Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.1
 
   1/*
   2 *	Generic address resolution entity
   3 *
   4 *	Authors:
   5 *	Pedro Roque		<roque@di.fc.ul.pt>
   6 *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
   7 *
   8 *	This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 *
  13 *	Fixes:
  14 *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
  15 *	Harald Welte		Add neighbour cache statistics like rtstat
  16 */
  17
 
 
  18#include <linux/slab.h>
 
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/socket.h>
  23#include <linux/netdevice.h>
  24#include <linux/proc_fs.h>
  25#ifdef CONFIG_SYSCTL
  26#include <linux/sysctl.h>
  27#endif
  28#include <linux/times.h>
  29#include <net/net_namespace.h>
  30#include <net/neighbour.h>
 
  31#include <net/dst.h>
  32#include <net/sock.h>
  33#include <net/netevent.h>
  34#include <net/netlink.h>
  35#include <linux/rtnetlink.h>
  36#include <linux/random.h>
  37#include <linux/string.h>
  38#include <linux/log2.h>
 
 
  39
  40#define NEIGH_DEBUG 1
  41
  42#define NEIGH_PRINTK(x...) printk(x)
  43#define NEIGH_NOPRINTK(x...) do { ; } while(0)
  44#define NEIGH_PRINTK1 NEIGH_NOPRINTK
  45#define NEIGH_PRINTK2 NEIGH_NOPRINTK
  46
  47#if NEIGH_DEBUG >= 1
  48#undef NEIGH_PRINTK1
  49#define NEIGH_PRINTK1 NEIGH_PRINTK
  50#endif
  51#if NEIGH_DEBUG >= 2
  52#undef NEIGH_PRINTK2
  53#define NEIGH_PRINTK2 NEIGH_PRINTK
  54#endif
  55
  56#define PNEIGH_HASHMASK		0xF
  57
  58static void neigh_timer_handler(unsigned long arg);
  59static void __neigh_notify(struct neighbour *n, int type, int flags);
  60static void neigh_update_notify(struct neighbour *neigh);
  61static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
 
 
  62
  63static struct neigh_table *neigh_tables;
  64#ifdef CONFIG_PROC_FS
  65static const struct file_operations neigh_stat_seq_fops;
  66#endif
  67
  68/*
  69   Neighbour hash table buckets are protected with rwlock tbl->lock.
  70
  71   - All the scans/updates to hash buckets MUST be made under this lock.
  72   - NOTHING clever should be made under this lock: no callbacks
  73     to protocol backends, no attempts to send something to network.
  74     It will result in deadlocks, if backend/driver wants to use neighbour
  75     cache.
  76   - If the entry requires some non-trivial actions, increase
  77     its reference count and release table lock.
  78
  79   Neighbour entries are protected:
  80   - with reference count.
  81   - with rwlock neigh->lock
  82
  83   Reference count prevents destruction.
  84
  85   neigh->lock mainly serializes ll address data and its validity state.
  86   However, the same lock is used to protect another entry fields:
  87    - timer
  88    - resolution queue
  89
  90   Again, nothing clever shall be made under neigh->lock,
  91   the most complicated procedure, which we allow is dev->hard_header.
  92   It is supposed, that dev->hard_header is simplistic and does
  93   not make callbacks to neighbour tables.
  94
  95   The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
  96   list of neighbour tables. This list is used only in process context,
  97 */
  98
  99static DEFINE_RWLOCK(neigh_tbl_lock);
 100
 101static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
 102{
 103	kfree_skb(skb);
 104	return -ENETDOWN;
 105}
 106
 107static void neigh_cleanup_and_release(struct neighbour *neigh)
 108{
 109	if (neigh->parms->neigh_cleanup)
 110		neigh->parms->neigh_cleanup(neigh);
 111
 112	__neigh_notify(neigh, RTM_DELNEIGH, 0);
 113	neigh_release(neigh);
 114}
 115
 116/*
 117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
 118 * It corresponds to default IPv6 settings and is not overridable,
 119 * because it is really reasonable choice.
 120 */
 121
 122unsigned long neigh_rand_reach_time(unsigned long base)
 123{
 124	return base ? (net_random() % base) + (base >> 1) : 0;
 125}
 126EXPORT_SYMBOL(neigh_rand_reach_time);
 127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128
 129static int neigh_forced_gc(struct neigh_table *tbl)
 130{
 
 
 
 
 
 131	int shrunk = 0;
 132	int i;
 133	struct neigh_hash_table *nht;
 134
 135	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
 136
 137	write_lock_bh(&tbl->lock);
 138	nht = rcu_dereference_protected(tbl->nht,
 139					lockdep_is_held(&tbl->lock));
 140	for (i = 0; i < (1 << nht->hash_shift); i++) {
 141		struct neighbour *n;
 142		struct neighbour __rcu **np;
 143
 144		np = &nht->hash_buckets[i];
 145		while ((n = rcu_dereference_protected(*np,
 146					lockdep_is_held(&tbl->lock))) != NULL) {
 147			/* Neighbour record may be discarded if:
 148			 * - nobody refers to it.
 149			 * - it is not permanent
 150			 */
 151			write_lock(&n->lock);
 152			if (atomic_read(&n->refcnt) == 1 &&
 153			    !(n->nud_state & NUD_PERMANENT)) {
 154				rcu_assign_pointer(*np,
 155					rcu_dereference_protected(n->next,
 156						  lockdep_is_held(&tbl->lock)));
 157				n->dead = 1;
 158				shrunk	= 1;
 159				write_unlock(&n->lock);
 160				neigh_cleanup_and_release(n);
 161				continue;
 162			}
 163			write_unlock(&n->lock);
 164			np = &n->next;
 
 
 
 
 
 
 
 
 
 165		}
 166	}
 167
 168	tbl->last_flush = jiffies;
 169
 170	write_unlock_bh(&tbl->lock);
 171
 172	return shrunk;
 173}
 174
 175static void neigh_add_timer(struct neighbour *n, unsigned long when)
 176{
 
 
 
 
 
 
 177	neigh_hold(n);
 
 
 
 
 178	if (unlikely(mod_timer(&n->timer, when))) {
 179		printk("NEIGH: BUG, double timer add, state is %x\n",
 180		       n->nud_state);
 181		dump_stack();
 182	}
 183}
 184
 185static int neigh_del_timer(struct neighbour *n)
 186{
 187	if ((n->nud_state & NUD_IN_TIMER) &&
 188	    del_timer(&n->timer)) {
 189		neigh_release(n);
 190		return 1;
 191	}
 192	return 0;
 193}
 194
 195static void pneigh_queue_purge(struct sk_buff_head *list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196{
 
 
 197	struct sk_buff *skb;
 198
 199	while ((skb = skb_dequeue(list)) != NULL) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200		dev_put(skb->dev);
 201		kfree_skb(skb);
 202	}
 203}
 204
 205static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
 
 206{
 207	int i;
 208	struct neigh_hash_table *nht;
 209
 210	nht = rcu_dereference_protected(tbl->nht,
 211					lockdep_is_held(&tbl->lock));
 212
 213	for (i = 0; i < (1 << nht->hash_shift); i++) {
 214		struct neighbour *n;
 215		struct neighbour __rcu **np = &nht->hash_buckets[i];
 216
 217		while ((n = rcu_dereference_protected(*np,
 218					lockdep_is_held(&tbl->lock))) != NULL) {
 219			if (dev && n->dev != dev) {
 220				np = &n->next;
 221				continue;
 222			}
 
 
 
 
 223			rcu_assign_pointer(*np,
 224				   rcu_dereference_protected(n->next,
 225						lockdep_is_held(&tbl->lock)));
 226			write_lock(&n->lock);
 227			neigh_del_timer(n);
 228			n->dead = 1;
 229
 230			if (atomic_read(&n->refcnt) != 1) {
 231				/* The most unpleasant situation.
 232				   We must destroy neighbour entry,
 233				   but someone still uses it.
 234
 235				   The destroy will be delayed until
 236				   the last user releases us, but
 237				   we must kill timers etc. and move
 238				   it to safe state.
 239				 */
 240				skb_queue_purge(&n->arp_queue);
 241				n->output = neigh_blackhole;
 
 242				if (n->nud_state & NUD_VALID)
 243					n->nud_state = NUD_NOARP;
 244				else
 245					n->nud_state = NUD_NONE;
 246				NEIGH_PRINTK2("neigh %p is stray.\n", n);
 247			}
 248			write_unlock(&n->lock);
 249			neigh_cleanup_and_release(n);
 250		}
 251	}
 252}
 253
 254void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
 255{
 256	write_lock_bh(&tbl->lock);
 257	neigh_flush_dev(tbl, dev);
 258	write_unlock_bh(&tbl->lock);
 259}
 260EXPORT_SYMBOL(neigh_changeaddr);
 261
 262int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
 
 263{
 264	write_lock_bh(&tbl->lock);
 265	neigh_flush_dev(tbl, dev);
 266	pneigh_ifdown(tbl, dev);
 267	write_unlock_bh(&tbl->lock);
 
 
 
 
 
 268
 269	del_timer_sync(&tbl->proxy_timer);
 270	pneigh_queue_purge(&tbl->proxy_queue);
 
 
 
 
 
 
 
 
 271	return 0;
 272}
 273EXPORT_SYMBOL(neigh_ifdown);
 274
 275static struct neighbour *neigh_alloc(struct neigh_table *tbl)
 
 
 276{
 277	struct neighbour *n = NULL;
 278	unsigned long now = jiffies;
 279	int entries;
 
 
 
 280
 281	entries = atomic_inc_return(&tbl->entries) - 1;
 282	if (entries >= tbl->gc_thresh3 ||
 283	    (entries >= tbl->gc_thresh2 &&
 284	     time_after(now, tbl->last_flush + 5 * HZ))) {
 285		if (!neigh_forced_gc(tbl) &&
 286		    entries >= tbl->gc_thresh3)
 
 
 
 287			goto out_entries;
 
 288	}
 289
 290	n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
 
 291	if (!n)
 292		goto out_entries;
 293
 294	skb_queue_head_init(&n->arp_queue);
 295	rwlock_init(&n->lock);
 296	seqlock_init(&n->ha_lock);
 297	n->updated	  = n->used = now;
 298	n->nud_state	  = NUD_NONE;
 299	n->output	  = neigh_blackhole;
 
 300	seqlock_init(&n->hh.hh_lock);
 301	n->parms	  = neigh_parms_clone(&tbl->parms);
 302	setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
 303
 304	NEIGH_CACHE_STAT_INC(tbl, allocs);
 305	n->tbl		  = tbl;
 306	atomic_set(&n->refcnt, 1);
 307	n->dead		  = 1;
 
 
 
 
 308out:
 309	return n;
 310
 311out_entries:
 312	atomic_dec(&tbl->entries);
 
 313	goto out;
 314}
 315
 
 
 
 
 
 316static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
 317{
 318	size_t size = (1 << shift) * sizeof(struct neighbour *);
 319	struct neigh_hash_table *ret;
 320	struct neighbour __rcu **buckets;
 
 321
 322	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
 323	if (!ret)
 324		return NULL;
 325	if (size <= PAGE_SIZE)
 326		buckets = kzalloc(size, GFP_ATOMIC);
 327	else
 328		buckets = (struct neighbour __rcu **)
 329			  __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
 330					   get_order(size));
 
 
 331	if (!buckets) {
 332		kfree(ret);
 333		return NULL;
 334	}
 335	ret->hash_buckets = buckets;
 336	ret->hash_shift = shift;
 337	get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
 338	ret->hash_rnd |= 1;
 339	return ret;
 340}
 341
 342static void neigh_hash_free_rcu(struct rcu_head *head)
 343{
 344	struct neigh_hash_table *nht = container_of(head,
 345						    struct neigh_hash_table,
 346						    rcu);
 347	size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
 348	struct neighbour __rcu **buckets = nht->hash_buckets;
 349
 350	if (size <= PAGE_SIZE)
 351		kfree(buckets);
 352	else
 
 353		free_pages((unsigned long)buckets, get_order(size));
 
 354	kfree(nht);
 355}
 356
 357static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
 358						unsigned long new_shift)
 359{
 360	unsigned int i, hash;
 361	struct neigh_hash_table *new_nht, *old_nht;
 362
 363	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
 364
 365	old_nht = rcu_dereference_protected(tbl->nht,
 366					    lockdep_is_held(&tbl->lock));
 367	new_nht = neigh_hash_alloc(new_shift);
 368	if (!new_nht)
 369		return old_nht;
 370
 371	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
 372		struct neighbour *n, *next;
 373
 374		for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
 375						   lockdep_is_held(&tbl->lock));
 376		     n != NULL;
 377		     n = next) {
 378			hash = tbl->hash(n->primary_key, n->dev,
 379					 new_nht->hash_rnd);
 380
 381			hash >>= (32 - new_nht->hash_shift);
 382			next = rcu_dereference_protected(n->next,
 383						lockdep_is_held(&tbl->lock));
 384
 385			rcu_assign_pointer(n->next,
 386					   rcu_dereference_protected(
 387						new_nht->hash_buckets[hash],
 388						lockdep_is_held(&tbl->lock)));
 389			rcu_assign_pointer(new_nht->hash_buckets[hash], n);
 390		}
 391	}
 392
 393	rcu_assign_pointer(tbl->nht, new_nht);
 394	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
 395	return new_nht;
 396}
 397
 398struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
 399			       struct net_device *dev)
 400{
 401	struct neighbour *n;
 402	int key_len = tbl->key_len;
 403	u32 hash_val;
 404	struct neigh_hash_table *nht;
 405
 406	NEIGH_CACHE_STAT_INC(tbl, lookups);
 407
 408	rcu_read_lock_bh();
 409	nht = rcu_dereference_bh(tbl->nht);
 410	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
 411
 412	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
 413	     n != NULL;
 414	     n = rcu_dereference_bh(n->next)) {
 415		if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
 416			if (!atomic_inc_not_zero(&n->refcnt))
 417				n = NULL;
 418			NEIGH_CACHE_STAT_INC(tbl, hits);
 419			break;
 420		}
 421	}
 422
 423	rcu_read_unlock_bh();
 424	return n;
 425}
 426EXPORT_SYMBOL(neigh_lookup);
 427
 428struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
 429				     const void *pkey)
 
 
 430{
 431	struct neighbour *n;
 432	int key_len = tbl->key_len;
 433	u32 hash_val;
 434	struct neigh_hash_table *nht;
 435
 436	NEIGH_CACHE_STAT_INC(tbl, lookups);
 437
 438	rcu_read_lock_bh();
 439	nht = rcu_dereference_bh(tbl->nht);
 440	hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
 441
 442	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
 443	     n != NULL;
 444	     n = rcu_dereference_bh(n->next)) {
 445		if (!memcmp(n->primary_key, pkey, key_len) &&
 446		    net_eq(dev_net(n->dev), net)) {
 447			if (!atomic_inc_not_zero(&n->refcnt))
 448				n = NULL;
 449			NEIGH_CACHE_STAT_INC(tbl, hits);
 450			break;
 451		}
 452	}
 453
 454	rcu_read_unlock_bh();
 455	return n;
 456}
 457EXPORT_SYMBOL(neigh_lookup_nodev);
 458
 459struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
 460			       struct net_device *dev)
 461{
 462	u32 hash_val;
 463	int key_len = tbl->key_len;
 464	int error;
 465	struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
 466	struct neigh_hash_table *nht;
 467
 
 
 468	if (!n) {
 469		rc = ERR_PTR(-ENOBUFS);
 470		goto out;
 471	}
 472
 473	memcpy(n->primary_key, pkey, key_len);
 474	n->dev = dev;
 475	dev_hold(dev);
 476
 477	/* Protocol specific setup. */
 478	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
 479		rc = ERR_PTR(error);
 480		goto out_neigh_release;
 481	}
 482
 
 
 
 
 
 
 
 
 483	/* Device specific setup. */
 484	if (n->parms->neigh_setup &&
 485	    (error = n->parms->neigh_setup(n)) < 0) {
 486		rc = ERR_PTR(error);
 487		goto out_neigh_release;
 488	}
 489
 490	n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
 491
 492	write_lock_bh(&tbl->lock);
 493	nht = rcu_dereference_protected(tbl->nht,
 494					lockdep_is_held(&tbl->lock));
 495
 496	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
 497		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
 498
 499	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
 500
 501	if (n->parms->dead) {
 502		rc = ERR_PTR(-EINVAL);
 503		goto out_tbl_unlock;
 504	}
 505
 506	for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
 507					    lockdep_is_held(&tbl->lock));
 508	     n1 != NULL;
 509	     n1 = rcu_dereference_protected(n1->next,
 510			lockdep_is_held(&tbl->lock))) {
 511		if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
 512			neigh_hold(n1);
 
 513			rc = n1;
 514			goto out_tbl_unlock;
 515		}
 516	}
 517
 518	n->dead = 0;
 519	neigh_hold(n);
 
 
 
 
 
 520	rcu_assign_pointer(n->next,
 521			   rcu_dereference_protected(nht->hash_buckets[hash_val],
 522						     lockdep_is_held(&tbl->lock)));
 523	rcu_assign_pointer(nht->hash_buckets[hash_val], n);
 524	write_unlock_bh(&tbl->lock);
 525	NEIGH_PRINTK2("neigh %p is created.\n", n);
 526	rc = n;
 527out:
 528	return rc;
 529out_tbl_unlock:
 530	write_unlock_bh(&tbl->lock);
 531out_neigh_release:
 
 
 532	neigh_release(n);
 533	goto out;
 534}
 535EXPORT_SYMBOL(neigh_create);
 536
 537static u32 pneigh_hash(const void *pkey, int key_len)
 
 
 
 
 
 
 
 538{
 539	u32 hash_val = *(u32 *)(pkey + key_len - 4);
 540	hash_val ^= (hash_val >> 16);
 541	hash_val ^= hash_val >> 8;
 542	hash_val ^= hash_val >> 4;
 543	hash_val &= PNEIGH_HASHMASK;
 544	return hash_val;
 545}
 546
 547static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
 548					      struct net *net,
 549					      const void *pkey,
 550					      int key_len,
 551					      struct net_device *dev)
 552{
 553	while (n) {
 554		if (!memcmp(n->key, pkey, key_len) &&
 555		    net_eq(pneigh_net(n), net) &&
 556		    (n->dev == dev || !n->dev))
 557			return n;
 558		n = n->next;
 559	}
 560	return NULL;
 561}
 562
 563struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
 564		struct net *net, const void *pkey, struct net_device *dev)
 565{
 566	int key_len = tbl->key_len;
 567	u32 hash_val = pneigh_hash(pkey, key_len);
 568
 569	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 570				 net, pkey, key_len, dev);
 571}
 572EXPORT_SYMBOL_GPL(__pneigh_lookup);
 573
 574struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
 575				    struct net *net, const void *pkey,
 576				    struct net_device *dev, int creat)
 577{
 578	struct pneigh_entry *n;
 579	int key_len = tbl->key_len;
 580	u32 hash_val = pneigh_hash(pkey, key_len);
 581
 582	read_lock_bh(&tbl->lock);
 583	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 584			      net, pkey, key_len, dev);
 585	read_unlock_bh(&tbl->lock);
 586
 587	if (n || !creat)
 588		goto out;
 589
 590	ASSERT_RTNL();
 591
 592	n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
 593	if (!n)
 594		goto out;
 595
 596	write_pnet(&n->net, hold_net(net));
 597	memcpy(n->key, pkey, key_len);
 598	n->dev = dev;
 599	if (dev)
 600		dev_hold(dev);
 601
 602	if (tbl->pconstructor && tbl->pconstructor(n)) {
 603		if (dev)
 604			dev_put(dev);
 605		release_net(net);
 606		kfree(n);
 607		n = NULL;
 608		goto out;
 609	}
 610
 611	write_lock_bh(&tbl->lock);
 612	n->next = tbl->phash_buckets[hash_val];
 613	tbl->phash_buckets[hash_val] = n;
 614	write_unlock_bh(&tbl->lock);
 615out:
 616	return n;
 617}
 618EXPORT_SYMBOL(pneigh_lookup);
 619
 620
 621int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
 622		  struct net_device *dev)
 623{
 624	struct pneigh_entry *n, **np;
 625	int key_len = tbl->key_len;
 626	u32 hash_val = pneigh_hash(pkey, key_len);
 627
 628	write_lock_bh(&tbl->lock);
 629	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
 630	     np = &n->next) {
 631		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
 632		    net_eq(pneigh_net(n), net)) {
 633			*np = n->next;
 634			write_unlock_bh(&tbl->lock);
 635			if (tbl->pdestructor)
 636				tbl->pdestructor(n);
 637			if (n->dev)
 638				dev_put(n->dev);
 639			release_net(pneigh_net(n));
 640			kfree(n);
 641			return 0;
 642		}
 643	}
 644	write_unlock_bh(&tbl->lock);
 645	return -ENOENT;
 646}
 647
 648static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
 
 649{
 650	struct pneigh_entry *n, **np;
 651	u32 h;
 652
 653	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
 654		np = &tbl->phash_buckets[h];
 655		while ((n = *np) != NULL) {
 656			if (!dev || n->dev == dev) {
 657				*np = n->next;
 658				if (tbl->pdestructor)
 659					tbl->pdestructor(n);
 660				if (n->dev)
 661					dev_put(n->dev);
 662				release_net(pneigh_net(n));
 663				kfree(n);
 664				continue;
 665			}
 666			np = &n->next;
 667		}
 668	}
 
 
 
 
 
 
 
 
 
 669	return -ENOENT;
 670}
 671
 672static void neigh_parms_destroy(struct neigh_parms *parms);
 673
 674static inline void neigh_parms_put(struct neigh_parms *parms)
 675{
 676	if (atomic_dec_and_test(&parms->refcnt))
 677		neigh_parms_destroy(parms);
 678}
 679
 680static void neigh_destroy_rcu(struct rcu_head *head)
 681{
 682	struct neighbour *neigh = container_of(head, struct neighbour, rcu);
 683
 684	kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
 685}
 686/*
 687 *	neighbour must already be out of the table;
 688 *
 689 */
 690void neigh_destroy(struct neighbour *neigh)
 691{
 
 
 692	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
 693
 694	if (!neigh->dead) {
 695		printk(KERN_WARNING
 696		       "Destroying alive neighbour %p\n", neigh);
 697		dump_stack();
 698		return;
 699	}
 700
 701	if (neigh_del_timer(neigh))
 702		printk(KERN_WARNING "Impossible event.\n");
 
 
 
 
 
 703
 704	skb_queue_purge(&neigh->arp_queue);
 
 705
 706	dev_put(neigh->dev);
 707	neigh_parms_put(neigh->parms);
 708
 709	NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
 710
 711	atomic_dec(&neigh->tbl->entries);
 712	call_rcu(&neigh->rcu, neigh_destroy_rcu);
 713}
 714EXPORT_SYMBOL(neigh_destroy);
 715
 716/* Neighbour state is suspicious;
 717   disable fast path.
 718
 719   Called with write_locked neigh.
 720 */
 721static void neigh_suspect(struct neighbour *neigh)
 722{
 723	NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
 724
 725	neigh->output = neigh->ops->output;
 726}
 727
 728/* Neighbour state is OK;
 729   enable fast path.
 730
 731   Called with write_locked neigh.
 732 */
 733static void neigh_connect(struct neighbour *neigh)
 734{
 735	NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
 736
 737	neigh->output = neigh->ops->connected_output;
 738}
 739
 740static void neigh_periodic_work(struct work_struct *work)
 741{
 742	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
 743	struct neighbour *n;
 744	struct neighbour __rcu **np;
 745	unsigned int i;
 746	struct neigh_hash_table *nht;
 747
 748	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
 749
 750	write_lock_bh(&tbl->lock);
 751	nht = rcu_dereference_protected(tbl->nht,
 752					lockdep_is_held(&tbl->lock));
 753
 754	/*
 755	 *	periodically recompute ReachableTime from random function
 756	 */
 757
 758	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
 759		struct neigh_parms *p;
 760		tbl->last_rand = jiffies;
 761		for (p = &tbl->parms; p; p = p->next)
 
 762			p->reachable_time =
 763				neigh_rand_reach_time(p->base_reachable_time);
 764	}
 765
 
 
 
 766	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
 767		np = &nht->hash_buckets[i];
 768
 769		while ((n = rcu_dereference_protected(*np,
 770				lockdep_is_held(&tbl->lock))) != NULL) {
 771			unsigned int state;
 772
 773			write_lock(&n->lock);
 774
 775			state = n->nud_state;
 776			if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
 
 777				write_unlock(&n->lock);
 778				goto next_elt;
 779			}
 780
 781			if (time_before(n->used, n->confirmed))
 
 782				n->used = n->confirmed;
 783
 784			if (atomic_read(&n->refcnt) == 1 &&
 785			    (state == NUD_FAILED ||
 786			     time_after(jiffies, n->used + n->parms->gc_staletime))) {
 787				*np = n->next;
 788				n->dead = 1;
 
 
 
 789				write_unlock(&n->lock);
 790				neigh_cleanup_and_release(n);
 791				continue;
 792			}
 793			write_unlock(&n->lock);
 794
 795next_elt:
 796			np = &n->next;
 797		}
 798		/*
 799		 * It's fine to release lock here, even if hash table
 800		 * grows while we are preempted.
 801		 */
 802		write_unlock_bh(&tbl->lock);
 803		cond_resched();
 804		write_lock_bh(&tbl->lock);
 
 
 805	}
 806	/* Cycle through all hash buckets every base_reachable_time/2 ticks.
 807	 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
 808	 * base_reachable_time.
 
