Loading...
1/*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18#include <linux/slab.h>
19#include <linux/types.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/socket.h>
23#include <linux/netdevice.h>
24#include <linux/proc_fs.h>
25#ifdef CONFIG_SYSCTL
26#include <linux/sysctl.h>
27#endif
28#include <linux/times.h>
29#include <net/net_namespace.h>
30#include <net/neighbour.h>
31#include <net/dst.h>
32#include <net/sock.h>
33#include <net/netevent.h>
34#include <net/netlink.h>
35#include <linux/rtnetlink.h>
36#include <linux/random.h>
37#include <linux/string.h>
38#include <linux/log2.h>
39
40#define NEIGH_DEBUG 1
41
42#define NEIGH_PRINTK(x...) printk(x)
43#define NEIGH_NOPRINTK(x...) do { ; } while(0)
44#define NEIGH_PRINTK1 NEIGH_NOPRINTK
45#define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47#if NEIGH_DEBUG >= 1
48#undef NEIGH_PRINTK1
49#define NEIGH_PRINTK1 NEIGH_PRINTK
50#endif
51#if NEIGH_DEBUG >= 2
52#undef NEIGH_PRINTK2
53#define NEIGH_PRINTK2 NEIGH_PRINTK
54#endif
55
56#define PNEIGH_HASHMASK 0xF
57
58static void neigh_timer_handler(unsigned long arg);
59static void __neigh_notify(struct neighbour *n, int type, int flags);
60static void neigh_update_notify(struct neighbour *neigh);
61static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63static struct neigh_table *neigh_tables;
64#ifdef CONFIG_PROC_FS
65static const struct file_operations neigh_stat_seq_fops;
66#endif
67
68/*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99static DEFINE_RWLOCK(neigh_tbl_lock);
100
101static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
102{
103 kfree_skb(skb);
104 return -ENETDOWN;
105}
106
107static void neigh_cleanup_and_release(struct neighbour *neigh)
108{
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114}
115
116/*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122unsigned long neigh_rand_reach_time(unsigned long base)
123{
124 return base ? (net_random() % base) + (base >> 1) : 0;
125}
126EXPORT_SYMBOL(neigh_rand_reach_time);
127
128
129static int neigh_forced_gc(struct neigh_table *tbl)
130{
131 int shrunk = 0;
132 int i;
133 struct neigh_hash_table *nht;
134
135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
136
137 write_lock_bh(&tbl->lock);
138 nht = rcu_dereference_protected(tbl->nht,
139 lockdep_is_held(&tbl->lock));
140 for (i = 0; i < (1 << nht->hash_shift); i++) {
141 struct neighbour *n;
142 struct neighbour __rcu **np;
143
144 np = &nht->hash_buckets[i];
145 while ((n = rcu_dereference_protected(*np,
146 lockdep_is_held(&tbl->lock))) != NULL) {
147 /* Neighbour record may be discarded if:
148 * - nobody refers to it.
149 * - it is not permanent
150 */
151 write_lock(&n->lock);
152 if (atomic_read(&n->refcnt) == 1 &&
153 !(n->nud_state & NUD_PERMANENT)) {
154 rcu_assign_pointer(*np,
155 rcu_dereference_protected(n->next,
156 lockdep_is_held(&tbl->lock)));
157 n->dead = 1;
158 shrunk = 1;
159 write_unlock(&n->lock);
160 neigh_cleanup_and_release(n);
161 continue;
162 }
163 write_unlock(&n->lock);
164 np = &n->next;
165 }
166 }
167
168 tbl->last_flush = jiffies;
169
170 write_unlock_bh(&tbl->lock);
171
172 return shrunk;
173}
174
175static void neigh_add_timer(struct neighbour *n, unsigned long when)
176{
177 neigh_hold(n);
178 if (unlikely(mod_timer(&n->timer, when))) {
179 printk("NEIGH: BUG, double timer add, state is %x\n",
180 n->nud_state);
181 dump_stack();
182 }
183}
184
185static int neigh_del_timer(struct neighbour *n)
186{
187 if ((n->nud_state & NUD_IN_TIMER) &&
188 del_timer(&n->timer)) {
189 neigh_release(n);
190 return 1;
191 }
192 return 0;
193}
194
195static void pneigh_queue_purge(struct sk_buff_head *list)
196{
197 struct sk_buff *skb;
198
199 while ((skb = skb_dequeue(list)) != NULL) {
200 dev_put(skb->dev);
201 kfree_skb(skb);
202 }
203}
204
205static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
206{
207 int i;
208 struct neigh_hash_table *nht;
209
210 nht = rcu_dereference_protected(tbl->nht,
211 lockdep_is_held(&tbl->lock));
212
213 for (i = 0; i < (1 << nht->hash_shift); i++) {
214 struct neighbour *n;
215 struct neighbour __rcu **np = &nht->hash_buckets[i];
216
217 while ((n = rcu_dereference_protected(*np,
218 lockdep_is_held(&tbl->lock))) != NULL) {
219 if (dev && n->dev != dev) {
220 np = &n->next;
221 continue;
222 }
223 rcu_assign_pointer(*np,
224 rcu_dereference_protected(n->next,
225 lockdep_is_held(&tbl->lock)));
226 write_lock(&n->lock);
227 neigh_del_timer(n);
228 n->dead = 1;
229
230 if (atomic_read(&n->refcnt) != 1) {
231 /* The most unpleasant situation.
232 We must destroy neighbour entry,
233 but someone still uses it.
234
235 The destroy will be delayed until
236 the last user releases us, but
237 we must kill timers etc. and move
238 it to safe state.
239 */
240 skb_queue_purge(&n->arp_queue);
241 n->output = neigh_blackhole;
242 if (n->nud_state & NUD_VALID)
243 n->nud_state = NUD_NOARP;
244 else
245 n->nud_state = NUD_NONE;
246 NEIGH_PRINTK2("neigh %p is stray.\n", n);
247 }
248 write_unlock(&n->lock);
249 neigh_cleanup_and_release(n);
250 }
251 }
252}
253
254void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
255{
256 write_lock_bh(&tbl->lock);
257 neigh_flush_dev(tbl, dev);
258 write_unlock_bh(&tbl->lock);
259}
260EXPORT_SYMBOL(neigh_changeaddr);
261
262int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
263{
264 write_lock_bh(&tbl->lock);
265 neigh_flush_dev(tbl, dev);
266 pneigh_ifdown(tbl, dev);
267 write_unlock_bh(&tbl->lock);
268
269 del_timer_sync(&tbl->proxy_timer);
270 pneigh_queue_purge(&tbl->proxy_queue);
271 return 0;
272}
273EXPORT_SYMBOL(neigh_ifdown);
274
275static struct neighbour *neigh_alloc(struct neigh_table *tbl)
276{
277 struct neighbour *n = NULL;
278 unsigned long now = jiffies;
279 int entries;
280
281 entries = atomic_inc_return(&tbl->entries) - 1;
282 if (entries >= tbl->gc_thresh3 ||
283 (entries >= tbl->gc_thresh2 &&
284 time_after(now, tbl->last_flush + 5 * HZ))) {
285 if (!neigh_forced_gc(tbl) &&
286 entries >= tbl->gc_thresh3)
287 goto out_entries;
288 }
289
290 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
291 if (!n)
292 goto out_entries;
293
294 skb_queue_head_init(&n->arp_queue);
295 rwlock_init(&n->lock);
296 seqlock_init(&n->ha_lock);
297 n->updated = n->used = now;
298 n->nud_state = NUD_NONE;
299 n->output = neigh_blackhole;
300 seqlock_init(&n->hh.hh_lock);
301 n->parms = neigh_parms_clone(&tbl->parms);
302 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
303
304 NEIGH_CACHE_STAT_INC(tbl, allocs);
305 n->tbl = tbl;
306 atomic_set(&n->refcnt, 1);
307 n->dead = 1;
308out:
309 return n;
310
311out_entries:
312 atomic_dec(&tbl->entries);
313 goto out;
314}
315
316static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
317{
318 size_t size = (1 << shift) * sizeof(struct neighbour *);
319 struct neigh_hash_table *ret;
320 struct neighbour __rcu **buckets;
321
322 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
323 if (!ret)
324 return NULL;
325 if (size <= PAGE_SIZE)
326 buckets = kzalloc(size, GFP_ATOMIC);
327 else
328 buckets = (struct neighbour __rcu **)
329 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
330 get_order(size));
331 if (!buckets) {
332 kfree(ret);
333 return NULL;
334 }
335 ret->hash_buckets = buckets;
336 ret->hash_shift = shift;
337 get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
338 ret->hash_rnd |= 1;
339 return ret;
340}
341
342static void neigh_hash_free_rcu(struct rcu_head *head)
343{
344 struct neigh_hash_table *nht = container_of(head,
345 struct neigh_hash_table,
346 rcu);
347 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
348 struct neighbour __rcu **buckets = nht->hash_buckets;
349
350 if (size <= PAGE_SIZE)
351 kfree(buckets);
352 else
353 free_pages((unsigned long)buckets, get_order(size));
354 kfree(nht);
355}
356
357static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
358 unsigned long new_shift)
359{
360 unsigned int i, hash;
361 struct neigh_hash_table *new_nht, *old_nht;
362
363 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
364
365 old_nht = rcu_dereference_protected(tbl->nht,
366 lockdep_is_held(&tbl->lock));
367 new_nht = neigh_hash_alloc(new_shift);
368 if (!new_nht)
369 return old_nht;
370
371 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
372 struct neighbour *n, *next;
373
374 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
375 lockdep_is_held(&tbl->lock));
376 n != NULL;
377 n = next) {
378 hash = tbl->hash(n->primary_key, n->dev,
379 new_nht->hash_rnd);
380
381 hash >>= (32 - new_nht->hash_shift);
382 next = rcu_dereference_protected(n->next,
383 lockdep_is_held(&tbl->lock));
384
385 rcu_assign_pointer(n->next,
386 rcu_dereference_protected(
387 new_nht->hash_buckets[hash],
388 lockdep_is_held(&tbl->lock)));
389 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
390 }
391 }
392
393 rcu_assign_pointer(tbl->nht, new_nht);
394 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
395 return new_nht;
396}
397
398struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
399 struct net_device *dev)
400{
401 struct neighbour *n;
402 int key_len = tbl->key_len;
403 u32 hash_val;
404 struct neigh_hash_table *nht;
405
406 NEIGH_CACHE_STAT_INC(tbl, lookups);
407
408 rcu_read_lock_bh();
409 nht = rcu_dereference_bh(tbl->nht);
410 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
411
412 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
413 n != NULL;
414 n = rcu_dereference_bh(n->next)) {
415 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
416 if (!atomic_inc_not_zero(&n->refcnt))
417 n = NULL;
418 NEIGH_CACHE_STAT_INC(tbl, hits);
419 break;
420 }
421 }
422
423 rcu_read_unlock_bh();
424 return n;
425}
426EXPORT_SYMBOL(neigh_lookup);
427
428struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
429 const void *pkey)
430{
431 struct neighbour *n;
432 int key_len = tbl->key_len;
433 u32 hash_val;
434 struct neigh_hash_table *nht;
435
436 NEIGH_CACHE_STAT_INC(tbl, lookups);
437
438 rcu_read_lock_bh();
439 nht = rcu_dereference_bh(tbl->nht);
440 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
441
442 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
443 n != NULL;
444 n = rcu_dereference_bh(n->next)) {
445 if (!memcmp(n->primary_key, pkey, key_len) &&
446 net_eq(dev_net(n->dev), net)) {
447 if (!atomic_inc_not_zero(&n->refcnt))
448 n = NULL;
449 NEIGH_CACHE_STAT_INC(tbl, hits);
450 break;
451 }
452 }
453
454 rcu_read_unlock_bh();
455 return n;
456}
457EXPORT_SYMBOL(neigh_lookup_nodev);
458
459struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
460 struct net_device *dev)
461{
462 u32 hash_val;
463 int key_len = tbl->key_len;
464 int error;
465 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
466 struct neigh_hash_table *nht;
467
468 if (!n) {
469 rc = ERR_PTR(-ENOBUFS);
470 goto out;
471 }
472
473 memcpy(n->primary_key, pkey, key_len);
474 n->dev = dev;
475 dev_hold(dev);
476
477 /* Protocol specific setup. */
478 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
479 rc = ERR_PTR(error);
480 goto out_neigh_release;
481 }
482
483 /* Device specific setup. */
484 if (n->parms->neigh_setup &&
485 (error = n->parms->neigh_setup(n)) < 0) {
486 rc = ERR_PTR(error);
487 goto out_neigh_release;
488 }
489
490 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
491
492 write_lock_bh(&tbl->lock);
493 nht = rcu_dereference_protected(tbl->nht,
494 lockdep_is_held(&tbl->lock));
495
496 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
497 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
498
499 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
500
501 if (n->parms->dead) {
502 rc = ERR_PTR(-EINVAL);
503 goto out_tbl_unlock;
504 }
505
506 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
507 lockdep_is_held(&tbl->lock));
508 n1 != NULL;
509 n1 = rcu_dereference_protected(n1->next,
510 lockdep_is_held(&tbl->lock))) {
511 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
512 neigh_hold(n1);
513 rc = n1;
514 goto out_tbl_unlock;
515 }
516 }
517
518 n->dead = 0;
519 neigh_hold(n);
520 rcu_assign_pointer(n->next,
521 rcu_dereference_protected(nht->hash_buckets[hash_val],
522 lockdep_is_held(&tbl->lock)));
523 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
524 write_unlock_bh(&tbl->lock);
525 NEIGH_PRINTK2("neigh %p is created.\n", n);
526 rc = n;
527out:
528 return rc;
529out_tbl_unlock:
530 write_unlock_bh(&tbl->lock);
531out_neigh_release:
532 neigh_release(n);
533 goto out;
534}
535EXPORT_SYMBOL(neigh_create);
536
537static u32 pneigh_hash(const void *pkey, int key_len)
538{
539 u32 hash_val = *(u32 *)(pkey + key_len - 4);
540 hash_val ^= (hash_val >> 16);
541 hash_val ^= hash_val >> 8;
542 hash_val ^= hash_val >> 4;
543 hash_val &= PNEIGH_HASHMASK;
544 return hash_val;
545}
546
547static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
548 struct net *net,
549 const void *pkey,
550 int key_len,
551 struct net_device *dev)
552{
553 while (n) {
554 if (!memcmp(n->key, pkey, key_len) &&
555 net_eq(pneigh_net(n), net) &&
556 (n->dev == dev || !n->dev))
557 return n;
558 n = n->next;
559 }
560 return NULL;
561}
562
563struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
564 struct net *net, const void *pkey, struct net_device *dev)
565{
566 int key_len = tbl->key_len;
567 u32 hash_val = pneigh_hash(pkey, key_len);
568
569 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
570 net, pkey, key_len, dev);
571}
572EXPORT_SYMBOL_GPL(__pneigh_lookup);
573
574struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
575 struct net *net, const void *pkey,
576 struct net_device *dev, int creat)
577{
578 struct pneigh_entry *n;
579 int key_len = tbl->key_len;
580 u32 hash_val = pneigh_hash(pkey, key_len);
581
582 read_lock_bh(&tbl->lock);
583 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
584 net, pkey, key_len, dev);
585 read_unlock_bh(&tbl->lock);
586
587 if (n || !creat)
588 goto out;
589
590 ASSERT_RTNL();
591
592 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
593 if (!n)
594 goto out;
595
596 write_pnet(&n->net, hold_net(net));
597 memcpy(n->key, pkey, key_len);
598 n->dev = dev;
599 if (dev)
600 dev_hold(dev);
601
602 if (tbl->pconstructor && tbl->pconstructor(n)) {
603 if (dev)
604 dev_put(dev);
605 release_net(net);
606 kfree(n);
607 n = NULL;
608 goto out;
609 }
610
611 write_lock_bh(&tbl->lock);
612 n->next = tbl->phash_buckets[hash_val];
613 tbl->phash_buckets[hash_val] = n;
614 write_unlock_bh(&tbl->lock);
615out:
616 return n;
617}
618EXPORT_SYMBOL(pneigh_lookup);
619
620
621int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
622 struct net_device *dev)
623{
624 struct pneigh_entry *n, **np;
625 int key_len = tbl->key_len;
626 u32 hash_val = pneigh_hash(pkey, key_len);
627
628 write_lock_bh(&tbl->lock);
629 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
630 np = &n->next) {
631 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
632 net_eq(pneigh_net(n), net)) {
633 *np = n->next;
634 write_unlock_bh(&tbl->lock);
635 if (tbl->pdestructor)
636 tbl->pdestructor(n);
637 if (n->dev)
638 dev_put(n->dev);
639 release_net(pneigh_net(n));
640 kfree(n);
641 return 0;
642 }
643 }
644 write_unlock_bh(&tbl->lock);
645 return -ENOENT;
646}
647
648static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
649{
650 struct pneigh_entry *n, **np;
651 u32 h;
652
653 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
654 np = &tbl->phash_buckets[h];
655 while ((n = *np) != NULL) {
656 if (!dev || n->dev == dev) {
657 *np = n->next;
658 if (tbl->pdestructor)
659 tbl->pdestructor(n);
660 if (n->dev)
661 dev_put(n->dev);
662 release_net(pneigh_net(n));
663 kfree(n);
664 continue;
665 }
666 np = &n->next;
667 }
668 }
669 return -ENOENT;
670}
671
672static void neigh_parms_destroy(struct neigh_parms *parms);
673
674static inline void neigh_parms_put(struct neigh_parms *parms)
675{
676 if (atomic_dec_and_test(&parms->refcnt))
677 neigh_parms_destroy(parms);
678}
679
680static void neigh_destroy_rcu(struct rcu_head *head)
681{
682 struct neighbour *neigh = container_of(head, struct neighbour, rcu);
683
684 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
685}
686/*
687 * neighbour must already be out of the table;
688 *
689 */
690void neigh_destroy(struct neighbour *neigh)
691{
692 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
693
694 if (!neigh->dead) {
695 printk(KERN_WARNING
696 "Destroying alive neighbour %p\n", neigh);
697 dump_stack();
698 return;
699 }
700
701 if (neigh_del_timer(neigh))
702 printk(KERN_WARNING "Impossible event.\n");
703
704 skb_queue_purge(&neigh->arp_queue);
705
706 dev_put(neigh->dev);
707 neigh_parms_put(neigh->parms);
708
709 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
710
711 atomic_dec(&neigh->tbl->entries);
712 call_rcu(&neigh->rcu, neigh_destroy_rcu);
713}
714EXPORT_SYMBOL(neigh_destroy);
715
716/* Neighbour state is suspicious;
717 disable fast path.
718
719 Called with write_locked neigh.
720 */
721static void neigh_suspect(struct neighbour *neigh)
722{
723 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
724
725 neigh->output = neigh->ops->output;
726}
727
728/* Neighbour state is OK;
729 enable fast path.
730
731 Called with write_locked neigh.
732 */
733static void neigh_connect(struct neighbour *neigh)
734{
735 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
736
737 neigh->output = neigh->ops->connected_output;
738}
739
740static void neigh_periodic_work(struct work_struct *work)
741{
742 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
743 struct neighbour *n;
744 struct neighbour __rcu **np;
745 unsigned int i;
746 struct neigh_hash_table *nht;
747
748 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
749
750 write_lock_bh(&tbl->lock);
751 nht = rcu_dereference_protected(tbl->nht,
752 lockdep_is_held(&tbl->lock));
753
754 /*
755 * periodically recompute ReachableTime from random function
756 */
757
758 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
759 struct neigh_parms *p;
760 tbl->last_rand = jiffies;
761 for (p = &tbl->parms; p; p = p->next)
762 p->reachable_time =
763 neigh_rand_reach_time(p->base_reachable_time);
764 }
765
766 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
767 np = &nht->hash_buckets[i];
768
769 while ((n = rcu_dereference_protected(*np,
770 lockdep_is_held(&tbl->lock))) != NULL) {
771 unsigned int state;
772
773 write_lock(&n->lock);
774
775 state = n->nud_state;
776 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
777 write_unlock(&n->lock);
778 goto next_elt;
779 }
780
781 if (time_before(n->used, n->confirmed))
782 n->used = n->confirmed;
783
784 if (atomic_read(&n->refcnt) == 1 &&
785 (state == NUD_FAILED ||
786 time_after(jiffies, n->used + n->parms->gc_staletime))) {
787 *np = n->next;
788 n->dead = 1;
789 write_unlock(&n->lock);
790 neigh_cleanup_and_release(n);
791 continue;
792 }
793 write_unlock(&n->lock);
794
795next_elt:
796 np = &n->next;
797 }
798 /*
799 * It's fine to release lock here, even if hash table
800 * grows while we are preempted.
801 */
802 write_unlock_bh(&tbl->lock);
803 cond_resched();
804 write_lock_bh(&tbl->lock);
805 }
806 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
807 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
808 * base_reachable_time.
