Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *	Generic address resolution entity
   3 *
   4 *	Authors:
   5 *	Pedro Roque		<roque@di.fc.ul.pt>
   6 *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
   7 *
   8 *	This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 *
  13 *	Fixes:
  14 *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
  15 *	Harald Welte		Add neighbour cache statistics like rtstat
  16 */
  17
 
 
  18#include <linux/slab.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/socket.h>
  23#include <linux/netdevice.h>
  24#include <linux/proc_fs.h>
  25#ifdef CONFIG_SYSCTL
  26#include <linux/sysctl.h>
  27#endif
  28#include <linux/times.h>
  29#include <net/net_namespace.h>
  30#include <net/neighbour.h>
  31#include <net/dst.h>
  32#include <net/sock.h>
  33#include <net/netevent.h>
  34#include <net/netlink.h>
  35#include <linux/rtnetlink.h>
  36#include <linux/random.h>
  37#include <linux/string.h>
  38#include <linux/log2.h>
 
 
  39
 
  40#define NEIGH_DEBUG 1
  41
  42#define NEIGH_PRINTK(x...) printk(x)
  43#define NEIGH_NOPRINTK(x...) do { ; } while(0)
  44#define NEIGH_PRINTK1 NEIGH_NOPRINTK
  45#define NEIGH_PRINTK2 NEIGH_NOPRINTK
  46
  47#if NEIGH_DEBUG >= 1
  48#undef NEIGH_PRINTK1
  49#define NEIGH_PRINTK1 NEIGH_PRINTK
  50#endif
  51#if NEIGH_DEBUG >= 2
  52#undef NEIGH_PRINTK2
  53#define NEIGH_PRINTK2 NEIGH_PRINTK
  54#endif
  55
  56#define PNEIGH_HASHMASK		0xF
  57
  58static void neigh_timer_handler(unsigned long arg);
  59static void __neigh_notify(struct neighbour *n, int type, int flags);
  60static void neigh_update_notify(struct neighbour *neigh);
  61static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
  62
  63static struct neigh_table *neigh_tables;
  64#ifdef CONFIG_PROC_FS
  65static const struct file_operations neigh_stat_seq_fops;
  66#endif
  67
  68/*
  69   Neighbour hash table buckets are protected with rwlock tbl->lock.
  70
  71   - All the scans/updates to hash buckets MUST be made under this lock.
  72   - NOTHING clever should be made under this lock: no callbacks
  73     to protocol backends, no attempts to send something to network.
  74     It will result in deadlocks, if backend/driver wants to use neighbour
  75     cache.
  76   - If the entry requires some non-trivial actions, increase
  77     its reference count and release table lock.
  78
  79   Neighbour entries are protected:
  80   - with reference count.
  81   - with rwlock neigh->lock
  82
  83   Reference count prevents destruction.
  84
  85   neigh->lock mainly serializes ll address data and its validity state.
  86   However, the same lock is used to protect another entry fields:
  87    - timer
  88    - resolution queue
  89
  90   Again, nothing clever shall be made under neigh->lock,
  91   the most complicated procedure, which we allow is dev->hard_header.
  92   It is supposed, that dev->hard_header is simplistic and does
  93   not make callbacks to neighbour tables.
  94
  95   The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
  96   list of neighbour tables. This list is used only in process context,
  97 */
  98
  99static DEFINE_RWLOCK(neigh_tbl_lock);
 100
 101static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
 102{
 103	kfree_skb(skb);
 104	return -ENETDOWN;
 105}
 106
 107static void neigh_cleanup_and_release(struct neighbour *neigh)
 108{
 109	if (neigh->parms->neigh_cleanup)
 110		neigh->parms->neigh_cleanup(neigh);
 111
 112	__neigh_notify(neigh, RTM_DELNEIGH, 0);
 113	neigh_release(neigh);
 114}
 115
 116/*
 117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
 118 * It corresponds to default IPv6 settings and is not overridable,
 119 * because it is really reasonable choice.
 120 */
 121
 122unsigned long neigh_rand_reach_time(unsigned long base)
 123{
 124	return base ? (net_random() % base) + (base >> 1) : 0;
 125}
 126EXPORT_SYMBOL(neigh_rand_reach_time);
 127
 128
 129static int neigh_forced_gc(struct neigh_table *tbl)
 130{
 131	int shrunk = 0;
 132	int i;
 133	struct neigh_hash_table *nht;
 134
 135	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
 136