 809	 */
 810	schedule_delayed_work(&tbl->gc_work,
 811			      tbl->parms.base_reachable_time >> 1);
 812	write_unlock_bh(&tbl->lock);
 813}
 814
 815static __inline__ int neigh_max_probes(struct neighbour *n)
 816{
 817	struct neigh_parms *p = n->parms;
 818	return (n->nud_state & NUD_PROBE) ?
 819		p->ucast_probes :
 820		p->ucast_probes + p->app_probes + p->mcast_probes;
 821}
 822
 823static void neigh_invalidate(struct neighbour *neigh)
 824	__releases(neigh->lock)
 825	__acquires(neigh->lock)
 826{
 827	struct sk_buff *skb;
 828
 829	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
 830	NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
 831	neigh->updated = jiffies;
 832
 833	/* It is very thin place. report_unreachable is very complicated
 834	   routine. Particularly, it can hit the same neighbour entry!
 835
 836	   So that, we try to be accurate and avoid dead loop. --ANK
 837	 */
 838	while (neigh->nud_state == NUD_FAILED &&
 839	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
 840		write_unlock(&neigh->lock);
 841		neigh->ops->error_report(neigh, skb);
 842		write_lock(&neigh->lock);
 843	}
 844	skb_queue_purge(&neigh->arp_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845}
 846
 847/* Called when a timer expires for a neighbour entry. */
 848
 849static void neigh_timer_handler(unsigned long arg)
 850{
 851	unsigned long now, next;
 852	struct neighbour *neigh = (struct neighbour *)arg;
 853	unsigned state;
 854	int notify = 0;
 855
 856	write_lock(&neigh->lock);
 857
 858	state = neigh->nud_state;
 859	now = jiffies;
 860	next = now + HZ;
 861
 862	if (!(state & NUD_IN_TIMER)) {
 863#ifndef CONFIG_SMP
 864		printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
 865#endif
 866		goto out;
 867	}
 868
 869	if (state & NUD_REACHABLE) {
 870		if (time_before_eq(now,
 871				   neigh->confirmed + neigh->parms->reachable_time)) {
 872			NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
 873			next = neigh->confirmed + neigh->parms->reachable_time;
 874		} else if (time_before_eq(now,
 875					  neigh->used + neigh->parms->delay_probe_time)) {
 876			NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
 877			neigh->nud_state = NUD_DELAY;
 
 878			neigh->updated = jiffies;
 879			neigh_suspect(neigh);
 880			next = now + neigh->parms->delay_probe_time;
 881		} else {
 882			NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
 883			neigh->nud_state = NUD_STALE;
 884			neigh->updated = jiffies;
 885			neigh_suspect(neigh);
 886			notify = 1;
 887		}
 888	} else if (state & NUD_DELAY) {
 889		if (time_before_eq(now,
 890				   neigh->confirmed + neigh->parms->delay_probe_time)) {
 891			NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
 892			neigh->nud_state = NUD_REACHABLE;
 
 893			neigh->updated = jiffies;
 894			neigh_connect(neigh);
 895			notify = 1;
 896			next = neigh->confirmed + neigh->parms->reachable_time;
 897		} else {
 898			NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
 899			neigh->nud_state = NUD_PROBE;
 900			neigh->updated = jiffies;
 901			atomic_set(&neigh->probes, 0);
 902			next = now + neigh->parms->retrans_time;
 
 
 903		}
 904	} else {
 905		/* NUD_PROBE|NUD_INCOMPLETE */
 906		next = now + neigh->parms->retrans_time;
 907	}
 908
 909	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
 910	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
 911		neigh->nud_state = NUD_FAILED;
 912		notify = 1;
 913		neigh_invalidate(neigh);
 
 914	}
 915
 916	if (neigh->nud_state & NUD_IN_TIMER) {
 917		if (time_before(next, jiffies + HZ/2))
 918			next = jiffies + HZ/2;
 919		if (!mod_timer(&neigh->timer, next))
 920			neigh_hold(neigh);
 921	}
 922	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
 923		struct sk_buff *skb = skb_peek(&neigh->arp_queue);
 924		/* keep skb alive even if arp_queue overflows */
 925		if (skb)
 926			skb = skb_copy(skb, GFP_ATOMIC);
 927		write_unlock(&neigh->lock);
 928		neigh->ops->solicit(neigh, skb);
 929		atomic_inc(&neigh->probes);
 930		kfree_skb(skb);
 931	} else {
 932out:
 933		write_unlock(&neigh->lock);
 934	}
 935
 936	if (notify)
 937		neigh_update_notify(neigh);
 
 
 938
 939	neigh_release(neigh);
 940}
 941
 942int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
 
 943{
 944	int rc;
 945	unsigned long now;
 946
 947	write_lock_bh(&neigh->lock);
 948
 949	rc = 0;
 950	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
 951		goto out_unlock_bh;
 952
 953	now = jiffies;
 954
 955	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
 956		if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
 957			atomic_set(&neigh->probes, neigh->parms->ucast_probes);
 958			neigh->nud_state     = NUD_INCOMPLETE;
 959			neigh->updated = jiffies;
 960			neigh_add_timer(neigh, now + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 961		} else {
 962			neigh->nud_state = NUD_FAILED;
 963			neigh->updated = jiffies;
 964			write_unlock_bh(&neigh->lock);
 965
 966			kfree_skb(skb);
 967			return 1;
 968		}
 969	} else if (neigh->nud_state & NUD_STALE) {
 970		NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
 971		neigh->nud_state = NUD_DELAY;
 
 972		neigh->updated = jiffies;
 973		neigh_add_timer(neigh,
 974				jiffies + neigh->parms->delay_probe_time);
 975	}
 976
 977	if (neigh->nud_state == NUD_INCOMPLETE) {
 978		if (skb) {
 979			if (skb_queue_len(&neigh->arp_queue) >=
 980			    neigh->parms->queue_len) {
 981				struct sk_buff *buff;
 
 982				buff = __skb_dequeue(&neigh->arp_queue);
 983				kfree_skb(buff);
 
 
 
 984				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
 985			}
 986			skb_dst_force(skb);
 987			__skb_queue_tail(&neigh->arp_queue, skb);
 
 988		}
 989		rc = 1;
 990	}
 991out_unlock_bh:
 992	write_unlock_bh(&neigh->lock);
 
 
 
 
 
 993	return rc;
 
 
 
 
 
 
 
 
 994}
 995EXPORT_SYMBOL(__neigh_event_send);
 996
 997static void neigh_update_hhs(struct neighbour *neigh)
 998{
 999	struct hh_cache *hh;
1000	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1001		= NULL;
1002
1003	if (neigh->dev->header_ops)
1004		update = neigh->dev->header_ops->cache_update;
1005
1006	if (update) {
1007		hh = &neigh->hh;
1008		if (hh->hh_len) {
1009			write_seqlock_bh(&hh->hh_lock);
1010			update(hh, neigh->dev, neigh->ha);
1011			write_sequnlock_bh(&hh->hh_lock);
1012		}
1013	}
1014}
1015
1016
1017
1018/* Generic update routine.
1019   -- lladdr is new lladdr or NULL, if it is not supplied.
1020   -- new    is new state.
1021   -- flags
1022	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1023				if it is different.
1024	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1025				lladdr instead of overriding it
1026				if it is different.
1027				It also allows to retain current state
1028				if lladdr is unchanged.
1029	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1030
 
1031	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1032				NTF_ROUTER flag.
1033	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1034				a router.
1035
1036   Caller MUST hold reference count on the entry.
1037 */
1038
1039int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1040		 u32 flags)
1041{
1042	u8 old;
1043	int err;
1044	int notify = 0;
1045	struct net_device *dev;
1046	int update_isrouter = 0;
 
 
 
 
 
1047
1048	write_lock_bh(&neigh->lock);
1049
1050	dev    = neigh->dev;
1051	old    = neigh->nud_state;
1052	err    = -EPERM;
1053
 
 
 
 
 
1054	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1055	    (old & (NUD_NOARP | NUD_PERMANENT)))
1056		goto out;
1057
 
 
 
 
 
 
 
 
1058	if (!(new & NUD_VALID)) {
1059		neigh_del_timer(neigh);
1060		if (old & NUD_CONNECTED)
1061			neigh_suspect(neigh);
1062		neigh->nud_state = new;
1063		err = 0;
1064		notify = old & NUD_VALID;
1065		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1066		    (new & NUD_FAILED)) {
1067			neigh_invalidate(neigh);
1068			notify = 1;
1069		}
1070		goto out;
1071	}
1072
1073	/* Compare new lladdr with cached one */
1074	if (!dev->addr_len) {
1075		/* First case: device needs no address. */
1076		lladdr = neigh->ha;
1077	} else if (lladdr) {
1078		/* The second case: if something is already cached
1079		   and a new address is proposed:
1080		   - compare new & old
1081		   - if they are different, check override flag
1082		 */
1083		if ((old & NUD_VALID) &&
1084		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1085			lladdr = neigh->ha;
1086	} else {
1087		/* No address is supplied; if we know something,
1088		   use it, otherwise discard the request.
1089		 */
1090		err = -EINVAL;
1091		if (!(old & NUD_VALID))
 
1092			goto out;
 
1093		lladdr = neigh->ha;
1094	}
1095
 
 
 
1096	if (new & NUD_CONNECTED)
1097		neigh->confirmed = jiffies;
1098	neigh->updated = jiffies;
1099
1100	/* If entry was valid and address is not changed,
1101	   do not change entry state, if new one is STALE.
1102	 */
1103	err = 0;
1104	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1105	if (old & NUD_VALID) {
1106		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1107			update_isrouter = 0;
1108			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1109			    (old & NUD_CONNECTED)) {
1110				lladdr = neigh->ha;
1111				new = NUD_STALE;
1112			} else
1113				goto out;
1114		} else {
1115			if (lladdr == neigh->ha && new == NUD_STALE &&
1116			    ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1117			     (old & NUD_CONNECTED))
1118			    )
1119				new = old;
1120		}
1121	}
1122
 
 
 
 
 
 
 
1123	if (new != old) {
1124		neigh_del_timer(neigh);
 
 
1125		if (new & NUD_IN_TIMER)
1126			neigh_add_timer(neigh, (jiffies +
1127						((new & NUD_REACHABLE) ?
1128						 neigh->parms->reachable_time :
1129						 0)));
1130		neigh->nud_state = new;
 
1131	}
1132
1133	if (lladdr != neigh->ha) {
1134		write_seqlock(&neigh->ha_lock);
1135		memcpy(&neigh->ha, lladdr, dev->addr_len);
1136		write_sequnlock(&neigh->ha_lock);
1137		neigh_update_hhs(neigh);
1138		if (!(new & NUD_CONNECTED))
1139			neigh->confirmed = jiffies -
1140				      (neigh->parms->base_reachable_time << 1);
1141		notify = 1;
1142	}
1143	if (new == old)
1144		goto out;
1145	if (new & NUD_CONNECTED)
1146		neigh_connect(neigh);
1147	else
1148		neigh_suspect(neigh);
1149	if (!(old & NUD_VALID)) {
1150		struct sk_buff *skb;
1151
1152		/* Again: avoid dead loop if something went wrong */
1153
1154		while (neigh->nud_state & NUD_VALID &&
1155		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1156			struct dst_entry *dst = skb_dst(skb);
1157			struct neighbour *n2, *n1 = neigh;
1158			write_unlock_bh(&neigh->lock);
1159			/* On shaper/eql skb->dst->neighbour != neigh :( */
1160			if (dst && (n2 = dst_get_neighbour(dst)) != NULL)
1161				n1 = n2;
1162			n1->output(n1, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163			write_lock_bh(&neigh->lock);
1164		}
1165		skb_queue_purge(&neigh->arp_queue);
 
1166	}
1167out:
1168	if (update_isrouter) {
1169		neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1170			(neigh->flags | NTF_ROUTER) :
1171			(neigh->flags & ~NTF_ROUTER);
1172	}
1173	write_unlock_bh(&neigh->lock);
1174
 
 
 
1175	if (notify)
1176		neigh_update_notify(neigh);
1177
1178	return err;
1179}
 
 
 
 
 
 
1180EXPORT_SYMBOL(neigh_update);
1181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1183				 u8 *lladdr, void *saddr,
1184				 struct net_device *dev)
1185{
1186	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1187						 lladdr || !dev->addr_len);
1188	if (neigh)
1189		neigh_update(neigh, lladdr, NUD_STALE,
1190			     NEIGH_UPDATE_F_OVERRIDE);
1191	return neigh;
1192}
1193EXPORT_SYMBOL(neigh_event_ns);
1194
1195/* called with read_lock_bh(&n->lock); */
1196static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1197{
1198	struct net_device *dev = dst->dev;
1199	__be16 prot = dst->ops->protocol;
1200	struct hh_cache	*hh = &n->hh;
1201
1202	write_lock_bh(&n->lock);
1203
1204	/* Only one thread can come in here and initialize the
1205	 * hh_cache entry.
1206	 */
1207	if (!hh->hh_len)
1208		dev->header_ops->cache(n, hh, prot);
1209
1210	write_unlock_bh(&n->lock);
1211}
1212
1213/* This function can be used in contexts, where only old dev_queue_xmit
1214 * worked, f.e. if you want to override normal output path (eql, shaper),
1215 * but resolution is not made yet.
1216 */
1217
1218int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1219{
1220	struct net_device *dev = skb->dev;
1221
1222	__skb_pull(skb, skb_network_offset(skb));
1223
1224	if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1225			    skb->len) < 0 &&
1226	    dev->header_ops->rebuild(skb))
1227		return 0;
1228
1229	return dev_queue_xmit(skb);
1230}
1231EXPORT_SYMBOL(neigh_compat_output);
1232
1233/* Slow and careful. */
1234
1235int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1236{
1237	struct dst_entry *dst = skb_dst(skb);
1238	int rc = 0;
1239
1240	if (!dst)
1241		goto discard;
1242
1243	__skb_pull(skb, skb_network_offset(skb));
1244
1245	if (!neigh_event_send(neigh, skb)) {
1246		int err;
1247		struct net_device *dev = neigh->dev;
1248		unsigned int seq;
1249
1250		if (dev->header_ops->cache && !neigh->hh.hh_len)
1251			neigh_hh_init(neigh, dst);
1252
1253		do {
 
1254			seq = read_seqbegin(&neigh->ha_lock);
1255			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1256					      neigh->ha, NULL, skb->len);
1257		} while (read_seqretry(&neigh->ha_lock, seq));
1258
1259		if (err >= 0)
1260			rc = dev_queue_xmit(skb);
1261		else
1262			goto out_kfree_skb;
1263	}
1264out:
1265	return rc;
1266discard:
1267	NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1268		      dst, neigh);
1269out_kfree_skb:
1270	rc = -EINVAL;
1271	kfree_skb(skb);
1272	goto out;
1273}
1274EXPORT_SYMBOL(neigh_resolve_output);
1275
1276/* As fast as possible without hh cache */
1277
1278int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1279{
1280	struct net_device *dev = neigh->dev;
1281	unsigned int seq;
1282	int err;
1283
1284	__skb_pull(skb, skb_network_offset(skb));
1285
1286	do {
 
1287		seq = read_seqbegin(&neigh->ha_lock);
1288		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1289				      neigh->ha, NULL, skb->len);
1290	} while (read_seqretry(&neigh->ha_lock, seq));
1291
1292	if (err >= 0)
1293		err = dev_queue_xmit(skb);
1294	else {
1295		err = -EINVAL;
1296		kfree_skb(skb);
1297	}
1298	return err;
1299}
1300EXPORT_SYMBOL(neigh_connected_output);
1301
1302int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1303{
1304	return dev_queue_xmit(skb);
1305}
1306EXPORT_SYMBOL(neigh_direct_output);
1307
1308static void neigh_proxy_process(unsigned long arg)
1309{
1310	struct neigh_table *tbl = (struct neigh_table *)arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311	long sched_next = 0;
1312	unsigned long now = jiffies;
1313	struct sk_buff *skb, *n;
1314
1315	spin_lock(&tbl->proxy_queue.lock);
1316
1317	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1318		long tdif = NEIGH_CB(skb)->sched_next - now;
1319
1320		if (tdif <= 0) {
1321			struct net_device *dev = skb->dev;
1322
 
1323			__skb_unlink(skb, &tbl->proxy_queue);
 
1324			if (tbl->proxy_redo && netif_running(dev)) {
1325				rcu_read_lock();
1326				tbl->proxy_redo(skb);
1327				rcu_read_unlock();
1328			} else {
1329				kfree_skb(skb);
1330			}
1331
1332			dev_put(dev);
1333		} else if (!sched_next || tdif < sched_next)
1334			sched_next = tdif;
1335	}
1336	del_timer(&tbl->proxy_timer);
1337	if (sched_next)
1338		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1339	spin_unlock(&tbl->proxy_queue.lock);
1340}
1341
 
 
 
 
 
 
 
 
 
 
 
1342void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1343		    struct sk_buff *skb)
1344{
1345	unsigned long now = jiffies;
1346	unsigned long sched_next = now + (net_random() % p->proxy_delay);
1347
1348	if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1349		kfree_skb(skb);
1350		return;
1351	}
1352
1353	NEIGH_CB(skb)->sched_next = sched_next;
1354	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1355
1356	spin_lock(&tbl->proxy_queue.lock);
1357	if (del_timer(&tbl->proxy_timer)) {
1358		if (time_before(tbl->proxy_timer.expires, sched_next))
1359			sched_next = tbl->proxy_timer.expires;
1360	}
1361	skb_dst_drop(skb);
1362	dev_hold(skb->dev);
1363	__skb_queue_tail(&tbl->proxy_queue, skb);
 
1364	mod_timer(&tbl->proxy_timer, sched_next);
1365	spin_unlock(&tbl->proxy_queue.lock);
1366}
1367EXPORT_SYMBOL(pneigh_enqueue);
1368
1369static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1370						      struct net *net, int ifindex)
1371{
1372	struct neigh_parms *p;
1373
1374	for (p = &tbl->parms; p; p = p->next) {
1375		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1376		    (!p->dev && !ifindex))
1377			return p;
1378	}
1379
1380	return NULL;
1381}
1382
1383struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1384				      struct neigh_table *tbl)
1385{
1386	struct neigh_parms *p, *ref;
1387	struct net *net = dev_net(dev);
1388	const struct net_device_ops *ops = dev->netdev_ops;
1389
1390	ref = lookup_neigh_parms(tbl, net, 0);
1391	if (!ref)
1392		return NULL;
1393
1394	p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1395	if (p) {
1396		p->tbl		  = tbl;
1397		atomic_set(&p->refcnt, 1);
1398		p->reachable_time =
1399				neigh_rand_reach_time(p->base_reachable_time);
 
 
 
 
 
1400
1401		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
 
1402			kfree(p);
1403			return NULL;
1404		}
1405
1406		dev_hold(dev);
1407		p->dev = dev;
1408		write_pnet(&p->net, hold_net(net));
1409		p->sysctl_table = NULL;
1410		write_lock_bh(&tbl->lock);
1411		p->next		= tbl->parms.next;
1412		tbl->parms.next = p;
1413		write_unlock_bh(&tbl->lock);
 
 
1414	}
1415	return p;
1416}
1417EXPORT_SYMBOL(neigh_parms_alloc);
1418
1419static void neigh_rcu_free_parms(struct rcu_head *head)
1420{
1421	struct neigh_parms *parms =
1422		container_of(head, struct neigh_parms, rcu_head);
1423
1424	neigh_parms_put(parms);
1425}
1426
1427void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1428{
1429	struct neigh_parms **p;
1430
1431	if (!parms || parms == &tbl->parms)
1432		return;
1433	write_lock_bh(&tbl->lock);
1434	for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1435		if (*p == parms) {
1436			*p = parms->next;
1437			parms->dead = 1;
1438			write_unlock_bh(&tbl->lock);
1439			if (parms->dev)
1440				dev_put(parms->dev);
1441			call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1442			return;
1443		}
1444	}
1445	write_unlock_bh(&tbl->lock);
1446	NEIGH_PRINTK1("neigh_parms_release: not found\n");
 
1447}
1448EXPORT_SYMBOL(neigh_parms_release);
1449
1450static void neigh_parms_destroy(struct neigh_parms *parms)
1451{
1452	release_net(neigh_parms_net(parms));
1453	kfree(parms);
1454}
1455
1456static struct lock_class_key neigh_table_proxy_queue_class;
1457
1458void neigh_table_init_no_netlink(struct neigh_table *tbl)
 
 
1459{
1460	unsigned long now = jiffies;
1461	unsigned long phsize;
1462
 
 
 
 
 
1463	write_pnet(&tbl->parms.net, &init_net);
1464	atomic_set(&tbl->parms.refcnt, 1);
1465	tbl->parms.reachable_time =
1466			  neigh_rand_reach_time(tbl->parms.base_reachable_time);
 
1467
1468	if (!tbl->kmem_cachep)
1469		tbl->kmem_cachep =
1470			kmem_cache_create(tbl->id, tbl->entry_size, 0,
1471					  SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1472					  NULL);
1473	tbl->stats = alloc_percpu(struct neigh_statistics);
1474	if (!tbl->stats)
1475		panic("cannot create neighbour cache statistics");
1476
1477#ifdef CONFIG_PROC_FS
1478	if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1479			      &neigh_stat_seq_fops, tbl))
1480		panic("cannot create neighbour proc dir entry");
1481#endif
1482
1483	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1484
1485	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1486	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1487
1488	if (!tbl->nht || !tbl->phash_buckets)
1489		panic("cannot allocate neighbour cache hashes");
1490
 
 
 
 
 
 
1491	rwlock_init(&tbl->lock);
1492	INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1493	schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1494	setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
 
 
 
 
 
1495	skb_queue_head_init_class(&tbl->proxy_queue,
1496			&neigh_table_proxy_queue_class);
1497
1498	tbl->last_flush = now;
1499	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
1500}
1501EXPORT_SYMBOL(neigh_table_init_no_netlink);
1502
1503void neigh_table_init(struct neigh_table *tbl)
1504{
1505	struct neigh_table *tmp;
1506
1507	neigh_table_init_no_netlink(tbl);
1508	write_lock(&neigh_tbl_lock);
1509	for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1510		if (tmp->family == tbl->family)
1511			break;
1512	}
1513	tbl->next	= neigh_tables;
1514	neigh_tables	= tbl;
1515	write_unlock(&neigh_tbl_lock);
1516
1517	if (unlikely(tmp)) {
1518		printk(KERN_ERR "NEIGH: Registering multiple tables for "
1519		       "family %d\n", tbl->family);
1520		dump_stack();
1521	}
1522}
1523EXPORT_SYMBOL(neigh_table_init);
1524
1525int neigh_table_clear(struct neigh_table *tbl)
1526{
1527	struct neigh_table **tp;
1528
1529	/* It is not clean... Fix it to unload IPv6 module safely */
 
1530	cancel_delayed_work_sync(&tbl->gc_work);
1531	del_timer_sync(&tbl->proxy_timer);
1532	pneigh_queue_purge(&tbl->proxy_queue);
1533	neigh_ifdown(tbl, NULL);
1534	if (atomic_read(&tbl->entries))
1535		printk(KERN_CRIT "neighbour leakage\n");
1536	write_lock(&neigh_tbl_lock);
1537	for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1538		if (*tp == tbl) {
1539			*tp = tbl->next;
1540			break;
1541		}
1542	}
1543	write_unlock(&neigh_tbl_lock);
1544
1545	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1546		 neigh_hash_free_rcu);
1547	tbl->nht = NULL;
1548
1549	kfree(tbl->phash_buckets);
1550	tbl->phash_buckets = NULL;
1551
1552	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1553
1554	free_percpu(tbl->stats);
1555	tbl->stats = NULL;
1556
1557	kmem_cache_destroy(tbl->kmem_cachep);
1558	tbl->kmem_cachep = NULL;
1559
1560	return 0;
1561}
1562EXPORT_SYMBOL(neigh_table_clear);
1563
1564static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565{
1566	struct net *net = sock_net(skb->sk);
1567	struct ndmsg *ndm;
1568	struct nlattr *dst_attr;
1569	struct neigh_table *tbl;
 
1570	struct net_device *dev = NULL;
1571	int err = -EINVAL;
1572
1573	ASSERT_RTNL();
1574	if (nlmsg_len(nlh) < sizeof(*ndm))
1575		goto out;
1576
1577	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1578	if (dst_attr == NULL)
 
1579		goto out;
 
1580
1581	ndm = nlmsg_data(nlh);
1582	if (ndm->ndm_ifindex) {
1583		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1584		if (dev == NULL) {
1585			err = -ENODEV;
1586			goto out;
1587		}
1588	}
1589
1590	read_lock(&neigh_tbl_lock);
1591	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1592		struct neighbour *neigh;
1593
1594		if (tbl->family != ndm->ndm_family)
1595			continue;
1596		read_unlock(&neigh_tbl_lock);
1597
1598		if (nla_len(dst_attr) < tbl->key_len)
1599			goto out;
1600
1601		if (ndm->ndm_flags & NTF_PROXY) {
1602			err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1603			goto out;
1604		}
1605
1606		if (dev == NULL)
1607			goto out;
 
 
1608
1609		neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1610		if (neigh == NULL) {
1611			err = -ENOENT;
1612			goto out;
1613		}
1614
1615		err = neigh_update(neigh, NULL, NUD_FAILED,
1616				   NEIGH_UPDATE_F_OVERRIDE |
1617				   NEIGH_UPDATE_F_ADMIN);
1618		neigh_release(neigh);
1619		goto out;
1620	}
1621	read_unlock(&neigh_tbl_lock);
1622	err = -EAFNOSUPPORT;
 
 
 
 
 
 
1623
1624out:
1625	return err;
1626}
1627
1628static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
 
1629{
 
 
1630	struct net *net = sock_net(skb->sk);
1631	struct ndmsg *ndm;
1632	struct nlattr *tb[NDA_MAX+1];
1633	struct neigh_table *tbl;
1634	struct net_device *dev = NULL;
 
 
 
 
1635	int err;
1636
1637	ASSERT_RTNL();
1638	err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
 
1639	if (err < 0)
1640		goto out;
1641
1642	err = -EINVAL;
1643	if (tb[NDA_DST] == NULL)
 
1644		goto out;
 
1645
1646	ndm = nlmsg_data(nlh);
 
 
 
 
 
 
 
 
 
1647	if (ndm->ndm_ifindex) {
1648		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1649		if (dev == NULL) {
1650			err = -ENODEV;
1651			goto out;
1652		}
1653
1654		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
 
1655			goto out;
 
1656	}
1657
1658	read_lock(&neigh_tbl_lock);
1659	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1660		int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1661		struct neighbour *neigh;
1662		void *dst, *lladdr;
1663
1664		if (tbl->family != ndm->ndm_family)
1665			continue;
1666		read_unlock(&neigh_tbl_lock);
 
1667
1668		if (nla_len(tb[NDA_DST]) < tbl->key_len)
1669			goto out;
1670		dst = nla_data(tb[NDA_DST]);
1671		lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1672
1673		if (ndm->ndm_flags & NTF_PROXY) {
1674			struct pneigh_entry *pn;
 
 
1675
1676			err = -ENOBUFS;
1677			pn = pneigh_lookup(tbl, net, dst, dev, 1);
1678			if (pn) {
1679				pn->flags = ndm->ndm_flags;
1680				err = 0;
1681			}
1682			goto out;
1683		}
1684
1685		if (dev == NULL)
1686			goto out;
 
 
 
 
 
 
 