809 */
810 schedule_delayed_work(&tbl->gc_work,
811 tbl->parms.base_reachable_time >> 1);
812 write_unlock_bh(&tbl->lock);
813}
814
815static __inline__ int neigh_max_probes(struct neighbour *n)
816{
817 struct neigh_parms *p = n->parms;
818 return (n->nud_state & NUD_PROBE) ?
819 p->ucast_probes :
820 p->ucast_probes + p->app_probes + p->mcast_probes;
821}
822
823static void neigh_invalidate(struct neighbour *neigh)
824 __releases(neigh->lock)
825 __acquires(neigh->lock)
826{
827 struct sk_buff *skb;
828
829 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
830 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
831 neigh->updated = jiffies;
832
833 /* It is very thin place. report_unreachable is very complicated
834 routine. Particularly, it can hit the same neighbour entry!
835
836 So that, we try to be accurate and avoid dead loop. --ANK
837 */
838 while (neigh->nud_state == NUD_FAILED &&
839 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
840 write_unlock(&neigh->lock);
841 neigh->ops->error_report(neigh, skb);
842 write_lock(&neigh->lock);
843 }
844 skb_queue_purge(&neigh->arp_queue);
845}
846
847/* Called when a timer expires for a neighbour entry. */
848
849static void neigh_timer_handler(unsigned long arg)
850{
851 unsigned long now, next;
852 struct neighbour *neigh = (struct neighbour *)arg;
853 unsigned state;
854 int notify = 0;
855
856 write_lock(&neigh->lock);
857
858 state = neigh->nud_state;
859 now = jiffies;
860 next = now + HZ;
861
862 if (!(state & NUD_IN_TIMER)) {
863#ifndef CONFIG_SMP
864 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
865#endif
866 goto out;
867 }
868
869 if (state & NUD_REACHABLE) {
870 if (time_before_eq(now,
871 neigh->confirmed + neigh->parms->reachable_time)) {
872 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
873 next = neigh->confirmed + neigh->parms->reachable_time;
874 } else if (time_before_eq(now,
875 neigh->used + neigh->parms->delay_probe_time)) {
876 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
877 neigh->nud_state = NUD_DELAY;
878 neigh->updated = jiffies;
879 neigh_suspect(neigh);
880 next = now + neigh->parms->delay_probe_time;
881 } else {
882 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
883 neigh->nud_state = NUD_STALE;
884 neigh->updated = jiffies;
885 neigh_suspect(neigh);
886 notify = 1;
887 }
888 } else if (state & NUD_DELAY) {
889 if (time_before_eq(now,
890 neigh->confirmed + neigh->parms->delay_probe_time)) {
891 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
892 neigh->nud_state = NUD_REACHABLE;
893 neigh->updated = jiffies;
894 neigh_connect(neigh);
895 notify = 1;
896 next = neigh->confirmed + neigh->parms->reachable_time;
897 } else {
898 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
899 neigh->nud_state = NUD_PROBE;
900 neigh->updated = jiffies;
901 atomic_set(&neigh->probes, 0);
902 next = now + neigh->parms->retrans_time;
903 }
904 } else {
905 /* NUD_PROBE|NUD_INCOMPLETE */
906 next = now + neigh->parms->retrans_time;
907 }
908
909 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
910 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
911 neigh->nud_state = NUD_FAILED;
912 notify = 1;
913 neigh_invalidate(neigh);
914 }
915
916 if (neigh->nud_state & NUD_IN_TIMER) {
917 if (time_before(next, jiffies + HZ/2))
918 next = jiffies + HZ/2;
919 if (!mod_timer(&neigh->timer, next))
920 neigh_hold(neigh);
921 }
922 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
923 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
924 /* keep skb alive even if arp_queue overflows */
925 if (skb)
926 skb = skb_copy(skb, GFP_ATOMIC);
927 write_unlock(&neigh->lock);
928 neigh->ops->solicit(neigh, skb);
929 atomic_inc(&neigh->probes);
930 kfree_skb(skb);
931 } else {
932out:
933 write_unlock(&neigh->lock);
934 }
935
936 if (notify)
937 neigh_update_notify(neigh);
938
939 neigh_release(neigh);
940}
941
942int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
943{
944 int rc;
945 unsigned long now;
946
947 write_lock_bh(&neigh->lock);
948
949 rc = 0;
950 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
951 goto out_unlock_bh;
952
953 now = jiffies;
954
955 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
956 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
957 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
958 neigh->nud_state = NUD_INCOMPLETE;
959 neigh->updated = jiffies;
960 neigh_add_timer(neigh, now + 1);
961 } else {
962 neigh->nud_state = NUD_FAILED;
963 neigh->updated = jiffies;
964 write_unlock_bh(&neigh->lock);
965
966 kfree_skb(skb);
967 return 1;
968 }
969 } else if (neigh->nud_state & NUD_STALE) {
970 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
971 neigh->nud_state = NUD_DELAY;
972 neigh->updated = jiffies;
973 neigh_add_timer(neigh,
974 jiffies + neigh->parms->delay_probe_time);
975 }
976
977 if (neigh->nud_state == NUD_INCOMPLETE) {
978 if (skb) {
979 if (skb_queue_len(&neigh->arp_queue) >=
980 neigh->parms->queue_len) {
981 struct sk_buff *buff;
982 buff = __skb_dequeue(&neigh->arp_queue);
983 kfree_skb(buff);
984 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
985 }
986 skb_dst_force(skb);
987 __skb_queue_tail(&neigh->arp_queue, skb);
988 }
989 rc = 1;
990 }
991out_unlock_bh:
992 write_unlock_bh(&neigh->lock);
993 return rc;
994}
995EXPORT_SYMBOL(__neigh_event_send);
996
997static void neigh_update_hhs(struct neighbour *neigh)
998{
999 struct hh_cache *hh;
1000 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1001 = NULL;
1002
1003 if (neigh->dev->header_ops)
1004 update = neigh->dev->header_ops->cache_update;
1005
1006 if (update) {
1007 hh = &neigh->hh;
1008 if (hh->hh_len) {
1009 write_seqlock_bh(&hh->hh_lock);
1010 update(hh, neigh->dev, neigh->ha);
1011 write_sequnlock_bh(&hh->hh_lock);
1012 }
1013 }
1014}
1015
1016
1017
1018/* Generic update routine.
1019 -- lladdr is new lladdr or NULL, if it is not supplied.
1020 -- new is new state.
1021 -- flags
1022 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1023 if it is different.
1024 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1025 lladdr instead of overriding it
1026 if it is different.
1027 It also allows to retain current state
1028 if lladdr is unchanged.
1029 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1030
1031 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1032 NTF_ROUTER flag.
1033 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1034 a router.
1035
1036 Caller MUST hold reference count on the entry.
1037 */
1038
1039int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1040 u32 flags)
1041{
1042 u8 old;
1043 int err;
1044 int notify = 0;
1045 struct net_device *dev;
1046 int update_isrouter = 0;
1047
1048 write_lock_bh(&neigh->lock);
1049
1050 dev = neigh->dev;
1051 old = neigh->nud_state;
1052 err = -EPERM;
1053
1054 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1055 (old & (NUD_NOARP | NUD_PERMANENT)))
1056 goto out;
1057
1058 if (!(new & NUD_VALID)) {
1059 neigh_del_timer(neigh);
1060 if (old & NUD_CONNECTED)
1061 neigh_suspect(neigh);
1062 neigh->nud_state = new;
1063 err = 0;
1064 notify = old & NUD_VALID;
1065 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1066 (new & NUD_FAILED)) {
1067 neigh_invalidate(neigh);
1068 notify = 1;
1069 }
1070 goto out;
1071 }
1072
1073 /* Compare new lladdr with cached one */
1074 if (!dev->addr_len) {
1075 /* First case: device needs no address. */
1076 lladdr = neigh->ha;
1077 } else if (lladdr) {
1078 /* The second case: if something is already cached
1079 and a new address is proposed:
1080 - compare new & old
1081 - if they are different, check override flag
1082 */
1083 if ((old & NUD_VALID) &&
1084 !memcmp(lladdr, neigh->ha, dev->addr_len))
1085 lladdr = neigh->ha;
1086 } else {
1087 /* No address is supplied; if we know something,
1088 use it, otherwise discard the request.
1089 */
1090 err = -EINVAL;
1091 if (!(old & NUD_VALID))
1092 goto out;
1093 lladdr = neigh->ha;
1094 }
1095
1096 if (new & NUD_CONNECTED)
1097 neigh->confirmed = jiffies;
1098 neigh->updated = jiffies;
1099
1100 /* If entry was valid and address is not changed,
1101 do not change entry state, if new one is STALE.
1102 */
1103 err = 0;
1104 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1105 if (old & NUD_VALID) {
1106 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1107 update_isrouter = 0;
1108 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1109 (old & NUD_CONNECTED)) {
1110 lladdr = neigh->ha;
1111 new = NUD_STALE;
1112 } else
1113 goto out;
1114 } else {
1115 if (lladdr == neigh->ha && new == NUD_STALE &&
1116 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1117 (old & NUD_CONNECTED))
1118 )
1119 new = old;
1120 }
1121 }
1122
1123 if (new != old) {
1124 neigh_del_timer(neigh);
1125 if (new & NUD_IN_TIMER)
1126 neigh_add_timer(neigh, (jiffies +
1127 ((new & NUD_REACHABLE) ?
1128 neigh->parms->reachable_time :
1129 0)));
1130 neigh->nud_state = new;
1131 }
1132
1133 if (lladdr != neigh->ha) {
1134 write_seqlock(&neigh->ha_lock);
1135 memcpy(&neigh->ha, lladdr, dev->addr_len);
1136 write_sequnlock(&neigh->ha_lock);
1137 neigh_update_hhs(neigh);
1138 if (!(new & NUD_CONNECTED))
1139 neigh->confirmed = jiffies -
1140 (neigh->parms->base_reachable_time << 1);
1141 notify = 1;
1142 }
1143 if (new == old)
1144 goto out;
1145 if (new & NUD_CONNECTED)
1146 neigh_connect(neigh);
1147 else
1148 neigh_suspect(neigh);
1149 if (!(old & NUD_VALID)) {
1150 struct sk_buff *skb;
1151
1152 /* Again: avoid dead loop if something went wrong */
1153
1154 while (neigh->nud_state & NUD_VALID &&
1155 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1156 struct dst_entry *dst = skb_dst(skb);
1157 struct neighbour *n2, *n1 = neigh;
1158 write_unlock_bh(&neigh->lock);
1159 /* On shaper/eql skb->dst->neighbour != neigh :( */
1160 if (dst && (n2 = dst_get_neighbour(dst)) != NULL)
1161 n1 = n2;
1162 n1->output(n1, skb);
1163 write_lock_bh(&neigh->lock);
1164 }
1165 skb_queue_purge(&neigh->arp_queue);
1166 }
1167out:
1168 if (update_isrouter) {
1169 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1170 (neigh->flags | NTF_ROUTER) :
1171 (neigh->flags & ~NTF_ROUTER);
1172 }
1173 write_unlock_bh(&neigh->lock);
1174
1175 if (notify)
1176 neigh_update_notify(neigh);
1177
1178 return err;
1179}
1180EXPORT_SYMBOL(neigh_update);
1181
1182struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1183 u8 *lladdr, void *saddr,
1184 struct net_device *dev)
1185{
1186 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1187 lladdr || !dev->addr_len);
1188 if (neigh)
1189 neigh_update(neigh, lladdr, NUD_STALE,
1190 NEIGH_UPDATE_F_OVERRIDE);
1191 return neigh;
1192}
1193EXPORT_SYMBOL(neigh_event_ns);
1194
1195/* called with read_lock_bh(&n->lock); */
1196static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1197{
1198 struct net_device *dev = dst->dev;
1199 __be16 prot = dst->ops->protocol;
1200 struct hh_cache *hh = &n->hh;
1201
1202 write_lock_bh(&n->lock);
1203
1204 /* Only one thread can come in here and initialize the
1205 * hh_cache entry.
1206 */
1207 if (!hh->hh_len)
1208 dev->header_ops->cache(n, hh, prot);
1209
1210 write_unlock_bh(&n->lock);
1211}
1212
1213/* This function can be used in contexts, where only old dev_queue_xmit
1214 * worked, f.e. if you want to override normal output path (eql, shaper),
1215 * but resolution is not made yet.
1216 */
1217
1218int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1219{
1220 struct net_device *dev = skb->dev;
1221
1222 __skb_pull(skb, skb_network_offset(skb));
1223
1224 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1225 skb->len) < 0 &&
1226 dev->header_ops->rebuild(skb))
1227 return 0;
1228
1229 return dev_queue_xmit(skb);
1230}
1231EXPORT_SYMBOL(neigh_compat_output);
1232
1233/* Slow and careful. */
1234
1235int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1236{
1237 struct dst_entry *dst = skb_dst(skb);
1238 int rc = 0;
1239
1240 if (!dst)
1241 goto discard;
1242
1243 __skb_pull(skb, skb_network_offset(skb));
1244
1245 if (!neigh_event_send(neigh, skb)) {
1246 int err;
1247 struct net_device *dev = neigh->dev;
1248 unsigned int seq;
1249
1250 if (dev->header_ops->cache && !neigh->hh.hh_len)
1251 neigh_hh_init(neigh, dst);
1252
1253 do {
1254 seq = read_seqbegin(&neigh->ha_lock);
1255 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1256 neigh->ha, NULL, skb->len);
1257 } while (read_seqretry(&neigh->ha_lock, seq));
1258
1259 if (err >= 0)
1260 rc = dev_queue_xmit(skb);
1261 else
1262 goto out_kfree_skb;
1263 }
1264out:
1265 return rc;
1266discard:
1267 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1268 dst, neigh);
1269out_kfree_skb:
1270 rc = -EINVAL;
1271 kfree_skb(skb);
1272 goto out;
1273}
1274EXPORT_SYMBOL(neigh_resolve_output);
1275
1276/* As fast as possible without hh cache */
1277
1278int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1279{
1280 struct net_device *dev = neigh->dev;
1281 unsigned int seq;
1282 int err;
1283
1284 __skb_pull(skb, skb_network_offset(skb));
1285
1286 do {
1287 seq = read_seqbegin(&neigh->ha_lock);
1288 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1289 neigh->ha, NULL, skb->len);
1290 } while (read_seqretry(&neigh->ha_lock, seq));
1291
1292 if (err >= 0)
1293 err = dev_queue_xmit(skb);
1294 else {
1295 err = -EINVAL;
1296 kfree_skb(skb);
1297 }
1298 return err;
1299}
1300EXPORT_SYMBOL(neigh_connected_output);
1301
1302int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1303{
1304 return dev_queue_xmit(skb);
1305}
1306EXPORT_SYMBOL(neigh_direct_output);
1307
1308static void neigh_proxy_process(unsigned long arg)
1309{
1310 struct neigh_table *tbl = (struct neigh_table *)arg;
1311 long sched_next = 0;
1312 unsigned long now = jiffies;
1313 struct sk_buff *skb, *n;
1314
1315 spin_lock(&tbl->proxy_queue.lock);
1316
1317 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1318 long tdif = NEIGH_CB(skb)->sched_next - now;
1319
1320 if (tdif <= 0) {
1321 struct net_device *dev = skb->dev;
1322
1323 __skb_unlink(skb, &tbl->proxy_queue);
1324 if (tbl->proxy_redo && netif_running(dev)) {
1325 rcu_read_lock();
1326 tbl->proxy_redo(skb);
1327 rcu_read_unlock();
1328 } else {
1329 kfree_skb(skb);
1330 }
1331
1332 dev_put(dev);
1333 } else if (!sched_next || tdif < sched_next)
1334 sched_next = tdif;
1335 }
1336 del_timer(&tbl->proxy_timer);
1337 if (sched_next)
1338 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1339 spin_unlock(&tbl->proxy_queue.lock);
1340}
1341
1342void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1343 struct sk_buff *skb)
1344{
1345 unsigned long now = jiffies;
1346 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1347
1348 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1349 kfree_skb(skb);
1350 return;
1351 }
1352
1353 NEIGH_CB(skb)->sched_next = sched_next;
1354 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1355
1356 spin_lock(&tbl->proxy_queue.lock);
1357 if (del_timer(&tbl->proxy_timer)) {
1358 if (time_before(tbl->proxy_timer.expires, sched_next))
1359 sched_next = tbl->proxy_timer.expires;
1360 }
1361 skb_dst_drop(skb);
1362 dev_hold(skb->dev);
1363 __skb_queue_tail(&tbl->proxy_queue, skb);
1364 mod_timer(&tbl->proxy_timer, sched_next);
1365 spin_unlock(&tbl->proxy_queue.lock);
1366}
1367EXPORT_SYMBOL(pneigh_enqueue);
1368
1369static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1370 struct net *net, int ifindex)
1371{
1372 struct neigh_parms *p;
1373
1374 for (p = &tbl->parms; p; p = p->next) {
1375 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1376 (!p->dev && !ifindex))
1377 return p;
1378 }
1379
1380 return NULL;
1381}
1382
1383struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1384 struct neigh_table *tbl)
1385{
1386 struct neigh_parms *p, *ref;
1387 struct net *net = dev_net(dev);
1388 const struct net_device_ops *ops = dev->netdev_ops;
1389
1390 ref = lookup_neigh_parms(tbl, net, 0);
1391 if (!ref)
1392 return NULL;
1393
1394 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1395 if (p) {
1396 p->tbl = tbl;
1397 atomic_set(&p->refcnt, 1);
1398 p->reachable_time =
1399 neigh_rand_reach_time(p->base_reachable_time);
1400
1401 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1402 kfree(p);
1403 return NULL;
1404 }
1405
1406 dev_hold(dev);
1407 p->dev = dev;
1408 write_pnet(&p->net, hold_net(net));
1409 p->sysctl_table = NULL;
1410 write_lock_bh(&tbl->lock);
1411 p->next = tbl->parms.next;
1412 tbl->parms.next = p;
1413 write_unlock_bh(&tbl->lock);
1414 }
1415 return p;
1416}
1417EXPORT_SYMBOL(neigh_parms_alloc);
1418
1419static void neigh_rcu_free_parms(struct rcu_head *head)
1420{
1421 struct neigh_parms *parms =
1422 container_of(head, struct neigh_parms, rcu_head);
1423
1424 neigh_parms_put(parms);
1425}
1426
1427void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1428{
1429 struct neigh_parms **p;
1430
1431 if (!parms || parms == &tbl->parms)
1432 return;
1433 write_lock_bh(&tbl->lock);
1434 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1435 if (*p == parms) {
1436 *p = parms->next;
1437 parms->dead = 1;
1438 write_unlock_bh(&tbl->lock);
1439 if (parms->dev)
1440 dev_put(parms->dev);
1441 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1442 return;
1443 }
1444 }
1445 write_unlock_bh(&tbl->lock);
1446 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1447}
1448EXPORT_SYMBOL(neigh_parms_release);
1449
1450static void neigh_parms_destroy(struct neigh_parms *parms)
1451{
1452 release_net(neigh_parms_net(parms));
1453 kfree(parms);
1454}
1455
1456static struct lock_class_key neigh_table_proxy_queue_class;
1457
1458void neigh_table_init_no_netlink(struct neigh_table *tbl)
1459{
1460 unsigned long now = jiffies;
1461 unsigned long phsize;
1462
1463 write_pnet(&tbl->parms.net, &init_net);
1464 atomic_set(&tbl->parms.refcnt, 1);
1465 tbl->parms.reachable_time =
1466 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1467
1468 if (!tbl->kmem_cachep)
1469 tbl->kmem_cachep =
1470 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1471 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1472 NULL);
1473 tbl->stats = alloc_percpu(struct neigh_statistics);
1474 if (!tbl->stats)
1475 panic("cannot create neighbour cache statistics");
1476
1477#ifdef CONFIG_PROC_FS
1478 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1479 &neigh_stat_seq_fops, tbl))
1480 panic("cannot create neighbour proc dir entry");
1481#endif
1482
1483 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1484
1485 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1486 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1487
1488 if (!tbl->nht || !tbl->phash_buckets)
1489 panic("cannot allocate neighbour cache hashes");
1490
1491 rwlock_init(&tbl->lock);
1492 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1493 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1494 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1495 skb_queue_head_init_class(&tbl->proxy_queue,
1496 &neigh_table_proxy_queue_class);
1497
1498 tbl->last_flush = now;
1499 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1500}
1501EXPORT_SYMBOL(neigh_table_init_no_netlink);
1502
1503void neigh_table_init(struct neigh_table *tbl)
1504{
1505 struct neigh_table *tmp;
1506
1507 neigh_table_init_no_netlink(tbl);
1508 write_lock(&neigh_tbl_lock);
1509 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1510 if (tmp->family == tbl->family)
1511 break;
1512 }
1513 tbl->next = neigh_tables;
1514 neigh_tables = tbl;
1515 write_unlock(&neigh_tbl_lock);
1516
1517 if (unlikely(tmp)) {
1518 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1519 "family %d\n", tbl->family);
