Loading...
1/*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18#include <linux/slab.h>
19#include <linux/types.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/socket.h>
23#include <linux/netdevice.h>
24#include <linux/proc_fs.h>
25#ifdef CONFIG_SYSCTL
26#include <linux/sysctl.h>
27#endif
28#include <linux/times.h>
29#include <net/net_namespace.h>
30#include <net/neighbour.h>
31#include <net/dst.h>
32#include <net/sock.h>
33#include <net/netevent.h>
34#include <net/netlink.h>
35#include <linux/rtnetlink.h>
36#include <linux/random.h>
37#include <linux/string.h>
38#include <linux/log2.h>
39
40#define NEIGH_DEBUG 1
41
42#define NEIGH_PRINTK(x...) printk(x)
43#define NEIGH_NOPRINTK(x...) do { ; } while(0)
44#define NEIGH_PRINTK1 NEIGH_NOPRINTK
45#define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47#if NEIGH_DEBUG >= 1
48#undef NEIGH_PRINTK1
49#define NEIGH_PRINTK1 NEIGH_PRINTK
50#endif
51#if NEIGH_DEBUG >= 2
52#undef NEIGH_PRINTK2
53#define NEIGH_PRINTK2 NEIGH_PRINTK
54#endif
55
56#define PNEIGH_HASHMASK 0xF
57
58static void neigh_timer_handler(unsigned long arg);
59static void __neigh_notify(struct neighbour *n, int type, int flags);
60static void neigh_update_notify(struct neighbour *neigh);
61static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63static struct neigh_table *neigh_tables;
64#ifdef CONFIG_PROC_FS
65static const struct file_operations neigh_stat_seq_fops;
66#endif
67
68/*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99static DEFINE_RWLOCK(neigh_tbl_lock);
100
101static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
102{
103 kfree_skb(skb);
104 return -ENETDOWN;
105}
106
107static void neigh_cleanup_and_release(struct neighbour *neigh)
108{
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114}
115
116/*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122unsigned long neigh_rand_reach_time(unsigned long base)
123{
124 return base ? (net_random() % base) + (base >> 1) : 0;
125}
126EXPORT_SYMBOL(neigh_rand_reach_time);
127
128
129static int neigh_forced_gc(struct neigh_table *tbl)
130{
131 int shrunk = 0;
132 int i;
133 struct neigh_hash_table *nht;
134
135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
136
137 write_lock_bh(&tbl->lock);
138 nht = rcu_dereference_protected(tbl->nht,
139 lockdep_is_held(&tbl->lock));
140 for (i = 0; i < (1 << nht->hash_shift); i++) {
141 struct neighbour *n;
142 struct neighbour __rcu **np;
143
144 np = &nht->hash_buckets[i];
145 while ((n = rcu_dereference_protected(*np,
146 lockdep_is_held(&tbl->lock))) != NULL) {
147 /* Neighbour record may be discarded if:
148 * - nobody refers to it.
149 * - it is not permanent
150 */
151 write_lock(&n->lock);
152 if (atomic_read(&n->refcnt) == 1 &&
153 !(n->nud_state & NUD_PERMANENT)) {
154 rcu_assign_pointer(*np,
155 rcu_dereference_protected(n->next,
156 lockdep_is_held(&tbl->lock)));
157 n->dead = 1;
158 shrunk = 1;
159 write_unlock(&n->lock);
160 neigh_cleanup_and_release(n);
161 continue;
162 }
163 write_unlock(&n->lock);
164 np = &n->next;
165 }
166 }
167
168 tbl->last_flush = jiffies;
169
170 write_unlock_bh(&tbl->lock);
171
172 return shrunk;
173}
174
175static void neigh_add_timer(struct neighbour *n, unsigned long when)
176{
177 neigh_hold(n);
178 if (unlikely(mod_timer(&n->timer, when))) {
179 printk("NEIGH: BUG, double timer add, state is %x\n",
180 n->nud_state);
181 dump_stack();
182 }
183}
184
185static int neigh_del_timer(struct neighbour *n)
186{
187 if ((n->nud_state & NUD_IN_TIMER) &&
188 del_timer(&n->timer)) {
189 neigh_release(n);
190 return 1;
191 }
192 return 0;
193}
194
195static void pneigh_queue_purge(struct sk_buff_head *list)
196{
197 struct sk_buff *skb;
198
199 while ((skb = skb_dequeue(list)) != NULL) {
200 dev_put(skb->dev);
201 kfree_skb(skb);
202 }
203}
204
205static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
206{
207 int i;
208 struct neigh_hash_table *nht;
209
210 nht = rcu_dereference_protected(tbl->nht,
211 lockdep_is_held(&tbl->lock));
212
213 for (i = 0; i < (1 << nht->hash_shift); i++) {
214 struct neighbour *n;
215 struct neighbour __rcu **np = &nht->hash_buckets[i];
216
217 while ((n = rcu_dereference_protected(*np,
218 lockdep_is_held(&tbl->lock))) != NULL) {
219 if (dev && n->dev != dev) {
220 np = &n->next;
221 continue;
222 }
223 rcu_assign_pointer(*np,
224 rcu_dereference_protected(n->next,
225 lockdep_is_held(&tbl->lock)));
226 write_lock(&n->lock);
227 neigh_del_timer(n);
228 n->dead = 1;
229
230 if (atomic_read(&n->refcnt) != 1) {
231 /* The most unpleasant situation.
232 We must destroy neighbour entry,
233 but someone still uses it.
234
235 The destroy will be delayed until
236 the last user releases us, but
237 we must kill timers etc. and move
238 it to safe state.
239 */
240 skb_queue_purge(&n->arp_queue);
241 n->output = neigh_blackhole;
242 if (n->nud_state & NUD_VALID)
243 n->nud_state = NUD_NOARP;
244 else
245 n->nud_state = NUD_NONE;
246 NEIGH_PRINTK2("neigh %p is stray.\n", n);
247 }
248 write_unlock(&n->lock);
249 neigh_cleanup_and_release(n);
250 }
251 }
252}
253
254void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
255{
256 write_lock_bh(&tbl->lock);
257 neigh_flush_dev(tbl, dev);
258 write_unlock_bh(&tbl->lock);
259}
260EXPORT_SYMBOL(neigh_changeaddr);
261
262int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
263{
264 write_lock_bh(&tbl->lock);
265 neigh_flush_dev(tbl, dev);
266 pneigh_ifdown(tbl, dev);
267 write_unlock_bh(&tbl->lock);
268
269 del_timer_sync(&tbl->proxy_timer);
270 pneigh_queue_purge(&tbl->proxy_queue);
271 return 0;
272}
273EXPORT_SYMBOL(neigh_ifdown);
274
275static struct neighbour *neigh_alloc(struct neigh_table *tbl)
276{
277 struct neighbour *n = NULL;
278 unsigned long now = jiffies;
279 int entries;
280
281 entries = atomic_inc_return(&tbl->entries) - 1;
282 if (entries >= tbl->gc_thresh3 ||
283 (entries >= tbl->gc_thresh2 &&
284 time_after(now, tbl->last_flush + 5 * HZ))) {
285 if (!neigh_forced_gc(tbl) &&
286 entries >= tbl->gc_thresh3)
287 goto out_entries;
288 }
289
290 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
291 if (!n)
292 goto out_entries;
293
294 skb_queue_head_init(&n->arp_queue);
295 rwlock_init(&n->lock);
296 seqlock_init(&n->ha_lock);
297 n->updated = n->used = now;
298 n->nud_state = NUD_NONE;
299 n->output = neigh_blackhole;
300 seqlock_init(&n->hh.hh_lock);
301 n->parms = neigh_parms_clone(&tbl->parms);
302 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
303
304 NEIGH_CACHE_STAT_INC(tbl, allocs);
305 n->tbl = tbl;
306 atomic_set(&n->refcnt, 1);
307 n->dead = 1;
308out:
309 return n;
310
311out_entries:
312 atomic_dec(&tbl->entries);
313 goto out;
314}
315
316static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
317{
318 size_t size = (1 << shift) * sizeof(struct neighbour *);
319 struct neigh_hash_table *ret;
320 struct neighbour __rcu **buckets;
321
322 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
323 if (!ret)
324 return NULL;
325 if (size <= PAGE_SIZE)
326 buckets = kzalloc(size, GFP_ATOMIC);
327 else
328 buckets = (struct neighbour __rcu **)
329 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
330 get_order(size));
331 if (!buckets) {
332 kfree(ret);
333 return NULL;
334 }
335 ret->hash_buckets = buckets;
336 ret->hash_shift = shift;
337 get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
338 ret->hash_rnd |= 1;
339 return ret;
340}
341
342static void neigh_hash_free_rcu(struct rcu_head *head)
343{
344 struct neigh_hash_table *nht = container_of(head,
345 struct neigh_hash_table,
346 rcu);
347 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
348 struct neighbour __rcu **buckets = nht->hash_buckets;
349
350 if (size <= PAGE_SIZE)
351 kfree(buckets);
352 else
353 free_pages((unsigned long)buckets, get_order(size));
354 kfree(nht);
355}
356
357static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
358 unsigned long new_shift)
359{
360 unsigned int i, hash;
361 struct neigh_hash_table *new_nht, *old_nht;
362
363 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
364
365 old_nht = rcu_dereference_protected(tbl->nht,
366 lockdep_is_held(&tbl->lock));
367 new_nht = neigh_hash_alloc(new_shift);
368 if (!new_nht)
369 return old_nht;
370
371 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
372 struct neighbour *n, *next;
373
374 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
375 lockdep_is_held(&tbl->lock));
376 n != NULL;
377 n = next) {
378 hash = tbl->hash(n->primary_key, n->dev,
379 new_nht->hash_rnd);
380
381 hash >>= (32 - new_nht->hash_shift);
382 next = rcu_dereference_protected(n->next,
383 lockdep_is_held(&tbl->lock));
384
385 rcu_assign_pointer(n->next,
386 rcu_dereference_protected(
387 new_nht->hash_buckets[hash],
388 lockdep_is_held(&tbl->lock)));
389 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
390 }
391 }
392
393 rcu_assign_pointer(tbl->nht, new_nht);
394 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
395 return new_nht;
396}
397
398struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
399 struct net_device *dev)
400{
401 struct neighbour *n;
402 int key_len = tbl->key_len;
403 u32 hash_val;
404 struct neigh_hash_table *nht;
405
406 NEIGH_CACHE_STAT_INC(tbl, lookups);
407
408 rcu_read_lock_bh();
409 nht = rcu_dereference_bh(tbl->nht);
410 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
411
412 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
413 n != NULL;
414 n = rcu_dereference_bh(n->next)) {
415 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
416 if (!atomic_inc_not_zero(&n->refcnt))
417 n = NULL;
418 NEIGH_CACHE_STAT_INC(tbl, hits);
419 break;
420 }
421 }
422
423 rcu_read_unlock_bh();
424 return n;
425}
426EXPORT_SYMBOL(neigh_lookup);
427
428struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
429 const void *pkey)
430{
431 struct neighbour *n;
432 int key_len = tbl->key_len;
433 u32 hash_val;
434 struct neigh_hash_table *nht;
435
436 NEIGH_CACHE_STAT_INC(tbl, lookups);
437
438 rcu_read_lock_bh();
439 nht = rcu_dereference_bh(tbl->nht);
440 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
441
442 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
443 n != NULL;
444 n = rcu_dereference_bh(n->next)) {
445 if (!memcmp(n->primary_key, pkey, key_len) &&
446 net_eq(dev_net(n->dev), net)) {
447 if (!atomic_inc_not_zero(&n->refcnt))
448 n = NULL;
449 NEIGH_CACHE_STAT_INC(tbl, hits);
450 break;
451 }
452 }
453
454 rcu_read_unlock_bh();
455 return n;
456}
457EXPORT_SYMBOL(neigh_lookup_nodev);
458
459struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
460 struct net_device *dev)
461{
462 u32 hash_val;
463 int key_len = tbl->key_len;
464 int error;
465 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
466 struct neigh_hash_table *nht;
467
468 if (!n) {
469 rc = ERR_PTR(-ENOBUFS);
470 goto out;
471 }
472
473 memcpy(n->primary_key, pkey, key_len);
474 n->dev = dev;
475 dev_hold(dev);
476
477 /* Protocol specific setup. */
478 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
479 rc = ERR_PTR(error);
480 goto out_neigh_release;
481 }
482
483 /* Device specific setup. */
484 if (n->parms->neigh_setup &&
485 (error = n->parms->neigh_setup(n)) < 0) {
486 rc = ERR_PTR(error);
487 goto out_neigh_release;
488 }
489
490 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
491
492 write_lock_bh(&tbl->lock);
493 nht = rcu_dereference_protected(tbl->nht,
494 lockdep_is_held(&tbl->lock));
495
496 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
497 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
498
499 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
500
501 if (n->parms->dead) {
502 rc = ERR_PTR(-EINVAL);
503 goto out_tbl_unlock;
504 }
505
506 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
507 lockdep_is_held(&tbl->lock));
508 n1 != NULL;
509 n1 = rcu_dereference_protected(n1->next,
510 lockdep_is_held(&tbl->lock))) {
511 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
512 neigh_hold(n1);
513 rc = n1;
514 goto out_tbl_unlock;
515 }
516 }
517
518 n->dead = 0;
519 neigh_hold(n);
520 rcu_assign_pointer(n->next,
521 rcu_dereference_protected(nht->hash_buckets[hash_val],
522 lockdep_is_held(&tbl->lock)));
523 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
524 write_unlock_bh(&tbl->lock);
525 NEIGH_PRINTK2("neigh %p is created.\n", n);
526 rc = n;
527out:
528 return rc;
529out_tbl_unlock:
530 write_unlock_bh(&tbl->lock);
531out_neigh_release:
532 neigh_release(n);
533 goto out;
534}
535EXPORT_SYMBOL(neigh_create);
536
537static u32 pneigh_hash(const void *pkey, int key_len)
538{
539 u32 hash_val = *(u32 *)(pkey + key_len - 4);
540 hash_val ^= (hash_val >> 16);
541 hash_val ^= hash_val >> 8;
542 hash_val ^= hash_val >> 4;
543 hash_val &= PNEIGH_HASHMASK;
544 return hash_val;
545}
546
547static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
548 struct net *net,
549 const void *pkey,
550 int key_len,
551 struct net_device *dev)
552{
553 while (n) {
554 if (!memcmp(n->key, pkey, key_len) &&
555 net_eq(pneigh_net(n), net) &&
556 (n->dev == dev || !n->dev))
557 return n;
558 n = n->next;
559 }
560 return NULL;
561}
562
563struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
564 struct net *net, const void *pkey, struct net_device *dev)
565{
566 int key_len = tbl->key_len;
567 u32 hash_val = pneigh_hash(pkey, key_len);
568
569 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
570 net, pkey, key_len, dev);
571}
572EXPORT_SYMBOL_GPL(__pneigh_lookup);
573
574struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
575 struct net *net, const void *pkey,
576 struct net_device *dev, int creat)
577{
578 struct pneigh_entry *n;
579 int key_len = tbl->key_len;
580 u32 hash_val = pneigh_hash(pkey, key_len);
581
582 read_lock_bh(&tbl->lock);
583 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
584 net, pkey, key_len, dev);
585 read_unlock_bh(&tbl->lock);
586
587 if (n || !creat)
588 goto out;
589
590 ASSERT_RTNL();
591
592 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
593 if (!n)
594 goto out;
595
596 write_pnet(&n->net, hold_net(net));
597 memcpy(n->key, pkey, key_len);
598 n->dev = dev;
599 if (dev)
600 dev_hold(dev);
601
602 if (tbl->pconstructor && tbl->pconstructor(n)) {
603 if (dev)
604 dev_put(dev);
605 release_net(net);
606 kfree(n);
607 n = NULL;
608 goto out;
609 }
610
611 write_lock_bh(&tbl->lock);
612 n->next = tbl->phash_buckets[hash_val];
613 tbl->phash_buckets[hash_val] = n;
614 write_unlock_bh(&tbl->lock);
615out:
616 return n;
617}
618EXPORT_SYMBOL(pneigh_lookup);
619
620
621int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
622 struct net_device *dev)
623{
624 struct pneigh_entry *n, **np;
625 int key_len = tbl->key_len;
626 u32 hash_val = pneigh_hash(pkey, key_len);
627
628 write_lock_bh(&tbl->lock);
629 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
630 np = &n->next) {
631 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
632 net_eq(pneigh_net(n), net)) {
633 *np = n->next;
634 write_unlock_bh(&tbl->lock);
635 if (tbl->pdestructor)
636 tbl->pdestructor(n);
637 if (n->dev)
638 dev_put(n->dev);
639 release_net(pneigh_net(n));
640 kfree(n);
641 return 0;
642 }
643 }
644 write_unlock_bh(&tbl->lock);
645 return -ENOENT;
646}
647
648static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
649{
650 struct pneigh_entry *n, **np;
651 u32 h;
652
653 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
654 np = &tbl->phash_buckets[h];
655 while ((n = *np) != NULL) {
656 if (!dev || n->dev == dev) {
657 *np = n->next;
658 if (tbl->pdestructor)
659 tbl->pdestructor(n);
660 if (n->dev)
661 dev_put(n->dev);
662 release_net(pneigh_net(n));
663 kfree(n);
664 continue;
665 }
666 np = &n->next;
667 }
668 }
669 return -ENOENT;
670}
671
672static void neigh_parms_destroy(struct neigh_parms *parms);
673
674static inline void neigh_parms_put(struct neigh_parms *parms)
675{
676 if (atomic_dec_and_test(&parms->refcnt))
677 neigh_parms_destroy(parms);
678}
679
680static void neigh_destroy_rcu(struct rcu_head *head)
681{
682 struct neighbour *neigh = container_of(head, struct neighbour, rcu);
683
684 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
685}
686/*
687 * neighbour must already be out of the table;
688 *
689 */
690void neigh_destroy(struct neighbour *neigh)
691{
692 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
693
694 if (!neigh->dead) {
695 printk(KERN_WARNING
696 "Destroying alive neighbour %p\n", neigh);
697 dump_stack();
698 return;
699 }
700
701 if (neigh_del_timer(neigh))
702 printk(KERN_WARNING "Impossible event.\n");
703
704 skb_queue_purge(&neigh->arp_queue);
705
706 dev_put(neigh->dev);
707 neigh_parms_put(neigh->parms);
708
709 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
710
711 atomic_dec(&neigh->tbl->entries);
712 call_rcu(&neigh->rcu, neigh_destroy_rcu);
713}
714EXPORT_SYMBOL(neigh_destroy);
715
716/* Neighbour state is suspicious;
717 disable fast path.
718
719 Called with write_locked neigh.
720 */
721static void neigh_suspect(struct neighbour *neigh)
722{
723 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
724
725 neigh->output = neigh->ops->output;
726}
727
728/* Neighbour state is OK;
729 enable fast path.
730
731 Called with write_locked neigh.
732 */
733static void neigh_connect(struct neighbour *neigh)
734{
735 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
736
737 neigh->output = neigh->ops->connected_output;
738}
739
740static void neigh_periodic_work(struct work_struct *work)
741{
742 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
743 struct neighbour *n;
744 struct neighbour __rcu **np;
745 unsigned int i;
746 struct neigh_hash_table *nht;
747
748 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
749
750 write_lock_bh(&tbl->lock);
751 nht = rcu_dereference_protected(tbl->nht,
752 lockdep_is_held(&tbl->lock));
753
754 /*
755 * periodically recompute ReachableTime from random function
756 */
757
758 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
759 struct neigh_parms *p;
760 tbl->last_rand = jiffies;
761 for (p = &tbl->parms; p; p = p->next)
762 p->reachable_time =
763 neigh_rand_reach_time(p->base_reachable_time);
764 }
765
766 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
767 np = &nht->hash_buckets[i];
768
769 while ((n = rcu_dereference_protected(*np,
770 lockdep_is_held(&tbl->lock))) != NULL) {
771 unsigned int state;
772
773 write_lock(&n->lock);
774
775 state = n->nud_state;
776 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
777 write_unlock(&n->lock);
778 goto next_elt;
779 }
780
781 if (time_before(n->used, n->confirmed))
782 n->used = n->confirmed;
783
784 if (atomic_read(&n->refcnt) == 1 &&
785 (state == NUD_FAILED ||
786 time_after(jiffies, n->used + n->parms->gc_staletime))) {
787 *np = n->next;
788 n->dead = 1;
789 write_unlock(&n->lock);
790 neigh_cleanup_and_release(n);
791 continue;
792 }
793 write_unlock(&n->lock);
794
795next_elt:
796 np = &n->next;
797 }
798 /*
799 * It's fine to release lock here, even if hash table
800 * grows while we are preempted.
801 */
802 write_unlock_bh(&tbl->lock);
803 cond_resched();
804 write_lock_bh(&tbl->lock);
805 }
806 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
807 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
808 * base_reachable_time.