 
1687
1688		neigh = neigh_lookup(tbl, dst, dev);
1689		if (neigh == NULL) {
1690			if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1691				err = -ENOENT;
1692				goto out;
1693			}
1694
1695			neigh = __neigh_lookup_errno(tbl, dst, dev);
1696			if (IS_ERR(neigh)) {
1697				err = PTR_ERR(neigh);
1698				goto out;
1699			}
1700		} else {
1701			if (nlh->nlmsg_flags & NLM_F_EXCL) {
1702				err = -EEXIST;
1703				neigh_release(neigh);
1704				goto out;
1705			}
1706
1707			if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1708				flags &= ~NEIGH_UPDATE_F_OVERRIDE;
 
 
 
 
 
 
1709		}
1710
1711		if (ndm->ndm_flags & NTF_USE) {
1712			neigh_event_send(neigh, NULL);
1713			err = 0;
1714		} else
1715			err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1716		neigh_release(neigh);
1717		goto out;
1718	}
 
 
 
 
 
 
1719
1720	read_unlock(&neigh_tbl_lock);
1721	err = -EAFNOSUPPORT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1722out:
1723	return err;
1724}
1725
1726static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1727{
1728	struct nlattr *nest;
1729
1730	nest = nla_nest_start(skb, NDTA_PARMS);
1731	if (nest == NULL)
1732		return -ENOBUFS;
1733
1734	if (parms->dev)
1735		NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1736
1737	NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1738	NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1739	NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1740	NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1741	NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1742	NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1743	NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1744	NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1745		      parms->base_reachable_time);
1746	NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1747	NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1748	NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1749	NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1750	NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1751	NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753	return nla_nest_end(skb, nest);
1754
1755nla_put_failure:
1756	nla_nest_cancel(skb, nest);
1757	return -EMSGSIZE;
1758}
1759
1760static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1761			      u32 pid, u32 seq, int type, int flags)
1762{
1763	struct nlmsghdr *nlh;
1764	struct ndtmsg *ndtmsg;
1765
1766	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1767	if (nlh == NULL)
1768		return -EMSGSIZE;
1769
1770	ndtmsg = nlmsg_data(nlh);
1771
1772	read_lock_bh(&tbl->lock);
1773	ndtmsg->ndtm_family = tbl->family;
1774	ndtmsg->ndtm_pad1   = 0;
1775	ndtmsg->ndtm_pad2   = 0;
1776
1777	NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1778	NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1779	NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1780	NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1781	NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1782
 
1783	{
1784		unsigned long now = jiffies;
1785		unsigned int flush_delta = now - tbl->last_flush;
1786		unsigned int rand_delta = now - tbl->last_rand;
1787		struct neigh_hash_table *nht;
1788		struct ndt_config ndc = {
1789			.ndtc_key_len		= tbl->key_len,
1790			.ndtc_entry_size	= tbl->entry_size,
1791			.ndtc_entries		= atomic_read(&tbl->entries),
1792			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
1793			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
1794			.ndtc_proxy_qlen	= tbl->proxy_queue.qlen,
1795		};
1796
1797		rcu_read_lock_bh();
1798		nht = rcu_dereference_bh(tbl->nht);
1799		ndc.ndtc_hash_rnd = nht->hash_rnd;
1800		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1801		rcu_read_unlock_bh();
1802
1803		NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
 
1804	}
1805
1806	{
1807		int cpu;
1808		struct ndt_stats ndst;
1809
1810		memset(&ndst, 0, sizeof(ndst));
1811
1812		for_each_possible_cpu(cpu) {
1813			struct neigh_statistics	*st;
1814
1815			st = per_cpu_ptr(tbl->stats, cpu);
1816			ndst.ndts_allocs		+= st->allocs;
1817			ndst.ndts_destroys		+= st->destroys;
1818			ndst.ndts_hash_grows		+= st->hash_grows;
1819			ndst.ndts_res_failed		+= st->res_failed;
1820			ndst.ndts_lookups		+= st->lookups;
1821			ndst.ndts_hits			+= st->hits;
1822			ndst.ndts_rcv_probes_mcast	+= st->rcv_probes_mcast;
1823			ndst.ndts_rcv_probes_ucast	+= st->rcv_probes_ucast;
1824			ndst.ndts_periodic_gc_runs	+= st->periodic_gc_runs;
1825			ndst.ndts_forced_gc_runs	+= st->forced_gc_runs;
 
1826		}
1827
1828		NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
 
 
1829	}
1830
1831	BUG_ON(tbl->parms.dev);
1832	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1833		goto nla_put_failure;
1834
1835	read_unlock_bh(&tbl->lock);
1836	return nlmsg_end(skb, nlh);
 
1837
1838nla_put_failure:
1839	read_unlock_bh(&tbl->lock);
1840	nlmsg_cancel(skb, nlh);
1841	return -EMSGSIZE;
1842}
1843
1844static int neightbl_fill_param_info(struct sk_buff *skb,
1845				    struct neigh_table *tbl,
1846				    struct neigh_parms *parms,
1847				    u32 pid, u32 seq, int type,
1848				    unsigned int flags)
1849{
1850	struct ndtmsg *ndtmsg;
1851	struct nlmsghdr *nlh;
1852
1853	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1854	if (nlh == NULL)
1855		return -EMSGSIZE;
1856
1857	ndtmsg = nlmsg_data(nlh);
1858
1859	read_lock_bh(&tbl->lock);
1860	ndtmsg->ndtm_family = tbl->family;
1861	ndtmsg->ndtm_pad1   = 0;
1862	ndtmsg->ndtm_pad2   = 0;
1863
1864	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1865	    neightbl_fill_parms(skb, parms) < 0)
1866		goto errout;
1867
1868	read_unlock_bh(&tbl->lock);
1869	return nlmsg_end(skb, nlh);
 
1870errout:
1871	read_unlock_bh(&tbl->lock);
1872	nlmsg_cancel(skb, nlh);
1873	return -EMSGSIZE;
1874}
1875
1876static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1877	[NDTA_NAME]		= { .type = NLA_STRING },
1878	[NDTA_THRESH1]		= { .type = NLA_U32 },
1879	[NDTA_THRESH2]		= { .type = NLA_U32 },
1880	[NDTA_THRESH3]		= { .type = NLA_U32 },
1881	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
1882	[NDTA_PARMS]		= { .type = NLA_NESTED },
1883};
1884
1885static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1886	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
1887	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
1888	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
1889	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
1890	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
1891	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
 
1892	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
1893	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
1894	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
1895	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
1896	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
1897	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
1898	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
 
1899};
1900
1901static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
 
1902{
1903	struct net *net = sock_net(skb->sk);
1904	struct neigh_table *tbl;
1905	struct ndtmsg *ndtmsg;
1906	struct nlattr *tb[NDTA_MAX+1];
1907	int err;
 
1908
1909	err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1910			  nl_neightbl_policy);
1911	if (err < 0)
1912		goto errout;
1913
1914	if (tb[NDTA_NAME] == NULL) {
1915		err = -EINVAL;
1916		goto errout;
1917	}
1918
1919	ndtmsg = nlmsg_data(nlh);
1920	read_lock(&neigh_tbl_lock);
1921	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
 
 
 
1922		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1923			continue;
1924
1925		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1926			break;
 
1927	}
1928
1929	if (tbl == NULL) {
1930		err = -ENOENT;
1931		goto errout_locked;
1932	}
1933
1934	/*
1935	 * We acquire tbl->lock to be nice to the periodic timers and
1936	 * make sure they always see a consistent set of values.
1937	 */
1938	write_lock_bh(&tbl->lock);
1939
1940	if (tb[NDTA_PARMS]) {
1941		struct nlattr *tbp[NDTPA_MAX+1];
1942		struct neigh_parms *p;
1943		int i, ifindex = 0;
1944
1945		err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1946				       nl_ntbl_parm_policy);
 
1947		if (err < 0)
1948			goto errout_tbl_lock;
1949
1950		if (tbp[NDTPA_IFINDEX])
1951			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1952
1953		p = lookup_neigh_parms(tbl, net, ifindex);
1954		if (p == NULL) {
1955			err = -ENOENT;
1956			goto errout_tbl_lock;
1957		}
1958
1959		for (i = 1; i <= NDTPA_MAX; i++) {
1960			if (tbp[i] == NULL)
1961				continue;
1962
1963			switch (i) {
1964			case NDTPA_QUEUE_LEN:
1965				p->queue_len = nla_get_u32(tbp[i]);
 
 
 
 
 
 
1966				break;
1967			case NDTPA_PROXY_QLEN:
1968				p->proxy_qlen = nla_get_u32(tbp[i]);
 
1969				break;
1970			case NDTPA_APP_PROBES:
1971				p->app_probes = nla_get_u32(tbp[i]);
 
1972				break;
1973			case NDTPA_UCAST_PROBES:
1974				p->ucast_probes = nla_get_u32(tbp[i]);
 
1975				break;
1976			case NDTPA_MCAST_PROBES:
1977				p->mcast_probes = nla_get_u32(tbp[i]);
 
 
 
 
 
1978				break;
1979			case NDTPA_BASE_REACHABLE_TIME:
1980				p->base_reachable_time = nla_get_msecs(tbp[i]);
 
 
 
 
 
 
 
1981				break;
1982			case NDTPA_GC_STALETIME:
1983				p->gc_staletime = nla_get_msecs(tbp[i]);
 
1984				break;
1985			case NDTPA_DELAY_PROBE_TIME:
1986				p->delay_probe_time = nla_get_msecs(tbp[i]);
 
 
 
 
 
 
1987				break;
1988			case NDTPA_RETRANS_TIME:
1989				p->retrans_time = nla_get_msecs(tbp[i]);
 
1990				break;
1991			case NDTPA_ANYCAST_DELAY:
1992				p->anycast_delay = nla_get_msecs(tbp[i]);
 
1993				break;
1994			case NDTPA_PROXY_DELAY:
1995				p->proxy_delay = nla_get_msecs(tbp[i]);
 
1996				break;
1997			case NDTPA_LOCKTIME:
1998				p->locktime = nla_get_msecs(tbp[i]);
 
1999				break;
2000			}
2001		}
2002	}
2003
 
 
 
 
 
 
2004	if (tb[NDTA_THRESH1])
2005		tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2006
2007	if (tb[NDTA_THRESH2])
2008		tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2009
2010	if (tb[NDTA_THRESH3])
2011		tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2012
2013	if (tb[NDTA_GC_INTERVAL])
2014		tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2015
2016	err = 0;
2017
2018errout_tbl_lock:
2019	write_unlock_bh(&tbl->lock);
2020errout_locked:
2021	read_unlock(&neigh_tbl_lock);
2022errout:
2023	return err;
2024}
2025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2027{
 
2028	struct net *net = sock_net(skb->sk);
2029	int family, tidx, nidx = 0;
2030	int tbl_skip = cb->args[0];
2031	int neigh_skip = cb->args[1];
2032	struct neigh_table *tbl;
2033
2034	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
 
 
 
 
 
 
 
2035
2036	read_lock(&neigh_tbl_lock);
2037	for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2038		struct neigh_parms *p;
2039
 
 
 
 
2040		if (tidx < tbl_skip || (family && tbl->family != family))
2041			continue;
2042
2043		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2044				       cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2045				       NLM_F_MULTI) <= 0)
2046			break;
2047
2048		for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
 
 
2049			if (!net_eq(neigh_parms_net(p), net))
2050				continue;
2051
2052			if (nidx < neigh_skip)
2053				goto next;
2054
2055			if (neightbl_fill_param_info(skb, tbl, p,
2056						     NETLINK_CB(cb->skb).pid,
2057						     cb->nlh->nlmsg_seq,
2058						     RTM_NEWNEIGHTBL,
2059						     NLM_F_MULTI) <= 0)
2060				goto out;
2061		next:
2062			nidx++;
2063		}
2064
2065		neigh_skip = 0;
2066	}
2067out:
2068	read_unlock(&neigh_tbl_lock);
2069	cb->args[0] = tidx;
2070	cb->args[1] = nidx;
2071
2072	return skb->len;
2073}
2074
2075static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2076			   u32 pid, u32 seq, int type, unsigned int flags)
2077{
 
2078	unsigned long now = jiffies;
2079	struct nda_cacheinfo ci;
2080	struct nlmsghdr *nlh;
2081	struct ndmsg *ndm;
2082
2083	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2084	if (nlh == NULL)
2085		return -EMSGSIZE;
2086
 
 
 
2087	ndm = nlmsg_data(nlh);
2088	ndm->ndm_family	 = neigh->ops->family;
2089	ndm->ndm_pad1    = 0;
2090	ndm->ndm_pad2    = 0;
2091	ndm->ndm_flags	 = neigh->flags;
2092	ndm->ndm_type	 = neigh->type;
2093	ndm->ndm_ifindex = neigh->dev->ifindex;
2094
2095	NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
 
2096
2097	read_lock_bh(&neigh->lock);
2098	ndm->ndm_state	 = neigh->nud_state;
2099	if (neigh->nud_state & NUD_VALID) {
2100		char haddr[MAX_ADDR_LEN];
2101
2102		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2103		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2104			read_unlock_bh(&neigh->lock);
2105			goto nla_put_failure;
2106		}
2107	}
2108
2109	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2110	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2111	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2112	ci.ndm_refcnt	 = atomic_read(&neigh->refcnt) - 1;
2113	read_unlock_bh(&neigh->lock);
2114
2115	NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2116	NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
 
 
 
 
 
 
2117
2118	return nlmsg_end(skb, nlh);
 
2119
2120nla_put_failure:
2121	nlmsg_cancel(skb, nlh);
2122	return -EMSGSIZE;
2123}
2124
2125static void neigh_update_notify(struct neighbour *neigh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2126{
2127	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2128	__neigh_notify(neigh, RTM_NEWNEIGH, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2129}
2130
 
 
 
 
 
 
 
 
 
 
 
 
 
2131static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2132			    struct netlink_callback *cb)
 
2133{
2134	struct net *net = sock_net(skb->sk);
2135	struct neighbour *n;
2136	int rc, h, s_h = cb->args[1];
2137	int idx, s_idx = idx = cb->args[2];
2138	struct neigh_hash_table *nht;
 
2139
2140	rcu_read_lock_bh();
2141	nht = rcu_dereference_bh(tbl->nht);
2142
2143	for (h = 0; h < (1 << nht->hash_shift); h++) {
2144		if (h < s_h)
2145			continue;
 
2146		if (h > s_h)
2147			s_idx = 0;
2148		for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2149		     n != NULL;
2150		     n = rcu_dereference_bh(n->next)) {
2151			if (!net_eq(dev_net(n->dev), net))
2152				continue;
2153			if (idx < s_idx)
2154				goto next;
2155			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
 
 
 
2156					    cb->nlh->nlmsg_seq,
2157					    RTM_NEWNEIGH,
2158					    NLM_F_MULTI) <= 0) {
2159				rc = -1;
2160				goto out;
2161			}
2162next:
2163			idx++;
2164		}
2165	}
2166	rc = skb->len;
2167out:
2168	rcu_read_unlock_bh();
2169	cb->args[1] = h;
2170	cb->args[2] = idx;
2171	return rc;
2172}
2173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2175{
 
 
2176	struct neigh_table *tbl;
2177	int t, family, s_t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2178
2179	read_lock(&neigh_tbl_lock);
2180	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2181	s_t = cb->args[0];
2182
2183	for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
 
 
 
 
2184		if (t < s_t || (family && tbl->family != family))
2185			continue;
2186		if (t > s_t)
2187			memset(&cb->args[1], 0, sizeof(cb->args) -
2188						sizeof(cb->args[0]));
2189		if (neigh_dump_table(tbl, skb, cb) < 0)
 
 
 
 
2190			break;
2191	}
2192	read_unlock(&neigh_tbl_lock);
2193
2194	cb->args[0] = t;
2195	return skb->len;
2196}
2197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2198void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2199{
2200	int chain;
2201	struct neigh_hash_table *nht;
2202
2203	rcu_read_lock_bh();
2204	nht = rcu_dereference_bh(tbl->nht);
2205
2206	read_lock(&tbl->lock); /* avoid resizes */
2207	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2208		struct neighbour *n;
2209
2210		for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2211		     n != NULL;
2212		     n = rcu_dereference_bh(n->next))
2213			cb(n, cookie);
2214	}
2215	read_unlock(&tbl->lock);
2216	rcu_read_unlock_bh();
2217}
2218EXPORT_SYMBOL(neigh_for_each);
2219
2220/* The tbl->lock must be held as a writer and BH disabled. */
2221void __neigh_for_each_release(struct neigh_table *tbl,
2222			      int (*cb)(struct neighbour *))
2223{
2224	int chain;
2225	struct neigh_hash_table *nht;
2226
2227	nht = rcu_dereference_protected(tbl->nht,
2228					lockdep_is_held(&tbl->lock));
2229	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2230		struct neighbour *n;
2231		struct neighbour __rcu **np;
2232
2233		np = &nht->hash_buckets[chain];
2234		while ((n = rcu_dereference_protected(*np,
2235					lockdep_is_held(&tbl->lock))) != NULL) {
2236			int release;
2237
2238			write_lock(&n->lock);
2239			release = cb(n);
2240			if (release) {
2241				rcu_assign_pointer(*np,
2242					rcu_dereference_protected(n->next,
2243						lockdep_is_held(&tbl->lock)));
2244				n->dead = 1;
2245			} else
2246				np = &n->next;
2247			write_unlock(&n->lock);
2248			if (release)
2249				neigh_cleanup_and_release(n);
2250		}
2251	}
2252}
2253EXPORT_SYMBOL(__neigh_for_each_release);
2254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255#ifdef CONFIG_PROC_FS
2256
2257static struct neighbour *neigh_get_first(struct seq_file *seq)
2258{
2259	struct neigh_seq_state *state = seq->private;
2260	struct net *net = seq_file_net(seq);
2261	struct neigh_hash_table *nht = state->nht;
2262	struct neighbour *n = NULL;
2263	int bucket = state->bucket;
2264
2265	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2266	for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2267		n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2268
2269		while (n) {
2270			if (!net_eq(dev_net(n->dev), net))
2271				goto next;
2272			if (state->neigh_sub_iter) {
2273				loff_t fakep = 0;
2274				void *v;
2275
2276				v = state->neigh_sub_iter(state, n, &fakep);
2277				if (!v)
2278					goto next;
2279			}
2280			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2281				break;
2282			if (n->nud_state & ~NUD_NOARP)
2283				break;
2284next:
2285			n = rcu_dereference_bh(n->next);
2286		}
2287
2288		if (n)
2289			break;
2290	}
2291	state->bucket = bucket;
2292
2293	return n;
2294}
2295
2296static struct neighbour *neigh_get_next(struct seq_file *seq,
2297					struct neighbour *n,
2298					loff_t *pos)
2299{
2300	struct neigh_seq_state *state = seq->private;
2301	struct net *net = seq_file_net(seq);
2302	struct neigh_hash_table *nht = state->nht;
2303
2304	if (state->neigh_sub_iter) {
2305		void *v = state->neigh_sub_iter(state, n, pos);
2306		if (v)
2307			return n;
2308	}
2309	n = rcu_dereference_bh(n->next);
2310
2311	while (1) {
2312		while (n) {
2313			if (!net_eq(dev_net(n->dev), net))
2314				goto next;
2315			if (state->neigh_sub_iter) {
2316				void *v = state->neigh_sub_iter(state, n, pos);
2317				if (v)
2318					return n;
2319				goto next;
2320			}
2321			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2322				break;
2323
2324			if (n->nud_state & ~NUD_NOARP)
2325				break;
2326next:
2327			n = rcu_dereference_bh(n->next);
2328		}
2329
2330		if (n)
2331			break;
2332
2333		if (++state->bucket >= (1 << nht->hash_shift))
2334			break;
2335
2336		n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2337	}
2338
2339	if (n && pos)
2340		--(*pos);
2341	return n;
2342}
2343
2344static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2345{
2346	struct neighbour *n = neigh_get_first(seq);
2347
2348	if (n) {
2349		--(*pos);
2350		while (*pos) {
2351			n = neigh_get_next(seq, n, pos);
2352			if (!n)
2353				break;
2354		}
2355	}
2356	return *pos ? NULL : n;
2357}
2358
2359static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2360{
2361	struct neigh_seq_state *state = seq->private;
2362	struct net *net = seq_file_net(seq);
2363	struct neigh_table *tbl = state->tbl;
2364	struct pneigh_entry *pn = NULL;
2365	int bucket = state->bucket;
2366
2367	state->flags |= NEIGH_SEQ_IS_PNEIGH;
2368	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2369		pn = tbl->phash_buckets[bucket];
2370		while (pn && !net_eq(pneigh_net(pn), net))
2371			pn = pn->next;
2372		if (pn)
2373			break;
2374	}
2375	state->bucket = bucket;
2376
2377	return pn;
2378}
2379
2380static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2381					    struct pneigh_entry *pn,
2382					    loff_t *pos)
2383{
2384	struct neigh_seq_state *state = seq->private;
2385	struct net *net = seq_file_net(seq);
2386	struct neigh_table *tbl = state->tbl;
2387
2388	pn = pn->next;
 
 
 
2389	while (!pn) {
2390		if (++state->bucket > PNEIGH_HASHMASK)
2391			break;
2392		pn = tbl->phash_buckets[state->bucket];
2393		while (pn && !net_eq(pneigh_net(pn), net))
2394			pn = pn->next;
2395		if (pn)
2396			break;
2397	}
2398
2399	if (pn && pos)
2400		--(*pos);
2401
2402	return pn;
2403}
2404
2405static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2406{
2407	struct pneigh_entry *pn = pneigh_get_first(seq);
2408
2409	if (pn) {
2410		--(*pos);
2411		while (*pos) {
2412			pn = pneigh_get_next(seq, pn, pos);
2413			if (!pn)
2414				break;
2415		}
2416	}
2417	return *pos ? NULL : pn;
2418}
2419
2420static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2421{
2422	struct neigh_seq_state *state = seq->private;
2423	void *rc;
2424	loff_t idxpos = *pos;
2425
2426	rc = neigh_get_idx(seq, &idxpos);
2427	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2428		rc = pneigh_get_idx(seq, &idxpos);
2429
2430	return rc;
2431}
2432
2433void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2434	__acquires(rcu_bh)
 
2435{
2436	struct neigh_seq_state *state = seq->private;
2437
2438	state->tbl = tbl;
2439	state->bucket = 0;
2440	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2441
2442	rcu_read_lock_bh();
2443	state->nht = rcu_dereference_bh(tbl->nht);
 
2444
2445	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2446}
2447EXPORT_SYMBOL(neigh_seq_start);
2448
2449void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450{
2451	struct neigh_seq_state *state;
2452	void *rc;
2453
2454	if (v == SEQ_START_TOKEN) {
2455		rc = neigh_get_first(seq);
2456		goto out;
2457	}
2458
2459	state = seq->private;
2460	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2461		rc = neigh_get_next(seq, v, NULL);
2462		if (rc)
2463			goto out;
2464		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2465			rc = pneigh_get_first(seq);
2466	} else {
2467		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2468		rc = pneigh_get_next(seq, v, NULL);
2469	}
2470out:
2471	++(*pos);
2472	return rc;
2473}
2474EXPORT_SYMBOL(neigh_seq_next);
2475
2476void neigh_seq_stop(struct seq_file *seq, void *v)
2477	__releases(rcu_bh)
 
2478{
2479	rcu_read_unlock_bh();
 
 
 
 
2480}
2481EXPORT_SYMBOL(neigh_seq_stop);
2482
2483/* statistics via seq_file */
2484
2485static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2486{
2487	struct neigh_table *tbl = seq->private;
2488	int cpu;
2489
2490	if (*pos == 0)
2491		return SEQ_START_TOKEN;
2492
2493	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2494		if (!cpu_possible(cpu))
2495			continue;
2496		*pos = cpu+1;
2497		return per_cpu_ptr(tbl->stats, cpu);
2498	}
2499	return NULL;
2500}
2501
2502static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2503{
2504	struct neigh_table *tbl = seq->private;
2505	int cpu;
2506
2507	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2508		if (!cpu_possible(cpu))
2509			continue;
2510		*pos = cpu+1;
2511		return per_cpu_ptr(tbl->stats, cpu);
2512	}
 
2513	return NULL;
2514}
2515
2516static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2517{
2518
2519}
2520
2521static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2522{
2523	struct neigh_table *tbl = seq->private;
2524	struct neigh_statistics *st = v;
2525
2526	if (v == SEQ_START_TOKEN) {
2527		seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs unresolved_discards\n");
2528		return 0;
2529	}
2530
2531	seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
2532			"%08lx %08lx  %08lx %08lx %08lx\n",
 
2533		   atomic_read(&tbl->entries),
2534
2535		   st->allocs,
2536		   st->destroys,
2537		   st->hash_grows,
2538
2539		   st->lookups,
2540		   st->hits,
2541
2542		   st->res_failed,
2543
2544		   st->rcv_probes_mcast,
2545		   st->rcv_probes_ucast,
2546
2547		   st->periodic_gc_runs,
2548		   st->forced_gc_runs,
2549		   st->unres_discards
 
