbl->last_flush;
1786		unsigned int rand_delta = now - tbl->last_rand;
1787		struct neigh_hash_table *nht;
1788		struct ndt_config ndc = {
1789			.ndtc_key_len		= tbl->key_len,
1790			.ndtc_entry_size	= tbl->entry_size,
1791			.ndtc_entries		= atomic_read(&tbl->entries),
1792			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
1793			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
1794			.ndtc_proxy_qlen	= tbl->proxy_queue.qlen,
1795		};
1796
1797		rcu_read_lock_bh();
1798		nht = rcu_dereference_bh(tbl->nht);
1799		ndc.ndtc_hash_rnd = nht->hash_rnd;
1800		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1801		rcu_read_unlock_bh();
1802
1803		NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
 
1804	}
1805
1806	{
1807		int cpu;
1808		struct ndt_stats ndst;
1809
1810		memset(&ndst, 0, sizeof(ndst));
1811
1812		for_each_possible_cpu(cpu) {
1813			struct neigh_statistics	*st;
1814
1815			st = per_cpu_ptr(tbl->stats, cpu);
1816			ndst.ndts_allocs		+= st->allocs;
1817			ndst.ndts_destroys		+= st->destroys;
1818			ndst.ndts_hash_grows		+= st->hash_grows;
1819			ndst.ndts_res_failed		+= st->res_failed;
1820			ndst.ndts_lookups		+= st->lookups;
1821			ndst.ndts_hits			+= st->hits;
1822			ndst.ndts_rcv_probes_mcast	+= st->rcv_probes_mcast;
1823			ndst.ndts_rcv_probes_ucast	+= st->rcv_probes_ucast;
1824			ndst.ndts_periodic_gc_runs	+= st->periodic_gc_runs;
1825			ndst.ndts_forced_gc_runs	+= st->forced_gc_runs;
 
1826		}
1827
1828		NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
 
 
1829	}
1830
1831	BUG_ON(tbl->parms.dev);
1832	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1833		goto nla_put_failure;
1834
1835	read_unlock_bh(&tbl->lock);
1836	return nlmsg_end(skb, nlh);
 
1837
1838nla_put_failure:
1839	read_unlock_bh(&tbl->lock);
1840	nlmsg_cancel(skb, nlh);
1841	return -EMSGSIZE;
1842}
1843
1844static int neightbl_fill_param_info(struct sk_buff *skb,
1845				    struct neigh_table *tbl,
1846				    struct neigh_parms *parms,
1847				    u32 pid, u32 seq, int type,
1848				    unsigned int flags)
1849{
1850	struct ndtmsg *ndtmsg;
1851	struct nlmsghdr *nlh;
1852
1853	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1854	if (nlh == NULL)
1855		return -EMSGSIZE;
1856
1857	ndtmsg = nlmsg_data(nlh);
1858
1859	read_lock_bh(&tbl->lock);
1860	ndtmsg->ndtm_family = tbl->family;
1861	ndtmsg->ndtm_pad1   = 0;
1862	ndtmsg->ndtm_pad2   = 0;
1863
1864	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1865	    neightbl_fill_parms(skb, parms) < 0)
1866		goto errout;
1867
1868	read_unlock_bh(&tbl->lock);
1869	return nlmsg_end(skb, nlh);
 
1870errout:
1871	read_unlock_bh(&tbl->lock);
1872	nlmsg_cancel(skb, nlh);
1873	return -EMSGSIZE;
1874}
1875
1876static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1877	[NDTA_NAME]		= { .type = NLA_STRING },
1878	[NDTA_THRESH1]		= { .type = NLA_U32 },
1879	[NDTA_THRESH2]		= { .type = NLA_U32 },
1880	[NDTA_THRESH3]		= { .type = NLA_U32 },
1881	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
1882	[NDTA_PARMS]		= { .type = NLA_NESTED },
1883};
1884
1885static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1886	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
1887	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
1888	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
1889	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
1890	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
1891	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
 
1892	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
1893	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
1894	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
1895	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
1896	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
1897	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
1898	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
 
1899};
1900
1901static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
 
1902{
1903	struct net *net = sock_net(skb->sk);
1904	struct neigh_table *tbl;
1905	struct ndtmsg *ndtmsg;
1906	struct nlattr *tb[NDTA_MAX+1];
1907	int err;
 
1908
1909	err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1910			  nl_neightbl_policy);
1911	if (err < 0)
1912		goto errout;
1913
1914	if (tb[NDTA_NAME] == NULL) {
1915		err = -EINVAL;
1916		goto errout;
1917	}
1918
1919	ndtmsg = nlmsg_data(nlh);
1920	read_lock(&neigh_tbl_lock);
1921	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
 
 
 
1922		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1923			continue;
1924
1925		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1926			break;
 
1927	}
1928
1929	if (tbl == NULL) {
1930		err = -ENOENT;
1931		goto errout_locked;
1932	}
1933
1934	/*
1935	 * We acquire tbl->lock to be nice to the periodic timers and
1936	 * make sure they always see a consistent set of values.
1937	 */
1938	write_lock_bh(&tbl->lock);
1939
1940	if (tb[NDTA_PARMS]) {
1941		struct nlattr *tbp[NDTPA_MAX+1];
1942		struct neigh_parms *p;
1943		int i, ifindex = 0;
1944
1945		err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1946				       nl_ntbl_parm_policy);
 
1947		if (err < 0)
1948			goto errout_tbl_lock;
1949
1950		if (tbp[NDTPA_IFINDEX])
1951			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1952
1953		p = lookup_neigh_parms(tbl, net, ifindex);
1954		if (p == NULL) {
1955			err = -ENOENT;
1956			goto errout_tbl_lock;
1957		}
1958
1959		for (i = 1; i <= NDTPA_MAX; i++) {
1960			if (tbp[i] == NULL)
1961				continue;
1962
1963			switch (i) {
1964			case NDTPA_QUEUE_LEN:
1965				p->queue_len = nla_get_u32(tbp[i]);
 
 
 
 
 
 
1966				break;
1967			case NDTPA_PROXY_QLEN:
1968				p->proxy_qlen = nla_get_u32(tbp[i]);
 
1969				break;
1970			case NDTPA_APP_PROBES:
1971				p->app_probes = nla_get_u32(tbp[i]);
 
1972				break;
1973			case NDTPA_UCAST_PROBES:
1974				p->ucast_probes = nla_get_u32(tbp[i]);
 
1975				break;
1976			case NDTPA_MCAST_PROBES:
1977				p->mcast_probes = nla_get_u32(tbp[i]);
 
 
 
 
 
1978				break;
1979			case NDTPA_BASE_REACHABLE_TIME:
1980				p->base_reachable_time = nla_get_msecs(tbp[i]);
 
 
 
 
 
 
 
1981				break;
1982			case NDTPA_GC_STALETIME:
1983				p->gc_staletime = nla_get_msecs(tbp[i]);
 
1984				break;
1985			case NDTPA_DELAY_PROBE_TIME:
1986				p->delay_probe_time = nla_get_msecs(tbp[i]);
 
 
 
 
 
 
1987				break;
1988			case NDTPA_RETRANS_TIME:
1989				p->retrans_time = nla_get_msecs(tbp[i]);
 
1990				break;
1991			case NDTPA_ANYCAST_DELAY:
1992				p->anycast_delay = nla_get_msecs(tbp[i]);
 
1993				break;
1994			case NDTPA_PROXY_DELAY:
1995				p->proxy_delay = nla_get_msecs(tbp[i]);
 
1996				break;
1997			case NDTPA_LOCKTIME:
1998				p->locktime = nla_get_msecs(tbp[i]);
 
1999				break;
2000			}
2001		}
2002	}
2003
 
 
 
 
 
 
2004	if (tb[NDTA_THRESH1])
2005		tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2006
2007	if (tb[NDTA_THRESH2])
2008		tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2009
2010	if (tb[NDTA_THRESH3])
2011		tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2012
2013	if (tb[NDTA_GC_INTERVAL])
2014		tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2015
2016	err = 0;
2017
2018errout_tbl_lock:
2019	write_unlock_bh(&tbl->lock);
2020errout_locked:
2021	read_unlock(&neigh_tbl_lock);
2022errout:
2023	return err;
2024}
2025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2027{
 
2028	struct net *net = sock_net(skb->sk);
2029	int family, tidx, nidx = 0;
2030	int tbl_skip = cb->args[0];
2031	int neigh_skip = cb->args[1];
2032	struct neigh_table *tbl;
2033
2034	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
 
2035
2036	read_lock(&neigh_tbl_lock);
2037	for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
 
 
 
 
 
2038		struct neigh_parms *p;
2039
 
 
 
 
2040		if (tidx < tbl_skip || (family && tbl->family != family))
2041			continue;
2042
2043		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2044				       cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2045				       NLM_F_MULTI) <= 0)
2046			break;
2047
2048		for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
 
 
2049			if (!net_eq(neigh_parms_net(p), net))
2050				continue;
2051
2052			if (nidx < neigh_skip)
2053				goto next;
2054
2055			if (neightbl_fill_param_info(skb, tbl, p,
2056						     NETLINK_CB(cb->skb).pid,
2057						     cb->nlh->nlmsg_seq,
2058						     RTM_NEWNEIGHTBL,
2059						     NLM_F_MULTI) <= 0)
2060				goto out;
2061		next:
2062			nidx++;
2063		}
2064
2065		neigh_skip = 0;
2066	}
2067out:
2068	read_unlock(&neigh_tbl_lock);
2069	cb->args[0] = tidx;
2070	cb->args[1] = nidx;
2071
2072	return skb->len;
2073}
2074
2075static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2076			   u32 pid, u32 seq, int type, unsigned int flags)
2077{
 
2078	unsigned long now = jiffies;
2079	struct nda_cacheinfo ci;
2080	struct nlmsghdr *nlh;
2081	struct ndmsg *ndm;
2082
2083	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2084	if (nlh == NULL)
2085		return -EMSGSIZE;
2086
 
 
 
2087	ndm = nlmsg_data(nlh);
2088	ndm->ndm_family	 = neigh->ops->family;
2089	ndm->ndm_pad1    = 0;
2090	ndm->ndm_pad2    = 0;
2091	ndm->ndm_flags	 = neigh->flags;
2092	ndm->ndm_type	 = neigh->type;
2093	ndm->ndm_ifindex = neigh->dev->ifindex;
2094
2095	NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
 
2096
2097	read_lock_bh(&neigh->lock);
2098	ndm->ndm_state	 = neigh->nud_state;
2099	if (neigh->nud_state & NUD_VALID) {
2100		char haddr[MAX_ADDR_LEN];
2101
2102		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2103		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2104			read_unlock_bh(&neigh->lock);
2105			goto nla_put_failure;
2106		}
2107	}
2108
2109	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2110	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2111	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2112	ci.ndm_refcnt	 = atomic_read(&neigh->refcnt) - 1;
2113	read_unlock_bh(&neigh->lock);
2114
2115	NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2116	NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2117
2118	return nlmsg_end(skb, nlh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2119
2120nla_put_failure:
2121	nlmsg_cancel(skb, nlh);
2122	return -EMSGSIZE;
2123}
2124
2125static void neigh_update_notify(struct neighbour *neigh)
2126{
2127	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2128	__neigh_notify(neigh, RTM_NEWNEIGH, 0);
2129}
2130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2132			    struct netlink_callback *cb)
 
2133{
2134	struct net *net = sock_net(skb->sk);
2135	struct neighbour *n;
2136	int rc, h, s_h = cb->args[1];
2137	int idx, s_idx = idx = cb->args[2];
2138	struct neigh_hash_table *nht;
 
2139
2140	rcu_read_lock_bh();
2141	nht = rcu_dereference_bh(tbl->nht);
2142
2143	for (h = 0; h < (1 << nht->hash_shift); h++) {
2144		if (h < s_h)
2145			continue;
2146		if (h > s_h)
2147			s_idx = 0;
2148		for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2149		     n != NULL;
2150		     n = rcu_dereference_bh(n->next)) {
2151			if (!net_eq(dev_net(n->dev), net))
2152				continue;
2153			if (idx < s_idx)
2154				goto next;
2155			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2156					    cb->nlh->nlmsg_seq,
2157					    RTM_NEWNEIGH,
2158					    NLM_F_MULTI) <= 0) {
2159				rc = -1;
 
 
2160				goto out;
2161			}
2162next:
2163			idx++;
2164		}
2165	}
2166	rc = skb->len;
2167out:
2168	rcu_read_unlock_bh();
2169	cb->args[1] = h;
2170	cb->args[2] = idx;
2171	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172}
2173
2174static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2175{
 
 
2176	struct neigh_table *tbl;
2177	int t, family, s_t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2178
2179	read_lock(&neigh_tbl_lock);
2180	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2181	s_t = cb->args[0];
2182
2183	for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
 
 
 
 
 
2184		if (t < s_t || (family && tbl->family != family))
2185			continue;
2186		if (t > s_t)
2187			memset(&cb->args[1], 0, sizeof(cb->args) -
2188						sizeof(cb->args[0]));
2189		if (neigh_dump_table(tbl, skb, cb) < 0)
 
 
 
 
2190			break;
2191	}
2192	read_unlock(&neigh_tbl_lock);
2193
2194	cb->args[0] = t;
2195	return skb->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196}
2197
2198void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2199{
2200	int chain;
2201	struct neigh_hash_table *nht;
2202
2203	rcu_read_lock_bh();
2204	nht = rcu_dereference_bh(tbl->nht);
2205
2206	read_lock(&tbl->lock); /* avoid resizes */
2207	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2208		struct neighbour *n;
2209
2210		for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2211		     n != NULL;
2212		     n = rcu_dereference_bh(n->next))
2213			cb(n, cookie);
2214	}
2215	read_unlock(&tbl->lock);
2216	rcu_read_unlock_bh();
2217}
2218EXPORT_SYMBOL(neigh_for_each);
2219
2220/* The tbl->lock must be held as a writer and BH disabled. */
2221void __neigh_for_each_release(struct neigh_table *tbl,
2222			      int (*cb)(struct neighbour *))
2223{
2224	int chain;
2225	struct neigh_hash_table *nht;
 
2226
2227	nht = rcu_dereference_protected(tbl->nht,
2228					lockdep_is_held(&tbl->lock));
2229	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
 
2230		struct neighbour *n;
2231		struct neighbour __rcu **np;
2232
2233		np = &nht->hash_buckets[chain];
2234		while ((n = rcu_dereference_protected(*np,
2235					lockdep_is_held(&tbl->lock))) != NULL) {
2236			int release;
2237
2238			write_lock(&n->lock);
2239			release = cb(n);
2240			if (release) {
2241				rcu_assign_pointer(*np,
2242					rcu_dereference_protected(n->next,
2243						lockdep_is_held(&tbl->lock)));
2244				n->dead = 1;
2245			} else
2246				np = &n->next;
2247			write_unlock(&n->lock);
2248			if (release)
2249				neigh_cleanup_and_release(n);
2250		}
2251	}
2252}
2253EXPORT_SYMBOL(__neigh_for_each_release);
2254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255#ifdef CONFIG_PROC_FS
2256
2257static struct neighbour *neigh_get_first(struct seq_file *seq)
 
 
2258{
2259	struct neigh_seq_state *state = seq->private;
2260	struct net *net = seq_file_net(seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261	struct neigh_hash_table *nht = state->nht;
2262	struct neighbour *n = NULL;
2263	int bucket = state->bucket;
2264
2265	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2266	for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2267		n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2268
2269		while (n) {
2270			if (!net_eq(dev_net(n->dev), net))
2271				goto next;
2272			if (state->neigh_sub_iter) {
2273				loff_t fakep = 0;
2274				void *v;
2275
2276				v = state->neigh_sub_iter(state, n, &fakep);
2277				if (!v)
2278					goto next;
2279			}
2280			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2281				break;
2282			if (n->nud_state & ~NUD_NOARP)
2283				break;
2284next:
2285			n = rcu_dereference_bh(n->next);
2286		}
2287
2288		if (n)
2289			break;
2290	}
2291	state->bucket = bucket;
2292
2293	return n;
2294}
2295
2296static struct neighbour *neigh_get_next(struct seq_file *seq,
2297					struct neighbour *n,
2298					loff_t *pos)
2299{
2300	struct neigh_seq_state *state = seq->private;
2301	struct net *net = seq_file_net(seq);
2302	struct neigh_hash_table *nht = state->nht;
2303
2304	if (state->neigh_sub_iter) {
2305		void *v = state->neigh_sub_iter(state, n, pos);
 
2306		if (v)
2307			return n;
2308	}
2309	n = rcu_dereference_bh(n->next);
2310
2311	while (1) {
2312		while (n) {
2313			if (!net_eq(dev_net(n->dev), net))
2314				goto next;
2315			if (state->neigh_sub_iter) {
2316				void *v = state->neigh_sub_iter(state, n, pos);
2317				if (v)
2318					return n;
2319				goto next;
2320			}
2321			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2322				break;
2323
2324			if (n->nud_state & ~NUD_NOARP)
2325				break;
2326next:
2327			n = rcu_dereference_bh(n->next);
2328		}
2329
2330		if (n)
2331			break;
2332
2333		if (++state->bucket >= (1 << nht->hash_shift))
2334			break;
2335
2336		n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2337	}
2338
 
 
2339	if (n && pos)
2340		--(*pos);
 
2341	return n;
2342}
2343
2344static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2345{
2346	struct neighbour *n = neigh_get_first(seq);
2347
2348	if (n) {
2349		--(*pos);
2350		while (*pos) {
2351			n = neigh_get_next(seq, n, pos);
2352			if (!n)
2353				break;
2354		}
2355	}
2356	return *pos ? NULL : n;
2357}
2358
2359static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2360{
2361	struct neigh_seq_state *state = seq->private;
2362	struct net *net = seq_file_net(seq);
2363	struct neigh_table *tbl = state->tbl;
2364	struct pneigh_entry *pn = NULL;
2365	int bucket = state->bucket;
2366
2367	state->flags |= NEIGH_SEQ_IS_PNEIGH;
2368	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2369		pn = tbl->phash_buckets[bucket];
2370		while (pn && !net_eq(pneigh_net(pn), net))
2371			pn = pn->next;
2372		if (pn)
2373			break;
2374	}
2375	state->bucket = bucket;
2376
2377	return pn;
2378}
2379
2380static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2381					    struct pneigh_entry *pn,
2382					    loff_t *pos)
2383{
2384	struct neigh_seq_state *state = seq->private;
2385	struct net *net = seq_file_net(seq);
2386	struct neigh_table *tbl = state->tbl;
2387
2388	pn = pn->next;
 
 
 
2389	while (!pn) {
2390		if (++state->bucket > PNEIGH_HASHMASK)
2391			break;
2392		pn = tbl->phash_buckets[state->bucket];
2393		while (pn && !net_eq(pneigh_net(pn), net))
2394			pn = pn->next;
2395		if (pn)
2396			break;
2397	}
2398
2399	if (pn && pos)
2400		--(*pos);
2401
2402	return pn;
2403}
2404
2405static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2406{
2407	struct pneigh_entry *pn = pneigh_get_first(seq);
2408
2409	if (pn) {
2410		--(*pos);
2411		while (*pos) {
2412			pn = pneigh_get_next(seq, pn, pos);
2413			if (!pn)
2414				break;
2415		}
2416	}
2417	return *pos ? NULL : pn;
2418}
2419
2420static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2421{
2422	struct neigh_seq_state *state = seq->private;
2423	void *rc;
2424	loff_t idxpos = *pos;
2425
2426	rc = neigh_get_idx(seq, &idxpos);
2427	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2428		rc = pneigh_get_idx(seq, &idxpos);
2429
2430	return rc;
2431}
2432
2433void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2434	__acquires(rcu_bh)
 