809 */
810 schedule_delayed_work(&tbl->gc_work,
811 tbl->parms.base_reachable_time >> 1);
812 write_unlock_bh(&tbl->lock);
813}
814
815static __inline__ int neigh_max_probes(struct neighbour *n)
816{
817 struct neigh_parms *p = n->parms;
818 return (n->nud_state & NUD_PROBE) ?
819 p->ucast_probes :
820 p->ucast_probes + p->app_probes + p->mcast_probes;
821}
822
823static void neigh_invalidate(struct neighbour *neigh)
824 __releases(neigh->lock)
825 __acquires(neigh->lock)
826{
827 struct sk_buff *skb;
828
829 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
830 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
831 neigh->updated = jiffies;
832
833 /* It is very thin place. report_unreachable is very complicated
834 routine. Particularly, it can hit the same neighbour entry!
835
836 So that, we try to be accurate and avoid dead loop. --ANK
837 */
838 while (neigh->nud_state == NUD_FAILED &&
839 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
840 write_unlock(&neigh->lock);
841 neigh->ops->error_report(neigh, skb);
842 write_lock(&neigh->lock);
843 }
844 skb_queue_purge(&neigh->arp_queue);
845}
846
847/* Called when a timer expires for a neighbour entry. */
848
849static void neigh_timer_handler(unsigned long arg)
850{
851 unsigned long now, next;
852 struct neighbour *neigh = (struct neighbour *)arg;
853 unsigned state;
854 int notify = 0;
855
856 write_lock(&neigh->lock);
857
858 state = neigh->nud_state;
859 now = jiffies;
860 next = now + HZ;
861
862 if (!(state & NUD_IN_TIMER)) {
863#ifndef CONFIG_SMP
864 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
865#endif
866 goto out;
867 }
868
869 if (state & NUD_REACHABLE) {
870 if (time_before_eq(now,
871 neigh->confirmed + neigh->parms->reachable_time)) {
872 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
873 next = neigh->confirmed + neigh->parms->reachable_time;
874 } else if (time_before_eq(now,
875 neigh->used + neigh->parms->delay_probe_time)) {
876 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
877 neigh->nud_state = NUD_DELAY;
878 neigh->updated = jiffies;
879 neigh_suspect(neigh);
880 next = now + neigh->parms->delay_probe_time;
881 } else {
882 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
883 neigh->nud_state = NUD_STALE;
884 neigh->updated = jiffies;
885 neigh_suspect(neigh);
886 notify = 1;
887 }
888 } else if (state & NUD_DELAY) {
889 if (time_before_eq(now,
890 neigh->confirmed + neigh->parms->delay_probe_time)) {
891 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
892 neigh->nud_state = NUD_REACHABLE;
893 neigh->updated = jiffies;
894 neigh_connect(neigh);
895 notify = 1;
896 next = neigh->confirmed + neigh->parms->reachable_time;
897 } else {
898 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
899 neigh->nud_state = NUD_PROBE;
900 neigh->updated = jiffies;
901 atomic_set(&neigh->probes, 0);
902 next = now + neigh->parms->retrans_time;
903 }
904 } else {
905 /* NUD_PROBE|NUD_INCOMPLETE */
906 next = now + neigh->parms->retrans_time;
907 }
908
909 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
910 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
911 neigh->nud_state = NUD_FAILED;
912 notify = 1;
913 neigh_invalidate(neigh);
914 }
915
916 if (neigh->nud_state & NUD_IN_TIMER) {
917 if (time_before(next, jiffies + HZ/2))
918 next = jiffies + HZ/2;
919 if (!mod_timer(&neigh->timer, next))
920 neigh_hold(neigh);
921 }
922 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
923 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
924 /* keep skb alive even if arp_queue overflows */
925 if (skb)
926 skb = skb_copy(skb, GFP_ATOMIC);
927 write_unlock(&neigh->lock);
928 neigh->ops->solicit(neigh, skb);
929 atomic_inc(&neigh->probes);
930 kfree_skb(skb);
931 } else {
932out:
933 write_unlock(&neigh->lock);
934 }
935
936 if (notify)
937 neigh_update_notify(neigh);
938
939 neigh_release(neigh);
940}
941
942int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
943{
944 int rc;
945 unsigned long now;
946
947 write_lock_bh(&neigh->lock);
948
949 rc = 0;
950 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
951 goto out_unlock_bh;
952
953 now = jiffies;
954
955 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
956 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
957 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
958 neigh->nud_state = NUD_INCOMPLETE;
959 neigh->updated = jiffies;
960 neigh_add_timer(neigh, now + 1);
961 } else {
962 neigh->nud_state = NUD_FAILED;
963 neigh->updated = jiffies;
964 write_unlock_bh(&neigh->lock);
965
966 kfree_skb(skb);
967 return 1;
968 }
969 } else if (neigh->nud_state & NUD_STALE) {
970 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
971 neigh->nud_state = NUD_DELAY;
972 neigh->updated = jiffies;
973 neigh_add_timer(neigh,
974 jiffies + neigh->parms->delay_probe_time);
975 }
976
977 if (neigh->nud_state == NUD_INCOMPLETE) {
978 if (skb) {
979 if (skb_queue_len(&neigh->arp_queue) >=
980 neigh->parms->queue_len) {
981 struct sk_buff *buff;
982 buff = __skb_dequeue(&neigh->arp_queue);
983 kfree_skb(buff);
984 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
985 }
986 skb_dst_force(skb);
987 __skb_queue_tail(&neigh->arp_queue, skb);
988 }
989 rc = 1;
990 }
991out_unlock_bh:
992 write_unlock_bh(&neigh->lock);
993 return rc;
994}
995EXPORT_SYMBOL(__neigh_event_send);
996
997static void neigh_update_hhs(struct neighbour *neigh)
998{
999 struct hh_cache *hh;
1000 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1001 = NULL;
1002
1003 if (neigh->dev->header_ops)
1004 update = neigh->dev->header_ops->cache_update;
1005
1006 if (update) {
1007 hh = &neigh->hh;
1008 if (hh->hh_len) {
1009 write_seqlock_bh(&hh->hh_lock);
1010 update(hh, neigh->dev, neigh->ha);
1011 write_sequnlock_bh(&hh->hh_lock);
1012 }
1013 }
1014}
1015
1016
1017
1018/* Generic update routine.
1019 -- lladdr is new lladdr or NULL, if it is not supplied.
1020 -- new is new state.
1021 -- flags
1022 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1023 if it is different.
1024 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1025 lladdr instead of overriding it
1026 if it is different.
1027 It also allows to retain current state
1028 if lladdr is unchanged.
1029 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1030
1031 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1032 NTF_ROUTER flag.
1033 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1034 a router.
1035
1036 Caller MUST hold reference count on the entry.
1037 */
1038
1039int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1040 u32 flags)
1041{
1042 u8 old;
1043 int err;
1044 int notify = 0;
1045 struct net_device *dev;
1046 int update_isrouter = 0;
1047
1048 write_lock_bh(&neigh->lock);
1049
1050 dev = neigh->dev;
1051 old = neigh->nud_state;
1052 err = -EPERM;
1053
1054 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1055 (old & (NUD_NOARP | NUD_PERMANENT)))
1056 goto out;
1057
1058 if (!(new & NUD_VALID)) {
1059 neigh_del_timer(neigh);
1060 if (old & NUD_CONNECTED)
1061 neigh_suspect(neigh);
1062 neigh->nud_state = new;
1063 err = 0;
1064 notify = old & NUD_VALID;
1065 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1066 (new & NUD_FAILED)) {
1067 neigh_invalidate(neigh);
1068 notify = 1;
1069 }
1070 goto out;
1071 }
1072
1073 /* Compare new lladdr with cached one */
1074 if (!dev->addr_len) {
1075 /* First case: device needs no address. */
1076 lladdr = neigh->ha;
1077 } else if (lladdr) {
1078 /* The second case: if something is already cached
1079 and a new address is proposed:
1080 - compare new & old
1081 - if they are different, check override flag
1082 */
1083 if ((old & NUD_VALID) &&
1084 !memcmp(lladdr, neigh->ha, dev->addr_len))
1085 lladdr = neigh->ha;
1086 } else {
1087 /* No address is supplied; if we know something,
1088 use it, otherwise discard the request.
1089 */
1090 err = -EINVAL;
1091 if (!(old & NUD_VALID))
1092 goto out;
1093 lladdr = neigh->ha;
1094 }
1095
1096 if (new & NUD_CONNECTED)
1097 neigh->confirmed = jiffies;
1098 neigh->updated = jiffies;
1099
1100 /* If entry was valid and address is not changed,
1101 do not change entry state, if new one is STALE.
1102 */
1103 err = 0;
1104 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1105 if (old & NUD_VALID) {
1106 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1107 update_isrouter = 0;
1108 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1109 (old & NUD_CONNECTED)) {
1110 lladdr = neigh->ha;
1111 new = NUD_STALE;
1112 } else
1113 goto out;
1114 } else {
1115 if (lladdr == neigh->ha && new == NUD_STALE &&
1116 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1117 (old & NUD_CONNECTED))
1118 )
1119 new = old;
1120 }
1121 }
1122
1123 if (new != old) {
1124 neigh_del_timer(neigh);
1125 if (new & NUD_IN_TIMER)
1126 neigh_add_timer(neigh, (jiffies +
1127 ((new & NUD_REACHABLE) ?
1128 neigh->parms->reachable_time :
1129 0)));
1130 neigh->nud_state = new;
1131 }
1132
1133 if (lladdr != neigh->ha) {
1134 write_seqlock(&neigh->ha_lock);
1135 memcpy(&neigh->ha, lladdr, dev->addr_len);
1136 write_sequnlock(&neigh->ha_lock);
1137 neigh_update_hhs(neigh);
1138 if (!(new & NUD_CONNECTED))
1139 neigh->confirmed = jiffies -
1140 (neigh->parms->base_reachable_time << 1);
1141 notify = 1;
1142 }
1143 if (new == old)
1144 goto out;
1145 if (new & NUD_CONNECTED)
1146 neigh_connect(neigh);
1147 else
1148 neigh_suspect(neigh);
1149 if (!(old & NUD_VALID)) {
1150 struct sk_buff *skb;
1151
1152 /* Again: avoid dead loop if something went wrong */
1153
1154 while (neigh->nud_state & NUD_VALID &&
1155 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1156 struct dst_entry *dst = skb_dst(skb);
1157 struct neighbour *n2, *n1 = neigh;
1158 write_unlock_bh(&neigh->lock);
1159 /* On shaper/eql skb->dst->neighbour != neigh :( */
1160 if (dst && (n2 = dst_get_neighbour(dst)) != NULL)
1161 n1 = n2;
1162 n1->output(n1, skb);
1163 write_lock_bh(&neigh->lock);
1164 }
1165 skb_queue_purge(&neigh->arp_queue);
1166 }
1167out:
1168 if (update_isrouter) {
1169 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1170 (neigh->flags | NTF_ROUTER) :
1171 (neigh->flags & ~NTF_ROUTER);
1172 }
1173 write_unlock_bh(&neigh->lock);
1174
1175 if (notify)
1176 neigh_update_notify(neigh);
1177
1178 return err;
1179}
1180EXPORT_SYMBOL(neigh_update);
1181
1182struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1183 u8 *lladdr, void *saddr,
1184 struct net_device *dev)
1185{
1186 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1187 lladdr || !dev->addr_len);
1188 if (neigh)
1189 neigh_update(neigh, lladdr, NUD_STALE,
1190 NEIGH_UPDATE_F_OVERRIDE);
1191 return neigh;
1192}
1193EXPORT_SYMBOL(neigh_event_ns);
1194
1195/* called with read_lock_bh(&n->lock); */
1196static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1197{
1198 struct net_device *dev = dst->dev;
1199 __be16 prot = dst->ops->protocol;
1200 struct hh_cache *hh = &n->hh;
1201
1202 write_lock_bh(&n->lock);
1203
1204 /* Only one thread can come in here and initialize the
1205 * hh_cache entry.
1206 */
1207 if (!hh->hh_len)
1208 dev->header_ops->cache(n, hh, prot);
1209
1210 write_unlock_bh(&n->lock);
1211}
1212
1213/* This function can be used in contexts, where only old dev_queue_xmit
1214 * worked, f.e. if you want to override normal output path (eql, shaper),
1215 * but resolution is not made yet.
1216 */
1217
1218int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1219{
1220 struct net_device *dev = skb->dev;
1221
1222 __skb_pull(skb, skb_network_offset(skb));
1223
1224 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1225 skb->len) < 0 &&
1226 dev->header_ops->rebuild(skb))
1227 return 0;
1228
1229 return dev_queue_xmit(skb);
1230}
1231EXPORT_SYMBOL(neigh_compat_output);
1232
1233/* Slow and careful. */
1234
1235int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1236{
1237 struct dst_entry *dst = skb_dst(skb);
1238 int rc = 0;
1239
1240 if (!dst)
1241 goto discard;
1242
1243 __skb_pull(skb, skb_network_offset(skb));
1244
1245 if (!neigh_event_send(neigh, skb)) {
1246 int err;
1247 struct net_device *dev = neigh->dev;
1248 unsigned int seq;
1249
1250 if (dev->header_ops->cache && !neigh->hh.hh_len)
1251 neigh_hh_init(neigh, dst);
1252
1253 do {
1254 seq = read_seqbegin(&neigh->ha_lock);
1255 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1256 neigh->ha, NULL, skb->len);
1257 } while (read_seqretry(&neigh->ha_lock, seq));
1258
1259 if (err >= 0)
1260 rc = dev_queue_xmit(skb);
1261 else
1262 goto out_kfree_skb;
1263 }
1264out:
1265 return rc;
1266discard:
1267 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1268 dst, neigh);
1269out_kfree_skb:
1270 rc = -EINVAL;
1271 kfree_skb(skb);
1272 goto out;
1273}
1274EXPORT_SYMBOL(neigh_resolve_output);
1275
1276/* As fast as possible without hh cache */
1277
1278int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1279{
1280 struct net_device *dev = neigh->dev;
1281 unsigned int seq;
1282 int err;
1283
1284 __skb_pull(skb, skb_network_offset(skb));
1285
1286 do {
1287 seq = read_seqbegin(&neigh->ha_lock);
1288 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1289 neigh->ha, NULL, skb->len);
1290 } while (read_seqretry(&neigh->ha_lock, seq));
1291
1292 if (err >= 0)
1293 err = dev_queue_xmit(skb);
1294 else {
1295 err = -EINVAL;
1296 kfree_skb(skb);
1297 }
1298 return err;
1299}
1300EXPORT_SYMBOL(neigh_connected_output);
1301
1302int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1303{
1304 return dev_queue_xmit(skb);
1305}
1306EXPORT_SYMBOL(neigh_direct_output);
1307
1308static void neigh_proxy_process(unsigned long arg)
1309{
1310 struct neigh_table *tbl = (struct neigh_table *)arg;
1311 long sched_next = 0;
1312 unsigned long now = jiffies;
1313 struct sk_buff *skb, *n;
1314
1315 spin_lock(&tbl->proxy_queue.lock);
1316
1317 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1318 long tdif = NEIGH_CB(skb)->sched_next - now;
1319
1320 if (tdif <= 0) {
1321 struct net_device *dev = skb->dev;
1322
1323 __skb_unlink(skb, &tbl->proxy_queue);
1324 if (tbl->proxy_redo && netif_running(dev)) {
1325 rcu_read_lock();
1326 tbl->proxy_redo(skb);
1327 rcu_read_unlock();
1328 } else {
1329 kfree_skb(skb);
1330 }
1331
1332 dev_put(dev);
1333 } else if (!sched_next || tdif < sched_next)
1334 sched_next = tdif;
1335 }
1336 del_timer(&tbl->proxy_timer);
1337 if (sched_next)
1338 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1339 spin_unlock(&tbl->proxy_queue.lock);
1340}
1341
1342void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1343 struct sk_buff *skb)
1344{
1345 unsigned long now = jiffies;
1346 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1347
1348 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1349 kfree_skb(skb);
1350 return;
1351 }
1352
1353 NEIGH_CB(skb)->sched_next = sched_next;
1354 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1355
1356 spin_lock(&tbl->proxy_queue.lock);
1357 if (del_timer(&tbl->proxy_timer)) {
1358 if (time_before(tbl->proxy_timer.expires, sched_next))
1359 sched_next = tbl->proxy_timer.expires;
1360 }
1361 skb_dst_drop(skb);
1362 dev_hold(skb->dev);
1363 __skb_queue_tail(&tbl->proxy_queue, skb);
1364 mod_timer(&tbl->proxy_timer, sched_next);
1365 spin_unlock(&tbl->proxy_queue.lock);
1366}
1367EXPORT_SYMBOL(pneigh_enqueue);
1368
1369static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1370 struct net *net, int ifindex)
1371{
1372 struct neigh_parms *p;
1373
1374 for (p = &tbl->parms; p; p = p->next) {
1375 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1376 (!p->dev && !ifindex))
1377 return p;
1378 }
1379
1380 return NULL;
1381}
1382
1383struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1384 struct neigh_table *tbl)
1385{
1386 struct neigh_parms *p, *ref;
1387 struct net *net = dev_net(dev);
1388 const struct net_device_ops *ops = dev->netdev_ops;
1389
1390 ref = lookup_neigh_parms(tbl, net, 0);
1391 if (!ref)
1392 return NULL;
1393
1394 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1395 if (p) {
1396 p->tbl = tbl;
1397 atomic_set(&p->refcnt, 1);
1398 p->reachable_time =
1399 neigh_rand_reach_time(p->base_reachable_time);
1400
1401 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1402 kfree(p);
1403 return NULL;
1404 }
1405
1406 dev_hold(dev);
1407 p->dev = dev;
1408 write_pnet(&p->net, hold_net(net));
1409 p->sysctl_table = NULL;
1410 write_lock_bh(&tbl->lock);
1411 p->next = tbl->parms.next;
1412 tbl->parms.next = p;
1413 write_unlock_bh(&tbl->lock);
1414 }
1415 return p;
1416}
1417EXPORT_SYMBOL(neigh_parms_alloc);
1418
1419static void neigh_rcu_free_parms(struct rcu_head *head)
1420{
1421 struct neigh_parms *parms =
1422 container_of(head, struct neigh_parms, rcu_head);
1423
1424 neigh_parms_put(parms);
1425}
1426
1427void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1428{
1429 struct neigh_parms **p;
1430
1431 if (!parms || parms == &tbl->parms)
1432 return;
1433 write_lock_bh(&tbl->lock);
1434 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1435 if (*p == parms) {
1436 *p = parms->next;
1437 parms->dead = 1;
1438 write_unlock_bh(&tbl->lock);
1439 if (parms->dev)
1440 dev_put(parms->dev);
1441 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1442 return;
1443 }
1444 }
1445 write_unlock_bh(&tbl->lock);
1446 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1447}
1448EXPORT_SYMBOL(neigh_parms_release);
1449
1450static void neigh_parms_destroy(struct neigh_parms *parms)
1451{
1452 release_net(neigh_parms_net(parms));
1453 kfree(parms);
1454}
1455
1456static struct lock_class_key neigh_table_proxy_queue_class;
1457
1458void neigh_table_init_no_netlink(struct neigh_table *tbl)
1459{
1460 unsigned long now = jiffies;
1461 unsigned long phsize;
1462
1463 write_pnet(&tbl->parms.net, &init_net);
1464 atomic_set(&tbl->parms.refcnt, 1);
1465 tbl->parms.reachable_time =
1466 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1467
1468 if (!tbl->kmem_cachep)
1469 tbl->kmem_cachep =
1470 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1471 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1472 NULL);
1473 tbl->stats = alloc_percpu(struct neigh_statistics);
1474 if (!tbl->stats)
1475 panic("cannot create neighbour cache statistics");
1476
1477#ifdef CONFIG_PROC_FS
1478 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1479 &neigh_stat_seq_fops, tbl))
1480 panic("cannot create neighbour proc dir entry");
1481#endif
1482
1483 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1484
1485 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1486 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1487
1488 if (!tbl->nht || !tbl->phash_buckets)
1489 panic("cannot allocate neighbour cache hashes");
1490
1491 rwlock_init(&tbl->lock);
1492 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1493 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1494 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1495 skb_queue_head_init_class(&tbl->proxy_queue,
1496 &neigh_table_proxy_queue_class);
1497
1498 tbl->last_flush = now;
1499 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1500}
1501EXPORT_SYMBOL(neigh_table_init_no_netlink);
1502
1503void neigh_table_init(struct neigh_table *tbl)
1504{
1505 struct neigh_table *tmp;
1506
1507 neigh_table_init_no_netlink(tbl);
1508 write_lock(&neigh_tbl_lock);
1509 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1510 if (tmp->family == tbl->family)
1511 break;
1512 }
1513 tbl->next = neigh_tables;
1514 neigh_tables = tbl;
1515 write_unlock(&neigh_tbl_lock);
1516
1517 if (unlikely(tmp)) {
1518 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1519 "family %d\n", tbl->family);