2550		   );
2551
2552	return 0;
2553}
2554
2555static const struct seq_operations neigh_stat_seq_ops = {
2556	.start	= neigh_stat_seq_start,
2557	.next	= neigh_stat_seq_next,
2558	.stop	= neigh_stat_seq_stop,
2559	.show	= neigh_stat_seq_show,
2560};
2561
2562static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2563{
2564	int ret = seq_open(file, &neigh_stat_seq_ops);
2565
2566	if (!ret) {
2567		struct seq_file *sf = file->private_data;
2568		sf->private = PDE(inode)->data;
2569	}
2570	return ret;
2571};
2572
2573static const struct file_operations neigh_stat_seq_fops = {
2574	.owner	 = THIS_MODULE,
2575	.open 	 = neigh_stat_seq_open,
2576	.read	 = seq_read,
2577	.llseek	 = seq_lseek,
2578	.release = seq_release,
2579};
2580
2581#endif /* CONFIG_PROC_FS */
2582
2583static inline size_t neigh_nlmsg_size(void)
2584{
2585	return NLMSG_ALIGN(sizeof(struct ndmsg))
2586	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2587	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2588	       + nla_total_size(sizeof(struct nda_cacheinfo))
2589	       + nla_total_size(4); /* NDA_PROBES */
2590}
2591
2592static void __neigh_notify(struct neighbour *n, int type, int flags)
2593{
2594	struct net *net = dev_net(n->dev);
2595	struct sk_buff *skb;
2596	int err = -ENOBUFS;
2597
2598	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2599	if (skb == NULL)
2600		goto errout;
2601
2602	err = neigh_fill_info(skb, n, 0, 0, type, flags);
2603	if (err < 0) {
2604		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2605		WARN_ON(err == -EMSGSIZE);
2606		kfree_skb(skb);
2607		goto errout;
2608	}
2609	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2610	return;
2611errout:
2612	if (err < 0)
2613		rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2614}
2615
2616#ifdef CONFIG_ARPD
2617void neigh_app_ns(struct neighbour *n)
2618{
2619	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2620}
2621EXPORT_SYMBOL(neigh_app_ns);
2622#endif /* CONFIG_ARPD */
2623
2624#ifdef CONFIG_SYSCTL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625
2626#define NEIGH_VARS_MAX 19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2627
2628static struct neigh_sysctl_table {
2629	struct ctl_table_header *sysctl_header;
2630	struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2631	char *dev_name;
2632} neigh_sysctl_template __read_mostly = {
2633	.neigh_vars = {
2634		{
2635			.procname	= "mcast_solicit",
2636			.maxlen		= sizeof(int),
2637			.mode		= 0644,
2638			.proc_handler	= proc_dointvec,
2639		},
2640		{
2641			.procname	= "ucast_solicit",
2642			.maxlen		= sizeof(int),
2643			.mode		= 0644,
2644			.proc_handler	= proc_dointvec,
2645		},
2646		{
2647			.procname	= "app_solicit",
2648			.maxlen		= sizeof(int),
2649			.mode		= 0644,
2650			.proc_handler	= proc_dointvec,
2651		},
2652		{
2653			.procname	= "retrans_time",
2654			.maxlen		= sizeof(int),
2655			.mode		= 0644,
2656			.proc_handler	= proc_dointvec_userhz_jiffies,
2657		},
2658		{
2659			.procname	= "base_reachable_time",
2660			.maxlen		= sizeof(int),
2661			.mode		= 0644,
2662			.proc_handler	= proc_dointvec_jiffies,
2663		},
2664		{
2665			.procname	= "delay_first_probe_time",
2666			.maxlen		= sizeof(int),
2667			.mode		= 0644,
2668			.proc_handler	= proc_dointvec_jiffies,
2669		},
2670		{
2671			.procname	= "gc_stale_time",
2672			.maxlen		= sizeof(int),
2673			.mode		= 0644,
2674			.proc_handler	= proc_dointvec_jiffies,
2675		},
2676		{
2677			.procname	= "unres_qlen",
2678			.maxlen		= sizeof(int),
2679			.mode		= 0644,
2680			.proc_handler	= proc_dointvec,
2681		},
2682		{
2683			.procname	= "proxy_qlen",
2684			.maxlen		= sizeof(int),
2685			.mode		= 0644,
2686			.proc_handler	= proc_dointvec,
2687		},
2688		{
2689			.procname	= "anycast_delay",
2690			.maxlen		= sizeof(int),
2691			.mode		= 0644,
2692			.proc_handler	= proc_dointvec_userhz_jiffies,
2693		},
2694		{
2695			.procname	= "proxy_delay",
2696			.maxlen		= sizeof(int),
2697			.mode		= 0644,
2698			.proc_handler	= proc_dointvec_userhz_jiffies,
2699		},
2700		{
2701			.procname	= "locktime",
2702			.maxlen		= sizeof(int),
2703			.mode		= 0644,
2704			.proc_handler	= proc_dointvec_userhz_jiffies,
2705		},
2706		{
2707			.procname	= "retrans_time_ms",
2708			.maxlen		= sizeof(int),
2709			.mode		= 0644,
2710			.proc_handler	= proc_dointvec_ms_jiffies,
2711		},
2712		{
2713			.procname	= "base_reachable_time_ms",
2714			.maxlen		= sizeof(int),
2715			.mode		= 0644,
2716			.proc_handler	= proc_dointvec_ms_jiffies,
2717		},
2718		{
2719			.procname	= "gc_interval",
2720			.maxlen		= sizeof(int),
2721			.mode		= 0644,
2722			.proc_handler	= proc_dointvec_jiffies,
2723		},
2724		{
2725			.procname	= "gc_thresh1",
2726			.maxlen		= sizeof(int),
2727			.mode		= 0644,
2728			.proc_handler	= proc_dointvec,
 
 
2729		},
2730		{
2731			.procname	= "gc_thresh2",
2732			.maxlen		= sizeof(int),
2733			.mode		= 0644,
2734			.proc_handler	= proc_dointvec,
 
 
2735		},
2736		{
2737			.procname	= "gc_thresh3",
2738			.maxlen		= sizeof(int),
2739			.mode		= 0644,
2740			.proc_handler	= proc_dointvec,
 
 
2741		},
2742		{},
2743	},
2744};
2745
2746int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2747			  char *p_name, proc_handler *handler)
2748{
 
2749	struct neigh_sysctl_table *t;
2750	const char *dev_name_source = NULL;
 
 
 
2751
2752#define NEIGH_CTL_PATH_ROOT	0
2753#define NEIGH_CTL_PATH_PROTO	1
2754#define NEIGH_CTL_PATH_NEIGH	2
2755#define NEIGH_CTL_PATH_DEV	3
2756
2757	struct ctl_path neigh_path[] = {
2758		{ .procname = "net",	 },
2759		{ .procname = "proto",	 },
2760		{ .procname = "neigh",	 },
2761		{ .procname = "default", },
2762		{ },
2763	};
2764
2765	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2766	if (!t)
2767		goto err;
2768
2769	t->neigh_vars[0].data  = &p->mcast_probes;
2770	t->neigh_vars[1].data  = &p->ucast_probes;
2771	t->neigh_vars[2].data  = &p->app_probes;
2772	t->neigh_vars[3].data  = &p->retrans_time;
2773	t->neigh_vars[4].data  = &p->base_reachable_time;
2774	t->neigh_vars[5].data  = &p->delay_probe_time;
2775	t->neigh_vars[6].data  = &p->gc_staletime;
2776	t->neigh_vars[7].data  = &p->queue_len;
2777	t->neigh_vars[8].data  = &p->proxy_qlen;
2778	t->neigh_vars[9].data  = &p->anycast_delay;
2779	t->neigh_vars[10].data = &p->proxy_delay;
2780	t->neigh_vars[11].data = &p->locktime;
2781	t->neigh_vars[12].data  = &p->retrans_time;
2782	t->neigh_vars[13].data  = &p->base_reachable_time;
2783
 
2784	if (dev) {
2785		dev_name_source = dev->name;
2786		/* Terminate the table early */
2787		memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
 
 
2788	} else {
2789		dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2790		t->neigh_vars[14].data = (int *)(p + 1);
2791		t->neigh_vars[15].data = (int *)(p + 1) + 1;
2792		t->neigh_vars[16].data = (int *)(p + 1) + 2;
2793		t->neigh_vars[17].data = (int *)(p + 1) + 3;
 
2794	}
2795
2796
2797	if (handler) {
2798		/* RetransTime */
2799		t->neigh_vars[3].proc_handler = handler;
2800		t->neigh_vars[3].extra1 = dev;
2801		/* ReachableTime */
2802		t->neigh_vars[4].proc_handler = handler;
2803		t->neigh_vars[4].extra1 = dev;
2804		/* RetransTime (in milliseconds)*/
2805		t->neigh_vars[12].proc_handler = handler;
2806		t->neigh_vars[12].extra1 = dev;
 
 
 
 
 
 
 
 
 
 
 
2807		/* ReachableTime (in milliseconds) */
2808		t->neigh_vars[13].proc_handler = handler;
2809		t->neigh_vars[13].extra1 = dev;
2810	}
2811
2812	t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2813	if (!t->dev_name)
2814		goto free;
2815
2816	neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2817	neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2818
2819	t->sysctl_header =
2820		register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
 
 
 
 
 
 
 
2821	if (!t->sysctl_header)
2822		goto free_procname;
2823
2824	p->sysctl_table = t;
2825	return 0;
2826
2827free_procname:
2828	kfree(t->dev_name);
2829free:
2830	kfree(t);
2831err:
2832	return -ENOBUFS;
2833}
2834EXPORT_SYMBOL(neigh_sysctl_register);
2835
2836void neigh_sysctl_unregister(struct neigh_parms *p)
2837{
2838	if (p->sysctl_table) {
2839		struct neigh_sysctl_table *t = p->sysctl_table;
2840		p->sysctl_table = NULL;
2841		unregister_sysctl_table(t->sysctl_header);
2842		kfree(t->dev_name);
2843		kfree(t);
2844	}
2845}
2846EXPORT_SYMBOL(neigh_sysctl_unregister);
2847
2848#endif	/* CONFIG_SYSCTL */
2849
2850static int __init neigh_init(void)
2851{
2852	rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
2853	rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
2854	rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
2855
2856	rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
2857		      NULL);
2858	rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
2859
2860	return 0;
2861}
2862
2863subsys_initcall(neigh_init);
2864
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	Generic address resolution entity
   4 *
   5 *	Authors:
   6 *	Pedro Roque		<roque@di.fc.ul.pt>
   7 *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
   8 *
 
 
 
 
 
   9 *	Fixes:
  10 *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
  11 *	Harald Welte		Add neighbour cache statistics like rtstat
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/slab.h>
  17#include <linux/kmemleak.h>
  18#include <linux/types.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/socket.h>
  22#include <linux/netdevice.h>
  23#include <linux/proc_fs.h>
  24#ifdef CONFIG_SYSCTL
  25#include <linux/sysctl.h>
  26#endif
  27#include <linux/times.h>
  28#include <net/net_namespace.h>
  29#include <net/neighbour.h>
  30#include <net/arp.h>
  31#include <net/dst.h>
  32#include <net/sock.h>
  33#include <net/netevent.h>
  34#include <net/netlink.h>
  35#include <linux/rtnetlink.h>
  36#include <linux/random.h>
  37#include <linux/string.h>
  38#include <linux/log2.h>
  39#include <linux/inetdevice.h>
  40#include <net/addrconf.h>
  41
  42#include <trace/events/neigh.h>
  43
  44#define NEIGH_DEBUG 1
  45#define neigh_dbg(level, fmt, ...)		\
  46do {						\
  47	if (level <= NEIGH_DEBUG)		\
  48		pr_debug(fmt, ##__VA_ARGS__);	\
  49} while (0)
 
 
 
 
 
 
 
  50
  51#define PNEIGH_HASHMASK		0xF
  52
  53static void neigh_timer_handler(struct timer_list *t);
  54static void __neigh_notify(struct neighbour *n, int type, int flags,
  55			   u32 pid);
  56static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid);
  57static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
  58				    struct net_device *dev);
  59
 
  60#ifdef CONFIG_PROC_FS
  61static const struct seq_operations neigh_stat_seq_ops;
  62#endif
  63
  64/*
  65   Neighbour hash table buckets are protected with rwlock tbl->lock.
  66
  67   - All the scans/updates to hash buckets MUST be made under this lock.
  68   - NOTHING clever should be made under this lock: no callbacks
  69     to protocol backends, no attempts to send something to network.
  70     It will result in deadlocks, if backend/driver wants to use neighbour
  71     cache.
  72   - If the entry requires some non-trivial actions, increase
  73     its reference count and release table lock.
  74
  75   Neighbour entries are protected:
  76   - with reference count.
  77   - with rwlock neigh->lock
  78
  79   Reference count prevents destruction.
  80
  81   neigh->lock mainly serializes ll address data and its validity state.
  82   However, the same lock is used to protect another entry fields:
  83    - timer
  84    - resolution queue
  85
  86   Again, nothing clever shall be made under neigh->lock,
  87   the most complicated procedure, which we allow is dev->hard_header.
  88   It is supposed, that dev->hard_header is simplistic and does
  89   not make callbacks to neighbour tables.
 
 
 
  90 */
  91
 
 
  92static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
  93{
  94	kfree_skb(skb);
  95	return -ENETDOWN;
  96}
  97
  98static void neigh_cleanup_and_release(struct neighbour *neigh)
  99{
 100	trace_neigh_cleanup_and_release(neigh, 0);
 101	__neigh_notify(neigh, RTM_DELNEIGH, 0, 0);
 102	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
 
 103	neigh_release(neigh);
 104}
 105
 106/*
 107 * It is random distribution in the interval (1/2)*base...(3/2)*base.
 108 * It corresponds to default IPv6 settings and is not overridable,
 109 * because it is really reasonable choice.
 110 */
 111
 112unsigned long neigh_rand_reach_time(unsigned long base)
 113{
 114	return base ? get_random_u32_below(base) + (base >> 1) : 0;
 115}
 116EXPORT_SYMBOL(neigh_rand_reach_time);
 117
 118static void neigh_mark_dead(struct neighbour *n)
 119{
 120	n->dead = 1;
 121	if (!list_empty(&n->gc_list)) {
 122		list_del_init(&n->gc_list);
 123		atomic_dec(&n->tbl->gc_entries);
 124	}
 125	if (!list_empty(&n->managed_list))
 126		list_del_init(&n->managed_list);
 127}
 128
 129static void neigh_update_gc_list(struct neighbour *n)
 130{
 131	bool on_gc_list, exempt_from_gc;
 132
 133	write_lock_bh(&n->tbl->lock);
 134	write_lock(&n->lock);
 135	if (n->dead)
 136		goto out;
 137
 138	/* remove from the gc list if new state is permanent or if neighbor
 139	 * is externally learned; otherwise entry should be on the gc list
 140	 */
 141	exempt_from_gc = n->nud_state & NUD_PERMANENT ||
 142			 n->flags & NTF_EXT_LEARNED;
 143	on_gc_list = !list_empty(&n->gc_list);
 144
 145	if (exempt_from_gc && on_gc_list) {
 146		list_del_init(&n->gc_list);
 147		atomic_dec(&n->tbl->gc_entries);
 148	} else if (!exempt_from_gc && !on_gc_list) {
 149		/* add entries to the tail; cleaning removes from the front */
 150		list_add_tail(&n->gc_list, &n->tbl->gc_list);
 151		atomic_inc(&n->tbl->gc_entries);
 152	}
 153out:
 154	write_unlock(&n->lock);
 155	write_unlock_bh(&n->tbl->lock);
 156}
 157
 158static void neigh_update_managed_list(struct neighbour *n)
 159{
 160	bool on_managed_list, add_to_managed;
 161
 162	write_lock_bh(&n->tbl->lock);
 163	write_lock(&n->lock);
 164	if (n->dead)
 165		goto out;
 166
 167	add_to_managed = n->flags & NTF_MANAGED;
 168	on_managed_list = !list_empty(&n->managed_list);
 169
 170	if (!add_to_managed && on_managed_list)
 171		list_del_init(&n->managed_list);
 172	else if (add_to_managed && !on_managed_list)
 173		list_add_tail(&n->managed_list, &n->tbl->managed_list);
 174out:
 175	write_unlock(&n->lock);
 176	write_unlock_bh(&n->tbl->lock);
 177}
 178
 179static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify,
 180			       bool *gc_update, bool *managed_update)
 181{
 182	u32 ndm_flags, old_flags = neigh->flags;
 183
 184	if (!(flags & NEIGH_UPDATE_F_ADMIN))
 185		return;
 186
 187	ndm_flags  = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0;
 188	ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0;
 189
 190	if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) {
 191		if (ndm_flags & NTF_EXT_LEARNED)
 192			neigh->flags |= NTF_EXT_LEARNED;
 193		else
 194			neigh->flags &= ~NTF_EXT_LEARNED;
 195		*notify = 1;
 196		*gc_update = true;
 197	}
 198	if ((old_flags ^ ndm_flags) & NTF_MANAGED) {
 199		if (ndm_flags & NTF_MANAGED)
 200			neigh->flags |= NTF_MANAGED;
 201		else
 202			neigh->flags &= ~NTF_MANAGED;
 203		*notify = 1;
 204		*managed_update = true;
 205	}
 206}
 207
 208static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np,
 209		      struct neigh_table *tbl)
 210{
 211	bool retval = false;
 212
 213	write_lock(&n->lock);
 214	if (refcount_read(&n->refcnt) == 1) {
 215		struct neighbour *neigh;
 216
 217		neigh = rcu_dereference_protected(n->next,
 218						  lockdep_is_held(&tbl->lock));
 219		rcu_assign_pointer(*np, neigh);
 220		neigh_mark_dead(n);
 221		retval = true;
 222	}
 223	write_unlock(&n->lock);
 224	if (retval)
 225		neigh_cleanup_and_release(n);
 226	return retval;
 227}
 228
 229bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl)
 230{
 231	struct neigh_hash_table *nht;
 232	void *pkey = ndel->primary_key;
 233	u32 hash_val;
 234	struct neighbour *n;
 235	struct neighbour __rcu **np;
 236
 237	nht = rcu_dereference_protected(tbl->nht,
 238					lockdep_is_held(&tbl->lock));
 239	hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd);
 240	hash_val = hash_val >> (32 - nht->hash_shift);
 241
 242	np = &nht->hash_buckets[hash_val];
 243	while ((n = rcu_dereference_protected(*np,
 244					      lockdep_is_held(&tbl->lock)))) {
 245		if (n == ndel)
 246			return neigh_del(n, np, tbl);
 247		np = &n->next;
 248	}
 249	return false;
 250}
 251
 252static int neigh_forced_gc(struct neigh_table *tbl)
 253{
 254	int max_clean = atomic_read(&tbl->gc_entries) -
 255			READ_ONCE(tbl->gc_thresh2);
 256	u64 tmax = ktime_get_ns() + NSEC_PER_MSEC;
 257	unsigned long tref = jiffies - 5 * HZ;
 258	struct neighbour *n, *tmp;
 259	int shrunk = 0;
 260	int loop = 0;
 
 261
 262	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
 263
 264	write_lock_bh(&tbl->lock);
 
 
 
 
 
 265
 266	list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) {
 267		if (refcount_read(&n->refcnt) == 1) {
 268			bool remove = false;
 269
 
 
 
 270			write_lock(&n->lock);
 271			if ((n->nud_state == NUD_FAILED) ||
 272			    (n->nud_state == NUD_NOARP) ||
 273			    (tbl->is_multicast &&
 274			     tbl->is_multicast(n->primary_key)) ||
 275			    !time_in_range(n->updated, tref, jiffies))
 276				remove = true;
 
 
 
 
 
 277			write_unlock(&n->lock);
 278
 279			if (remove && neigh_remove_one(n, tbl))
 280				shrunk++;
 281			if (shrunk >= max_clean)
 282				break;
 283			if (++loop == 16) {
 284				if (ktime_get_ns() > tmax)
 285					goto unlock;
 286				loop = 0;
 287			}
 288		}
 289	}
 290
 291	WRITE_ONCE(tbl->last_flush, jiffies);
 292unlock:
 293	write_unlock_bh(&tbl->lock);
 294
 295	return shrunk;
 296}
 297
 298static void neigh_add_timer(struct neighbour *n, unsigned long when)
 299{
 300	/* Use safe distance from the jiffies - LONG_MAX point while timer
 301	 * is running in DELAY/PROBE state but still show to user space
 302	 * large times in the past.
 303	 */
 304	unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ);
 305
 306	neigh_hold(n);
 307	if (!time_in_range(n->confirmed, mint, jiffies))
 308		n->confirmed = mint;
 309	if (time_before(n->used, n->confirmed))
 310		n->used = n->confirmed;
 311	if (unlikely(mod_timer(&n->timer, when))) {
 312		printk("NEIGH: BUG, double timer add, state is %x\n",
 313		       n->nud_state);
 314		dump_stack();
 315	}
 316}
 317
 318static int neigh_del_timer(struct neighbour *n)
 319{
 320	if ((n->nud_state & NUD_IN_TIMER) &&
 321	    del_timer(&n->timer)) {
 322		neigh_release(n);
 323		return 1;
 324	}
 325	return 0;
 326}
 327
 328static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
 329						   int family)
 330{
 331	switch (family) {
 332	case AF_INET:
 333		return __in_dev_arp_parms_get_rcu(dev);
 334	case AF_INET6:
 335		return __in6_dev_nd_parms_get_rcu(dev);
 336	}
 337	return NULL;
 338}
 339
 340static void neigh_parms_qlen_dec(struct net_device *dev, int family)
 341{
 342	struct neigh_parms *p;
 343
 344	rcu_read_lock();
 345	p = neigh_get_dev_parms_rcu(dev, family);
 346	if (p)
 347		p->qlen--;
 348	rcu_read_unlock();
 349}
 350
 351static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net,
 352			       int family)
 353{
 354	struct sk_buff_head tmp;
 355	unsigned long flags;
 356	struct sk_buff *skb;
 357
 358	skb_queue_head_init(&tmp);
 359	spin_lock_irqsave(&list->lock, flags);
 360	skb = skb_peek(list);
 361	while (skb != NULL) {
 362		struct sk_buff *skb_next = skb_peek_next(skb, list);
 363		struct net_device *dev = skb->dev;
 364
 365		if (net == NULL || net_eq(dev_net(dev), net)) {
 366			neigh_parms_qlen_dec(dev, family);
 367			__skb_unlink(skb, list);
 368			__skb_queue_tail(&tmp, skb);
 369		}
 370		skb = skb_next;
 371	}
 372	spin_unlock_irqrestore(&list->lock, flags);
 373
 374	while ((skb = __skb_dequeue(&tmp))) {
 375		dev_put(skb->dev);
 376		kfree_skb(skb);
 377	}
 378}
 379
 380static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev,
 381			    bool skip_perm)
 382{
 383	int i;
 384	struct neigh_hash_table *nht;
 385
 386	nht = rcu_dereference_protected(tbl->nht,
 387					lockdep_is_held(&tbl->lock));
 388
 389	for (i = 0; i < (1 << nht->hash_shift); i++) {
 390		struct neighbour *n;
 391		struct neighbour __rcu **np = &nht->hash_buckets[i];
 392
 393		while ((n = rcu_dereference_protected(*np,
 394					lockdep_is_held(&tbl->lock))) != NULL) {
 395			if (dev && n->dev != dev) {
 396				np = &n->next;
 397				continue;
 398			}
 399			if (skip_perm && n->nud_state & NUD_PERMANENT) {
 400				np = &n->next;
 401				continue;
 402			}
 403			rcu_assign_pointer(*np,
 404				   rcu_dereference_protected(n->next,
 405						lockdep_is_held(&tbl->lock)));
 406			write_lock(&n->lock);
 407			neigh_del_timer(n);
 408			neigh_mark_dead(n);
 409			if (refcount_read(&n->refcnt) != 1) {
 
 410				/* The most unpleasant situation.
 411				   We must destroy neighbour entry,
 412				   but someone still uses it.
 413
 414				   The destroy will be delayed until
 415				   the last user releases us, but
 416				   we must kill timers etc. and move
 417				   it to safe state.
 418				 */
 419				__skb_queue_purge(&n->arp_queue);
 420				n->arp_queue_len_bytes = 0;
 421				WRITE_ONCE(n->output, neigh_blackhole);
 422				if (n->nud_state & NUD_VALID)
 423					n->nud_state = NUD_NOARP;
 424				else
 425					n->nud_state = NUD_NONE;
 426				neigh_dbg(2, "neigh %p is stray\n", n);
 427			}
 428			write_unlock(&n->lock);
 429			neigh_cleanup_and_release(n);
 430		}
 431	}
 432}
 433
 434void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
 435{
 436	write_lock_bh(&tbl->lock);
 437	neigh_flush_dev(tbl, dev, false);
 438	write_unlock_bh(&tbl->lock);
 439}
 440EXPORT_SYMBOL(neigh_changeaddr);
 441
 442static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev,
 443			  bool skip_perm)
 444{
 445	write_lock_bh(&tbl->lock);
 446	neigh_flush_dev(tbl, dev, skip_perm);
 447	pneigh_ifdown_and_unlock(tbl, dev);
 448	pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL,
 449			   tbl->family);
 450	if (skb_queue_empty_lockless(&tbl->proxy_queue))
 451		del_timer_sync(&tbl->proxy_timer);
 452	return 0;
 453}
 454
 455int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev)
 456{
 457	__neigh_ifdown(tbl, dev, true);
 458	return 0;
 459}
 460EXPORT_SYMBOL(neigh_carrier_down);
 461
 462int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
 463{
 464	__neigh_ifdown(tbl, dev, false);
 465	return 0;
 466}
 467EXPORT_SYMBOL(neigh_ifdown);
 468
 469static struct neighbour *neigh_alloc(struct neigh_table *tbl,
 470				     struct net_device *dev,
 471				     u32 flags, bool exempt_from_gc)
 472{
 473	struct neighbour *n = NULL;
 474	unsigned long now = jiffies;
 475	int entries, gc_thresh3;
 476
 477	if (exempt_from_gc)
 478		goto do_alloc;
 479
 480	entries = atomic_inc_return(&tbl->gc_entries) - 1;
 481	gc_thresh3 = READ_ONCE(tbl->gc_thresh3);
 482	if (entries >= gc_thresh3 ||
 483	    (entries >= READ_ONCE(tbl->gc_thresh2) &&
 484	     time_after(now, READ_ONCE(tbl->last_flush) + 5 * HZ))) {
 485		if (!neigh_forced_gc(tbl) && entries >= gc_thresh3) {
 486			net_info_ratelimited("%s: neighbor table overflow!\n",
 487					     tbl->id);
 488			NEIGH_CACHE_STAT_INC(tbl, table_fulls);
 489			goto out_entries;
 490		}
 491	}
 492
 493do_alloc:
 494	n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
 495	if (!n)
 496		goto out_entries;
 497
 498	__skb_queue_head_init(&n->arp_queue);
 499	rwlock_init(&n->lock);
 500	seqlock_init(&n->ha_lock);
 501	n->updated	  = n->used = now;
 502	n->nud_state	  = NUD_NONE;
 503	n->output	  = neigh_blackhole;
 504	n->flags	  = flags;
 505	seqlock_init(&n->hh.hh_lock);
 506	n->parms	  = neigh_parms_clone(&tbl->parms);
 507	timer_setup(&n->timer, neigh_timer_handler, 0);
 508
 509	NEIGH_CACHE_STAT_INC(tbl, allocs);
 510	n->tbl		  = tbl;
 511	refcount_set(&n->refcnt, 1);
 512	n->dead		  = 1;
 513	INIT_LIST_HEAD(&n->gc_list);
 514	INIT_LIST_HEAD(&n->managed_list);
 515
 516	atomic_inc(&tbl->entries);
 517out:
 518	return n;
 519
 520out_entries:
 521	if (!exempt_from_gc)
 522		atomic_dec(&tbl->gc_entries);
 523	goto out;
 524}
 525
 526static void neigh_get_hash_rnd(u32 *x)
 527{
 528	*x = get_random_u32() | 1;
 529}
 530
 531static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
 532{
 533	size_t size = (1 << shift) * sizeof(struct neighbour *);
 534	struct neigh_hash_table *ret;
 535	struct neighbour __rcu **buckets;
 536	int i;
 537
 538	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
 539	if (!ret)
 540		return NULL;
 541	if (size <= PAGE_SIZE) {
 542		buckets = kzalloc(size, GFP_ATOMIC);
 543	} else {
 544		buckets = (struct neighbour __rcu **)
 545			  __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
 546					   get_order(size));
 547		kmemleak_alloc(buckets, size, 1, GFP_ATOMIC);
 548	}
 549	if (!buckets) {
 550		kfree(ret);
 551		return NULL;
 552	}
 553	ret->hash_buckets = buckets;
 554	ret->hash_shift = shift;
 555	for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
 556		neigh_get_hash_rnd(&ret->hash_rnd[i]);
 557	return ret;
 558}
 559
 560static void neigh_hash_free_rcu(struct rcu_head *head)
 561{
 562	struct neigh_hash_table *nht = container_of(head,
 563						    struct neigh_hash_table,
 564						    rcu);
 565	size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
 566	struct neighbour __rcu **buckets = nht->hash_buckets;
 567
 568	if (size <= PAGE_SIZE) {
 569		kfree(buckets);
 570	} else {
 571		kmemleak_free(buckets);
 572		free_pages((unsigned long)buckets, get_order(size));
 573	}
 574	kfree(nht);
 575}
 576
 577static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
 578						unsigned long new_shift)
 579{
 580	unsigned int i, hash;
 581	struct neigh_hash_table *new_nht, *old_nht;
 582
 583	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
 584
 585	old_nht = rcu_dereference_protected(tbl->nht,
 586					    lockdep_is_held(&tbl->lock));
 587	new_nht = neigh_hash_alloc(new_shift);
 588	if (!new_nht)
 589		return old_nht;
 590
 591	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
 592		struct neighbour *n, *next;
 593
 594		for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
 595						   lockdep_is_held(&tbl->lock));
 596		     n != NULL;
 597		     n = next) {
 598			hash = tbl->hash(n->primary_key, n->dev,
 599					 new_nht->hash_rnd);
 600
 601			hash >>= (32 - new_nht->hash_shift);
 602			next = rcu_dereference_protected(n->next,
 603						lockdep_is_held(&tbl->lock));
 604
 605			rcu_assign_pointer(n->next,
 606					   rcu_dereference_protected(
 607						new_nht->hash_buckets[hash],
 608						lockdep_is_held(&tbl->lock)));
 609			rcu_assign_pointer(new_nht->hash_buckets[hash], n);
 610		}
 611	}
 612
 613	rcu_assign_pointer(tbl->nht, new_nht);
 614	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
 615	return new_nht;
 616}
 617
 618struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
 619			       struct net_device *dev)
 620{
 621	struct neighbour *n;
 