2435{
2436	struct neigh_seq_state *state = seq->private;
2437
2438	state->tbl = tbl;
2439	state->bucket = 0;
2440	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2441
2442	rcu_read_lock_bh();
2443	state->nht = rcu_dereference_bh(tbl->nht);
 
2444
2445	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2446}
2447EXPORT_SYMBOL(neigh_seq_start);
2448
2449void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450{
2451	struct neigh_seq_state *state;
2452	void *rc;
2453
2454	if (v == SEQ_START_TOKEN) {
2455		rc = neigh_get_first(seq);
2456		goto out;
2457	}
2458
2459	state = seq->private;
2460	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2461		rc = neigh_get_next(seq, v, NULL);
2462		if (rc)
2463			goto out;
2464		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2465			rc = pneigh_get_first(seq);
2466	} else {
2467		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2468		rc = pneigh_get_next(seq, v, NULL);
2469	}
2470out:
2471	++(*pos);
2472	return rc;
2473}
2474EXPORT_SYMBOL(neigh_seq_next);
2475
2476void neigh_seq_stop(struct seq_file *seq, void *v)
2477	__releases(rcu_bh)
 
2478{
2479	rcu_read_unlock_bh();
 
 
 
 
2480}
2481EXPORT_SYMBOL(neigh_seq_stop);
2482
2483/* statistics via seq_file */
2484
2485static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2486{
2487	struct neigh_table *tbl = seq->private;
2488	int cpu;
2489
2490	if (*pos == 0)
2491		return SEQ_START_TOKEN;
2492
2493	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2494		if (!cpu_possible(cpu))
2495			continue;
2496		*pos = cpu+1;
2497		return per_cpu_ptr(tbl->stats, cpu);
2498	}
2499	return NULL;
2500}
2501
2502static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2503{
2504	struct neigh_table *tbl = seq->private;
2505	int cpu;
2506
2507	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2508		if (!cpu_possible(cpu))
2509			continue;
2510		*pos = cpu+1;
2511		return per_cpu_ptr(tbl->stats, cpu);
2512	}
 
2513	return NULL;
2514}
2515
2516static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2517{
2518
2519}
2520
2521static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2522{
2523	struct neigh_table *tbl = seq->private;
2524	struct neigh_statistics *st = v;
2525
2526	if (v == SEQ_START_TOKEN) {
2527		seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs unresolved_discards\n");
2528		return 0;
2529	}
2530
2531	seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
2532			"%08lx %08lx  %08lx %08lx %08lx\n",
 
2533		   atomic_read(&tbl->entries),
2534
2535		   st->allocs,
2536		   st->destroys,
2537		   st->hash_grows,
2538
2539		   st->lookups,
2540		   st->hits,
2541
2542		   st->res_failed,
2543
2544		   st->rcv_probes_mcast,
2545		   st->rcv_probes_ucast,
2546
2547		   st->periodic_gc_runs,
2548		   st->forced_gc_runs,
2549		   st->unres_discards
 
2550		   );
2551
2552	return 0;
2553}
2554
2555static const struct seq_operations neigh_stat_seq_ops = {
2556	.start	= neigh_stat_seq_start,
2557	.next	= neigh_stat_seq_next,
2558	.stop	= neigh_stat_seq_stop,
2559	.show	= neigh_stat_seq_show,
2560};
2561
2562static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2563{
2564	int ret = seq_open(file, &neigh_stat_seq_ops);
2565
2566	if (!ret) {
2567		struct seq_file *sf = file->private_data;
2568		sf->private = PDE(inode)->data;
2569	}
2570	return ret;
2571};
2572
2573static const struct file_operations neigh_stat_seq_fops = {
2574	.owner	 = THIS_MODULE,
2575	.open 	 = neigh_stat_seq_open,
2576	.read	 = seq_read,
2577	.llseek	 = seq_lseek,
2578	.release = seq_release,
2579};
2580
2581#endif /* CONFIG_PROC_FS */
2582
2583static inline size_t neigh_nlmsg_size(void)
 
2584{
2585	return NLMSG_ALIGN(sizeof(struct ndmsg))
2586	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2587	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2588	       + nla_total_size(sizeof(struct nda_cacheinfo))
2589	       + nla_total_size(4); /* NDA_PROBES */
2590}
2591
2592static void __neigh_notify(struct neighbour *n, int type, int flags)
2593{
2594	struct net *net = dev_net(n->dev);
2595	struct sk_buff *skb;
2596	int err = -ENOBUFS;
 
2597
 
 
2598	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2599	if (skb == NULL)
2600		goto errout;
2601
2602	err = neigh_fill_info(skb, n, 0, 0, type, flags);
2603	if (err < 0) {
2604		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2605		WARN_ON(err == -EMSGSIZE);
2606		kfree_skb(skb);
2607		goto errout;
2608	}
2609	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2610	return;
2611errout:
2612	if (err < 0)
2613		rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
 
2614}
2615
2616#ifdef CONFIG_ARPD
2617void neigh_app_ns(struct neighbour *n)
2618{
2619	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2620}
2621EXPORT_SYMBOL(neigh_app_ns);
2622#endif /* CONFIG_ARPD */
2623
2624#ifdef CONFIG_SYSCTL
 
 
 
 
 
 
 
 
 
 
 
2625
2626#define NEIGH_VARS_MAX 19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2627
2628static struct neigh_sysctl_table {
2629	struct ctl_table_header *sysctl_header;
2630	struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2631	char *dev_name;
2632} neigh_sysctl_template __read_mostly = {
2633	.neigh_vars = {
2634		{
2635			.procname	= "mcast_solicit",
2636			.maxlen		= sizeof(int),
2637			.mode		= 0644,
2638			.proc_handler	= proc_dointvec,
2639		},
2640		{
2641			.procname	= "ucast_solicit",
2642			.maxlen		= sizeof(int),
2643			.mode		= 0644,
2644			.proc_handler	= proc_dointvec,
2645		},
2646		{
2647			.procname	= "app_solicit",
2648			.maxlen		= sizeof(int),
2649			.mode		= 0644,
2650			.proc_handler	= proc_dointvec,
2651		},
2652		{
2653			.procname	= "retrans_time",
2654			.maxlen		= sizeof(int),
2655			.mode		= 0644,
2656			.proc_handler	= proc_dointvec_userhz_jiffies,
2657		},
2658		{
2659			.procname	= "base_reachable_time",
2660			.maxlen		= sizeof(int),
2661			.mode		= 0644,
2662			.proc_handler	= proc_dointvec_jiffies,
2663		},
2664		{
2665			.procname	= "delay_first_probe_time",
2666			.maxlen		= sizeof(int),
2667			.mode		= 0644,
2668			.proc_handler	= proc_dointvec_jiffies,
2669		},
2670		{
2671			.procname	= "gc_stale_time",
2672			.maxlen		= sizeof(int),
2673			.mode		= 0644,
2674			.proc_handler	= proc_dointvec_jiffies,
2675		},
2676		{
2677			.procname	= "unres_qlen",
2678			.maxlen		= sizeof(int),
2679			.mode		= 0644,
2680			.proc_handler	= proc_dointvec,
2681		},
2682		{
2683			.procname	= "proxy_qlen",
2684			.maxlen		= sizeof(int),
2685			.mode		= 0644,
2686			.proc_handler	= proc_dointvec,
2687		},
2688		{
2689			.procname	= "anycast_delay",
2690			.maxlen		= sizeof(int),
2691			.mode		= 0644,
2692			.proc_handler	= proc_dointvec_userhz_jiffies,
2693		},
2694		{
2695			.procname	= "proxy_delay",
2696			.maxlen		= sizeof(int),
2697			.mode		= 0644,
2698			.proc_handler	= proc_dointvec_userhz_jiffies,
2699		},
2700		{
2701			.procname	= "locktime",
2702			.maxlen		= sizeof(int),
2703			.mode		= 0644,
2704			.proc_handler	= proc_dointvec_userhz_jiffies,
2705		},
2706		{
2707			.procname	= "retrans_time_ms",
2708			.maxlen		= sizeof(int),
2709			.mode		= 0644,
2710			.proc_handler	= proc_dointvec_ms_jiffies,
2711		},
2712		{
2713			.procname	= "base_reachable_time_ms",
2714			.maxlen		= sizeof(int),
2715			.mode		= 0644,
2716			.proc_handler	= proc_dointvec_ms_jiffies,
2717		},
2718		{
2719			.procname	= "gc_interval",
2720			.maxlen		= sizeof(int),
2721			.mode		= 0644,
2722			.proc_handler	= proc_dointvec_jiffies,
2723		},
2724		{
2725			.procname	= "gc_thresh1",
2726			.maxlen		= sizeof(int),
2727			.mode		= 0644,
2728			.proc_handler	= proc_dointvec,
 
 
2729		},
2730		{
2731			.procname	= "gc_thresh2",
2732			.maxlen		= sizeof(int),
2733			.mode		= 0644,
2734			.proc_handler	= proc_dointvec,
 
 
2735		},
2736		{
2737			.procname	= "gc_thresh3",
2738			.maxlen		= sizeof(int),
2739			.mode		= 0644,
2740			.proc_handler	= proc_dointvec,
 
 
2741		},
2742		{},
2743	},
2744};
2745
2746int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2747			  char *p_name, proc_handler *handler)
2748{
 
2749	struct neigh_sysctl_table *t;
2750	const char *dev_name_source = NULL;
2751
2752#define NEIGH_CTL_PATH_ROOT	0
2753#define NEIGH_CTL_PATH_PROTO	1
2754#define NEIGH_CTL_PATH_NEIGH	2
2755#define NEIGH_CTL_PATH_DEV	3
2756
2757	struct ctl_path neigh_path[] = {
2758		{ .procname = "net",	 },
2759		{ .procname = "proto",	 },
2760		{ .procname = "neigh",	 },
2761		{ .procname = "default", },
2762		{ },
2763	};
2764
2765	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2766	if (!t)
2767		goto err;
2768
2769	t->neigh_vars[0].data  = &p->mcast_probes;
2770	t->neigh_vars[1].data  = &p->ucast_probes;
2771	t->neigh_vars[2].data  = &p->app_probes;
2772	t->neigh_vars[3].data  = &p->retrans_time;
2773	t->neigh_vars[4].data  = &p->base_reachable_time;
2774	t->neigh_vars[5].data  = &p->delay_probe_time;
2775	t->neigh_vars[6].data  = &p->gc_staletime;
2776	t->neigh_vars[7].data  = &p->queue_len;
2777	t->neigh_vars[8].data  = &p->proxy_qlen;
2778	t->neigh_vars[9].data  = &p->anycast_delay;
2779	t->neigh_vars[10].data = &p->proxy_delay;
2780	t->neigh_vars[11].data = &p->locktime;
2781	t->neigh_vars[12].data  = &p->retrans_time;
2782	t->neigh_vars[13].data  = &p->base_reachable_time;
2783
 
2784	if (dev) {
2785		dev_name_source = dev->name;
2786		/* Terminate the table early */
2787		memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2788	} else {
2789		dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2790		t->neigh_vars[14].data = (int *)(p + 1);
2791		t->neigh_vars[15].data = (int *)(p + 1) + 1;
2792		t->neigh_vars[16].data = (int *)(p + 1) + 2;
2793		t->neigh_vars[17].data = (int *)(p + 1) + 3;
 
2794	}
2795
2796
2797	if (handler) {
2798		/* RetransTime */
2799		t->neigh_vars[3].proc_handler = handler;
2800		t->neigh_vars[3].extra1 = dev;
2801		/* ReachableTime */
2802		t->neigh_vars[4].proc_handler = handler;
2803		t->neigh_vars[4].extra1 = dev;
2804		/* RetransTime (in milliseconds)*/
2805		t->neigh_vars[12].proc_handler = handler;
2806		t->neigh_vars[12].extra1 = dev;
2807		/* ReachableTime (in milliseconds) */
2808		t->neigh_vars[13].proc_handler = handler;
2809		t->neigh_vars[13].extra1 = dev;
 
 
 
 
 
 
 
 
 
 
 
 
2810	}
2811
2812	t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2813	if (!t->dev_name)
2814		goto free;
2815
2816	neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2817	neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2818
2819	t->sysctl_header =
2820		register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
 
 
 
 
 
 
 
2821	if (!t->sysctl_header)
2822		goto free_procname;
2823
2824	p->sysctl_table = t;
2825	return 0;
2826
2827free_procname:
2828	kfree(t->dev_name);
2829free:
2830	kfree(t);
2831err:
2832	return -ENOBUFS;
2833}
2834EXPORT_SYMBOL(neigh_sysctl_register);
2835
2836void neigh_sysctl_unregister(struct neigh_parms *p)
2837{
2838	if (p->sysctl_table) {
2839		struct neigh_sysctl_table *t = p->sysctl_table;
2840		p->sysctl_table = NULL;
2841		unregister_sysctl_table(t->sysctl_header);
2842		kfree(t->dev_name);
2843		kfree(t);
2844	}
2845}
2846EXPORT_SYMBOL(neigh_sysctl_unregister);
2847
2848#endif	/* CONFIG_SYSCTL */
2849
 
 
 
 
 
 
 
 
 
2850static int __init neigh_init(void)
2851{
2852	rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
2853	rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
2854	rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
2855
2856	rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
2857		      NULL);
2858	rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
2859
2860	return 0;
2861}
2862
2863subsys_initcall(neigh_init);
2864
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	Generic address resolution entity
   4 *
   5 *	Authors:
   6 *	Pedro Roque		<roque@di.fc.ul.pt>
   7 *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
   8 *
 
 
 
 
 
   9 *	Fixes:
  10 *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
  11 *	Harald Welte		Add neighbour cache statistics like rtstat
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/slab.h>
  17#include <linux/types.h>
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/socket.h>
  21#include <linux/netdevice.h>
  22#include <linux/proc_fs.h>
  23#ifdef CONFIG_SYSCTL
  24#include <linux/sysctl.h>
  25#endif
  26#include <linux/times.h>
  27#include <net/net_namespace.h>
  28#include <net/neighbour.h>
  29#include <net/arp.h>
  30#include <net/dst.h>
  31#include <net/sock.h>
  32#include <net/netevent.h>
  33#include <net/netlink.h>
  34#include <linux/rtnetlink.h>
  35#include <linux/random.h>
  36#include <linux/string.h>
  37#include <linux/log2.h>
  38#include <linux/inetdevice.h>
  39#include <net/addrconf.h>
  40
  41#include <trace/events/neigh.h>
  42
  43#define NEIGH_DEBUG 1
  44#define neigh_dbg(level, fmt, ...)		\
  45do {						\
  46	if (level <= NEIGH_DEBUG)		\
  47		pr_debug(fmt, ##__VA_ARGS__);	\
  48} while (0)
 
 
 
 
 
 
 
  49
  50#define PNEIGH_HASHMASK		0xF
  51
  52static void neigh_timer_handler(struct timer_list *t);
  53static void __neigh_notify(struct neighbour *n, int type, int flags,
  54			   u32 pid);
  55static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid);
  56static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
  57				    struct net_device *dev);
  58
 
  59#ifdef CONFIG_PROC_FS
  60static const struct seq_operations neigh_stat_seq_ops;
  61#endif
  62
  63static struct hlist_head *neigh_get_dev_table(struct net_device *dev, int family)
  64{
  65	int i;
  66
  67	switch (family) {
  68	default:
  69		DEBUG_NET_WARN_ON_ONCE(1);
  70		fallthrough; /* to avoid panic by null-ptr-deref */
  71	case AF_INET:
  72		i = NEIGH_ARP_TABLE;
  73		break;
  74	case AF_INET6:
  75		i = NEIGH_ND_TABLE;
  76		break;
  77	}
  78
  79	return &dev->neighbours[i];
  80}
  81
  82/*
  83   Neighbour hash table buckets are protected with rwlock tbl->lock.
  84
  85   - All the scans/updates to hash buckets MUST be made under this lock.
  86   - NOTHING clever should be made under this lock: no callbacks
  87     to protocol backends, no attempts to send something to network.
  88     It will result in deadlocks, if backend/driver wants to use neighbour
  89     cache.
  90   - If the entry requires some non-trivial actions, increase
  91     its reference count and release table lock.
  92
  93   Neighbour entries are protected:
  94   - with reference count.
  95   - with rwlock neigh->lock
  96
  97   Reference count prevents destruction.
  98
  99   neigh->lock mainly serializes ll address data and its validity state.
 100   However, the same lock is used to protect another entry fields:
 101    - timer
 102    - resolution queue
 103
 104   Again, nothing clever shall be made under neigh->lock,
 105   the most complicated procedure, which we allow is dev->hard_header.
 106   It is supposed, that dev->hard_header is simplistic and does
 107   not make callbacks to neighbour tables.
 
 
 
 108 */
 109
 
 
 110static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
 111{
 112	kfree_skb(skb);
 113	return -ENETDOWN;
 114}
 115
 116static void neigh_cleanup_and_release(struct neighbour *neigh)
 117{
 118	trace_neigh_cleanup_and_release(neigh, 0);
 119	__neigh_notify(neigh, RTM_DELNEIGH, 0, 0);
 120	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
 
 121	neigh_release(neigh);
 122}
 123
 124/*
 125 * It is random distribution in the interval (1/2)*base...(3/2)*base.
 126 * It corresponds to default IPv6 settings and is not overridable,
 127 * because it is really reasonable choice.
 128 */
 129
 130unsigned long neigh_rand_reach_time(unsigned long base)
 131{
 132	return base ? get_random_u32_below(base) + (base >> 1) : 0;
 133}
 134EXPORT_SYMBOL(neigh_rand_reach_time);
 135
 136static void neigh_mark_dead(struct neighbour *n)
 137{
 138	n->dead = 1;
 139	if (!list_empty(&n->gc_list)) {
 140		list_del_init(&n->gc_list);
 141		atomic_dec(&n->tbl->gc_entries);
 142	}
 143	if (!list_empty(&n->managed_list))
 144		list_del_init(&n->managed_list);
 145}
 146
 147static void neigh_update_gc_list(struct neighbour *n)
 148{
 149	bool on_gc_list, exempt_from_gc;
 150
 151	write_lock_bh(&n->tbl->lock);
 152	write_lock(&n->lock);
 153	if (n->dead)
 154		goto out;
 155
 156	/* remove from the gc list if new state is permanent or if neighbor
 157	 * is externally learned; otherwise entry should be on the gc list
 158	 */
 159	exempt_from_gc = n->nud_state & NUD_PERMANENT ||
 160			 n->flags & NTF_EXT_LEARNED;
 161	on_gc_list = !list_empty(&n->gc_list);
 162
 163	if (exempt_from_gc && on_gc_list) {
 164		list_del_init(&n->gc_list);
 165		atomic_dec(&n->tbl->gc_entries);
 166	} else if (!exempt_from_gc && !on_gc_list) {
 167		/* add entries to the tail; cleaning removes from the front */
 168		list_add_tail(&n->gc_list, &n->tbl->gc_list);
 169		atomic_inc(&n->tbl->gc_entries);
 170	}
 171out:
 172	write_unlock(&n->lock);
 173	write_unlock_bh(&n->tbl->lock);
 174}
 175
 176static void neigh_update_managed_list(struct neighbour *n)
 177{
 178	bool on_managed_list, add_to_managed;
 179
 180	write_lock_bh(&n->tbl->lock);
 181	write_lock(&n->lock);
 182	if (n->dead)
 183		goto out;
 184
 185	add_to_managed = n->flags & NTF_MANAGED;
 186	on_managed_list = !list_empty(&n->managed_list);
 187
 188	if (!add_to_managed && on_managed_list)
 189		list_del_init(&n->managed_list);
 190	else if (add_to_managed && !on_managed_list)
 191		list_add_tail(&n->managed_list, &n->tbl->managed_list);
 192out:
 193	write_unlock(&n->lock);
 194	write_unlock_bh(&n->tbl->lock);
 195}
 196
 197static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify,
 198			       bool *gc_update, bool *managed_update)
 199{
 200	u32 ndm_flags, old_flags = neigh->flags;
 201
 202	if (!(flags & NEIGH_UPDATE_F_ADMIN))
 203		return;
 204
 205	ndm_flags  = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0;
 206	ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0;
 207
 208	if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) {
 209		if (ndm_flags & NTF_EXT_LEARNED)
 210			neigh->flags |= NTF_EXT_LEARNED;
 211		else
 212			neigh->flags &= ~NTF_EXT_LEARNED;
 213		*notify = 1;
 214		*gc_update = true;
 215	}
 216	if ((old_flags ^ ndm_flags) & NTF_MANAGED) {
 217		if (ndm_flags & NTF_MANAGED)
 218			neigh->flags |= NTF_MANAGED;
 219		else
 220			neigh->flags &= ~NTF_MANAGED;
 221		*notify = 1;
 222		*managed_update = true;
 223	}
 224}
 225
 226bool neigh_remove_one(struct neighbour *n)
 227{
 228	bool retval = false;
 229
 230	write_lock(&n->lock);
 231	if (refcount_read(&n->refcnt) == 1) {
 232		hlist_del_rcu(&n->hash);
 233		hlist_del_rcu(&n->dev_list);
 234		neigh_mark_dead(n);
 235		retval = true;
 236	}
 237	write_unlock(&n->lock);
 238	if (retval)
 239		neigh_cleanup_and_release(n);
 240	return retval;
 241}
 242
 243static int neigh_forced_gc(struct neigh_table *tbl)
 244{
 245	int max_clean = atomic_read(&tbl->gc_entries) -
 246			READ_ONCE(tbl->gc_thresh2);
 247	u64 tmax = ktime_get_ns() + NSEC_PER_MSEC;
 248	unsigned long tref = jiffies - 5 * HZ;
 249	struct neighbour *n, *tmp;
 250	int shrunk = 0;
 251	int loop = 0;
 