1520 dump_stack();
1521 }
1522}
1523EXPORT_SYMBOL(neigh_table_init);
1524
1525int neigh_table_clear(struct neigh_table *tbl)
1526{
1527 struct neigh_table **tp;
1528
1529 /* It is not clean... Fix it to unload IPv6 module safely */
1530 cancel_delayed_work_sync(&tbl->gc_work);
1531 del_timer_sync(&tbl->proxy_timer);
1532 pneigh_queue_purge(&tbl->proxy_queue);
1533 neigh_ifdown(tbl, NULL);
1534 if (atomic_read(&tbl->entries))
1535 printk(KERN_CRIT "neighbour leakage\n");
1536 write_lock(&neigh_tbl_lock);
1537 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1538 if (*tp == tbl) {
1539 *tp = tbl->next;
1540 break;
1541 }
1542 }
1543 write_unlock(&neigh_tbl_lock);
1544
1545 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1546 neigh_hash_free_rcu);
1547 tbl->nht = NULL;
1548
1549 kfree(tbl->phash_buckets);
1550 tbl->phash_buckets = NULL;
1551
1552 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1553
1554 free_percpu(tbl->stats);
1555 tbl->stats = NULL;
1556
1557 kmem_cache_destroy(tbl->kmem_cachep);
1558 tbl->kmem_cachep = NULL;
1559
1560 return 0;
1561}
1562EXPORT_SYMBOL(neigh_table_clear);
1563
1564static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1565{
1566 struct net *net = sock_net(skb->sk);
1567 struct ndmsg *ndm;
1568 struct nlattr *dst_attr;
1569 struct neigh_table *tbl;
1570 struct net_device *dev = NULL;
1571 int err = -EINVAL;
1572
1573 ASSERT_RTNL();
1574 if (nlmsg_len(nlh) < sizeof(*ndm))
1575 goto out;
1576
1577 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1578 if (dst_attr == NULL)
1579 goto out;
1580
1581 ndm = nlmsg_data(nlh);
1582 if (ndm->ndm_ifindex) {
1583 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1584 if (dev == NULL) {
1585 err = -ENODEV;
1586 goto out;
1587 }
1588 }
1589
1590 read_lock(&neigh_tbl_lock);
1591 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1592 struct neighbour *neigh;
1593
1594 if (tbl->family != ndm->ndm_family)
1595 continue;
1596 read_unlock(&neigh_tbl_lock);
1597
1598 if (nla_len(dst_attr) < tbl->key_len)
1599 goto out;
1600
1601 if (ndm->ndm_flags & NTF_PROXY) {
1602 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1603 goto out;
1604 }
1605
1606 if (dev == NULL)
1607 goto out;
1608
1609 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1610 if (neigh == NULL) {
1611 err = -ENOENT;
1612 goto out;
1613 }
1614
1615 err = neigh_update(neigh, NULL, NUD_FAILED,
1616 NEIGH_UPDATE_F_OVERRIDE |
1617 NEIGH_UPDATE_F_ADMIN);
1618 neigh_release(neigh);
1619 goto out;
1620 }
1621 read_unlock(&neigh_tbl_lock);
1622 err = -EAFNOSUPPORT;
1623
1624out:
1625 return err;
1626}
1627
1628static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1629{
1630 struct net *net = sock_net(skb->sk);
1631 struct ndmsg *ndm;
1632 struct nlattr *tb[NDA_MAX+1];
1633 struct neigh_table *tbl;
1634 struct net_device *dev = NULL;
1635 int err;
1636
1637 ASSERT_RTNL();
1638 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1639 if (err < 0)
1640 goto out;
1641
1642 err = -EINVAL;
1643 if (tb[NDA_DST] == NULL)
1644 goto out;
1645
1646 ndm = nlmsg_data(nlh);
1647 if (ndm->ndm_ifindex) {
1648 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1649 if (dev == NULL) {
1650 err = -ENODEV;
1651 goto out;
1652 }
1653
1654 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1655 goto out;
1656 }
1657
1658 read_lock(&neigh_tbl_lock);
1659 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1660 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1661 struct neighbour *neigh;
1662 void *dst, *lladdr;
1663
1664 if (tbl->family != ndm->ndm_family)
1665 continue;
1666 read_unlock(&neigh_tbl_lock);
1667
1668 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1669 goto out;
1670 dst = nla_data(tb[NDA_DST]);
1671 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1672
1673 if (ndm->ndm_flags & NTF_PROXY) {
1674 struct pneigh_entry *pn;
1675
1676 err = -ENOBUFS;
1677 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1678 if (pn) {
1679 pn->flags = ndm->ndm_flags;
1680 err = 0;
1681 }
1682 goto out;
1683 }
1684
1685 if (dev == NULL)
1686 goto out;
1687
1688 neigh = neigh_lookup(tbl, dst, dev);
1689 if (neigh == NULL) {
1690 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1691 err = -ENOENT;
1692 goto out;
1693 }
1694
1695 neigh = __neigh_lookup_errno(tbl, dst, dev);
1696 if (IS_ERR(neigh)) {
1697 err = PTR_ERR(neigh);
1698 goto out;
1699 }
1700 } else {
1701 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1702 err = -EEXIST;
1703 neigh_release(neigh);
1704 goto out;
1705 }
1706
1707 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1708 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1709 }
1710
1711 if (ndm->ndm_flags & NTF_USE) {
1712 neigh_event_send(neigh, NULL);
1713 err = 0;
1714 } else
1715 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1716 neigh_release(neigh);
1717 goto out;
1718 }
1719
1720 read_unlock(&neigh_tbl_lock);
1721 err = -EAFNOSUPPORT;
1722out:
1723 return err;
1724}
1725
1726static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1727{
1728 struct nlattr *nest;
1729
1730 nest = nla_nest_start(skb, NDTA_PARMS);
1731 if (nest == NULL)
1732 return -ENOBUFS;
1733
1734 if (parms->dev)
1735 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1736
1737 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1738 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1739 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1740 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1741 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1742 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1743 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1744 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1745 parms->base_reachable_time);
1746 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1747 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1748 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1749 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1750 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1751 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1752
1753 return nla_nest_end(skb, nest);
1754
1755nla_put_failure:
1756 nla_nest_cancel(skb, nest);
1757 return -EMSGSIZE;
1758}
1759
1760static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1761 u32 pid, u32 seq, int type, int flags)
1762{
1763 struct nlmsghdr *nlh;
1764 struct ndtmsg *ndtmsg;
1765
1766 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1767 if (nlh == NULL)
1768 return -EMSGSIZE;
1769
1770 ndtmsg = nlmsg_data(nlh);
1771
1772 read_lock_bh(&tbl->lock);
1773 ndtmsg->ndtm_family = tbl->family;
1774 ndtmsg->ndtm_pad1 = 0;
1775 ndtmsg->ndtm_pad2 = 0;
1776
1777 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1778 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1779 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1780 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1781 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1782
1783 {
1784 unsigned long now = jiffies;
1785 unsigned int flush_delta = now - tbl->last_flush;
1786 unsigned int rand_delta = now - tbl->last_rand;
1787 struct neigh_hash_table *nht;
1788 struct ndt_config ndc = {
1789 .ndtc_key_len = tbl->key_len,
1790 .ndtc_entry_size = tbl->entry_size,
1791 .ndtc_entries = atomic_read(&tbl->entries),
1792 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1793 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1794 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1795 };
1796
1797 rcu_read_lock_bh();
1798 nht = rcu_dereference_bh(tbl->nht);
1799 ndc.ndtc_hash_rnd = nht->hash_rnd;
1800 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1801 rcu_read_unlock_bh();
1802
1803 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1804 }
1805
1806 {
1807 int cpu;
1808 struct ndt_stats ndst;
1809
1810 memset(&ndst, 0, sizeof(ndst));
1811
1812 for_each_possible_cpu(cpu) {
1813 struct neigh_statistics *st;
1814
1815 st = per_cpu_ptr(tbl->stats, cpu);
1816 ndst.ndts_allocs += st->allocs;
1817 ndst.ndts_destroys += st->destroys;
1818 ndst.ndts_hash_grows += st->hash_grows;
1819 ndst.ndts_res_failed += st->res_failed;
1820 ndst.ndts_lookups += st->lookups;
1821 ndst.ndts_hits += st->hits;
1822 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1823 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1824 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1825 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1826 }
1827
1828 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1829 }
1830
1831 BUG_ON(tbl->parms.dev);
1832 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1833 goto nla_put_failure;
1834
1835 read_unlock_bh(&tbl->lock);
1836 return nlmsg_end(skb, nlh);
1837
1838nla_put_failure:
1839 read_unlock_bh(&tbl->lock);
1840 nlmsg_cancel(skb, nlh);
1841 return -EMSGSIZE;
1842}
1843
1844static int neightbl_fill_param_info(struct sk_buff *skb,
1845 struct neigh_table *tbl,
1846 struct neigh_parms *parms,
1847 u32 pid, u32 seq, int type,
1848 unsigned int flags)
1849{
1850 struct ndtmsg *ndtmsg;
1851 struct nlmsghdr *nlh;
1852
1853 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1854 if (nlh == NULL)
1855 return -EMSGSIZE;
1856
1857 ndtmsg = nlmsg_data(nlh);
1858
1859 read_lock_bh(&tbl->lock);
1860 ndtmsg->ndtm_family = tbl->family;
1861 ndtmsg->ndtm_pad1 = 0;
1862 ndtmsg->ndtm_pad2 = 0;
1863
1864 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1865 neightbl_fill_parms(skb, parms) < 0)
1866 goto errout;
1867
1868 read_unlock_bh(&tbl->lock);
1869 return nlmsg_end(skb, nlh);
1870errout:
1871 read_unlock_bh(&tbl->lock);
1872 nlmsg_cancel(skb, nlh);
1873 return -EMSGSIZE;
1874}
1875
1876static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1877 [NDTA_NAME] = { .type = NLA_STRING },
1878 [NDTA_THRESH1] = { .type = NLA_U32 },
1879 [NDTA_THRESH2] = { .type = NLA_U32 },
1880 [NDTA_THRESH3] = { .type = NLA_U32 },
1881 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1882 [NDTA_PARMS] = { .type = NLA_NESTED },
1883};
1884
1885static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1886 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1887 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1888 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1889 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1890 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1891 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1892 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1893 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1894 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1895 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1896 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1897 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1898 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1899};
1900
1901static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1902{
1903 struct net *net = sock_net(skb->sk);
1904 struct neigh_table *tbl;
1905 struct ndtmsg *ndtmsg;
1906 struct nlattr *tb[NDTA_MAX+1];
1907 int err;
1908
1909 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1910 nl_neightbl_policy);
1911 if (err < 0)
1912 goto errout;
1913
1914 if (tb[NDTA_NAME] == NULL) {
1915 err = -EINVAL;
1916 goto errout;
1917 }
1918
1919 ndtmsg = nlmsg_data(nlh);
1920 read_lock(&neigh_tbl_lock);
1921 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1922 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1923 continue;
1924
1925 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1926 break;
1927 }
1928
1929 if (tbl == NULL) {
1930 err = -ENOENT;
1931 goto errout_locked;
1932 }
1933
1934 /*
1935 * We acquire tbl->lock to be nice to the periodic timers and
1936 * make sure they always see a consistent set of values.
1937 */
1938 write_lock_bh(&tbl->lock);
1939
1940 if (tb[NDTA_PARMS]) {
1941 struct nlattr *tbp[NDTPA_MAX+1];
1942 struct neigh_parms *p;
1943 int i, ifindex = 0;
1944
1945 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1946 nl_ntbl_parm_policy);
1947 if (err < 0)
1948 goto errout_tbl_lock;
1949
1950 if (tbp[NDTPA_IFINDEX])
1951 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1952
1953 p = lookup_neigh_parms(tbl, net, ifindex);
1954 if (p == NULL) {
1955 err = -ENOENT;
1956 goto errout_tbl_lock;
1957 }
1958
1959 for (i = 1; i <= NDTPA_MAX; i++) {
1960 if (tbp[i] == NULL)
1961 continue;
1962
1963 switch (i) {
1964 case NDTPA_QUEUE_LEN:
1965 p->queue_len = nla_get_u32(tbp[i]);
1966 break;
1967 case NDTPA_PROXY_QLEN:
1968 p->proxy_qlen = nla_get_u32(tbp[i]);
1969 break;
1970 case NDTPA_APP_PROBES:
1971 p->app_probes = nla_get_u32(tbp[i]);
1972 break;
1973 case NDTPA_UCAST_PROBES:
1974 p->ucast_probes = nla_get_u32(tbp[i]);
1975 break;
1976 case NDTPA_MCAST_PROBES:
1977 p->mcast_probes = nla_get_u32(tbp[i]);
1978 break;
1979 case NDTPA_BASE_REACHABLE_TIME:
1980 p->base_reachable_time = nla_get_msecs(tbp[i]);
1981 break;
1982 case NDTPA_GC_STALETIME:
1983 p->gc_staletime = nla_get_msecs(tbp[i]);
1984 break;
1985 case NDTPA_DELAY_PROBE_TIME:
1986 p->delay_probe_time = nla_get_msecs(tbp[i]);
1987 break;
1988 case NDTPA_RETRANS_TIME:
1989 p->retrans_time = nla_get_msecs(tbp[i]);
1990 break;
1991 case NDTPA_ANYCAST_DELAY:
1992 p->anycast_delay = nla_get_msecs(tbp[i]);
1993 break;
1994 case NDTPA_PROXY_DELAY:
1995 p->proxy_delay = nla_get_msecs(tbp[i]);
1996 break;
1997 case NDTPA_LOCKTIME:
1998 p->locktime = nla_get_msecs(tbp[i]);
1999 break;
2000 }
2001 }
2002 }
2003
2004 if (tb[NDTA_THRESH1])
2005 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2006
2007 if (tb[NDTA_THRESH2])
2008 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2009
2010 if (tb[NDTA_THRESH3])
2011 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2012
2013 if (tb[NDTA_GC_INTERVAL])
2014 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2015
2016 err = 0;
2017
2018errout_tbl_lock:
2019 write_unlock_bh(&tbl->lock);
2020errout_locked:
2021 read_unlock(&neigh_tbl_lock);
2022errout:
2023 return err;
2024}
2025
2026static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2027{
2028 struct net *net = sock_net(skb->sk);
2029 int family, tidx, nidx = 0;
2030 int tbl_skip = cb->args[0];
2031 int neigh_skip = cb->args[1];
2032 struct neigh_table *tbl;
2033
2034 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2035
2036 read_lock(&neigh_tbl_lock);
2037 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2038 struct neigh_parms *p;
2039
2040 if (tidx < tbl_skip || (family && tbl->family != family))
2041 continue;
2042
2043 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2044 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2045 NLM_F_MULTI) <= 0)
2046 break;
2047
2048 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2049 if (!net_eq(neigh_parms_net(p), net))
2050 continue;
2051
2052 if (nidx < neigh_skip)
2053 goto next;
2054
2055 if (neightbl_fill_param_info(skb, tbl, p,
2056 NETLINK_CB(cb->skb).pid,
2057 cb->nlh->nlmsg_seq,
2058 RTM_NEWNEIGHTBL,
2059 NLM_F_MULTI) <= 0)
2060 goto out;
2061 next:
2062 nidx++;
2063 }
2064
2065 neigh_skip = 0;
2066 }
2067out:
2068 read_unlock(&neigh_tbl_lock);
2069 cb->args[0] = tidx;
2070 cb->args[1] = nidx;
2071
2072 return skb->len;
2073}
2074
2075static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2076 u32 pid, u32 seq, int type, unsigned int flags)
2077{
2078 unsigned long now = jiffies;
2079 struct nda_cacheinfo ci;
2080 struct nlmsghdr *nlh;
2081 struct ndmsg *ndm;
2082
2083 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2084 if (nlh == NULL)
2085 return -EMSGSIZE;
2086
2087 ndm = nlmsg_data(nlh);
2088 ndm->ndm_family = neigh->ops->family;
2089 ndm->ndm_pad1 = 0;
2090 ndm->ndm_pad2 = 0;
2091 ndm->ndm_flags = neigh->flags;
2092 ndm->ndm_type = neigh->type;
2093 ndm->ndm_ifindex = neigh->dev->ifindex;
2094
2095 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2096
2097 read_lock_bh(&neigh->lock);
2098 ndm->ndm_state = neigh->nud_state;
2099 if (neigh->nud_state & NUD_VALID) {
2100 char haddr[MAX_ADDR_LEN];
2101
2102 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2103 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2104 read_unlock_bh(&neigh->lock);
2105 goto nla_put_failure;
2106 }
2107 }
2108
2109 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2110 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2111 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2112 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2113 read_unlock_bh(&neigh->lock);
2114
2115 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2116 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2117
2118 return nlmsg_end(skb, nlh);
2119
2120nla_put_failure:
2121 nlmsg_cancel(skb, nlh);
2122 return -EMSGSIZE;
2123}
2124
2125static void neigh_update_notify(struct neighbour *neigh)
2126{
2127 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2128 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2129}
2130
2131static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2132 struct netlink_callback *cb)
2133{
2134 struct net *net = sock_net(skb->sk);
2135 struct neighbour *n;
2136 int rc, h, s_h = cb->args[1];
2137 int idx, s_idx = idx = cb->args[2];
2138 struct neigh_hash_table *nht;
2139
2140 rcu_read_lock_bh();
2141 nht = rcu_dereference_bh(tbl->nht);
2142
2143 for (h = 0; h < (1 << nht->hash_shift); h++) {
2144 if (h < s_h)
2145 continue;
2146 if (h > s_h)
2147 s_idx = 0;
2148 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2149 n != NULL;
2150 n = rcu_dereference_bh(n->next)) {
2151 if (!net_eq(dev_net(n->dev), net))
2152 continue;
2153 if (idx < s_idx)
2154 goto next;
2155 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2156 cb->nlh->nlmsg_seq,
2157 RTM_NEWNEIGH,
2158 NLM_F_MULTI) <= 0) {
2159 rc = -1;
2160 goto out;
2161 }
2162next:
2163 idx++;
2164 }
2165 }
2166 rc = skb->len;
2167out:
2168 rcu_read_unlock_bh();
2169 cb->args[1] = h;
2170 cb->args[2] = idx;
2171 return rc;
2172}
2173
2174static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2175{
2176 struct neigh_table *tbl;
2177 int t, family, s_t;
2178
2179 read_lock(&neigh_tbl_lock);
2180 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2181 s_t = cb->args[0];
2182
2183 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2184 if (t < s_t || (family && tbl->family != family))
2185 continue;
2186 if (t > s_t)
2187 memset(&cb->args[1], 0, sizeof(cb->args) -
2188 sizeof(cb->args[0]));
2189 if (neigh_dump_table(tbl, skb, cb) < 0)
2190 break;
2191 }
2192 read_unlock(&neigh_tbl_lock);
2193
2194 cb->args[0] = t;
2195 return skb->len;
2196}
2197
2198void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2199{
2200 int chain;
2201 struct neigh_hash_table *nht;
2202
2203 rcu_read_lock_bh();
2204 nht = rcu_dereference_bh(tbl->nht);
2205
2206 read_lock(&tbl->lock); /* avoid resizes */
2207 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2208 struct neighbour *n;
2209
2210 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2211 n != NULL;
2212 n = rcu_dereference_bh(n->next))
2213 cb(n, cookie);
2214 }
2215 read_unlock(&tbl->lock);
2216 rcu_read_unlock_bh();
2217}
2218EXPORT_SYMBOL(neigh_for_each);
2219
2220/* The tbl->lock must be held as a writer and BH disabled. */
2221void __neigh_for_each_release(struct neigh_table *tbl,
2222 int (*cb)(struct neighbour *))
2223{
2224 int chain;
2225 struct neigh_hash_table *nht;
2226
2227 nht = rcu_dereference_protected(tbl->nht,
2228 lockdep_is_held(&tbl->lock));
2229 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2230 struct neighbour *n;
2231 struct neighbour __rcu **np;
2232
2233 np = &nht->hash_buckets[chain];
2234 while ((n = rcu_dereference_protected(*np,