 
 
 622
 623	NEIGH_CACHE_STAT_INC(tbl, lookups);
 624
 625	rcu_read_lock();
 626	n = __neigh_lookup_noref(tbl, pkey, dev);
 627	if (n) {
 628		if (!refcount_inc_not_zero(&n->refcnt))
 629			n = NULL;
 630		NEIGH_CACHE_STAT_INC(tbl, hits);
 
 
 
 
 
 
 
 631	}
 632
 633	rcu_read_unlock();
 634	return n;
 635}
 636EXPORT_SYMBOL(neigh_lookup);
 637
 638static struct neighbour *
 639___neigh_create(struct neigh_table *tbl, const void *pkey,
 640		struct net_device *dev, u32 flags,
 641		bool exempt_from_gc, bool want_ref)
 642{
 643	u32 hash_val, key_len = tbl->key_len;
 644	struct neighbour *n1, *rc, *n;
 
 645	struct neigh_hash_table *nht;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646	int error;
 
 
 647
 648	n = neigh_alloc(tbl, dev, flags, exempt_from_gc);
 649	trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc);
 650	if (!n) {
 651		rc = ERR_PTR(-ENOBUFS);
 652		goto out;
 653	}
 654
 655	memcpy(n->primary_key, pkey, key_len);
 656	n->dev = dev;
 657	netdev_hold(dev, &n->dev_tracker, GFP_ATOMIC);
 658
 659	/* Protocol specific setup. */
 660	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
 661		rc = ERR_PTR(error);
 662		goto out_neigh_release;
 663	}
 664
 665	if (dev->netdev_ops->ndo_neigh_construct) {
 666		error = dev->netdev_ops->ndo_neigh_construct(dev, n);
 667		if (error < 0) {
 668			rc = ERR_PTR(error);
 669			goto out_neigh_release;
 670		}
 671	}
 672
 673	/* Device specific setup. */
 674	if (n->parms->neigh_setup &&
 675	    (error = n->parms->neigh_setup(n)) < 0) {
 676		rc = ERR_PTR(error);
 677		goto out_neigh_release;
 678	}
 679
 680	n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
 681
 682	write_lock_bh(&tbl->lock);
 683	nht = rcu_dereference_protected(tbl->nht,
 684					lockdep_is_held(&tbl->lock));
 685
 686	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
 687		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
 688
 689	hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
 690
 691	if (n->parms->dead) {
 692		rc = ERR_PTR(-EINVAL);
 693		goto out_tbl_unlock;
 694	}
 695
 696	for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
 697					    lockdep_is_held(&tbl->lock));
 698	     n1 != NULL;
 699	     n1 = rcu_dereference_protected(n1->next,
 700			lockdep_is_held(&tbl->lock))) {
 701		if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) {
 702			if (want_ref)
 703				neigh_hold(n1);
 704			rc = n1;
 705			goto out_tbl_unlock;
 706		}
 707	}
 708
 709	n->dead = 0;
 710	if (!exempt_from_gc)
 711		list_add_tail(&n->gc_list, &n->tbl->gc_list);
 712	if (n->flags & NTF_MANAGED)
 713		list_add_tail(&n->managed_list, &n->tbl->managed_list);
 714	if (want_ref)
 715		neigh_hold(n);
 716	rcu_assign_pointer(n->next,
 717			   rcu_dereference_protected(nht->hash_buckets[hash_val],
 718						     lockdep_is_held(&tbl->lock)));
 719	rcu_assign_pointer(nht->hash_buckets[hash_val], n);
 720	write_unlock_bh(&tbl->lock);
 721	neigh_dbg(2, "neigh %p is created\n", n);
 722	rc = n;
 723out:
 724	return rc;
 725out_tbl_unlock:
 726	write_unlock_bh(&tbl->lock);
 727out_neigh_release:
 728	if (!exempt_from_gc)
 729		atomic_dec(&tbl->gc_entries);
 730	neigh_release(n);
 731	goto out;
 732}
 
 733
 734struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
 735				 struct net_device *dev, bool want_ref)
 736{
 737	return ___neigh_create(tbl, pkey, dev, 0, false, want_ref);
 738}
 739EXPORT_SYMBOL(__neigh_create);
 740
 741static u32 pneigh_hash(const void *pkey, unsigned int key_len)
 742{
 743	u32 hash_val = *(u32 *)(pkey + key_len - 4);
 744	hash_val ^= (hash_val >> 16);
 745	hash_val ^= hash_val >> 8;
 746	hash_val ^= hash_val >> 4;
 747	hash_val &= PNEIGH_HASHMASK;
 748	return hash_val;
 749}
 750
 751static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
 752					      struct net *net,
 753					      const void *pkey,
 754					      unsigned int key_len,
 755					      struct net_device *dev)
 756{
 757	while (n) {
 758		if (!memcmp(n->key, pkey, key_len) &&
 759		    net_eq(pneigh_net(n), net) &&
 760		    (n->dev == dev || !n->dev))
 761			return n;
 762		n = n->next;
 763	}
 764	return NULL;
 765}
 766
 767struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
 768		struct net *net, const void *pkey, struct net_device *dev)
 769{
 770	unsigned int key_len = tbl->key_len;
 771	u32 hash_val = pneigh_hash(pkey, key_len);
 772
 773	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 774				 net, pkey, key_len, dev);
 775}
 776EXPORT_SYMBOL_GPL(__pneigh_lookup);
 777
 778struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
 779				    struct net *net, const void *pkey,
 780				    struct net_device *dev, int creat)
 781{
 782	struct pneigh_entry *n;
 783	unsigned int key_len = tbl->key_len;
 784	u32 hash_val = pneigh_hash(pkey, key_len);
 785
 786	read_lock_bh(&tbl->lock);
 787	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 788			      net, pkey, key_len, dev);
 789	read_unlock_bh(&tbl->lock);
 790
 791	if (n || !creat)
 792		goto out;
 793
 794	ASSERT_RTNL();
 795
 796	n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL);
 797	if (!n)
 798		goto out;
 799
 800	write_pnet(&n->net, net);
 801	memcpy(n->key, pkey, key_len);
 802	n->dev = dev;
 803	netdev_hold(dev, &n->dev_tracker, GFP_KERNEL);
 
 804
 805	if (tbl->pconstructor && tbl->pconstructor(n)) {
 806		netdev_put(dev, &n->dev_tracker);
 
 
 807		kfree(n);
 808		n = NULL;
 809		goto out;
 810	}
 811
 812	write_lock_bh(&tbl->lock);
 813	n->next = tbl->phash_buckets[hash_val];
 814	tbl->phash_buckets[hash_val] = n;
 815	write_unlock_bh(&tbl->lock);
 816out:
 817	return n;
 818}
 819EXPORT_SYMBOL(pneigh_lookup);
 820
 821
 822int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
 823		  struct net_device *dev)
 824{
 825	struct pneigh_entry *n, **np;
 826	unsigned int key_len = tbl->key_len;
 827	u32 hash_val = pneigh_hash(pkey, key_len);
 828
 829	write_lock_bh(&tbl->lock);
 830	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
 831	     np = &n->next) {
 832		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
 833		    net_eq(pneigh_net(n), net)) {
 834			*np = n->next;
 835			write_unlock_bh(&tbl->lock);
 836			if (tbl->pdestructor)
 837				tbl->pdestructor(n);
 838			netdev_put(n->dev, &n->dev_tracker);
 
 
 839			kfree(n);
 840			return 0;
 841		}
 842	}
 843	write_unlock_bh(&tbl->lock);
 844	return -ENOENT;
 845}
 846
 847static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
 848				    struct net_device *dev)
 849{
 850	struct pneigh_entry *n, **np, *freelist = NULL;
 851	u32 h;
 852
 853	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
 854		np = &tbl->phash_buckets[h];
 855		while ((n = *np) != NULL) {
 856			if (!dev || n->dev == dev) {
 857				*np = n->next;
 858				n->next = freelist;
 859				freelist = n;
 
 
 
 
 860				continue;
 861			}
 862			np = &n->next;
 863		}
 864	}
 865	write_unlock_bh(&tbl->lock);
 866	while ((n = freelist)) {
 867		freelist = n->next;
 868		n->next = NULL;
 869		if (tbl->pdestructor)
 870			tbl->pdestructor(n);
 871		netdev_put(n->dev, &n->dev_tracker);
 872		kfree(n);
 873	}
 874	return -ENOENT;
 875}
 876
 877static void neigh_parms_destroy(struct neigh_parms *parms);
 878
 879static inline void neigh_parms_put(struct neigh_parms *parms)
 880{
 881	if (refcount_dec_and_test(&parms->refcnt))
 882		neigh_parms_destroy(parms);
 883}
 884
 
 
 
 
 
 
 885/*
 886 *	neighbour must already be out of the table;
 887 *
 888 */
 889void neigh_destroy(struct neighbour *neigh)
 890{
 891	struct net_device *dev = neigh->dev;
 892
 893	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
 894
 895	if (!neigh->dead) {
 896		pr_warn("Destroying alive neighbour %p\n", neigh);
 
 897		dump_stack();
 898		return;
 899	}
 900
 901	if (neigh_del_timer(neigh))
 902		pr_warn("Impossible event\n");
 903
 904	write_lock_bh(&neigh->lock);
 905	__skb_queue_purge(&neigh->arp_queue);
 906	write_unlock_bh(&neigh->lock);
 907	neigh->arp_queue_len_bytes = 0;
 908
 909	if (dev->netdev_ops->ndo_neigh_destroy)
 910		dev->netdev_ops->ndo_neigh_destroy(dev, neigh);
 911
 912	netdev_put(dev, &neigh->dev_tracker);
 913	neigh_parms_put(neigh->parms);
 914
 915	neigh_dbg(2, "neigh %p is destroyed\n", neigh);
 916
 917	atomic_dec(&neigh->tbl->entries);
 918	kfree_rcu(neigh, rcu);
 919}
 920EXPORT_SYMBOL(neigh_destroy);
 921
 922/* Neighbour state is suspicious;
 923   disable fast path.
 924
 925   Called with write_locked neigh.
 926 */
 927static void neigh_suspect(struct neighbour *neigh)
 928{
 929	neigh_dbg(2, "neigh %p is suspected\n", neigh);
 930
 931	WRITE_ONCE(neigh->output, neigh->ops->output);
 932}
 933
 934/* Neighbour state is OK;
 935   enable fast path.
 936
 937   Called with write_locked neigh.
 938 */
 939static void neigh_connect(struct neighbour *neigh)
 940{
 941	neigh_dbg(2, "neigh %p is connected\n", neigh);
 942
 943	WRITE_ONCE(neigh->output, neigh->ops->connected_output);
 944}
 945
 946static void neigh_periodic_work(struct work_struct *work)
 947{
 948	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
 949	struct neighbour *n;
 950	struct neighbour __rcu **np;
 951	unsigned int i;
 952	struct neigh_hash_table *nht;
 953
 954	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
 955
 956	write_lock_bh(&tbl->lock);
 957	nht = rcu_dereference_protected(tbl->nht,
 958					lockdep_is_held(&tbl->lock));
 959
 960	/*
 961	 *	periodically recompute ReachableTime from random function
 962	 */
 963
 964	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
 965		struct neigh_parms *p;
 966
 967		WRITE_ONCE(tbl->last_rand, jiffies);
 968		list_for_each_entry(p, &tbl->parms_list, list)
 969			p->reachable_time =
 970				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
 971	}
 972
 973	if (atomic_read(&tbl->entries) < READ_ONCE(tbl->gc_thresh1))
 974		goto out;
 975
 976	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
 977		np = &nht->hash_buckets[i];
 978
 979		while ((n = rcu_dereference_protected(*np,
 980				lockdep_is_held(&tbl->lock))) != NULL) {
 981			unsigned int state;
 982
 983			write_lock(&n->lock);
 984
 985			state = n->nud_state;
 986			if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) ||
 987			    (n->flags & NTF_EXT_LEARNED)) {
 988				write_unlock(&n->lock);
 989				goto next_elt;
 990			}
 991
 992			if (time_before(n->used, n->confirmed) &&
 993			    time_is_before_eq_jiffies(n->confirmed))
 994				n->used = n->confirmed;
 995
 996			if (refcount_read(&n->refcnt) == 1 &&
 997			    (state == NUD_FAILED ||
 998			     !time_in_range_open(jiffies, n->used,
 999						 n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
1000				rcu_assign_pointer(*np,
1001					rcu_dereference_protected(n->next,
1002						lockdep_is_held(&tbl->lock)));
1003				neigh_mark_dead(n);
1004				write_unlock(&n->lock);
1005				neigh_cleanup_and_release(n);
1006				continue;
1007			}
1008			write_unlock(&n->lock);
1009
1010next_elt:
1011			np = &n->next;
1012		}
1013		/*
1014		 * It's fine to release lock here, even if hash table
1015		 * grows while we are preempted.
1016		 */
1017		write_unlock_bh(&tbl->lock);
1018		cond_resched();
1019		write_lock_bh(&tbl->lock);
1020		nht = rcu_dereference_protected(tbl->nht,
1021						lockdep_is_held(&tbl->lock));
1022	}
1023out:
1024	/* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
1025	 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
1026	 * BASE_REACHABLE_TIME.
1027	 */
1028	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1029			      NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
1030	write_unlock_bh(&tbl->lock);
1031}
1032
1033static __inline__ int neigh_max_probes(struct neighbour *n)
1034{
1035	struct neigh_parms *p = n->parms;
1036	return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
1037	       (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
1038	        NEIGH_VAR(p, MCAST_PROBES));
1039}
1040
1041static void neigh_invalidate(struct neighbour *neigh)
1042	__releases(neigh->lock)
1043	__acquires(neigh->lock)
1044{
1045	struct sk_buff *skb;
1046
1047	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
1048	neigh_dbg(2, "neigh %p is failed\n", neigh);
1049	neigh->updated = jiffies;
1050
1051	/* It is very thin place. report_unreachable is very complicated
1052	   routine. Particularly, it can hit the same neighbour entry!
1053
1054	   So that, we try to be accurate and avoid dead loop. --ANK
1055	 */
1056	while (neigh->nud_state == NUD_FAILED &&
1057	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1058		write_unlock(&neigh->lock);
1059		neigh->ops->error_report(neigh, skb);
1060		write_lock(&neigh->lock);
1061	}
1062	__skb_queue_purge(&neigh->arp_queue);
1063	neigh->arp_queue_len_bytes = 0;
1064}
1065
1066static void neigh_probe(struct neighbour *neigh)
1067	__releases(neigh->lock)
1068{
1069	struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
1070	/* keep skb alive even if arp_queue overflows */
1071	if (skb)
1072		skb = skb_clone(skb, GFP_ATOMIC);
1073	write_unlock(&neigh->lock);
1074	if (neigh->ops->solicit)
1075		neigh->ops->solicit(neigh, skb);
1076	atomic_inc(&neigh->probes);
1077	consume_skb(skb);
1078}
1079
1080/* Called when a timer expires for a neighbour entry. */
1081
1082static void neigh_timer_handler(struct timer_list *t)
1083{
1084	unsigned long now, next;
1085	struct neighbour *neigh = from_timer(neigh, t, timer);
1086	unsigned int state;
1087	int notify = 0;
1088
1089	write_lock(&neigh->lock);
1090
1091	state = neigh->nud_state;
1092	now = jiffies;
1093	next = now + HZ;
1094
1095	if (!(state & NUD_IN_TIMER))
 
 
 
1096		goto out;
 
1097
1098	if (state & NUD_REACHABLE) {
1099		if (time_before_eq(now,
1100				   neigh->confirmed + neigh->parms->reachable_time)) {
1101			neigh_dbg(2, "neigh %p is still alive\n", neigh);
1102			next = neigh->confirmed + neigh->parms->reachable_time;
1103		} else if (time_before_eq(now,
1104					  neigh->used +
1105					  NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1106			neigh_dbg(2, "neigh %p is delayed\n", neigh);
1107			WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1108			neigh->updated = jiffies;
1109			neigh_suspect(neigh);
1110			next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
1111		} else {
1112			neigh_dbg(2, "neigh %p is suspected\n", neigh);
1113			WRITE_ONCE(neigh->nud_state, NUD_STALE);
1114			neigh->updated = jiffies;
1115			neigh_suspect(neigh);
1116			notify = 1;
1117		}
1118	} else if (state & NUD_DELAY) {
1119		if (time_before_eq(now,
1120				   neigh->confirmed +
1121				   NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1122			neigh_dbg(2, "neigh %p is now reachable\n", neigh);
1123			WRITE_ONCE(neigh->nud_state, NUD_REACHABLE);
1124			neigh->updated = jiffies;
1125			neigh_connect(neigh);
1126			notify = 1;
1127			next = neigh->confirmed + neigh->parms->reachable_time;
1128		} else {
1129			neigh_dbg(2, "neigh %p is probed\n", neigh);
1130			WRITE_ONCE(neigh->nud_state, NUD_PROBE);
1131			neigh->updated = jiffies;
1132			atomic_set(&neigh->probes, 0);
1133			notify = 1;
1134			next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1135					 HZ/100);
1136		}
1137	} else {
1138		/* NUD_PROBE|NUD_INCOMPLETE */
1139		next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100);
1140	}
1141
1142	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
1143	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
1144		WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1145		notify = 1;
1146		neigh_invalidate(neigh);
1147		goto out;
1148	}
1149
1150	if (neigh->nud_state & NUD_IN_TIMER) {
1151		if (time_before(next, jiffies + HZ/100))
1152			next = jiffies + HZ/100;
1153		if (!mod_timer(&neigh->timer, next))
1154			neigh_hold(neigh);
1155	}
1156	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
1157		neigh_probe(neigh);
 
 
 
 
 
 
 
1158	} else {
1159out:
1160		write_unlock(&neigh->lock);
1161	}
1162
1163	if (notify)
1164		neigh_update_notify(neigh, 0);
1165
1166	trace_neigh_timer_handler(neigh, 0);
1167
1168	neigh_release(neigh);
1169}
1170
1171int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb,
1172		       const bool immediate_ok)
1173{
1174	int rc;
1175	bool immediate_probe = false;
1176
1177	write_lock_bh(&neigh->lock);
1178
1179	rc = 0;
1180	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
1181		goto out_unlock_bh;
1182	if (neigh->dead)
1183		goto out_dead;
1184
1185	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
1186		if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
1187		    NEIGH_VAR(neigh->parms, APP_PROBES)) {
1188			unsigned long next, now = jiffies;
1189
1190			atomic_set(&neigh->probes,
1191				   NEIGH_VAR(neigh->parms, UCAST_PROBES));
1192			neigh_del_timer(neigh);
1193			WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1194			neigh->updated = now;
1195			if (!immediate_ok) {
1196				next = now + 1;
1197			} else {
1198				immediate_probe = true;
1199				next = now + max(NEIGH_VAR(neigh->parms,
1200							   RETRANS_TIME),
1201						 HZ / 100);
1202			}
1203			neigh_add_timer(neigh, next);
1204		} else {
1205			WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1206			neigh->updated = jiffies;
1207			write_unlock_bh(&neigh->lock);
1208
1209			kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
1210			return 1;
1211		}
1212	} else if (neigh->nud_state & NUD_STALE) {
1213		neigh_dbg(2, "neigh %p is delayed\n", neigh);
1214		neigh_del_timer(neigh);
1215		WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1216		neigh->updated = jiffies;
1217		neigh_add_timer(neigh, jiffies +
1218				NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1219	}
1220
1221	if (neigh->nud_state == NUD_INCOMPLETE) {
1222		if (skb) {
1223			while (neigh->arp_queue_len_bytes + skb->truesize >
1224			       NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1225				struct sk_buff *buff;
1226
1227				buff = __skb_dequeue(&neigh->arp_queue);
1228				if (!buff)
1229					break;
1230				neigh->arp_queue_len_bytes -= buff->truesize;
1231				kfree_skb_reason(buff, SKB_DROP_REASON_NEIGH_QUEUEFULL);
1232				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1233			}
1234			skb_dst_force(skb);
1235			__skb_queue_tail(&neigh->arp_queue, skb);
1236			neigh->arp_queue_len_bytes += skb->truesize;
1237		}
1238		rc = 1;
1239	}
1240out_unlock_bh:
1241	if (immediate_probe)
1242		neigh_probe(neigh);
1243	else
1244		write_unlock(&neigh->lock);
1245	local_bh_enable();
1246	trace_neigh_event_send_done(neigh, rc);
1247	return rc;
1248
1249out_dead:
1250	if (neigh->nud_state & NUD_STALE)
1251		goto out_unlock_bh;
1252	write_unlock_bh(&neigh->lock);
1253	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_DEAD);
1254	trace_neigh_event_send_dead(neigh, 1);
1255	return 1;
1256}
1257EXPORT_SYMBOL(__neigh_event_send);
1258
1259static void neigh_update_hhs(struct neighbour *neigh)
1260{
1261	struct hh_cache *hh;
1262	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1263		= NULL;
1264
1265	if (neigh->dev->header_ops)
1266		update = neigh->dev->header_ops->cache_update;
1267
1268	if (update) {
1269		hh = &neigh->hh;
1270		if (READ_ONCE(hh->hh_len)) {
1271			write_seqlock_bh(&hh->hh_lock);
1272			update(hh, neigh->dev, neigh->ha);
1273			write_sequnlock_bh(&hh->hh_lock);
1274		}
1275	}
1276}
1277
 
 
1278/* Generic update routine.
1279   -- lladdr is new lladdr or NULL, if it is not supplied.
1280   -- new    is new state.
1281   -- flags
1282	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1283				if it is different.
1284	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1285				lladdr instead of overriding it
1286				if it is different.
 