 252
 253	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
 254
 255	write_lock_bh(&tbl->lock);
 
 
 
 
 
 256
 257	list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) {
 258		if (refcount_read(&n->refcnt) == 1) {
 259			bool remove = false;
 260
 
 
 
 261			write_lock(&n->lock);
 262			if ((n->nud_state == NUD_FAILED) ||
 263			    (n->nud_state == NUD_NOARP) ||
 264			    (tbl->is_multicast &&
 265			     tbl->is_multicast(n->primary_key)) ||
 266			    !time_in_range(n->updated, tref, jiffies))
 267				remove = true;
 
 
 
 
 
 268			write_unlock(&n->lock);
 269
 270			if (remove && neigh_remove_one(n))
 271				shrunk++;
 272			if (shrunk >= max_clean)
 273				break;
 274			if (++loop == 16) {
 275				if (ktime_get_ns() > tmax)
 276					goto unlock;
 277				loop = 0;
 278			}
 279		}
 280	}
 281
 282	WRITE_ONCE(tbl->last_flush, jiffies);
 283unlock:
 284	write_unlock_bh(&tbl->lock);
 285
 286	return shrunk;
 287}
 288
 289static void neigh_add_timer(struct neighbour *n, unsigned long when)
 290{
 291	/* Use safe distance from the jiffies - LONG_MAX point while timer
 292	 * is running in DELAY/PROBE state but still show to user space
 293	 * large times in the past.
 294	 */
 295	unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ);
 296
 297	neigh_hold(n);
 298	if (!time_in_range(n->confirmed, mint, jiffies))
 299		n->confirmed = mint;
 300	if (time_before(n->used, n->confirmed))
 301		n->used = n->confirmed;
 302	if (unlikely(mod_timer(&n->timer, when))) {
 303		printk("NEIGH: BUG, double timer add, state is %x\n",
 304		       n->nud_state);
 305		dump_stack();
 306	}
 307}
 308
 309static int neigh_del_timer(struct neighbour *n)
 310{
 311	if ((n->nud_state & NUD_IN_TIMER) &&
 312	    del_timer(&n->timer)) {
 313		neigh_release(n);
 314		return 1;
 315	}
 316	return 0;
 317}
 318
 319static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
 320						   int family)
 321{
 322	switch (family) {
 323	case AF_INET:
 324		return __in_dev_arp_parms_get_rcu(dev);
 325	case AF_INET6:
 326		return __in6_dev_nd_parms_get_rcu(dev);
 327	}
 328	return NULL;
 329}
 330
 331static void neigh_parms_qlen_dec(struct net_device *dev, int family)
 332{
 333	struct neigh_parms *p;
 334
 335	rcu_read_lock();
 336	p = neigh_get_dev_parms_rcu(dev, family);
 337	if (p)
 338		p->qlen--;
 339	rcu_read_unlock();
 340}
 341
 342static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net,
 343			       int family)
 344{
 345	struct sk_buff_head tmp;
 346	unsigned long flags;
 347	struct sk_buff *skb;
 348
 349	skb_queue_head_init(&tmp);
 350	spin_lock_irqsave(&list->lock, flags);
 351	skb = skb_peek(list);
 352	while (skb != NULL) {
 353		struct sk_buff *skb_next = skb_peek_next(skb, list);
 354		struct net_device *dev = skb->dev;
 355
 356		if (net == NULL || net_eq(dev_net(dev), net)) {
 357			neigh_parms_qlen_dec(dev, family);
 358			__skb_unlink(skb, list);
 359			__skb_queue_tail(&tmp, skb);
 360		}
 361		skb = skb_next;
 362	}
 363	spin_unlock_irqrestore(&list->lock, flags);
 364
 365	while ((skb = __skb_dequeue(&tmp))) {
 366		dev_put(skb->dev);
 367		kfree_skb(skb);
 368	}
 369}
 370
 371static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev,
 372			    bool skip_perm)
 373{
 374	struct hlist_head *dev_head;
 375	struct hlist_node *tmp;
 376	struct neighbour *n;
 
 
 377
 378	dev_head = neigh_get_dev_table(dev, tbl->family);
 
 
 379
 380	hlist_for_each_entry_safe(n, tmp, dev_head, dev_list) {
 381		if (skip_perm && n->nud_state & NUD_PERMANENT)
 382			continue;
 
 
 
 
 
 
 
 
 
 383
 384		hlist_del_rcu(&n->hash);
 385		hlist_del_rcu(&n->dev_list);
 386		write_lock(&n->lock);
 387		neigh_del_timer(n);
 388		neigh_mark_dead(n);
 389		if (refcount_read(&n->refcnt) != 1) {
 390			/* The most unpleasant situation.
 391			 * We must destroy neighbour entry,
 392			 * but someone still uses it.
 393			 *
 394			 * The destroy will be delayed until
 395			 * the last user releases us, but
 396			 * we must kill timers etc. and move
 397			 * it to safe state.
 398			 */
 399			__skb_queue_purge(&n->arp_queue);
 400			n->arp_queue_len_bytes = 0;
 401			WRITE_ONCE(n->output, neigh_blackhole);
 402			if (n->nud_state & NUD_VALID)
 403				n->nud_state = NUD_NOARP;
 404			else
 405				n->nud_state = NUD_NONE;
 406			neigh_dbg(2, "neigh %p is stray\n", n);
 407		}
 408		write_unlock(&n->lock);
 409		neigh_cleanup_and_release(n);
 410	}
 411}
 412
 413void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
 414{
 415	write_lock_bh(&tbl->lock);
 416	neigh_flush_dev(tbl, dev, false);
 417	write_unlock_bh(&tbl->lock);
 418}
 419EXPORT_SYMBOL(neigh_changeaddr);
 420
 421static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev,
 422			  bool skip_perm)
 423{
 424	write_lock_bh(&tbl->lock);
 425	neigh_flush_dev(tbl, dev, skip_perm);
 426	pneigh_ifdown_and_unlock(tbl, dev);
 427	pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL,
 428			   tbl->family);
 429	if (skb_queue_empty_lockless(&tbl->proxy_queue))
 430		del_timer_sync(&tbl->proxy_timer);
 431	return 0;
 432}
 433
 434int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev)
 435{
 436	__neigh_ifdown(tbl, dev, true);
 437	return 0;
 438}
 439EXPORT_SYMBOL(neigh_carrier_down);
 440
 441int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
 442{
 443	__neigh_ifdown(tbl, dev, false);
 444	return 0;
 445}
 446EXPORT_SYMBOL(neigh_ifdown);
 447
 448static struct neighbour *neigh_alloc(struct neigh_table *tbl,
 449				     struct net_device *dev,
 450				     u32 flags, bool exempt_from_gc)
 451{
 452	struct neighbour *n = NULL;
 453	unsigned long now = jiffies;
 454	int entries, gc_thresh3;
 455
 456	if (exempt_from_gc)
 457		goto do_alloc;
 458
 459	entries = atomic_inc_return(&tbl->gc_entries) - 1;
 460	gc_thresh3 = READ_ONCE(tbl->gc_thresh3);
 461	if (entries >= gc_thresh3 ||
 462	    (entries >= READ_ONCE(tbl->gc_thresh2) &&
 463	     time_after(now, READ_ONCE(tbl->last_flush) + 5 * HZ))) {
 464		if (!neigh_forced_gc(tbl) && entries >= gc_thresh3) {
 465			net_info_ratelimited("%s: neighbor table overflow!\n",
 466					     tbl->id);
 467			NEIGH_CACHE_STAT_INC(tbl, table_fulls);
 468			goto out_entries;
 469		}
 470	}
 471
 472do_alloc:
 473	n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
 474	if (!n)
 475		goto out_entries;
 476
 477	__skb_queue_head_init(&n->arp_queue);
 478	rwlock_init(&n->lock);
 479	seqlock_init(&n->ha_lock);
 480	n->updated	  = n->used = now;
 481	n->nud_state	  = NUD_NONE;
 482	n->output	  = neigh_blackhole;
 483	n->flags	  = flags;
 484	seqlock_init(&n->hh.hh_lock);
 485	n->parms	  = neigh_parms_clone(&tbl->parms);
 486	timer_setup(&n->timer, neigh_timer_handler, 0);
 487
 488	NEIGH_CACHE_STAT_INC(tbl, allocs);
 489	n->tbl		  = tbl;
 490	refcount_set(&n->refcnt, 1);
 491	n->dead		  = 1;
 492	INIT_LIST_HEAD(&n->gc_list);
 493	INIT_LIST_HEAD(&n->managed_list);
 494
 495	atomic_inc(&tbl->entries);
 496out:
 497	return n;
 498
 499out_entries:
 500	if (!exempt_from_gc)
 501		atomic_dec(&tbl->gc_entries);
 502	goto out;
 503}
 504
 505static void neigh_get_hash_rnd(u32 *x)
 506{
 507	*x = get_random_u32() | 1;
 508}
 509
 510static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
 511{
 512	size_t size = (1 << shift) * sizeof(struct hlist_head);
 513	struct hlist_head *hash_heads;
 514	struct neigh_hash_table *ret;
 515	int i;
 516
 517	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
 518	if (!ret)
 519		return NULL;
 520
 521	hash_heads = kvzalloc(size, GFP_ATOMIC);
 522	if (!hash_heads) {
 
 
 
 
 523		kfree(ret);
 524		return NULL;
 525	}
 526	ret->hash_heads = hash_heads;
 527	ret->hash_shift = shift;
 528	for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
 529		neigh_get_hash_rnd(&ret->hash_rnd[i]);
 530	return ret;
 531}
 532
 533static void neigh_hash_free_rcu(struct rcu_head *head)
 534{
 535	struct neigh_hash_table *nht = container_of(head,
 536						    struct neigh_hash_table,
 537						    rcu);
 
 
 538
 539	kvfree(nht->hash_heads);
 
 
 
 540	kfree(nht);
 541}
 542
 543static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
 544						unsigned long new_shift)
 545{
 546	unsigned int i, hash;
 547	struct neigh_hash_table *new_nht, *old_nht;
 548
 549	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
 550
 551	old_nht = rcu_dereference_protected(tbl->nht,
 552					    lockdep_is_held(&tbl->lock));
 553	new_nht = neigh_hash_alloc(new_shift);
 554	if (!new_nht)
 555		return old_nht;
 556
 557	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
 558		struct hlist_node *tmp;
 559		struct neighbour *n;
 560
 561		neigh_for_each_in_bucket_safe(n, tmp, &old_nht->hash_heads[i]) {
 
 
 
 562			hash = tbl->hash(n->primary_key, n->dev,
 563					 new_nht->hash_rnd);
 564
 565			hash >>= (32 - new_nht->hash_shift);
 
 
 566
 567			hlist_del_rcu(&n->hash);
 568			hlist_add_head_rcu(&n->hash, &new_nht->hash_heads[hash]);
 
 
 
 569		}
 570	}
 571
 572	rcu_assign_pointer(tbl->nht, new_nht);
 573	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
 574	return new_nht;
 575}
 576
 577struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
 578			       struct net_device *dev)
 579{
 580	struct neighbour *n;
 
 
 
 581
 582	NEIGH_CACHE_STAT_INC(tbl, lookups);
 583
 584	rcu_read_lock();
 585	n = __neigh_lookup_noref(tbl, pkey, dev);
 586	if (n) {
 587		if (!refcount_inc_not_zero(&n->refcnt))
 588			n = NULL;
 589		NEIGH_CACHE_STAT_INC(tbl, hits);
 
 
 
 
 
 
 
 590	}
 591
 592	rcu_read_unlock();
 593	return n;
 594}
 595EXPORT_SYMBOL(neigh_lookup);
 596
 597static struct neighbour *
 598___neigh_create(struct neigh_table *tbl, const void *pkey,
 599		struct net_device *dev, u32 flags,
 600		bool exempt_from_gc, bool want_ref)
 601{
 602	u32 hash_val, key_len = tbl->key_len;
 603	struct neighbour *n1, *rc, *n;
 
 604	struct neigh_hash_table *nht;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605	int error;
 
 
 606
 607	n = neigh_alloc(tbl, dev, flags, exempt_from_gc);
 608	trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc);
 609	if (!n) {
 610		rc = ERR_PTR(-ENOBUFS);
 611		goto out;
 612	}
 613
 614	memcpy(n->primary_key, pkey, key_len);
 615	n->dev = dev;
 616	netdev_hold(dev, &n->dev_tracker, GFP_ATOMIC);
 617
 618	/* Protocol specific setup. */
 619	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
 620		rc = ERR_PTR(error);
 621		goto out_neigh_release;
 622	}
 623
 624	if (dev->netdev_ops->ndo_neigh_construct) {
 625		error = dev->netdev_ops->ndo_neigh_construct(dev, n);
 626		if (error < 0) {
 627			rc = ERR_PTR(error);
 628			goto out_neigh_release;
 629		}
 630	}
 631
 632	/* Device specific setup. */
 633	if (n->parms->neigh_setup &&
 634	    (error = n->parms->neigh_setup(n)) < 0) {
 635		rc = ERR_PTR(error);
 636		goto out_neigh_release;
 637	}
 638
 639	n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
 640
 641	write_lock_bh(&tbl->lock);
 642	nht = rcu_dereference_protected(tbl->nht,
 643					lockdep_is_held(&tbl->lock));
 644
 645	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
 646		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
 647
 648	hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
 649
 650	if (n->parms->dead) {
 651		rc = ERR_PTR(-EINVAL);
 652		goto out_tbl_unlock;
 653	}
 654
 655	neigh_for_each_in_bucket(n1, &nht->hash_heads[hash_val]) {
 656		if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) {
 657			if (want_ref)
 658				neigh_hold(n1);
 
 
 
 659			rc = n1;
 660			goto out_tbl_unlock;
 661		}
 662	}
 663
 664	n->dead = 0;
 665	if (!exempt_from_gc)
 666		list_add_tail(&n->gc_list, &n->tbl->gc_list);
 667	if (n->flags & NTF_MANAGED)
 668		list_add_tail(&n->managed_list, &n->tbl->managed_list);
 669	if (want_ref)
 670		neigh_hold(n);
 671	hlist_add_head_rcu(&n->hash, &nht->hash_heads[hash_val]);
 672
 673	hlist_add_head_rcu(&n->dev_list,
 674			   neigh_get_dev_table(dev, tbl->family));
 675
 676	write_unlock_bh(&tbl->lock);
 677	neigh_dbg(2, "neigh %p is created\n", n);
 678	rc = n;
 679out:
 680	return rc;
 681out_tbl_unlock:
 682	write_unlock_bh(&tbl->lock);
 683out_neigh_release:
 684	if (!exempt_from_gc)
 685		atomic_dec(&tbl->gc_entries);
 686	neigh_release(n);
 687	goto out;
 688}
 
 689
 690struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
 691				 struct net_device *dev, bool want_ref)
 692{
 693	bool exempt_from_gc = !!(dev->flags & IFF_LOOPBACK);
 694
 695	return ___neigh_create(tbl, pkey, dev, 0, exempt_from_gc, want_ref);
 696}
 697EXPORT_SYMBOL(__neigh_create);
 698
 699static u32 pneigh_hash(const void *pkey, unsigned int key_len)
 700{
 701	u32 hash_val = *(u32 *)(pkey + key_len - 4);
 702	hash_val ^= (hash_val >> 16);
 703	hash_val ^= hash_val >> 8;
 704	hash_val ^= hash_val >> 4;
 705	hash_val &= PNEIGH_HASHMASK;
 706	return hash_val;
 707}
 708
 709static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
 710					      struct net *net,
 711					      const void *pkey,
 712					      unsigned int key_len,
 713					      struct net_device *dev)
 714{
 715	while (n) {
 716		if (!memcmp(n->key, pkey, key_len) &&
 717		    net_eq(pneigh_net(n), net) &&
 718		    (n->dev == dev || !n->dev))
 719			return n;
 720		n = n->next;
 721	}
 722	return NULL;
 723}
 724
 725struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
 726		struct net *net, const void *pkey, struct net_device *dev)
 727{
 728	unsigned int key_len = tbl->key_len;
 729	u32 hash_val = pneigh_hash(pkey, key_len);
 730
 731	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 732				 net, pkey, key_len, dev);
 733}
 734EXPORT_SYMBOL_GPL(__pneigh_lookup);
 735
 736struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
 737				    struct net *net, const void *pkey,
 738				    struct net_device *dev, int creat)
 739{
 740	struct pneigh_entry *n;
 741	unsigned int key_len = tbl->key_len;
 742	u32 hash_val = pneigh_hash(pkey, key_len);
 743
 744	read_lock_bh(&tbl->lock);
 745	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 746			      net, pkey, key_len, dev);
 747	read_unlock_bh(&tbl->lock);
 748
 749	if (n || !creat)
 750		goto out;
 751
 752	ASSERT_RTNL();
 753
 754	n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL);
 755	if (!n)
 756		goto out;
 757
 758	write_pnet(&n->net, net);
 759	memcpy(n->key, pkey, key_len);
 760	n->dev = dev;
 761	netdev_hold(dev, &n->dev_tracker, GFP_KERNEL);
 
 762
 763	if (tbl->pconstructor && tbl->pconstructor(n)) {
 764		netdev_put(dev, &n->dev_tracker);
 