 137	write_lock_bh(&tbl->lock);
 138	nht = rcu_dereference_protected(tbl->nht,
 139					lockdep_is_held(&tbl->lock));
 140	for (i = 0; i < (1 << nht->hash_shift); i++) {
 141		struct neighbour *n;
 142		struct neighbour __rcu **np;
 143
 144		np = &nht->hash_buckets[i];
 145		while ((n = rcu_dereference_protected(*np,
 146					lockdep_is_held(&tbl->lock))) != NULL) {
 147			/* Neighbour record may be discarded if:
 148			 * - nobody refers to it.
 149			 * - it is not permanent
 150			 */
 151			write_lock(&n->lock);
 152			if (atomic_read(&n->refcnt) == 1 &&
 153			    !(n->nud_state & NUD_PERMANENT)) {
 154				rcu_assign_pointer(*np,
 155					rcu_dereference_protected(n->next,
 156						  lockdep_is_held(&tbl->lock)));
 157				n->dead = 1;
 158				shrunk	= 1;
 159				write_unlock(&n->lock);
 160				neigh_cleanup_and_release(n);
 161				continue;
 162			}
 163			write_unlock(&n->lock);
 164			np = &n->next;
 165		}
 166	}
 167
 168	tbl->last_flush = jiffies;
 169
 170	write_unlock_bh(&tbl->lock);
 171
 172	return shrunk;
 173}
 174
 175static void neigh_add_timer(struct neighbour *n, unsigned long when)
 176{
 177	neigh_hold(n);
 178	if (unlikely(mod_timer(&n->timer, when))) {
 179		printk("NEIGH: BUG, double timer add, state is %x\n",
 180		       n->nud_state);
 181		dump_stack();
 182	}
 183}
 184
 185static int neigh_del_timer(struct neighbour *n)
 186{
 187	if ((n->nud_state & NUD_IN_TIMER) &&
 188	    del_timer(&n->timer)) {
 189		neigh_release(n);
 190		return 1;
 191	}
 192	return 0;
 193}
 194
 195static void pneigh_queue_purge(struct sk_buff_head *list)
 196{
 197	struct sk_buff *skb;
 198
 199	while ((skb = skb_dequeue(list)) != NULL) {
 200		dev_put(skb->dev);
 201		kfree_skb(skb);
 202	}
 203}
 204
 205static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
 206{
 207	int i;
 208	struct neigh_hash_table *nht;
 209
 210	nht = rcu_dereference_protected(tbl->nht,
 211					lockdep_is_held(&tbl->lock));
 212
 213	for (i = 0; i < (1 << nht->hash_shift); i++) {
 214		struct neighbour *n;
 215		struct neighbour __rcu **np = &nht->hash_buckets[i];
 216
 217		while ((n = rcu_dereference_protected(*np,
 218					lockdep_is_held(&tbl->lock))) != NULL) {
 219			if (dev && n->dev != dev) {
 220				np = &n->next;
 221				continue;
 222			}
 223			rcu_assign_pointer(*np,
 224				   rcu_dereference_protected(n->next,
 225						lockdep_is_held(&tbl->lock)));
 226			write_lock(&n->lock);
 227			neigh_del_timer(n);
 228			n->dead = 1;
 229
 230			if (atomic_read(&n->refcnt) != 1) {
 231				/* The most unpleasant situation.
 232				   We must destroy neighbour entry,
 233				   but someone still uses it.
 234
 235				   The destroy will be delayed until
 236				   the last user releases us, but
 237				   we must kill timers etc. and move
 238				   it to safe state.
 239				 */
 240				skb_queue_purge(&n->arp_queue);
 
 241				n->output = neigh_blackhole;
 242				if (n->nud_state & NUD_VALID)
 243					n->nud_state = NUD_NOARP;
 244				else
 245					n->nud_state = NUD_NONE;
 246				NEIGH_PRINTK2("neigh %p is stray.\n", n);
 247			}
 248			write_unlock(&n->lock);
 249			neigh_cleanup_and_release(n);
 250		}
 251	}
 252}
 253
 254void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
 255{
 256	write_lock_bh(&tbl->lock);
 257	neigh_flush_dev(tbl, dev);
 258	write_unlock_bh(&tbl->lock);
 259}
 260EXPORT_SYMBOL(neigh_changeaddr);
 261
 262int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
 263{
 264	write_lock_bh(&tbl->lock);
 265	neigh_flush_dev(tbl, dev);
 266	pneigh_ifdown(tbl, dev);
 267	write_unlock_bh(&tbl->lock);
 268
 269	del_timer_sync(&tbl->proxy_timer);
 270	pneigh_queue_purge(&tbl->proxy_queue);
 271	return 0;
 272}
 273EXPORT_SYMBOL(neigh_ifdown);
 274
 275static struct neighbour *neigh_alloc(struct neigh_table *tbl)
 276{
 277	struct neighbour *n = NULL;
 278	unsigned long now = jiffies;
 279	int entries;
 280
 281	entries = atomic_inc_return(&tbl->entries) - 1;
 282	if (entries >= tbl->gc_thresh3 ||
 283	    (entries >= tbl->gc_thresh2 &&
 284	     time_after(now, tbl->last_flush + 5 * HZ))) {
 285		if (!neigh_forced_gc(tbl) &&
 286		    entries >= tbl->gc_thresh3)
 