 
1287	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1288	NEIGH_UPDATE_F_USE	means that the entry is user triggered.
1289	NEIGH_UPDATE_F_MANAGED	means that the entry will be auto-refreshed.
1290	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1291				NTF_ROUTER flag.
1292	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1293				a router.
1294
1295   Caller MUST hold reference count on the entry.
1296 */
1297static int __neigh_update(struct neighbour *neigh, const u8 *lladdr,
1298			  u8 new, u32 flags, u32 nlmsg_pid,
1299			  struct netlink_ext_ack *extack)
1300{
1301	bool gc_update = false, managed_update = false;
 
 
 
1302	int update_isrouter = 0;
1303	struct net_device *dev;
1304	int err, notify = 0;
1305	u8 old;
1306
1307	trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid);
1308
1309	write_lock_bh(&neigh->lock);
1310
1311	dev    = neigh->dev;
1312	old    = neigh->nud_state;
1313	err    = -EPERM;
1314
1315	if (neigh->dead) {
1316		NL_SET_ERR_MSG(extack, "Neighbor entry is now dead");
1317		new = old;
1318		goto out;
1319	}
1320	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1321	    (old & (NUD_NOARP | NUD_PERMANENT)))
1322		goto out;
1323
1324	neigh_update_flags(neigh, flags, &notify, &gc_update, &managed_update);
1325	if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) {
1326		new = old & ~NUD_PERMANENT;
1327		WRITE_ONCE(neigh->nud_state, new);
1328		err = 0;
1329		goto out;
1330	}
1331
1332	if (!(new & NUD_VALID)) {
1333		neigh_del_timer(neigh);
1334		if (old & NUD_CONNECTED)
1335			neigh_suspect(neigh);
1336		WRITE_ONCE(neigh->nud_state, new);
1337		err = 0;
1338		notify = old & NUD_VALID;
1339		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1340		    (new & NUD_FAILED)) {
1341			neigh_invalidate(neigh);
1342			notify = 1;
1343		}
1344		goto out;
1345	}
1346
1347	/* Compare new lladdr with cached one */
1348	if (!dev->addr_len) {
1349		/* First case: device needs no address. */
1350		lladdr = neigh->ha;
1351	} else if (lladdr) {
1352		/* The second case: if something is already cached
1353		   and a new address is proposed:
1354		   - compare new & old
1355		   - if they are different, check override flag
1356		 */
1357		if ((old & NUD_VALID) &&
1358		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1359			lladdr = neigh->ha;
1360	} else {
1361		/* No address is supplied; if we know something,
1362		   use it, otherwise discard the request.
1363		 */
1364		err = -EINVAL;
1365		if (!(old & NUD_VALID)) {
1366			NL_SET_ERR_MSG(extack, "No link layer address given");
1367			goto out;
1368		}
1369		lladdr = neigh->ha;
1370	}
1371
1372	/* Update confirmed timestamp for neighbour entry after we
1373	 * received ARP packet even if it doesn't change IP to MAC binding.
1374	 */
1375	if (new & NUD_CONNECTED)
1376		neigh->confirmed = jiffies;
 
1377
1378	/* If entry was valid and address is not changed,
1379	   do not change entry state, if new one is STALE.
1380	 */
1381	err = 0;
1382	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1383	if (old & NUD_VALID) {
1384		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1385			update_isrouter = 0;
1386			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1387			    (old & NUD_CONNECTED)) {
1388				lladdr = neigh->ha;
1389				new = NUD_STALE;
1390			} else
1391				goto out;
1392		} else {
1393			if (lladdr == neigh->ha && new == NUD_STALE &&
1394			    !(flags & NEIGH_UPDATE_F_ADMIN))
 
 
1395				new = old;
1396		}
1397	}
1398
1399	/* Update timestamp only once we know we will make a change to the
1400	 * neighbour entry. Otherwise we risk to move the locktime window with
1401	 * noop updates and ignore relevant ARP updates.
1402	 */
1403	if (new != old || lladdr != neigh->ha)
1404		neigh->updated = jiffies;
1405
1406	if (new != old) {
1407		neigh_del_timer(neigh);
1408		if (new & NUD_PROBE)
1409			atomic_set(&neigh->probes, 0);
1410		if (new & NUD_IN_TIMER)
1411			neigh_add_timer(neigh, (jiffies +
1412						((new & NUD_REACHABLE) ?
1413						 neigh->parms->reachable_time :
1414						 0)));
1415		WRITE_ONCE(neigh->nud_state, new);
1416		notify = 1;
1417	}
1418
1419	if (lladdr != neigh->ha) {
1420		write_seqlock(&neigh->ha_lock);
1421		memcpy(&neigh->ha, lladdr, dev->addr_len);
1422		write_sequnlock(&neigh->ha_lock);
1423		neigh_update_hhs(neigh);
1424		if (!(new & NUD_CONNECTED))
1425			neigh->confirmed = jiffies -
1426				      (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1427		notify = 1;
1428	}
1429	if (new == old)
1430		goto out;
1431	if (new & NUD_CONNECTED)
1432		neigh_connect(neigh);
1433	else
1434		neigh_suspect(neigh);
1435	if (!(old & NUD_VALID)) {
1436		struct sk_buff *skb;
1437
1438		/* Again: avoid dead loop if something went wrong */
1439
1440		while (neigh->nud_state & NUD_VALID &&
1441		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1442			struct dst_entry *dst = skb_dst(skb);
1443			struct neighbour *n2, *n1 = neigh;
1444			write_unlock_bh(&neigh->lock);
1445
1446			rcu_read_lock();
1447
1448			/* Why not just use 'neigh' as-is?  The problem is that
1449			 * things such as shaper, eql, and sch_teql can end up
1450			 * using alternative, different, neigh objects to output
1451			 * the packet in the output path.  So what we need to do
1452			 * here is re-lookup the top-level neigh in the path so
1453			 * we can reinject the packet there.
1454			 */
1455			n2 = NULL;
1456			if (dst && dst->obsolete != DST_OBSOLETE_DEAD) {
1457				n2 = dst_neigh_lookup_skb(dst, skb);
1458				if (n2)
1459					n1 = n2;
1460			}
1461			READ_ONCE(n1->output)(n1, skb);
1462			if (n2)
1463				neigh_release(n2);
1464			rcu_read_unlock();
1465
1466			write_lock_bh(&neigh->lock);
1467		}
1468		__skb_queue_purge(&neigh->arp_queue);
1469		neigh->arp_queue_len_bytes = 0;
1470	}
1471out:
1472	if (update_isrouter)
1473		neigh_update_is_router(neigh, flags, &notify);
 
 
 
1474	write_unlock_bh(&neigh->lock);
1475	if (((new ^ old) & NUD_PERMANENT) || gc_update)
1476		neigh_update_gc_list(neigh);
1477	if (managed_update)
1478		neigh_update_managed_list(neigh);
1479	if (notify)
1480		neigh_update_notify(neigh, nlmsg_pid);
1481	trace_neigh_update_done(neigh, err);
1482	return err;
1483}
1484
1485int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1486		 u32 flags, u32 nlmsg_pid)
1487{
1488	return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL);
1489}
1490EXPORT_SYMBOL(neigh_update);
1491
1492/* Update the neigh to listen temporarily for probe responses, even if it is
1493 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1494 */
1495void __neigh_set_probe_once(struct neighbour *neigh)
1496{
1497	if (neigh->dead)
1498		return;
1499	neigh->updated = jiffies;
1500	if (!(neigh->nud_state & NUD_FAILED))
1501		return;
1502	WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1503	atomic_set(&neigh->probes, neigh_max_probes(neigh));
1504	neigh_add_timer(neigh,
1505			jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1506				      HZ/100));
1507}
1508EXPORT_SYMBOL(__neigh_set_probe_once);
1509
1510struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1511				 u8 *lladdr, void *saddr,
1512				 struct net_device *dev)
1513{
1514	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1515						 lladdr || !dev->addr_len);
1516	if (neigh)
1517		neigh_update(neigh, lladdr, NUD_STALE,
1518			     NEIGH_UPDATE_F_OVERRIDE, 0);
1519	return neigh;
1520}
1521EXPORT_SYMBOL(neigh_event_ns);
1522
1523/* called with read_lock_bh(&n->lock); */
1524static void neigh_hh_init(struct neighbour *n)
1525{
1526	struct net_device *dev = n->dev;
1527	__be16 prot = n->tbl->protocol;
1528	struct hh_cache	*hh = &n->hh;
1529
1530	write_lock_bh(&n->lock);
1531
1532	/* Only one thread can come in here and initialize the
1533	 * hh_cache entry.
1534	 */
1535	if (!hh->hh_len)
1536		dev->header_ops->cache(n, hh, prot);
1537
1538	write_unlock_bh(&n->lock);
1539}
1540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541/* Slow and careful. */
1542
1543int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1544{
 
1545	int rc = 0;
1546
 
 
 
 
 
1547	if (!neigh_event_send(neigh, skb)) {
1548		int err;
1549		struct net_device *dev = neigh->dev;
1550		unsigned int seq;
1551
1552		if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len))
1553			neigh_hh_init(neigh);
1554
1555		do {
1556			__skb_pull(skb, skb_network_offset(skb));
1557			seq = read_seqbegin(&neigh->ha_lock);
1558			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1559					      neigh->ha, NULL, skb->len);
1560		} while (read_seqretry(&neigh->ha_lock, seq));
1561
1562		if (err >= 0)
1563			rc = dev_queue_xmit(skb);
1564		else
1565			goto out_kfree_skb;
1566	}
1567out:
1568	return rc;
 
 
 
1569out_kfree_skb:
1570	rc = -EINVAL;
1571	kfree_skb(skb);
1572	goto out;
1573}
1574EXPORT_SYMBOL(neigh_resolve_output);
1575
1576/* As fast as possible without hh cache */
1577
1578int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1579{
1580	struct net_device *dev = neigh->dev;
1581	unsigned int seq;
1582	int err;
1583
 
 
1584	do {
1585		__skb_pull(skb, skb_network_offset(skb));
1586		seq = read_seqbegin(&neigh->ha_lock);
1587		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1588				      neigh->ha, NULL, skb->len);
1589	} while (read_seqretry(&neigh->ha_lock, seq));
1590
1591	if (err >= 0)
1592		err = dev_queue_xmit(skb);
1593	else {
1594		err = -EINVAL;
1595		kfree_skb(skb);
1596	}
1597	return err;
1598}
1599EXPORT_SYMBOL(neigh_connected_output);
1600
1601int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1602{
1603	return dev_queue_xmit(skb);
1604}
1605EXPORT_SYMBOL(neigh_direct_output);
1606
1607static void neigh_managed_work(struct work_struct *work)
1608{
1609	struct neigh_table *tbl = container_of(work, struct neigh_table,
1610					       managed_work.work);
1611	struct neighbour *neigh;
1612
1613	write_lock_bh(&tbl->lock);
1614	list_for_each_entry(neigh, &tbl->managed_list, managed_list)
1615		neigh_event_send_probe(neigh, NULL, false);
1616	queue_delayed_work(system_power_efficient_wq, &tbl->managed_work,
1617			   NEIGH_VAR(&tbl->parms, INTERVAL_PROBE_TIME_MS));
1618	write_unlock_bh(&tbl->lock);
1619}
1620
1621static void neigh_proxy_process(struct timer_list *t)
1622{
1623	struct neigh_table *tbl = from_timer(tbl, t, proxy_timer);
1624	long sched_next = 0;
1625	unsigned long now = jiffies;
1626	struct sk_buff *skb, *n;
1627
1628	spin_lock(&tbl->proxy_queue.lock);
1629
1630	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1631		long tdif = NEIGH_CB(skb)->sched_next - now;
1632
1633		if (tdif <= 0) {
1634			struct net_device *dev = skb->dev;
1635
1636			neigh_parms_qlen_dec(dev, tbl->family);
1637			__skb_unlink(skb, &tbl->proxy_queue);
1638
1639			if (tbl->proxy_redo && netif_running(dev)) {
1640				rcu_read_lock();
1641				tbl->proxy_redo(skb);
1642				rcu_read_unlock();
1643			} else {
1644				kfree_skb(skb);
1645			}
1646
1647			dev_put(dev);
1648		} else if (!sched_next || tdif < sched_next)
1649			sched_next = tdif;
1650	}
1651	del_timer(&tbl->proxy_timer);
1652	if (sched_next)
1653		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1654	spin_unlock(&tbl->proxy_queue.lock);
1655}
1656
1657static unsigned long neigh_proxy_delay(struct neigh_parms *p)
1658{
1659	/* If proxy_delay is zero, do not call get_random_u32_below()
1660	 * as it is undefined behavior.
1661	 */
1662	unsigned long proxy_delay = NEIGH_VAR(p, PROXY_DELAY);
1663
1664	return proxy_delay ?
1665	       jiffies + get_random_u32_below(proxy_delay) : jiffies;
1666}
1667
1668void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1669		    struct sk_buff *skb)
1670{
1671	unsigned long sched_next = neigh_proxy_delay(p);
 
1672
1673	if (p->qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1674		kfree_skb(skb);
1675		return;
1676	}
1677
1678	NEIGH_CB(skb)->sched_next = sched_next;
1679	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1680
1681	spin_lock(&tbl->proxy_queue.lock);
1682	if (del_timer(&tbl->proxy_timer)) {
1683		if (time_before(tbl->proxy_timer.expires, sched_next))
1684			sched_next = tbl->proxy_timer.expires;
1685	}
1686	skb_dst_drop(skb);
1687	dev_hold(skb->dev);
1688	__skb_queue_tail(&tbl->proxy_queue, skb);
1689	p->qlen++;
1690	mod_timer(&tbl->proxy_timer, sched_next);
1691	spin_unlock(&tbl->proxy_queue.lock);
1692}
1693EXPORT_SYMBOL(pneigh_enqueue);
1694
1695static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1696						      struct net *net, int ifindex)
1697{
1698	struct neigh_parms *p;
1699
1700	list_for_each_entry(p, &tbl->parms_list, list) {
1701		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1702		    (!p->dev && !ifindex && net_eq(net, &init_net)))
1703			return p;
1704	}
1705
1706	return NULL;
1707}
1708
1709struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1710				      struct neigh_table *tbl)
1711{
1712	struct neigh_parms *p;
1713	struct net *net = dev_net(dev);
1714	const struct net_device_ops *ops = dev->netdev_ops;
1715
1716	p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
 
 
 
 
1717	if (p) {
1718		p->tbl		  = tbl;
1719		refcount_set(&p->refcnt, 1);
1720		p->reachable_time =
1721				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1722		p->qlen = 0;
1723		netdev_hold(dev, &p->dev_tracker, GFP_KERNEL);
1724		p->dev = dev;
1725		write_pnet(&p->net, net);
1726		p->sysctl_table = NULL;
1727
1728		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1729			netdev_put(dev, &p->dev_tracker);
1730			kfree(p);
1731			return NULL;
1732		}
1733
 
 
 
 
1734		write_lock_bh(&tbl->lock);
1735		list_add(&p->list, &tbl->parms.list);
 
1736		write_unlock_bh(&tbl->lock);
1737
1738		neigh_parms_data_state_cleanall(p);
1739	}
1740	return p;
1741}
1742EXPORT_SYMBOL(neigh_parms_alloc);
1743
1744static void neigh_rcu_free_parms(struct rcu_head *head)
1745{
1746	struct neigh_parms *parms =
1747		container_of(head, struct neigh_parms, rcu_head);
1748
1749	neigh_parms_put(parms);
1750}
1751
1752void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1753{
 
 
1754	if (!parms || parms == &tbl->parms)
1755		return;
1756	write_lock_bh(&tbl->lock);
1757	list_del(&parms->list);
1758	parms->dead = 1;
 
 
 
 
 
 
 
 
 
1759	write_unlock_bh(&tbl->lock);
1760	netdev_put(parms->dev, &parms->dev_tracker);
1761	call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1762}
1763EXPORT_SYMBOL(neigh_parms_release);
1764
1765static void neigh_parms_destroy(struct neigh_parms *parms)
1766{
 
1767	kfree(parms);
1768}
1769
1770static struct lock_class_key neigh_table_proxy_queue_class;
1771
1772static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1773
1774void neigh_table_init(int index, struct neigh_table *tbl)
1775{
1776	unsigned long now = jiffies;
1777	unsigned long phsize;
1778
1779	INIT_LIST_HEAD(&tbl->parms_list);
1780	INIT_LIST_HEAD(&tbl->gc_list);
1781	INIT_LIST_HEAD(&tbl->managed_list);
1782
1783	list_add(&tbl->parms.list, &tbl->parms_list);
1784	write_pnet(&tbl->parms.net, &init_net);
1785	refcount_set(&tbl->parms.refcnt, 1);
1786	tbl->parms.reachable_time =
1787			  neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1788	tbl->parms.qlen = 0;
1789
 
 
 
 
 
1790	tbl->stats = alloc_percpu(struct neigh_statistics);
1791	if (!tbl->stats)
1792		panic("cannot create neighbour cache statistics");
1793
1794#ifdef CONFIG_PROC_FS
1795	if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat,
1796			      &neigh_stat_seq_ops, tbl))
1797		panic("cannot create neighbour proc dir entry");
1798#endif
1799
1800	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1801
1802	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1803	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1804
1805	if (!tbl->nht || !tbl->phash_buckets)
1806		panic("cannot allocate neighbour cache hashes");
1807
1808	if (!tbl->entry_size)
1809		tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1810					tbl->key_len, NEIGH_PRIV_ALIGN);
1811	else
1812		WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1813
1814	rwlock_init(&tbl->lock);
1815
1816	INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1817	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1818			tbl->parms.reachable_time);
1819	INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work);
1820	queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0);
1821
1822	timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0);
1823	skb_queue_head_init_class(&tbl->proxy_queue,
1824			&neigh_table_proxy_queue_class);
1825
1826	tbl->last_flush = now;
1827	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
 
 
 
 
 
 
1828
1829	neigh_tables[index] = tbl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1830}
1831EXPORT_SYMBOL(neigh_table_init);
1832
1833int neigh_table_clear(int index, struct neigh_table *tbl)
1834{
1835	neigh_tables[index] = NULL;
 
1836	/* It is not clean... Fix it to unload IPv6 module safely */
1837	cancel_delayed_work_sync(&tbl->managed_work);
1838	cancel_delayed_work_sync(&tbl->gc_work);
1839	del_timer_sync(&tbl->proxy_timer);
1840	pneigh_queue_purge(&tbl->proxy_queue, NULL, tbl->family);
1841	neigh_ifdown(tbl, NULL);
1842	if (atomic_read(&tbl->entries))
1843		pr_crit("neighbour leakage\n");
 
 
 
 
 
 
 
 
1844
1845	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1846		 neigh_hash_free_rcu);
1847	tbl->nht = NULL;
1848
1849	kfree(tbl->phash_buckets);
1850	tbl->phash_buckets = NULL;
1851
1852	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1853
1854	free_percpu(tbl->stats);
1855	tbl->stats = NULL;
1856
 
 
 
1857	return 0;
1858}
1859EXPORT_SYMBOL(neigh_table_clear);
1860
1861static struct neigh_table *neigh_find_table(int family)
1862{
1863	struct neigh_table *tbl = NULL;
1864
1865	switch (family) {
1866	case AF_INET:
1867		tbl = neigh_tables[NEIGH_ARP_TABLE];
1868		break;
1869	case AF_INET6:
1870		tbl = neigh_tables[NEIGH_ND_TABLE];
1871		break;
1872	}
1873
1874	return tbl;
1875}
1876
1877const struct nla_policy nda_policy[NDA_MAX+1] = {
1878	[NDA_UNSPEC]		= { .strict_start_type = NDA_NH_ID },
1879	[NDA_DST]		= { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1880	[NDA_LLADDR]		= { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1881	[NDA_CACHEINFO]		= { .len = sizeof(struct nda_cacheinfo) },
1882	[NDA_PROBES]		= { .type = NLA_U32 },
1883	[NDA_VLAN]		= { .type = NLA_U16 },
1884	[NDA_PORT]		= { .type = NLA_U16 },
1885	[NDA_VNI]		= { .type = NLA_U32 },
1886	[NDA_IFINDEX]		= { .type = NLA_U32 },
1887	[NDA_MASTER]		= { .type = NLA_U32 },
1888	[NDA_PROTOCOL]		= { .type = NLA_U8 },
1889	[NDA_NH_ID]		= { .type = NLA_U32 },
1890	[NDA_FLAGS_EXT]		= NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK),
1891	[NDA_FDB_EXT_ATTRS]	= { .type = NLA_NESTED },
1892};
1893
1894static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh,
1895			struct netlink_ext_ack *extack)
1896{
1897	struct net *net = sock_net(skb->sk);
1898	struct ndmsg *ndm;
1899	struct nlattr *dst_attr;
1900	struct neigh_table *tbl;
1901	struct neighbour *neigh;
1902	struct net_device *dev = NULL;
1903	int err = -EINVAL;
1904
1905	ASSERT_RTNL();
1906	if (nlmsg_len(nlh) < sizeof(*ndm))
1907		goto out;
1908
1909	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1910	if (!dst_attr) {
1911		NL_SET_ERR_MSG(extack, "Network address not specified");
1912		goto out;
1913	}
1914
1915	ndm = nlmsg_data(nlh);
1916	if (ndm->ndm_ifindex) {
1917		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1918		if (dev == NULL) {
1919			err = -ENODEV;
1920			goto out;
1921		}
1922	}
1923
1924	tbl = neigh_find_table(ndm->ndm_family);
1925	if (tbl == NULL)
1926		return -EAFNOSUPPORT;
1927
1928	if (nla_len(dst_attr) < (int)tbl->key_len) {
1929		NL_SET_ERR_MSG(extack, "Invalid network address");
1930		goto out;
1931	}
 
 
 
 
 
 
 
1932
1933	if (ndm->ndm_flags & NTF_PROXY) {
1934		err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1935		goto out;
1936	}
1937
1938	if (dev == NULL)
1939		goto out;
 
 
 
1940
1941	neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1942	if (neigh == NULL) {
1943		err = -ENOENT;
 
1944		goto out;
1945	}
1946
1947	err = __neigh_update(neigh, NULL, NUD_FAILED,
1948			     NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN,
1949			     NETLINK_CB(skb).portid, extack);
1950	write_lock_bh(&tbl->lock);
1951	neigh_release(neigh);
1952	neigh_remove_one(neigh, tbl);
1953	write_unlock_bh(&tbl->lock);
1954
1955out:
1956	return err;
1957}
1958
1959static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh,
1960		     struct netlink_ext_ack *extack)
1961{
1962	int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE |
1963		    NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1964	struct net *net = sock_net(skb->sk);
1965	struct ndmsg *ndm;
1966	struct nlattr *tb[NDA_MAX+1];
1967	struct neigh_table *tbl;
1968	struct net_device *dev = NULL;
1969	struct neighbour *neigh;
1970	void *dst, *lladdr;
1971	u8 protocol = 0;
1972	u32 ndm_flags;
1973	int err;
1974
1975	ASSERT_RTNL();
1976	err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX,
1977				     nda_policy, extack);
1978	if (err < 0)
1979		goto out;
1980
1981	err = -EINVAL;
1982	if (!tb[NDA_DST]) {
1983		NL_SET_ERR_MSG(extack, "Network address not specified");
1984		goto out;
1985	}
1986
1987	ndm = nlmsg_data(nlh);
1988	ndm_flags = ndm->ndm_flags;
1989	if (tb[NDA_FLAGS_EXT]) {
1990		u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]);
1991
1992		BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE <
1993			     (sizeof(ndm->ndm_flags) * BITS_PER_BYTE +
1994			      hweight32(NTF_EXT_MASK)));
1995		ndm_flags |= (ext << NTF_EXT_SHIFT);
1996	}
1997	if (ndm->ndm_ifindex) {
1998		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1999		if (dev == NULL) {
2000			err = -ENODEV;
2001			goto out;
2002		}
2003
2004		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) {
2005			NL_SET_ERR_MSG(extack, "Invalid link address");
2006			goto out;
2007		}
2008	}
2009
2010	tbl = neigh_find_table(ndm->ndm_family);
2011	if (tbl == NULL)
2012		return -EAFNOSUPPORT;
 
 
2013
2014	if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) {
2015		NL_SET_ERR_MSG(extack, "Invalid network address");
2016		goto out;
2017	}
2018
2019	dst = nla_data(tb[NDA_DST]);
2020	lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
 
 
2021
2022	if (tb[NDA_PROTOCOL])
2023		protocol = nla_get_u8(tb[NDA_PROTOCOL]);
2024	if (ndm_flags & NTF_PROXY) {
2025		struct pneigh_entry *pn;
2026
2027		if (ndm_flags & NTF_MANAGED) {
2028			NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination");
 
 
 
 
2029			goto out;
2030		}
2031
2032		err = -ENOBUFS;
2033		pn = pneigh_lookup(tbl, net, dst, dev, 1);
2034		if (pn) {
2035			pn->flags = ndm_flags;
2036			if (protocol)
2037				pn->protocol = protocol;
2038			err = 0;
2039		}
2040		goto out;
2041	}
2042
2043	if (!dev) {
2044		NL_SET_ERR_MSG(extack, "Device not specified");
2045		goto out;
2046	}
 
 
2047
2048	if (tbl->allow_add && !tbl->allow_add(dev, extack)) {
2049		err = -EINVAL;
2050		goto out;
2051	}
2052
2053	neigh = neigh_lookup(tbl, dst, dev);
2054	if (neigh == NULL) {
2055		bool ndm_permanent  = ndm->ndm_state & NUD_PERMANENT;
2056		bool exempt_from_gc = ndm_permanent ||
2057				      ndm_flags & NTF_EXT_LEARNED;
 