2235 lockdep_is_held(&tbl->lock))) != NULL) {
2236 int release;
2237
2238 write_lock(&n->lock);
2239 release = cb(n);
2240 if (release) {
2241 rcu_assign_pointer(*np,
2242 rcu_dereference_protected(n->next,
2243 lockdep_is_held(&tbl->lock)));
2244 n->dead = 1;
2245 } else
2246 np = &n->next;
2247 write_unlock(&n->lock);
2248 if (release)
2249 neigh_cleanup_and_release(n);
2250 }
2251 }
2252}
2253EXPORT_SYMBOL(__neigh_for_each_release);
2254
2255#ifdef CONFIG_PROC_FS
2256
2257static struct neighbour *neigh_get_first(struct seq_file *seq)
2258{
2259 struct neigh_seq_state *state = seq->private;
2260 struct net *net = seq_file_net(seq);
2261 struct neigh_hash_table *nht = state->nht;
2262 struct neighbour *n = NULL;
2263 int bucket = state->bucket;
2264
2265 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2266 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2267 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2268
2269 while (n) {
2270 if (!net_eq(dev_net(n->dev), net))
2271 goto next;
2272 if (state->neigh_sub_iter) {
2273 loff_t fakep = 0;
2274 void *v;
2275
2276 v = state->neigh_sub_iter(state, n, &fakep);
2277 if (!v)
2278 goto next;
2279 }
2280 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2281 break;
2282 if (n->nud_state & ~NUD_NOARP)
2283 break;
2284next:
2285 n = rcu_dereference_bh(n->next);
2286 }
2287
2288 if (n)
2289 break;
2290 }
2291 state->bucket = bucket;
2292
2293 return n;
2294}
2295
2296static struct neighbour *neigh_get_next(struct seq_file *seq,
2297 struct neighbour *n,
2298 loff_t *pos)
2299{
2300 struct neigh_seq_state *state = seq->private;
2301 struct net *net = seq_file_net(seq);
2302 struct neigh_hash_table *nht = state->nht;
2303
2304 if (state->neigh_sub_iter) {
2305 void *v = state->neigh_sub_iter(state, n, pos);
2306 if (v)
2307 return n;
2308 }
2309 n = rcu_dereference_bh(n->next);
2310
2311 while (1) {
2312 while (n) {
2313 if (!net_eq(dev_net(n->dev), net))
2314 goto next;
2315 if (state->neigh_sub_iter) {
2316 void *v = state->neigh_sub_iter(state, n, pos);
2317 if (v)
2318 return n;
2319 goto next;
2320 }
2321 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2322 break;
2323
2324 if (n->nud_state & ~NUD_NOARP)
2325 break;
2326next:
2327 n = rcu_dereference_bh(n->next);
2328 }
2329
2330 if (n)
2331 break;
2332
2333 if (++state->bucket >= (1 << nht->hash_shift))
2334 break;
2335
2336 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2337 }
2338
2339 if (n && pos)
2340 --(*pos);
2341 return n;
2342}
2343
2344static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2345{
2346 struct neighbour *n = neigh_get_first(seq);
2347
2348 if (n) {
2349 --(*pos);
2350 while (*pos) {
2351 n = neigh_get_next(seq, n, pos);
2352 if (!n)
2353 break;
2354 }
2355 }
2356 return *pos ? NULL : n;
2357}
2358
2359static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2360{
2361 struct neigh_seq_state *state = seq->private;
2362 struct net *net = seq_file_net(seq);
2363 struct neigh_table *tbl = state->tbl;
2364 struct pneigh_entry *pn = NULL;
2365 int bucket = state->bucket;
2366
2367 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2368 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2369 pn = tbl->phash_buckets[bucket];
2370 while (pn && !net_eq(pneigh_net(pn), net))
2371 pn = pn->next;
2372 if (pn)
2373 break;
2374 }
2375 state->bucket = bucket;
2376
2377 return pn;
2378}
2379
2380static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2381 struct pneigh_entry *pn,
2382 loff_t *pos)
2383{
2384 struct neigh_seq_state *state = seq->private;
2385 struct net *net = seq_file_net(seq);
2386 struct neigh_table *tbl = state->tbl;
2387
2388 pn = pn->next;
2389 while (!pn) {
2390 if (++state->bucket > PNEIGH_HASHMASK)
2391 break;
2392 pn = tbl->phash_buckets[state->bucket];
2393 while (pn && !net_eq(pneigh_net(pn), net))
2394 pn = pn->next;
2395 if (pn)
2396 break;
2397 }
2398
2399 if (pn && pos)
2400 --(*pos);
2401
2402 return pn;
2403}
2404
2405static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2406{
2407 struct pneigh_entry *pn = pneigh_get_first(seq);
2408
2409 if (pn) {
2410 --(*pos);
2411 while (*pos) {
2412 pn = pneigh_get_next(seq, pn, pos);
2413 if (!pn)
2414 break;
2415 }
2416 }
2417 return *pos ? NULL : pn;
2418}
2419
2420static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2421{
2422 struct neigh_seq_state *state = seq->private;
2423 void *rc;
2424 loff_t idxpos = *pos;
2425
2426 rc = neigh_get_idx(seq, &idxpos);
2427 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2428 rc = pneigh_get_idx(seq, &idxpos);
2429
2430 return rc;
2431}
2432
2433void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2434 __acquires(rcu_bh)
2435{
2436 struct neigh_seq_state *state = seq->private;
2437
2438 state->tbl = tbl;
2439 state->bucket = 0;
2440 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2441
2442 rcu_read_lock_bh();
2443 state->nht = rcu_dereference_bh(tbl->nht);
2444
2445 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2446}
2447EXPORT_SYMBOL(neigh_seq_start);
2448
2449void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450{
2451 struct neigh_seq_state *state;
2452 void *rc;
2453
2454 if (v == SEQ_START_TOKEN) {
2455 rc = neigh_get_first(seq);
2456 goto out;
2457 }
2458
2459 state = seq->private;
2460 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2461 rc = neigh_get_next(seq, v, NULL);
2462 if (rc)
2463 goto out;
2464 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2465 rc = pneigh_get_first(seq);
2466 } else {
2467 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2468 rc = pneigh_get_next(seq, v, NULL);
2469 }
2470out:
2471 ++(*pos);
2472 return rc;
2473}
2474EXPORT_SYMBOL(neigh_seq_next);
2475
2476void neigh_seq_stop(struct seq_file *seq, void *v)
2477 __releases(rcu_bh)
2478{
2479 rcu_read_unlock_bh();
2480}
2481EXPORT_SYMBOL(neigh_seq_stop);
2482
2483/* statistics via seq_file */
2484
2485static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2486{
2487 struct neigh_table *tbl = seq->private;
2488 int cpu;
2489
2490 if (*pos == 0)
2491 return SEQ_START_TOKEN;
2492
2493 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2494 if (!cpu_possible(cpu))
2495 continue;
2496 *pos = cpu+1;
2497 return per_cpu_ptr(tbl->stats, cpu);
2498 }
2499 return NULL;
2500}
2501
2502static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2503{
2504 struct neigh_table *tbl = seq->private;
2505 int cpu;
2506
2507 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2508 if (!cpu_possible(cpu))
2509 continue;
2510 *pos = cpu+1;
2511 return per_cpu_ptr(tbl->stats, cpu);
2512 }
2513 return NULL;
2514}
2515
2516static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2517{
2518
2519}
2520
2521static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2522{
2523 struct neigh_table *tbl = seq->private;
2524 struct neigh_statistics *st = v;
2525
2526 if (v == SEQ_START_TOKEN) {
2527 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2528 return 0;
2529 }
2530
2531 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2532 "%08lx %08lx %08lx %08lx %08lx\n",
2533 atomic_read(&tbl->entries),
2534
2535 st->allocs,
2536 st->destroys,
2537 st->hash_grows,
2538
2539 st->lookups,
2540 st->hits,
2541
2542 st->res_failed,
2543
2544 st->rcv_probes_mcast,
2545 st->rcv_probes_ucast,
2546
2547 st->periodic_gc_runs,
2548 st->forced_gc_runs,
2549 st->unres_discards
2550 );
2551
2552 return 0;
2553}
2554
2555static const struct seq_operations neigh_stat_seq_ops = {
2556 .start = neigh_stat_seq_start,
2557 .next = neigh_stat_seq_next,
2558 .stop = neigh_stat_seq_stop,
2559 .show = neigh_stat_seq_show,
2560};
2561
2562static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2563{
2564 int ret = seq_open(file, &neigh_stat_seq_ops);
2565
2566 if (!ret) {
2567 struct seq_file *sf = file->private_data;
2568 sf->private = PDE(inode)->data;
2569 }
2570 return ret;
2571};
2572
2573static const struct file_operations neigh_stat_seq_fops = {
2574 .owner = THIS_MODULE,
2575 .open = neigh_stat_seq_open,
2576 .read = seq_read,
2577 .llseek = seq_lseek,
2578 .release = seq_release,
2579};
2580
2581#endif /* CONFIG_PROC_FS */
2582
2583static inline size_t neigh_nlmsg_size(void)
2584{
2585 return NLMSG_ALIGN(sizeof(struct ndmsg))
2586 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2587 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2588 + nla_total_size(sizeof(struct nda_cacheinfo))
2589 + nla_total_size(4); /* NDA_PROBES */
2590}
2591
2592static void __neigh_notify(struct neighbour *n, int type, int flags)
2593{
2594 struct net *net = dev_net(n->dev);
2595 struct sk_buff *skb;
2596 int err = -ENOBUFS;
2597
2598 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2599 if (skb == NULL)
2600 goto errout;
2601
2602 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2603 if (err < 0) {
2604 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2605 WARN_ON(err == -EMSGSIZE);
2606 kfree_skb(skb);
2607 goto errout;
2608 }
2609 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2610 return;
2611errout:
2612 if (err < 0)
2613 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2614}
2615
2616#ifdef CONFIG_ARPD
2617void neigh_app_ns(struct neighbour *n)
2618{
2619 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2620}
2621EXPORT_SYMBOL(neigh_app_ns);
2622#endif /* CONFIG_ARPD */
2623
2624#ifdef CONFIG_SYSCTL
2625
2626#define NEIGH_VARS_MAX 19
2627
2628static struct neigh_sysctl_table {
2629 struct ctl_table_header *sysctl_header;
2630 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2631 char *dev_name;
2632} neigh_sysctl_template __read_mostly = {
2633 .neigh_vars = {
2634 {
2635 .procname = "mcast_solicit",
2636 .maxlen = sizeof(int),
2637 .mode = 0644,
2638 .proc_handler = proc_dointvec,
2639 },
2640 {
2641 .procname = "ucast_solicit",
2642 .maxlen = sizeof(int),
2643 .mode = 0644,
2644 .proc_handler = proc_dointvec,
2645 },
2646 {
2647 .procname = "app_solicit",
2648 .maxlen = sizeof(int),
2649 .mode = 0644,
2650 .proc_handler = proc_dointvec,
2651 },
2652 {
2653 .procname = "retrans_time",
2654 .maxlen = sizeof(int),
2655 .mode = 0644,
2656 .proc_handler = proc_dointvec_userhz_jiffies,
2657 },
2658 {
2659 .procname = "base_reachable_time",
2660 .maxlen = sizeof(int),
2661 .mode = 0644,
2662 .proc_handler = proc_dointvec_jiffies,
2663 },
2664 {
2665 .procname = "delay_first_probe_time",
2666 .maxlen = sizeof(int),
2667 .mode = 0644,
2668 .proc_handler = proc_dointvec_jiffies,
2669 },
2670 {
2671 .procname = "gc_stale_time",
2672 .maxlen = sizeof(int),
2673 .mode = 0644,
2674 .proc_handler = proc_dointvec_jiffies,
2675 },
2676 {
2677 .procname = "unres_qlen",
2678 .maxlen = sizeof(int),
2679 .mode = 0644,
2680 .proc_handler = proc_dointvec,
2681 },
2682 {
2683 .procname = "proxy_qlen",
2684 .maxlen = sizeof(int),
2685 .mode = 0644,
2686 .proc_handler = proc_dointvec,
2687 },
2688 {
2689 .procname = "anycast_delay",
2690 .maxlen = sizeof(int),
2691 .mode = 0644,
2692 .proc_handler = proc_dointvec_userhz_jiffies,
2693 },
2694 {
2695 .procname = "proxy_delay",
2696 .maxlen = sizeof(int),
2697 .mode = 0644,
2698 .proc_handler = proc_dointvec_userhz_jiffies,
2699 },
2700 {
2701 .procname = "locktime",
2702 .maxlen = sizeof(int),
2703 .mode = 0644,
2704 .proc_handler = proc_dointvec_userhz_jiffies,
2705 },
2706 {
2707 .procname = "retrans_time_ms",
2708 .maxlen = sizeof(int),
2709 .mode = 0644,
2710 .proc_handler = proc_dointvec_ms_jiffies,
2711 },
2712 {
2713 .procname = "base_reachable_time_ms",
2714 .maxlen = sizeof(int),
2715 .mode = 0644,
2716 .proc_handler = proc_dointvec_ms_jiffies,
2717 },
2718 {
2719 .procname = "gc_interval",
2720 .maxlen = sizeof(int),
2721 .mode = 0644,
2722 .proc_handler = proc_dointvec_jiffies,
2723 },
2724 {
2725 .procname = "gc_thresh1",
2726 .maxlen = sizeof(int),
2727 .mode = 0644,
2728 .proc_handler = proc_dointvec,
2729 },
2730 {
2731 .procname = "gc_thresh2",
2732 .maxlen = sizeof(int),
2733 .mode = 0644,
2734 .proc_handler = proc_dointvec,
2735 },
2736 {
2737 .procname = "gc_thresh3",
2738 .maxlen = sizeof(int),
2739 .mode = 0644,
2740 .proc_handler = proc_dointvec,
2741 },
2742 {},
2743 },
2744};
2745
2746int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2747 char *p_name, proc_handler *handler)
2748{
2749 struct neigh_sysctl_table *t;
2750 const char *dev_name_source = NULL;
2751
2752#define NEIGH_CTL_PATH_ROOT 0
2753#define NEIGH_CTL_PATH_PROTO 1
2754#define NEIGH_CTL_PATH_NEIGH 2
2755#define NEIGH_CTL_PATH_DEV 3
2756
2757 struct ctl_path neigh_path[] = {
2758 { .procname = "net", },
2759 { .procname = "proto", },
2760 { .procname = "neigh", },
2761 { .procname = "default", },
2762 { },
2763 };
2764
2765 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2766 if (!t)
2767 goto err;
2768
2769 t->neigh_vars[0].data = &p->mcast_probes;
2770 t->neigh_vars[1].data = &p->ucast_probes;
2771 t->neigh_vars[2].data = &p->app_probes;
2772 t->neigh_vars[3].data = &p->retrans_time;
2773 t->neigh_vars[4].data = &p->base_reachable_time;
2774 t->neigh_vars[5].data = &p->delay_probe_time;
2775 t->neigh_vars[6].data = &p->gc_staletime;
2776 t->neigh_vars[7].data = &p->queue_len;
2777 t->neigh_vars[8].data = &p->proxy_qlen;
2778 t->neigh_vars[9].data = &p->anycast_delay;
2779 t->neigh_vars[10].data = &p->proxy_delay;
2780 t->neigh_vars[11].data = &p->locktime;
2781 t->neigh_vars[12].data = &p->retrans_time;
2782 t->neigh_vars[13].data = &p->base_reachable_time;
2783
2784 if (dev) {
2785 dev_name_source = dev->name;
2786 /* Terminate the table early */
2787 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2788 } else {
2789 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2790 t->neigh_vars[14].data = (int *)(p + 1);
2791 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2792 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2793 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2794 }
2795
2796
2797 if (handler) {
2798 /* RetransTime */
2799 t->neigh_vars[3].proc_handler = handler;
2800 t->neigh_vars[3].extra1 = dev;
2801 /* ReachableTime */
2802 t->neigh_vars[4].proc_handler = handler;
2803 t->neigh_vars[4].extra1 = dev;
2804 /* RetransTime (in milliseconds)*/
2805 t->neigh_vars[12].proc_handler = handler;
2806 t->neigh_vars[12].extra1 = dev;
2807 /* ReachableTime (in milliseconds) */
2808 t->neigh_vars[13].proc_handler = handler;
2809 t->neigh_vars[13].extra1 = dev;
2810 }
2811
2812 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2813 if (!t->dev_name)
2814 goto free;
2815
2816 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2817 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2818
2819 t->sysctl_header =
2820 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2821 if (!t->sysctl_header)
2822 goto free_procname;
2823
2824 p->sysctl_table = t;
2825 return 0;
2826
2827free_procname:
2828 kfree(t->dev_name);
2829free:
2830 kfree(t);
2831err:
2832 return -ENOBUFS;
2833}
2834EXPORT_SYMBOL(neigh_sysctl_register);
2835
2836void neigh_sysctl_unregister(struct neigh_parms *p)
2837{
2838 if (p->sysctl_table) {
2839 struct neigh_sysctl_table *t = p->sysctl_table;
2840 p->sysctl_table = NULL;
2841 unregister_sysctl_table(t->sysctl_header);
2842 kfree(t->dev_name);
2843 kfree(t);
2844 }
2845}
2846EXPORT_SYMBOL(neigh_sysctl_unregister);
2847
2848#endif /* CONFIG_SYSCTL */
2849
2850static int __init neigh_init(void)
2851{
2852 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
2853 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
2854 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
2855
2856 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
2857 NULL);
2858 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
2859
2860 return 0;
2861}
2862
2863subsys_initcall(neigh_init);
2864
1/*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/slab.h>
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/socket.h>
25#include <linux/netdevice.h>
26#include <linux/proc_fs.h>
27#ifdef CONFIG_SYSCTL
28#include <linux/sysctl.h>
29#endif
30#include <linux/times.h>
31#include <net/net_namespace.h>
32#include <net/neighbour.h>
33#include <net/dst.h>
34#include <net/sock.h>
35#include <net/netevent.h>
36#include <net/netlink.h>
37#include <linux/rtnetlink.h>
38#include <linux/random.h>
39#include <linux/string.h>
40#include <linux/log2.h>
41
42#define NEIGH_DEBUG 1
43
44#define NEIGH_PRINTK(x...) printk(x)
45#define NEIGH_NOPRINTK(x...) do { ; } while(0)
46#define NEIGH_PRINTK1 NEIGH_NOPRINTK
47#define NEIGH_PRINTK2 NEIGH_NOPRINTK
48
49#if NEIGH_DEBUG >= 1
50#undef NEIGH_PRINTK1
51#define NEIGH_PRINTK1 NEIGH_PRINTK
52#endif
53#if NEIGH_DEBUG >= 2
54#undef NEIGH_PRINTK2
55#define NEIGH_PRINTK2 NEIGH_PRINTK
56#endif
57
58#define PNEIGH_HASHMASK 0xF
59
60static void neigh_timer_handler(unsigned long arg);
61static void __neigh_notify(struct neighbour *n, int type, int flags);
62static void neigh_update_notify(struct neighbour *neigh);
63static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
64
65static struct neigh_table *neigh_tables;
66#ifdef CONFIG_PROC_FS
67static const struct file_operations neigh_stat_seq_fops;
68#endif
69
70/*
71 Neighbour hash table buckets are protected with rwlock tbl->lock.
72
73 - All the scans/updates to hash buckets MUST be made under this lock.
74 - NOTHING clever should be made under this lock: no callbacks
75 to protocol backends, no attempts to send something to network.
76 It will result in deadlocks, if backend/driver wants to use neighbour
77 cache.
78 - If the entry requires some non-trivial actions, increase
79 its reference count and release table lock.
80
81 Neighbour entries are protected:
82 - with reference count.
83 - with rwlock neigh->lock
84
85 Reference count prevents destruction.
86
87 neigh->lock mainly serializes ll address data and its validity state.
88 However, the same lock is used to protect another entry fields:
89 - timer
90 - resolution queue
91
92 Again, nothing clever shall be made under neigh->lock,
93 the most complicated procedure, which we allow is dev->hard_header.
94 It is supposed, that dev->hard_header is simplistic and does
95 not make callbacks to neighbour tables.
96
97 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
98 list of neighbour tables. This list is used only in process context,
99 */
100
101static DEFINE_RWLOCK(neigh_tbl_lock);
102
103static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
104{
105 kfree_skb(skb);
106 return -ENETDOWN;
107}
108
109static void neigh_cleanup_and_release(struct neighbour *neigh)
110{
111 if (neigh->parms->neigh_cleanup)
112 neigh->parms->neigh_cleanup(neigh);
113
114 __neigh_notify(neigh, RTM_DELNEIGH, 0);
115 neigh_release(neigh);
116}
117
118/*
119 * It is random distribution in the interval (1/2)*base...(3/2)*base.
120 * It corresponds to default IPv6 settings and is not overridable,
121 * because it is really reasonable choice.
122 */
123
124unsigned long neigh_rand_reach_time(unsigned long base)
125{
126 return base ? (net_random() % base) + (base >> 1) : 0;
127}
128EXPORT_SYMBOL(neigh_rand_reach_time);
129
130
131static int neigh_forced_gc(struct neigh_table *tbl)
132{
133 int shrunk = 0;
134 int i;
135 struct neigh_hash_table *nht;
136
137 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
138
139 write_lock_bh(&tbl->lock);
140 nht = rcu_dereference_protected(tbl->nht,
141 lockdep_is_held(&tbl->lock));
142 for (i = 0; i < (1 << nht->hash_shift); i++) {
143 struct neighbour *n;
144 struct neighbour __rcu **np;
145
146 np = &nht->hash_buckets[i];
147 while ((n = rcu_dereference_protected(*np,
148 lockdep_is_held(&tbl->lock))) != NULL) {
149 /* Neighbour record may be discarded if:
150 * - nobody refers to it.