 
 
 287			goto out_entries;
 
 288	}
 289
 290	n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
 291	if (!n)
 292		goto out_entries;
 293
 294	skb_queue_head_init(&n->arp_queue);
 295	rwlock_init(&n->lock);
 296	seqlock_init(&n->ha_lock);
 297	n->updated	  = n->used = now;
 298	n->nud_state	  = NUD_NONE;
 299	n->output	  = neigh_blackhole;
 300	seqlock_init(&n->hh.hh_lock);
 301	n->parms	  = neigh_parms_clone(&tbl->parms);
 302	setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
 303
 304	NEIGH_CACHE_STAT_INC(tbl, allocs);
 305	n->tbl		  = tbl;
 306	atomic_set(&n->refcnt, 1);
 307	n->dead		  = 1;
 308out:
 309	return n;
 310
 311out_entries:
 312	atomic_dec(&tbl->entries);
 313	goto out;
 314}
 315
 
 
 
 
 
 
 316static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
 317{
 318	size_t size = (1 << shift) * sizeof(struct neighbour *);
 319	struct neigh_hash_table *ret;
 320	struct neighbour __rcu **buckets;
 
 321
 322	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
 323	if (!ret)
 324		return NULL;
 325	if (size <= PAGE_SIZE)
 326		buckets = kzalloc(size, GFP_ATOMIC);
 327	else
 328		buckets = (struct neighbour __rcu **)
 329			  __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
 330					   get_order(size));
 331	if (!buckets) {
 332		kfree(ret);
 333		return NULL;
 334	}
 335	ret->hash_buckets = buckets;
 336	ret->hash_shift = shift;
 337	get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
 338	ret->hash_rnd |= 1;
 339	return ret;
 340}
 341
 342static void neigh_hash_free_rcu(struct rcu_head *head)
 343{
 344	struct neigh_hash_table *nht = container_of(head,
 345						    struct neigh_hash_table,
 346						    rcu);
 347	size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
 348	struct neighbour __rcu **buckets = nht->hash_buckets;
 349
 350	if (size <= PAGE_SIZE)
 351		kfree(buckets);
 352	else
 353		free_pages((unsigned long)buckets, get_order(size));
 354	kfree(nht);
 355}
 356
 357static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
 358						unsigned long new_shift)
 359{
 360	unsigned int i, hash;
 361	struct neigh_hash_table *new_nht, *old_nht;
 362
 363	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
 364
 365	old_nht = rcu_dereference_protected(tbl->nht,
 366					    lockdep_is_held(&tbl->lock));
 367	new_nht = neigh_hash_alloc(new_shift);
 368	if (!new_nht)
 369		return old_nht;
 370
 371	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
 372		struct neighbour *n, *next;
 373
 374		for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
 375						   lockdep_is_held(&tbl->lock));
 376		     n != NULL;
 377		     n = next) {
 378			hash = tbl->hash(n->primary_key, n->dev,
 379					 new_nht->hash_rnd);
 380
 381			hash >>= (32 - new_nht->hash_shift);
 382			next = rcu_dereference_protected(n->next,
 383						lockdep_is_held(&tbl->lock));
 384
 385			rcu_assign_pointer(n->next,
 386					   rcu_dereference_protected(
 387						new_nht->hash_buckets[hash],
 388						lockdep_is_held(&tbl->lock)));
 389			rcu_assign_pointer(new_nht->hash_buckets[hash], n);
 390		}
 391	}
 392
 393	rcu_assign_pointer(tbl->nht, new_nht);
 394	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
 395	return new_nht;
 396}
 397
 398struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