1520 dump_stack();
1521 }
1522}
1523EXPORT_SYMBOL(neigh_table_init);
1524
1525int neigh_table_clear(struct neigh_table *tbl)
1526{
1527 struct neigh_table **tp;
1528
1529 /* It is not clean... Fix it to unload IPv6 module safely */
1530 cancel_delayed_work_sync(&tbl->gc_work);
1531 del_timer_sync(&tbl->proxy_timer);
1532 pneigh_queue_purge(&tbl->proxy_queue);
1533 neigh_ifdown(tbl, NULL);
1534 if (atomic_read(&tbl->entries))
1535 printk(KERN_CRIT "neighbour leakage\n");
1536 write_lock(&neigh_tbl_lock);
1537 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1538 if (*tp == tbl) {
1539 *tp = tbl->next;
1540 break;
1541 }
1542 }
1543 write_unlock(&neigh_tbl_lock);
1544
1545 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1546 neigh_hash_free_rcu);
1547 tbl->nht = NULL;
1548
1549 kfree(tbl->phash_buckets);
1550 tbl->phash_buckets = NULL;
1551
1552 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1553
1554 free_percpu(tbl->stats);
1555 tbl->stats = NULL;
1556
1557 kmem_cache_destroy(tbl->kmem_cachep);
1558 tbl->kmem_cachep = NULL;
1559
1560 return 0;
1561}
1562EXPORT_SYMBOL(neigh_table_clear);
1563
1564static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1565{
1566 struct net *net = sock_net(skb->sk);
1567 struct ndmsg *ndm;
1568 struct nlattr *dst_attr;
1569 struct neigh_table *tbl;
1570 struct net_device *dev = NULL;
1571 int err = -EINVAL;
1572
1573 ASSERT_RTNL();
1574 if (nlmsg_len(nlh) < sizeof(*ndm))
1575 goto out;
1576
1577 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1578 if (dst_attr == NULL)
1579 goto out;
1580
1581 ndm = nlmsg_data(nlh);
1582 if (ndm->ndm_ifindex) {
1583 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1584 if (dev == NULL) {
1585 err = -ENODEV;
1586 goto out;
1587 }
1588 }
1589
1590 read_lock(&neigh_tbl_lock);
1591 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1592 struct neighbour *neigh;
1593
1594 if (tbl->family != ndm->ndm_family)
1595 continue;
1596 read_unlock(&neigh_tbl_lock);
1597
1598 if (nla_len(dst_attr) < tbl->key_len)
1599 goto out;
1600
1601 if (ndm->ndm_flags & NTF_PROXY) {
1602 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1603 goto out;
1604 }
1605
1606 if (dev == NULL)
1607 goto out;
1608
1609 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1610 if (neigh == NULL) {
1611 err = -ENOENT;
1612 goto out;
1613 }
1614
1615 err = neigh_update(neigh, NULL, NUD_FAILED,
1616 NEIGH_UPDATE_F_OVERRIDE |
1617 NEIGH_UPDATE_F_ADMIN);
1618 neigh_release(neigh);
1619 goto out;
1620 }
1621 read_unlock(&neigh_tbl_lock);
1622 err = -EAFNOSUPPORT;
1623
1624out:
1625 return err;
1626}
1627
1628static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1629{
1630 struct net *net = sock_net(skb->sk);
1631 struct ndmsg *ndm;
1632 struct nlattr *tb[NDA_MAX+1];
1633 struct neigh_table *tbl;
1634 struct net_device *dev = NULL;
1635 int err;
1636
1637 ASSERT_RTNL();
1638 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1639 if (err < 0)
1640 goto out;
1641
1642 err = -EINVAL;
1643 if (tb[NDA_DST] == NULL)
1644 goto out;
1645
1646 ndm = nlmsg_data(nlh);
1647 if (ndm->ndm_ifindex) {
1648 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1649 if (dev == NULL) {
1650 err = -ENODEV;
1651 goto out;
1652 }
1653
1654 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1655 goto out;
1656 }
1657
1658 read_lock(&neigh_tbl_lock);
1659 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1660 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1661 struct neighbour *neigh;
1662 void *dst, *lladdr;
1663
1664 if (tbl->family != ndm->ndm_family)
1665 continue;
1666 read_unlock(&neigh_tbl_lock);
1667
1668 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1669 goto out;
1670 dst = nla_data(tb[NDA_DST]);
1671 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1672
1673 if (ndm->ndm_flags & NTF_PROXY) {
1674 struct pneigh_entry *pn;
1675
1676 err = -ENOBUFS;
1677 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1678 if (pn) {
1679 pn->flags = ndm->ndm_flags;
1680 err = 0;
1681 }
1682 goto out;
1683 }
1684
1685 if (dev == NULL)
1686 goto out;
1687
1688 neigh = neigh_lookup(tbl, dst, dev);
1689 if (neigh == NULL) {
1690 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1691 err = -ENOENT;
1692 goto out;
1693 }
1694
1695 neigh = __neigh_lookup_errno(tbl, dst, dev);
1696 if (IS_ERR(neigh)) {
1697 err = PTR_ERR(neigh);
1698 goto out;
1699 }
1700 } else {
1701 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1702 err = -EEXIST;
1703 neigh_release(neigh);
1704 goto out;
1705 }
1706
1707 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1708 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1709 }
1710
1711 if (ndm->ndm_flags & NTF_USE) {
1712 neigh_event_send(neigh, NULL);
1713 err = 0;
1714 } else
1715 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1716 neigh_release(neigh);
1717 goto out;
1718 }
1719
1720 read_unlock(&neigh_tbl_lock);
1721 err = -EAFNOSUPPORT;
1722out:
1723 return err;
1724}
1725
1726static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1727{
1728 struct nlattr *nest;
1729
1730 nest = nla_nest_start(skb, NDTA_PARMS);
1731 if (nest == NULL)
1732 return -ENOBUFS;
1733
1734 if (parms->dev)
1735 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1736
1737 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1738 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1739 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1740 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1741 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1742 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1743 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1744 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1745 parms->base_reachable_time);
1746 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1747 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1748 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1749 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1750 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1751 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1752
1753 return nla_nest_end(skb, nest);
1754
1755nla_put_failure:
1756 nla_nest_cancel(skb, nest);
1757 return -EMSGSIZE;
1758}
1759
1760static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1761 u32 pid, u32 seq, int type, int flags)
1762{
1763 struct nlmsghdr *nlh;
1764 struct ndtmsg *ndtmsg;
1765
1766 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1767 if (nlh == NULL)
1768 return -EMSGSIZE;
1769
1770 ndtmsg = nlmsg_data(nlh);
1771
1772 read_lock_bh(&tbl->lock);
1773 ndtmsg->ndtm_family = tbl->family;
1774 ndtmsg->ndtm_pad1 = 0;
1775 ndtmsg->ndtm_pad2 = 0;
1776
1777 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1778 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1779 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1780 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1781 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1782
1783 {
1784 unsigned long now = jiffies;
1785 unsigned int flush_delta = now - tbl->last_flush;
1786 unsigned int rand_delta = now - tbl->last_rand;
1787 struct neigh_hash_table *nht;
1788 struct ndt_config ndc = {
1789 .ndtc_key_len = tbl->key_len,
1790 .ndtc_entry_size = tbl->entry_size,
1791 .ndtc_entries = atomic_read(&tbl->entries),
1792 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1793 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1794 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1795 };
1796
1797 rcu_read_lock_bh();
1798 nht = rcu_dereference_bh(tbl->nht);
1799 ndc.ndtc_hash_rnd = nht->hash_rnd;
1800 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1801 rcu_read_unlock_bh();
1802
1803 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1804 }
1805
1806 {
1807 int cpu;
1808 struct ndt_stats ndst;
1809
1810 memset(&ndst, 0, sizeof(ndst));
1811
1812 for_each_possible_cpu(cpu) {
1813 struct neigh_statistics *st;
1814
1815 st = per_cpu_ptr(tbl->stats, cpu);
1816 ndst.ndts_allocs += st->allocs;
1817 ndst.ndts_destroys += st->destroys;
1818 ndst.ndts_hash_grows += st->hash_grows;
1819 ndst.ndts_res_failed += st->res_failed;
1820 ndst.ndts_lookups += st->lookups;
1821 ndst.ndts_hits += st->hits;
1822 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1823 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1824 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1825 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1826 }
1827
1828 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1829 }
1830
1831 BUG_ON(tbl->parms.dev);
1832 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1833 goto nla_put_failure;
1834
1835 read_unlock_bh(&tbl->lock);
1836 return nlmsg_end(skb, nlh);
1837
1838nla_put_failure:
1839 read_unlock_bh(&tbl->lock);
1840 nlmsg_cancel(skb, nlh);
1841 return -EMSGSIZE;
1842}
1843
1844static int neightbl_fill_param_info(struct sk_buff *skb,
1845 struct neigh_table *tbl,
1846 struct neigh_parms *parms,
1847 u32 pid, u32 seq, int type,
1848 unsigned int flags)
1849{
1850 struct ndtmsg *ndtmsg;
1851 struct nlmsghdr *nlh;
1852
1853 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1854 if (nlh == NULL)
1855 return -EMSGSIZE;
1856
1857 ndtmsg = nlmsg_data(nlh);
1858
1859 read_lock_bh(&tbl->lock);
1860 ndtmsg->ndtm_family = tbl->family;
1861 ndtmsg->ndtm_pad1 = 0;
1862 ndtmsg->ndtm_pad2 = 0;
1863
1864 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1865 neightbl_fill_parms(skb, parms) < 0)
1866 goto errout;
1867
1868 read_unlock_bh(&tbl->lock);
1869 return nlmsg_end(skb, nlh);
1870errout:
1871 read_unlock_bh(&tbl->lock);
1872 nlmsg_cancel(skb, nlh);
1873 return -EMSGSIZE;
1874}
1875
1876static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1877 [NDTA_NAME] = { .type = NLA_STRING },
1878 [NDTA_THRESH1] = { .type = NLA_U32 },
1879 [NDTA_THRESH2] = { .type = NLA_U32 },
1880 [NDTA_THRESH3] = { .type = NLA_U32 },
1881 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1882 [NDTA_PARMS] = { .type = NLA_NESTED },
1883};
1884
1885static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1886 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1887 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1888 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1889 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1890 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1891 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1892 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1893 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1894 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1895 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1896 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1897 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1898 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1899};
1900
1901static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1902{
1903 struct net *net = sock_net(skb->sk);
1904 struct neigh_table *tbl;
1905 struct ndtmsg *ndtmsg;
1906 struct nlattr *tb[NDTA_MAX+1];
1907 int err;
1908
1909 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1910 nl_neightbl_policy);
1911 if (err < 0)
1912 goto errout;
1913
1914 if (tb[NDTA_NAME] == NULL) {
1915 err = -EINVAL;
1916 goto errout;
1917 }
1918
1919 ndtmsg = nlmsg_data(nlh);
1920 read_lock(&neigh_tbl_lock);
1921 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1922 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1923 continue;
1924
1925 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1926 break;
1927 }
1928
1929 if (tbl == NULL) {
1930 err = -ENOENT;
1931 goto errout_locked;
1932 }
1933
1934 /*
1935 * We acquire tbl->lock to be nice to the periodic timers and
1936 * make sure they always see a consistent set of values.
1937 */
1938 write_lock_bh(&tbl->lock);
1939
1940 if (tb[NDTA_PARMS]) {
1941 struct nlattr *tbp[NDTPA_MAX+1];
1942 struct neigh_parms *p;
1943 int i, ifindex = 0;
1944
1945 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1946 nl_ntbl_parm_policy);
1947 if (err < 0)
1948 goto errout_tbl_lock;
1949
1950 if (tbp[NDTPA_IFINDEX])
1951 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1952
1953 p = lookup_neigh_parms(tbl, net, ifindex);
1954 if (p == NULL) {
1955 err = -ENOENT;
1956 goto errout_tbl_lock;
1957 }
1958
1959 for (i = 1; i <= NDTPA_MAX; i++) {
1960 if (tbp[i] == NULL)
1961 continue;
1962
1963 switch (i) {
1964 case NDTPA_QUEUE_LEN:
1965 p->queue_len = nla_get_u32(tbp[i]);
1966 break;
1967 case NDTPA_PROXY_QLEN:
1968 p->proxy_qlen = nla_get_u32(tbp[i]);
1969 break;
1970 case NDTPA_APP_PROBES:
1971 p->app_probes = nla_get_u32(tbp[i]);
1972 break;
1973 case NDTPA_UCAST_PROBES:
1974 p->ucast_probes = nla_get_u32(tbp[i]);
1975 break;
1976 case NDTPA_MCAST_PROBES:
1977 p->mcast_probes = nla_get_u32(tbp[i]);
1978 break;
1979 case NDTPA_BASE_REACHABLE_TIME:
1980 p->base_reachable_time = nla_get_msecs(tbp[i]);
1981 break;
1982 case NDTPA_GC_STALETIME:
1983 p->gc_staletime = nla_get_msecs(tbp[i]);
1984 break;
1985 case NDTPA_DELAY_PROBE_TIME:
1986 p->delay_probe_time = nla_get_msecs(tbp[i]);
1987 break;
1988 case NDTPA_RETRANS_TIME:
1989 p->retrans_time = nla_get_msecs(tbp[i]);
1990 break;
1991 case NDTPA_ANYCAST_DELAY:
1992 p->anycast_delay = nla_get_msecs(tbp[i]);
1993 break;
1994 case NDTPA_PROXY_DELAY:
1995 p->proxy_delay = nla_get_msecs(tbp[i]);
1996 break;
1997 case NDTPA_LOCKTIME:
1998 p->locktime = nla_get_msecs(tbp[i]);
1999 break;
2000 }
2001 }
2002 }
2003
2004 if (tb[NDTA_THRESH1])
2005 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2006
2007 if (tb[NDTA_THRESH2])
2008 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2009
2010 if (tb[NDTA_THRESH3])
2011 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2012
2013 if (tb[NDTA_GC_INTERVAL])
2014 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2015
2016 err = 0;
2017
2018errout_tbl_lock:
2019 write_unlock_bh(&tbl->lock);
2020errout_locked:
2021 read_unlock(&neigh_tbl_lock);
2022errout:
2023 return err;
2024}
2025
2026static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2027{
2028 struct net *net = sock_net(skb->sk);
2029 int family, tidx, nidx = 0;
2030 int tbl_skip = cb->args[0];
2031 int neigh_skip = cb->args[1];
2032 struct neigh_table *tbl;
2033
2034 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2035
2036 read_lock(&neigh_tbl_lock);
2037 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2038 struct neigh_parms *p;
2039
2040 if (tidx < tbl_skip || (family && tbl->family != family))
2041 continue;
2042
2043 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2044 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2045 NLM_F_MULTI) <= 0)
2046 break;
2047
2048 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2049 if (!net_eq(neigh_parms_net(p), net))
2050 continue;
2051
2052 if (nidx < neigh_skip)
2053 goto next;
2054
2055 if (neightbl_fill_param_info(skb, tbl, p,
2056 NETLINK_CB(cb->skb).pid,
2057 cb->nlh->nlmsg_seq,
2058 RTM_NEWNEIGHTBL,
2059 NLM_F_MULTI) <= 0)
2060 goto out;
2061 next:
2062 nidx++;
2063 }
2064
2065 neigh_skip = 0;
2066 }
2067out:
2068 read_unlock(&neigh_tbl_lock);
2069 cb->args[0] = tidx;
2070 cb->args[1] = nidx;
2071
2072 return skb->len;
2073}
2074
2075static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2076 u32 pid, u32 seq, int type, unsigned int flags)
2077{
2078 unsigned long now = jiffies;
2079 struct nda_cacheinfo ci;
2080 struct nlmsghdr *nlh;
2081 struct ndmsg *ndm;
2082
2083 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2084 if (nlh == NULL)
2085 return -EMSGSIZE;
2086
2087 ndm = nlmsg_data(nlh);
2088 ndm->ndm_family = neigh->ops->family;
2089 ndm->ndm_pad1 = 0;
2090 ndm->ndm_pad2 = 0;
2091 ndm->ndm_flags = neigh->flags;
2092 ndm->ndm_type = neigh->type;
2093 ndm->ndm_ifindex = neigh->dev->ifindex;
2094
2095 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2096
2097 read_lock_bh(&neigh->lock);
2098 ndm->ndm_state = neigh->nud_state;
2099 if (neigh->nud_state & NUD_VALID) {
2100 char haddr[MAX_ADDR_LEN];
2101
2102 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2103 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2104 read_unlock_bh(&neigh->lock);
2105 goto nla_put_failure;
2106 }
2107 }
2108
2109 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2110 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2111 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2112 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2113 read_unlock_bh(&neigh->lock);
2114
2115 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2116 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2117
2118 return nlmsg_end(skb, nlh);
2119
2120nla_put_failure:
2121 nlmsg_cancel(skb, nlh);
2122 return -EMSGSIZE;
2123}
2124
2125static void neigh_update_notify(struct neighbour *neigh)
2126{
2127 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2128 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2129}
2130
2131static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2132 struct netlink_callback *cb)
2133{
2134 struct net *net = sock_net(skb->sk);
2135 struct neighbour *n;
2136 int rc, h, s_h = cb->args[1];
2137 int idx, s_idx = idx = cb->args[2];
2138 struct neigh_hash_table *nht;
2139
2140 rcu_read_lock_bh();
2141 nht = rcu_dereference_bh(tbl->nht);
2142
2143 for (h = 0; h < (1 << nht->hash_shift); h++) {
2144 if (h < s_h)
2145 continue;
2146 if (h > s_h)
2147 s_idx = 0;
2148 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2149 n != NULL;
2150 n = rcu_dereference_bh(n->next)) {
2151 if (!net_eq(dev_net(n->dev), net))
2152 continue;
2153 if (idx < s_idx)
2154 goto next;
2155 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2156 cb->nlh->nlmsg_seq,
2157 RTM_NEWNEIGH,
2158 NLM_F_MULTI) <= 0) {
2159 rc = -1;
2160 goto out;
2161 }
2162next:
2163 idx++;
2164 }
2165 }
2166 rc = skb->len;
2167out:
2168 rcu_read_unlock_bh();
2169 cb->args[1] = h;
2170 cb->args[2] = idx;
2171 return rc;
2172}
2173
2174static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2175{
2176 struct neigh_table *tbl;
2177 int t, family, s_t;
2178
2179 read_lock(&neigh_tbl_lock);
2180 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2181 s_t = cb->args[0];
2182
2183 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2184 if (t < s_t || (family && tbl->family != family))
2185 continue;
2186 if (t > s_t)
2187 memset(&cb->args[1], 0, sizeof(cb->args) -
2188 sizeof(cb->args[0]));
2189 if (neigh_dump_table(tbl, skb, cb) < 0)
2190 break;
2191 }
2192 read_unlock(&neigh_tbl_lock);
2193
2194 cb->args[0] = t;
2195 return skb->len;
2196}
2197
2198void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2199{
2200 int chain;
2201 struct neigh_hash_table *nht;
2202
2203 rcu_read_lock_bh();
2204 nht = rcu_dereference_bh(tbl->nht);
2205
2206 read_lock(&tbl->lock); /* avoid resizes */
2207 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2208 struct neighbour *n;
2209
2210 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2211 n != NULL;
2212 n = rcu_dereference_bh(n->next))
2213 cb(n, cookie);
2214 }
2215 read_unlock(&tbl->lock);
2216 rcu_read_unlock_bh();
2217}
2218EXPORT_SYMBOL(neigh_for_each);
2219
2220/* The tbl->lock must be held as a writer and BH disabled. */
2221void __neigh_for_each_release(struct neigh_table *tbl,
2222 int (*cb)(struct neighbour *))
2223{
2224 int chain;
2225 struct neigh_hash_table *nht;
2226
2227 nht = rcu_dereference_protected(tbl->nht,
2228 lockdep_is_held(&tbl->lock));
2229 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2230 struct neighbour *n;
2231 struct neighbour __rcu **np;