151 * - it is not permanent
152 */
153 write_lock(&n->lock);
154 if (atomic_read(&n->refcnt) == 1 &&
155 !(n->nud_state & NUD_PERMANENT)) {
156 rcu_assign_pointer(*np,
157 rcu_dereference_protected(n->next,
158 lockdep_is_held(&tbl->lock)));
159 n->dead = 1;
160 shrunk = 1;
161 write_unlock(&n->lock);
162 neigh_cleanup_and_release(n);
163 continue;
164 }
165 write_unlock(&n->lock);
166 np = &n->next;
167 }
168 }
169
170 tbl->last_flush = jiffies;
171
172 write_unlock_bh(&tbl->lock);
173
174 return shrunk;
175}
176
177static void neigh_add_timer(struct neighbour *n, unsigned long when)
178{
179 neigh_hold(n);
180 if (unlikely(mod_timer(&n->timer, when))) {
181 printk("NEIGH: BUG, double timer add, state is %x\n",
182 n->nud_state);
183 dump_stack();
184 }
185}
186
187static int neigh_del_timer(struct neighbour *n)
188{
189 if ((n->nud_state & NUD_IN_TIMER) &&
190 del_timer(&n->timer)) {
191 neigh_release(n);
192 return 1;
193 }
194 return 0;
195}
196
197static void pneigh_queue_purge(struct sk_buff_head *list)
198{
199 struct sk_buff *skb;
200
201 while ((skb = skb_dequeue(list)) != NULL) {
202 dev_put(skb->dev);
203 kfree_skb(skb);
204 }
205}
206
207static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
208{
209 int i;
210 struct neigh_hash_table *nht;
211
212 nht = rcu_dereference_protected(tbl->nht,
213 lockdep_is_held(&tbl->lock));
214
215 for (i = 0; i < (1 << nht->hash_shift); i++) {
216 struct neighbour *n;
217 struct neighbour __rcu **np = &nht->hash_buckets[i];
218
219 while ((n = rcu_dereference_protected(*np,
220 lockdep_is_held(&tbl->lock))) != NULL) {
221 if (dev && n->dev != dev) {
222 np = &n->next;
223 continue;
224 }
225 rcu_assign_pointer(*np,
226 rcu_dereference_protected(n->next,
227 lockdep_is_held(&tbl->lock)));
228 write_lock(&n->lock);
229 neigh_del_timer(n);
230 n->dead = 1;
231
232 if (atomic_read(&n->refcnt) != 1) {
233 /* The most unpleasant situation.
234 We must destroy neighbour entry,
235 but someone still uses it.
236
237 The destroy will be delayed until
238 the last user releases us, but
239 we must kill timers etc. and move
240 it to safe state.
241 */
242 skb_queue_purge(&n->arp_queue);
243 n->arp_queue_len_bytes = 0;
244 n->output = neigh_blackhole;
245 if (n->nud_state & NUD_VALID)
246 n->nud_state = NUD_NOARP;
247 else
248 n->nud_state = NUD_NONE;
249 NEIGH_PRINTK2("neigh %p is stray.\n", n);
250 }
251 write_unlock(&n->lock);
252 neigh_cleanup_and_release(n);
253 }
254 }
255}
256
257void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
258{
259 write_lock_bh(&tbl->lock);
260 neigh_flush_dev(tbl, dev);
261 write_unlock_bh(&tbl->lock);
262}
263EXPORT_SYMBOL(neigh_changeaddr);
264
265int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
266{
267 write_lock_bh(&tbl->lock);
268 neigh_flush_dev(tbl, dev);
269 pneigh_ifdown(tbl, dev);
270 write_unlock_bh(&tbl->lock);
271
272 del_timer_sync(&tbl->proxy_timer);
273 pneigh_queue_purge(&tbl->proxy_queue);
274 return 0;
275}
276EXPORT_SYMBOL(neigh_ifdown);
277
278static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
279{
280 struct neighbour *n = NULL;
281 unsigned long now = jiffies;
282 int entries;
283
284 entries = atomic_inc_return(&tbl->entries) - 1;
285 if (entries >= tbl->gc_thresh3 ||
286 (entries >= tbl->gc_thresh2 &&
287 time_after(now, tbl->last_flush + 5 * HZ))) {
288 if (!neigh_forced_gc(tbl) &&
289 entries >= tbl->gc_thresh3)
290 goto out_entries;
291 }
292
293 if (tbl->entry_size)
294 n = kzalloc(tbl->entry_size, GFP_ATOMIC);
295 else {
296 int sz = sizeof(*n) + tbl->key_len;
297
298 sz = ALIGN(sz, NEIGH_PRIV_ALIGN);
299 sz += dev->neigh_priv_len;
300 n = kzalloc(sz, GFP_ATOMIC);
301 }
302 if (!n)
303 goto out_entries;
304
305 skb_queue_head_init(&n->arp_queue);
306 rwlock_init(&n->lock);
307 seqlock_init(&n->ha_lock);
308 n->updated = n->used = now;
309 n->nud_state = NUD_NONE;
310 n->output = neigh_blackhole;
311 seqlock_init(&n->hh.hh_lock);
312 n->parms = neigh_parms_clone(&tbl->parms);
313 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
314
315 NEIGH_CACHE_STAT_INC(tbl, allocs);
316 n->tbl = tbl;
317 atomic_set(&n->refcnt, 1);
318 n->dead = 1;
319out:
320 return n;
321
322out_entries:
323 atomic_dec(&tbl->entries);
324 goto out;
325}
326
327static void neigh_get_hash_rnd(u32 *x)
328{
329 get_random_bytes(x, sizeof(*x));
330 *x |= 1;
331}
332
333static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
334{
335 size_t size = (1 << shift) * sizeof(struct neighbour *);
336 struct neigh_hash_table *ret;
337 struct neighbour __rcu **buckets;
338 int i;
339
340 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
341 if (!ret)
342 return NULL;
343 if (size <= PAGE_SIZE)
344 buckets = kzalloc(size, GFP_ATOMIC);
345 else
346 buckets = (struct neighbour __rcu **)
347 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
348 get_order(size));
349 if (!buckets) {
350 kfree(ret);
351 return NULL;
352 }
353 ret->hash_buckets = buckets;
354 ret->hash_shift = shift;
355 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
356 neigh_get_hash_rnd(&ret->hash_rnd[i]);
357 return ret;
358}
359
360static void neigh_hash_free_rcu(struct rcu_head *head)
361{
362 struct neigh_hash_table *nht = container_of(head,
363 struct neigh_hash_table,
364 rcu);
365 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
366 struct neighbour __rcu **buckets = nht->hash_buckets;
367
368 if (size <= PAGE_SIZE)
369 kfree(buckets);
370 else
371 free_pages((unsigned long)buckets, get_order(size));
372 kfree(nht);
373}
374
375static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
376 unsigned long new_shift)
377{
378 unsigned int i, hash;
379 struct neigh_hash_table *new_nht, *old_nht;
380
381 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
382
383 old_nht = rcu_dereference_protected(tbl->nht,
384 lockdep_is_held(&tbl->lock));
385 new_nht = neigh_hash_alloc(new_shift);
386 if (!new_nht)
387 return old_nht;
388
389 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
390 struct neighbour *n, *next;
391
392 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
393 lockdep_is_held(&tbl->lock));
394 n != NULL;
395 n = next) {
396 hash = tbl->hash(n->primary_key, n->dev,
397 new_nht->hash_rnd);
398
399 hash >>= (32 - new_nht->hash_shift);
400 next = rcu_dereference_protected(n->next,
401 lockdep_is_held(&tbl->lock));
402
403 rcu_assign_pointer(n->next,
404 rcu_dereference_protected(
405 new_nht->hash_buckets[hash],
406 lockdep_is_held(&tbl->lock)));
407 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
408 }
409 }
410
411 rcu_assign_pointer(tbl->nht, new_nht);
412 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
413 return new_nht;
414}
415
416struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
417 struct net_device *dev)
418{
419 struct neighbour *n;
420 int key_len = tbl->key_len;
421 u32 hash_val;
422 struct neigh_hash_table *nht;
423
424 NEIGH_CACHE_STAT_INC(tbl, lookups);
425
426 rcu_read_lock_bh();
427 nht = rcu_dereference_bh(tbl->nht);
428 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
429
430 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
431 n != NULL;
432 n = rcu_dereference_bh(n->next)) {
433 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
434 if (!atomic_inc_not_zero(&n->refcnt))
435 n = NULL;
436 NEIGH_CACHE_STAT_INC(tbl, hits);
437 break;
438 }
439 }
440
441 rcu_read_unlock_bh();
442 return n;
443}
444EXPORT_SYMBOL(neigh_lookup);
445
446struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
447 const void *pkey)
448{
449 struct neighbour *n;
450 int key_len = tbl->key_len;
451 u32 hash_val;
452 struct neigh_hash_table *nht;
453
454 NEIGH_CACHE_STAT_INC(tbl, lookups);
455
456 rcu_read_lock_bh();
457 nht = rcu_dereference_bh(tbl->nht);
458 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
459
460 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
461 n != NULL;
462 n = rcu_dereference_bh(n->next)) {
463 if (!memcmp(n->primary_key, pkey, key_len) &&
464 net_eq(dev_net(n->dev), net)) {
465 if (!atomic_inc_not_zero(&n->refcnt))
466 n = NULL;
467 NEIGH_CACHE_STAT_INC(tbl, hits);
468 break;
469 }
470 }
471
472 rcu_read_unlock_bh();
473 return n;
474}
475EXPORT_SYMBOL(neigh_lookup_nodev);
476
477struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
478 struct net_device *dev)
479{
480 u32 hash_val;
481 int key_len = tbl->key_len;
482 int error;
483 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
484 struct neigh_hash_table *nht;
485
486 if (!n) {
487 rc = ERR_PTR(-ENOBUFS);
488 goto out;
489 }
490
491 memcpy(n->primary_key, pkey, key_len);
492 n->dev = dev;
493 dev_hold(dev);
494
495 /* Protocol specific setup. */
496 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
497 rc = ERR_PTR(error);
498 goto out_neigh_release;
499 }
500
501 if (dev->netdev_ops->ndo_neigh_construct) {
502 error = dev->netdev_ops->ndo_neigh_construct(n);
503 if (error < 0) {
504 rc = ERR_PTR(error);
505 goto out_neigh_release;
506 }
507 }
508
509 /* Device specific setup. */
510 if (n->parms->neigh_setup &&
511 (error = n->parms->neigh_setup(n)) < 0) {
512 rc = ERR_PTR(error);
513 goto out_neigh_release;
514 }
515
516 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
517
518 write_lock_bh(&tbl->lock);
519 nht = rcu_dereference_protected(tbl->nht,
520 lockdep_is_held(&tbl->lock));
521
522 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
523 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
524
525 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
526
527 if (n->parms->dead) {
528 rc = ERR_PTR(-EINVAL);
529 goto out_tbl_unlock;
530 }
531
532 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
533 lockdep_is_held(&tbl->lock));
534 n1 != NULL;
535 n1 = rcu_dereference_protected(n1->next,
536 lockdep_is_held(&tbl->lock))) {
537 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
538 neigh_hold(n1);
539 rc = n1;
540 goto out_tbl_unlock;
541 }
542 }
543
544 n->dead = 0;
545 neigh_hold(n);
546 rcu_assign_pointer(n->next,
547 rcu_dereference_protected(nht->hash_buckets[hash_val],
548 lockdep_is_held(&tbl->lock)));
549 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
550 write_unlock_bh(&tbl->lock);
551 NEIGH_PRINTK2("neigh %p is created.\n", n);
552 rc = n;
553out:
554 return rc;
555out_tbl_unlock:
556 write_unlock_bh(&tbl->lock);
557out_neigh_release:
558 neigh_release(n);
559 goto out;
560}
561EXPORT_SYMBOL(neigh_create);
562
563static u32 pneigh_hash(const void *pkey, int key_len)
564{
565 u32 hash_val = *(u32 *)(pkey + key_len - 4);
566 hash_val ^= (hash_val >> 16);
567 hash_val ^= hash_val >> 8;
568 hash_val ^= hash_val >> 4;
569 hash_val &= PNEIGH_HASHMASK;
570 return hash_val;
571}
572
573static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
574 struct net *net,
575 const void *pkey,
576 int key_len,
577 struct net_device *dev)
578{
579 while (n) {
580 if (!memcmp(n->key, pkey, key_len) &&
581 net_eq(pneigh_net(n), net) &&
582 (n->dev == dev || !n->dev))
583 return n;
584 n = n->next;
585 }
586 return NULL;
587}
588
589struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
590 struct net *net, const void *pkey, struct net_device *dev)
591{
592 int key_len = tbl->key_len;
593 u32 hash_val = pneigh_hash(pkey, key_len);
594
595 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
596 net, pkey, key_len, dev);
597}
598EXPORT_SYMBOL_GPL(__pneigh_lookup);
599
600struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
601 struct net *net, const void *pkey,
602 struct net_device *dev, int creat)
603{
604 struct pneigh_entry *n;
605 int key_len = tbl->key_len;
606 u32 hash_val = pneigh_hash(pkey, key_len);
607
608 read_lock_bh(&tbl->lock);
609 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
610 net, pkey, key_len, dev);
611 read_unlock_bh(&tbl->lock);
612
613 if (n || !creat)
614 goto out;
615
616 ASSERT_RTNL();
617
618 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
619 if (!n)
620 goto out;
621
622 write_pnet(&n->net, hold_net(net));
623 memcpy(n->key, pkey, key_len);
624 n->dev = dev;
625 if (dev)
626 dev_hold(dev);
627
628 if (tbl->pconstructor && tbl->pconstructor(n)) {
629 if (dev)
630 dev_put(dev);
631 release_net(net);
632 kfree(n);
633 n = NULL;
634 goto out;
635 }
636
637 write_lock_bh(&tbl->lock);
638 n->next = tbl->phash_buckets[hash_val];
639 tbl->phash_buckets[hash_val] = n;
640 write_unlock_bh(&tbl->lock);
641out:
642 return n;
643}
644EXPORT_SYMBOL(pneigh_lookup);
645
646
647int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
648 struct net_device *dev)
649{
650 struct pneigh_entry *n, **np;
651 int key_len = tbl->key_len;
652 u32 hash_val = pneigh_hash(pkey, key_len);
653
654 write_lock_bh(&tbl->lock);
655 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
656 np = &n->next) {
657 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
658 net_eq(pneigh_net(n), net)) {
659 *np = n->next;
660 write_unlock_bh(&tbl->lock);
661 if (tbl->pdestructor)
662 tbl->pdestructor(n);
663 if (n->dev)
664 dev_put(n->dev);
665 release_net(pneigh_net(n));
666 kfree(n);
667 return 0;
668 }
669 }
670 write_unlock_bh(&tbl->lock);
671 return -ENOENT;
672}
673
674static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
675{
676 struct pneigh_entry *n, **np;
677 u32 h;
678
679 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
680 np = &tbl->phash_buckets[h];
681 while ((n = *np) != NULL) {
682 if (!dev || n->dev == dev) {
683 *np = n->next;
684 if (tbl->pdestructor)
685 tbl->pdestructor(n);
686 if (n->dev)
687 dev_put(n->dev);
688 release_net(pneigh_net(n));
689 kfree(n);
690 continue;
691 }
692 np = &n->next;
693 }
694 }
695 return -ENOENT;
696}
697
698static void neigh_parms_destroy(struct neigh_parms *parms);
699
700static inline void neigh_parms_put(struct neigh_parms *parms)
701{
702 if (atomic_dec_and_test(&parms->refcnt))
703 neigh_parms_destroy(parms);
704}
705
706/*
707 * neighbour must already be out of the table;
708 *
709 */
710void neigh_destroy(struct neighbour *neigh)
711{
712 struct net_device *dev = neigh->dev;
713
714 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
715
716 if (!neigh->dead) {
717 pr_warn("Destroying alive neighbour %p\n", neigh);
718 dump_stack();
719 return;
720 }
721
722 if (neigh_del_timer(neigh))
723 pr_warn("Impossible event\n");
724
725 skb_queue_purge(&neigh->arp_queue);
726 neigh->arp_queue_len_bytes = 0;
727
728 if (dev->netdev_ops->ndo_neigh_destroy)
729 dev->netdev_ops->ndo_neigh_destroy(neigh);
730
731 dev_put(dev);
732 neigh_parms_put(neigh->parms);
733
734 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
735
736 atomic_dec(&neigh->tbl->entries);
737 kfree_rcu(neigh, rcu);
738}
739EXPORT_SYMBOL(neigh_destroy);
740
741/* Neighbour state is suspicious;
742 disable fast path.
743
744 Called with write_locked neigh.
745 */
746static void neigh_suspect(struct neighbour *neigh)
747{
748 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
749
750 neigh->output = neigh->ops->output;
751}
752
753/* Neighbour state is OK;
754 enable fast path.
755
756 Called with write_locked neigh.
757 */
758static void neigh_connect(struct neighbour *neigh)
759{
760 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
761
762 neigh->output = neigh->ops->connected_output;
763}
764
765static void neigh_periodic_work(struct work_struct *work)
766{
767 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
768 struct neighbour *n;
769 struct neighbour __rcu **np;
770 unsigned int i;
771 struct neigh_hash_table *nht;
772
773 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
774
775 write_lock_bh(&tbl->lock);
776 nht = rcu_dereference_protected(tbl->nht,
777 lockdep_is_held(&tbl->lock));
778
779 /*
780 * periodically recompute ReachableTime from random function
781 */
782
783 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
784 struct neigh_parms *p;
785 tbl->last_rand = jiffies;
786 for (p = &tbl->parms; p; p = p->next)
787 p->reachable_time =
788 neigh_rand_reach_time(p->base_reachable_time);
789 }
790
791 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
792 np = &nht->hash_buckets[i];
793
794 while ((n = rcu_dereference_protected(*np,
795 lockdep_is_held(&tbl->lock))) != NULL) {
796 unsigned int state;
797
798 write_lock(&n->lock);
799
800 state = n->nud_state;
801 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
802 write_unlock(&n->lock);
803 goto next_elt;
804 }
805
806 if (time_before(n->used, n->confirmed))
807 n->used = n->confirmed;
808
809 if (atomic_read(&n->refcnt) == 1 &&
810 (state == NUD_FAILED ||
811 time_after(jiffies, n->used + n->parms->gc_staletime))) {
812 *np = n->next;
813 n->dead = 1;
814 write_unlock(&n->lock);
815 neigh_cleanup_and_release(n);
816 continue;
817 }
818 write_unlock(&n->lock);
819
820next_elt:
821 np = &n->next;
822 }
823 /*
824 * It's fine to release lock here, even if hash table
825 * grows while we are preempted.
826 */
827 write_unlock_bh(&tbl->lock);
828 cond_resched();
829 write_lock_bh(&tbl->lock);
830 nht = rcu_dereference_protected(tbl->nht,
831 lockdep_is_held(&tbl->lock));
832 }
833 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
834 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
835 * base_reachable_time.
836 */
837 schedule_delayed_work(&tbl->gc_work,
838 tbl->parms.base_reachable_time >> 1);
839 write_unlock_bh(&tbl->lock);
840}
841
842static __inline__ int neigh_max_probes(struct neighbour *n)
843{
844 struct neigh_parms *p = n->parms;
845 return (n->nud_state & NUD_PROBE) ?
846 p->ucast_probes :
847 p->ucast_probes + p->app_probes + p->mcast_probes;
848}
849
850static void neigh_invalidate(struct neighbour *neigh)
851 __releases(neigh->lock)
852 __acquires(neigh->lock)
853{
854 struct sk_buff *skb;
855
856 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
857 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
858 neigh->updated = jiffies;
859
860 /* It is very thin place. report_unreachable is very complicated
861 routine. Particularly, it can hit the same neighbour entry!