 399			       struct net_device *dev)
 400{
 401	struct neighbour *n;
 402	int key_len = tbl->key_len;
 403	u32 hash_val;
 404	struct neigh_hash_table *nht;
 405
 406	NEIGH_CACHE_STAT_INC(tbl, lookups);
 407
 408	rcu_read_lock_bh();
 409	nht = rcu_dereference_bh(tbl->nht);
 410	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
 411
 412	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
 413	     n != NULL;
 414	     n = rcu_dereference_bh(n->next)) {
 415		if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
 416			if (!atomic_inc_not_zero(&n->refcnt))
 417				n = NULL;
 418			NEIGH_CACHE_STAT_INC(tbl, hits);
 419			break;
 420		}
 421	}
 422
 423	rcu_read_unlock_bh();
 424	return n;
 425}
 426EXPORT_SYMBOL(neigh_lookup);
 427
 428struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
 429				     const void *pkey)
 430{
 431	struct neighbour *n;
 432	int key_len = tbl->key_len;
 433	u32 hash_val;
 434	struct neigh_hash_table *nht;
 435
 436	NEIGH_CACHE_STAT_INC(tbl, lookups);
 437
 438	rcu_read_lock_bh();
 439	nht = rcu_dereference_bh(tbl->nht);
 440	hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
 441
 442	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
 443	     n != NULL;
 444	     n = rcu_dereference_bh(n->next)) {
 445		if (!memcmp(n->primary_key, pkey, key_len) &&
 446		    net_eq(dev_net(n->dev), net)) {
 447			if (!atomic_inc_not_zero(&n->refcnt))
 448				n = NULL;
 449			NEIGH_CACHE_STAT_INC(tbl, hits);
 450			break;
 451		}
 452	}
 453
 454	rcu_read_unlock_bh();
 455	return n;
 456}
 457EXPORT_SYMBOL(neigh_lookup_nodev);
 458
 459struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
 460			       struct net_device *dev)
 461{
 462	u32 hash_val;
 463	int key_len = tbl->key_len;
 464	int error;
 465	struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
 466	struct neigh_hash_table *nht;
 467
 468	if (!n) {
 469		rc = ERR_PTR(-ENOBUFS);
 470		goto out;
 471	}
 472
 473	memcpy(n->primary_key, pkey, key_len);
 474	n->dev = dev;
 475	dev_hold(dev);
 476
 477	/* Protocol specific setup. */
 478	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
 479		rc = ERR_PTR(error);
 480		goto out_neigh_release;
 481	}
 482
 
 
 
 
 
 
 
 
 483	/* Device specific setup. */
 484	if (n->parms->neigh_setup &&
 485	    (error = n->parms->neigh_setup(n)) < 0) {
 486		rc = ERR_PTR(error);
 487		goto out_neigh_release;
 488	}
 489
 490	n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
 491
 492	write_lock_bh(&tbl->lock);
 493	nht = rcu_dereference_protected(tbl->nht,
 494					lockdep_is_held(&tbl->lock));
 495
 496	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
 497		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
 498
 499	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
 500
 501	if (n->parms->dead) {
 502		rc = ERR_PTR(-EINVAL);
 503		goto out_tbl_unlock;
 504	}
 505
 506	for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
 507					    lockdep_is_held(&tbl->lock));
 508	     n1 != NULL;
 509	     n1 = rcu_dereference_protected(n1->next,
 510			lockdep_is_held(&tbl->lock))) {
 511		if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
 512			neigh_hold(n1);
 
 513			rc = n1;
 514			goto out_tbl_unlock;
 515		}
 516	}
 517
 518	n->dead = 0;
 519	neigh_hold(n);
 