2232
2233 np = &nht->hash_buckets[chain];
2234 while ((n = rcu_dereference_protected(*np,
2235 lockdep_is_held(&tbl->lock))) != NULL) {
2236 int release;
2237
2238 write_lock(&n->lock);
2239 release = cb(n);
2240 if (release) {
2241 rcu_assign_pointer(*np,
2242 rcu_dereference_protected(n->next,
2243 lockdep_is_held(&tbl->lock)));
2244 n->dead = 1;
2245 } else
2246 np = &n->next;
2247 write_unlock(&n->lock);
2248 if (release)
2249 neigh_cleanup_and_release(n);
2250 }
2251 }
2252}
2253EXPORT_SYMBOL(__neigh_for_each_release);
2254
2255#ifdef CONFIG_PROC_FS
2256
2257static struct neighbour *neigh_get_first(struct seq_file *seq)
2258{
2259 struct neigh_seq_state *state = seq->private;
2260 struct net *net = seq_file_net(seq);
2261 struct neigh_hash_table *nht = state->nht;
2262 struct neighbour *n = NULL;
2263 int bucket = state->bucket;
2264
2265 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2266 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2267 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2268
2269 while (n) {
2270 if (!net_eq(dev_net(n->dev), net))
2271 goto next;
2272 if (state->neigh_sub_iter) {
2273 loff_t fakep = 0;
2274 void *v;
2275
2276 v = state->neigh_sub_iter(state, n, &fakep);
2277 if (!v)
2278 goto next;
2279 }
2280 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2281 break;
2282 if (n->nud_state & ~NUD_NOARP)
2283 break;
2284next:
2285 n = rcu_dereference_bh(n->next);
2286 }
2287
2288 if (n)
2289 break;
2290 }
2291 state->bucket = bucket;
2292
2293 return n;
2294}
2295
2296static struct neighbour *neigh_get_next(struct seq_file *seq,
2297 struct neighbour *n,
2298 loff_t *pos)
2299{
2300 struct neigh_seq_state *state = seq->private;
2301 struct net *net = seq_file_net(seq);
2302 struct neigh_hash_table *nht = state->nht;
2303
2304 if (state->neigh_sub_iter) {
2305 void *v = state->neigh_sub_iter(state, n, pos);
2306 if (v)
2307 return n;
2308 }
2309 n = rcu_dereference_bh(n->next);
2310
2311 while (1) {
2312 while (n) {
2313 if (!net_eq(dev_net(n->dev), net))
2314 goto next;
2315 if (state->neigh_sub_iter) {
2316 void *v = state->neigh_sub_iter(state, n, pos);
2317 if (v)
2318 return n;
2319 goto next;
2320 }
2321 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2322 break;
2323
2324 if (n->nud_state & ~NUD_NOARP)
2325 break;
2326next:
2327 n = rcu_dereference_bh(n->next);
2328 }
2329
2330 if (n)
2331 break;
2332
2333 if (++state->bucket >= (1 << nht->hash_shift))
2334 break;
2335
2336 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2337 }
2338
2339 if (n && pos)
2340 --(*pos);
2341 return n;
2342}
2343
2344static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2345{
2346 struct neighbour *n = neigh_get_first(seq);
2347
2348 if (n) {
2349 --(*pos);
2350 while (*pos) {
2351 n = neigh_get_next(seq, n, pos);
2352 if (!n)
2353 break;
2354 }
2355 }
2356 return *pos ? NULL : n;
2357}
2358
2359static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2360{
2361 struct neigh_seq_state *state = seq->private;
2362 struct net *net = seq_file_net(seq);
2363 struct neigh_table *tbl = state->tbl;
2364 struct pneigh_entry *pn = NULL;
2365 int bucket = state->bucket;
2366
2367 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2368 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2369 pn = tbl->phash_buckets[bucket];
2370 while (pn && !net_eq(pneigh_net(pn), net))
2371 pn = pn->next;
2372 if (pn)
2373 break;
2374 }
2375 state->bucket = bucket;
2376
2377 return pn;
2378}
2379
2380static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2381 struct pneigh_entry *pn,
2382 loff_t *pos)
2383{
2384 struct neigh_seq_state *state = seq->private;
2385 struct net *net = seq_file_net(seq);
2386 struct neigh_table *tbl = state->tbl;
2387
2388 pn = pn->next;
2389 while (!pn) {
2390 if (++state->bucket > PNEIGH_HASHMASK)
2391 break;
2392 pn = tbl->phash_buckets[state->bucket];
2393 while (pn && !net_eq(pneigh_net(pn), net))
2394 pn = pn->next;
2395 if (pn)
2396 break;
2397 }
2398
2399 if (pn && pos)
2400 --(*pos);
2401
2402 return pn;
2403}
2404
2405static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2406{
2407 struct pneigh_entry *pn = pneigh_get_first(seq);
2408
2409 if (pn) {
2410 --(*pos);
2411 while (*pos) {
2412 pn = pneigh_get_next(seq, pn, pos);
2413 if (!pn)
2414 break;
2415 }
2416 }
2417 return *pos ? NULL : pn;
2418}
2419
2420static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2421{
2422 struct neigh_seq_state *state = seq->private;
2423 void *rc;
2424 loff_t idxpos = *pos;
2425
2426 rc = neigh_get_idx(seq, &idxpos);
2427 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2428 rc = pneigh_get_idx(seq, &idxpos);
2429
2430 return rc;
2431}
2432
2433void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2434 __acquires(rcu_bh)
2435{
2436 struct neigh_seq_state *state = seq->private;
2437
2438 state->tbl = tbl;
2439 state->bucket = 0;
2440 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2441
2442 rcu_read_lock_bh();
2443 state->nht = rcu_dereference_bh(tbl->nht);
2444
2445 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2446}
2447EXPORT_SYMBOL(neigh_seq_start);
2448
2449void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450{
2451 struct neigh_seq_state *state;
2452 void *rc;
2453
2454 if (v == SEQ_START_TOKEN) {
2455 rc = neigh_get_first(seq);
2456 goto out;
2457 }
2458
2459 state = seq->private;
2460 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2461 rc = neigh_get_next(seq, v, NULL);
2462 if (rc)
2463 goto out;
2464 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2465 rc = pneigh_get_first(seq);
2466 } else {
2467 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2468 rc = pneigh_get_next(seq, v, NULL);
2469 }
2470out:
2471 ++(*pos);
2472 return rc;
2473}
2474EXPORT_SYMBOL(neigh_seq_next);
2475
2476void neigh_seq_stop(struct seq_file *seq, void *v)
2477 __releases(rcu_bh)
2478{
2479 rcu_read_unlock_bh();
2480}
2481EXPORT_SYMBOL(neigh_seq_stop);
2482
2483/* statistics via seq_file */
2484
2485static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2486{
2487 struct neigh_table *tbl = seq->private;
2488 int cpu;
2489
2490 if (*pos == 0)
2491 return SEQ_START_TOKEN;
2492
2493 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2494 if (!cpu_possible(cpu))
2495 continue;
2496 *pos = cpu+1;
2497 return per_cpu_ptr(tbl->stats, cpu);
2498 }
2499 return NULL;
2500}
2501
2502static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2503{
2504 struct neigh_table *tbl = seq->private;
2505 int cpu;
2506
2507 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2508 if (!cpu_possible(cpu))
2509 continue;
2510 *pos = cpu+1;
2511 return per_cpu_ptr(tbl->stats, cpu);
2512 }
2513 return NULL;
2514}
2515
2516static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2517{
2518
2519}
2520
2521static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2522{
2523 struct neigh_table *tbl = seq->private;
2524 struct neigh_statistics *st = v;
2525
2526 if (v == SEQ_START_TOKEN) {
2527 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2528 return 0;
2529 }
2530
2531 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2532 "%08lx %08lx %08lx %08lx %08lx\n",
2533 atomic_read(&tbl->entries),
2534
2535 st->allocs,
2536 st->destroys,
2537 st->hash_grows,
2538
2539 st->lookups,
2540 st->hits,
2541
2542 st->res_failed,
2543
2544 st->rcv_probes_mcast,
2545 st->rcv_probes_ucast,
2546
2547 st->periodic_gc_runs,
2548 st->forced_gc_runs,
2549 st->unres_discards
2550 );
2551
2552 return 0;
2553}
2554
2555static const struct seq_operations neigh_stat_seq_ops = {
2556 .start = neigh_stat_seq_start,
2557 .next = neigh_stat_seq_next,
2558 .stop = neigh_stat_seq_stop,
2559 .show = neigh_stat_seq_show,
2560};
2561
2562static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2563{
2564 int ret = seq_open(file, &neigh_stat_seq_ops);
2565
2566 if (!ret) {
2567 struct seq_file *sf = file->private_data;
2568 sf->private = PDE(inode)->data;
2569 }
2570 return ret;
2571};
2572
2573static const struct file_operations neigh_stat_seq_fops = {
2574 .owner = THIS_MODULE,
2575 .open = neigh_stat_seq_open,
2576 .read = seq_read,
2577 .llseek = seq_lseek,
2578 .release = seq_release,
2579};
2580
2581#endif /* CONFIG_PROC_FS */
2582
2583static inline size_t neigh_nlmsg_size(void)
2584{
2585 return NLMSG_ALIGN(sizeof(struct ndmsg))
2586 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2587 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2588 + nla_total_size(sizeof(struct nda_cacheinfo))
2589 + nla_total_size(4); /* NDA_PROBES */
2590}
2591
2592static void __neigh_notify(struct neighbour *n, int type, int flags)
2593{
2594 struct net *net = dev_net(n->dev);
2595 struct sk_buff *skb;
2596 int err = -ENOBUFS;
2597
2598 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2599 if (skb == NULL)
2600 goto errout;
2601
2602 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2603 if (err < 0) {
2604 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2605 WARN_ON(err == -EMSGSIZE);
2606 kfree_skb(skb);
2607 goto errout;
2608 }
2609 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2610 return;
2611errout:
2612 if (err < 0)
2613 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2614}
2615
2616#ifdef CONFIG_ARPD
2617void neigh_app_ns(struct neighbour *n)
2618{
2619 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2620}
2621EXPORT_SYMBOL(neigh_app_ns);
2622#endif /* CONFIG_ARPD */
2623
2624#ifdef CONFIG_SYSCTL
2625
2626#define NEIGH_VARS_MAX 19
2627
2628static struct neigh_sysctl_table {
2629 struct ctl_table_header *sysctl_header;
2630 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2631 char *dev_name;
2632} neigh_sysctl_template __read_mostly = {
2633 .neigh_vars = {
2634 {
2635 .procname = "mcast_solicit",
2636 .maxlen = sizeof(int),
2637 .mode = 0644,
2638 .proc_handler = proc_dointvec,
2639 },
2640 {
2641 .procname = "ucast_solicit",
2642 .maxlen = sizeof(int),
2643 .mode = 0644,
2644 .proc_handler = proc_dointvec,
2645 },
2646 {
2647 .procname = "app_solicit",
2648 .maxlen = sizeof(int),
2649 .mode = 0644,
2650 .proc_handler = proc_dointvec,
2651 },
2652 {
2653 .procname = "retrans_time",
2654 .maxlen = sizeof(int),
2655 .mode = 0644,
2656 .proc_handler = proc_dointvec_userhz_jiffies,
2657 },
2658 {
2659 .procname = "base_reachable_time",
2660 .maxlen = sizeof(int),
2661 .mode = 0644,
2662 .proc_handler = proc_dointvec_jiffies,
2663 },
2664 {
2665 .procname = "delay_first_probe_time",
2666 .maxlen = sizeof(int),
2667 .mode = 0644,
2668 .proc_handler = proc_dointvec_jiffies,
2669 },
2670 {
2671 .procname = "gc_stale_time",
2672 .maxlen = sizeof(int),
2673 .mode = 0644,
2674 .proc_handler = proc_dointvec_jiffies,
2675 },
2676 {
2677 .procname = "unres_qlen",
2678 .maxlen = sizeof(int),
2679 .mode = 0644,
2680 .proc_handler = proc_dointvec,
2681 },
2682 {
2683 .procname = "proxy_qlen",
2684 .maxlen = sizeof(int),
2685 .mode = 0644,
2686 .proc_handler = proc_dointvec,
2687 },
2688 {
2689 .procname = "anycast_delay",
2690 .maxlen = sizeof(int),
2691 .mode = 0644,
2692 .proc_handler = proc_dointvec_userhz_jiffies,
2693 },
2694 {
2695 .procname = "proxy_delay",
2696 .maxlen = sizeof(int),
2697 .mode = 0644,
2698 .proc_handler = proc_dointvec_userhz_jiffies,
2699 },
2700 {
2701 .procname = "locktime",
2702 .maxlen = sizeof(int),
2703 .mode = 0644,
2704 .proc_handler = proc_dointvec_userhz_jiffies,
2705 },
2706 {
2707 .procname = "retrans_time_ms",
2708 .maxlen = sizeof(int),
2709 .mode = 0644,
2710 .proc_handler = proc_dointvec_ms_jiffies,
2711 },
2712 {
2713 .procname = "base_reachable_time_ms",
2714 .maxlen = sizeof(int),
2715 .mode = 0644,
2716 .proc_handler = proc_dointvec_ms_jiffies,
2717 },
2718 {
2719 .procname = "gc_interval",
2720 .maxlen = sizeof(int),
2721 .mode = 0644,
2722 .proc_handler = proc_dointvec_jiffies,
2723 },
2724 {
2725 .procname = "gc_thresh1",
2726 .maxlen = sizeof(int),
2727 .mode = 0644,
2728 .proc_handler = proc_dointvec,
2729 },
2730 {
2731 .procname = "gc_thresh2",
2732 .maxlen = sizeof(int),
2733 .mode = 0644,
2734 .proc_handler = proc_dointvec,
2735 },
2736 {
2737 .procname = "gc_thresh3",
2738 .maxlen = sizeof(int),
2739 .mode = 0644,
2740 .proc_handler = proc_dointvec,
2741 },
2742 {},
2743 },
2744};
2745
2746int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2747 char *p_name, proc_handler *handler)
2748{
2749 struct neigh_sysctl_table *t;
2750 const char *dev_name_source = NULL;
2751
2752#define NEIGH_CTL_PATH_ROOT 0
2753#define NEIGH_CTL_PATH_PROTO 1
2754#define NEIGH_CTL_PATH_NEIGH 2
2755#define NEIGH_CTL_PATH_DEV 3
2756
2757 struct ctl_path neigh_path[] = {
2758 { .procname = "net", },
2759 { .procname = "proto", },
2760 { .procname = "neigh", },
2761 { .procname = "default", },
2762 { },
2763 };
2764
2765 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2766 if (!t)
2767 goto err;
2768
2769 t->neigh_vars[0].data = &p->mcast_probes;
2770 t->neigh_vars[1].data = &p->ucast_probes;
2771 t->neigh_vars[2].data = &p->app_probes;
2772 t->neigh_vars[3].data = &p->retrans_time;
2773 t->neigh_vars[4].data = &p->base_reachable_time;
2774 t->neigh_vars[5].data = &p->delay_probe_time;
2775 t->neigh_vars[6].data = &p->gc_staletime;
2776 t->neigh_vars[7].data = &p->queue_len;
2777 t->neigh_vars[8].data = &p->proxy_qlen;
2778 t->neigh_vars[9].data = &p->anycast_delay;
2779 t->neigh_vars[10].data = &p->proxy_delay;
2780 t->neigh_vars[11].data = &p->locktime;
2781 t->neigh_vars[12].data = &p->retrans_time;
2782 t->neigh_vars[13].data = &p->base_reachable_time;
2783
2784 if (dev) {
2785 dev_name_source = dev->name;
2786 /* Terminate the table early */
2787 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2788 } else {
2789 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2790 t->neigh_vars[14].data = (int *)(p + 1);
2791 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2792 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2793 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2794 }
2795
2796
2797 if (handler) {
2798 /* RetransTime */
2799 t->neigh_vars[3].proc_handler = handler;
2800 t->neigh_vars[3].extra1 = dev;
2801 /* ReachableTime */
2802 t->neigh_vars[4].proc_handler = handler;
2803 t->neigh_vars[4].extra1 = dev;
2804 /* RetransTime (in milliseconds)*/
2805 t->neigh_vars[12].proc_handler = handler;
2806 t->neigh_vars[12].extra1 = dev;
2807 /* ReachableTime (in milliseconds) */
2808 t->neigh_vars[13].proc_handler = handler;
2809 t->neigh_vars[13].extra1 = dev;
2810 }
2811
2812 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2813 if (!t->dev_name)
2814 goto free;
2815
2816 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2817 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2818
2819 t->sysctl_header =
2820 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2821 if (!t->sysctl_header)
2822 goto free_procname;
2823
2824 p->sysctl_table = t;
2825 return 0;
2826
2827free_procname:
2828 kfree(t->dev_name);
2829free:
2830 kfree(t);
2831err:
2832 return -ENOBUFS;
2833}
2834EXPORT_SYMBOL(neigh_sysctl_register);
2835
2836void neigh_sysctl_unregister(struct neigh_parms *p)
2837{
2838 if (p->sysctl_table) {
2839 struct neigh_sysctl_table *t = p->sysctl_table;
2840 p->sysctl_table = NULL;
2841 unregister_sysctl_table(t->sysctl_header);
2842 kfree(t->dev_name);
2843 kfree(t);
2844 }
2845}
2846EXPORT_SYMBOL(neigh_sysctl_unregister);
2847
2848#endif /* CONFIG_SYSCTL */
2849
2850static int __init neigh_init(void)
2851{
2852 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
2853 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
2854 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
2855
2856 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
2857 NULL);
2858 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
2859
2860 return 0;
2861}
2862
2863subsys_initcall(neigh_init);
2864
1/*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/slab.h>
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/socket.h>
25#include <linux/netdevice.h>
26#include <linux/proc_fs.h>
27#ifdef CONFIG_SYSCTL
28#include <linux/sysctl.h>
29#endif
30#include <linux/times.h>
31#include <net/net_namespace.h>
32#include <net/neighbour.h>
33#include <net/dst.h>
34#include <net/sock.h>
35#include <net/netevent.h>
36#include <net/netlink.h>
37#include <linux/rtnetlink.h>
38#include <linux/random.h>
39#include <linux/string.h>
40#include <linux/log2.h>
41#include <linux/inetdevice.h>
42#include <net/addrconf.h>
43
44#define DEBUG
45#define NEIGH_DEBUG 1
46#define neigh_dbg(level, fmt, ...) \
47do { \
48 if (level <= NEIGH_DEBUG) \
49 pr_debug(fmt, ##__VA_ARGS__); \
50} while (0)
51
52#define PNEIGH_HASHMASK 0xF
53
54static void neigh_timer_handler(unsigned long arg);
55static void __neigh_notify(struct neighbour *n, int type, int flags);
56static void neigh_update_notify(struct neighbour *neigh);
57static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
58
59static struct neigh_table *neigh_tables;
60#ifdef CONFIG_PROC_FS
61static const struct file_operations neigh_stat_seq_fops;
62#endif
63
64/*
65 Neighbour hash table buckets are protected with rwlock tbl->lock.
66
67 - All the scans/updates to hash buckets MUST be made under this lock.
68 - NOTHING clever should be made under this lock: no callbacks
69 to protocol backends, no attempts to send something to network.
70 It will result in deadlocks, if backend/driver wants to use neighbour
71 cache.
72 - If the entry requires some non-trivial actions, increase
73 its reference count and release table lock.
74
75 Neighbour entries are protected:
76 - with reference count.
77 - with rwlock neigh->lock
78
79 Reference count prevents destruction.
80
81 neigh->lock mainly serializes ll address data and its validity state.
82 However, the same lock is used to protect another entry fields:
83 - timer
84 - resolution queue
85
86 Again, nothing clever shall be made under neigh->lock,
87 the most complicated procedure, which we allow is dev->hard_header.
88 It is supposed, that dev->hard_header is simplistic and does
89 not make callbacks to neighbour tables.
90
91 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
92 list of neighbour tables. This list is used only in process context,
93 */
94
95static DEFINE_RWLOCK(neigh_tbl_lock);
96
97static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
98{
99 kfree_skb(skb);
100 return -ENETDOWN;
101}
102
103static void neigh_cleanup_and_release(struct neighbour *neigh)
104{
105 if (neigh->parms->neigh_cleanup)
106 neigh->parms->neigh_cleanup(neigh);
107
108 __neigh_notify(neigh, RTM_DELNEIGH, 0);
109 neigh_release(neigh);
110}
111
112/*
113 * It is random distribution in the interval (1/2)*base...(3/2)*base.
114 * It corresponds to default IPv6 settings and is not overridable,
115 * because it is really reasonable choice.
116 */
117
118unsigned long neigh_rand_reach_time(unsigned long base)
119{
120 return base ? (prandom_u32() % base) + (base >> 1) : 0;
121}
122EXPORT_SYMBOL(neigh_rand_reach_time);
123
124
125static int neigh_forced_gc(struct neigh_table *tbl)
126{
127 int shrunk = 0;
128 int i;
129 struct neigh_hash_table *nht;
130
131 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
132
133 write_lock_bh(&tbl->lock);
134 nht = rcu_dereference_protected(tbl->nht,
135 lockdep_is_held(&tbl->lock));
136 for (i = 0; i < (1 << nht->hash_shift); i++) {
137 struct neighbour *n;
138 struct neighbour __rcu **np;
139
140 np = &nht->hash_buckets[i];
141 while ((n = rcu_dereference_protected(*np,
142 lockdep_is_held(&tbl->lock))) != NULL) {
143 /* Neighbour record may be discarded if:
144 * - nobody refers to it.