862
863 So that, we try to be accurate and avoid dead loop. --ANK
864 */
865 while (neigh->nud_state == NUD_FAILED &&
866 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
867 write_unlock(&neigh->lock);
868 neigh->ops->error_report(neigh, skb);
869 write_lock(&neigh->lock);
870 }
871 skb_queue_purge(&neigh->arp_queue);
872 neigh->arp_queue_len_bytes = 0;
873}
874
875static void neigh_probe(struct neighbour *neigh)
876 __releases(neigh->lock)
877{
878 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
879 /* keep skb alive even if arp_queue overflows */
880 if (skb)
881 skb = skb_copy(skb, GFP_ATOMIC);
882 write_unlock(&neigh->lock);
883 neigh->ops->solicit(neigh, skb);
884 atomic_inc(&neigh->probes);
885 kfree_skb(skb);
886}
887
888/* Called when a timer expires for a neighbour entry. */
889
890static void neigh_timer_handler(unsigned long arg)
891{
892 unsigned long now, next;
893 struct neighbour *neigh = (struct neighbour *)arg;
894 unsigned int state;
895 int notify = 0;
896
897 write_lock(&neigh->lock);
898
899 state = neigh->nud_state;
900 now = jiffies;
901 next = now + HZ;
902
903 if (!(state & NUD_IN_TIMER))
904 goto out;
905
906 if (state & NUD_REACHABLE) {
907 if (time_before_eq(now,
908 neigh->confirmed + neigh->parms->reachable_time)) {
909 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
910 next = neigh->confirmed + neigh->parms->reachable_time;
911 } else if (time_before_eq(now,
912 neigh->used + neigh->parms->delay_probe_time)) {
913 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
914 neigh->nud_state = NUD_DELAY;
915 neigh->updated = jiffies;
916 neigh_suspect(neigh);
917 next = now + neigh->parms->delay_probe_time;
918 } else {
919 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
920 neigh->nud_state = NUD_STALE;
921 neigh->updated = jiffies;
922 neigh_suspect(neigh);
923 notify = 1;
924 }
925 } else if (state & NUD_DELAY) {
926 if (time_before_eq(now,
927 neigh->confirmed + neigh->parms->delay_probe_time)) {
928 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
929 neigh->nud_state = NUD_REACHABLE;
930 neigh->updated = jiffies;
931 neigh_connect(neigh);
932 notify = 1;
933 next = neigh->confirmed + neigh->parms->reachable_time;
934 } else {
935 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
936 neigh->nud_state = NUD_PROBE;
937 neigh->updated = jiffies;
938 atomic_set(&neigh->probes, 0);
939 next = now + neigh->parms->retrans_time;
940 }
941 } else {
942 /* NUD_PROBE|NUD_INCOMPLETE */
943 next = now + neigh->parms->retrans_time;
944 }
945
946 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
947 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
948 neigh->nud_state = NUD_FAILED;
949 notify = 1;
950 neigh_invalidate(neigh);
951 }
952
953 if (neigh->nud_state & NUD_IN_TIMER) {
954 if (time_before(next, jiffies + HZ/2))
955 next = jiffies + HZ/2;
956 if (!mod_timer(&neigh->timer, next))
957 neigh_hold(neigh);
958 }
959 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
960 neigh_probe(neigh);
961 } else {
962out:
963 write_unlock(&neigh->lock);
964 }
965
966 if (notify)
967 neigh_update_notify(neigh);
968
969 neigh_release(neigh);
970}
971
972int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
973{
974 int rc;
975 bool immediate_probe = false;
976
977 write_lock_bh(&neigh->lock);
978
979 rc = 0;
980 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
981 goto out_unlock_bh;
982
983 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
984 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
985 unsigned long next, now = jiffies;
986
987 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
988 neigh->nud_state = NUD_INCOMPLETE;
989 neigh->updated = now;
990 next = now + max(neigh->parms->retrans_time, HZ/2);
991 neigh_add_timer(neigh, next);
992 immediate_probe = true;
993 } else {
994 neigh->nud_state = NUD_FAILED;
995 neigh->updated = jiffies;
996 write_unlock_bh(&neigh->lock);
997
998 kfree_skb(skb);
999 return 1;
1000 }
1001 } else if (neigh->nud_state & NUD_STALE) {
1002 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
1003 neigh->nud_state = NUD_DELAY;
1004 neigh->updated = jiffies;
1005 neigh_add_timer(neigh,
1006 jiffies + neigh->parms->delay_probe_time);
1007 }
1008
1009 if (neigh->nud_state == NUD_INCOMPLETE) {
1010 if (skb) {
1011 while (neigh->arp_queue_len_bytes + skb->truesize >
1012 neigh->parms->queue_len_bytes) {
1013 struct sk_buff *buff;
1014
1015 buff = __skb_dequeue(&neigh->arp_queue);
1016 if (!buff)
1017 break;
1018 neigh->arp_queue_len_bytes -= buff->truesize;
1019 kfree_skb(buff);
1020 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1021 }
1022 skb_dst_force(skb);
1023 __skb_queue_tail(&neigh->arp_queue, skb);
1024 neigh->arp_queue_len_bytes += skb->truesize;
1025 }
1026 rc = 1;
1027 }
1028out_unlock_bh:
1029 if (immediate_probe)
1030 neigh_probe(neigh);
1031 else
1032 write_unlock(&neigh->lock);
1033 local_bh_enable();
1034 return rc;
1035}
1036EXPORT_SYMBOL(__neigh_event_send);
1037
1038static void neigh_update_hhs(struct neighbour *neigh)
1039{
1040 struct hh_cache *hh;
1041 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1042 = NULL;
1043
1044 if (neigh->dev->header_ops)
1045 update = neigh->dev->header_ops->cache_update;
1046
1047 if (update) {
1048 hh = &neigh->hh;
1049 if (hh->hh_len) {
1050 write_seqlock_bh(&hh->hh_lock);
1051 update(hh, neigh->dev, neigh->ha);
1052 write_sequnlock_bh(&hh->hh_lock);
1053 }
1054 }
1055}
1056
1057
1058
1059/* Generic update routine.
1060 -- lladdr is new lladdr or NULL, if it is not supplied.
1061 -- new is new state.
1062 -- flags
1063 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1064 if it is different.
1065 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1066 lladdr instead of overriding it
1067 if it is different.
1068 It also allows to retain current state
1069 if lladdr is unchanged.
1070 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1071
1072 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1073 NTF_ROUTER flag.
1074 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1075 a router.
1076
1077 Caller MUST hold reference count on the entry.
1078 */
1079
1080int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1081 u32 flags)
1082{
1083 u8 old;
1084 int err;
1085 int notify = 0;
1086 struct net_device *dev;
1087 int update_isrouter = 0;
1088
1089 write_lock_bh(&neigh->lock);
1090
1091 dev = neigh->dev;
1092 old = neigh->nud_state;
1093 err = -EPERM;
1094
1095 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1096 (old & (NUD_NOARP | NUD_PERMANENT)))
1097 goto out;
1098
1099 if (!(new & NUD_VALID)) {
1100 neigh_del_timer(neigh);
1101 if (old & NUD_CONNECTED)
1102 neigh_suspect(neigh);
1103 neigh->nud_state = new;
1104 err = 0;
1105 notify = old & NUD_VALID;
1106 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1107 (new & NUD_FAILED)) {
1108 neigh_invalidate(neigh);
1109 notify = 1;
1110 }
1111 goto out;
1112 }
1113
1114 /* Compare new lladdr with cached one */
1115 if (!dev->addr_len) {
1116 /* First case: device needs no address. */
1117 lladdr = neigh->ha;
1118 } else if (lladdr) {
1119 /* The second case: if something is already cached
1120 and a new address is proposed:
1121 - compare new & old
1122 - if they are different, check override flag
1123 */
1124 if ((old & NUD_VALID) &&
1125 !memcmp(lladdr, neigh->ha, dev->addr_len))
1126 lladdr = neigh->ha;
1127 } else {
1128 /* No address is supplied; if we know something,
1129 use it, otherwise discard the request.
1130 */
1131 err = -EINVAL;
1132 if (!(old & NUD_VALID))
1133 goto out;
1134 lladdr = neigh->ha;
1135 }
1136
1137 if (new & NUD_CONNECTED)
1138 neigh->confirmed = jiffies;
1139 neigh->updated = jiffies;
1140
1141 /* If entry was valid and address is not changed,
1142 do not change entry state, if new one is STALE.
1143 */
1144 err = 0;
1145 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1146 if (old & NUD_VALID) {
1147 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1148 update_isrouter = 0;
1149 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1150 (old & NUD_CONNECTED)) {
1151 lladdr = neigh->ha;
1152 new = NUD_STALE;
1153 } else
1154 goto out;
1155 } else {
1156 if (lladdr == neigh->ha && new == NUD_STALE &&
1157 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1158 (old & NUD_CONNECTED))
1159 )
1160 new = old;
1161 }
1162 }
1163
1164 if (new != old) {
1165 neigh_del_timer(neigh);
1166 if (new & NUD_IN_TIMER)
1167 neigh_add_timer(neigh, (jiffies +
1168 ((new & NUD_REACHABLE) ?
1169 neigh->parms->reachable_time :
1170 0)));
1171 neigh->nud_state = new;
1172 }
1173
1174 if (lladdr != neigh->ha) {
1175 write_seqlock(&neigh->ha_lock);
1176 memcpy(&neigh->ha, lladdr, dev->addr_len);
1177 write_sequnlock(&neigh->ha_lock);
1178 neigh_update_hhs(neigh);
1179 if (!(new & NUD_CONNECTED))
1180 neigh->confirmed = jiffies -
1181 (neigh->parms->base_reachable_time << 1);
1182 notify = 1;
1183 }
1184 if (new == old)
1185 goto out;
1186 if (new & NUD_CONNECTED)
1187 neigh_connect(neigh);
1188 else
1189 neigh_suspect(neigh);
1190 if (!(old & NUD_VALID)) {
1191 struct sk_buff *skb;
1192
1193 /* Again: avoid dead loop if something went wrong */
1194
1195 while (neigh->nud_state & NUD_VALID &&
1196 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1197 struct dst_entry *dst = skb_dst(skb);
1198 struct neighbour *n2, *n1 = neigh;
1199 write_unlock_bh(&neigh->lock);
1200
1201 rcu_read_lock();
1202 /* On shaper/eql skb->dst->neighbour != neigh :( */
1203 if (dst && (n2 = dst_get_neighbour_noref(dst)) != NULL)
1204 n1 = n2;
1205 n1->output(n1, skb);
1206 rcu_read_unlock();
1207
1208 write_lock_bh(&neigh->lock);
1209 }
1210 skb_queue_purge(&neigh->arp_queue);
1211 neigh->arp_queue_len_bytes = 0;
1212 }
1213out:
1214 if (update_isrouter) {
1215 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1216 (neigh->flags | NTF_ROUTER) :
1217 (neigh->flags & ~NTF_ROUTER);
1218 }
1219 write_unlock_bh(&neigh->lock);
1220
1221 if (notify)
1222 neigh_update_notify(neigh);
1223
1224 return err;
1225}
1226EXPORT_SYMBOL(neigh_update);
1227
1228struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1229 u8 *lladdr, void *saddr,
1230 struct net_device *dev)
1231{
1232 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1233 lladdr || !dev->addr_len);
1234 if (neigh)
1235 neigh_update(neigh, lladdr, NUD_STALE,
1236 NEIGH_UPDATE_F_OVERRIDE);
1237 return neigh;
1238}
1239EXPORT_SYMBOL(neigh_event_ns);
1240
1241/* called with read_lock_bh(&n->lock); */
1242static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1243{
1244 struct net_device *dev = dst->dev;
1245 __be16 prot = dst->ops->protocol;
1246 struct hh_cache *hh = &n->hh;
1247
1248 write_lock_bh(&n->lock);
1249
1250 /* Only one thread can come in here and initialize the
1251 * hh_cache entry.
1252 */
1253 if (!hh->hh_len)
1254 dev->header_ops->cache(n, hh, prot);
1255
1256 write_unlock_bh(&n->lock);
1257}
1258
1259/* This function can be used in contexts, where only old dev_queue_xmit
1260 * worked, f.e. if you want to override normal output path (eql, shaper),
1261 * but resolution is not made yet.
1262 */
1263
1264int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1265{
1266 struct net_device *dev = skb->dev;
1267
1268 __skb_pull(skb, skb_network_offset(skb));
1269
1270 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1271 skb->len) < 0 &&
1272 dev->header_ops->rebuild(skb))
1273 return 0;
1274
1275 return dev_queue_xmit(skb);
1276}
1277EXPORT_SYMBOL(neigh_compat_output);
1278
1279/* Slow and careful. */
1280
1281int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1282{
1283 struct dst_entry *dst = skb_dst(skb);
1284 int rc = 0;
1285
1286 if (!dst)
1287 goto discard;
1288
1289 __skb_pull(skb, skb_network_offset(skb));
1290
1291 if (!neigh_event_send(neigh, skb)) {
1292 int err;
1293 struct net_device *dev = neigh->dev;
1294 unsigned int seq;
1295
1296 if (dev->header_ops->cache && !neigh->hh.hh_len)
1297 neigh_hh_init(neigh, dst);
1298
1299 do {
1300 seq = read_seqbegin(&neigh->ha_lock);
1301 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1302 neigh->ha, NULL, skb->len);
1303 } while (read_seqretry(&neigh->ha_lock, seq));
1304
1305 if (err >= 0)
1306 rc = dev_queue_xmit(skb);
1307 else
1308 goto out_kfree_skb;
1309 }
1310out:
1311 return rc;
1312discard:
1313 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1314 dst, neigh);
1315out_kfree_skb:
1316 rc = -EINVAL;
1317 kfree_skb(skb);
1318 goto out;
1319}
1320EXPORT_SYMBOL(neigh_resolve_output);
1321
1322/* As fast as possible without hh cache */
1323
1324int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1325{
1326 struct net_device *dev = neigh->dev;
1327 unsigned int seq;
1328 int err;
1329
1330 __skb_pull(skb, skb_network_offset(skb));
1331
1332 do {
1333 seq = read_seqbegin(&neigh->ha_lock);
1334 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1335 neigh->ha, NULL, skb->len);
1336 } while (read_seqretry(&neigh->ha_lock, seq));
1337
1338 if (err >= 0)
1339 err = dev_queue_xmit(skb);
1340 else {
1341 err = -EINVAL;
1342 kfree_skb(skb);
1343 }
1344 return err;
1345}
1346EXPORT_SYMBOL(neigh_connected_output);
1347
1348int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1349{
1350 return dev_queue_xmit(skb);
1351}
1352EXPORT_SYMBOL(neigh_direct_output);
1353
1354static void neigh_proxy_process(unsigned long arg)
1355{
1356 struct neigh_table *tbl = (struct neigh_table *)arg;
1357 long sched_next = 0;
1358 unsigned long now = jiffies;
1359 struct sk_buff *skb, *n;
1360
1361 spin_lock(&tbl->proxy_queue.lock);
1362
1363 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1364 long tdif = NEIGH_CB(skb)->sched_next - now;
1365
1366 if (tdif <= 0) {
1367 struct net_device *dev = skb->dev;
1368
1369 __skb_unlink(skb, &tbl->proxy_queue);
1370 if (tbl->proxy_redo && netif_running(dev)) {
1371 rcu_read_lock();
1372 tbl->proxy_redo(skb);
1373 rcu_read_unlock();
1374 } else {
1375 kfree_skb(skb);
1376 }
1377
1378 dev_put(dev);
1379 } else if (!sched_next || tdif < sched_next)
1380 sched_next = tdif;
1381 }
1382 del_timer(&tbl->proxy_timer);
1383 if (sched_next)
1384 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1385 spin_unlock(&tbl->proxy_queue.lock);
1386}
1387
1388void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1389 struct sk_buff *skb)
1390{
1391 unsigned long now = jiffies;
1392 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1393
1394 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1395 kfree_skb(skb);
1396 return;
1397 }
1398
1399 NEIGH_CB(skb)->sched_next = sched_next;
1400 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1401
1402 spin_lock(&tbl->proxy_queue.lock);
1403 if (del_timer(&tbl->proxy_timer)) {
1404 if (time_before(tbl->proxy_timer.expires, sched_next))
1405 sched_next = tbl->proxy_timer.expires;
1406 }
1407 skb_dst_drop(skb);
1408 dev_hold(skb->dev);
1409 __skb_queue_tail(&tbl->proxy_queue, skb);
1410 mod_timer(&tbl->proxy_timer, sched_next);
1411 spin_unlock(&tbl->proxy_queue.lock);
1412}
1413EXPORT_SYMBOL(pneigh_enqueue);
1414
1415static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1416 struct net *net, int ifindex)
1417{
1418 struct neigh_parms *p;
1419
1420 for (p = &tbl->parms; p; p = p->next) {
1421 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1422 (!p->dev && !ifindex))
1423 return p;
1424 }
1425
1426 return NULL;
1427}
1428
1429struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1430 struct neigh_table *tbl)
1431{
1432 struct neigh_parms *p, *ref;
1433 struct net *net = dev_net(dev);
1434 const struct net_device_ops *ops = dev->netdev_ops;
1435
1436 ref = lookup_neigh_parms(tbl, net, 0);
1437 if (!ref)
1438 return NULL;
1439
1440 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1441 if (p) {
1442 p->tbl = tbl;
1443 atomic_set(&p->refcnt, 1);
1444 p->reachable_time =
1445 neigh_rand_reach_time(p->base_reachable_time);
1446
1447 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1448 kfree(p);
1449 return NULL;
1450 }
1451
1452 dev_hold(dev);
1453 p->dev = dev;
1454 write_pnet(&p->net, hold_net(net));
1455 p->sysctl_table = NULL;
1456 write_lock_bh(&tbl->lock);
1457 p->next = tbl->parms.next;
1458 tbl->parms.next = p;
1459 write_unlock_bh(&tbl->lock);
1460 }
1461 return p;
1462}
1463EXPORT_SYMBOL(neigh_parms_alloc);
1464
1465static void neigh_rcu_free_parms(struct rcu_head *head)
1466{
1467 struct neigh_parms *parms =
1468 container_of(head, struct neigh_parms, rcu_head);
1469
1470 neigh_parms_put(parms);
1471}
1472
1473void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1474{
1475 struct neigh_parms **p;
1476
1477 if (!parms || parms == &tbl->parms)
1478 return;
1479 write_lock_bh(&tbl->lock);
1480 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1481 if (*p == parms) {
1482 *p = parms->next;
1483 parms->dead = 1;
1484 write_unlock_bh(&tbl->lock);
1485 if (parms->dev)
1486 dev_put(parms->dev);
1487 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1488 return;
1489 }
1490 }
1491 write_unlock_bh(&tbl->lock);
1492 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1493}
1494EXPORT_SYMBOL(neigh_parms_release);
1495
1496static void neigh_parms_destroy(struct neigh_parms *parms)
1497{
1498 release_net(neigh_parms_net(parms));
1499 kfree(parms);
1500}
1501
1502static struct lock_class_key neigh_table_proxy_queue_class;
1503
1504static void neigh_table_init_no_netlink(struct neigh_table *tbl)
1505{
1506 unsigned long now = jiffies;
1507 unsigned long phsize;
1508
1509 write_pnet(&tbl->parms.net, &init_net);
1510 atomic_set(&tbl->parms.refcnt, 1);
1511 tbl->parms.reachable_time =
1512 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1513
1514 tbl->stats = alloc_percpu(struct neigh_statistics);
1515 if (!tbl->stats)
1516 panic("cannot create neighbour cache statistics");
1517
1518#ifdef CONFIG_PROC_FS
1519 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1520 &neigh_stat_seq_fops, tbl))
1521 panic("cannot create neighbour proc dir entry");
1522#endif
1523
1524 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1525
1526 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1527 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1528
1529 if (!tbl->nht || !tbl->phash_buckets)
1530 panic("cannot allocate neighbour cache hashes");
1531
1532 rwlock_init(&tbl->lock);
1533 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1534 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1535 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1536 skb_queue_head_init_class(&tbl->proxy_queue,
1537 &neigh_table_proxy_queue_class);
1538
1539 tbl->last_flush = now;
1540 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1541}
1542
1543void neigh_table_init(struct neigh_table *tbl)
1544{
1545 struct neigh_table *tmp;
1546
1547 neigh_table_init_no_netlink(tbl);
1548 write_lock(&neigh_tbl_lock);
1549 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1550 if (tmp->family == tbl->family)
1551 break;
1552 }
1553 tbl->next = neigh_tables;
1554 neigh_tables = tbl;
1555 write_unlock(&neigh_tbl_lock);
1556
1557 if (unlikely(tmp)) {
1558 pr_err("Registering multiple tables for family %d\n",
1559 tbl->family);
1560 dump_stack();
1561 }
1562}
1563EXPORT_SYMBOL(neigh_table_init);
1564
1565int neigh_table_clear(struct neigh_table *tbl)
1566{
1567 struct neigh_table **tp;
1568
1569 /* It is not clean... Fix it to unload IPv6 module safely */
1570 cancel_delayed_work_sync(&tbl->gc_work);
1571 del_timer_sync(&tbl->proxy_timer);
1572 pneigh_queue_purge(&tbl->proxy_queue);
1573 neigh_ifdown(tbl, NULL);
1574 if (atomic_read(&tbl->entries))
1575 pr_crit("neighbour leakage\n");
1576 write_lock(&neigh_tbl_lock);
1577 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1578 if (*tp == tbl) {