 520	rcu_assign_pointer(n->next,
 521			   rcu_dereference_protected(nht->hash_buckets[hash_val],
 522						     lockdep_is_held(&tbl->lock)));
 523	rcu_assign_pointer(nht->hash_buckets[hash_val], n);
 524	write_unlock_bh(&tbl->lock);
 525	NEIGH_PRINTK2("neigh %p is created.\n", n);
 526	rc = n;
 527out:
 528	return rc;
 529out_tbl_unlock:
 530	write_unlock_bh(&tbl->lock);
 531out_neigh_release:
 532	neigh_release(n);
 533	goto out;
 534}
 535EXPORT_SYMBOL(neigh_create);
 536
 537static u32 pneigh_hash(const void *pkey, int key_len)
 538{
 539	u32 hash_val = *(u32 *)(pkey + key_len - 4);
 540	hash_val ^= (hash_val >> 16);
 541	hash_val ^= hash_val >> 8;
 542	hash_val ^= hash_val >> 4;
 543	hash_val &= PNEIGH_HASHMASK;
 544	return hash_val;
 545}
 546
 547static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
 548					      struct net *net,
 549					      const void *pkey,
 550					      int key_len,
 551					      struct net_device *dev)
 552{
 553	while (n) {
 554		if (!memcmp(n->key, pkey, key_len) &&
 555		    net_eq(pneigh_net(n), net) &&
 556		    (n->dev == dev || !n->dev))
 557			return n;
 558		n = n->next;
 559	}
 560	return NULL;
 561}
 562
 563struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
 564		struct net *net, const void *pkey, struct net_device *dev)
 565{
 566	int key_len = tbl->key_len;
 567	u32 hash_val = pneigh_hash(pkey, key_len);
 568
 569	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 570				 net, pkey, key_len, dev);
 571}
 572EXPORT_SYMBOL_GPL(__pneigh_lookup);
 573
 574struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
 575				    struct net *net, const void *pkey,
 576				    struct net_device *dev, int creat)
 577{
 578	struct pneigh_entry *n;
 579	int key_len = tbl->key_len;
 580	u32 hash_val = pneigh_hash(pkey, key_len);
 581
 582	read_lock_bh(&tbl->lock);
 583	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 584			      net, pkey, key_len, dev);
 585	read_unlock_bh(&tbl->lock);
 586
 587	if (n || !creat)
 588		goto out;
 589
 590	ASSERT_RTNL();
 591
 592	n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
 593	if (!n)
 594		goto out;
 595
 596	write_pnet(&n->net, hold_net(net));
 597	memcpy(n->key, pkey, key_len);
 598	n->dev = dev;
 599	if (dev)
 600		dev_hold(dev);
 601
 602	if (tbl->pconstructor && tbl->pconstructor(n)) {
 603		if (dev)
 604			dev_put(dev);
 605		release_net(net);
 606		kfree(n);
 607		n = NULL;
 608		goto out;
 609	}
 610
 611	write_lock_bh(&tbl->lock);
 612	n->next = tbl->phash_buckets[hash_val];
 613	tbl->phash_buckets[hash_val] = n;
 614	write_unlock_bh(&tbl->lock);
 615out:
 616	return n;
 617}
 618EXPORT_SYMBOL(pneigh_lookup);
 619
 620
 621int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
 622		  struct net_device *dev)
 623{
 624	struct pneigh_entry *n, **np;
 625	int key_len = tbl->key_len;
 626	u32 hash_val = pneigh_hash(pkey, key_len);
 627
 628	write_lock_bh(&tbl->lock);
 629	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
 630	     np = &n->next) {
 631		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
 632		    net_eq(pneigh_net(n), net)) {
 633			*np = n->next;
 634			write_unlock_bh(&tbl->lock);
 635			if (tbl->pdestructor)
 636				tbl->pdestructor(n);
 637			if (n->dev)
 638				dev_put(n->dev);
 639			release_net(pneigh_net(n));
 640			kfree(n);
 641			return 0;
 642		}
 643	}
 644	write_unlock_bh(&tbl->lock);
 645	return -ENOENT;
 646}
 647
 648static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
 649{
 650	struct pneigh_entry *n, **np;
 651	u32 h;
 652
 653	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
 654		np = &tbl->phash_buckets[h];
 655		while ((n = *np) != NULL) {
 656			if (!dev || n->dev == dev) {
 657				*np = n->next;
 658				if (tbl->pdestructor)
 659					tbl->pdestructor(n);
 660				if (n->dev)
 661					dev_put(n->dev);
 662				release_net(pneigh_net(n));
 663				kfree(n);
 664				continue;
 665			}
 666			np = &n->next;
 667		}
 668	}
 669	return -ENOENT;
 670}
 671
 672static void neigh_parms_destroy(struct neigh_parms *parms);
 673
 674static inline void neigh_parms_put(struct neigh_parms *parms)
 675{
 676	if (atomic_dec_and_test(&parms->refcnt))
 677		neigh_parms_destroy(parms);
 678}
 679
 680static void neigh_destroy_rcu(struct rcu_head *head)
 681{
 682	struct neighbour *neigh = container_of(head, struct neighbour, rcu);
 683
 684	kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
 685}
 686/*
 687 *	neighbour must already be out of the table;
 688 *
 689 */
 690void neigh_destroy(struct neighbour *neigh)
 691{
 