145 * - it is not permanent
146 */
147 write_lock(&n->lock);
148 if (atomic_read(&n->refcnt) == 1 &&
149 !(n->nud_state & NUD_PERMANENT)) {
150 rcu_assign_pointer(*np,
151 rcu_dereference_protected(n->next,
152 lockdep_is_held(&tbl->lock)));
153 n->dead = 1;
154 shrunk = 1;
155 write_unlock(&n->lock);
156 neigh_cleanup_and_release(n);
157 continue;
158 }
159 write_unlock(&n->lock);
160 np = &n->next;
161 }
162 }
163
164 tbl->last_flush = jiffies;
165
166 write_unlock_bh(&tbl->lock);
167
168 return shrunk;
169}
170
171static void neigh_add_timer(struct neighbour *n, unsigned long when)
172{
173 neigh_hold(n);
174 if (unlikely(mod_timer(&n->timer, when))) {
175 printk("NEIGH: BUG, double timer add, state is %x\n",
176 n->nud_state);
177 dump_stack();
178 }
179}
180
181static int neigh_del_timer(struct neighbour *n)
182{
183 if ((n->nud_state & NUD_IN_TIMER) &&
184 del_timer(&n->timer)) {
185 neigh_release(n);
186 return 1;
187 }
188 return 0;
189}
190
191static void pneigh_queue_purge(struct sk_buff_head *list)
192{
193 struct sk_buff *skb;
194
195 while ((skb = skb_dequeue(list)) != NULL) {
196 dev_put(skb->dev);
197 kfree_skb(skb);
198 }
199}
200
201static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
202{
203 int i;
204 struct neigh_hash_table *nht;
205
206 nht = rcu_dereference_protected(tbl->nht,
207 lockdep_is_held(&tbl->lock));
208
209 for (i = 0; i < (1 << nht->hash_shift); i++) {
210 struct neighbour *n;
211 struct neighbour __rcu **np = &nht->hash_buckets[i];
212
213 while ((n = rcu_dereference_protected(*np,
214 lockdep_is_held(&tbl->lock))) != NULL) {
215 if (dev && n->dev != dev) {
216 np = &n->next;
217 continue;
218 }
219 rcu_assign_pointer(*np,
220 rcu_dereference_protected(n->next,
221 lockdep_is_held(&tbl->lock)));
222 write_lock(&n->lock);
223 neigh_del_timer(n);
224 n->dead = 1;
225
226 if (atomic_read(&n->refcnt) != 1) {
227 /* The most unpleasant situation.
228 We must destroy neighbour entry,
229 but someone still uses it.
230
231 The destroy will be delayed until
232 the last user releases us, but
233 we must kill timers etc. and move
234 it to safe state.
235 */
236 __skb_queue_purge(&n->arp_queue);
237 n->arp_queue_len_bytes = 0;
238 n->output = neigh_blackhole;
239 if (n->nud_state & NUD_VALID)
240 n->nud_state = NUD_NOARP;
241 else
242 n->nud_state = NUD_NONE;
243 neigh_dbg(2, "neigh %p is stray\n", n);
244 }
245 write_unlock(&n->lock);
246 neigh_cleanup_and_release(n);
247 }
248 }
249}
250
251void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
252{
253 write_lock_bh(&tbl->lock);
254 neigh_flush_dev(tbl, dev);
255 write_unlock_bh(&tbl->lock);
256}
257EXPORT_SYMBOL(neigh_changeaddr);
258
259int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
260{
261 write_lock_bh(&tbl->lock);
262 neigh_flush_dev(tbl, dev);
263 pneigh_ifdown(tbl, dev);
264 write_unlock_bh(&tbl->lock);
265
266 del_timer_sync(&tbl->proxy_timer);
267 pneigh_queue_purge(&tbl->proxy_queue);
268 return 0;
269}
270EXPORT_SYMBOL(neigh_ifdown);
271
272static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
273{
274 struct neighbour *n = NULL;
275 unsigned long now = jiffies;
276 int entries;
277
278 entries = atomic_inc_return(&tbl->entries) - 1;
279 if (entries >= tbl->gc_thresh3 ||
280 (entries >= tbl->gc_thresh2 &&
281 time_after(now, tbl->last_flush + 5 * HZ))) {
282 if (!neigh_forced_gc(tbl) &&
283 entries >= tbl->gc_thresh3)
284 goto out_entries;
285 }
286
287 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
288 if (!n)
289 goto out_entries;
290
291 __skb_queue_head_init(&n->arp_queue);
292 rwlock_init(&n->lock);
293 seqlock_init(&n->ha_lock);
294 n->updated = n->used = now;
295 n->nud_state = NUD_NONE;
296 n->output = neigh_blackhole;
297 seqlock_init(&n->hh.hh_lock);
298 n->parms = neigh_parms_clone(&tbl->parms);
299 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
300
301 NEIGH_CACHE_STAT_INC(tbl, allocs);
302 n->tbl = tbl;
303 atomic_set(&n->refcnt, 1);
304 n->dead = 1;
305out:
306 return n;
307
308out_entries:
309 atomic_dec(&tbl->entries);
310 goto out;
311}
312
313static void neigh_get_hash_rnd(u32 *x)
314{
315 get_random_bytes(x, sizeof(*x));
316 *x |= 1;
317}
318
319static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
320{
321 size_t size = (1 << shift) * sizeof(struct neighbour *);
322 struct neigh_hash_table *ret;
323 struct neighbour __rcu **buckets;
324 int i;
325
326 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
327 if (!ret)
328 return NULL;
329 if (size <= PAGE_SIZE)
330 buckets = kzalloc(size, GFP_ATOMIC);
331 else
332 buckets = (struct neighbour __rcu **)
333 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
334 get_order(size));
335 if (!buckets) {
336 kfree(ret);
337 return NULL;
338 }
339 ret->hash_buckets = buckets;
340 ret->hash_shift = shift;
341 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
342 neigh_get_hash_rnd(&ret->hash_rnd[i]);
343 return ret;
344}
345
346static void neigh_hash_free_rcu(struct rcu_head *head)
347{
348 struct neigh_hash_table *nht = container_of(head,
349 struct neigh_hash_table,
350 rcu);
351 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
352 struct neighbour __rcu **buckets = nht->hash_buckets;
353
354 if (size <= PAGE_SIZE)
355 kfree(buckets);
356 else
357 free_pages((unsigned long)buckets, get_order(size));
358 kfree(nht);
359}
360
361static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
362 unsigned long new_shift)
363{
364 unsigned int i, hash;
365 struct neigh_hash_table *new_nht, *old_nht;
366
367 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
368
369 old_nht = rcu_dereference_protected(tbl->nht,
370 lockdep_is_held(&tbl->lock));
371 new_nht = neigh_hash_alloc(new_shift);
372 if (!new_nht)
373 return old_nht;
374
375 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
376 struct neighbour *n, *next;
377
378 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
379 lockdep_is_held(&tbl->lock));
380 n != NULL;
381 n = next) {
382 hash = tbl->hash(n->primary_key, n->dev,
383 new_nht->hash_rnd);
384
385 hash >>= (32 - new_nht->hash_shift);
386 next = rcu_dereference_protected(n->next,
387 lockdep_is_held(&tbl->lock));
388
389 rcu_assign_pointer(n->next,
390 rcu_dereference_protected(
391 new_nht->hash_buckets[hash],
392 lockdep_is_held(&tbl->lock)));
393 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
394 }
395 }
396
397 rcu_assign_pointer(tbl->nht, new_nht);
398 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
399 return new_nht;
400}
401
402struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
403 struct net_device *dev)
404{
405 struct neighbour *n;
406 int key_len = tbl->key_len;
407 u32 hash_val;
408 struct neigh_hash_table *nht;
409
410 NEIGH_CACHE_STAT_INC(tbl, lookups);
411
412 rcu_read_lock_bh();
413 nht = rcu_dereference_bh(tbl->nht);
414 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
415
416 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
417 n != NULL;
418 n = rcu_dereference_bh(n->next)) {
419 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
420 if (!atomic_inc_not_zero(&n->refcnt))
421 n = NULL;
422 NEIGH_CACHE_STAT_INC(tbl, hits);
423 break;
424 }
425 }
426
427 rcu_read_unlock_bh();
428 return n;
429}
430EXPORT_SYMBOL(neigh_lookup);
431
432struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
433 const void *pkey)
434{
435 struct neighbour *n;
436 int key_len = tbl->key_len;
437 u32 hash_val;
438 struct neigh_hash_table *nht;
439
440 NEIGH_CACHE_STAT_INC(tbl, lookups);
441
442 rcu_read_lock_bh();
443 nht = rcu_dereference_bh(tbl->nht);
444 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
445
446 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
447 n != NULL;
448 n = rcu_dereference_bh(n->next)) {
449 if (!memcmp(n->primary_key, pkey, key_len) &&
450 net_eq(dev_net(n->dev), net)) {
451 if (!atomic_inc_not_zero(&n->refcnt))
452 n = NULL;
453 NEIGH_CACHE_STAT_INC(tbl, hits);
454 break;
455 }
456 }
457
458 rcu_read_unlock_bh();
459 return n;
460}
461EXPORT_SYMBOL(neigh_lookup_nodev);
462
463struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
464 struct net_device *dev, bool want_ref)
465{
466 u32 hash_val;
467 int key_len = tbl->key_len;
468 int error;
469 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
470 struct neigh_hash_table *nht;
471
472 if (!n) {
473 rc = ERR_PTR(-ENOBUFS);
474 goto out;
475 }
476
477 memcpy(n->primary_key, pkey, key_len);
478 n->dev = dev;
479 dev_hold(dev);
480
481 /* Protocol specific setup. */
482 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
483 rc = ERR_PTR(error);
484 goto out_neigh_release;
485 }
486
487 if (dev->netdev_ops->ndo_neigh_construct) {
488 error = dev->netdev_ops->ndo_neigh_construct(n);
489 if (error < 0) {
490 rc = ERR_PTR(error);
491 goto out_neigh_release;
492 }
493 }
494
495 /* Device specific setup. */
496 if (n->parms->neigh_setup &&
497 (error = n->parms->neigh_setup(n)) < 0) {
498 rc = ERR_PTR(error);
499 goto out_neigh_release;
500 }
501
502 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
503
504 write_lock_bh(&tbl->lock);
505 nht = rcu_dereference_protected(tbl->nht,
506 lockdep_is_held(&tbl->lock));
507
508 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
509 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
510
511 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
512
513 if (n->parms->dead) {
514 rc = ERR_PTR(-EINVAL);
515 goto out_tbl_unlock;
516 }
517
518 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
519 lockdep_is_held(&tbl->lock));
520 n1 != NULL;
521 n1 = rcu_dereference_protected(n1->next,
522 lockdep_is_held(&tbl->lock))) {
523 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
524 if (want_ref)
525 neigh_hold(n1);
526 rc = n1;
527 goto out_tbl_unlock;
528 }
529 }
530
531 n->dead = 0;
532 if (want_ref)
533 neigh_hold(n);
534 rcu_assign_pointer(n->next,
535 rcu_dereference_protected(nht->hash_buckets[hash_val],
536 lockdep_is_held(&tbl->lock)));
537 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
538 write_unlock_bh(&tbl->lock);
539 neigh_dbg(2, "neigh %p is created\n", n);
540 rc = n;
541out:
542 return rc;
543out_tbl_unlock:
544 write_unlock_bh(&tbl->lock);
545out_neigh_release:
546 neigh_release(n);
547 goto out;
548}
549EXPORT_SYMBOL(__neigh_create);
550
551static u32 pneigh_hash(const void *pkey, int key_len)
552{
553 u32 hash_val = *(u32 *)(pkey + key_len - 4);
554 hash_val ^= (hash_val >> 16);
555 hash_val ^= hash_val >> 8;
556 hash_val ^= hash_val >> 4;
557 hash_val &= PNEIGH_HASHMASK;
558 return hash_val;
559}
560
561static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
562 struct net *net,
563 const void *pkey,
564 int key_len,
565 struct net_device *dev)
566{
567 while (n) {
568 if (!memcmp(n->key, pkey, key_len) &&
569 net_eq(pneigh_net(n), net) &&
570 (n->dev == dev || !n->dev))
571 return n;
572 n = n->next;
573 }
574 return NULL;
575}
576
577struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
578 struct net *net, const void *pkey, struct net_device *dev)
579{
580 int key_len = tbl->key_len;
581 u32 hash_val = pneigh_hash(pkey, key_len);
582
583 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
584 net, pkey, key_len, dev);
585}
586EXPORT_SYMBOL_GPL(__pneigh_lookup);
587
588struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
589 struct net *net, const void *pkey,
590 struct net_device *dev, int creat)
591{
592 struct pneigh_entry *n;
593 int key_len = tbl->key_len;
594 u32 hash_val = pneigh_hash(pkey, key_len);
595
596 read_lock_bh(&tbl->lock);
597 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
598 net, pkey, key_len, dev);
599 read_unlock_bh(&tbl->lock);
600
601 if (n || !creat)
602 goto out;
603
604 ASSERT_RTNL();
605
606 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
607 if (!n)
608 goto out;
609
610 write_pnet(&n->net, hold_net(net));
611 memcpy(n->key, pkey, key_len);
612 n->dev = dev;
613 if (dev)
614 dev_hold(dev);
615
616 if (tbl->pconstructor && tbl->pconstructor(n)) {
617 if (dev)
618 dev_put(dev);
619 release_net(net);
620 kfree(n);
621 n = NULL;
622 goto out;
623 }
624
625 write_lock_bh(&tbl->lock);
626 n->next = tbl->phash_buckets[hash_val];
627 tbl->phash_buckets[hash_val] = n;
628 write_unlock_bh(&tbl->lock);
629out:
630 return n;
631}
632EXPORT_SYMBOL(pneigh_lookup);
633
634
635int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
636 struct net_device *dev)
637{
638 struct pneigh_entry *n, **np;
639 int key_len = tbl->key_len;
640 u32 hash_val = pneigh_hash(pkey, key_len);
641
642 write_lock_bh(&tbl->lock);
643 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
644 np = &n->next) {
645 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
646 net_eq(pneigh_net(n), net)) {
647 *np = n->next;
648 write_unlock_bh(&tbl->lock);
649 if (tbl->pdestructor)
650 tbl->pdestructor(n);
651 if (n->dev)
652 dev_put(n->dev);
653 release_net(pneigh_net(n));
654 kfree(n);
655 return 0;
656 }
657 }
658 write_unlock_bh(&tbl->lock);
659 return -ENOENT;
660}
661
662static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
663{
664 struct pneigh_entry *n, **np;
665 u32 h;
666
667 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
668 np = &tbl->phash_buckets[h];
669 while ((n = *np) != NULL) {
670 if (!dev || n->dev == dev) {
671 *np = n->next;
672 if (tbl->pdestructor)
673 tbl->pdestructor(n);
674 if (n->dev)
675 dev_put(n->dev);
676 release_net(pneigh_net(n));
677 kfree(n);
678 continue;
679 }
680 np = &n->next;
681 }
682 }
683 return -ENOENT;
684}
685
686static void neigh_parms_destroy(struct neigh_parms *parms);
687
688static inline void neigh_parms_put(struct neigh_parms *parms)
689{
690 if (atomic_dec_and_test(&parms->refcnt))
691 neigh_parms_destroy(parms);
692}
693
694/*
695 * neighbour must already be out of the table;
696 *
697 */
698void neigh_destroy(struct neighbour *neigh)
699{
700 struct net_device *dev = neigh->dev;
701
702 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
703
704 if (!neigh->dead) {
705 pr_warn("Destroying alive neighbour %p\n", neigh);
706 dump_stack();
707 return;
708 }
709
710 if (neigh_del_timer(neigh))
711 pr_warn("Impossible event\n");
712
713 write_lock_bh(&neigh->lock);
714 __skb_queue_purge(&neigh->arp_queue);
715 write_unlock_bh(&neigh->lock);
716 neigh->arp_queue_len_bytes = 0;
717
718 if (dev->netdev_ops->ndo_neigh_destroy)
719 dev->netdev_ops->ndo_neigh_destroy(neigh);
720
721 dev_put(dev);
722 neigh_parms_put(neigh->parms);
723
724 neigh_dbg(2, "neigh %p is destroyed\n", neigh);
725
726 atomic_dec(&neigh->tbl->entries);
727 kfree_rcu(neigh, rcu);
728}
729EXPORT_SYMBOL(neigh_destroy);
730
731/* Neighbour state is suspicious;
732 disable fast path.
733
734 Called with write_locked neigh.
735 */
736static void neigh_suspect(struct neighbour *neigh)
737{
738 neigh_dbg(2, "neigh %p is suspected\n", neigh);
739
740 neigh->output = neigh->ops->output;
741}
742
743/* Neighbour state is OK;
744 enable fast path.
745
746 Called with write_locked neigh.
747 */
748static void neigh_connect(struct neighbour *neigh)
749{
750 neigh_dbg(2, "neigh %p is connected\n", neigh);
751
752 neigh->output = neigh->ops->connected_output;
753}
754
755static void neigh_periodic_work(struct work_struct *work)
756{
757 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
758 struct neighbour *n;
759 struct neighbour __rcu **np;
760 unsigned int i;
761 struct neigh_hash_table *nht;
762
763 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
764
765 write_lock_bh(&tbl->lock);
766 nht = rcu_dereference_protected(tbl->nht,
767 lockdep_is_held(&tbl->lock));
768
769 /*
770 * periodically recompute ReachableTime from random function
771 */
772
773 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
774 struct neigh_parms *p;
775 tbl->last_rand = jiffies;
776 for (p = &tbl->parms; p; p = p->next)
777 p->reachable_time =
778 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
779 }
780
781 if (atomic_read(&tbl->entries) < tbl->gc_thresh1)
782 goto out;
783
784 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
785 np = &nht->hash_buckets[i];
786
787 while ((n = rcu_dereference_protected(*np,
788 lockdep_is_held(&tbl->lock))) != NULL) {
789 unsigned int state;
790
791 write_lock(&n->lock);
792
793 state = n->nud_state;
794 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
795 write_unlock(&n->lock);
796 goto next_elt;
797 }
798
799 if (time_before(n->used, n->confirmed))
800 n->used = n->confirmed;
801
802 if (atomic_read(&n->refcnt) == 1 &&
803 (state == NUD_FAILED ||
804 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
805 *np = n->next;
806 n->dead = 1;
807 write_unlock(&n->lock);
808 neigh_cleanup_and_release(n);
809 continue;
810 }
811 write_unlock(&n->lock);
812
813next_elt:
814 np = &n->next;
815 }
816 /*
817 * It's fine to release lock here, even if hash table
818 * grows while we are preempted.
819 */
820 write_unlock_bh(&tbl->lock);
821 cond_resched();
822 write_lock_bh(&tbl->lock);
823 nht = rcu_dereference_protected(tbl->nht,
824 lockdep_is_held(&tbl->lock));
825 }
826out:
827 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
828 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
829 * BASE_REACHABLE_TIME.
830 */
831 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
832 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
833 write_unlock_bh(&tbl->lock);
834}
835
836static __inline__ int neigh_max_probes(struct neighbour *n)
837{
838 struct neigh_parms *p = n->parms;
839 int max_probes = NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES);
840 if (!(n->nud_state & NUD_PROBE))
841 max_probes += NEIGH_VAR(p, MCAST_PROBES);
842 return max_probes;
843}
844
845static void neigh_invalidate(struct neighbour *neigh)
846 __releases(neigh->lock)
847 __acquires(neigh->lock)
848{
849 struct sk_buff *skb;
850
851 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
852 neigh_dbg(2, "neigh %p is failed\n", neigh);
853 neigh->updated = jiffies;
854
855 /* It is very thin place. report_unreachable is very complicated
856 routine. Particularly, it can hit the same neighbour entry!