1579 *tp = tbl->next;
1580 break;
1581 }
1582 }
1583 write_unlock(&neigh_tbl_lock);
1584
1585 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1586 neigh_hash_free_rcu);
1587 tbl->nht = NULL;
1588
1589 kfree(tbl->phash_buckets);
1590 tbl->phash_buckets = NULL;
1591
1592 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1593
1594 free_percpu(tbl->stats);
1595 tbl->stats = NULL;
1596
1597 return 0;
1598}
1599EXPORT_SYMBOL(neigh_table_clear);
1600
1601static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1602{
1603 struct net *net = sock_net(skb->sk);
1604 struct ndmsg *ndm;
1605 struct nlattr *dst_attr;
1606 struct neigh_table *tbl;
1607 struct net_device *dev = NULL;
1608 int err = -EINVAL;
1609
1610 ASSERT_RTNL();
1611 if (nlmsg_len(nlh) < sizeof(*ndm))
1612 goto out;
1613
1614 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1615 if (dst_attr == NULL)
1616 goto out;
1617
1618 ndm = nlmsg_data(nlh);
1619 if (ndm->ndm_ifindex) {
1620 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1621 if (dev == NULL) {
1622 err = -ENODEV;
1623 goto out;
1624 }
1625 }
1626
1627 read_lock(&neigh_tbl_lock);
1628 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1629 struct neighbour *neigh;
1630
1631 if (tbl->family != ndm->ndm_family)
1632 continue;
1633 read_unlock(&neigh_tbl_lock);
1634
1635 if (nla_len(dst_attr) < tbl->key_len)
1636 goto out;
1637
1638 if (ndm->ndm_flags & NTF_PROXY) {
1639 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1640 goto out;
1641 }
1642
1643 if (dev == NULL)
1644 goto out;
1645
1646 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1647 if (neigh == NULL) {
1648 err = -ENOENT;
1649 goto out;
1650 }
1651
1652 err = neigh_update(neigh, NULL, NUD_FAILED,
1653 NEIGH_UPDATE_F_OVERRIDE |
1654 NEIGH_UPDATE_F_ADMIN);
1655 neigh_release(neigh);
1656 goto out;
1657 }
1658 read_unlock(&neigh_tbl_lock);
1659 err = -EAFNOSUPPORT;
1660
1661out:
1662 return err;
1663}
1664
1665static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1666{
1667 struct net *net = sock_net(skb->sk);
1668 struct ndmsg *ndm;
1669 struct nlattr *tb[NDA_MAX+1];
1670 struct neigh_table *tbl;
1671 struct net_device *dev = NULL;
1672 int err;
1673
1674 ASSERT_RTNL();
1675 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1676 if (err < 0)
1677 goto out;
1678
1679 err = -EINVAL;
1680 if (tb[NDA_DST] == NULL)
1681 goto out;
1682
1683 ndm = nlmsg_data(nlh);
1684 if (ndm->ndm_ifindex) {
1685 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1686 if (dev == NULL) {
1687 err = -ENODEV;
1688 goto out;
1689 }
1690
1691 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1692 goto out;
1693 }
1694
1695 read_lock(&neigh_tbl_lock);
1696 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1697 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1698 struct neighbour *neigh;
1699 void *dst, *lladdr;
1700
1701 if (tbl->family != ndm->ndm_family)
1702 continue;
1703 read_unlock(&neigh_tbl_lock);
1704
1705 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1706 goto out;
1707 dst = nla_data(tb[NDA_DST]);
1708 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1709
1710 if (ndm->ndm_flags & NTF_PROXY) {
1711 struct pneigh_entry *pn;
1712
1713 err = -ENOBUFS;
1714 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1715 if (pn) {
1716 pn->flags = ndm->ndm_flags;
1717 err = 0;
1718 }
1719 goto out;
1720 }
1721
1722 if (dev == NULL)
1723 goto out;
1724
1725 neigh = neigh_lookup(tbl, dst, dev);
1726 if (neigh == NULL) {
1727 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1728 err = -ENOENT;
1729 goto out;
1730 }
1731
1732 neigh = __neigh_lookup_errno(tbl, dst, dev);
1733 if (IS_ERR(neigh)) {
1734 err = PTR_ERR(neigh);
1735 goto out;
1736 }
1737 } else {
1738 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1739 err = -EEXIST;
1740 neigh_release(neigh);
1741 goto out;
1742 }
1743
1744 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1745 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1746 }
1747
1748 if (ndm->ndm_flags & NTF_USE) {
1749 neigh_event_send(neigh, NULL);
1750 err = 0;
1751 } else
1752 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1753 neigh_release(neigh);
1754 goto out;
1755 }
1756
1757 read_unlock(&neigh_tbl_lock);
1758 err = -EAFNOSUPPORT;
1759out:
1760 return err;
1761}
1762
1763static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1764{
1765 struct nlattr *nest;
1766
1767 nest = nla_nest_start(skb, NDTA_PARMS);
1768 if (nest == NULL)
1769 return -ENOBUFS;
1770
1771 if ((parms->dev &&
1772 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1773 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1774 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, parms->queue_len_bytes) ||
1775 /* approximative value for deprecated QUEUE_LEN (in packets) */
1776 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1777 DIV_ROUND_UP(parms->queue_len_bytes,
1778 SKB_TRUESIZE(ETH_FRAME_LEN))) ||
1779 nla_put_u32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen) ||
1780 nla_put_u32(skb, NDTPA_APP_PROBES, parms->app_probes) ||
1781 nla_put_u32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes) ||
1782 nla_put_u32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes) ||
1783 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) ||
1784 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1785 parms->base_reachable_time) ||
1786 nla_put_msecs(skb, NDTPA_GC_STALETIME, parms->gc_staletime) ||
1787 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1788 parms->delay_probe_time) ||
1789 nla_put_msecs(skb, NDTPA_RETRANS_TIME, parms->retrans_time) ||
1790 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay) ||
1791 nla_put_msecs(skb, NDTPA_PROXY_DELAY, parms->proxy_delay) ||
1792 nla_put_msecs(skb, NDTPA_LOCKTIME, parms->locktime))
1793 goto nla_put_failure;
1794 return nla_nest_end(skb, nest);
1795
1796nla_put_failure:
1797 nla_nest_cancel(skb, nest);
1798 return -EMSGSIZE;
1799}
1800
1801static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1802 u32 pid, u32 seq, int type, int flags)
1803{
1804 struct nlmsghdr *nlh;
1805 struct ndtmsg *ndtmsg;
1806
1807 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1808 if (nlh == NULL)
1809 return -EMSGSIZE;
1810
1811 ndtmsg = nlmsg_data(nlh);
1812
1813 read_lock_bh(&tbl->lock);
1814 ndtmsg->ndtm_family = tbl->family;
1815 ndtmsg->ndtm_pad1 = 0;
1816 ndtmsg->ndtm_pad2 = 0;
1817
1818 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1819 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) ||
1820 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1821 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1822 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1823 goto nla_put_failure;
1824 {
1825 unsigned long now = jiffies;
1826 unsigned int flush_delta = now - tbl->last_flush;
1827 unsigned int rand_delta = now - tbl->last_rand;
1828 struct neigh_hash_table *nht;
1829 struct ndt_config ndc = {
1830 .ndtc_key_len = tbl->key_len,
1831 .ndtc_entry_size = tbl->entry_size,
1832 .ndtc_entries = atomic_read(&tbl->entries),
1833 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1834 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1835 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1836 };
1837
1838 rcu_read_lock_bh();
1839 nht = rcu_dereference_bh(tbl->nht);
1840 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1841 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1842 rcu_read_unlock_bh();
1843
1844 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1845 goto nla_put_failure;
1846 }
1847
1848 {
1849 int cpu;
1850 struct ndt_stats ndst;
1851
1852 memset(&ndst, 0, sizeof(ndst));
1853
1854 for_each_possible_cpu(cpu) {
1855 struct neigh_statistics *st;
1856
1857 st = per_cpu_ptr(tbl->stats, cpu);
1858 ndst.ndts_allocs += st->allocs;
1859 ndst.ndts_destroys += st->destroys;
1860 ndst.ndts_hash_grows += st->hash_grows;
1861 ndst.ndts_res_failed += st->res_failed;
1862 ndst.ndts_lookups += st->lookups;
1863 ndst.ndts_hits += st->hits;
1864 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1865 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1866 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1867 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1868 }
1869
1870 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1871 goto nla_put_failure;
1872 }
1873
1874 BUG_ON(tbl->parms.dev);
1875 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1876 goto nla_put_failure;
1877
1878 read_unlock_bh(&tbl->lock);
1879 return nlmsg_end(skb, nlh);
1880
1881nla_put_failure:
1882 read_unlock_bh(&tbl->lock);
1883 nlmsg_cancel(skb, nlh);
1884 return -EMSGSIZE;
1885}
1886
1887static int neightbl_fill_param_info(struct sk_buff *skb,
1888 struct neigh_table *tbl,
1889 struct neigh_parms *parms,
1890 u32 pid, u32 seq, int type,
1891 unsigned int flags)
1892{
1893 struct ndtmsg *ndtmsg;
1894 struct nlmsghdr *nlh;
1895
1896 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1897 if (nlh == NULL)
1898 return -EMSGSIZE;
1899
1900 ndtmsg = nlmsg_data(nlh);
1901
1902 read_lock_bh(&tbl->lock);
1903 ndtmsg->ndtm_family = tbl->family;
1904 ndtmsg->ndtm_pad1 = 0;
1905 ndtmsg->ndtm_pad2 = 0;
1906
1907 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1908 neightbl_fill_parms(skb, parms) < 0)
1909 goto errout;
1910
1911 read_unlock_bh(&tbl->lock);
1912 return nlmsg_end(skb, nlh);
1913errout:
1914 read_unlock_bh(&tbl->lock);
1915 nlmsg_cancel(skb, nlh);
1916 return -EMSGSIZE;
1917}
1918
1919static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1920 [NDTA_NAME] = { .type = NLA_STRING },
1921 [NDTA_THRESH1] = { .type = NLA_U32 },
1922 [NDTA_THRESH2] = { .type = NLA_U32 },
1923 [NDTA_THRESH3] = { .type = NLA_U32 },
1924 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1925 [NDTA_PARMS] = { .type = NLA_NESTED },
1926};
1927
1928static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1929 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1930 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1931 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1932 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1933 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1934 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1935 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1936 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1937 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1938 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1939 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1940 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1941 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1942};
1943
1944static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1945{
1946 struct net *net = sock_net(skb->sk);
1947 struct neigh_table *tbl;
1948 struct ndtmsg *ndtmsg;
1949 struct nlattr *tb[NDTA_MAX+1];
1950 int err;
1951
1952 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1953 nl_neightbl_policy);
1954 if (err < 0)
1955 goto errout;
1956
1957 if (tb[NDTA_NAME] == NULL) {
1958 err = -EINVAL;
1959 goto errout;
1960 }
1961
1962 ndtmsg = nlmsg_data(nlh);
1963 read_lock(&neigh_tbl_lock);
1964 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1965 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1966 continue;
1967
1968 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1969 break;
1970 }
1971
1972 if (tbl == NULL) {
1973 err = -ENOENT;
1974 goto errout_locked;
1975 }
1976
1977 /*
1978 * We acquire tbl->lock to be nice to the periodic timers and
1979 * make sure they always see a consistent set of values.
1980 */
1981 write_lock_bh(&tbl->lock);
1982
1983 if (tb[NDTA_PARMS]) {
1984 struct nlattr *tbp[NDTPA_MAX+1];
1985 struct neigh_parms *p;
1986 int i, ifindex = 0;
1987
1988 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1989 nl_ntbl_parm_policy);
1990 if (err < 0)
1991 goto errout_tbl_lock;
1992
1993 if (tbp[NDTPA_IFINDEX])
1994 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1995
1996 p = lookup_neigh_parms(tbl, net, ifindex);
1997 if (p == NULL) {
1998 err = -ENOENT;
1999 goto errout_tbl_lock;
2000 }
2001
2002 for (i = 1; i <= NDTPA_MAX; i++) {
2003 if (tbp[i] == NULL)
2004 continue;
2005
2006 switch (i) {
2007 case NDTPA_QUEUE_LEN:
2008 p->queue_len_bytes = nla_get_u32(tbp[i]) *
2009 SKB_TRUESIZE(ETH_FRAME_LEN);
2010 break;
2011 case NDTPA_QUEUE_LENBYTES:
2012 p->queue_len_bytes = nla_get_u32(tbp[i]);
2013 break;
2014 case NDTPA_PROXY_QLEN:
2015 p->proxy_qlen = nla_get_u32(tbp[i]);
2016 break;
2017 case NDTPA_APP_PROBES:
2018 p->app_probes = nla_get_u32(tbp[i]);
2019 break;
2020 case NDTPA_UCAST_PROBES:
2021 p->ucast_probes = nla_get_u32(tbp[i]);
2022 break;
2023 case NDTPA_MCAST_PROBES:
2024 p->mcast_probes = nla_get_u32(tbp[i]);
2025 break;
2026 case NDTPA_BASE_REACHABLE_TIME:
2027 p->base_reachable_time = nla_get_msecs(tbp[i]);
2028 break;
2029 case NDTPA_GC_STALETIME:
2030 p->gc_staletime = nla_get_msecs(tbp[i]);
2031 break;
2032 case NDTPA_DELAY_PROBE_TIME:
2033 p->delay_probe_time = nla_get_msecs(tbp[i]);
2034 break;
2035 case NDTPA_RETRANS_TIME:
2036 p->retrans_time = nla_get_msecs(tbp[i]);
2037 break;
2038 case NDTPA_ANYCAST_DELAY:
2039 p->anycast_delay = nla_get_msecs(tbp[i]);
2040 break;
2041 case NDTPA_PROXY_DELAY:
2042 p->proxy_delay = nla_get_msecs(tbp[i]);
2043 break;
2044 case NDTPA_LOCKTIME:
2045 p->locktime = nla_get_msecs(tbp[i]);
2046 break;
2047 }
2048 }
2049 }
2050
2051 if (tb[NDTA_THRESH1])
2052 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2053
2054 if (tb[NDTA_THRESH2])
2055 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2056
2057 if (tb[NDTA_THRESH3])
2058 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2059
2060 if (tb[NDTA_GC_INTERVAL])
2061 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2062
2063 err = 0;
2064
2065errout_tbl_lock:
2066 write_unlock_bh(&tbl->lock);
2067errout_locked:
2068 read_unlock(&neigh_tbl_lock);
2069errout:
2070 return err;
2071}
2072
2073static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2074{
2075 struct net *net = sock_net(skb->sk);
2076 int family, tidx, nidx = 0;
2077 int tbl_skip = cb->args[0];
2078 int neigh_skip = cb->args[1];
2079 struct neigh_table *tbl;
2080
2081 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2082
2083 read_lock(&neigh_tbl_lock);
2084 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2085 struct neigh_parms *p;
2086
2087 if (tidx < tbl_skip || (family && tbl->family != family))
2088 continue;
2089
2090 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2091 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2092 NLM_F_MULTI) <= 0)
2093 break;
2094
2095 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2096 if (!net_eq(neigh_parms_net(p), net))
2097 continue;
2098
2099 if (nidx < neigh_skip)
2100 goto next;
2101
2102 if (neightbl_fill_param_info(skb, tbl, p,
2103 NETLINK_CB(cb->skb).pid,
2104 cb->nlh->nlmsg_seq,
2105 RTM_NEWNEIGHTBL,
2106 NLM_F_MULTI) <= 0)
2107 goto out;
2108 next:
2109 nidx++;
2110 }
2111
2112 neigh_skip = 0;
2113 }
2114out:
2115 read_unlock(&neigh_tbl_lock);
2116 cb->args[0] = tidx;
2117 cb->args[1] = nidx;
2118
2119 return skb->len;
2120}
2121
2122static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2123 u32 pid, u32 seq, int type, unsigned int flags)
2124{
2125 unsigned long now = jiffies;
2126 struct nda_cacheinfo ci;
2127 struct nlmsghdr *nlh;
2128 struct ndmsg *ndm;
2129
2130 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2131 if (nlh == NULL)
2132 return -EMSGSIZE;
2133
2134 ndm = nlmsg_data(nlh);
2135 ndm->ndm_family = neigh->ops->family;
2136 ndm->ndm_pad1 = 0;
2137 ndm->ndm_pad2 = 0;
2138 ndm->ndm_flags = neigh->flags;
2139 ndm->ndm_type = neigh->type;
2140 ndm->ndm_ifindex = neigh->dev->ifindex;
2141
2142 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2143 goto nla_put_failure;
2144
2145 read_lock_bh(&neigh->lock);
2146 ndm->ndm_state = neigh->nud_state;
2147 if (neigh->nud_state & NUD_VALID) {
2148 char haddr[MAX_ADDR_LEN];
2149
2150 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2151 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2152 read_unlock_bh(&neigh->lock);
2153 goto nla_put_failure;
2154 }
2155 }
2156
2157 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2158 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2159 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2160 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2161 read_unlock_bh(&neigh->lock);
2162
2163 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2164 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2165 goto nla_put_failure;
2166
2167 return nlmsg_end(skb, nlh);
2168
2169nla_put_failure:
2170 nlmsg_cancel(skb, nlh);
2171 return -EMSGSIZE;
2172}
2173
2174static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2175 u32 pid, u32 seq, int type, unsigned int flags,
2176 struct neigh_table *tbl)
2177{
2178 struct nlmsghdr *nlh;
2179 struct ndmsg *ndm;
2180
2181 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2182 if (nlh == NULL)
2183 return -EMSGSIZE;
2184
2185 ndm = nlmsg_data(nlh);
2186 ndm->ndm_family = tbl->family;
2187 ndm->ndm_pad1 = 0;
2188 ndm->ndm_pad2 = 0;
2189 ndm->ndm_flags = pn->flags | NTF_PROXY;
2190 ndm->ndm_type = NDA_DST;
2191 ndm->ndm_ifindex = pn->dev->ifindex;
2192 ndm->ndm_state = NUD_NONE;
2193
2194 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2195 goto nla_put_failure;
2196
2197 return nlmsg_end(skb, nlh);
2198
2199nla_put_failure:
2200 nlmsg_cancel(skb, nlh);
2201 return -EMSGSIZE;
2202}
2203
2204static void neigh_update_notify(struct neighbour *neigh)
2205{
2206 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2207 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2208}
2209
2210static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2211 struct netlink_callback *cb)
2212{
2213 struct net *net = sock_net(skb->sk);
2214 struct neighbour *n;
2215 int rc, h, s_h = cb->args[1];
2216 int idx, s_idx = idx = cb->args[2];
2217 struct neigh_hash_table *nht;
2218
2219 rcu_read_lock_bh();
2220 nht = rcu_dereference_bh(tbl->nht);
2221
2222 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2223 if (h > s_h)
2224 s_idx = 0;
2225 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2226 n != NULL;
2227 n = rcu_dereference_bh(n->next)) {
2228 if (!net_eq(dev_net(n->dev), net))
2229 continue;
2230 if (idx < s_idx)
2231 goto next;
2232 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2233 cb->nlh->nlmsg_seq,
2234 RTM_NEWNEIGH,
2235 NLM_F_MULTI) <= 0) {
2236 rc = -1;
2237 goto out;
2238 }
2239next:
2240 idx++;
2241 }
2242 }
2243 rc = skb->len;
2244out:
2245 rcu_read_unlock_bh();
2246 cb->args[1] = h;
2247 cb->args[2] = idx;
2248 return rc;
2249}
2250
2251static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2252 struct netlink_callback *cb)
2253{
2254 struct pneigh_entry *n;
2255 struct net *net = sock_net(skb->sk);
2256 int rc, h, s_h = cb->args[3];
2257 int idx, s_idx = idx = cb->args[4];
2258
2259 read_lock_bh(&tbl->lock);
2260
2261 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2262 if (h > s_h)
2263 s_idx = 0;
2264 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2265 if (dev_net(n->dev) != net)
2266 continue;
2267 if (idx < s_idx)
2268 goto next;
2269 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2270 cb->nlh->nlmsg_seq,
2271 RTM_NEWNEIGH,
2272 NLM_F_MULTI, tbl) <= 0) {
2273 read_unlock_bh(&tbl->lock);
2274 rc = -1;
2275 goto out;
2276 }
2277 next:
2278 idx++;
2279 }
2280 }
2281
2282 read_unlock_bh(&tbl->lock);
2283 rc = skb->len;
2284out:
2285 cb->args[3] = h;
2286 cb->args[4] = idx;
2287 return rc;
2288
2289}
2290
2291static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2292{