 
 765		kfree(n);
 766		n = NULL;
 767		goto out;
 768	}
 769
 770	write_lock_bh(&tbl->lock);
 771	n->next = tbl->phash_buckets[hash_val];
 772	tbl->phash_buckets[hash_val] = n;
 773	write_unlock_bh(&tbl->lock);
 774out:
 775	return n;
 776}
 777EXPORT_SYMBOL(pneigh_lookup);
 778
 779
 780int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
 781		  struct net_device *dev)
 782{
 783	struct pneigh_entry *n, **np;
 784	unsigned int key_len = tbl->key_len;
 785	u32 hash_val = pneigh_hash(pkey, key_len);
 786
 787	write_lock_bh(&tbl->lock);
 788	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
 789	     np = &n->next) {
 790		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
 791		    net_eq(pneigh_net(n), net)) {
 792			*np = n->next;
 793			write_unlock_bh(&tbl->lock);
 794			if (tbl->pdestructor)
 795				tbl->pdestructor(n);
 796			netdev_put(n->dev, &n->dev_tracker);
 
 
 797			kfree(n);
 798			return 0;
 799		}
 800	}
 801	write_unlock_bh(&tbl->lock);
 802	return -ENOENT;
 803}
 804
 805static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
 806				    struct net_device *dev)
 807{
 808	struct pneigh_entry *n, **np, *freelist = NULL;
 809	u32 h;
 810
 811	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
 812		np = &tbl->phash_buckets[h];
 813		while ((n = *np) != NULL) {
 814			if (!dev || n->dev == dev) {
 815				*np = n->next;
 816				n->next = freelist;
 817				freelist = n;
 
 
 
 
 818				continue;
 819			}
 820			np = &n->next;
 821		}
 822	}
 823	write_unlock_bh(&tbl->lock);
 824	while ((n = freelist)) {
 825		freelist = n->next;
 826		n->next = NULL;
 827		if (tbl->pdestructor)
 828			tbl->pdestructor(n);
 829		netdev_put(n->dev, &n->dev_tracker);
 830		kfree(n);
 831	}
 832	return -ENOENT;
 833}
 834
 835static void neigh_parms_destroy(struct neigh_parms *parms);
 836
 837static inline void neigh_parms_put(struct neigh_parms *parms)
 838{
 839	if (refcount_dec_and_test(&parms->refcnt))
 840		neigh_parms_destroy(parms);
 841}
 842
 
 
 
 
 
 
 843/*
 844 *	neighbour must already be out of the table;
 845 *
 846 */
 847void neigh_destroy(struct neighbour *neigh)
 848{
 849	struct net_device *dev = neigh->dev;
 850
 851	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
 852
 853	if (!neigh->dead) {
 854		pr_warn("Destroying alive neighbour %p\n", neigh);
 
 855		dump_stack();
 856		return;
 857	}
 858
 859	if (neigh_del_timer(neigh))
 860		pr_warn("Impossible event\n");
 861
 862	write_lock_bh(&neigh->lock);
 863	__skb_queue_purge(&neigh->arp_queue);
 864	write_unlock_bh(&neigh->lock);
 865	neigh->arp_queue_len_bytes = 0;
 866
 867	if (dev->netdev_ops->ndo_neigh_destroy)
 868		dev->netdev_ops->ndo_neigh_destroy(dev, neigh);
 869
 870	netdev_put(dev, &neigh->dev_tracker);
 871	neigh_parms_put(neigh->parms);
 872
 873	neigh_dbg(2, "neigh %p is destroyed\n", neigh);
 874
 875	atomic_dec(&neigh->tbl->entries);
 876	kfree_rcu(neigh, rcu);
 877}
 878EXPORT_SYMBOL(neigh_destroy);
 879
 880/* Neighbour state is suspicious;
 881   disable fast path.
 882
 883   Called with write_locked neigh.
 884 */
 885static void neigh_suspect(struct neighbour *neigh)
 886{
 887	neigh_dbg(2, "neigh %p is suspected\n", neigh);
 888
 889	WRITE_ONCE(neigh->output, neigh->ops->output);
 890}
 891
 892/* Neighbour state is OK;
 893   enable fast path.
 894
 895   Called with write_locked neigh.
 896 */
 897static void neigh_connect(struct neighbour *neigh)
 898{
 899	neigh_dbg(2, "neigh %p is connected\n", neigh);
 900
 901	WRITE_ONCE(neigh->output, neigh->ops->connected_output);
 902}
 903
 904static void neigh_periodic_work(struct work_struct *work)
 905{
 906	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
 907	struct neigh_hash_table *nht;
 908	struct hlist_node *tmp;
 909	struct neighbour *n;
 
 910	unsigned int i;
 
 911
 912	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
 913
 914	write_lock_bh(&tbl->lock);
 915	nht = rcu_dereference_protected(tbl->nht,
 916					lockdep_is_held(&tbl->lock));
 917
 918	/*
 919	 *	periodically recompute ReachableTime from random function
 920	 */
 921
 922	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
 923		struct neigh_parms *p;
 924
 925		WRITE_ONCE(tbl->last_rand, jiffies);
 926		list_for_each_entry(p, &tbl->parms_list, list)
 927			p->reachable_time =
 928				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
 929	}
 930
 931	if (atomic_read(&tbl->entries) < READ_ONCE(tbl->gc_thresh1))
 932		goto out;
 933
 934	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
 935		neigh_for_each_in_bucket_safe(n, tmp, &nht->hash_heads[i]) {
 936			unsigned int state;
 937
 938			write_lock(&n->lock);
 939
 940			state = n->nud_state;
 941			if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) ||
 942			    (n->flags & NTF_EXT_LEARNED)) {
 943				write_unlock(&n->lock);
 944				continue;
 945			}
 946
 947			if (time_before(n->used, n->confirmed) &&
 948			    time_is_before_eq_jiffies(n->confirmed))
 949				n->used = n->confirmed;
 950
 951			if (refcount_read(&n->refcnt) == 1 &&
 952			    (state == NUD_FAILED ||
 953			     !time_in_range_open(jiffies, n->used,
 954						 n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
 955				hlist_del_rcu(&n->hash);
 956				hlist_del_rcu(&n->dev_list);
 957				neigh_mark_dead(n);
 958				write_unlock(&n->lock);
 959				neigh_cleanup_and_release(n);
 960				continue;
 961			}
 962			write_unlock(&n->lock);
 
 
 
 963		}
 964		/*
 965		 * It's fine to release lock here, even if hash table
 966		 * grows while we are preempted.
 967		 */
 968		write_unlock_bh(&tbl->lock);
 969		cond_resched();
 970		write_lock_bh(&tbl->lock);
 971		nht = rcu_dereference_protected(tbl->nht,
 972						lockdep_is_held(&tbl->lock));
 973	}
 974out:
 975	/* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
 976	 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
 977	 * BASE_REACHABLE_TIME.
 978	 */
 979	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
 980			      NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
 981	write_unlock_bh(&tbl->lock);
 982}
 983
 984static __inline__ int neigh_max_probes(struct neighbour *n)
 985{
 986	struct neigh_parms *p = n->parms;
 987	return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
 988	       (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
 989	        NEIGH_VAR(p, MCAST_PROBES));
 990}
 991
 992static void neigh_invalidate(struct neighbour *neigh)
 993	__releases(neigh->lock)
 994	__acquires(neigh->lock)
 995{
 996	struct sk_buff *skb;
 997
 998	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
 999	neigh_dbg(2, "neigh %p is failed\n", neigh);
1000	neigh->updated = jiffies;
1001
1002	/* It is very thin place. report_unreachable is very complicated
1003	   routine. Particularly, it can hit the same neighbour entry!
1004
1005	   So that, we try to be accurate and avoid dead loop. --ANK
1006	 */
1007	while (neigh->nud_state == NUD_FAILED &&
1008	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1009		write_unlock(&neigh->lock);
1010		neigh->ops->error_report(neigh, skb);
1011		write_lock(&neigh->lock);
1012	}
1013	__skb_queue_purge(&neigh->arp_queue);
1014	neigh->arp_queue_len_bytes = 0;
1015}
1016
1017static void neigh_probe(struct neighbour *neigh)
1018	__releases(neigh->lock)
1019{
1020	struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
1021	/* keep skb alive even if arp_queue overflows */
1022	if (skb)
1023		skb = skb_clone(skb, GFP_ATOMIC);
1024	write_unlock(&neigh->lock);
1025	if (neigh->ops->solicit)
1026		neigh->ops->solicit(neigh, skb);
1027	atomic_inc(&neigh->probes);
1028	consume_skb(skb);
1029}
1030
1031/* Called when a timer expires for a neighbour entry. */
1032
1033static void neigh_timer_handler(struct timer_list *t)
1034{
1035	unsigned long now, next;
1036	struct neighbour *neigh = from_timer(neigh, t, timer);
1037	unsigned int state;
1038	int notify = 0;
1039
1040	write_lock(&neigh->lock);
1041
1042	state = neigh->nud_state;
1043	now = jiffies;
1044	next = now + HZ;
1045
1046	if (!(state & NUD_IN_TIMER))
 
 
 
1047		goto out;
 
1048
1049	if (state & NUD_REACHABLE) {
1050		if (time_before_eq(now,
1051				   neigh->confirmed + neigh->parms->reachable_time)) {
1052			neigh_dbg(2, "neigh %p is still alive\n", neigh);
1053			next = neigh->confirmed + neigh->parms->reachable_time;
1054		} else if (time_before_eq(now,
1055					  neigh->used +
1056					  NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1057			neigh_dbg(2, "neigh %p is delayed\n", neigh);
1058			WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1059			neigh->updated = jiffies;
1060			neigh_suspect(neigh);
1061			next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
1062		} else {
1063			neigh_dbg(2, "neigh %p is suspected\n", neigh);
1064			WRITE_ONCE(neigh->nud_state, NUD_STALE);
1065			neigh->updated = jiffies;
1066			neigh_suspect(neigh);
1067			notify = 1;
1068		}
1069	} else if (state & NUD_DELAY) {
1070		if (time_before_eq(now,
1071				   neigh->confirmed +
1072				   NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1073			neigh_dbg(2, "neigh %p is now reachable\n", neigh);
1074			WRITE_ONCE(neigh->nud_state, NUD_REACHABLE);
1075			neigh->updated = jiffies;
1076			neigh_connect(neigh);
1077			notify = 1;
1078			next = neigh->confirmed + neigh->parms->reachable_time;
1079		} else {
1080			neigh_dbg(2, "neigh %p is probed\n", neigh);
1081			WRITE_ONCE(neigh->nud_state, NUD_PROBE);
1082			neigh->updated = jiffies;
1083			atomic_set(&neigh->probes, 0);
1084			notify = 1;
1085			next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1086					 HZ/100);
1087		}
1088	} else {
1089		/* NUD_PROBE|NUD_INCOMPLETE */
1090		next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100);
1091	}
1092
1093	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
1094	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
1095		WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1096		notify = 1;
1097		neigh_invalidate(neigh);
1098		goto out;
1099	}
1100
1101	if (neigh->nud_state & NUD_IN_TIMER) {
1102		if (time_before(next, jiffies + HZ/100))
1103			next = jiffies + HZ/100;
1104		if (!mod_timer(&neigh->timer, next))
1105			neigh_hold(neigh);
1106	}
1107	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
1108		neigh_probe(neigh);
 
 
 
 
 
 
 
1109	} else {
1110out:
1111		write_unlock(&neigh->lock);
1112	}
1113
1114	if (notify)
1115		neigh_update_notify(neigh, 0);
1116
1117	trace_neigh_timer_handler(neigh, 0);
1118
1119	neigh_release(neigh);
1120}
1121
1122int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb,
1123		       const bool immediate_ok)
1124{
1125	int rc;
1126	bool immediate_probe = false;
1127
1128	write_lock_bh(&neigh->lock);
1129
1130	rc = 0;
1131	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
1132		goto out_unlock_bh;
1133	if (neigh->dead)
1134		goto out_dead;
1135
1136	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
1137		if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
1138		    NEIGH_VAR(neigh->parms, APP_PROBES)) {
1139			unsigned long next, now = jiffies;
1140
1141			atomic_set(&neigh->probes,
1142				   NEIGH_VAR(neigh->parms, UCAST_PROBES));
1143			neigh_del_timer(neigh);
1144			WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1145			neigh->updated = now;
1146			if (!immediate_ok) {
1147				next = now + 1;
1148			} else {
1149				immediate_probe = true;
1150				next = now + max(NEIGH_VAR(neigh->parms,
1151							   RETRANS_TIME),
1152						 HZ / 100);
1153			}
1154			neigh_add_timer(neigh, next);
1155		} else {
1156			WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1157			neigh->updated = jiffies;
1158			write_unlock_bh(&neigh->lock);
1159
1160			kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
1161			return 1;
1162		}
1163	} else if (neigh->nud_state & NUD_STALE) {
1164		neigh_dbg(2, "neigh %p is delayed\n", neigh);
1165		neigh_del_timer(neigh);
1166		WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1167		neigh->updated = jiffies;
1168		neigh_add_timer(neigh, jiffies +
1169				NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1170	}
1171
1172	if (neigh->nud_state == NUD_INCOMPLETE) {
1173		if (skb) {
1174			while (neigh->arp_queue_len_bytes + skb->truesize >
1175			       NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1176				struct sk_buff *buff;
1177
1178				buff = __skb_dequeue(&neigh->arp_queue);
1179				if (!buff)
1180					break;
1181				neigh->arp_queue_len_bytes -= buff->truesize;
1182				kfree_skb_reason(buff, SKB_DROP_REASON_NEIGH_QUEUEFULL);
1183				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1184			}
1185			skb_dst_force(skb);
1186			__skb_queue_tail(&neigh->arp_queue, skb);
1187			neigh->arp_queue_len_bytes += skb->truesize;
1188		}
1189		rc = 1;
1190	}
1191out_unlock_bh:
1192	if (immediate_probe)
1193		neigh_probe(neigh);
1194	else
1195		write_unlock(&neigh->lock);
1196	local_bh_enable();
1197	trace_neigh_event_send_done(neigh, rc);
1198	return rc;
1199
1200out_dead:
1201	if (neigh->nud_state & NUD_STALE)
1202		goto out_unlock_bh;
1203	write_unlock_bh(&neigh->lock);
1204	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_DEAD);
1205	trace_neigh_event_send_dead(neigh, 1);
1206	return 1;
1207}
1208EXPORT_SYMBOL(__neigh_event_send);
1209
1210static void neigh_update_hhs(struct neighbour *neigh)
1211{
1212	struct hh_cache *hh;
1213	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1214		= NULL;
1215
1216	if (neigh->dev->header_ops)
1217		update = neigh->dev->header_ops->cache_update;
1218
1219	if (update) {
1220		hh = &neigh->hh;
1221		if (READ_ONCE(hh->hh_len)) {
1222			write_seqlock_bh(&hh->hh_lock);
1223			update(hh, neigh->dev, neigh->ha);
1224			write_sequnlock_bh(&hh->hh_lock);
1225		}
1226	}
1227}
1228
 
 
1229/* Generic update routine.
1230   -- lladdr is new lladdr or NULL, if it is not supplied.
1231   -- new    is new state.
1232   -- flags
1233	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1234				if it is different.
1235	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1236				lladdr instead of overriding it
1237				if it is different.
 
 
1238	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1239	NEIGH_UPDATE_F_USE	means that the entry is user triggered.
1240	NEIGH_UPDATE_F_MANAGED	means that the entry will be auto-refreshed.
1241	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1242				NTF_ROUTER flag.
1243	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1244				a router.
1245
1246   Caller MUST hold reference count on the entry.
1247 */
1248static int __neigh_update(struct neighbour *neigh, const u8 *lladdr,
1249			  u8 new, u32 flags, u32 nlmsg_pid,
1250			  struct netlink_ext_ack *extack)
1251{
1252	bool gc_update = false, managed_update = false;
 
 
 
1253	int update_isrouter = 0;
1254	struct net_device *dev;
1255	int err, notify = 0;
1256	u8 old;
1257
1258	trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid);
1259
1260	write_lock_bh(&neigh->lock);
1261
1262	dev    = neigh->dev;
1263	old    = neigh->nud_state;
1264	err    = -EPERM;
1265
1266	if (neigh->dead) {
1267		NL_SET_ERR_MSG(extack, "Neighbor entry is now dead");
1268		new = old;
1269		goto out;
1270	}
1271	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1272	    (old & (NUD_NOARP | NUD_PERMANENT)))
1273		goto out;
1274
1275	neigh_update_flags(neigh, flags, &notify, &gc_update, &managed_update);
1276	if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) {
1277		new = old & ~NUD_PERMANENT;
1278		WRITE_ONCE(neigh->nud_state, new);
1279		err = 0;
1280		goto out;
1281	}
1282
1283	if (!(new & NUD_VALID)) {
1284		neigh_del_timer(neigh);
1285		if (old & NUD_CONNECTED)
1286			neigh_suspect(neigh);
1287		WRITE_ONCE(neigh->nud_state, new);
1288		err = 0;
1289		notify = old & NUD_VALID;
1290		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1291		    (new & NUD_FAILED)) {
1292			neigh_invalidate(neigh);
1293			notify = 1;
1294		}
1295		goto out;
1296	}
1297
1298	/* Compare new lladdr with cached one */
1299	if (!dev->addr_len) {
1300		/* First case: device needs no address. */
1301		lladdr = neigh->ha;
1302	} else if (lladdr) {
1303		/* The second case: if something is already cached
1304		   and a new address is proposed:
1305		   - compare new & old
1306		   - if they are different, check override flag
1307		 */
1308		if ((old & NUD_VALID) &&
1309		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1310			lladdr = neigh->ha;
1311	} else {
1312		/* No address is supplied; if we know something,
1313		   use it, otherwise discard the request.
1314		 */
1315		err = -EINVAL;
1316		if (!(old & NUD_VALID)) {
1317			NL_SET_ERR_MSG(extack, "No link layer address given");
1318			goto out;
1319		}
1320		lladdr = neigh->ha;
1321	}
1322
1323	/* Update confirmed timestamp for neighbour entry after we
1324	 * received ARP packet even if it doesn't change IP to MAC binding.
1325	 */
1326	if (new & NUD_CONNECTED)
1327		neigh->confirmed = jiffies;
 
1328
1329	/* If entry was valid and address is not changed,
1330	   do not change entry state, if new one is STALE.
1331	 */
1332	err = 0;
1333	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1334	if (old & NUD_VALID) {
1335		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1336			update_isrouter = 0;
1337			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1338			    (old & NUD_CONNECTED)) {
1339				lladdr = neigh->ha;
1340				new = NUD_STALE;
1341			} else
1342				goto out;
1343		} else {
1344			if (lladdr == neigh->ha && new == NUD_STALE &&
1345			    !(flags & NEIGH_UPDATE_F_ADMIN))
 