857
858 So that, we try to be accurate and avoid dead loop. --ANK
859 */
860 while (neigh->nud_state == NUD_FAILED &&
861 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
862 write_unlock(&neigh->lock);
863 neigh->ops->error_report(neigh, skb);
864 write_lock(&neigh->lock);
865 }
866 __skb_queue_purge(&neigh->arp_queue);
867 neigh->arp_queue_len_bytes = 0;
868}
869
870static void neigh_probe(struct neighbour *neigh)
871 __releases(neigh->lock)
872{
873 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
874 /* keep skb alive even if arp_queue overflows */
875 if (skb)
876 skb = skb_copy(skb, GFP_ATOMIC);
877 write_unlock(&neigh->lock);
878 neigh->ops->solicit(neigh, skb);
879 atomic_inc(&neigh->probes);
880 kfree_skb(skb);
881}
882
883/* Called when a timer expires for a neighbour entry. */
884
885static void neigh_timer_handler(unsigned long arg)
886{
887 unsigned long now, next;
888 struct neighbour *neigh = (struct neighbour *)arg;
889 unsigned int state;
890 int notify = 0;
891
892 write_lock(&neigh->lock);
893
894 state = neigh->nud_state;
895 now = jiffies;
896 next = now + HZ;
897
898 if (!(state & NUD_IN_TIMER))
899 goto out;
900
901 if (state & NUD_REACHABLE) {
902 if (time_before_eq(now,
903 neigh->confirmed + neigh->parms->reachable_time)) {
904 neigh_dbg(2, "neigh %p is still alive\n", neigh);
905 next = neigh->confirmed + neigh->parms->reachable_time;
906 } else if (time_before_eq(now,
907 neigh->used +
908 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
909 neigh_dbg(2, "neigh %p is delayed\n", neigh);
910 neigh->nud_state = NUD_DELAY;
911 neigh->updated = jiffies;
912 neigh_suspect(neigh);
913 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
914 } else {
915 neigh_dbg(2, "neigh %p is suspected\n", neigh);
916 neigh->nud_state = NUD_STALE;
917 neigh->updated = jiffies;
918 neigh_suspect(neigh);
919 notify = 1;
920 }
921 } else if (state & NUD_DELAY) {
922 if (time_before_eq(now,
923 neigh->confirmed +
924 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
925 neigh_dbg(2, "neigh %p is now reachable\n", neigh);
926 neigh->nud_state = NUD_REACHABLE;
927 neigh->updated = jiffies;
928 neigh_connect(neigh);
929 notify = 1;
930 next = neigh->confirmed + neigh->parms->reachable_time;
931 } else {
932 neigh_dbg(2, "neigh %p is probed\n", neigh);
933 neigh->nud_state = NUD_PROBE;
934 neigh->updated = jiffies;
935 atomic_set(&neigh->probes, 0);
936 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
937 }
938 } else {
939 /* NUD_PROBE|NUD_INCOMPLETE */
940 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
941 }
942
943 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
944 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
945 neigh->nud_state = NUD_FAILED;
946 notify = 1;
947 neigh_invalidate(neigh);
948 goto out;
949 }
950
951 if (neigh->nud_state & NUD_IN_TIMER) {
952 if (time_before(next, jiffies + HZ/2))
953 next = jiffies + HZ/2;
954 if (!mod_timer(&neigh->timer, next))
955 neigh_hold(neigh);
956 }
957 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
958 neigh_probe(neigh);
959 } else {
960out:
961 write_unlock(&neigh->lock);
962 }
963
964 if (notify)
965 neigh_update_notify(neigh);
966
967 neigh_release(neigh);
968}
969
970int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
971{
972 int rc;
973 bool immediate_probe = false;
974
975 write_lock_bh(&neigh->lock);
976
977 rc = 0;
978 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
979 goto out_unlock_bh;
980
981 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
982 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
983 NEIGH_VAR(neigh->parms, APP_PROBES)) {
984 unsigned long next, now = jiffies;
985
986 atomic_set(&neigh->probes,
987 NEIGH_VAR(neigh->parms, UCAST_PROBES));
988 neigh->nud_state = NUD_INCOMPLETE;
989 neigh->updated = now;
990 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
991 HZ/2);
992 neigh_add_timer(neigh, next);
993 immediate_probe = true;
994 } else {
995 neigh->nud_state = NUD_FAILED;
996 neigh->updated = jiffies;
997 write_unlock_bh(&neigh->lock);
998
999 kfree_skb(skb);
1000 return 1;
1001 }
1002 } else if (neigh->nud_state & NUD_STALE) {
1003 neigh_dbg(2, "neigh %p is delayed\n", neigh);
1004 neigh->nud_state = NUD_DELAY;
1005 neigh->updated = jiffies;
1006 neigh_add_timer(neigh, jiffies +
1007 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1008 }
1009
1010 if (neigh->nud_state == NUD_INCOMPLETE) {
1011 if (skb) {
1012 while (neigh->arp_queue_len_bytes + skb->truesize >
1013 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1014 struct sk_buff *buff;
1015
1016 buff = __skb_dequeue(&neigh->arp_queue);
1017 if (!buff)
1018 break;
1019 neigh->arp_queue_len_bytes -= buff->truesize;
1020 kfree_skb(buff);
1021 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1022 }
1023 skb_dst_force(skb);
1024 __skb_queue_tail(&neigh->arp_queue, skb);
1025 neigh->arp_queue_len_bytes += skb->truesize;
1026 }
1027 rc = 1;
1028 }
1029out_unlock_bh:
1030 if (immediate_probe)
1031 neigh_probe(neigh);
1032 else
1033 write_unlock(&neigh->lock);
1034 local_bh_enable();
1035 return rc;
1036}
1037EXPORT_SYMBOL(__neigh_event_send);
1038
1039static void neigh_update_hhs(struct neighbour *neigh)
1040{
1041 struct hh_cache *hh;
1042 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1043 = NULL;
1044
1045 if (neigh->dev->header_ops)
1046 update = neigh->dev->header_ops->cache_update;
1047
1048 if (update) {
1049 hh = &neigh->hh;
1050 if (hh->hh_len) {
1051 write_seqlock_bh(&hh->hh_lock);
1052 update(hh, neigh->dev, neigh->ha);
1053 write_sequnlock_bh(&hh->hh_lock);
1054 }
1055 }
1056}
1057
1058
1059
1060/* Generic update routine.
1061 -- lladdr is new lladdr or NULL, if it is not supplied.
1062 -- new is new state.
1063 -- flags
1064 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1065 if it is different.
1066 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1067 lladdr instead of overriding it
1068 if it is different.
1069 It also allows to retain current state
1070 if lladdr is unchanged.
1071 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1072
1073 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1074 NTF_ROUTER flag.
1075 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1076 a router.
1077
1078 Caller MUST hold reference count on the entry.
1079 */
1080
1081int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1082 u32 flags)
1083{
1084 u8 old;
1085 int err;
1086 int notify = 0;
1087 struct net_device *dev;
1088 int update_isrouter = 0;
1089
1090 write_lock_bh(&neigh->lock);
1091
1092 dev = neigh->dev;
1093 old = neigh->nud_state;
1094 err = -EPERM;
1095
1096 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1097 (old & (NUD_NOARP | NUD_PERMANENT)))
1098 goto out;
1099
1100 if (!(new & NUD_VALID)) {
1101 neigh_del_timer(neigh);
1102 if (old & NUD_CONNECTED)
1103 neigh_suspect(neigh);
1104 neigh->nud_state = new;
1105 err = 0;
1106 notify = old & NUD_VALID;
1107 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1108 (new & NUD_FAILED)) {
1109 neigh_invalidate(neigh);
1110 notify = 1;
1111 }
1112 goto out;
1113 }
1114
1115 /* Compare new lladdr with cached one */
1116 if (!dev->addr_len) {
1117 /* First case: device needs no address. */
1118 lladdr = neigh->ha;
1119 } else if (lladdr) {
1120 /* The second case: if something is already cached
1121 and a new address is proposed:
1122 - compare new & old
1123 - if they are different, check override flag
1124 */
1125 if ((old & NUD_VALID) &&
1126 !memcmp(lladdr, neigh->ha, dev->addr_len))
1127 lladdr = neigh->ha;
1128 } else {
1129 /* No address is supplied; if we know something,
1130 use it, otherwise discard the request.
1131 */
1132 err = -EINVAL;
1133 if (!(old & NUD_VALID))
1134 goto out;
1135 lladdr = neigh->ha;
1136 }
1137
1138 if (new & NUD_CONNECTED)
1139 neigh->confirmed = jiffies;
1140 neigh->updated = jiffies;
1141
1142 /* If entry was valid and address is not changed,
1143 do not change entry state, if new one is STALE.
1144 */
1145 err = 0;
1146 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1147 if (old & NUD_VALID) {
1148 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1149 update_isrouter = 0;
1150 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1151 (old & NUD_CONNECTED)) {
1152 lladdr = neigh->ha;
1153 new = NUD_STALE;
1154 } else
1155 goto out;
1156 } else {
1157 if (lladdr == neigh->ha && new == NUD_STALE &&
1158 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1159 (old & NUD_CONNECTED))
1160 )
1161 new = old;
1162 }
1163 }
1164
1165 if (new != old) {
1166 neigh_del_timer(neigh);
1167 if (new & NUD_IN_TIMER)
1168 neigh_add_timer(neigh, (jiffies +
1169 ((new & NUD_REACHABLE) ?
1170 neigh->parms->reachable_time :
1171 0)));
1172 neigh->nud_state = new;
1173 notify = 1;
1174 }
1175
1176 if (lladdr != neigh->ha) {
1177 write_seqlock(&neigh->ha_lock);
1178 memcpy(&neigh->ha, lladdr, dev->addr_len);
1179 write_sequnlock(&neigh->ha_lock);
1180 neigh_update_hhs(neigh);
1181 if (!(new & NUD_CONNECTED))
1182 neigh->confirmed = jiffies -
1183 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1184 notify = 1;
1185 }
1186 if (new == old)
1187 goto out;
1188 if (new & NUD_CONNECTED)
1189 neigh_connect(neigh);
1190 else
1191 neigh_suspect(neigh);
1192 if (!(old & NUD_VALID)) {
1193 struct sk_buff *skb;
1194
1195 /* Again: avoid dead loop if something went wrong */
1196
1197 while (neigh->nud_state & NUD_VALID &&
1198 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1199 struct dst_entry *dst = skb_dst(skb);
1200 struct neighbour *n2, *n1 = neigh;
1201 write_unlock_bh(&neigh->lock);
1202
1203 rcu_read_lock();
1204
1205 /* Why not just use 'neigh' as-is? The problem is that
1206 * things such as shaper, eql, and sch_teql can end up
1207 * using alternative, different, neigh objects to output
1208 * the packet in the output path. So what we need to do
1209 * here is re-lookup the top-level neigh in the path so
1210 * we can reinject the packet there.
1211 */
1212 n2 = NULL;
1213 if (dst) {
1214 n2 = dst_neigh_lookup_skb(dst, skb);
1215 if (n2)
1216 n1 = n2;
1217 }
1218 n1->output(n1, skb);
1219 if (n2)
1220 neigh_release(n2);
1221 rcu_read_unlock();
1222
1223 write_lock_bh(&neigh->lock);
1224 }
1225 __skb_queue_purge(&neigh->arp_queue);
1226 neigh->arp_queue_len_bytes = 0;
1227 }
1228out:
1229 if (update_isrouter) {
1230 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1231 (neigh->flags | NTF_ROUTER) :
1232 (neigh->flags & ~NTF_ROUTER);
1233 }
1234 write_unlock_bh(&neigh->lock);
1235
1236 if (notify)
1237 neigh_update_notify(neigh);
1238
1239 return err;
1240}
1241EXPORT_SYMBOL(neigh_update);
1242
1243/* Update the neigh to listen temporarily for probe responses, even if it is
1244 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1245 */
1246void __neigh_set_probe_once(struct neighbour *neigh)
1247{
1248 neigh->updated = jiffies;
1249 if (!(neigh->nud_state & NUD_FAILED))
1250 return;
1251 neigh->nud_state = NUD_INCOMPLETE;
1252 atomic_set(&neigh->probes, neigh_max_probes(neigh));
1253 neigh_add_timer(neigh,
1254 jiffies + NEIGH_VAR(neigh->parms, RETRANS_TIME));
1255}
1256EXPORT_SYMBOL(__neigh_set_probe_once);
1257
1258struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1259 u8 *lladdr, void *saddr,
1260 struct net_device *dev)
1261{
1262 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1263 lladdr || !dev->addr_len);
1264 if (neigh)
1265 neigh_update(neigh, lladdr, NUD_STALE,
1266 NEIGH_UPDATE_F_OVERRIDE);
1267 return neigh;
1268}
1269EXPORT_SYMBOL(neigh_event_ns);
1270
1271/* called with read_lock_bh(&n->lock); */
1272static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1273{
1274 struct net_device *dev = dst->dev;
1275 __be16 prot = dst->ops->protocol;
1276 struct hh_cache *hh = &n->hh;
1277
1278 write_lock_bh(&n->lock);
1279
1280 /* Only one thread can come in here and initialize the
1281 * hh_cache entry.
1282 */
1283 if (!hh->hh_len)
1284 dev->header_ops->cache(n, hh, prot);
1285
1286 write_unlock_bh(&n->lock);
1287}
1288
1289/* This function can be used in contexts, where only old dev_queue_xmit
1290 * worked, f.e. if you want to override normal output path (eql, shaper),
1291 * but resolution is not made yet.
1292 */
1293
1294int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1295{
1296 struct net_device *dev = skb->dev;
1297
1298 __skb_pull(skb, skb_network_offset(skb));
1299
1300 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1301 skb->len) < 0 &&
1302 dev_rebuild_header(skb))
1303 return 0;
1304
1305 return dev_queue_xmit(skb);
1306}
1307EXPORT_SYMBOL(neigh_compat_output);
1308
1309/* Slow and careful. */
1310
1311int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1312{
1313 struct dst_entry *dst = skb_dst(skb);
1314 int rc = 0;
1315
1316 if (!dst)
1317 goto discard;
1318
1319 if (!neigh_event_send(neigh, skb)) {
1320 int err;
1321 struct net_device *dev = neigh->dev;
1322 unsigned int seq;
1323
1324 if (dev->header_ops->cache && !neigh->hh.hh_len)
1325 neigh_hh_init(neigh, dst);
1326
1327 do {
1328 __skb_pull(skb, skb_network_offset(skb));
1329 seq = read_seqbegin(&neigh->ha_lock);
1330 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1331 neigh->ha, NULL, skb->len);
1332 } while (read_seqretry(&neigh->ha_lock, seq));
1333
1334 if (err >= 0)
1335 rc = dev_queue_xmit(skb);
1336 else
1337 goto out_kfree_skb;
1338 }
1339out:
1340 return rc;
1341discard:
1342 neigh_dbg(1, "%s: dst=%p neigh=%p\n", __func__, dst, neigh);
1343out_kfree_skb:
1344 rc = -EINVAL;
1345 kfree_skb(skb);
1346 goto out;
1347}
1348EXPORT_SYMBOL(neigh_resolve_output);
1349
1350/* As fast as possible without hh cache */
1351
1352int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1353{
1354 struct net_device *dev = neigh->dev;
1355 unsigned int seq;
1356 int err;
1357
1358 do {
1359 __skb_pull(skb, skb_network_offset(skb));
1360 seq = read_seqbegin(&neigh->ha_lock);
1361 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1362 neigh->ha, NULL, skb->len);
1363 } while (read_seqretry(&neigh->ha_lock, seq));
1364
1365 if (err >= 0)
1366 err = dev_queue_xmit(skb);
1367 else {
1368 err = -EINVAL;
1369 kfree_skb(skb);
1370 }
1371 return err;
1372}
1373EXPORT_SYMBOL(neigh_connected_output);
1374
1375int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1376{
1377 return dev_queue_xmit(skb);
1378}
1379EXPORT_SYMBOL(neigh_direct_output);
1380
1381static void neigh_proxy_process(unsigned long arg)
1382{
1383 struct neigh_table *tbl = (struct neigh_table *)arg;
1384 long sched_next = 0;
1385 unsigned long now = jiffies;
1386 struct sk_buff *skb, *n;
1387
1388 spin_lock(&tbl->proxy_queue.lock);
1389
1390 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1391 long tdif = NEIGH_CB(skb)->sched_next - now;
1392
1393 if (tdif <= 0) {
1394 struct net_device *dev = skb->dev;
1395
1396 __skb_unlink(skb, &tbl->proxy_queue);
1397 if (tbl->proxy_redo && netif_running(dev)) {
1398 rcu_read_lock();
1399 tbl->proxy_redo(skb);
1400 rcu_read_unlock();
1401 } else {
1402 kfree_skb(skb);
1403 }
1404
1405 dev_put(dev);
1406 } else if (!sched_next || tdif < sched_next)
1407 sched_next = tdif;
1408 }
1409 del_timer(&tbl->proxy_timer);
1410 if (sched_next)
1411 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1412 spin_unlock(&tbl->proxy_queue.lock);
1413}
1414
1415void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1416 struct sk_buff *skb)
1417{
1418 unsigned long now = jiffies;
1419
1420 unsigned long sched_next = now + (prandom_u32() %
1421 NEIGH_VAR(p, PROXY_DELAY));
1422
1423 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1424 kfree_skb(skb);
1425 return;
1426 }
1427
1428 NEIGH_CB(skb)->sched_next = sched_next;
1429 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1430
1431 spin_lock(&tbl->proxy_queue.lock);
1432 if (del_timer(&tbl->proxy_timer)) {
1433 if (time_before(tbl->proxy_timer.expires, sched_next))
1434 sched_next = tbl->proxy_timer.expires;
1435 }
1436 skb_dst_drop(skb);
1437 dev_hold(skb->dev);
1438 __skb_queue_tail(&tbl->proxy_queue, skb);
1439 mod_timer(&tbl->proxy_timer, sched_next);
1440 spin_unlock(&tbl->proxy_queue.lock);
1441}
1442EXPORT_SYMBOL(pneigh_enqueue);
1443
1444static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1445 struct net *net, int ifindex)
1446{
1447 struct neigh_parms *p;
1448
1449 for (p = &tbl->parms; p; p = p->next) {
1450 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1451 (!p->dev && !ifindex && net_eq(net, &init_net)))
1452 return p;
1453 }
1454
1455 return NULL;
1456}
1457
1458struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1459 struct neigh_table *tbl)
1460{
1461 struct neigh_parms *p;
1462 struct net *net = dev_net(dev);
1463 const struct net_device_ops *ops = dev->netdev_ops;
1464
1465 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1466 if (p) {
1467 p->tbl = tbl;
1468 atomic_set(&p->refcnt, 1);
1469 p->reachable_time =
1470 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1471 dev_hold(dev);
1472 p->dev = dev;
1473 write_pnet(&p->net, hold_net(net));
1474 p->sysctl_table = NULL;
1475
1476 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1477 release_net(net);
1478 dev_put(dev);
1479 kfree(p);
1480 return NULL;
1481 }
1482
1483 write_lock_bh(&tbl->lock);
1484 p->next = tbl->parms.next;
1485 tbl->parms.next = p;
1486 write_unlock_bh(&tbl->lock);
1487
1488 neigh_parms_data_state_cleanall(p);
1489 }
1490 return p;
1491}
1492EXPORT_SYMBOL(neigh_parms_alloc);
1493
1494static void neigh_rcu_free_parms(struct rcu_head *head)
1495{
1496 struct neigh_parms *parms =
1497 container_of(head, struct neigh_parms, rcu_head);
1498
1499 neigh_parms_put(parms);
1500}
1501
1502void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1503{
1504 struct neigh_parms **p;
1505
1506 if (!parms || parms == &tbl->parms)
1507 return;
1508 write_lock_bh(&tbl->lock);
1509 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1510 if (*p == parms) {
1511 *p = parms->next;
1512 parms->dead = 1;
1513 write_unlock_bh(&tbl->lock);
1514 if (parms->dev)
1515 dev_put(parms->dev);
1516 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1517 return;
1518 }
1519 }
1520 write_unlock_bh(&tbl->lock);
1521 neigh_dbg(1, "%s: not found\n", __func__);
1522}
1523EXPORT_SYMBOL(neigh_parms_release);
1524
1525static void neigh_parms_destroy(struct neigh_parms *parms)
1526{
1527 release_net(neigh_parms_net(parms));
1528 kfree(parms);
1529}
1530
1531static struct lock_class_key neigh_table_proxy_queue_class;
1532
1533static void neigh_table_init_no_netlink(struct neigh_table *tbl)
1534{
1535 unsigned long now = jiffies;
1536 unsigned long phsize;
1537
1538 write_pnet(&tbl->parms.net, &init_net);
1539 atomic_set(&tbl->parms.refcnt, 1);
1540 tbl->parms.reachable_time =
1541 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1542
1543 tbl->stats = alloc_percpu(struct neigh_statistics);
1544 if (!tbl->stats)
1545 panic("cannot create neighbour cache statistics");
1546
1547#ifdef CONFIG_PROC_FS
1548 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1549 &neigh_stat_seq_fops, tbl))
1550 panic("cannot create neighbour proc dir entry");
1551#endif
1552
1553 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1554
1555 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1556 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1557
1558 if (!tbl->nht || !tbl->phash_buckets)
1559 panic("cannot allocate neighbour cache hashes");
1560
1561 if (!tbl->entry_size)
1562 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1563 tbl->key_len, NEIGH_PRIV_ALIGN);
1564 else
1565 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1566
1567 rwlock_init(&tbl->lock);
1568 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1569 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1570 tbl->parms.reachable_time);
1571 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1572 skb_queue_head_init_class(&tbl->proxy_queue,
1573 &neigh_table_proxy_queue_class);
1574
1575 tbl->last_flush = now;
1576 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1577}
1578
1579void neigh_table_init(struct neigh_table *tbl)
1580{
1581 struct neigh_table *tmp;
1582
1583 neigh_table_init_no_netlink(tbl);
1584 write_lock(&neigh_tbl_lock);
1585 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1586 if (tmp->family == tbl->family)
1587 break;
1588 }
1589 tbl->next = neigh_tables;
1590 neigh_tables = tbl;
1591 write_unlock(&neigh_tbl_lock);
1592
1593 if (unlikely(tmp)) {
1594 pr_err("Registering multiple tables for family %d\n",
1595 tbl->family);
1596 dump_stack();
1597 }
1598}
1599EXPORT_SYMBOL(neigh_table_init);
1600
1601int neigh_table_clear(struct neigh_table *tbl)
1602{
1603 struct neigh_table **tp;
1604
1605 /* It is not clean... Fix it to unload IPv6 module safely */
1606 cancel_delayed_work_sync(&tbl->gc_work);