2293 struct neigh_table *tbl;
2294 int t, family, s_t;
2295 int proxy = 0;
2296 int err;
2297
2298 read_lock(&neigh_tbl_lock);
2299 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2300
2301 /* check for full ndmsg structure presence, family member is
2302 * the same for both structures
2303 */
2304 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2305 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2306 proxy = 1;
2307
2308 s_t = cb->args[0];
2309
2310 for (tbl = neigh_tables, t = 0; tbl;
2311 tbl = tbl->next, t++) {
2312 if (t < s_t || (family && tbl->family != family))
2313 continue;
2314 if (t > s_t)
2315 memset(&cb->args[1], 0, sizeof(cb->args) -
2316 sizeof(cb->args[0]));
2317 if (proxy)
2318 err = pneigh_dump_table(tbl, skb, cb);
2319 else
2320 err = neigh_dump_table(tbl, skb, cb);
2321 if (err < 0)
2322 break;
2323 }
2324 read_unlock(&neigh_tbl_lock);
2325
2326 cb->args[0] = t;
2327 return skb->len;
2328}
2329
2330void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2331{
2332 int chain;
2333 struct neigh_hash_table *nht;
2334
2335 rcu_read_lock_bh();
2336 nht = rcu_dereference_bh(tbl->nht);
2337
2338 read_lock(&tbl->lock); /* avoid resizes */
2339 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2340 struct neighbour *n;
2341
2342 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2343 n != NULL;
2344 n = rcu_dereference_bh(n->next))
2345 cb(n, cookie);
2346 }
2347 read_unlock(&tbl->lock);
2348 rcu_read_unlock_bh();
2349}
2350EXPORT_SYMBOL(neigh_for_each);
2351
2352/* The tbl->lock must be held as a writer and BH disabled. */
2353void __neigh_for_each_release(struct neigh_table *tbl,
2354 int (*cb)(struct neighbour *))
2355{
2356 int chain;
2357 struct neigh_hash_table *nht;
2358
2359 nht = rcu_dereference_protected(tbl->nht,
2360 lockdep_is_held(&tbl->lock));
2361 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2362 struct neighbour *n;
2363 struct neighbour __rcu **np;
2364
2365 np = &nht->hash_buckets[chain];
2366 while ((n = rcu_dereference_protected(*np,
2367 lockdep_is_held(&tbl->lock))) != NULL) {
2368 int release;
2369
2370 write_lock(&n->lock);
2371 release = cb(n);
2372 if (release) {
2373 rcu_assign_pointer(*np,
2374 rcu_dereference_protected(n->next,
2375 lockdep_is_held(&tbl->lock)));
2376 n->dead = 1;
2377 } else
2378 np = &n->next;
2379 write_unlock(&n->lock);
2380 if (release)
2381 neigh_cleanup_and_release(n);
2382 }
2383 }
2384}
2385EXPORT_SYMBOL(__neigh_for_each_release);
2386
2387#ifdef CONFIG_PROC_FS
2388
2389static struct neighbour *neigh_get_first(struct seq_file *seq)
2390{
2391 struct neigh_seq_state *state = seq->private;
2392 struct net *net = seq_file_net(seq);
2393 struct neigh_hash_table *nht = state->nht;
2394 struct neighbour *n = NULL;
2395 int bucket = state->bucket;
2396
2397 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2398 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2399 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2400
2401 while (n) {
2402 if (!net_eq(dev_net(n->dev), net))
2403 goto next;
2404 if (state->neigh_sub_iter) {
2405 loff_t fakep = 0;
2406 void *v;
2407
2408 v = state->neigh_sub_iter(state, n, &fakep);
2409 if (!v)
2410 goto next;
2411 }
2412 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2413 break;
2414 if (n->nud_state & ~NUD_NOARP)
2415 break;
2416next:
2417 n = rcu_dereference_bh(n->next);
2418 }
2419
2420 if (n)
2421 break;
2422 }
2423 state->bucket = bucket;
2424
2425 return n;
2426}
2427
2428static struct neighbour *neigh_get_next(struct seq_file *seq,
2429 struct neighbour *n,
2430 loff_t *pos)
2431{
2432 struct neigh_seq_state *state = seq->private;
2433 struct net *net = seq_file_net(seq);
2434 struct neigh_hash_table *nht = state->nht;
2435
2436 if (state->neigh_sub_iter) {
2437 void *v = state->neigh_sub_iter(state, n, pos);
2438 if (v)
2439 return n;
2440 }
2441 n = rcu_dereference_bh(n->next);
2442
2443 while (1) {
2444 while (n) {
2445 if (!net_eq(dev_net(n->dev), net))
2446 goto next;
2447 if (state->neigh_sub_iter) {
2448 void *v = state->neigh_sub_iter(state, n, pos);
2449 if (v)
2450 return n;
2451 goto next;
2452 }
2453 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2454 break;
2455
2456 if (n->nud_state & ~NUD_NOARP)
2457 break;
2458next:
2459 n = rcu_dereference_bh(n->next);
2460 }
2461
2462 if (n)
2463 break;
2464
2465 if (++state->bucket >= (1 << nht->hash_shift))
2466 break;
2467
2468 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2469 }
2470
2471 if (n && pos)
2472 --(*pos);
2473 return n;
2474}
2475
2476static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2477{
2478 struct neighbour *n = neigh_get_first(seq);
2479
2480 if (n) {
2481 --(*pos);
2482 while (*pos) {
2483 n = neigh_get_next(seq, n, pos);
2484 if (!n)
2485 break;
2486 }
2487 }
2488 return *pos ? NULL : n;
2489}
2490
2491static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2492{
2493 struct neigh_seq_state *state = seq->private;
2494 struct net *net = seq_file_net(seq);
2495 struct neigh_table *tbl = state->tbl;
2496 struct pneigh_entry *pn = NULL;
2497 int bucket = state->bucket;
2498
2499 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2500 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2501 pn = tbl->phash_buckets[bucket];
2502 while (pn && !net_eq(pneigh_net(pn), net))
2503 pn = pn->next;
2504 if (pn)
2505 break;
2506 }
2507 state->bucket = bucket;
2508
2509 return pn;
2510}
2511
2512static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2513 struct pneigh_entry *pn,
2514 loff_t *pos)
2515{
2516 struct neigh_seq_state *state = seq->private;
2517 struct net *net = seq_file_net(seq);
2518 struct neigh_table *tbl = state->tbl;
2519
2520 do {
2521 pn = pn->next;
2522 } while (pn && !net_eq(pneigh_net(pn), net));
2523
2524 while (!pn) {
2525 if (++state->bucket > PNEIGH_HASHMASK)
2526 break;
2527 pn = tbl->phash_buckets[state->bucket];
2528 while (pn && !net_eq(pneigh_net(pn), net))
2529 pn = pn->next;
2530 if (pn)
2531 break;
2532 }
2533
2534 if (pn && pos)
2535 --(*pos);
2536
2537 return pn;
2538}
2539
2540static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2541{
2542 struct pneigh_entry *pn = pneigh_get_first(seq);
2543
2544 if (pn) {
2545 --(*pos);
2546 while (*pos) {
2547 pn = pneigh_get_next(seq, pn, pos);
2548 if (!pn)
2549 break;
2550 }
2551 }
2552 return *pos ? NULL : pn;
2553}
2554
2555static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2556{
2557 struct neigh_seq_state *state = seq->private;
2558 void *rc;
2559 loff_t idxpos = *pos;
2560
2561 rc = neigh_get_idx(seq, &idxpos);
2562 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2563 rc = pneigh_get_idx(seq, &idxpos);
2564
2565 return rc;
2566}
2567
2568void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2569 __acquires(rcu_bh)
2570{
2571 struct neigh_seq_state *state = seq->private;
2572
2573 state->tbl = tbl;
2574 state->bucket = 0;
2575 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2576
2577 rcu_read_lock_bh();
2578 state->nht = rcu_dereference_bh(tbl->nht);
2579
2580 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2581}
2582EXPORT_SYMBOL(neigh_seq_start);
2583
2584void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2585{
2586 struct neigh_seq_state *state;
2587 void *rc;
2588
2589 if (v == SEQ_START_TOKEN) {
2590 rc = neigh_get_first(seq);
2591 goto out;
2592 }
2593
2594 state = seq->private;
2595 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2596 rc = neigh_get_next(seq, v, NULL);
2597 if (rc)
2598 goto out;
2599 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2600 rc = pneigh_get_first(seq);
2601 } else {
2602 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2603 rc = pneigh_get_next(seq, v, NULL);
2604 }
2605out:
2606 ++(*pos);
2607 return rc;
2608}
2609EXPORT_SYMBOL(neigh_seq_next);
2610
2611void neigh_seq_stop(struct seq_file *seq, void *v)
2612 __releases(rcu_bh)
2613{
2614 rcu_read_unlock_bh();
2615}
2616EXPORT_SYMBOL(neigh_seq_stop);
2617
2618/* statistics via seq_file */
2619
2620static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2621{
2622 struct neigh_table *tbl = seq->private;
2623 int cpu;
2624
2625 if (*pos == 0)
2626 return SEQ_START_TOKEN;
2627
2628 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2629 if (!cpu_possible(cpu))
2630 continue;
2631 *pos = cpu+1;
2632 return per_cpu_ptr(tbl->stats, cpu);
2633 }
2634 return NULL;
2635}
2636
2637static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2638{
2639 struct neigh_table *tbl = seq->private;
2640 int cpu;
2641
2642 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2643 if (!cpu_possible(cpu))
2644 continue;
2645 *pos = cpu+1;
2646 return per_cpu_ptr(tbl->stats, cpu);
2647 }
2648 return NULL;
2649}
2650
2651static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2652{
2653
2654}
2655
2656static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2657{
2658 struct neigh_table *tbl = seq->private;
2659 struct neigh_statistics *st = v;
2660
2661 if (v == SEQ_START_TOKEN) {
2662 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2663 return 0;
2664 }
2665
2666 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2667 "%08lx %08lx %08lx %08lx %08lx\n",
2668 atomic_read(&tbl->entries),
2669
2670 st->allocs,
2671 st->destroys,
2672 st->hash_grows,
2673
2674 st->lookups,
2675 st->hits,
2676
2677 st->res_failed,
2678
2679 st->rcv_probes_mcast,
2680 st->rcv_probes_ucast,
2681
2682 st->periodic_gc_runs,
2683 st->forced_gc_runs,
2684 st->unres_discards
2685 );
2686
2687 return 0;
2688}
2689
2690static const struct seq_operations neigh_stat_seq_ops = {
2691 .start = neigh_stat_seq_start,
2692 .next = neigh_stat_seq_next,
2693 .stop = neigh_stat_seq_stop,
2694 .show = neigh_stat_seq_show,
2695};
2696
2697static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2698{
2699 int ret = seq_open(file, &neigh_stat_seq_ops);
2700
2701 if (!ret) {
2702 struct seq_file *sf = file->private_data;
2703 sf->private = PDE(inode)->data;
2704 }
2705 return ret;
2706};
2707
2708static const struct file_operations neigh_stat_seq_fops = {
2709 .owner = THIS_MODULE,
2710 .open = neigh_stat_seq_open,
2711 .read = seq_read,
2712 .llseek = seq_lseek,
2713 .release = seq_release,
2714};
2715
2716#endif /* CONFIG_PROC_FS */
2717
2718static inline size_t neigh_nlmsg_size(void)
2719{
2720 return NLMSG_ALIGN(sizeof(struct ndmsg))
2721 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2722 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2723 + nla_total_size(sizeof(struct nda_cacheinfo))
2724 + nla_total_size(4); /* NDA_PROBES */
2725}
2726
2727static void __neigh_notify(struct neighbour *n, int type, int flags)
2728{
2729 struct net *net = dev_net(n->dev);
2730 struct sk_buff *skb;
2731 int err = -ENOBUFS;
2732
2733 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2734 if (skb == NULL)
2735 goto errout;
2736
2737 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2738 if (err < 0) {
2739 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2740 WARN_ON(err == -EMSGSIZE);
2741 kfree_skb(skb);
2742 goto errout;
2743 }
2744 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2745 return;
2746errout:
2747 if (err < 0)
2748 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2749}
2750
2751#ifdef CONFIG_ARPD
2752void neigh_app_ns(struct neighbour *n)
2753{
2754 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2755}
2756EXPORT_SYMBOL(neigh_app_ns);
2757#endif /* CONFIG_ARPD */
2758
2759#ifdef CONFIG_SYSCTL
2760
2761static int proc_unres_qlen(ctl_table *ctl, int write, void __user *buffer,
2762 size_t *lenp, loff_t *ppos)
2763{
2764 int size, ret;
2765 ctl_table tmp = *ctl;
2766
2767 tmp.data = &size;
2768 size = DIV_ROUND_UP(*(int *)ctl->data, SKB_TRUESIZE(ETH_FRAME_LEN));
2769 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
2770 if (write && !ret)
2771 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2772 return ret;
2773}
2774
2775enum {
2776 NEIGH_VAR_MCAST_PROBE,
2777 NEIGH_VAR_UCAST_PROBE,
2778 NEIGH_VAR_APP_PROBE,
2779 NEIGH_VAR_RETRANS_TIME,
2780 NEIGH_VAR_BASE_REACHABLE_TIME,
2781 NEIGH_VAR_DELAY_PROBE_TIME,
2782 NEIGH_VAR_GC_STALETIME,
2783 NEIGH_VAR_QUEUE_LEN,
2784 NEIGH_VAR_QUEUE_LEN_BYTES,
2785 NEIGH_VAR_PROXY_QLEN,
2786 NEIGH_VAR_ANYCAST_DELAY,
2787 NEIGH_VAR_PROXY_DELAY,
2788 NEIGH_VAR_LOCKTIME,
2789 NEIGH_VAR_RETRANS_TIME_MS,
2790 NEIGH_VAR_BASE_REACHABLE_TIME_MS,
2791 NEIGH_VAR_GC_INTERVAL,
2792 NEIGH_VAR_GC_THRESH1,
2793 NEIGH_VAR_GC_THRESH2,
2794 NEIGH_VAR_GC_THRESH3,
2795 NEIGH_VAR_MAX
2796};
2797
2798static struct neigh_sysctl_table {
2799 struct ctl_table_header *sysctl_header;
2800 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
2801} neigh_sysctl_template __read_mostly = {
2802 .neigh_vars = {
2803 [NEIGH_VAR_MCAST_PROBE] = {
2804 .procname = "mcast_solicit",
2805 .maxlen = sizeof(int),
2806 .mode = 0644,
2807 .proc_handler = proc_dointvec,
2808 },
2809 [NEIGH_VAR_UCAST_PROBE] = {
2810 .procname = "ucast_solicit",
2811 .maxlen = sizeof(int),
2812 .mode = 0644,
2813 .proc_handler = proc_dointvec,
2814 },
2815 [NEIGH_VAR_APP_PROBE] = {
2816 .procname = "app_solicit",
2817 .maxlen = sizeof(int),
2818 .mode = 0644,
2819 .proc_handler = proc_dointvec,
2820 },
2821 [NEIGH_VAR_RETRANS_TIME] = {
2822 .procname = "retrans_time",
2823 .maxlen = sizeof(int),
2824 .mode = 0644,
2825 .proc_handler = proc_dointvec_userhz_jiffies,
2826 },
2827 [NEIGH_VAR_BASE_REACHABLE_TIME] = {
2828 .procname = "base_reachable_time",
2829 .maxlen = sizeof(int),
2830 .mode = 0644,
2831 .proc_handler = proc_dointvec_jiffies,
2832 },
2833 [NEIGH_VAR_DELAY_PROBE_TIME] = {
2834 .procname = "delay_first_probe_time",
2835 .maxlen = sizeof(int),
2836 .mode = 0644,
2837 .proc_handler = proc_dointvec_jiffies,
2838 },
2839 [NEIGH_VAR_GC_STALETIME] = {
2840 .procname = "gc_stale_time",
2841 .maxlen = sizeof(int),
2842 .mode = 0644,
2843 .proc_handler = proc_dointvec_jiffies,
2844 },
2845 [NEIGH_VAR_QUEUE_LEN] = {
2846 .procname = "unres_qlen",
2847 .maxlen = sizeof(int),
2848 .mode = 0644,
2849 .proc_handler = proc_unres_qlen,
2850 },
2851 [NEIGH_VAR_QUEUE_LEN_BYTES] = {
2852 .procname = "unres_qlen_bytes",
2853 .maxlen = sizeof(int),
2854 .mode = 0644,
2855 .proc_handler = proc_dointvec,
2856 },
2857 [NEIGH_VAR_PROXY_QLEN] = {
2858 .procname = "proxy_qlen",
2859 .maxlen = sizeof(int),
2860 .mode = 0644,
2861 .proc_handler = proc_dointvec,
2862 },
2863 [NEIGH_VAR_ANYCAST_DELAY] = {
2864 .procname = "anycast_delay",
2865 .maxlen = sizeof(int),
2866 .mode = 0644,
2867 .proc_handler = proc_dointvec_userhz_jiffies,
2868 },
2869 [NEIGH_VAR_PROXY_DELAY] = {
2870 .procname = "proxy_delay",
2871 .maxlen = sizeof(int),
2872 .mode = 0644,
2873 .proc_handler = proc_dointvec_userhz_jiffies,
2874 },
2875 [NEIGH_VAR_LOCKTIME] = {
2876 .procname = "locktime",
2877 .maxlen = sizeof(int),
2878 .mode = 0644,
2879 .proc_handler = proc_dointvec_userhz_jiffies,
2880 },
2881 [NEIGH_VAR_RETRANS_TIME_MS] = {
2882 .procname = "retrans_time_ms",
2883 .maxlen = sizeof(int),
2884 .mode = 0644,
2885 .proc_handler = proc_dointvec_ms_jiffies,
2886 },
2887 [NEIGH_VAR_BASE_REACHABLE_TIME_MS] = {
2888 .procname = "base_reachable_time_ms",
2889 .maxlen = sizeof(int),
2890 .mode = 0644,
2891 .proc_handler = proc_dointvec_ms_jiffies,
2892 },
2893 [NEIGH_VAR_GC_INTERVAL] = {
2894 .procname = "gc_interval",
2895 .maxlen = sizeof(int),
2896 .mode = 0644,
2897 .proc_handler = proc_dointvec_jiffies,
2898 },
2899 [NEIGH_VAR_GC_THRESH1] = {
2900 .procname = "gc_thresh1",
2901 .maxlen = sizeof(int),
2902 .mode = 0644,
2903 .proc_handler = proc_dointvec,
2904 },
2905 [NEIGH_VAR_GC_THRESH2] = {
2906 .procname = "gc_thresh2",
2907 .maxlen = sizeof(int),
2908 .mode = 0644,
2909 .proc_handler = proc_dointvec,
2910 },
2911 [NEIGH_VAR_GC_THRESH3] = {
2912 .procname = "gc_thresh3",
2913 .maxlen = sizeof(int),
2914 .mode = 0644,
2915 .proc_handler = proc_dointvec,
2916 },
2917 {},
2918 },
2919};
2920
2921int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2922 char *p_name, proc_handler *handler)
2923{
2924 struct neigh_sysctl_table *t;
2925 const char *dev_name_source = NULL;
2926 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
2927
2928 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2929 if (!t)
2930 goto err;
2931
2932 t->neigh_vars[NEIGH_VAR_MCAST_PROBE].data = &p->mcast_probes;
2933 t->neigh_vars[NEIGH_VAR_UCAST_PROBE].data = &p->ucast_probes;
2934 t->neigh_vars[NEIGH_VAR_APP_PROBE].data = &p->app_probes;
2935 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].data = &p->retrans_time;
2936 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].data = &p->base_reachable_time;
2937 t->neigh_vars[NEIGH_VAR_DELAY_PROBE_TIME].data = &p->delay_probe_time;
2938 t->neigh_vars[NEIGH_VAR_GC_STALETIME].data = &p->gc_staletime;
2939 t->neigh_vars[NEIGH_VAR_QUEUE_LEN].data = &p->queue_len_bytes;
2940 t->neigh_vars[NEIGH_VAR_QUEUE_LEN_BYTES].data = &p->queue_len_bytes;
2941 t->neigh_vars[NEIGH_VAR_PROXY_QLEN].data = &p->proxy_qlen;
2942 t->neigh_vars[NEIGH_VAR_ANYCAST_DELAY].data = &p->anycast_delay;
2943 t->neigh_vars[NEIGH_VAR_PROXY_DELAY].data = &p->proxy_delay;
2944 t->neigh_vars[NEIGH_VAR_LOCKTIME].data = &p->locktime;
2945 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].data = &p->retrans_time;
2946 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].data = &p->base_reachable_time;
2947
2948 if (dev) {
2949 dev_name_source = dev->name;
2950 /* Terminate the table early */
2951 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
2952 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
2953 } else {
2954 dev_name_source = "default";
2955 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1);
2956 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1;
2957 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2;
2958 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3;
2959 }
2960
2961
2962 if (handler) {
2963 /* RetransTime */
2964 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
2965 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].extra1 = dev;
2966 /* ReachableTime */
2967 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
2968 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].extra1 = dev;
2969 /* RetransTime (in milliseconds)*/
2970 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
2971 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].extra1 = dev;
2972 /* ReachableTime (in milliseconds) */
2973 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
2974 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].extra1 = dev;
2975 }
2976
2977 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
2978 p_name, dev_name_source);
2979 t->sysctl_header =
2980 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
2981 if (!t->sysctl_header)
2982 goto free;
2983
2984 p->sysctl_table = t;
2985 return 0;
2986
2987free:
2988 kfree(t);
2989err:
2990 return -ENOBUFS;
2991}
2992EXPORT_SYMBOL(neigh_sysctl_register);
2993
2994void neigh_sysctl_unregister(struct neigh_parms *p)
2995{
2996 if (p->sysctl_table) {
2997 struct neigh_sysctl_table *t = p->sysctl_table;
2998 p->sysctl_table = NULL;
2999 unregister_net_sysctl_table(t->sysctl_header);
3000 kfree(t);
3001 }
3002}
3003EXPORT_SYMBOL(neigh_sysctl_unregister);
3004
3005#endif /* CONFIG_SYSCTL */
3006
3007static int __init neigh_init(void)
3008{
3009 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3010 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3011 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3012
3013 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3014 NULL);
3015 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3016
3017 return 0;
3018}
3019
3020subsys_initcall(neigh_init);
3021