 
 692	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
 693
 694	if (!neigh->dead) {
 695		printk(KERN_WARNING
 696		       "Destroying alive neighbour %p\n", neigh);
 697		dump_stack();
 698		return;
 699	}
 700
 701	if (neigh_del_timer(neigh))
 702		printk(KERN_WARNING "Impossible event.\n");
 703
 704	skb_queue_purge(&neigh->arp_queue);
 
 
 
 705
 706	dev_put(neigh->dev);
 
 
 
 707	neigh_parms_put(neigh->parms);
 708
 709	NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
 710
 711	atomic_dec(&neigh->tbl->entries);
 712	call_rcu(&neigh->rcu, neigh_destroy_rcu);
 713}
 714EXPORT_SYMBOL(neigh_destroy);
 715
 716/* Neighbour state is suspicious;
 717   disable fast path.
 718
 719   Called with write_locked neigh.
 720 */
 721static void neigh_suspect(struct neighbour *neigh)
 722{
 723	NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
 724
 725	neigh->output = neigh->ops->output;
 726}
 727
 728/* Neighbour state is OK;
 729   enable fast path.
 730
 731   Called with write_locked neigh.
 732 */
 733static void neigh_connect(struct neighbour *neigh)
 734{
 735	NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
 736
 737	neigh->output = neigh->ops->connected_output;
 738}
 739
 740static void neigh_periodic_work(struct work_struct *work)
 741{
 742	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
 743	struct neighbour *n;
 744	struct neighbour __rcu **np;
 745	unsigned int i;
 746	struct neigh_hash_table *nht;
 747
 748	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
 749
 750	write_lock_bh(&tbl->lock);
 751	nht = rcu_dereference_protected(tbl->nht,
 752					lockdep_is_held(&tbl->lock));
 753
 754	/*
 755	 *	periodically recompute ReachableTime from random function
 756	 */
 757
 758	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
 759		struct neigh_parms *p;
 760		tbl->last_rand = jiffies;
 761		for (p = &tbl->parms; p; p = p->next)
 762			p->reachable_time =
 763				neigh_rand_reach_time(p->base_reachable_time);
 764	}
 765
 
 
 
 766	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
 767		np = &nht->hash_buckets[i];
 768
 769		while ((n = rcu_dereference_protected(*np,
 770				lockdep_is_held(&tbl->lock))) != NULL) {
 771			unsigned int state;
 772
 773			write_lock(&n->lock);
 774
 775			state = n->nud_state;
 776			if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
 777				write_unlock(&n->lock);
 778				goto next_elt;
 779			}
 780
 781			if (time_before(n->used, n->confirmed))
 782				n->used = n->confirmed;
 783
 784			if (atomic_read(&n->refcnt) == 1 &&
 785			    (state == NUD_FAILED ||
 786			     time_after(jiffies, n->used + n->parms->gc_staletime))) {
 787				*np = n->next;
 788				n->dead = 1;
 789				write_unlock(&n->lock);
 790				neigh_cleanup_and_release(n);
 791				continue;
 792			}
 793			write_unlock(&n->lock);
 794
 795next_elt:
 796			np = &n->next;
 797		}
 798		/*
 799		 * It's fine to release lock here, even if hash table
 800		 * grows while we are preempted.
 801		 */
 802		write_unlock_bh(&tbl->lock);
 803		cond_resched();
 804		write_lock_bh(&tbl->lock);
 
 
 805	}
 806	/* Cycle through all hash buckets every base_reachable_time/2 ticks.
 807	 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
 808	 * base_reachable_time.
 