 
1346				new = old;
1347		}
1348	}
1349
1350	/* Update timestamp only once we know we will make a change to the
1351	 * neighbour entry. Otherwise we risk to move the locktime window with
1352	 * noop updates and ignore relevant ARP updates.
1353	 */
1354	if (new != old || lladdr != neigh->ha)
1355		neigh->updated = jiffies;
1356
1357	if (new != old) {
1358		neigh_del_timer(neigh);
1359		if (new & NUD_PROBE)
1360			atomic_set(&neigh->probes, 0);
1361		if (new & NUD_IN_TIMER)
1362			neigh_add_timer(neigh, (jiffies +
1363						((new & NUD_REACHABLE) ?
1364						 neigh->parms->reachable_time :
1365						 0)));
1366		WRITE_ONCE(neigh->nud_state, new);
1367		notify = 1;
1368	}
1369
1370	if (lladdr != neigh->ha) {
1371		write_seqlock(&neigh->ha_lock);
1372		memcpy(&neigh->ha, lladdr, dev->addr_len);
1373		write_sequnlock(&neigh->ha_lock);
1374		neigh_update_hhs(neigh);
1375		if (!(new & NUD_CONNECTED))
1376			neigh->confirmed = jiffies -
1377				      (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1378		notify = 1;
1379	}
1380	if (new == old)
1381		goto out;
1382	if (new & NUD_CONNECTED)
1383		neigh_connect(neigh);
1384	else
1385		neigh_suspect(neigh);
1386	if (!(old & NUD_VALID)) {
1387		struct sk_buff *skb;
1388
1389		/* Again: avoid dead loop if something went wrong */
1390
1391		while (neigh->nud_state & NUD_VALID &&
1392		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1393			struct dst_entry *dst = skb_dst(skb);
1394			struct neighbour *n2, *n1 = neigh;
1395			write_unlock_bh(&neigh->lock);
1396
1397			rcu_read_lock();
1398
1399			/* Why not just use 'neigh' as-is?  The problem is that
1400			 * things such as shaper, eql, and sch_teql can end up
1401			 * using alternative, different, neigh objects to output
1402			 * the packet in the output path.  So what we need to do
1403			 * here is re-lookup the top-level neigh in the path so
1404			 * we can reinject the packet there.
1405			 */
1406			n2 = NULL;
1407			if (dst && dst->obsolete != DST_OBSOLETE_DEAD) {
1408				n2 = dst_neigh_lookup_skb(dst, skb);
1409				if (n2)
1410					n1 = n2;
1411			}
1412			READ_ONCE(n1->output)(n1, skb);
1413			if (n2)
1414				neigh_release(n2);
1415			rcu_read_unlock();
1416
1417			write_lock_bh(&neigh->lock);
1418		}
1419		__skb_queue_purge(&neigh->arp_queue);
1420		neigh->arp_queue_len_bytes = 0;
1421	}
1422out:
1423	if (update_isrouter)
1424		neigh_update_is_router(neigh, flags, &notify);
 
 
 
1425	write_unlock_bh(&neigh->lock);
1426	if (((new ^ old) & NUD_PERMANENT) || gc_update)
1427		neigh_update_gc_list(neigh);
1428	if (managed_update)
1429		neigh_update_managed_list(neigh);
1430	if (notify)
1431		neigh_update_notify(neigh, nlmsg_pid);
1432	trace_neigh_update_done(neigh, err);
1433	return err;
1434}
1435
1436int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1437		 u32 flags, u32 nlmsg_pid)
1438{
1439	return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL);
1440}
1441EXPORT_SYMBOL(neigh_update);
1442
1443/* Update the neigh to listen temporarily for probe responses, even if it is
1444 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1445 */
1446void __neigh_set_probe_once(struct neighbour *neigh)
1447{
1448	if (neigh->dead)
1449		return;
1450	neigh->updated = jiffies;
1451	if (!(neigh->nud_state & NUD_FAILED))
1452		return;
1453	WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1454	atomic_set(&neigh->probes, neigh_max_probes(neigh));
1455	neigh_add_timer(neigh,
1456			jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1457				      HZ/100));
1458}
1459EXPORT_SYMBOL(__neigh_set_probe_once);
1460
1461struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1462				 u8 *lladdr, void *saddr,
1463				 struct net_device *dev)
1464{
1465	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1466						 lladdr || !dev->addr_len);
1467	if (neigh)
1468		neigh_update(neigh, lladdr, NUD_STALE,
1469			     NEIGH_UPDATE_F_OVERRIDE, 0);
1470	return neigh;
1471}
1472EXPORT_SYMBOL(neigh_event_ns);
1473
1474/* called with read_lock_bh(&n->lock); */
1475static void neigh_hh_init(struct neighbour *n)
1476{
1477	struct net_device *dev = n->dev;
1478	__be16 prot = n->tbl->protocol;
1479	struct hh_cache	*hh = &n->hh;
1480
1481	write_lock_bh(&n->lock);
1482
1483	/* Only one thread can come in here and initialize the
1484	 * hh_cache entry.
1485	 */
1486	if (!hh->hh_len)
1487		dev->header_ops->cache(n, hh, prot);
1488
1489	write_unlock_bh(&n->lock);
1490}
1491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492/* Slow and careful. */
1493
1494int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1495{
 
1496	int rc = 0;
1497
 
 
 
 
 
1498	if (!neigh_event_send(neigh, skb)) {
1499		int err;
1500		struct net_device *dev = neigh->dev;
1501		unsigned int seq;
1502
1503		if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len))
1504			neigh_hh_init(neigh);
1505
1506		do {
1507			__skb_pull(skb, skb_network_offset(skb));
1508			seq = read_seqbegin(&neigh->ha_lock);
1509			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1510					      neigh->ha, NULL, skb->len);
1511		} while (read_seqretry(&neigh->ha_lock, seq));
1512
1513		if (err >= 0)
1514			rc = dev_queue_xmit(skb);
1515		else
1516			goto out_kfree_skb;
1517	}
1518out:
1519	return rc;
 
 
 
1520out_kfree_skb:
1521	rc = -EINVAL;
1522	kfree_skb(skb);
1523	goto out;
1524}
1525EXPORT_SYMBOL(neigh_resolve_output);
1526
1527/* As fast as possible without hh cache */
1528
1529int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1530{
1531	struct net_device *dev = neigh->dev;
1532	unsigned int seq;
1533	int err;
1534
 
 
1535	do {
1536		__skb_pull(skb, skb_network_offset(skb));
1537		seq = read_seqbegin(&neigh->ha_lock);
1538		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1539				      neigh->ha, NULL, skb->len);
1540	} while (read_seqretry(&neigh->ha_lock, seq));
1541
1542	if (err >= 0)
1543		err = dev_queue_xmit(skb);
1544	else {
1545		err = -EINVAL;
1546		kfree_skb(skb);
1547	}
1548	return err;
1549}
1550EXPORT_SYMBOL(neigh_connected_output);
1551
1552int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1553{
1554	return dev_queue_xmit(skb);
1555}
1556EXPORT_SYMBOL(neigh_direct_output);
1557
1558static void neigh_managed_work(struct work_struct *work)
1559{
1560	struct neigh_table *tbl = container_of(work, struct neigh_table,
1561					       managed_work.work);
1562	struct neighbour *neigh;
1563
1564	write_lock_bh(&tbl->lock);
1565	list_for_each_entry(neigh, &tbl->managed_list, managed_list)
1566		neigh_event_send_probe(neigh, NULL, false);
1567	queue_delayed_work(system_power_efficient_wq, &tbl->managed_work,
1568			   NEIGH_VAR(&tbl->parms, INTERVAL_PROBE_TIME_MS));
1569	write_unlock_bh(&tbl->lock);
1570}
1571
1572static void neigh_proxy_process(struct timer_list *t)
1573{
1574	struct neigh_table *tbl = from_timer(tbl, t, proxy_timer);
1575	long sched_next = 0;
1576	unsigned long now = jiffies;
1577	struct sk_buff *skb, *n;
1578
1579	spin_lock(&tbl->proxy_queue.lock);
1580
1581	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1582		long tdif = NEIGH_CB(skb)->sched_next - now;
1583
1584		if (tdif <= 0) {
1585			struct net_device *dev = skb->dev;
1586
1587			neigh_parms_qlen_dec(dev, tbl->family);
1588			__skb_unlink(skb, &tbl->proxy_queue);
1589
1590			if (tbl->proxy_redo && netif_running(dev)) {
1591				rcu_read_lock();
1592				tbl->proxy_redo(skb);
1593				rcu_read_unlock();
1594			} else {
1595				kfree_skb(skb);
1596			}
1597
1598			dev_put(dev);
1599		} else if (!sched_next || tdif < sched_next)
1600			sched_next = tdif;
1601	}
1602	del_timer(&tbl->proxy_timer);
1603	if (sched_next)
1604		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1605	spin_unlock(&tbl->proxy_queue.lock);
1606}
1607
1608static unsigned long neigh_proxy_delay(struct neigh_parms *p)
1609{
1610	/* If proxy_delay is zero, do not call get_random_u32_below()
1611	 * as it is undefined behavior.
1612	 */
1613	unsigned long proxy_delay = NEIGH_VAR(p, PROXY_DELAY);
1614
1615	return proxy_delay ?
1616	       jiffies + get_random_u32_below(proxy_delay) : jiffies;
1617}
1618
1619void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1620		    struct sk_buff *skb)
1621{
1622	unsigned long sched_next = neigh_proxy_delay(p);
 
1623
1624	if (p->qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1625		kfree_skb(skb);
1626		return;
1627	}
1628
1629	NEIGH_CB(skb)->sched_next = sched_next;
1630	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1631
1632	spin_lock(&tbl->proxy_queue.lock);
1633	if (del_timer(&tbl->proxy_timer)) {
1634		if (time_before(tbl->proxy_timer.expires, sched_next))
1635			sched_next = tbl->proxy_timer.expires;
1636	}
1637	skb_dst_drop(skb);
1638	dev_hold(skb->dev);
1639	__skb_queue_tail(&tbl->proxy_queue, skb);
1640	p->qlen++;
1641	mod_timer(&tbl->proxy_timer, sched_next);
1642	spin_unlock(&tbl->proxy_queue.lock);
1643}
1644EXPORT_SYMBOL(pneigh_enqueue);
1645
1646static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1647						      struct net *net, int ifindex)
1648{
1649	struct neigh_parms *p;
1650
1651	list_for_each_entry(p, &tbl->parms_list, list) {
1652		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1653		    (!p->dev && !ifindex && net_eq(net, &init_net)))
1654			return p;
1655	}
1656
1657	return NULL;
1658}
1659
1660struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1661				      struct neigh_table *tbl)
1662{
1663	struct neigh_parms *p;
1664	struct net *net = dev_net(dev);
1665	const struct net_device_ops *ops = dev->netdev_ops;
1666
1667	p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
 
 
 
 
1668	if (p) {
1669		p->tbl		  = tbl;
1670		refcount_set(&p->refcnt, 1);
1671		p->reachable_time =
1672				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1673		p->qlen = 0;
1674		netdev_hold(dev, &p->dev_tracker, GFP_KERNEL);
1675		p->dev = dev;
1676		write_pnet(&p->net, net);
1677		p->sysctl_table = NULL;
1678
1679		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1680			netdev_put(dev, &p->dev_tracker);
1681			kfree(p);
1682			return NULL;
1683		}
1684
 
 
 
 
1685		write_lock_bh(&tbl->lock);
1686		list_add(&p->list, &tbl->parms.list);
 
1687		write_unlock_bh(&tbl->lock);
1688
1689		neigh_parms_data_state_cleanall(p);
1690	}
1691	return p;
1692}
1693EXPORT_SYMBOL(neigh_parms_alloc);
1694
1695static void neigh_rcu_free_parms(struct rcu_head *head)
1696{
1697	struct neigh_parms *parms =
1698		container_of(head, struct neigh_parms, rcu_head);
1699
1700	neigh_parms_put(parms);
1701}
1702
1703void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1704{
 
 
1705	if (!parms || parms == &tbl->parms)
1706		return;
1707	write_lock_bh(&tbl->lock);
1708	list_del(&parms->list);
1709	parms->dead = 1;
 
 
 
 
 
 
 
 
 
1710	write_unlock_bh(&tbl->lock);
1711	netdev_put(parms->dev, &parms->dev_tracker);
1712	call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1713}
1714EXPORT_SYMBOL(neigh_parms_release);
1715
1716static void neigh_parms_destroy(struct neigh_parms *parms)
1717{
 
1718	kfree(parms);
1719}
1720
1721static struct lock_class_key neigh_table_proxy_queue_class;
1722
1723static struct neigh_table __rcu *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1724
1725void neigh_table_init(int index, struct neigh_table *tbl)
1726{
1727	unsigned long now = jiffies;
1728	unsigned long phsize;
1729
1730	INIT_LIST_HEAD(&tbl->parms_list);
1731	INIT_LIST_HEAD(&tbl->gc_list);
1732	INIT_LIST_HEAD(&tbl->managed_list);
1733
1734	list_add(&tbl->parms.list, &tbl->parms_list);
1735	write_pnet(&tbl->parms.net, &init_net);
1736	refcount_set(&tbl->parms.refcnt, 1);
1737	tbl->parms.reachable_time =
1738			  neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1739	tbl->parms.qlen = 0;
1740
 
 
 
 
 
1741	tbl->stats = alloc_percpu(struct neigh_statistics);
1742	if (!tbl->stats)
1743		panic("cannot create neighbour cache statistics");
1744
1745#ifdef CONFIG_PROC_FS
1746	if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat,
1747			      &neigh_stat_seq_ops, tbl))
1748		panic("cannot create neighbour proc dir entry");
1749#endif
1750
1751	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1752
1753	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1754	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1755
1756	if (!tbl->nht || !tbl->phash_buckets)
1757		panic("cannot allocate neighbour cache hashes");
1758
1759	if (!tbl->entry_size)
1760		tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1761					tbl->key_len, NEIGH_PRIV_ALIGN);
1762	else
1763		WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1764
1765	rwlock_init(&tbl->lock);
1766
1767	INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1768	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1769			tbl->parms.reachable_time);
1770	INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work);
1771	queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0);
1772
1773	timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0);
1774	skb_queue_head_init_class(&tbl->proxy_queue,
1775			&neigh_table_proxy_queue_class);
1776
1777	tbl->last_flush = now;
1778	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
 
 
1779
1780	rcu_assign_pointer(neigh_tables[index], tbl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781}
1782EXPORT_SYMBOL(neigh_table_init);
1783
1784/*
1785 * Only called from ndisc_cleanup(), which means this is dead code
1786 * because we no longer can unload IPv6 module.
1787 */
1788int neigh_table_clear(int index, struct neigh_table *tbl)
1789{
1790	RCU_INIT_POINTER(neigh_tables[index], NULL);
1791	synchronize_rcu();
1792
1793	/* It is not clean... Fix it to unload IPv6 module safely */
1794	cancel_delayed_work_sync(&tbl->managed_work);
1795	cancel_delayed_work_sync(&tbl->gc_work);
1796	del_timer_sync(&tbl->proxy_timer);
1797	pneigh_queue_purge(&tbl->proxy_queue, NULL, tbl->family);
1798	neigh_ifdown(tbl, NULL);
1799	if (atomic_read(&tbl->entries))
1800		pr_crit("neighbour leakage\n");
 
 
 
 
 
 
 
 
1801
1802	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1803		 neigh_hash_free_rcu);
1804	tbl->nht = NULL;
1805
1806	kfree(tbl->phash_buckets);
1807	tbl->phash_buckets = NULL;
1808
1809	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1810
1811	free_percpu(tbl->stats);
1812	tbl->stats = NULL;
1813
 
 
 
1814	return 0;
1815}
1816EXPORT_SYMBOL(neigh_table_clear);
1817
1818static struct neigh_table *neigh_find_table(int family)
1819{
1820	struct neigh_table *tbl = NULL;
1821
1822	switch (family) {
1823	case AF_INET:
1824		tbl = rcu_dereference_rtnl(neigh_tables[NEIGH_ARP_TABLE]);
1825		break;
1826	case AF_INET6:
1827		tbl = rcu_dereference_rtnl(neigh_tables[NEIGH_ND_TABLE]);
1828		break;
1829	}
1830
1831	return tbl;
1832}
1833
1834const struct nla_policy nda_policy[NDA_MAX+1] = {
1835	[NDA_UNSPEC]		= { .strict_start_type = NDA_NH_ID },
1836	[NDA_DST]		= { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1837	[NDA_LLADDR]		= { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1838	[NDA_CACHEINFO]		= { .len = sizeof(struct nda_cacheinfo) },
1839	[NDA_PROBES]		= { .type = NLA_U32 },
1840	[NDA_VLAN]		= { .type = NLA_U16 },
1841	[NDA_PORT]		= { .type = NLA_U16 },
1842	[NDA_VNI]		= { .type = NLA_U32 },
1843	[NDA_IFINDEX]		= { .type = NLA_U32 },
1844	[NDA_MASTER]		= { .type = NLA_U32 },
1845	[NDA_PROTOCOL]		= { .type = NLA_U8 },
1846	[NDA_NH_ID]		= { .type = NLA_U32 },
1847	[NDA_FLAGS_EXT]		= NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK),
1848	[NDA_FDB_EXT_ATTRS]	= { .type = NLA_NESTED },
1849};
1850
1851static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh,
1852			struct netlink_ext_ack *extack)
1853{
1854	struct net *net = sock_net(skb->sk);
1855	struct ndmsg *ndm;
1856	struct nlattr *dst_attr;
1857	struct neigh_table *tbl;
1858	struct neighbour *neigh;
1859	struct net_device *dev = NULL;
1860	int err = -EINVAL;
1861
1862	ASSERT_RTNL();
1863	if (nlmsg_len(nlh) < sizeof(*ndm))
1864		goto out;
1865
1866	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1867	if (!dst_attr) {
1868		NL_SET_ERR_MSG(extack, "Network address not specified");
1869		goto out;
1870	}
1871
1872	ndm = nlmsg_data(nlh);
1873	if (ndm->ndm_ifindex) {
1874		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1875		if (dev == NULL) {
1876			err = -ENODEV;
1877			goto out;
1878		}
1879	}
1880
1881	tbl = neigh_find_table(ndm->ndm_family);
1882	if (tbl == NULL)
1883		return -EAFNOSUPPORT;
 
 
 
 
1884
1885	if (nla_len(dst_attr) < (int)tbl->key_len) {
1886		NL_SET_ERR_MSG(extack, "Invalid network address");
1887		goto out;
1888	}
 
 
 
1889
1890	if (ndm->ndm_flags & NTF_PROXY) {
1891		err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1892		goto out;
1893	}
1894
1895	if (dev == NULL)
1896		goto out;
 
 
 
1897
1898	neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1899	if (neigh == NULL) {
1900		err = -ENOENT;
 
1901		goto out;
1902	}
1903
1904	err = __neigh_update(neigh, NULL, NUD_FAILED,
1905			     NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN,
1906			     NETLINK_CB(skb).portid, extack);
1907	write_lock_bh(&tbl->lock);
1908	neigh_release(neigh);
1909	neigh_remove_one(neigh);
1910	write_unlock_bh(&tbl->lock);
1911
1912out:
1913	return err;
1914}
1915
1916static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh,
1917		     struct netlink_ext_ack *extack)
1918{
1919	int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE |
1920		    NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1921	struct net *net = sock_net(skb->sk);
1922	struct ndmsg *ndm;
1923	struct nlattr *tb[NDA_MAX+1];
1924	struct neigh_table *tbl;
1925	struct net_device *dev = NULL;
1926	struct neighbour *neigh;
1927	void *dst, *lladdr;
1928	u8 protocol = 0;
1929	u32 ndm_flags;
1930	int err;
1931
1932	ASSERT_RTNL();
1933	err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX,
1934				     nda_policy, extack);
1935	if (err < 0)
1936		goto out;
1937
1938	err = -EINVAL;
1939	if (!tb[NDA_DST]) {
1940		NL_SET_ERR_MSG(extack, "Network address not specified");
1941		goto out;
1942	}
1943
1944	ndm = nlmsg_data(nlh);
1945	ndm_flags = ndm->ndm_flags;
1946	if (tb[NDA_FLAGS_EXT]) {
1947		u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]);
1948
1949		BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE <
1950			     (sizeof(ndm->ndm_flags) * BITS_PER_BYTE +
1951			      hweight32(NTF_EXT_MASK)));
1952		ndm_flags |= (ext << NTF_EXT_SHIFT);
1953	}
1954	if (ndm->ndm_ifindex) {
1955		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1956		if (dev == NULL) {
1957			err = -ENODEV;
1958			goto out;
1959		}
1960
1961		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) {
1962			NL_SET_ERR_MSG(extack, "Invalid link address");
1963			goto out;
1964		}
1965	}
1966
1967	tbl = neigh_find_table(ndm->ndm_family);
1968	if (tbl == NULL)
1969		return -EAFNOSUPPORT;
 