2058
2059		if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
2060			err = -ENOENT;
2061			goto out;
2062		}
2063		if (ndm_permanent && (ndm_flags & NTF_MANAGED)) {
2064			NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry");
2065			err = -EINVAL;
2066			goto out;
2067		}
2068
2069		neigh = ___neigh_create(tbl, dst, dev,
2070					ndm_flags &
2071					(NTF_EXT_LEARNED | NTF_MANAGED),
2072					exempt_from_gc, true);
2073		if (IS_ERR(neigh)) {
2074			err = PTR_ERR(neigh);
2075			goto out;
2076		}
2077	} else {
2078		if (nlh->nlmsg_flags & NLM_F_EXCL) {
2079			err = -EEXIST;
2080			neigh_release(neigh);
2081			goto out;
2082		}
2083
2084		if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
2085			flags &= ~(NEIGH_UPDATE_F_OVERRIDE |
2086				   NEIGH_UPDATE_F_OVERRIDE_ISROUTER);
2087	}
2088
2089	if (protocol)
2090		neigh->protocol = protocol;
2091	if (ndm_flags & NTF_EXT_LEARNED)
2092		flags |= NEIGH_UPDATE_F_EXT_LEARNED;
2093	if (ndm_flags & NTF_ROUTER)
2094		flags |= NEIGH_UPDATE_F_ISROUTER;
2095	if (ndm_flags & NTF_MANAGED)
2096		flags |= NEIGH_UPDATE_F_MANAGED;
2097	if (ndm_flags & NTF_USE)
2098		flags |= NEIGH_UPDATE_F_USE;
2099
2100	err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags,
2101			     NETLINK_CB(skb).portid, extack);
2102	if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) {
2103		neigh_event_send(neigh, NULL);
2104		err = 0;
2105	}
2106	neigh_release(neigh);
2107out:
2108	return err;
2109}
2110
2111static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
2112{
2113	struct nlattr *nest;
2114
2115	nest = nla_nest_start_noflag(skb, NDTA_PARMS);
2116	if (nest == NULL)
2117		return -ENOBUFS;
2118
2119	if ((parms->dev &&
2120	     nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
2121	    nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) ||
2122	    nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
2123			NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
2124	    /* approximative value for deprecated QUEUE_LEN (in packets) */
2125	    nla_put_u32(skb, NDTPA_QUEUE_LEN,
2126			NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
2127	    nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
2128	    nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
2129	    nla_put_u32(skb, NDTPA_UCAST_PROBES,
2130			NEIGH_VAR(parms, UCAST_PROBES)) ||
2131	    nla_put_u32(skb, NDTPA_MCAST_PROBES,
2132			NEIGH_VAR(parms, MCAST_PROBES)) ||
2133	    nla_put_u32(skb, NDTPA_MCAST_REPROBES,
2134			NEIGH_VAR(parms, MCAST_REPROBES)) ||
2135	    nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time,
2136			  NDTPA_PAD) ||
2137	    nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
2138			  NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) ||
2139	    nla_put_msecs(skb, NDTPA_GC_STALETIME,
2140			  NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) ||
2141	    nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
2142			  NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||
2143	    nla_put_msecs(skb, NDTPA_RETRANS_TIME,
2144			  NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) ||
2145	    nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
2146			  NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) ||
2147	    nla_put_msecs(skb, NDTPA_PROXY_DELAY,
2148			  NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) ||
2149	    nla_put_msecs(skb, NDTPA_LOCKTIME,
2150			  NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD) ||
2151	    nla_put_msecs(skb, NDTPA_INTERVAL_PROBE_TIME_MS,
2152			  NEIGH_VAR(parms, INTERVAL_PROBE_TIME_MS), NDTPA_PAD))
2153		goto nla_put_failure;
2154	return nla_nest_end(skb, nest);
2155
2156nla_put_failure:
2157	nla_nest_cancel(skb, nest);
2158	return -EMSGSIZE;
2159}
2160
2161static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
2162			      u32 pid, u32 seq, int type, int flags)
2163{
2164	struct nlmsghdr *nlh;
2165	struct ndtmsg *ndtmsg;
2166
2167	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2168	if (nlh == NULL)
2169		return -EMSGSIZE;
2170
2171	ndtmsg = nlmsg_data(nlh);
2172
2173	read_lock_bh(&tbl->lock);
2174	ndtmsg->ndtm_family = tbl->family;
2175	ndtmsg->ndtm_pad1   = 0;
2176	ndtmsg->ndtm_pad2   = 0;
2177
2178	if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
2179	    nla_put_msecs(skb, NDTA_GC_INTERVAL, READ_ONCE(tbl->gc_interval),
2180			  NDTA_PAD) ||
2181	    nla_put_u32(skb, NDTA_THRESH1, READ_ONCE(tbl->gc_thresh1)) ||
2182	    nla_put_u32(skb, NDTA_THRESH2, READ_ONCE(tbl->gc_thresh2)) ||
2183	    nla_put_u32(skb, NDTA_THRESH3, READ_ONCE(tbl->gc_thresh3)))
2184		goto nla_put_failure;
2185	{
2186		unsigned long now = jiffies;
2187		long flush_delta = now - READ_ONCE(tbl->last_flush);
2188		long rand_delta = now - READ_ONCE(tbl->last_rand);
2189		struct neigh_hash_table *nht;
2190		struct ndt_config ndc = {
2191			.ndtc_key_len		= tbl->key_len,
2192			.ndtc_entry_size	= tbl->entry_size,
2193			.ndtc_entries		= atomic_read(&tbl->entries),
2194			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
2195			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
2196			.ndtc_proxy_qlen	= READ_ONCE(tbl->proxy_queue.qlen),
2197		};
2198
2199		rcu_read_lock();
2200		nht = rcu_dereference(tbl->nht);
2201		ndc.ndtc_hash_rnd = nht->hash_rnd[0];
2202		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
2203		rcu_read_unlock();
2204
2205		if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
2206			goto nla_put_failure;
2207	}
2208
2209	{
2210		int cpu;
2211		struct ndt_stats ndst;
2212
2213		memset(&ndst, 0, sizeof(ndst));
2214
2215		for_each_possible_cpu(cpu) {
2216			struct neigh_statistics	*st;
2217
2218			st = per_cpu_ptr(tbl->stats, cpu);
2219			ndst.ndts_allocs		+= READ_ONCE(st->allocs);
2220			ndst.ndts_destroys		+= READ_ONCE(st->destroys);
2221			ndst.ndts_hash_grows		+= READ_ONCE(st->hash_grows);
2222			ndst.ndts_res_failed		+= READ_ONCE(st->res_failed);
2223			ndst.ndts_lookups		+= READ_ONCE(st->lookups);
2224			ndst.ndts_hits			+= READ_ONCE(st->hits);
2225			ndst.ndts_rcv_probes_mcast	+= READ_ONCE(st->rcv_probes_mcast);
2226			ndst.ndts_rcv_probes_ucast	+= READ_ONCE(st->rcv_probes_ucast);
2227			ndst.ndts_periodic_gc_runs	+= READ_ONCE(st->periodic_gc_runs);
2228			ndst.ndts_forced_gc_runs	+= READ_ONCE(st->forced_gc_runs);
2229			ndst.ndts_table_fulls		+= READ_ONCE(st->table_fulls);
2230		}
2231
2232		if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst,
2233				  NDTA_PAD))
2234			goto nla_put_failure;
2235	}
2236
2237	BUG_ON(tbl->parms.dev);
2238	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
2239		goto nla_put_failure;
2240
2241	read_unlock_bh(&tbl->lock);
2242	nlmsg_end(skb, nlh);
2243	return 0;
2244
2245nla_put_failure:
2246	read_unlock_bh(&tbl->lock);
2247	nlmsg_cancel(skb, nlh);
2248	return -EMSGSIZE;
2249}
2250
2251static int neightbl_fill_param_info(struct sk_buff *skb,
2252				    struct neigh_table *tbl,
2253				    struct neigh_parms *parms,
2254				    u32 pid, u32 seq, int type,
2255				    unsigned int flags)
2256{
2257	struct ndtmsg *ndtmsg;
2258	struct nlmsghdr *nlh;
2259
2260	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2261	if (nlh == NULL)
2262		return -EMSGSIZE;
2263
2264	ndtmsg = nlmsg_data(nlh);
2265
2266	read_lock_bh(&tbl->lock);
2267	ndtmsg->ndtm_family = tbl->family;
2268	ndtmsg->ndtm_pad1   = 0;
2269	ndtmsg->ndtm_pad2   = 0;
2270
2271	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
2272	    neightbl_fill_parms(skb, parms) < 0)
2273		goto errout;
2274
2275	read_unlock_bh(&tbl->lock);
2276	nlmsg_end(skb, nlh);
2277	return 0;
2278errout:
2279	read_unlock_bh(&tbl->lock);
2280	nlmsg_cancel(skb, nlh);
2281	return -EMSGSIZE;
2282}
2283
2284static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
2285	[NDTA_NAME]		= { .type = NLA_STRING },
2286	[NDTA_THRESH1]		= { .type = NLA_U32 },
2287	[NDTA_THRESH2]		= { .type = NLA_U32 },
2288	[NDTA_THRESH3]		= { .type = NLA_U32 },
2289	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
2290	[NDTA_PARMS]		= { .type = NLA_NESTED },
2291};
2292
2293static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
2294	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
2295	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
2296	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
2297	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
2298	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
2299	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
2300	[NDTPA_MCAST_REPROBES]		= { .type = NLA_U32 },
2301	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
2302	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
2303	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
2304	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
2305	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
2306	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
2307	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
2308	[NDTPA_INTERVAL_PROBE_TIME_MS]	= { .type = NLA_U64, .min = 1 },
2309};
2310
2311static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh,
2312			struct netlink_ext_ack *extack)
2313{
2314	struct net *net = sock_net(skb->sk);
2315	struct neigh_table *tbl;
2316	struct ndtmsg *ndtmsg;
2317	struct nlattr *tb[NDTA_MAX+1];
2318	bool found = false;
2319	int err, tidx;
2320
2321	err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
2322				     nl_neightbl_policy, extack);
2323	if (err < 0)
2324		goto errout;
2325
2326	if (tb[NDTA_NAME] == NULL) {
2327		err = -EINVAL;
2328		goto errout;
2329	}
2330
2331	ndtmsg = nlmsg_data(nlh);
2332
2333	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2334		tbl = neigh_tables[tidx];
2335		if (!tbl)
2336			continue;
2337		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
2338			continue;
2339		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
2340			found = true;
2341			break;
2342		}
2343	}
2344
2345	if (!found)
2346		return -ENOENT;
 
 
2347
2348	/*
2349	 * We acquire tbl->lock to be nice to the periodic timers and
2350	 * make sure they always see a consistent set of values.
2351	 */
2352	write_lock_bh(&tbl->lock);
2353
2354	if (tb[NDTA_PARMS]) {
2355		struct nlattr *tbp[NDTPA_MAX+1];
2356		struct neigh_parms *p;
2357		int i, ifindex = 0;
2358
2359		err = nla_parse_nested_deprecated(tbp, NDTPA_MAX,
2360						  tb[NDTA_PARMS],
2361						  nl_ntbl_parm_policy, extack);
2362		if (err < 0)
2363			goto errout_tbl_lock;
2364
2365		if (tbp[NDTPA_IFINDEX])
2366			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2367
2368		p = lookup_neigh_parms(tbl, net, ifindex);
2369		if (p == NULL) {
2370			err = -ENOENT;
2371			goto errout_tbl_lock;
2372		}
2373
2374		for (i = 1; i <= NDTPA_MAX; i++) {
2375			if (tbp[i] == NULL)
2376				continue;
2377
2378			switch (i) {
2379			case NDTPA_QUEUE_LEN:
2380				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2381					      nla_get_u32(tbp[i]) *
2382					      SKB_TRUESIZE(ETH_FRAME_LEN));
2383				break;
2384			case NDTPA_QUEUE_LENBYTES:
2385				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2386					      nla_get_u32(tbp[i]));
2387				break;
2388			case NDTPA_PROXY_QLEN:
2389				NEIGH_VAR_SET(p, PROXY_QLEN,
2390					      nla_get_u32(tbp[i]));
2391				break;
2392			case NDTPA_APP_PROBES:
2393				NEIGH_VAR_SET(p, APP_PROBES,
2394					      nla_get_u32(tbp[i]));
2395				break;
2396			case NDTPA_UCAST_PROBES:
2397				NEIGH_VAR_SET(p, UCAST_PROBES,
2398					      nla_get_u32(tbp[i]));
2399				break;
2400			case NDTPA_MCAST_PROBES:
2401				NEIGH_VAR_SET(p, MCAST_PROBES,
2402					      nla_get_u32(tbp[i]));
2403				break;
2404			case NDTPA_MCAST_REPROBES:
2405				NEIGH_VAR_SET(p, MCAST_REPROBES,
2406					      nla_get_u32(tbp[i]));
2407				break;
2408			case NDTPA_BASE_REACHABLE_TIME:
2409				NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2410					      nla_get_msecs(tbp[i]));
2411				/* update reachable_time as well, otherwise, the change will
2412				 * only be effective after the next time neigh_periodic_work
2413				 * decides to recompute it (can be multiple minutes)
2414				 */
2415				p->reachable_time =
2416					neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2417				break;
2418			case NDTPA_GC_STALETIME:
2419				NEIGH_VAR_SET(p, GC_STALETIME,
2420					      nla_get_msecs(tbp[i]));
2421				break;
2422			case NDTPA_DELAY_PROBE_TIME:
2423				NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2424					      nla_get_msecs(tbp[i]));
2425				call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
2426				break;
2427			case NDTPA_INTERVAL_PROBE_TIME_MS:
2428				NEIGH_VAR_SET(p, INTERVAL_PROBE_TIME_MS,
2429					      nla_get_msecs(tbp[i]));
2430				break;
2431			case NDTPA_RETRANS_TIME:
2432				NEIGH_VAR_SET(p, RETRANS_TIME,
2433					      nla_get_msecs(tbp[i]));
2434				break;
2435			case NDTPA_ANYCAST_DELAY:
2436				NEIGH_VAR_SET(p, ANYCAST_DELAY,
2437					      nla_get_msecs(tbp[i]));
2438				break;
2439			case NDTPA_PROXY_DELAY:
2440				NEIGH_VAR_SET(p, PROXY_DELAY,
2441					      nla_get_msecs(tbp[i]));
2442				break;
2443			case NDTPA_LOCKTIME:
2444				NEIGH_VAR_SET(p, LOCKTIME,
2445					      nla_get_msecs(tbp[i]));
2446				break;
2447			}
2448		}
2449	}
2450
2451	err = -ENOENT;
2452	if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2453	     tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2454	    !net_eq(net, &init_net))
2455		goto errout_tbl_lock;
2456
2457	if (tb[NDTA_THRESH1])
2458		WRITE_ONCE(tbl->gc_thresh1, nla_get_u32(tb[NDTA_THRESH1]));
2459
2460	if (tb[NDTA_THRESH2])
2461		WRITE_ONCE(tbl->gc_thresh2, nla_get_u32(tb[NDTA_THRESH2]));
2462
2463	if (tb[NDTA_THRESH3])
2464		WRITE_ONCE(tbl->gc_thresh3, nla_get_u32(tb[NDTA_THRESH3]));
2465
2466	if (tb[NDTA_GC_INTERVAL])
2467		WRITE_ONCE(tbl->gc_interval, nla_get_msecs(tb[NDTA_GC_INTERVAL]));
2468
2469	err = 0;
2470
2471errout_tbl_lock:
2472	write_unlock_bh(&tbl->lock);
 
 
2473errout:
2474	return err;
2475}
2476
2477static int neightbl_valid_dump_info(const struct nlmsghdr *nlh,
2478				    struct netlink_ext_ack *extack)
2479{
2480	struct ndtmsg *ndtm;
2481
2482	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) {
2483		NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request");
2484		return -EINVAL;
2485	}
2486
2487	ndtm = nlmsg_data(nlh);
2488	if (ndtm->ndtm_pad1  || ndtm->ndtm_pad2) {
2489		NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request");
2490		return -EINVAL;
2491	}
2492
2493	if (nlmsg_attrlen(nlh, sizeof(*ndtm))) {
2494		NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request");
2495		return -EINVAL;
2496	}
2497
2498	return 0;
2499}
2500
2501static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2502{
2503	const struct nlmsghdr *nlh = cb->nlh;
2504	struct net *net = sock_net(skb->sk);
2505	int family, tidx, nidx = 0;
2506	int tbl_skip = cb->args[0];
2507	int neigh_skip = cb->args[1];
2508	struct neigh_table *tbl;
2509
2510	if (cb->strict_check) {
2511		int err = neightbl_valid_dump_info(nlh, cb->extack);
2512
2513		if (err < 0)
2514			return err;
2515	}
2516
2517	family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2518
2519	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
 
2520		struct neigh_parms *p;
2521
2522		tbl = neigh_tables[tidx];
2523		if (!tbl)
2524			continue;
2525
2526		if (tidx < tbl_skip || (family && tbl->family != family))
2527			continue;
2528
2529		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2530				       nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2531				       NLM_F_MULTI) < 0)
2532			break;
2533
2534		nidx = 0;
2535		p = list_next_entry(&tbl->parms, list);
2536		list_for_each_entry_from(p, &tbl->parms_list, list) {
2537			if (!net_eq(neigh_parms_net(p), net))
2538				continue;
2539
2540			if (nidx < neigh_skip)
2541				goto next;
2542
2543			if (neightbl_fill_param_info(skb, tbl, p,
2544						     NETLINK_CB(cb->skb).portid,
2545						     nlh->nlmsg_seq,
2546						     RTM_NEWNEIGHTBL,
2547						     NLM_F_MULTI) < 0)
2548				goto out;
2549		next:
2550			nidx++;
2551		}
2552
2553		neigh_skip = 0;
2554	}
2555out:
 
2556	cb->args[0] = tidx;
2557	cb->args[1] = nidx;
2558
2559	return skb->len;
2560}
2561
2562static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2563			   u32 pid, u32 seq, int type, unsigned int flags)
2564{
2565	u32 neigh_flags, neigh_flags_ext;
2566	unsigned long now = jiffies;
2567	struct nda_cacheinfo ci;
2568	struct nlmsghdr *nlh;
2569	struct ndmsg *ndm;
2570
2571	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2572	if (nlh == NULL)
2573		return -EMSGSIZE;
2574
2575	neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT;
2576	neigh_flags     = neigh->flags & NTF_OLD_MASK;
2577
2578	ndm = nlmsg_data(nlh);
2579	ndm->ndm_family	 = neigh->ops->family;
2580	ndm->ndm_pad1    = 0;
2581	ndm->ndm_pad2    = 0;
2582	ndm->ndm_flags	 = neigh_flags;
2583	ndm->ndm_type	 = neigh->type;
2584	ndm->ndm_ifindex = neigh->dev->ifindex;
2585
2586	if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2587		goto nla_put_failure;
2588
2589	read_lock_bh(&neigh->lock);
2590	ndm->ndm_state	 = neigh->nud_state;
2591	if (neigh->nud_state & NUD_VALID) {
2592		char haddr[MAX_ADDR_LEN];
2593
2594		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2595		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2596			read_unlock_bh(&neigh->lock);
2597			goto nla_put_failure;
2598		}
2599	}
2600
2601	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2602	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2603	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2604	ci.ndm_refcnt	 = refcount_read(&neigh->refcnt) - 1;
2605	read_unlock_bh(&neigh->lock);
2606
2607	if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2608	    nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2609		goto nla_put_failure;
2610
2611	if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol))
2612		goto nla_put_failure;
2613	if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2614		goto nla_put_failure;
2615
2616	nlmsg_end(skb, nlh);
2617	return 0;
2618
2619nla_put_failure:
2620	nlmsg_cancel(skb, nlh);
2621	return -EMSGSIZE;
2622}
2623
2624static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2625			    u32 pid, u32 seq, int type, unsigned int flags,
2626			    struct neigh_table *tbl)
2627{
2628	u32 neigh_flags, neigh_flags_ext;
2629	struct nlmsghdr *nlh;
2630	struct ndmsg *ndm;
2631
2632	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2633	if (nlh == NULL)
2634		return -EMSGSIZE;
2635
2636	neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT;
2637	neigh_flags     = pn->flags & NTF_OLD_MASK;
2638
2639	ndm = nlmsg_data(nlh);
2640	ndm->ndm_family	 = tbl->family;
2641	ndm->ndm_pad1    = 0;
2642	ndm->ndm_pad2    = 0;
2643	ndm->ndm_flags	 = neigh_flags | NTF_PROXY;
2644	ndm->ndm_type	 = RTN_UNICAST;
2645	ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
2646	ndm->ndm_state	 = NUD_NONE;
2647
2648	if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2649		goto nla_put_failure;
2650
2651	if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol))
2652		goto nla_put_failure;
2653	if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2654		goto nla_put_failure;
2655
2656	nlmsg_end(skb, nlh);
2657	return 0;
2658
2659nla_put_failure:
2660	nlmsg_cancel(skb, nlh);
2661	return -EMSGSIZE;
2662}
2663
2664static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid)
2665{
2666	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2667	__neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid);
2668}
2669
2670static bool neigh_master_filtered(struct net_device *dev, int master_idx)
2671{
2672	struct net_device *master;
2673
2674	if (!master_idx)
2675		return false;
2676
2677	master = dev ? netdev_master_upper_dev_get(dev) : NULL;
2678
2679	/* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another
2680	 * invalid value for ifindex to denote "no master".
2681	 */
2682	if (master_idx == -1)
2683		return !!master;
2684
2685	if (!master || master->ifindex != master_idx)
2686		return true;
2687
2688	return false;
2689}
2690
2691static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
2692{
2693	if (filter_idx && (!dev || dev->ifindex != filter_idx))
2694		return true;
2695
2696	return false;
2697}
2698
2699struct neigh_dump_filter {
2700	int master_idx;
2701	int dev_idx;
2702};
2703
2704static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2705			    struct netlink_callback *cb,
2706			    struct neigh_dump_filter *filter)
2707{
2708	struct net *net = sock_net(skb->sk);
2709	struct neighbour *n;
2710	int rc, h, s_h = cb->args[1];
2711	int idx, s_idx = idx = cb->args[2];
2712	struct neigh_hash_table *nht;
2713	unsigned int flags = NLM_F_MULTI;
2714
2715	if (filter->dev_idx || filter->master_idx)
2716		flags |= NLM_F_DUMP_FILTERED;
2717
2718	rcu_read_lock();
2719	nht = rcu_dereference(tbl->nht);
2720
2721	for (h = s_h; h < (1 << nht->hash_shift); h++) {
2722		if (h > s_h)
2723			s_idx = 0;
2724		for (n = rcu_dereference(nht->hash_buckets[h]), idx = 0;
2725		     n != NULL;
2726		     n = rcu_dereference(n->next)) {
2727			if (idx < s_idx || !net_eq(dev_net(n->dev), net))
 
 
2728				goto next;
2729			if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2730			    neigh_master_filtered(n->dev, filter->master_idx))
2731				goto next;
2732			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2733					    cb->nlh->nlmsg_seq,
2734					    RTM_NEWNEIGH,
2735					    flags) < 0) {
2736				rc = -1;
2737				goto out;
2738			}
2739next:
2740			idx++;
2741		}
2742	}
2743	rc = skb->len;
2744out:
2745	rcu_read_unlock();
2746	cb->args[1] = h;
2747	cb->args[2] = idx;
2748	return rc;
2749}
2750
2751static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2752			     struct netlink_callback *cb,
2753			     struct neigh_dump_filter *filter)
2754{
2755	struct pneigh_entry *n;
2756	struct net *net = sock_net(skb->sk);
2757	int rc, h, s_h = cb->args[3];
2758	int idx, s_idx = idx = cb->args[4];
2759	unsigned int flags = NLM_F_MULTI;
2760
2761	if (filter->dev_idx || filter->master_idx)
2762		flags |= NLM_F_DUMP_FILTERED;
2763
2764	read_lock_bh(&tbl->lock);
2765
2766	for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2767		if (h > s_h)
2768			s_idx = 0;
2769		for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2770			if (idx < s_idx || pneigh_net(n) != net)
2771				goto next;
2772			if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2773			    neigh_master_filtered(n->dev, filter->master_idx))
2774				goto next;
2775			if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2776					    cb->nlh->nlmsg_seq,
2777					    RTM_NEWNEIGH, flags, tbl) < 0) {
2778				read_unlock_bh(&tbl->lock);
2779				rc = -1;
2780				goto out;
2781			}
2782		next:
2783			idx++;
2784		}
2785	}
2786
2787	read_unlock_bh(&tbl->lock);
2788	rc = skb->len;
2789out:
2790	cb->args[3] = h;
2791	cb->args[4] = idx;
2792	return rc;
2793
2794}
2795
2796static int neigh_valid_dump_req(const struct nlmsghdr *nlh,
2797				bool strict_check,
2798				struct neigh_dump_filter *filter,
2799				struct netlink_ext_ack *extack)
2800{
2801	struct nlattr *tb[NDA_MAX + 1];
2802	int err, i;
2803
2804	if (strict_check) {
2805		struct ndmsg *ndm;
2806
2807		if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2808			NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request");
2809			return -EINVAL;
2810		}
2811
2812		ndm = nlmsg_data(nlh);
2813		if (ndm->ndm_pad1  || ndm->ndm_pad2  || ndm->ndm_ifindex ||
2814		    ndm->ndm_state || ndm->ndm_type) {
2815			NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request");
2816			return -EINVAL;
2817		}
2818
2819		if (ndm->ndm_flags & ~NTF_PROXY) {
2820			NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request");
2821			return -EINVAL;
2822		}
2823
2824		err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg),
2825						    tb, NDA_MAX, nda_policy,
2826						    extack);
2827	} else {
2828		err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb,
2829					     NDA_MAX, nda_policy, extack);
2830	}
2831	if (err < 0)
2832		return err;
2833
2834	for (i = 0; i <= NDA_MAX; ++i) {
2835		if (!tb[i])
2836			continue;
2837
2838		/* all new attributes should require strict_check */
2839		switch (i) {
2840		case NDA_IFINDEX:
2841			filter->dev_idx = nla_get_u32(tb[i]);
2842			break;
2843		case NDA_MASTER:
2844			filter->master_idx = nla_get_u32(tb[i]);
2845			break;
2846		default:
2847			if (strict_check) {
2848				NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request");
2849				return -EINVAL;
2850			}
2851		}
2852	}
2853
2854	return 0;
2855}
2856
2857static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2858{
2859	const struct nlmsghdr *nlh = cb->nlh;
2860	struct neigh_dump_filter filter = {};
2861	struct neigh_table *tbl;
2862	int t, family, s_t;
2863	int proxy = 0;
2864	int err;
2865
2866	family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2867
2868	/* check for full ndmsg structure presence, family member is
2869	 * the same for both structures
2870	 */
2871	if (nlmsg_len(nlh) >= sizeof(struct ndmsg) &&
2872	    ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY)
2873		proxy = 1;
2874
2875	err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack);
2876	if (err < 0 && cb->strict_check)
2877		return err;
2878
 
 
2879	s_t = cb->args[0];
2880
2881	for (t = 0; t < NEIGH_NR_TABLES; t++) {
2882		tbl = neigh_tables[t];
2883
2884		if (!tbl)
2885			continue;
2886		if (t < s_t || (family && tbl->family != family))
2887			continue;
2888		if (t > s_t)
2889			memset(&cb->args[1], 0, sizeof(cb->args) -
2890						sizeof(cb->args[0]));
2891		if (proxy)
2892			err = pneigh_dump_table(tbl, skb, cb, &filter);
2893		else
2894			err = neigh_dump_table(tbl, skb, cb, &filter);
2895		if (err < 0)
2896			break;
2897	}
 