 809	 */
 810	schedule_delayed_work(&tbl->gc_work,
 811			      tbl->parms.base_reachable_time >> 1);
 812	write_unlock_bh(&tbl->lock);
 813}
 814
 815static __inline__ int neigh_max_probes(struct neighbour *n)
 816{
 817	struct neigh_parms *p = n->parms;
 818	return (n->nud_state & NUD_PROBE) ?
 819		p->ucast_probes :
 820		p->ucast_probes + p->app_probes + p->mcast_probes;
 821}
 822
 823static void neigh_invalidate(struct neighbour *neigh)
 824	__releases(neigh->lock)
 825	__acquires(neigh->lock)
 826{
 827	struct sk_buff *skb;
 828
 829	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
 830	NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
 831	neigh->updated = jiffies;
 832
 833	/* It is very thin place. report_unreachable is very complicated
 834	   routine. Particularly, it can hit the same neighbour entry!
 835
 836	   So that, we try to be accurate and avoid dead loop. --ANK
 837	 */
 838	while (neigh->nud_state == NUD_FAILED &&
 839	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
 840		write_unlock(&neigh->lock);
 841		neigh->ops->error_report(neigh, skb);
 842		write_lock(&neigh->lock);
 843	}
 844	skb_queue_purge(&neigh->arp_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845}
 846
 847/* Called when a timer expires for a neighbour entry. */
 848
 849static void neigh_timer_handler(unsigned long arg)
 850{
 851	unsigned long now, next;
 852	struct neighbour *neigh = (struct neighbour *)arg;
 853	unsigned state;
 854	int notify = 0;
 855
 856	write_lock(&neigh->lock);
 857
 858	state = neigh->nud_state;
 859	now = jiffies;
 860	next = now + HZ;
 861
 862	if (!(state & NUD_IN_TIMER)) {
 863#ifndef CONFIG_SMP
 864		printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
 865#endif
 866		goto out;
 867	}
 868
 869	if (state & NUD_REACHABLE) {
 870		if (time_before_eq(now,
 871				   neigh->confirmed + neigh->parms->reachable_time)) {
 872			NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
 873			next = neigh->confirmed + neigh->parms->reachable_time;
 874		} else if (time_before_eq(now,
 875					  neigh->used + neigh->parms->delay_probe_time)) {
 876			NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
 
 877			neigh->nud_state = NUD_DELAY;
 878			neigh->updated = jiffies;
 879			neigh_suspect(neigh);
 880			next = now + neigh->parms->delay_probe_time;
 881		} else {
 882			NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
 883			neigh->nud_state = NUD_STALE;
 884			neigh->updated = jiffies;
 885			neigh_suspect(neigh);
 886			notify = 1;
 887		}
 888	} else if (state & NUD_DELAY) {
 889		if (time_before_eq(now,
 890				   neigh->confirmed + neigh->parms->delay_probe_time)) {
 891			NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
 
 892			neigh->nud_state = NUD_REACHABLE;
 893			neigh->updated = jiffies;
 894			neigh_connect(neigh);
 895			notify = 1;
 896			next = neigh->confirmed + neigh->parms->reachable_time;
 897		} else {
 898			NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
 899			neigh->nud_state = NUD_PROBE;
 900			neigh->updated = jiffies;
 901			atomic_set(&neigh->probes, 0);
 902			next = now + neigh->parms->retrans_time;
 
 903		}
 904	} else {
 905		/* NUD_PROBE|NUD_INCOMPLETE */
 906		next = now + neigh->parms->retrans_time;
 907	}
 908
 909	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
 910	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
 911		neigh->nud_state = NUD_FAILED;
 912		notify = 1;
 913		neigh_invalidate(neigh);
 
 914	}
 915
 916	if (neigh->nud_state & NUD_IN_TIMER) {
 917		if (time_before(next, jiffies + HZ/2))
 918			next = jiffies + HZ/2;
 919		if (!mod_timer(&neigh->timer, next))
 920			neigh_hold(neigh);
 921	}
 922	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
 923		struct sk_buff *skb = skb_peek(&neigh->arp_queue);
 924		/* keep skb alive even if arp_queue overflows */
 925		if (skb)
 926			skb = skb_copy(skb, GFP_ATOMIC);
 927		write_unlock(&neigh->lock);
 928		neigh->ops->solicit(neigh, skb);
 929		atomic_inc(&neigh->probes);
 930		kfree_skb(skb);
 931	} else {
 932out:
 933		write_unlock(&neigh->lock);
 934	}
 935
 936	if (notify)
 937		neigh_update_notify(neigh);
 938
 939	neigh_release(neigh);
 940}
 941
 942int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
 943{
 944	int rc;
 945	unsigned long now;
 946
 947	write_lock_bh(&neigh->lock);
 948
 949	rc = 0;
 950	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
 951		goto out_unlock_bh;
 952
 953	now = jiffies;
 954
 955	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
 956		if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
 957			atomic_set(&neigh->probes, neigh->parms->ucast_probes);
 
 
 
 
 958			neigh->nud_state     = NUD_INCOMPLETE;
 959			neigh->updated = jiffies;
 960			neigh_add_timer(neigh, now + 1);
 
 
 