1607 del_timer_sync(&tbl->proxy_timer);
1608 pneigh_queue_purge(&tbl->proxy_queue);
1609 neigh_ifdown(tbl, NULL);
1610 if (atomic_read(&tbl->entries))
1611 pr_crit("neighbour leakage\n");
1612 write_lock(&neigh_tbl_lock);
1613 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1614 if (*tp == tbl) {
1615 *tp = tbl->next;
1616 break;
1617 }
1618 }
1619 write_unlock(&neigh_tbl_lock);
1620
1621 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1622 neigh_hash_free_rcu);
1623 tbl->nht = NULL;
1624
1625 kfree(tbl->phash_buckets);
1626 tbl->phash_buckets = NULL;
1627
1628 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1629
1630 free_percpu(tbl->stats);
1631 tbl->stats = NULL;
1632
1633 return 0;
1634}
1635EXPORT_SYMBOL(neigh_table_clear);
1636
1637static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh)
1638{
1639 struct net *net = sock_net(skb->sk);
1640 struct ndmsg *ndm;
1641 struct nlattr *dst_attr;
1642 struct neigh_table *tbl;
1643 struct net_device *dev = NULL;
1644 int err = -EINVAL;
1645
1646 ASSERT_RTNL();
1647 if (nlmsg_len(nlh) < sizeof(*ndm))
1648 goto out;
1649
1650 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1651 if (dst_attr == NULL)
1652 goto out;
1653
1654 ndm = nlmsg_data(nlh);
1655 if (ndm->ndm_ifindex) {
1656 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1657 if (dev == NULL) {
1658 err = -ENODEV;
1659 goto out;
1660 }
1661 }
1662
1663 read_lock(&neigh_tbl_lock);
1664 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1665 struct neighbour *neigh;
1666
1667 if (tbl->family != ndm->ndm_family)
1668 continue;
1669 read_unlock(&neigh_tbl_lock);
1670
1671 if (nla_len(dst_attr) < tbl->key_len)
1672 goto out;
1673
1674 if (ndm->ndm_flags & NTF_PROXY) {
1675 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1676 goto out;
1677 }
1678
1679 if (dev == NULL)
1680 goto out;
1681
1682 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1683 if (neigh == NULL) {
1684 err = -ENOENT;
1685 goto out;
1686 }
1687
1688 err = neigh_update(neigh, NULL, NUD_FAILED,
1689 NEIGH_UPDATE_F_OVERRIDE |
1690 NEIGH_UPDATE_F_ADMIN);
1691 neigh_release(neigh);
1692 goto out;
1693 }
1694 read_unlock(&neigh_tbl_lock);
1695 err = -EAFNOSUPPORT;
1696
1697out:
1698 return err;
1699}
1700
1701static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh)
1702{
1703 struct net *net = sock_net(skb->sk);
1704 struct ndmsg *ndm;
1705 struct nlattr *tb[NDA_MAX+1];
1706 struct neigh_table *tbl;
1707 struct net_device *dev = NULL;
1708 int err;
1709
1710 ASSERT_RTNL();
1711 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1712 if (err < 0)
1713 goto out;
1714
1715 err = -EINVAL;
1716 if (tb[NDA_DST] == NULL)
1717 goto out;
1718
1719 ndm = nlmsg_data(nlh);
1720 if (ndm->ndm_ifindex) {
1721 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1722 if (dev == NULL) {
1723 err = -ENODEV;
1724 goto out;
1725 }
1726
1727 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1728 goto out;
1729 }
1730
1731 read_lock(&neigh_tbl_lock);
1732 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1733 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1734 struct neighbour *neigh;
1735 void *dst, *lladdr;
1736
1737 if (tbl->family != ndm->ndm_family)
1738 continue;
1739 read_unlock(&neigh_tbl_lock);
1740
1741 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1742 goto out;
1743 dst = nla_data(tb[NDA_DST]);
1744 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1745
1746 if (ndm->ndm_flags & NTF_PROXY) {
1747 struct pneigh_entry *pn;
1748
1749 err = -ENOBUFS;
1750 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1751 if (pn) {
1752 pn->flags = ndm->ndm_flags;
1753 err = 0;
1754 }
1755 goto out;
1756 }
1757
1758 if (dev == NULL)
1759 goto out;
1760
1761 neigh = neigh_lookup(tbl, dst, dev);
1762 if (neigh == NULL) {
1763 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1764 err = -ENOENT;
1765 goto out;
1766 }
1767
1768 neigh = __neigh_lookup_errno(tbl, dst, dev);
1769 if (IS_ERR(neigh)) {
1770 err = PTR_ERR(neigh);
1771 goto out;
1772 }
1773 } else {
1774 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1775 err = -EEXIST;
1776 neigh_release(neigh);
1777 goto out;
1778 }
1779
1780 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1781 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1782 }
1783
1784 if (ndm->ndm_flags & NTF_USE) {
1785 neigh_event_send(neigh, NULL);
1786 err = 0;
1787 } else
1788 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1789 neigh_release(neigh);
1790 goto out;
1791 }
1792
1793 read_unlock(&neigh_tbl_lock);
1794 err = -EAFNOSUPPORT;
1795out:
1796 return err;
1797}
1798
1799static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1800{
1801 struct nlattr *nest;
1802
1803 nest = nla_nest_start(skb, NDTA_PARMS);
1804 if (nest == NULL)
1805 return -ENOBUFS;
1806
1807 if ((parms->dev &&
1808 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1809 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1810 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
1811 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
1812 /* approximative value for deprecated QUEUE_LEN (in packets) */
1813 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1814 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
1815 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
1816 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
1817 nla_put_u32(skb, NDTPA_UCAST_PROBES,
1818 NEIGH_VAR(parms, UCAST_PROBES)) ||
1819 nla_put_u32(skb, NDTPA_MCAST_PROBES,
1820 NEIGH_VAR(parms, MCAST_PROBES)) ||
1821 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) ||
1822 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1823 NEIGH_VAR(parms, BASE_REACHABLE_TIME)) ||
1824 nla_put_msecs(skb, NDTPA_GC_STALETIME,
1825 NEIGH_VAR(parms, GC_STALETIME)) ||
1826 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1827 NEIGH_VAR(parms, DELAY_PROBE_TIME)) ||
1828 nla_put_msecs(skb, NDTPA_RETRANS_TIME,
1829 NEIGH_VAR(parms, RETRANS_TIME)) ||
1830 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
1831 NEIGH_VAR(parms, ANYCAST_DELAY)) ||
1832 nla_put_msecs(skb, NDTPA_PROXY_DELAY,
1833 NEIGH_VAR(parms, PROXY_DELAY)) ||
1834 nla_put_msecs(skb, NDTPA_LOCKTIME,
1835 NEIGH_VAR(parms, LOCKTIME)))
1836 goto nla_put_failure;
1837 return nla_nest_end(skb, nest);
1838
1839nla_put_failure:
1840 nla_nest_cancel(skb, nest);
1841 return -EMSGSIZE;
1842}
1843
1844static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1845 u32 pid, u32 seq, int type, int flags)
1846{
1847 struct nlmsghdr *nlh;
1848 struct ndtmsg *ndtmsg;
1849
1850 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1851 if (nlh == NULL)
1852 return -EMSGSIZE;
1853
1854 ndtmsg = nlmsg_data(nlh);
1855
1856 read_lock_bh(&tbl->lock);
1857 ndtmsg->ndtm_family = tbl->family;
1858 ndtmsg->ndtm_pad1 = 0;
1859 ndtmsg->ndtm_pad2 = 0;
1860
1861 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1862 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) ||
1863 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1864 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1865 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1866 goto nla_put_failure;
1867 {
1868 unsigned long now = jiffies;
1869 unsigned int flush_delta = now - tbl->last_flush;
1870 unsigned int rand_delta = now - tbl->last_rand;
1871 struct neigh_hash_table *nht;
1872 struct ndt_config ndc = {
1873 .ndtc_key_len = tbl->key_len,
1874 .ndtc_entry_size = tbl->entry_size,
1875 .ndtc_entries = atomic_read(&tbl->entries),
1876 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1877 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1878 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1879 };
1880
1881 rcu_read_lock_bh();
1882 nht = rcu_dereference_bh(tbl->nht);
1883 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1884 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1885 rcu_read_unlock_bh();
1886
1887 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1888 goto nla_put_failure;
1889 }
1890
1891 {
1892 int cpu;
1893 struct ndt_stats ndst;
1894
1895 memset(&ndst, 0, sizeof(ndst));
1896
1897 for_each_possible_cpu(cpu) {
1898 struct neigh_statistics *st;
1899
1900 st = per_cpu_ptr(tbl->stats, cpu);
1901 ndst.ndts_allocs += st->allocs;
1902 ndst.ndts_destroys += st->destroys;
1903 ndst.ndts_hash_grows += st->hash_grows;
1904 ndst.ndts_res_failed += st->res_failed;
1905 ndst.ndts_lookups += st->lookups;
1906 ndst.ndts_hits += st->hits;
1907 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1908 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1909 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1910 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1911 }
1912
1913 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1914 goto nla_put_failure;
1915 }
1916
1917 BUG_ON(tbl->parms.dev);
1918 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1919 goto nla_put_failure;
1920
1921 read_unlock_bh(&tbl->lock);
1922 return nlmsg_end(skb, nlh);
1923
1924nla_put_failure:
1925 read_unlock_bh(&tbl->lock);
1926 nlmsg_cancel(skb, nlh);
1927 return -EMSGSIZE;
1928}
1929
1930static int neightbl_fill_param_info(struct sk_buff *skb,
1931 struct neigh_table *tbl,
1932 struct neigh_parms *parms,
1933 u32 pid, u32 seq, int type,
1934 unsigned int flags)
1935{
1936 struct ndtmsg *ndtmsg;
1937 struct nlmsghdr *nlh;
1938
1939 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1940 if (nlh == NULL)
1941 return -EMSGSIZE;
1942
1943 ndtmsg = nlmsg_data(nlh);
1944
1945 read_lock_bh(&tbl->lock);
1946 ndtmsg->ndtm_family = tbl->family;
1947 ndtmsg->ndtm_pad1 = 0;
1948 ndtmsg->ndtm_pad2 = 0;
1949
1950 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1951 neightbl_fill_parms(skb, parms) < 0)
1952 goto errout;
1953
1954 read_unlock_bh(&tbl->lock);
1955 return nlmsg_end(skb, nlh);
1956errout:
1957 read_unlock_bh(&tbl->lock);
1958 nlmsg_cancel(skb, nlh);
1959 return -EMSGSIZE;
1960}
1961
1962static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1963 [NDTA_NAME] = { .type = NLA_STRING },
1964 [NDTA_THRESH1] = { .type = NLA_U32 },
1965 [NDTA_THRESH2] = { .type = NLA_U32 },
1966 [NDTA_THRESH3] = { .type = NLA_U32 },
1967 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1968 [NDTA_PARMS] = { .type = NLA_NESTED },
1969};
1970
1971static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1972 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1973 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1974 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1975 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1976 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1977 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1978 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1979 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1980 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1981 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1982 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1983 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1984 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1985};
1986
1987static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh)
1988{
1989 struct net *net = sock_net(skb->sk);
1990 struct neigh_table *tbl;
1991 struct ndtmsg *ndtmsg;
1992 struct nlattr *tb[NDTA_MAX+1];
1993 int err;
1994
1995 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1996 nl_neightbl_policy);
1997 if (err < 0)
1998 goto errout;
1999
2000 if (tb[NDTA_NAME] == NULL) {
2001 err = -EINVAL;
2002 goto errout;
2003 }
2004
2005 ndtmsg = nlmsg_data(nlh);
2006 read_lock(&neigh_tbl_lock);
2007 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
2008 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
2009 continue;
2010
2011 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
2012 break;
2013 }
2014
2015 if (tbl == NULL) {
2016 err = -ENOENT;
2017 goto errout_locked;
2018 }
2019
2020 /*
2021 * We acquire tbl->lock to be nice to the periodic timers and
2022 * make sure they always see a consistent set of values.
2023 */
2024 write_lock_bh(&tbl->lock);
2025
2026 if (tb[NDTA_PARMS]) {
2027 struct nlattr *tbp[NDTPA_MAX+1];
2028 struct neigh_parms *p;
2029 int i, ifindex = 0;
2030
2031 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
2032 nl_ntbl_parm_policy);
2033 if (err < 0)
2034 goto errout_tbl_lock;
2035
2036 if (tbp[NDTPA_IFINDEX])
2037 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2038
2039 p = lookup_neigh_parms(tbl, net, ifindex);
2040 if (p == NULL) {
2041 err = -ENOENT;
2042 goto errout_tbl_lock;
2043 }
2044
2045 for (i = 1; i <= NDTPA_MAX; i++) {
2046 if (tbp[i] == NULL)
2047 continue;
2048
2049 switch (i) {
2050 case NDTPA_QUEUE_LEN:
2051 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2052 nla_get_u32(tbp[i]) *
2053 SKB_TRUESIZE(ETH_FRAME_LEN));
2054 break;
2055 case NDTPA_QUEUE_LENBYTES:
2056 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2057 nla_get_u32(tbp[i]));
2058 break;
2059 case NDTPA_PROXY_QLEN:
2060 NEIGH_VAR_SET(p, PROXY_QLEN,
2061 nla_get_u32(tbp[i]));
2062 break;
2063 case NDTPA_APP_PROBES:
2064 NEIGH_VAR_SET(p, APP_PROBES,
2065 nla_get_u32(tbp[i]));
2066 break;
2067 case NDTPA_UCAST_PROBES:
2068 NEIGH_VAR_SET(p, UCAST_PROBES,
2069 nla_get_u32(tbp[i]));
2070 break;
2071 case NDTPA_MCAST_PROBES:
2072 NEIGH_VAR_SET(p, MCAST_PROBES,
2073 nla_get_u32(tbp[i]));
2074 break;
2075 case NDTPA_BASE_REACHABLE_TIME:
2076 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2077 nla_get_msecs(tbp[i]));
2078 break;
2079 case NDTPA_GC_STALETIME:
2080 NEIGH_VAR_SET(p, GC_STALETIME,
2081 nla_get_msecs(tbp[i]));
2082 break;
2083 case NDTPA_DELAY_PROBE_TIME:
2084 NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2085 nla_get_msecs(tbp[i]));
2086 break;
2087 case NDTPA_RETRANS_TIME:
2088 NEIGH_VAR_SET(p, RETRANS_TIME,
2089 nla_get_msecs(tbp[i]));
2090 break;
2091 case NDTPA_ANYCAST_DELAY:
2092 NEIGH_VAR_SET(p, ANYCAST_DELAY,
2093 nla_get_msecs(tbp[i]));
2094 break;
2095 case NDTPA_PROXY_DELAY:
2096 NEIGH_VAR_SET(p, PROXY_DELAY,
2097 nla_get_msecs(tbp[i]));
2098 break;
2099 case NDTPA_LOCKTIME:
2100 NEIGH_VAR_SET(p, LOCKTIME,
2101 nla_get_msecs(tbp[i]));
2102 break;
2103 }
2104 }
2105 }
2106
2107 err = -ENOENT;
2108 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2109 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2110 !net_eq(net, &init_net))
2111 goto errout_tbl_lock;
2112
2113 if (tb[NDTA_THRESH1])
2114 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2115
2116 if (tb[NDTA_THRESH2])
2117 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2118
2119 if (tb[NDTA_THRESH3])
2120 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2121
2122 if (tb[NDTA_GC_INTERVAL])
2123 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2124
2125 err = 0;
2126
2127errout_tbl_lock:
2128 write_unlock_bh(&tbl->lock);
2129errout_locked:
2130 read_unlock(&neigh_tbl_lock);
2131errout:
2132 return err;
2133}
2134
2135static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2136{
2137 struct net *net = sock_net(skb->sk);
2138 int family, tidx, nidx = 0;
2139 int tbl_skip = cb->args[0];
2140 int neigh_skip = cb->args[1];
2141 struct neigh_table *tbl;
2142
2143 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2144
2145 read_lock(&neigh_tbl_lock);
2146 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2147 struct neigh_parms *p;
2148
2149 if (tidx < tbl_skip || (family && tbl->family != family))
2150 continue;
2151
2152 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2153 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2154 NLM_F_MULTI) <= 0)
2155 break;
2156
2157 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2158 if (!net_eq(neigh_parms_net(p), net))
2159 continue;
2160
2161 if (nidx < neigh_skip)
2162 goto next;
2163
2164 if (neightbl_fill_param_info(skb, tbl, p,
2165 NETLINK_CB(cb->skb).portid,
2166 cb->nlh->nlmsg_seq,
2167 RTM_NEWNEIGHTBL,
2168 NLM_F_MULTI) <= 0)
2169 goto out;
2170 next:
2171 nidx++;
2172 }
2173
2174 neigh_skip = 0;
2175 }
2176out:
2177 read_unlock(&neigh_tbl_lock);
2178 cb->args[0] = tidx;
2179 cb->args[1] = nidx;
2180
2181 return skb->len;
2182}
2183
2184static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2185 u32 pid, u32 seq, int type, unsigned int flags)
2186{
2187 unsigned long now = jiffies;
2188 struct nda_cacheinfo ci;
2189 struct nlmsghdr *nlh;
2190 struct ndmsg *ndm;
2191
2192 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2193 if (nlh == NULL)
2194 return -EMSGSIZE;
2195
2196 ndm = nlmsg_data(nlh);
2197 ndm->ndm_family = neigh->ops->family;
2198 ndm->ndm_pad1 = 0;
2199 ndm->ndm_pad2 = 0;
2200 ndm->ndm_flags = neigh->flags;
2201 ndm->ndm_type = neigh->type;
2202 ndm->ndm_ifindex = neigh->dev->ifindex;
2203
2204 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2205 goto nla_put_failure;
2206
2207 read_lock_bh(&neigh->lock);
2208 ndm->ndm_state = neigh->nud_state;
2209 if (neigh->nud_state & NUD_VALID) {
2210 char haddr[MAX_ADDR_LEN];
2211
2212 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2213 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2214 read_unlock_bh(&neigh->lock);
2215 goto nla_put_failure;
2216 }
2217 }
2218
2219 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2220 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2221 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2222 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2223 read_unlock_bh(&neigh->lock);
2224
2225 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2226 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2227 goto nla_put_failure;
2228
2229 return nlmsg_end(skb, nlh);
2230
2231nla_put_failure:
2232 nlmsg_cancel(skb, nlh);
2233 return -EMSGSIZE;
2234}
2235
2236static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2237 u32 pid, u32 seq, int type, unsigned int flags,
2238 struct neigh_table *tbl)
2239{
2240 struct nlmsghdr *nlh;
2241 struct ndmsg *ndm;
2242
2243 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2244 if (nlh == NULL)
2245 return -EMSGSIZE;
2246
2247 ndm = nlmsg_data(nlh);
2248 ndm->ndm_family = tbl->family;
2249 ndm->ndm_pad1 = 0;
2250 ndm->ndm_pad2 = 0;
2251 ndm->ndm_flags = pn->flags | NTF_PROXY;
2252 ndm->ndm_type = NDA_DST;
2253 ndm->ndm_ifindex = pn->dev->ifindex;
2254 ndm->ndm_state = NUD_NONE;
2255
2256 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2257 goto nla_put_failure;
2258
2259 return nlmsg_end(skb, nlh);
2260
2261nla_put_failure:
2262 nlmsg_cancel(skb, nlh);
2263 return -EMSGSIZE;
2264}
2265
2266static void neigh_update_notify(struct neighbour *neigh)
2267{
2268 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2269 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2270}
2271
2272static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2273 struct netlink_callback *cb)
2274{
2275 struct net *net = sock_net(skb->sk);
2276 struct neighbour *n;
2277 int rc, h, s_h = cb->args[1];
2278 int idx, s_idx = idx = cb->args[2];
2279 struct neigh_hash_table *nht;
2280
2281 rcu_read_lock_bh();
2282 nht = rcu_dereference_bh(tbl->nht);
2283
2284 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2285 if (h > s_h)
2286 s_idx = 0;
2287 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2288 n != NULL;
2289 n = rcu_dereference_bh(n->next)) {
2290 if (!net_eq(dev_net(n->dev), net))
2291 continue;
2292 if (idx < s_idx)
2293 goto next;
2294 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2295 cb->nlh->nlmsg_seq,
2296 RTM_NEWNEIGH,
2297 NLM_F_MULTI) <= 0) {
2298 rc = -1;
2299 goto out;
2300 }
2301next:
2302 idx++;
2303 }
2304 }
2305 rc = skb->len;
2306out:
2307 rcu_read_unlock_bh();
2308 cb->args[1] = h;
2309 cb->args[2] = idx;
2310 return rc;
2311}
2312
2313static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2314 struct netlink_callback *cb)
2315{
2316 struct pneigh_entry *n;
2317 struct net *net = sock_net(skb->sk);
2318 int rc, h, s_h = cb->args[3];
2319 int idx, s_idx = idx = cb->args[4];
2320
2321 read_lock_bh(&tbl->lock);
2322
2323 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2324 if (h > s_h)
2325 s_idx = 0;
2326 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2327 if (dev_net(n->dev) != net)
2328 continue;
2329 if (idx < s_idx)
2330 goto next;
2331 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2332 cb->nlh->nlmsg_seq,
2333 RTM_NEWNEIGH,
2334 NLM_F_MULTI, tbl) <= 0) {
2335 read_unlock_bh(&tbl->lock);
2336 rc = -1;
2337 goto out;
2338 }
2339 next:
2340 idx++;
2341 }
2342 }
2343
2344 read_unlock_bh(&tbl->lock);
2345 rc = skb->len;
2346out:
2347 cb->args[3] = h;
2348 cb->args[4] = idx;
2349 return rc;
2350
2351}
2352
2353static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2354{
2355 struct neigh_table *tbl;
2356 int t, family, s_t;
2357 int proxy = 0;
2358 int err;
2359
2360 read_lock(&neigh_tbl_lock);