2898
2899	cb->args[0] = t;
2900	return skb->len;
2901}
2902
2903static int neigh_valid_get_req(const struct nlmsghdr *nlh,
2904			       struct neigh_table **tbl,
2905			       void **dst, int *dev_idx, u8 *ndm_flags,
2906			       struct netlink_ext_ack *extack)
2907{
2908	struct nlattr *tb[NDA_MAX + 1];
2909	struct ndmsg *ndm;
2910	int err, i;
2911
2912	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2913		NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request");
2914		return -EINVAL;
2915	}
2916
2917	ndm = nlmsg_data(nlh);
2918	if (ndm->ndm_pad1  || ndm->ndm_pad2  || ndm->ndm_state ||
2919	    ndm->ndm_type) {
2920		NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request");
2921		return -EINVAL;
2922	}
2923
2924	if (ndm->ndm_flags & ~NTF_PROXY) {
2925		NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request");
2926		return -EINVAL;
2927	}
2928
2929	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb,
2930					    NDA_MAX, nda_policy, extack);
2931	if (err < 0)
2932		return err;
2933
2934	*ndm_flags = ndm->ndm_flags;
2935	*dev_idx = ndm->ndm_ifindex;
2936	*tbl = neigh_find_table(ndm->ndm_family);
2937	if (*tbl == NULL) {
2938		NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request");
2939		return -EAFNOSUPPORT;
2940	}
2941
2942	for (i = 0; i <= NDA_MAX; ++i) {
2943		if (!tb[i])
2944			continue;
2945
2946		switch (i) {
2947		case NDA_DST:
2948			if (nla_len(tb[i]) != (int)(*tbl)->key_len) {
2949				NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request");
2950				return -EINVAL;
2951			}
2952			*dst = nla_data(tb[i]);
2953			break;
2954		default:
2955			NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request");
2956			return -EINVAL;
2957		}
2958	}
2959
2960	return 0;
2961}
2962
2963static inline size_t neigh_nlmsg_size(void)
2964{
2965	return NLMSG_ALIGN(sizeof(struct ndmsg))
2966	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2967	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2968	       + nla_total_size(sizeof(struct nda_cacheinfo))
2969	       + nla_total_size(4)  /* NDA_PROBES */
2970	       + nla_total_size(4)  /* NDA_FLAGS_EXT */
2971	       + nla_total_size(1); /* NDA_PROTOCOL */
2972}
2973
2974static int neigh_get_reply(struct net *net, struct neighbour *neigh,
2975			   u32 pid, u32 seq)
2976{
2977	struct sk_buff *skb;
2978	int err = 0;
2979
2980	skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL);
2981	if (!skb)
2982		return -ENOBUFS;
2983
2984	err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0);
2985	if (err) {
2986		kfree_skb(skb);
2987		goto errout;
2988	}
2989
2990	err = rtnl_unicast(skb, net, pid);
2991errout:
2992	return err;
2993}
2994
2995static inline size_t pneigh_nlmsg_size(void)
2996{
2997	return NLMSG_ALIGN(sizeof(struct ndmsg))
2998	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2999	       + nla_total_size(4)  /* NDA_FLAGS_EXT */
3000	       + nla_total_size(1); /* NDA_PROTOCOL */
3001}
3002
3003static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh,
3004			    u32 pid, u32 seq, struct neigh_table *tbl)
3005{
3006	struct sk_buff *skb;
3007	int err = 0;
3008
3009	skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL);
3010	if (!skb)
3011		return -ENOBUFS;
3012
3013	err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl);
3014	if (err) {
3015		kfree_skb(skb);
3016		goto errout;
3017	}
3018
3019	err = rtnl_unicast(skb, net, pid);
3020errout:
3021	return err;
3022}
3023
3024static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh,
3025		     struct netlink_ext_ack *extack)
3026{
3027	struct net *net = sock_net(in_skb->sk);
3028	struct net_device *dev = NULL;
3029	struct neigh_table *tbl = NULL;
3030	struct neighbour *neigh;
3031	void *dst = NULL;
3032	u8 ndm_flags = 0;
3033	int dev_idx = 0;
3034	int err;
3035
3036	err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags,
3037				  extack);
3038	if (err < 0)
3039		return err;
3040
3041	if (dev_idx) {
3042		dev = __dev_get_by_index(net, dev_idx);
3043		if (!dev) {
3044			NL_SET_ERR_MSG(extack, "Unknown device ifindex");
3045			return -ENODEV;
3046		}
3047	}
3048
3049	if (!dst) {
3050		NL_SET_ERR_MSG(extack, "Network address not specified");
3051		return -EINVAL;
3052	}
3053
3054	if (ndm_flags & NTF_PROXY) {
3055		struct pneigh_entry *pn;
3056
3057		pn = pneigh_lookup(tbl, net, dst, dev, 0);
3058		if (!pn) {
3059			NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found");
3060			return -ENOENT;
3061		}
3062		return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid,
3063					nlh->nlmsg_seq, tbl);
3064	}
3065
3066	if (!dev) {
3067		NL_SET_ERR_MSG(extack, "No device specified");
3068		return -EINVAL;
3069	}
3070
3071	neigh = neigh_lookup(tbl, dst, dev);
3072	if (!neigh) {
3073		NL_SET_ERR_MSG(extack, "Neighbour entry not found");
3074		return -ENOENT;
3075	}
3076
3077	err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid,
3078			      nlh->nlmsg_seq);
3079
3080	neigh_release(neigh);
3081
3082	return err;
3083}
3084
3085void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
3086{
3087	int chain;
3088	struct neigh_hash_table *nht;
3089
3090	rcu_read_lock();
3091	nht = rcu_dereference(tbl->nht);
3092
3093	read_lock_bh(&tbl->lock); /* avoid resizes */
3094	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3095		struct neighbour *n;
3096
3097		for (n = rcu_dereference(nht->hash_buckets[chain]);
3098		     n != NULL;
3099		     n = rcu_dereference(n->next))
3100			cb(n, cookie);
3101	}
3102	read_unlock_bh(&tbl->lock);
3103	rcu_read_unlock();
3104}
3105EXPORT_SYMBOL(neigh_for_each);
3106
3107/* The tbl->lock must be held as a writer and BH disabled. */
3108void __neigh_for_each_release(struct neigh_table *tbl,
3109			      int (*cb)(struct neighbour *))
3110{
3111	int chain;
3112	struct neigh_hash_table *nht;
3113
3114	nht = rcu_dereference_protected(tbl->nht,
3115					lockdep_is_held(&tbl->lock));
3116	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3117		struct neighbour *n;
3118		struct neighbour __rcu **np;
3119
3120		np = &nht->hash_buckets[chain];
3121		while ((n = rcu_dereference_protected(*np,
3122					lockdep_is_held(&tbl->lock))) != NULL) {
3123			int release;
3124
3125			write_lock(&n->lock);
3126			release = cb(n);
3127			if (release) {
3128				rcu_assign_pointer(*np,
3129					rcu_dereference_protected(n->next,
3130						lockdep_is_held(&tbl->lock)));
3131				neigh_mark_dead(n);
3132			} else
3133				np = &n->next;
3134			write_unlock(&n->lock);
3135			if (release)
3136				neigh_cleanup_and_release(n);
3137		}
3138	}
3139}
3140EXPORT_SYMBOL(__neigh_for_each_release);
3141
3142int neigh_xmit(int index, struct net_device *dev,
3143	       const void *addr, struct sk_buff *skb)
3144{
3145	int err = -EAFNOSUPPORT;
3146	if (likely(index < NEIGH_NR_TABLES)) {
3147		struct neigh_table *tbl;
3148		struct neighbour *neigh;
3149
3150		tbl = neigh_tables[index];
3151		if (!tbl)
3152			goto out;
3153		rcu_read_lock();
3154		if (index == NEIGH_ARP_TABLE) {
3155			u32 key = *((u32 *)addr);
3156
3157			neigh = __ipv4_neigh_lookup_noref(dev, key);
3158		} else {
3159			neigh = __neigh_lookup_noref(tbl, addr, dev);
3160		}
3161		if (!neigh)
3162			neigh = __neigh_create(tbl, addr, dev, false);
3163		err = PTR_ERR(neigh);
3164		if (IS_ERR(neigh)) {
3165			rcu_read_unlock();
3166			goto out_kfree_skb;
3167		}
3168		err = READ_ONCE(neigh->output)(neigh, skb);
3169		rcu_read_unlock();
3170	}
3171	else if (index == NEIGH_LINK_TABLE) {
3172		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
3173				      addr, NULL, skb->len);
3174		if (err < 0)
3175			goto out_kfree_skb;
3176		err = dev_queue_xmit(skb);
3177	}
3178out:
3179	return err;
3180out_kfree_skb:
3181	kfree_skb(skb);
3182	goto out;
3183}
3184EXPORT_SYMBOL(neigh_xmit);
3185
3186#ifdef CONFIG_PROC_FS
3187
3188static struct neighbour *neigh_get_first(struct seq_file *seq)
3189{
3190	struct neigh_seq_state *state = seq->private;
3191	struct net *net = seq_file_net(seq);
3192	struct neigh_hash_table *nht = state->nht;
3193	struct neighbour *n = NULL;
3194	int bucket;
3195
3196	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
3197	for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
3198		n = rcu_dereference(nht->hash_buckets[bucket]);
3199
3200		while (n) {
3201			if (!net_eq(dev_net(n->dev), net))
3202				goto next;
3203			if (state->neigh_sub_iter) {
3204				loff_t fakep = 0;
3205				void *v;
3206
3207				v = state->neigh_sub_iter(state, n, &fakep);
3208				if (!v)
3209					goto next;
3210			}
3211			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3212				break;
3213			if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
3214				break;
3215next:
3216			n = rcu_dereference(n->next);
3217		}
3218
3219		if (n)
3220			break;
3221	}
3222	state->bucket = bucket;
3223
3224	return n;
3225}
3226
3227static struct neighbour *neigh_get_next(struct seq_file *seq,
3228					struct neighbour *n,
3229					loff_t *pos)
3230{
3231	struct neigh_seq_state *state = seq->private;
3232	struct net *net = seq_file_net(seq);
3233	struct neigh_hash_table *nht = state->nht;
3234
3235	if (state->neigh_sub_iter) {
3236		void *v = state->neigh_sub_iter(state, n, pos);
3237		if (v)
3238			return n;
3239	}
3240	n = rcu_dereference(n->next);
3241
3242	while (1) {
3243		while (n) {
3244			if (!net_eq(dev_net(n->dev), net))
3245				goto next;
3246			if (state->neigh_sub_iter) {
3247				void *v = state->neigh_sub_iter(state, n, pos);
3248				if (v)
3249					return n;
3250				goto next;
3251			}
3252			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3253				break;
3254
3255			if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
3256				break;
3257next:
3258			n = rcu_dereference(n->next);
3259		}
3260
3261		if (n)
3262			break;
3263
3264		if (++state->bucket >= (1 << nht->hash_shift))
3265			break;
3266
3267		n = rcu_dereference(nht->hash_buckets[state->bucket]);
3268	}
3269
3270	if (n && pos)
3271		--(*pos);
3272	return n;
3273}
3274
3275static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
3276{
3277	struct neighbour *n = neigh_get_first(seq);
3278
3279	if (n) {
3280		--(*pos);
3281		while (*pos) {
3282			n = neigh_get_next(seq, n, pos);
3283			if (!n)
3284				break;
3285		}
3286	}
3287	return *pos ? NULL : n;
3288}
3289
3290static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
3291{
3292	struct neigh_seq_state *state = seq->private;
3293	struct net *net = seq_file_net(seq);
3294	struct neigh_table *tbl = state->tbl;
3295	struct pneigh_entry *pn = NULL;
3296	int bucket;
3297
3298	state->flags |= NEIGH_SEQ_IS_PNEIGH;
3299	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
3300		pn = tbl->phash_buckets[bucket];
3301		while (pn && !net_eq(pneigh_net(pn), net))
3302			pn = pn->next;
3303		if (pn)
3304			break;
3305	}
3306	state->bucket = bucket;
3307
3308	return pn;
3309}
3310
3311static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
3312					    struct pneigh_entry *pn,
3313					    loff_t *pos)
3314{
3315	struct neigh_seq_state *state = seq->private;
3316	struct net *net = seq_file_net(seq);
3317	struct neigh_table *tbl = state->tbl;
3318
3319	do {
3320		pn = pn->next;
3321	} while (pn && !net_eq(pneigh_net(pn), net));
3322
3323	while (!pn) {
3324		if (++state->bucket > PNEIGH_HASHMASK)
3325			break;
3326		pn = tbl->phash_buckets[state->bucket];
3327		while (pn && !net_eq(pneigh_net(pn), net))
3328			pn = pn->next;
3329		if (pn)
3330			break;
3331	}
3332
3333	if (pn && pos)
3334		--(*pos);
3335
3336	return pn;
3337}
3338
3339static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
3340{
3341	struct pneigh_entry *pn = pneigh_get_first(seq);
3342
3343	if (pn) {
3344		--(*pos);
3345		while (*pos) {
3346			pn = pneigh_get_next(seq, pn, pos);
3347			if (!pn)
3348				break;
3349		}
3350	}
3351	return *pos ? NULL : pn;
3352}
3353
3354static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
3355{
3356	struct neigh_seq_state *state = seq->private;
3357	void *rc;
3358	loff_t idxpos = *pos;
3359
3360	rc = neigh_get_idx(seq, &idxpos);
3361	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3362		rc = pneigh_get_idx(seq, &idxpos);
3363
3364	return rc;
3365}
3366
3367void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
3368	__acquires(tbl->lock)
3369	__acquires(rcu)
3370{
3371	struct neigh_seq_state *state = seq->private;
3372
3373	state->tbl = tbl;
3374	state->bucket = 0;
3375	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
3376
3377	rcu_read_lock();
3378	state->nht = rcu_dereference(tbl->nht);
3379	read_lock_bh(&tbl->lock);
3380
3381	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
3382}
3383EXPORT_SYMBOL(neigh_seq_start);
3384
3385void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3386{
3387	struct neigh_seq_state *state;
3388	void *rc;
3389
3390	if (v == SEQ_START_TOKEN) {
3391		rc = neigh_get_first(seq);
3392		goto out;
3393	}
3394
3395	state = seq->private;
3396	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
3397		rc = neigh_get_next(seq, v, NULL);
3398		if (rc)
3399			goto out;
3400		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3401			rc = pneigh_get_first(seq);
3402	} else {
3403		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
3404		rc = pneigh_get_next(seq, v, NULL);
3405	}
3406out:
3407	++(*pos);
3408	return rc;
3409}
3410EXPORT_SYMBOL(neigh_seq_next);
3411
3412void neigh_seq_stop(struct seq_file *seq, void *v)
3413	__releases(tbl->lock)
3414	__releases(rcu)
3415{
3416	struct neigh_seq_state *state = seq->private;
3417	struct neigh_table *tbl = state->tbl;
3418
3419	read_unlock_bh(&tbl->lock);
3420	rcu_read_unlock();
3421}
3422EXPORT_SYMBOL(neigh_seq_stop);
3423
3424/* statistics via seq_file */
3425
3426static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
3427{
3428	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3429	int cpu;
3430
3431	if (*pos == 0)
3432		return SEQ_START_TOKEN;
3433
3434	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
3435		if (!cpu_possible(cpu))
3436			continue;
3437		*pos = cpu+1;
3438		return per_cpu_ptr(tbl->stats, cpu);
3439	}
3440	return NULL;
3441}
3442
3443static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3444{
3445	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3446	int cpu;
3447
3448	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
3449		if (!cpu_possible(cpu))
3450			continue;
3451		*pos = cpu+1;
3452		return per_cpu_ptr(tbl->stats, cpu);
3453	}
3454	(*pos)++;
3455	return NULL;
3456}
3457
3458static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
3459{
3460
3461}
3462
3463static int neigh_stat_seq_show(struct seq_file *seq, void *v)
3464{
3465	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3466	struct neigh_statistics *st = v;
3467
3468	if (v == SEQ_START_TOKEN) {
3469		seq_puts(seq, "entries  allocs   destroys hash_grows lookups  hits     res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
3470		return 0;
3471	}
3472
3473	seq_printf(seq, "%08x %08lx %08lx %08lx   %08lx %08lx %08lx   "
3474			"%08lx         %08lx         %08lx         "
3475			"%08lx       %08lx            %08lx\n",
3476		   atomic_read(&tbl->entries),
3477
3478		   st->allocs,
3479		   st->destroys,
3480		   st->hash_grows,
3481
3482		   st->lookups,
3483		   st->hits,
3484
3485		   st->res_failed,
3486
3487		   st->rcv_probes_mcast,
3488		   st->rcv_probes_ucast,
3489
3490		   st->periodic_gc_runs,
3491		   st->forced_gc_runs,
3492		   st->unres_discards,
3493		   st->table_fulls
3494		   );
3495
3496	return 0;
3497}
3498
3499static const struct seq_operations neigh_stat_seq_ops = {
3500	.start	= neigh_stat_seq_start,
3501	.next	= neigh_stat_seq_next,
3502	.stop	= neigh_stat_seq_stop,
3503	.show	= neigh_stat_seq_show,
3504};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3505#endif /* CONFIG_PROC_FS */
3506
3507static void __neigh_notify(struct neighbour *n, int type, int flags,
3508			   u32 pid)
 
 
 
 
 
 
 
 
3509{
3510	struct net *net = dev_net(n->dev);
3511	struct sk_buff *skb;
3512	int err = -ENOBUFS;
3513
3514	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
3515	if (skb == NULL)
3516		goto errout;
3517
3518	err = neigh_fill_info(skb, n, pid, 0, type, flags);
3519	if (err < 0) {
3520		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
3521		WARN_ON(err == -EMSGSIZE);
3522		kfree_skb(skb);
3523		goto errout;
3524	}
3525	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
3526	return;
3527errout:
3528	if (err < 0)
3529		rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
3530}
3531
 
3532void neigh_app_ns(struct neighbour *n)
3533{
3534	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0);
3535}
3536EXPORT_SYMBOL(neigh_app_ns);
 
3537
3538#ifdef CONFIG_SYSCTL
3539static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
3540
3541static int proc_unres_qlen(struct ctl_table *ctl, int write,
3542			   void *buffer, size_t *lenp, loff_t *ppos)
3543{
3544	int size, ret;
3545	struct ctl_table tmp = *ctl;
3546
3547	tmp.extra1 = SYSCTL_ZERO;
3548	tmp.extra2 = &unres_qlen_max;
3549	tmp.data = &size;
3550
3551	size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
3552	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3553
3554	if (write && !ret)
3555		*(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
3556	return ret;
3557}
3558
3559static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
3560				  int index)
3561{
3562	struct net_device *dev;
3563	int family = neigh_parms_family(p);
3564
3565	rcu_read_lock();
3566	for_each_netdev_rcu(net, dev) {
3567		struct neigh_parms *dst_p =
3568				neigh_get_dev_parms_rcu(dev, family);
3569
3570		if (dst_p && !test_bit(index, dst_p->data_state))
3571			dst_p->data[index] = p->data[index];
3572	}
3573	rcu_read_unlock();
3574}
3575
3576static void neigh_proc_update(struct ctl_table *ctl, int write)
3577{
3578	struct net_device *dev = ctl->extra1;
3579	struct neigh_parms *p = ctl->extra2;
3580	struct net *net = neigh_parms_net(p);
3581	int index = (int *) ctl->data - p->data;
3582
3583	if (!write)
3584		return;
3585
3586	set_bit(index, p->data_state);
3587	if (index == NEIGH_VAR_DELAY_PROBE_TIME)
3588		call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
3589	if (!dev) /* NULL dev means this is default value */
3590		neigh_copy_dflt_parms(net, p, index);
3591}
3592
3593static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
3594					   void *buffer, size_t *lenp,
3595					   loff_t *ppos)
3596{
3597	struct ctl_table tmp = *ctl;
3598	int ret;
3599
3600	tmp.extra1 = SYSCTL_ZERO;
3601	tmp.extra2 = SYSCTL_INT_MAX;
3602
3603	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3604	neigh_proc_update(ctl, write);
3605	return ret;
3606}
3607
3608static int neigh_proc_dointvec_ms_jiffies_positive(struct ctl_table *ctl, int write,
3609						   void *buffer, size_t *lenp, loff_t *ppos)
3610{
3611	struct ctl_table tmp = *ctl;
3612	int ret;
3613
3614	int min = msecs_to_jiffies(1);
3615
3616	tmp.extra1 = &min;
3617	tmp.extra2 = NULL;
3618
3619	ret = proc_dointvec_ms_jiffies_minmax(&tmp, write, buffer, lenp, ppos);
3620	neigh_proc_update(ctl, write);
3621	return ret;
3622}
3623
3624int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer,
3625			size_t *lenp, loff_t *ppos)
3626{
3627	int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
3628
3629	neigh_proc_update(ctl, write);
3630	return ret;
3631}
3632EXPORT_SYMBOL(neigh_proc_dointvec);
3633
3634int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer,
3635				size_t *lenp, loff_t *ppos)
3636{
3637	int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3638
3639	neigh_proc_update(ctl, write);
3640	return ret;
3641}
3642EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
3643
3644static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
3645					      void *buffer, size_t *lenp,
3646					      loff_t *ppos)
3647{
3648	int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
3649
3650	neigh_proc_update(ctl, write);
3651	return ret;
3652}
3653
3654int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
3655				   void *buffer, size_t *lenp, loff_t *ppos)
3656{
3657	int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3658
3659	neigh_proc_update(ctl, write);
3660	return ret;
3661}
3662EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
3663
3664static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
3665					  void *buffer, size_t *lenp,
3666					  loff_t *ppos)
3667{
3668	int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
3669
3670	neigh_proc_update(ctl, write);
3671	return ret;
3672}
3673
3674static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write,
3675					  void *buffer, size_t *lenp,
3676					  loff_t *ppos)
3677{
3678	struct neigh_parms *p = ctl->extra2;
3679	int ret;
3680
3681	if (strcmp(ctl->procname, "base_reachable_time") == 0)
3682		ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3683	else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
3684		ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3685	else
3686		ret = -1;
3687
3688	if (write && ret == 0) {
3689		/* update reachable_time as well, otherwise, the change will
3690		 * only be effective after the next time neigh_periodic_work
3691		 * decides to recompute it
3692		 */
3693		p->reachable_time =
3694			neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
3695	}
3696	return ret;
3697}
3698
3699#define NEIGH_PARMS_DATA_OFFSET(index)	\
3700	(&((struct neigh_parms *) 0)->data[index])
3701
3702#define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
3703	[NEIGH_VAR_ ## attr] = { \
3704		.procname	= name, \
3705		.data		= NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
3706		.maxlen		= sizeof(int), \
3707		.mode		= mval, \
3708		.proc_handler	= proc, \
3709	}
3710
3711#define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
3712	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
3713
3714#define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
3715	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
3716
3717#define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
3718	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
3719
3720#define NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(attr, name) \
3721	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies_positive)
3722
3723#define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
3724	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3725
3726#define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
3727	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
3728
3729static struct neigh_sysctl_table {
3730	struct ctl_table_header *sysctl_header;
3731	struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
 
3732} neigh_sysctl_template __read_mostly = {
3733	.neigh_vars = {
3734		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
3735		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
3736		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
3737		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3738		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3739		NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3740		NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3741		NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(INTERVAL_PROBE_TIME_MS,
3742						       "interval_probe_time_ms"),
3743		NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3744		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3745		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3746		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3747		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3748		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3749		NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3750		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3751		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3752		[NEIGH_VAR_GC_INTERVAL] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3753			.procname	= "gc_interval",
3754			.maxlen		= sizeof(int),
3755			.mode		= 0644,
3756			.proc_handler	= proc_dointvec_jiffies,
3757		},
3758		[NEIGH_VAR_GC_THRESH1] = {
3759			.procname	= "gc_thresh1",
3760			.maxlen		= sizeof(int),
3761			.mode		= 0644,
3762			.extra1		= SYSCTL_ZERO,
3763			.extra2		= SYSCTL_INT_MAX,
3764			.proc_handler	= proc_dointvec_minmax,
3765		},
3766		[NEIGH_VAR_GC_THRESH2] = {
3767			.procname	= "gc_thresh2",
3768			.maxlen		= sizeof(int),
3769			.mode		= 0644,
3770			.extra1		= SYSCTL_ZERO,
3771			.extra2		= SYSCTL_INT_MAX,
3772			.proc_handler	= proc_dointvec_minmax,
3773		},
3774		[NEIGH_VAR_GC_THRESH3] = {
3775			.procname	= "gc_thresh3",
3776			.maxlen		= sizeof(int),
3777			.mode		= 0644,
3778			.extra1		= SYSCTL_ZERO,
3779			.extra2		= SYSCTL_INT_MAX,
3780			.proc_handler	= proc_dointvec_minmax,
3781		},
3782		{},
3783	},
3784};
3785
3786int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3787			  proc_handler *handler)
3788{
3789	int i;
3790	struct neigh_sysctl_table *t;
3791	const char *dev_name_source;
3792	char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3793	char *p_name;
3794	size_t neigh_vars_size;
3795
3796	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL_ACCOUNT);
 
 
 
 
 
 
 
 
 
 
 
 
 
3797	if (!t)
3798		goto err;
3799
3800	for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3801		t->neigh_vars[i].data += (long) p;
3802		t->neigh_vars[i].extra1 = dev;
3803		t->neigh_vars[i].extra2 = p;
3804	}
 
 
 
 
 
 
 
 
 
3805
3806	neigh_vars_size = ARRAY_SIZE(t->neigh_vars);
3807	if (dev) {
3808		dev_name_source = dev->name;
3809		/* Terminate the table early */
3810		memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3811		       sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3812		neigh_vars_size = NEIGH_VAR_BASE_REACHABLE_TIME_MS + 1;
3813	} else {
3814		struct neigh_table *tbl = p->tbl;
3815		dev_name_source = "default";
3816		t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3817		t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3818		t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3819		t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3820	}
3821
 
3822	if (handler) {
3823		/* RetransTime */
3824		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
 
3825		/* ReachableTime */
3826		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
 
3827		/* RetransTime (in milliseconds)*/
3828		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3829		/* ReachableTime (in milliseconds) */
3830		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3831	} else {
3832		/* Those handlers will update p->reachable_time after
3833		 * base_reachable_time(_ms) is set to ensure the new timer starts being
3834		 * applied after the next neighbour update instead of waiting for
3835		 * neigh_periodic_work to update its value (can be multiple minutes)
3836		 * So any handler that replaces them should do this as well
3837		 */
3838		/* ReachableTime */
3839		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3840			neigh_proc_base_reachable_time;
3841		/* ReachableTime (in milliseconds) */
3842		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3843			neigh_proc_base_reachable_time;
3844	}
3845
3846	switch (neigh_parms_family(p)) {
3847	case AF_INET:
3848	      p_name = "ipv4";
3849	      break;
3850	case AF_INET6:
3851	      p_name = "ipv6";
3852	      break;
3853	default:
3854	      BUG();
3855	}
3856
3857	snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3858		p_name, dev_name_source);
3859	t->sysctl_header = register_net_sysctl_sz(neigh_parms_net(p),
3860						  neigh_path, t->neigh_vars,
3861						  neigh_vars_size);
3862	if (!t->sysctl_header)
3863		goto free;
3864
3865	p->sysctl_table = t;
3866	return 0;
3867
 
 
3868free:
3869	kfree(t);
3870err:
3871	return -ENOBUFS;
3872}
3873EXPORT_SYMBOL(neigh_sysctl_register);
3874
3875void neigh_sysctl_unregister(struct neigh_parms *p)
3876{
3877	if (p->sysctl_table) {
3878		struct neigh_sysctl_table *t = p->sysctl_table;
3879		p->sysctl_table = NULL;
3880		unregister_net_sysctl_table(t->sysctl_header);
 
3881		kfree(t);
3882	}
3883}
3884EXPORT_SYMBOL(neigh_sysctl_unregister);
3885
3886#endif	/* CONFIG_SYSCTL */
3887
3888static int __init neigh_init(void)
3889{
3890	rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0);
3891	rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0);
3892	rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0);
3893
3894	rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3895		      0);
3896	rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0);
3897
3898	return 0;
3899}
3900
3901subsys_initcall(neigh_init);