 
1970
1971	if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) {
1972		NL_SET_ERR_MSG(extack, "Invalid network address");
1973		goto out;
1974	}
1975
1976	dst = nla_data(tb[NDA_DST]);
1977	lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
 
 
1978
1979	if (tb[NDA_PROTOCOL])
1980		protocol = nla_get_u8(tb[NDA_PROTOCOL]);
1981	if (ndm_flags & NTF_PROXY) {
1982		struct pneigh_entry *pn;
1983
1984		if (ndm_flags & NTF_MANAGED) {
1985			NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination");
 
 
 
 
1986			goto out;
1987		}
1988
1989		err = -ENOBUFS;
1990		pn = pneigh_lookup(tbl, net, dst, dev, 1);
1991		if (pn) {
1992			pn->flags = ndm_flags;
1993			if (protocol)
1994				pn->protocol = protocol;
1995			err = 0;
1996		}
1997		goto out;
1998	}
1999
2000	if (!dev) {
2001		NL_SET_ERR_MSG(extack, "Device not specified");
2002		goto out;
2003	}
 
 
2004
2005	if (tbl->allow_add && !tbl->allow_add(dev, extack)) {
2006		err = -EINVAL;
2007		goto out;
2008	}
2009
2010	neigh = neigh_lookup(tbl, dst, dev);
2011	if (neigh == NULL) {
2012		bool ndm_permanent  = ndm->ndm_state & NUD_PERMANENT;
2013		bool exempt_from_gc = ndm_permanent ||
2014				      ndm_flags & NTF_EXT_LEARNED;
2015
2016		if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
2017			err = -ENOENT;
2018			goto out;
2019		}
2020		if (ndm_permanent && (ndm_flags & NTF_MANAGED)) {
2021			NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry");
2022			err = -EINVAL;
2023			goto out;
2024		}
2025
2026		neigh = ___neigh_create(tbl, dst, dev,
2027					ndm_flags &
2028					(NTF_EXT_LEARNED | NTF_MANAGED),
2029					exempt_from_gc, true);
2030		if (IS_ERR(neigh)) {
2031			err = PTR_ERR(neigh);
2032			goto out;
2033		}
2034	} else {
2035		if (nlh->nlmsg_flags & NLM_F_EXCL) {
2036			err = -EEXIST;
2037			neigh_release(neigh);
2038			goto out;
2039		}
2040
2041		if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
2042			flags &= ~(NEIGH_UPDATE_F_OVERRIDE |
2043				   NEIGH_UPDATE_F_OVERRIDE_ISROUTER);
2044	}
2045
2046	if (protocol)
2047		neigh->protocol = protocol;
2048	if (ndm_flags & NTF_EXT_LEARNED)
2049		flags |= NEIGH_UPDATE_F_EXT_LEARNED;
2050	if (ndm_flags & NTF_ROUTER)
2051		flags |= NEIGH_UPDATE_F_ISROUTER;
2052	if (ndm_flags & NTF_MANAGED)
2053		flags |= NEIGH_UPDATE_F_MANAGED;
2054	if (ndm_flags & NTF_USE)
2055		flags |= NEIGH_UPDATE_F_USE;
2056
2057	err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags,
2058			     NETLINK_CB(skb).portid, extack);
2059	if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) {
2060		neigh_event_send(neigh, NULL);
2061		err = 0;
2062	}
2063	neigh_release(neigh);
 
 
2064out:
2065	return err;
2066}
2067
2068static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
2069{
2070	struct nlattr *nest;
2071
2072	nest = nla_nest_start_noflag(skb, NDTA_PARMS);
2073	if (nest == NULL)
2074		return -ENOBUFS;
2075
2076	if ((parms->dev &&
2077	     nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
2078	    nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) ||
2079	    nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
2080			NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
2081	    /* approximative value for deprecated QUEUE_LEN (in packets) */
2082	    nla_put_u32(skb, NDTPA_QUEUE_LEN,
2083			NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
2084	    nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
2085	    nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
2086	    nla_put_u32(skb, NDTPA_UCAST_PROBES,
2087			NEIGH_VAR(parms, UCAST_PROBES)) ||
2088	    nla_put_u32(skb, NDTPA_MCAST_PROBES,
2089			NEIGH_VAR(parms, MCAST_PROBES)) ||
2090	    nla_put_u32(skb, NDTPA_MCAST_REPROBES,
2091			NEIGH_VAR(parms, MCAST_REPROBES)) ||
2092	    nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time,
2093			  NDTPA_PAD) ||
2094	    nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
2095			  NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) ||
2096	    nla_put_msecs(skb, NDTPA_GC_STALETIME,
2097			  NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) ||
2098	    nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
2099			  NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||
2100	    nla_put_msecs(skb, NDTPA_RETRANS_TIME,
2101			  NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) ||
2102	    nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
2103			  NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) ||
2104	    nla_put_msecs(skb, NDTPA_PROXY_DELAY,
2105			  NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) ||
2106	    nla_put_msecs(skb, NDTPA_LOCKTIME,
2107			  NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD) ||
2108	    nla_put_msecs(skb, NDTPA_INTERVAL_PROBE_TIME_MS,
2109			  NEIGH_VAR(parms, INTERVAL_PROBE_TIME_MS), NDTPA_PAD))
2110		goto nla_put_failure;
2111	return nla_nest_end(skb, nest);
2112
2113nla_put_failure:
2114	nla_nest_cancel(skb, nest);
2115	return -EMSGSIZE;
2116}
2117
2118static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
2119			      u32 pid, u32 seq, int type, int flags)
2120{
2121	struct nlmsghdr *nlh;
2122	struct ndtmsg *ndtmsg;
2123
2124	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2125	if (nlh == NULL)
2126		return -EMSGSIZE;
2127
2128	ndtmsg = nlmsg_data(nlh);
2129
2130	read_lock_bh(&tbl->lock);
2131	ndtmsg->ndtm_family = tbl->family;
2132	ndtmsg->ndtm_pad1   = 0;
2133	ndtmsg->ndtm_pad2   = 0;
2134
2135	if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
2136	    nla_put_msecs(skb, NDTA_GC_INTERVAL, READ_ONCE(tbl->gc_interval),
2137			  NDTA_PAD) ||
2138	    nla_put_u32(skb, NDTA_THRESH1, READ_ONCE(tbl->gc_thresh1)) ||
2139	    nla_put_u32(skb, NDTA_THRESH2, READ_ONCE(tbl->gc_thresh2)) ||
2140	    nla_put_u32(skb, NDTA_THRESH3, READ_ONCE(tbl->gc_thresh3)))
2141		goto nla_put_failure;
2142	{
2143		unsigned long now = jiffies;
2144		long flush_delta = now - READ_ONCE(tbl->last_flush);
2145		long rand_delta = now - READ_ONCE(tbl->last_rand);
2146		struct neigh_hash_table *nht;
2147		struct ndt_config ndc = {
2148			.ndtc_key_len		= tbl->key_len,
2149			.ndtc_entry_size	= tbl->entry_size,
2150			.ndtc_entries		= atomic_read(&tbl->entries),
2151			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
2152			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
2153			.ndtc_proxy_qlen	= READ_ONCE(tbl->proxy_queue.qlen),
2154		};
2155
2156		rcu_read_lock();
2157		nht = rcu_dereference(tbl->nht);
2158		ndc.ndtc_hash_rnd = nht->hash_rnd[0];
2159		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
2160		rcu_read_unlock();
2161
2162		if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
2163			goto nla_put_failure;
2164	}
2165
2166	{
2167		int cpu;
2168		struct ndt_stats ndst;
2169
2170		memset(&ndst, 0, sizeof(ndst));
2171
2172		for_each_possible_cpu(cpu) {
2173			struct neigh_statistics	*st;
2174
2175			st = per_cpu_ptr(tbl->stats, cpu);
2176			ndst.ndts_allocs		+= READ_ONCE(st->allocs);
2177			ndst.ndts_destroys		+= READ_ONCE(st->destroys);
2178			ndst.ndts_hash_grows		+= READ_ONCE(st->hash_grows);
2179			ndst.ndts_res_failed		+= READ_ONCE(st->res_failed);
2180			ndst.ndts_lookups		+= READ_ONCE(st->lookups);
2181			ndst.ndts_hits			+= READ_ONCE(st->hits);
2182			ndst.ndts_rcv_probes_mcast	+= READ_ONCE(st->rcv_probes_mcast);
2183			ndst.ndts_rcv_probes_ucast	+= READ_ONCE(st->rcv_probes_ucast);
2184			ndst.ndts_periodic_gc_runs	+= READ_ONCE(st->periodic_gc_runs);
2185			ndst.ndts_forced_gc_runs	+= READ_ONCE(st->forced_gc_runs);
2186			ndst.ndts_table_fulls		+= READ_ONCE(st->table_fulls);
2187		}
2188
2189		if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst,
2190				  NDTA_PAD))
2191			goto nla_put_failure;
2192	}
2193
2194	BUG_ON(tbl->parms.dev);
2195	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
2196		goto nla_put_failure;
2197
2198	read_unlock_bh(&tbl->lock);
2199	nlmsg_end(skb, nlh);
2200	return 0;
2201
2202nla_put_failure:
2203	read_unlock_bh(&tbl->lock);
2204	nlmsg_cancel(skb, nlh);
2205	return -EMSGSIZE;
2206}
2207
2208static int neightbl_fill_param_info(struct sk_buff *skb,
2209				    struct neigh_table *tbl,
2210				    struct neigh_parms *parms,
2211				    u32 pid, u32 seq, int type,
2212				    unsigned int flags)
2213{
2214	struct ndtmsg *ndtmsg;
2215	struct nlmsghdr *nlh;
2216
2217	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2218	if (nlh == NULL)
2219		return -EMSGSIZE;
2220
2221	ndtmsg = nlmsg_data(nlh);
2222
2223	read_lock_bh(&tbl->lock);
2224	ndtmsg->ndtm_family = tbl->family;
2225	ndtmsg->ndtm_pad1   = 0;
2226	ndtmsg->ndtm_pad2   = 0;
2227
2228	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
2229	    neightbl_fill_parms(skb, parms) < 0)
2230		goto errout;
2231
2232	read_unlock_bh(&tbl->lock);
2233	nlmsg_end(skb, nlh);
2234	return 0;
2235errout:
2236	read_unlock_bh(&tbl->lock);
2237	nlmsg_cancel(skb, nlh);
2238	return -EMSGSIZE;
2239}
2240
2241static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
2242	[NDTA_NAME]		= { .type = NLA_STRING },
2243	[NDTA_THRESH1]		= { .type = NLA_U32 },
2244	[NDTA_THRESH2]		= { .type = NLA_U32 },
2245	[NDTA_THRESH3]		= { .type = NLA_U32 },
2246	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
2247	[NDTA_PARMS]		= { .type = NLA_NESTED },
2248};
2249
2250static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
2251	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
2252	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
2253	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
2254	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
2255	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
2256	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
2257	[NDTPA_MCAST_REPROBES]		= { .type = NLA_U32 },
2258	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
2259	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
2260	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
2261	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
2262	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
2263	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
2264	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
2265	[NDTPA_INTERVAL_PROBE_TIME_MS]	= { .type = NLA_U64, .min = 1 },
2266};
2267
2268static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh,
2269			struct netlink_ext_ack *extack)
2270{
2271	struct net *net = sock_net(skb->sk);
2272	struct neigh_table *tbl;
2273	struct ndtmsg *ndtmsg;
2274	struct nlattr *tb[NDTA_MAX+1];
2275	bool found = false;
2276	int err, tidx;
2277
2278	err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
2279				     nl_neightbl_policy, extack);
2280	if (err < 0)
2281		goto errout;
2282
2283	if (tb[NDTA_NAME] == NULL) {
2284		err = -EINVAL;
2285		goto errout;
2286	}
2287
2288	ndtmsg = nlmsg_data(nlh);
2289
2290	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2291		tbl = rcu_dereference_rtnl(neigh_tables[tidx]);
2292		if (!tbl)
2293			continue;
2294		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
2295			continue;
2296		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
2297			found = true;
2298			break;
2299		}
2300	}
2301
2302	if (!found)
2303		return -ENOENT;
 
 
2304
2305	/*
2306	 * We acquire tbl->lock to be nice to the periodic timers and
2307	 * make sure they always see a consistent set of values.
2308	 */
2309	write_lock_bh(&tbl->lock);
2310
2311	if (tb[NDTA_PARMS]) {
2312		struct nlattr *tbp[NDTPA_MAX+1];
2313		struct neigh_parms *p;
2314		int i, ifindex = 0;
2315
2316		err = nla_parse_nested_deprecated(tbp, NDTPA_MAX,
2317						  tb[NDTA_PARMS],
2318						  nl_ntbl_parm_policy, extack);
2319		if (err < 0)
2320			goto errout_tbl_lock;
2321
2322		if (tbp[NDTPA_IFINDEX])
2323			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2324
2325		p = lookup_neigh_parms(tbl, net, ifindex);
2326		if (p == NULL) {
2327			err = -ENOENT;
2328			goto errout_tbl_lock;
2329		}
2330
2331		for (i = 1; i <= NDTPA_MAX; i++) {
2332			if (tbp[i] == NULL)
2333				continue;
2334
2335			switch (i) {
2336			case NDTPA_QUEUE_LEN:
2337				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2338					      nla_get_u32(tbp[i]) *
2339					      SKB_TRUESIZE(ETH_FRAME_LEN));
2340				break;
2341			case NDTPA_QUEUE_LENBYTES:
2342				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2343					      nla_get_u32(tbp[i]));
2344				break;
2345			case NDTPA_PROXY_QLEN:
2346				NEIGH_VAR_SET(p, PROXY_QLEN,
2347					      nla_get_u32(tbp[i]));
2348				break;
2349			case NDTPA_APP_PROBES:
2350				NEIGH_VAR_SET(p, APP_PROBES,
2351					      nla_get_u32(tbp[i]));
2352				break;
2353			case NDTPA_UCAST_PROBES:
2354				NEIGH_VAR_SET(p, UCAST_PROBES,
2355					      nla_get_u32(tbp[i]));
2356				break;
2357			case NDTPA_MCAST_PROBES:
2358				NEIGH_VAR_SET(p, MCAST_PROBES,
2359					      nla_get_u32(tbp[i]));
2360				break;
2361			case NDTPA_MCAST_REPROBES:
2362				NEIGH_VAR_SET(p, MCAST_REPROBES,
2363					      nla_get_u32(tbp[i]));
2364				break;
2365			case NDTPA_BASE_REACHABLE_TIME:
2366				NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2367					      nla_get_msecs(tbp[i]));
2368				/* update reachable_time as well, otherwise, the change will
2369				 * only be effective after the next time neigh_periodic_work
2370				 * decides to recompute it (can be multiple minutes)
2371				 */
2372				p->reachable_time =
2373					neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2374				break;
2375			case NDTPA_GC_STALETIME:
2376				NEIGH_VAR_SET(p, GC_STALETIME,
2377					      nla_get_msecs(tbp[i]));
2378				break;
2379			case NDTPA_DELAY_PROBE_TIME:
2380				NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2381					      nla_get_msecs(tbp[i]));
2382				call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
2383				break;
2384			case NDTPA_INTERVAL_PROBE_TIME_MS:
2385				NEIGH_VAR_SET(p, INTERVAL_PROBE_TIME_MS,
2386					      nla_get_msecs(tbp[i]));
2387				break;
2388			case NDTPA_RETRANS_TIME:
2389				NEIGH_VAR_SET(p, RETRANS_TIME,
2390					      nla_get_msecs(tbp[i]));
2391				break;
2392			case NDTPA_ANYCAST_DELAY:
2393				NEIGH_VAR_SET(p, ANYCAST_DELAY,
2394					      nla_get_msecs(tbp[i]));
2395				break;
2396			case NDTPA_PROXY_DELAY:
2397				NEIGH_VAR_SET(p, PROXY_DELAY,
2398					      nla_get_msecs(tbp[i]));
2399				break;
2400			case NDTPA_LOCKTIME:
2401				NEIGH_VAR_SET(p, LOCKTIME,
2402					      nla_get_msecs(tbp[i]));
2403				break;
2404			}
2405		}
2406	}
2407
2408	err = -ENOENT;
2409	if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2410	     tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2411	    !net_eq(net, &init_net))
2412		goto errout_tbl_lock;
2413
2414	if (tb[NDTA_THRESH1])
2415		WRITE_ONCE(tbl->gc_thresh1, nla_get_u32(tb[NDTA_THRESH1]));
2416
2417	if (tb[NDTA_THRESH2])
2418		WRITE_ONCE(tbl->gc_thresh2, nla_get_u32(tb[NDTA_THRESH2]));
2419
2420	if (tb[NDTA_THRESH3])
2421		WRITE_ONCE(tbl->gc_thresh3, nla_get_u32(tb[NDTA_THRESH3]));
2422
2423	if (tb[NDTA_GC_INTERVAL])
2424		WRITE_ONCE(tbl->gc_interval, nla_get_msecs(tb[NDTA_GC_INTERVAL]));
2425
2426	err = 0;
2427
2428errout_tbl_lock:
2429	write_unlock_bh(&tbl->lock);
 
 
2430errout:
2431	return err;
2432}
2433
2434static int neightbl_valid_dump_info(const struct nlmsghdr *nlh,
2435				    struct netlink_ext_ack *extack)
2436{
2437	struct ndtmsg *ndtm;
2438
2439	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) {
2440		NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request");
2441		return -EINVAL;
2442	}
2443
2444	ndtm = nlmsg_data(nlh);
2445	if (ndtm->ndtm_pad1  || ndtm->ndtm_pad2) {
2446		NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request");
2447		return -EINVAL;
2448	}
2449
2450	if (nlmsg_attrlen(nlh, sizeof(*ndtm))) {
2451		NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request");
2452		return -EINVAL;
2453	}
2454
2455	return 0;
2456}
2457
2458static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2459{
2460	const struct nlmsghdr *nlh = cb->nlh;
2461	struct net *net = sock_net(skb->sk);
2462	int family, tidx, nidx = 0;
2463	int tbl_skip = cb->args[0];
2464	int neigh_skip = cb->args[1];
2465	struct neigh_table *tbl;
2466
2467	if (cb->strict_check) {
2468		int err = neightbl_valid_dump_info(nlh, cb->extack);
2469
2470		if (err < 0)
2471			return err;
2472	}
2473
2474	family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2475
2476	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2477		struct neigh_parms *p;
2478
2479		tbl = rcu_dereference_rtnl(neigh_tables[tidx]);
2480		if (!tbl)
2481			continue;
2482
2483		if (tidx < tbl_skip || (family && tbl->family != family))
2484			continue;
2485
2486		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2487				       nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2488				       NLM_F_MULTI) < 0)
2489			break;
2490
2491		nidx = 0;
2492		p = list_next_entry(&tbl->parms, list);
2493		list_for_each_entry_from(p, &tbl->parms_list, list) {
2494			if (!net_eq(neigh_parms_net(p), net))
2495				continue;
2496
2497			if (nidx < neigh_skip)
2498				goto next;
2499
2500			if (neightbl_fill_param_info(skb, tbl, p,
2501						     NETLINK_CB(cb->skb).portid,
2502						     nlh->nlmsg_seq,
2503						     RTM_NEWNEIGHTBL,
2504						     NLM_F_MULTI) < 0)
2505				goto out;
2506		next:
2507			nidx++;
2508		}
2509
2510		neigh_skip = 0;
2511	}
2512out:
 