2361 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2362
2363 /* check for full ndmsg structure presence, family member is
2364 * the same for both structures
2365 */
2366 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2367 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2368 proxy = 1;
2369
2370 s_t = cb->args[0];
2371
2372 for (tbl = neigh_tables, t = 0; tbl;
2373 tbl = tbl->next, t++) {
2374 if (t < s_t || (family && tbl->family != family))
2375 continue;
2376 if (t > s_t)
2377 memset(&cb->args[1], 0, sizeof(cb->args) -
2378 sizeof(cb->args[0]));
2379 if (proxy)
2380 err = pneigh_dump_table(tbl, skb, cb);
2381 else
2382 err = neigh_dump_table(tbl, skb, cb);
2383 if (err < 0)
2384 break;
2385 }
2386 read_unlock(&neigh_tbl_lock);
2387
2388 cb->args[0] = t;
2389 return skb->len;
2390}
2391
2392void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2393{
2394 int chain;
2395 struct neigh_hash_table *nht;
2396
2397 rcu_read_lock_bh();
2398 nht = rcu_dereference_bh(tbl->nht);
2399
2400 read_lock(&tbl->lock); /* avoid resizes */
2401 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2402 struct neighbour *n;
2403
2404 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2405 n != NULL;
2406 n = rcu_dereference_bh(n->next))
2407 cb(n, cookie);
2408 }
2409 read_unlock(&tbl->lock);
2410 rcu_read_unlock_bh();
2411}
2412EXPORT_SYMBOL(neigh_for_each);
2413
2414/* The tbl->lock must be held as a writer and BH disabled. */
2415void __neigh_for_each_release(struct neigh_table *tbl,
2416 int (*cb)(struct neighbour *))
2417{
2418 int chain;
2419 struct neigh_hash_table *nht;
2420
2421 nht = rcu_dereference_protected(tbl->nht,
2422 lockdep_is_held(&tbl->lock));
2423 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2424 struct neighbour *n;
2425 struct neighbour __rcu **np;
2426
2427 np = &nht->hash_buckets[chain];
2428 while ((n = rcu_dereference_protected(*np,
2429 lockdep_is_held(&tbl->lock))) != NULL) {
2430 int release;
2431
2432 write_lock(&n->lock);
2433 release = cb(n);
2434 if (release) {
2435 rcu_assign_pointer(*np,
2436 rcu_dereference_protected(n->next,
2437 lockdep_is_held(&tbl->lock)));
2438 n->dead = 1;
2439 } else
2440 np = &n->next;
2441 write_unlock(&n->lock);
2442 if (release)
2443 neigh_cleanup_and_release(n);
2444 }
2445 }
2446}
2447EXPORT_SYMBOL(__neigh_for_each_release);
2448
2449#ifdef CONFIG_PROC_FS
2450
2451static struct neighbour *neigh_get_first(struct seq_file *seq)
2452{
2453 struct neigh_seq_state *state = seq->private;
2454 struct net *net = seq_file_net(seq);
2455 struct neigh_hash_table *nht = state->nht;
2456 struct neighbour *n = NULL;
2457 int bucket = state->bucket;
2458
2459 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2460 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2461 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2462
2463 while (n) {
2464 if (!net_eq(dev_net(n->dev), net))
2465 goto next;
2466 if (state->neigh_sub_iter) {
2467 loff_t fakep = 0;
2468 void *v;
2469
2470 v = state->neigh_sub_iter(state, n, &fakep);
2471 if (!v)
2472 goto next;
2473 }
2474 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2475 break;
2476 if (n->nud_state & ~NUD_NOARP)
2477 break;
2478next:
2479 n = rcu_dereference_bh(n->next);
2480 }
2481
2482 if (n)
2483 break;
2484 }
2485 state->bucket = bucket;
2486
2487 return n;
2488}
2489
2490static struct neighbour *neigh_get_next(struct seq_file *seq,
2491 struct neighbour *n,
2492 loff_t *pos)
2493{
2494 struct neigh_seq_state *state = seq->private;
2495 struct net *net = seq_file_net(seq);
2496 struct neigh_hash_table *nht = state->nht;
2497
2498 if (state->neigh_sub_iter) {
2499 void *v = state->neigh_sub_iter(state, n, pos);
2500 if (v)
2501 return n;
2502 }
2503 n = rcu_dereference_bh(n->next);
2504
2505 while (1) {
2506 while (n) {
2507 if (!net_eq(dev_net(n->dev), net))
2508 goto next;
2509 if (state->neigh_sub_iter) {
2510 void *v = state->neigh_sub_iter(state, n, pos);
2511 if (v)
2512 return n;
2513 goto next;
2514 }
2515 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2516 break;
2517
2518 if (n->nud_state & ~NUD_NOARP)
2519 break;
2520next:
2521 n = rcu_dereference_bh(n->next);
2522 }
2523
2524 if (n)
2525 break;
2526
2527 if (++state->bucket >= (1 << nht->hash_shift))
2528 break;
2529
2530 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2531 }
2532
2533 if (n && pos)
2534 --(*pos);
2535 return n;
2536}
2537
2538static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2539{
2540 struct neighbour *n = neigh_get_first(seq);
2541
2542 if (n) {
2543 --(*pos);
2544 while (*pos) {
2545 n = neigh_get_next(seq, n, pos);
2546 if (!n)
2547 break;
2548 }
2549 }
2550 return *pos ? NULL : n;
2551}
2552
2553static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2554{
2555 struct neigh_seq_state *state = seq->private;
2556 struct net *net = seq_file_net(seq);
2557 struct neigh_table *tbl = state->tbl;
2558 struct pneigh_entry *pn = NULL;
2559 int bucket = state->bucket;
2560
2561 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2562 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2563 pn = tbl->phash_buckets[bucket];
2564 while (pn && !net_eq(pneigh_net(pn), net))
2565 pn = pn->next;
2566 if (pn)
2567 break;
2568 }
2569 state->bucket = bucket;
2570
2571 return pn;
2572}
2573
2574static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2575 struct pneigh_entry *pn,
2576 loff_t *pos)
2577{
2578 struct neigh_seq_state *state = seq->private;
2579 struct net *net = seq_file_net(seq);
2580 struct neigh_table *tbl = state->tbl;
2581
2582 do {
2583 pn = pn->next;
2584 } while (pn && !net_eq(pneigh_net(pn), net));
2585
2586 while (!pn) {
2587 if (++state->bucket > PNEIGH_HASHMASK)
2588 break;
2589 pn = tbl->phash_buckets[state->bucket];
2590 while (pn && !net_eq(pneigh_net(pn), net))
2591 pn = pn->next;
2592 if (pn)
2593 break;
2594 }
2595
2596 if (pn && pos)
2597 --(*pos);
2598
2599 return pn;
2600}
2601
2602static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2603{
2604 struct pneigh_entry *pn = pneigh_get_first(seq);
2605
2606 if (pn) {
2607 --(*pos);
2608 while (*pos) {
2609 pn = pneigh_get_next(seq, pn, pos);
2610 if (!pn)
2611 break;
2612 }
2613 }
2614 return *pos ? NULL : pn;
2615}
2616
2617static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2618{
2619 struct neigh_seq_state *state = seq->private;
2620 void *rc;
2621 loff_t idxpos = *pos;
2622
2623 rc = neigh_get_idx(seq, &idxpos);
2624 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2625 rc = pneigh_get_idx(seq, &idxpos);
2626
2627 return rc;
2628}
2629
2630void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2631 __acquires(rcu_bh)
2632{
2633 struct neigh_seq_state *state = seq->private;
2634
2635 state->tbl = tbl;
2636 state->bucket = 0;
2637 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2638
2639 rcu_read_lock_bh();
2640 state->nht = rcu_dereference_bh(tbl->nht);
2641
2642 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2643}
2644EXPORT_SYMBOL(neigh_seq_start);
2645
2646void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2647{
2648 struct neigh_seq_state *state;
2649 void *rc;
2650
2651 if (v == SEQ_START_TOKEN) {
2652 rc = neigh_get_first(seq);
2653 goto out;
2654 }
2655
2656 state = seq->private;
2657 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2658 rc = neigh_get_next(seq, v, NULL);
2659 if (rc)
2660 goto out;
2661 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2662 rc = pneigh_get_first(seq);
2663 } else {
2664 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2665 rc = pneigh_get_next(seq, v, NULL);
2666 }
2667out:
2668 ++(*pos);
2669 return rc;
2670}
2671EXPORT_SYMBOL(neigh_seq_next);
2672
2673void neigh_seq_stop(struct seq_file *seq, void *v)
2674 __releases(rcu_bh)
2675{
2676 rcu_read_unlock_bh();
2677}
2678EXPORT_SYMBOL(neigh_seq_stop);
2679
2680/* statistics via seq_file */
2681
2682static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2683{
2684 struct neigh_table *tbl = seq->private;
2685 int cpu;
2686
2687 if (*pos == 0)
2688 return SEQ_START_TOKEN;
2689
2690 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2691 if (!cpu_possible(cpu))
2692 continue;
2693 *pos = cpu+1;
2694 return per_cpu_ptr(tbl->stats, cpu);
2695 }
2696 return NULL;
2697}
2698
2699static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2700{
2701 struct neigh_table *tbl = seq->private;
2702 int cpu;
2703
2704 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2705 if (!cpu_possible(cpu))
2706 continue;
2707 *pos = cpu+1;
2708 return per_cpu_ptr(tbl->stats, cpu);
2709 }
2710 return NULL;
2711}
2712
2713static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2714{
2715
2716}
2717
2718static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2719{
2720 struct neigh_table *tbl = seq->private;
2721 struct neigh_statistics *st = v;
2722
2723 if (v == SEQ_START_TOKEN) {
2724 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2725 return 0;
2726 }
2727
2728 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2729 "%08lx %08lx %08lx %08lx %08lx\n",
2730 atomic_read(&tbl->entries),
2731
2732 st->allocs,
2733 st->destroys,
2734 st->hash_grows,
2735
2736 st->lookups,
2737 st->hits,
2738
2739 st->res_failed,
2740
2741 st->rcv_probes_mcast,
2742 st->rcv_probes_ucast,
2743
2744 st->periodic_gc_runs,
2745 st->forced_gc_runs,
2746 st->unres_discards
2747 );
2748
2749 return 0;
2750}
2751
2752static const struct seq_operations neigh_stat_seq_ops = {
2753 .start = neigh_stat_seq_start,
2754 .next = neigh_stat_seq_next,
2755 .stop = neigh_stat_seq_stop,
2756 .show = neigh_stat_seq_show,
2757};
2758
2759static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2760{
2761 int ret = seq_open(file, &neigh_stat_seq_ops);
2762
2763 if (!ret) {
2764 struct seq_file *sf = file->private_data;
2765 sf->private = PDE_DATA(inode);
2766 }
2767 return ret;
2768};
2769
2770static const struct file_operations neigh_stat_seq_fops = {
2771 .owner = THIS_MODULE,
2772 .open = neigh_stat_seq_open,
2773 .read = seq_read,
2774 .llseek = seq_lseek,
2775 .release = seq_release,
2776};
2777
2778#endif /* CONFIG_PROC_FS */
2779
2780static inline size_t neigh_nlmsg_size(void)
2781{
2782 return NLMSG_ALIGN(sizeof(struct ndmsg))
2783 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2784 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2785 + nla_total_size(sizeof(struct nda_cacheinfo))
2786 + nla_total_size(4); /* NDA_PROBES */
2787}
2788
2789static void __neigh_notify(struct neighbour *n, int type, int flags)
2790{
2791 struct net *net = dev_net(n->dev);
2792 struct sk_buff *skb;
2793 int err = -ENOBUFS;
2794
2795 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2796 if (skb == NULL)
2797 goto errout;
2798
2799 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2800 if (err < 0) {
2801 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2802 WARN_ON(err == -EMSGSIZE);
2803 kfree_skb(skb);
2804 goto errout;
2805 }
2806 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2807 return;
2808errout:
2809 if (err < 0)
2810 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2811}
2812
2813void neigh_app_ns(struct neighbour *n)
2814{
2815 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2816}
2817EXPORT_SYMBOL(neigh_app_ns);
2818
2819#ifdef CONFIG_SYSCTL
2820static int zero;
2821static int int_max = INT_MAX;
2822static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
2823
2824static int proc_unres_qlen(struct ctl_table *ctl, int write,
2825 void __user *buffer, size_t *lenp, loff_t *ppos)
2826{
2827 int size, ret;
2828 struct ctl_table tmp = *ctl;
2829
2830 tmp.extra1 = &zero;
2831 tmp.extra2 = &unres_qlen_max;
2832 tmp.data = &size;
2833
2834 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
2835 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2836
2837 if (write && !ret)
2838 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2839 return ret;
2840}
2841
2842static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
2843 int family)
2844{
2845 switch (family) {
2846 case AF_INET:
2847 return __in_dev_arp_parms_get_rcu(dev);
2848 case AF_INET6:
2849 return __in6_dev_nd_parms_get_rcu(dev);
2850 }
2851 return NULL;
2852}
2853
2854static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
2855 int index)
2856{
2857 struct net_device *dev;
2858 int family = neigh_parms_family(p);
2859
2860 rcu_read_lock();
2861 for_each_netdev_rcu(net, dev) {
2862 struct neigh_parms *dst_p =
2863 neigh_get_dev_parms_rcu(dev, family);
2864
2865 if (dst_p && !test_bit(index, dst_p->data_state))
2866 dst_p->data[index] = p->data[index];
2867 }
2868 rcu_read_unlock();
2869}
2870
2871static void neigh_proc_update(struct ctl_table *ctl, int write)
2872{
2873 struct net_device *dev = ctl->extra1;
2874 struct neigh_parms *p = ctl->extra2;
2875 struct net *net = neigh_parms_net(p);
2876 int index = (int *) ctl->data - p->data;
2877
2878 if (!write)
2879 return;
2880
2881 set_bit(index, p->data_state);
2882 if (!dev) /* NULL dev means this is default value */
2883 neigh_copy_dflt_parms(net, p, index);
2884}
2885
2886static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
2887 void __user *buffer,
2888 size_t *lenp, loff_t *ppos)
2889{
2890 struct ctl_table tmp = *ctl;
2891 int ret;
2892
2893 tmp.extra1 = &zero;
2894 tmp.extra2 = &int_max;
2895
2896 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2897 neigh_proc_update(ctl, write);
2898 return ret;
2899}
2900
2901int neigh_proc_dointvec(struct ctl_table *ctl, int write,
2902 void __user *buffer, size_t *lenp, loff_t *ppos)
2903{
2904 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
2905
2906 neigh_proc_update(ctl, write);
2907 return ret;
2908}
2909EXPORT_SYMBOL(neigh_proc_dointvec);
2910
2911int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write,
2912 void __user *buffer,
2913 size_t *lenp, loff_t *ppos)
2914{
2915 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
2916
2917 neigh_proc_update(ctl, write);
2918 return ret;
2919}
2920EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
2921
2922static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
2923 void __user *buffer,
2924 size_t *lenp, loff_t *ppos)
2925{
2926 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
2927
2928 neigh_proc_update(ctl, write);
2929 return ret;
2930}
2931
2932int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
2933 void __user *buffer,
2934 size_t *lenp, loff_t *ppos)
2935{
2936 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
2937
2938 neigh_proc_update(ctl, write);
2939 return ret;
2940}
2941EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
2942
2943static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
2944 void __user *buffer,
2945 size_t *lenp, loff_t *ppos)
2946{
2947 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
2948
2949 neigh_proc_update(ctl, write);
2950 return ret;
2951}
2952
2953#define NEIGH_PARMS_DATA_OFFSET(index) \
2954 (&((struct neigh_parms *) 0)->data[index])
2955
2956#define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
2957 [NEIGH_VAR_ ## attr] = { \
2958 .procname = name, \
2959 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
2960 .maxlen = sizeof(int), \
2961 .mode = mval, \
2962 .proc_handler = proc, \
2963 }
2964
2965#define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
2966 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
2967
2968#define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
2969 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
2970
2971#define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
2972 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
2973
2974#define NEIGH_SYSCTL_MS_JIFFIES_ENTRY(attr, name) \
2975 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
2976
2977#define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
2978 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
2979
2980#define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
2981 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
2982
2983static struct neigh_sysctl_table {
2984 struct ctl_table_header *sysctl_header;
2985 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
2986} neigh_sysctl_template __read_mostly = {
2987 .neigh_vars = {
2988 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
2989 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
2990 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
2991 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
2992 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
2993 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
2994 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
2995 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
2996 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
2997 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
2998 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
2999 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3000 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3001 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3002 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3003 [NEIGH_VAR_GC_INTERVAL] = {
3004 .procname = "gc_interval",
3005 .maxlen = sizeof(int),
3006 .mode = 0644,
3007 .proc_handler = proc_dointvec_jiffies,
3008 },
3009 [NEIGH_VAR_GC_THRESH1] = {
3010 .procname = "gc_thresh1",
3011 .maxlen = sizeof(int),
3012 .mode = 0644,
3013 .extra1 = &zero,
3014 .extra2 = &int_max,
3015 .proc_handler = proc_dointvec_minmax,
3016 },
3017 [NEIGH_VAR_GC_THRESH2] = {
3018 .procname = "gc_thresh2",
3019 .maxlen = sizeof(int),
3020 .mode = 0644,
3021 .extra1 = &zero,
3022 .extra2 = &int_max,
3023 .proc_handler = proc_dointvec_minmax,
3024 },
3025 [NEIGH_VAR_GC_THRESH3] = {
3026 .procname = "gc_thresh3",
3027 .maxlen = sizeof(int),
3028 .mode = 0644,
3029 .extra1 = &zero,
3030 .extra2 = &int_max,
3031 .proc_handler = proc_dointvec_minmax,
3032 },
3033 {},
3034 },
3035};
3036
3037int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3038 proc_handler *handler)
3039{
3040 int i;
3041 struct neigh_sysctl_table *t;
3042 const char *dev_name_source;
3043 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3044 char *p_name;
3045
3046 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
3047 if (!t)
3048 goto err;
3049
3050 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3051 t->neigh_vars[i].data += (long) p;
3052 t->neigh_vars[i].extra1 = dev;
3053 t->neigh_vars[i].extra2 = p;
3054 }
3055
3056 if (dev) {
3057 dev_name_source = dev->name;
3058 /* Terminate the table early */
3059 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3060 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3061 } else {
3062 dev_name_source = "default";
3063 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1);
3064 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1;
3065 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2;
3066 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3;
3067 }
3068
3069 if (handler) {
3070 /* RetransTime */
3071 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3072 /* ReachableTime */
3073 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3074 /* RetransTime (in milliseconds)*/
3075 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3076 /* ReachableTime (in milliseconds) */
3077 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3078 }
3079
3080 /* Don't export sysctls to unprivileged users */
3081 if (neigh_parms_net(p)->user_ns != &init_user_ns)
3082 t->neigh_vars[0].procname = NULL;
3083
3084 switch (neigh_parms_family(p)) {
3085 case AF_INET:
3086 p_name = "ipv4";
3087 break;
3088 case AF_INET6:
3089 p_name = "ipv6";
3090 break;
3091 default:
3092 BUG();
3093 }
3094
3095 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3096 p_name, dev_name_source);
3097 t->sysctl_header =
3098 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
3099 if (!t->sysctl_header)
3100 goto free;
3101
3102 p->sysctl_table = t;
3103 return 0;
3104
3105free:
3106 kfree(t);
3107err:
3108 return -ENOBUFS;
3109}
3110EXPORT_SYMBOL(neigh_sysctl_register);
3111
3112void neigh_sysctl_unregister(struct neigh_parms *p)
3113{
3114 if (p->sysctl_table) {
3115 struct neigh_sysctl_table *t = p->sysctl_table;
3116 p->sysctl_table = NULL;
3117 unregister_net_sysctl_table(t->sysctl_header);
3118 kfree(t);
3119 }
3120}
3121EXPORT_SYMBOL(neigh_sysctl_unregister);
3122
3123#endif /* CONFIG_SYSCTL */
3124
3125static int __init neigh_init(void)
3126{
3127 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3128 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3129 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3130
3131 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3132 NULL);
3133 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3134
3135 return 0;
3136}
3137
3138subsys_initcall(neigh_init);
3139