2513	cb->args[0] = tidx;
2514	cb->args[1] = nidx;
2515
2516	return skb->len;
2517}
2518
2519static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2520			   u32 pid, u32 seq, int type, unsigned int flags)
2521{
2522	u32 neigh_flags, neigh_flags_ext;
2523	unsigned long now = jiffies;
2524	struct nda_cacheinfo ci;
2525	struct nlmsghdr *nlh;
2526	struct ndmsg *ndm;
2527
2528	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2529	if (nlh == NULL)
2530		return -EMSGSIZE;
2531
2532	neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT;
2533	neigh_flags     = neigh->flags & NTF_OLD_MASK;
2534
2535	ndm = nlmsg_data(nlh);
2536	ndm->ndm_family	 = neigh->ops->family;
2537	ndm->ndm_pad1    = 0;
2538	ndm->ndm_pad2    = 0;
2539	ndm->ndm_flags	 = neigh_flags;
2540	ndm->ndm_type	 = neigh->type;
2541	ndm->ndm_ifindex = neigh->dev->ifindex;
2542
2543	if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2544		goto nla_put_failure;
2545
2546	read_lock_bh(&neigh->lock);
2547	ndm->ndm_state	 = neigh->nud_state;
2548	if (neigh->nud_state & NUD_VALID) {
2549		char haddr[MAX_ADDR_LEN];
2550
2551		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2552		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2553			read_unlock_bh(&neigh->lock);
2554			goto nla_put_failure;
2555		}
2556	}
2557
2558	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2559	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2560	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2561	ci.ndm_refcnt	 = refcount_read(&neigh->refcnt) - 1;
2562	read_unlock_bh(&neigh->lock);
2563
2564	if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2565	    nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2566		goto nla_put_failure;
2567
2568	if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol))
2569		goto nla_put_failure;
2570	if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2571		goto nla_put_failure;
2572
2573	nlmsg_end(skb, nlh);
2574	return 0;
2575
2576nla_put_failure:
2577	nlmsg_cancel(skb, nlh);
2578	return -EMSGSIZE;
2579}
2580
2581static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2582			    u32 pid, u32 seq, int type, unsigned int flags,
2583			    struct neigh_table *tbl)
2584{
2585	u32 neigh_flags, neigh_flags_ext;
2586	struct nlmsghdr *nlh;
2587	struct ndmsg *ndm;
2588
2589	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2590	if (nlh == NULL)
2591		return -EMSGSIZE;
2592
2593	neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT;
2594	neigh_flags     = pn->flags & NTF_OLD_MASK;
2595
2596	ndm = nlmsg_data(nlh);
2597	ndm->ndm_family	 = tbl->family;
2598	ndm->ndm_pad1    = 0;
2599	ndm->ndm_pad2    = 0;
2600	ndm->ndm_flags	 = neigh_flags | NTF_PROXY;
2601	ndm->ndm_type	 = RTN_UNICAST;
2602	ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
2603	ndm->ndm_state	 = NUD_NONE;
2604
2605	if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2606		goto nla_put_failure;
2607
2608	if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol))
2609		goto nla_put_failure;
2610	if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2611		goto nla_put_failure;
2612
2613	nlmsg_end(skb, nlh);
2614	return 0;
2615
2616nla_put_failure:
2617	nlmsg_cancel(skb, nlh);
2618	return -EMSGSIZE;
2619}
2620
2621static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid)
2622{
2623	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2624	__neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid);
2625}
2626
2627static bool neigh_master_filtered(struct net_device *dev, int master_idx)
2628{
2629	struct net_device *master;
2630
2631	if (!master_idx)
2632		return false;
2633
2634	master = dev ? netdev_master_upper_dev_get_rcu(dev) : NULL;
2635
2636	/* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another
2637	 * invalid value for ifindex to denote "no master".
2638	 */
2639	if (master_idx == -1)
2640		return !!master;
2641
2642	if (!master || master->ifindex != master_idx)
2643		return true;
2644
2645	return false;
2646}
2647
2648static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
2649{
2650	if (filter_idx && (!dev || dev->ifindex != filter_idx))
2651		return true;
2652
2653	return false;
2654}
2655
2656struct neigh_dump_filter {
2657	int master_idx;
2658	int dev_idx;
2659};
2660
2661static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2662			    struct netlink_callback *cb,
2663			    struct neigh_dump_filter *filter)
2664{
2665	struct net *net = sock_net(skb->sk);
2666	struct neighbour *n;
2667	int err = 0, h, s_h = cb->args[1];
2668	int idx, s_idx = idx = cb->args[2];
2669	struct neigh_hash_table *nht;
2670	unsigned int flags = NLM_F_MULTI;
2671
2672	if (filter->dev_idx || filter->master_idx)
2673		flags |= NLM_F_DUMP_FILTERED;
2674
2675	nht = rcu_dereference(tbl->nht);
2676
2677	for (h = s_h; h < (1 << nht->hash_shift); h++) {
2678		if (h > s_h)
2679			s_idx = 0;
2680		idx = 0;
2681		neigh_for_each_in_bucket_rcu(n, &nht->hash_heads[h]) {
2682			if (idx < s_idx || !net_eq(dev_net(n->dev), net))
 
 
 
2683				goto next;
2684			if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2685			    neigh_master_filtered(n->dev, filter->master_idx))
2686				goto next;
2687			err = neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2688					      cb->nlh->nlmsg_seq,
2689					      RTM_NEWNEIGH, flags);
2690			if (err < 0)
2691				goto out;
 
2692next:
2693			idx++;
2694		}
2695	}
 
2696out:
 
2697	cb->args[1] = h;
2698	cb->args[2] = idx;
2699	return err;
2700}
2701
2702static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2703			     struct netlink_callback *cb,
2704			     struct neigh_dump_filter *filter)
2705{
2706	struct pneigh_entry *n;
2707	struct net *net = sock_net(skb->sk);
2708	int err = 0, h, s_h = cb->args[3];
2709	int idx, s_idx = idx = cb->args[4];
2710	unsigned int flags = NLM_F_MULTI;
2711
2712	if (filter->dev_idx || filter->master_idx)
2713		flags |= NLM_F_DUMP_FILTERED;
2714
2715	read_lock_bh(&tbl->lock);
2716
2717	for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2718		if (h > s_h)
2719			s_idx = 0;
2720		for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2721			if (idx < s_idx || pneigh_net(n) != net)
2722				goto next;
2723			if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2724			    neigh_master_filtered(n->dev, filter->master_idx))
2725				goto next;
2726			err = pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2727					       cb->nlh->nlmsg_seq,
2728					       RTM_NEWNEIGH, flags, tbl);
2729			if (err < 0) {
2730				read_unlock_bh(&tbl->lock);
2731				goto out;
2732			}
2733		next:
2734			idx++;
2735		}
2736	}
2737
2738	read_unlock_bh(&tbl->lock);
2739out:
2740	cb->args[3] = h;
2741	cb->args[4] = idx;
2742	return err;
2743}
2744
2745static int neigh_valid_dump_req(const struct nlmsghdr *nlh,
2746				bool strict_check,
2747				struct neigh_dump_filter *filter,
2748				struct netlink_ext_ack *extack)
2749{
2750	struct nlattr *tb[NDA_MAX + 1];
2751	int err, i;
2752
2753	if (strict_check) {
2754		struct ndmsg *ndm;
2755
2756		if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2757			NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request");
2758			return -EINVAL;
2759		}
2760
2761		ndm = nlmsg_data(nlh);
2762		if (ndm->ndm_pad1  || ndm->ndm_pad2  || ndm->ndm_ifindex ||
2763		    ndm->ndm_state || ndm->ndm_type) {
2764			NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request");
2765			return -EINVAL;
2766		}
2767
2768		if (ndm->ndm_flags & ~NTF_PROXY) {
2769			NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request");
2770			return -EINVAL;
2771		}
2772
2773		err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg),
2774						    tb, NDA_MAX, nda_policy,
2775						    extack);
2776	} else {
2777		err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb,
2778					     NDA_MAX, nda_policy, extack);
2779	}
2780	if (err < 0)
2781		return err;
2782
2783	for (i = 0; i <= NDA_MAX; ++i) {
2784		if (!tb[i])
2785			continue;
2786
2787		/* all new attributes should require strict_check */
2788		switch (i) {
2789		case NDA_IFINDEX:
2790			filter->dev_idx = nla_get_u32(tb[i]);
2791			break;
2792		case NDA_MASTER:
2793			filter->master_idx = nla_get_u32(tb[i]);
2794			break;
2795		default:
2796			if (strict_check) {
2797				NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request");
2798				return -EINVAL;
2799			}
2800		}
2801	}
2802
2803	return 0;
2804}
2805
2806static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2807{
2808	const struct nlmsghdr *nlh = cb->nlh;
2809	struct neigh_dump_filter filter = {};
2810	struct neigh_table *tbl;
2811	int t, family, s_t;
2812	int proxy = 0;
2813	int err;
2814
2815	family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2816
2817	/* check for full ndmsg structure presence, family member is
2818	 * the same for both structures
2819	 */
2820	if (nlmsg_len(nlh) >= sizeof(struct ndmsg) &&
2821	    ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY)
2822		proxy = 1;
2823
2824	err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack);
2825	if (err < 0 && cb->strict_check)
2826		return err;
2827	err = 0;
2828
 
 
2829	s_t = cb->args[0];
2830
2831	rcu_read_lock();
2832	for (t = 0; t < NEIGH_NR_TABLES; t++) {
2833		tbl = rcu_dereference(neigh_tables[t]);
2834
2835		if (!tbl)
2836			continue;
2837		if (t < s_t || (family && tbl->family != family))
2838			continue;
2839		if (t > s_t)
2840			memset(&cb->args[1], 0, sizeof(cb->args) -
2841						sizeof(cb->args[0]));
2842		if (proxy)
2843			err = pneigh_dump_table(tbl, skb, cb, &filter);
2844		else
2845			err = neigh_dump_table(tbl, skb, cb, &filter);
2846		if (err < 0)
2847			break;
2848	}
2849	rcu_read_unlock();
2850
2851	cb->args[0] = t;
2852	return err;
2853}
2854
2855static int neigh_valid_get_req(const struct nlmsghdr *nlh,
2856			       struct neigh_table **tbl,
2857			       void **dst, int *dev_idx, u8 *ndm_flags,
2858			       struct netlink_ext_ack *extack)
2859{
2860	struct nlattr *tb[NDA_MAX + 1];
2861	struct ndmsg *ndm;
2862	int err, i;
2863
2864	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2865		NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request");
2866		return -EINVAL;
2867	}
2868
2869	ndm = nlmsg_data(nlh);
2870	if (ndm->ndm_pad1  || ndm->ndm_pad2  || ndm->ndm_state ||
2871	    ndm->ndm_type) {
2872		NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request");
2873		return -EINVAL;
2874	}
2875
2876	if (ndm->ndm_flags & ~NTF_PROXY) {
2877		NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request");
2878		return -EINVAL;
2879	}
2880
2881	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb,
2882					    NDA_MAX, nda_policy, extack);
2883	if (err < 0)
2884		return err;
2885
2886	*ndm_flags = ndm->ndm_flags;
2887	*dev_idx = ndm->ndm_ifindex;
2888	*tbl = neigh_find_table(ndm->ndm_family);
2889	if (*tbl == NULL) {
2890		NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request");
2891		return -EAFNOSUPPORT;
2892	}
2893
2894	for (i = 0; i <= NDA_MAX; ++i) {
2895		if (!tb[i])
2896			continue;
2897
2898		switch (i) {
2899		case NDA_DST:
2900			if (nla_len(tb[i]) != (int)(*tbl)->key_len) {
2901				NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request");
2902				return -EINVAL;
2903			}
2904			*dst = nla_data(tb[i]);
2905			break;
2906		default:
2907			NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request");
2908			return -EINVAL;
2909		}
2910	}
2911
2912	return 0;
2913}
2914
2915static inline size_t neigh_nlmsg_size(void)
2916{
2917	return NLMSG_ALIGN(sizeof(struct ndmsg))
2918	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2919	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2920	       + nla_total_size(sizeof(struct nda_cacheinfo))
2921	       + nla_total_size(4)  /* NDA_PROBES */
2922	       + nla_total_size(4)  /* NDA_FLAGS_EXT */
2923	       + nla_total_size(1); /* NDA_PROTOCOL */
2924}
2925
2926static int neigh_get_reply(struct net *net, struct neighbour *neigh,
2927			   u32 pid, u32 seq)
2928{
2929	struct sk_buff *skb;
2930	int err = 0;
2931
2932	skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL);
2933	if (!skb)
2934		return -ENOBUFS;
2935
2936	err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0);
2937	if (err) {
2938		kfree_skb(skb);
2939		goto errout;
2940	}
2941
2942	err = rtnl_unicast(skb, net, pid);
2943errout:
2944	return err;
2945}
2946
2947static inline size_t pneigh_nlmsg_size(void)
2948{
2949	return NLMSG_ALIGN(sizeof(struct ndmsg))
2950	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2951	       + nla_total_size(4)  /* NDA_FLAGS_EXT */
2952	       + nla_total_size(1); /* NDA_PROTOCOL */
2953}
2954
2955static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh,
2956			    u32 pid, u32 seq, struct neigh_table *tbl)
2957{
2958	struct sk_buff *skb;
2959	int err = 0;
2960
2961	skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL);
2962	if (!skb)
2963		return -ENOBUFS;
2964
2965	err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl);
2966	if (err) {
2967		kfree_skb(skb);
2968		goto errout;
2969	}
2970
2971	err = rtnl_unicast(skb, net, pid);
2972errout:
2973	return err;
2974}
2975
2976static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2977		     struct netlink_ext_ack *extack)
2978{
2979	struct net *net = sock_net(in_skb->sk);
2980	struct net_device *dev = NULL;
2981	struct neigh_table *tbl = NULL;
2982	struct neighbour *neigh;
2983	void *dst = NULL;
2984	u8 ndm_flags = 0;
2985	int dev_idx = 0;
2986	int err;
2987
2988	err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags,
2989				  extack);
2990	if (err < 0)
2991		return err;
2992
2993	if (dev_idx) {
2994		dev = __dev_get_by_index(net, dev_idx);
2995		if (!dev) {
2996			NL_SET_ERR_MSG(extack, "Unknown device ifindex");
2997			return -ENODEV;
2998		}
2999	}
3000
3001	if (!dst) {
3002		NL_SET_ERR_MSG(extack, "Network address not specified");
3003		return -EINVAL;
3004	}
3005
3006	if (ndm_flags & NTF_PROXY) {
3007		struct pneigh_entry *pn;
3008
3009		pn = pneigh_lookup(tbl, net, dst, dev, 0);
3010		if (!pn) {
3011			NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found");
3012			return -ENOENT;
3013		}
3014		return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid,
3015					nlh->nlmsg_seq, tbl);
3016	}
3017
3018	if (!dev) {
3019		NL_SET_ERR_MSG(extack, "No device specified");
3020		return -EINVAL;
3021	}
3022
3023	neigh = neigh_lookup(tbl, dst, dev);
3024	if (!neigh) {
3025		NL_SET_ERR_MSG(extack, "Neighbour entry not found");
3026		return -ENOENT;
3027	}
3028
3029	err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid,
3030			      nlh->nlmsg_seq);
3031
3032	neigh_release(neigh);
3033
3034	return err;
3035}
3036
3037void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
3038{
3039	int chain;
3040	struct neigh_hash_table *nht;
3041
3042	rcu_read_lock();
3043	nht = rcu_dereference(tbl->nht);
3044
3045	read_lock_bh(&tbl->lock); /* avoid resizes */
3046	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3047		struct neighbour *n;
3048
3049		neigh_for_each_in_bucket(n, &nht->hash_heads[chain])
 
 
3050			cb(n, cookie);
3051	}
3052	read_unlock_bh(&tbl->lock);
3053	rcu_read_unlock();
3054}
3055EXPORT_SYMBOL(neigh_for_each);
3056
3057/* The tbl->lock must be held as a writer and BH disabled. */
3058void __neigh_for_each_release(struct neigh_table *tbl,
3059			      int (*cb)(struct neighbour *))
3060{
 
3061	struct neigh_hash_table *nht;
3062	int chain;
3063
3064	nht = rcu_dereference_protected(tbl->nht,
3065					lockdep_is_held(&tbl->lock));
3066	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3067		struct hlist_node *tmp;
3068		struct neighbour *n;
 
3069
3070		neigh_for_each_in_bucket_safe(n, tmp, &nht->hash_heads[chain]) {
 
 
3071			int release;
3072
3073			write_lock(&n->lock);
3074			release = cb(n);
3075			if (release) {
3076				hlist_del_rcu(&n->hash);
3077				hlist_del_rcu(&n->dev_list);
3078				neigh_mark_dead(n);
3079			}
 
 
3080			write_unlock(&n->lock);
3081			if (release)
3082				neigh_cleanup_and_release(n);
3083		}
3084	}
3085}
3086EXPORT_SYMBOL(__neigh_for_each_release);
3087
3088int neigh_xmit(int index, struct net_device *dev,
3089	       const void *addr, struct sk_buff *skb)
3090{
3091	int err = -EAFNOSUPPORT;
3092
3093	if (likely(index < NEIGH_NR_TABLES)) {
3094		struct neigh_table *tbl;
3095		struct neighbour *neigh;
3096
3097		rcu_read_lock();
3098		tbl = rcu_dereference(neigh_tables[index]);
3099		if (!tbl)
3100			goto out_unlock;
3101		if (index == NEIGH_ARP_TABLE) {
3102			u32 key = *((u32 *)addr);
3103
3104			neigh = __ipv4_neigh_lookup_noref(dev, key);
3105		} else {
3106			neigh = __neigh_lookup_noref(tbl, addr, dev);
3107		}
3108		if (!neigh)
3109			neigh = __neigh_create(tbl, addr, dev, false);
3110		err = PTR_ERR(neigh);
3111		if (IS_ERR(neigh)) {
3112			rcu_read_unlock();
3113			goto out_kfree_skb;
3114		}
3115		err = READ_ONCE(neigh->output)(neigh, skb);
3116out_unlock:
3117		rcu_read_unlock();
3118	}
3119	else if (index == NEIGH_LINK_TABLE) {
3120		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
3121				      addr, NULL, skb->len);
3122		if (err < 0)
3123			goto out_kfree_skb;
3124		err = dev_queue_xmit(skb);
3125	}
3126out:
3127	return err;
3128out_kfree_skb:
3129	kfree_skb(skb);
3130	goto out;
3131}
3132EXPORT_SYMBOL(neigh_xmit);
3133
3134#ifdef CONFIG_PROC_FS
3135
3136static struct neighbour *neigh_get_valid(struct seq_file *seq,
3137					 struct neighbour *n,
3138					 loff_t *pos)
3139{
3140	struct neigh_seq_state *state = seq->private;
3141	struct net *net = seq_file_net(seq);
3142
3143	if (!net_eq(dev_net(n->dev), net))
3144		return NULL;
3145
3146	if (state->neigh_sub_iter) {
3147		loff_t fakep = 0;
3148		void *v;
3149
3150		v = state->neigh_sub_iter(state, n, pos ? pos : &fakep);
3151		if (!v)
3152			return NULL;
3153		if (pos)
3154			return v;
3155	}
3156
3157	if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3158		return n;
3159
3160	if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
3161		return n;
3162
3163	return NULL;
3164}
3165
3166static struct neighbour *neigh_get_first(struct seq_file *seq)
3167{
3168	struct neigh_seq_state *state = seq->private;
3169	struct neigh_hash_table *nht = state->nht;
3170	struct neighbour *n, *tmp;
 
3171
3172	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
 
 
3173
3174	while (++state->bucket < (1 << nht->hash_shift)) {
3175		neigh_for_each_in_bucket(n, &nht->hash_heads[state->bucket]) {
3176			tmp = neigh_get_valid(seq, n, NULL);
3177			if (tmp)
3178				return tmp;
 
 
 
 
 
 
 
 
 
 
 
 
3179		}
 
 
 
3180	}
 
3181
3182	return NULL;
3183}
3184
3185static struct neighbour *neigh_get_next(struct seq_file *seq,
3186					struct neighbour *n,
3187					loff_t *pos)
3188{
3189	struct neigh_seq_state *state = seq->private;
3190	struct neighbour *tmp;
 
3191
3192	if (state->neigh_sub_iter) {
3193		void *v = state->neigh_sub_iter(state, n, pos);
3194
3195		if (v)
3196			return n;
3197	}
 
3198
3199	hlist_for_each_entry_continue(n, hash) {
3200		tmp = neigh_get_valid(seq, n, pos);
3201		if (tmp) {
3202			n = tmp;
3203			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
3204		}
 
 
 
 
 
 
 
 
3205	}
3206
3207	n = neigh_get_first(seq);
3208out:
3209	if (n && pos)
3210		--(*pos);
3211
3212	return n;
3213}
3214
3215static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
3216{
3217	struct neighbour *n = neigh_get_first(seq);
3218
3219	if (n) {
3220		--(*pos);
3221		while (*pos) {
3222			n = neigh_get_next(seq, n, pos);
3223			if (!n)
3224				break;
3225		}
3226	}
3227	return *pos ? NULL : n;
3228}
3229
3230static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
3231{
3232	struct neigh_seq_state *state = seq->private;
3233	struct net *net = seq_file_net(seq);
3234	struct neigh_table *tbl = state->tbl;
3235	struct pneigh_entry *pn = NULL;
3236	int bucket;
3237
3238	state->flags |= NEIGH_SEQ_IS_PNEIGH;
3239	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
3240		pn = tbl->phash_buckets[bucket];
3241		while (pn && !net_eq(pneigh_net(pn), net))
3242			pn = pn->next;
3243		if (pn)
3244			break;
3245	}
3246	state->bucket = bucket;
3247
3248	return pn;
3249}
3250
3251static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
3252					    struct pneigh_entry *pn,
3253					    loff_t *pos)
3254{
3255	struct neigh_seq_state *state = seq->private;
3256	struct net *net = seq_file_net(seq);
3257	struct neigh_table *tbl = state->tbl;
3258
3259	do {
3260		pn = pn->next;
3261	} while (pn && !net_eq(pneigh_net(pn), net));
3262
3263	while (!pn) {
3264		if (++state->bucket > PNEIGH_HASHMASK)
3265			break;
3266		pn = tbl->phash_buckets[state->bucket];
3267		while (pn && !net_eq(pneigh_net(pn), net))
3268			pn = pn->next;
3269		if (pn)
3270			break;
3271	}
3272
3273	if (pn && pos)
3274		--(*pos);
3275
3276	return pn;
3277}
3278
3279static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
3280{
3281	struct pneigh_entry *pn = pneigh_get_first(seq);
3282
3283	if (pn) {
3284		--(*pos);
3285		while (*pos) {
3286			pn = pneigh_get_next(seq, pn, pos);
3287			if (!pn)
3288				break;
3289		}
3290	}
3291	return *pos ? NULL : pn;
3292}
3293
3294static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
3295{
3296	struct neigh_seq_state *state = seq->private;
3297	void *rc;
3298	loff_t idxpos = *pos;
3299
3300	rc = neigh_get_idx(seq, &idxpos);
3301	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3302		rc = pneigh_get_idx(seq, &idxpos);
3303
3304	return rc;
3305}
3306
3307void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
3308	__acquires(tbl->lock)
3309	__acquires(rcu)
3310{
3311	struct neigh_seq_state *state = seq->private;
3312
3313	state->tbl = tbl;
3314	state->bucket = -1;
3315	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
3316
3317	rcu_read_lock();
3318	state->nht = rcu_dereference(tbl->nht);
3319	read_lock_bh(&tbl->lock);
3320
3321	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
3322}
3323EXPORT_SYMBOL(neigh_seq_start);
3324
3325void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3326{
3327	struct neigh_seq_state *state;
3328	void *rc;
3329
3330	if (v == SEQ_START_TOKEN) {
3331		rc = neigh_get_first(seq);
3332		goto out;
3333	}
3334
3335	state = seq->private;
3336	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
3337		rc = neigh_get_next(seq, v, NULL);
3338		if (rc)
3339			goto out;
3340		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3341			rc = pneigh_get_first(seq);
3342	} else {
3343		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
3344		rc = pneigh_get_next(seq, v, NULL);
3345	}
3346out:
3347	++(*pos);
3348	return rc;
3349}
3350EXPORT_SYMBOL(neigh_seq_next);
3351
3352void neigh_seq_stop(struct seq_file *seq, void *v)
3353	__releases(tbl->lock)
3354	__releases(rcu)
3355{
3356	struct neigh_seq_state *state = seq->private;
3357	struct neigh_table *tbl = state->tbl;
3358
3359	read_unlock_bh(&tbl->lock);
3360	rcu_read_unlock();
3361}
3362EXPORT_SYMBOL(neigh_seq_stop);
3363
3364/* statistics via seq_file */
3365
3366static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
3367{
3368	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3369	int cpu;
3370
3371	if (*pos == 0)
3372		return SEQ_START_TOKEN;
3373
3374	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
3375		if (!cpu_possible(cpu))
3376			continue;
3377		*pos = cpu+1;
3378		return per_cpu_ptr(tbl->stats, cpu);
3379	}
3380	return NULL;
3381}
3382
3383static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3384{
3385	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3386	int cpu;
3387
3388	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
3389		if (!cpu_possible(cpu))
3390			continue;
3391		*pos = cpu+1;
3392		return per_cpu_ptr(tbl->stats, cpu);
3393	}
3394	(*pos)++;
3395	return NULL;
3396}
3397
3398static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
3399{
3400
3401}
3402
3403static int neigh_stat_seq_show(struct seq_file *seq, void *v)
3404{
3405	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3406	struct neigh_statistics *st = v;
3407
3408	if (v == SEQ_START_TOKEN) {
3409		seq_puts(seq, "entries  allocs   destroys hash_grows lookups  hits     res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
3410		return 0;
3411	}
3412
3413	seq_printf(seq, "%08x %08lx %08lx %08lx   %08lx %08lx %08lx   "
3414			"%08lx         %08lx         %08lx         "
3415			"%08lx       %08lx            %08lx\n",
3416		   atomic_read(&tbl->entries),
3417
3418		   st->allocs,
3419		   st->destroys,
3420		   st->hash_grows,
3421
3422		   st->lookups,
3423		   st->hits,
3424
3425		   st->res_failed,
3426
3427		   st->rcv_probes_mcast,
3428		   st->rcv_probes_ucast,
3429
3430		   st->periodic_gc_runs,
3431		   st->forced_gc_runs,
3432		   st->unres_discards,
3433		   st->table_fulls
3434		   );
3435
3436	return 0;
3437}
3438
3439static const struct seq_operations neigh_stat_seq_ops = {
3440	.start	= neigh_stat_seq_start,
3441	.next	= neigh_stat_seq_next,
3442	.stop	= neigh_stat_seq_stop,
3443	.show	= neigh_stat_seq_show,
3444};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3445#endif /* CONFIG_PROC_FS */
3446
3447static void __neigh_notify(struct neighbour *n, int type, int flags,
3448			   u32 pid)
3449{
 
 
 
 
 
 
 
 
 
 
3450	struct sk_buff *skb;
3451	int err = -ENOBUFS;
3452	struct net *net;
3453
3454	rcu_read_lock();
3455	net = dev_net_rcu(n->dev);
3456	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
3457	if (skb == NULL)
3458		goto errout;
3459
3460	err = neigh_fill_info(skb, n, pid, 0, type, flags);
3461	if (err < 0) {
3462		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
3463		WARN_ON(err == -EMSGSIZE);
3464		kfree_skb(skb);
3465		goto errout;
3466	}
3467	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
3468	goto out;
3469errout:
3470	rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
3471out:
3472	rcu_read_unlock();
3473}
3474
 
3475void neigh_app_ns(struct neighbour *n)
3476{
3477	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0);
3478}
3479EXPORT_SYMBOL(neigh_app_ns);
 
3480
3481#ifdef CONFIG_SYSCTL
3482static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
3483
3484static int proc_unres_qlen(const struct ctl_table *ctl, int write,
3485			   void *buffer, size_t *lenp, loff_t *ppos)
3486{
3487	int size, ret;
3488	struct ctl_table tmp = *ctl;
3489
3490	tmp.extra1 = SYSCTL_ZERO;
3491	tmp.extra2 = &unres_qlen_max;
3492	tmp.data = &size;
3493
3494	size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
3495	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3496
3497	if (write && !ret)
3498		*(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
3499	return ret;
3500}
3501
3502static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
3503				  int index)
3504{
3505	struct net_device *dev;
3506	int family = neigh_parms_family(p);
3507
3508	rcu_read_lock();
3509	for_each_netdev_rcu(net, dev) {
3510		struct neigh_parms *dst_p =
3511				neigh_get_dev_parms_rcu(dev, family);
3512
3513		if (dst_p && !test_bit(index, dst_p->data_state))
3514			dst_p->data[index] = p->data[index];
3515	}
3516	rcu_read_unlock();
3517}
3518
3519static void neigh_proc_update(const struct ctl_table *ctl, int write)
3520{
3521	struct net_device *dev = ctl->extra1;
3522	struct neigh_parms *p = ctl->extra2;
3523	struct net *net = neigh_parms_net(p);
3524	int index = (int *) ctl->data - p->data;
3525
3526	if (!write)
3527		return;
3528
3529	set_bit(index, p->data_state);
3530	if (index == NEIGH_VAR_DELAY_PROBE_TIME)
3531		call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
3532	if (!dev) /* NULL dev means this is default value */
3533		neigh_copy_dflt_parms(net, p, index);
3534}
3535
3536static int neigh_proc_dointvec_zero_intmax(const struct ctl_table *ctl, int write,
3537					   void *buffer, size_t *lenp,
3538					   loff_t *ppos)
3539{
3540	struct ctl_table tmp = *ctl;
3541	int ret;
3542
3543	tmp.extra1 = SYSCTL_ZERO;
3544	tmp.extra2 = SYSCTL_INT_MAX;
3545
3546	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3547	neigh_proc_update(ctl, write);
3548	return ret;
3549}
3550
3551static int neigh_proc_dointvec_ms_jiffies_positive(const struct ctl_table *ctl, int write,
3552						   void *buffer, size_t *lenp, loff_t *ppos)
3553{
3554	struct ctl_table tmp = *ctl;
3555	int ret;
3556
3557	int min = msecs_to_jiffies(1);
3558
3559	tmp.extra1 = &min;
3560	tmp.extra2 = NULL;
3561
3562	ret = proc_dointvec_ms_jiffies_minmax(&tmp, write, buffer, lenp, ppos);
3563	neigh_proc_update(ctl, write);
3564	return ret;
3565}
3566
3567int neigh_proc_dointvec(const struct ctl_table *ctl, int write, void *buffer,
3568			size_t *lenp, loff_t *ppos)
3569{
3570	int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
3571
3572	neigh_proc_update(ctl, write);
3573	return ret;
3574}
3575EXPORT_SYMBOL(neigh_proc_dointvec);
3576
3577int neigh_proc_dointvec_jiffies(const struct ctl_table *ctl, int write, void *buffer,
3578				size_t *lenp, loff_t *ppos)
3579{
3580	int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3581
3582	neigh_proc_update(ctl, write);
3583	return ret;
3584}
3585EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
3586
3587static int neigh_proc_dointvec_userhz_jiffies(const struct ctl_table *ctl, int write,
3588					      void *buffer, size_t *lenp,
3589					      loff_t *ppos)
3590{
3591	int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
3592
3593	neigh_proc_update(ctl, write);
3594	return ret;
3595}
3596
3597int neigh_proc_dointvec_ms_jiffies(const struct ctl_table *ctl, int write,
3598				   void *buffer, size_t *lenp, loff_t *ppos)
3599{
3600	int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3601
3602	neigh_proc_update(ctl, write);
3603	return ret;
3604}
3605EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
3606
3607static int neigh_proc_dointvec_unres_qlen(const struct ctl_table *ctl, int write,
3608					  void *buffer, size_t *lenp,
3609					  loff_t *ppos)
3610{
3611	int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
3612
3613	neigh_proc_update(ctl, write);
3614	return ret;
3615}
3616
3617static int neigh_proc_base_reachable_time(const struct ctl_table *ctl, int write,
3618					  void *buffer, size_t *lenp,
3619					  loff_t *ppos)
3620{
3621	struct neigh_parms *p = ctl->extra2;
3622	int ret;
3623
3624	if (strcmp(ctl->procname, "base_reachable_time") == 0)
3625		ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3626	else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
3627		ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3628	else
3629		ret = -1;
3630
3631	if (write && ret == 0) {
3632		/* update reachable_time as well, otherwise, the change will
3633		 * only be effective after the next time neigh_periodic_work
3634		 * decides to recompute it
3635		 */
3636		p->reachable_time =
3637			neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
3638	}
3639	return ret;
3640}
3641
3642#define NEIGH_PARMS_DATA_OFFSET(index)	\
3643	(&((struct neigh_parms *) 0)->data[index])
3644
3645#define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
3646	[NEIGH_VAR_ ## attr] = { \
3647		.procname	= name, \
3648		.data		= NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
3649		.maxlen		= sizeof(int), \
3650		.mode		= mval, \
3651		.proc_handler	= proc, \
3652	}
3653
3654#define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
3655	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
3656
3657#define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
3658	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
3659
3660#define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
3661	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
3662
3663#define NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(attr, name) \
3664	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies_positive)
3665
3666#define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
3667	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3668
3669#define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
3670	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
3671
3672static struct neigh_sysctl_table {
3673	struct ctl_table_header *sysctl_header;
3674	struct ctl_table neigh_vars[NEIGH_VAR_MAX];
 
3675} neigh_sysctl_template __read_mostly = {
3676	.neigh_vars = {
3677		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
3678		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
3679		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
3680		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3681		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3682		NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3683		NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3684		NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(INTERVAL_PROBE_TIME_MS,
3685						       "interval_probe_time_ms"),
3686		NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3687		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3688		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3689		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3690		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3691		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3692		NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3693		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3694		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3695		[NEIGH_VAR_GC_INTERVAL] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3696			.procname	= "gc_interval",
3697			.maxlen		= sizeof(int),
3698			.mode		= 0644,
3699			.proc_handler	= proc_dointvec_jiffies,
3700		},
3701		[NEIGH_VAR_GC_THRESH1] = {
3702			.procname	= "gc_thresh1",
3703			.maxlen		= sizeof(int),
3704			.mode		= 0644,
3705			.extra1		= SYSCTL_ZERO,
3706			.extra2		= SYSCTL_INT_MAX,
3707			.proc_handler	= proc_dointvec_minmax,
3708		},
3709		[NEIGH_VAR_GC_THRESH2] = {
3710			.procname	= "gc_thresh2",
3711			.maxlen		= sizeof(int),
3712			.mode		= 0644,
3713			.extra1		= SYSCTL_ZERO,
3714			.extra2		= SYSCTL_INT_MAX,
3715			.proc_handler	= proc_dointvec_minmax,
3716		},
3717		[NEIGH_VAR_GC_THRESH3] = {
3718			.procname	= "gc_thresh3",
3719			.maxlen		= sizeof(int),
3720			.mode		= 0644,
3721			.extra1		= SYSCTL_ZERO,
3722			.extra2		= SYSCTL_INT_MAX,
3723			.proc_handler	= proc_dointvec_minmax,
3724		},
 
3725	},
3726};
3727
3728int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3729			  proc_handler *handler)
3730{
3731	int i;
3732	struct neigh_sysctl_table *t;
3733	const char *dev_name_source;
3734	char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3735	char *p_name;
3736	size_t neigh_vars_size;
 
 
 
 
 
 
 
 
 
 
3737
3738	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL_ACCOUNT);
3739	if (!t)
3740		goto err;
3741
3742	for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3743		t->neigh_vars[i].data += (long) p;
3744		t->neigh_vars[i].extra1 = dev;
3745		t->neigh_vars[i].extra2 = p;
3746	}
 
 
 
 
 
 
 
 
 
3747
3748	neigh_vars_size = ARRAY_SIZE(t->neigh_vars);
3749	if (dev) {
3750		dev_name_source = dev->name;
3751		/* Terminate the table early */
3752		neigh_vars_size = NEIGH_VAR_BASE_REACHABLE_TIME_MS + 1;
3753	} else {
3754		struct neigh_table *tbl = p->tbl;
3755		dev_name_source = "default";
3756		t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3757		t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3758		t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3759		t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3760	}
3761
 
3762	if (handler) {
3763		/* RetransTime */
3764		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
 
3765		/* ReachableTime */
3766		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
 
3767		/* RetransTime (in milliseconds)*/
3768		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
 
3769		/* ReachableTime (in milliseconds) */
3770		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3771	} else {
3772		/* Those handlers will update p->reachable_time after
3773		 * base_reachable_time(_ms) is set to ensure the new timer starts being
3774		 * applied after the next neighbour update instead of waiting for
3775		 * neigh_periodic_work to update its value (can be multiple minutes)
3776		 * So any handler that replaces them should do this as well
3777		 */
3778		/* ReachableTime */
3779		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3780			neigh_proc_base_reachable_time;
3781		/* ReachableTime (in milliseconds) */
3782		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3783			neigh_proc_base_reachable_time;
3784	}
3785
3786	switch (neigh_parms_family(p)) {
3787	case AF_INET:
3788	      p_name = "ipv4";
3789	      break;
3790	case AF_INET6:
3791	      p_name = "ipv6";
3792	      break;
3793	default:
3794	      BUG();
3795	}
3796
3797	snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3798		p_name, dev_name_source);
3799	t->sysctl_header = register_net_sysctl_sz(neigh_parms_net(p),
3800						  neigh_path, t->neigh_vars,
3801						  neigh_vars_size);
3802	if (!t->sysctl_header)
3803		goto free;
3804
3805	p->sysctl_table = t;
3806	return 0;
3807
 
 
3808free:
3809	kfree(t);
3810err:
3811	return -ENOBUFS;
3812}
3813EXPORT_SYMBOL(neigh_sysctl_register);
3814
3815void neigh_sysctl_unregister(struct neigh_parms *p)
3816{
3817	if (p->sysctl_table) {
3818		struct neigh_sysctl_table *t = p->sysctl_table;
3819		p->sysctl_table = NULL;
3820		unregister_net_sysctl_table(t->sysctl_header);
 
3821		kfree(t);
3822	}
3823}
3824EXPORT_SYMBOL(neigh_sysctl_unregister);
3825
3826#endif	/* CONFIG_SYSCTL */
3827
3828static const struct rtnl_msg_handler neigh_rtnl_msg_handlers[] __initconst = {
3829	{.msgtype = RTM_NEWNEIGH, .doit = neigh_add},
3830	{.msgtype = RTM_DELNEIGH, .doit = neigh_delete},
3831	{.msgtype = RTM_GETNEIGH, .doit = neigh_get, .dumpit = neigh_dump_info,
3832	 .flags = RTNL_FLAG_DUMP_UNLOCKED},
3833	{.msgtype = RTM_GETNEIGHTBL, .dumpit = neightbl_dump_info},
3834	{.msgtype = RTM_SETNEIGHTBL, .doit = neightbl_set},
3835};
3836
3837static int __init neigh_init(void)
3838{
3839	rtnl_register_many(neigh_rtnl_msg_handlers);
 
 
 
 
 
 
 
3840	return 0;
3841}
3842
3843subsys_initcall(neigh_init);