 961		} else {
 962			neigh->nud_state = NUD_FAILED;
 963			neigh->updated = jiffies;
 964			write_unlock_bh(&neigh->lock);
 965
 966			kfree_skb(skb);
 967			return 1;
 968		}
 969	} else if (neigh->nud_state & NUD_STALE) {
 970		NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
 971		neigh->nud_state = NUD_DELAY;
 972		neigh->updated = jiffies;
 973		neigh_add_timer(neigh,
 974				jiffies + neigh->parms->delay_probe_time);
 975	}
 976
 977	if (neigh->nud_state == NUD_INCOMPLETE) {
 978		if (skb) {
 979			if (skb_queue_len(&neigh->arp_queue) >=
 980			    neigh->parms->queue_len) {
 981				struct sk_buff *buff;
 
 982				buff = __skb_dequeue(&neigh->arp_queue);
 
 
 
 983				kfree_skb(buff);
 984				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
 985			}
 986			skb_dst_force(skb);
 987			__skb_queue_tail(&neigh->arp_queue, skb);
 
 988		}
 989		rc = 1;
 990	}
 991out_unlock_bh:
 992	write_unlock_bh(&neigh->lock);
 
 
 
 
 993	return rc;
 
 
 
 
 
 
 
 994}
 995EXPORT_SYMBOL(__neigh_event_send);
 996
 997static void neigh_update_hhs(struct neighbour *neigh)
 998{
 999	struct hh_cache *hh;
1000	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1001		= NULL;
1002
1003	if (neigh->dev->header_ops)
1004		update = neigh->dev->header_ops->cache_update;
1005
1006	if (update) {
1007		hh = &neigh->hh;
1008		if (hh->hh_len) {
1009			write_seqlock_bh(&hh->hh_lock);
1010			update(hh, neigh->dev, neigh->ha);
1011			write_sequnlock_bh(&hh->hh_lock);
1012		}
1013	}
1014}
1015
1016
1017
1018/* Generic update routine.
1019   -- lladdr is new lladdr or NULL, if it is not supplied.
1020   -- new    is new state.
1021   -- flags
1022	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1023				if it is different.
1024	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1025				lladdr instead of overriding it
1026				if it is different.
1027				It also allows to retain current state
1028				if lladdr is unchanged.
1029	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1030
1031	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1032				NTF_ROUTER flag.
1033	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1034				a router.
1035
1036   Caller MUST hold reference count on the entry.
1037 */
1038
1039int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1040		 u32 flags)
1041{
1042	u8 old;
1043	int err;
1044	int notify = 0;
1045	struct net_device *dev;
1046	int update_isrouter = 0;
1047
1048	write_lock_bh(&neigh->lock);
1049
1050	dev    = neigh->dev;
1051	old    = neigh->nud_state;
1052	err    = -EPERM;
1053
1054	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1055	    (old & (NUD_NOARP | NUD_PERMANENT)))
1056		goto out;
 
 
1057
1058	if (!(new & NUD_VALID)) {
1059		neigh_del_timer(neigh);
1060		if (old & NUD_CONNECTED)
1061			neigh_suspect(neigh);
1062		neigh->nud_state = new;
1063		err = 0;
1064		notify = old & NUD_VALID;
1065		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1066		    (new & NUD_FAILED)) {
1067			neigh_invalidate(neigh);
1068			notify = 1;
1069		}
1070		goto out;
1071	}
1072
1073	/* Compare new lladdr with cached one */
1074	if (!dev->addr_len) {
1075		/* First case: device needs no address. */
1076		lladdr = neigh->ha;
1077	} else if (lladdr) {
1078		/* The second case: if something is already cached
1079		   and a new address is proposed:
1080		   - compare new & old
1081		   - if they are different, check override flag
1082		 */
1083		if ((old & NUD_VALID) &&
1084		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1085			lladdr = neigh->ha;
1086	} else {
1087		/* No address is supplied; if we know something,
1088		   use it, otherwise discard the request.
1089		 */
1090		err = -EINVAL;
1091		if (!(old & NUD_VALID))
1092			goto out;
1093		lladdr = neigh->ha;
1094	}
1095
1096	if (new & NUD_CONNECTED)
1097		neigh->confirmed = jiffies;
1098	neigh->updated = jiffies;
1099
1100	/* If entry was valid and address is not changed,
1101	   do not change entry state, if new one is STALE.
1102	 */
1103	err = 0;
1104	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1105	if (old & NUD_VALID) {
1106		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1107			update_isrouter = 0;
1108			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1109			    (old & NUD_CONNECTED)) {
1110				lladdr = neigh->ha;
1111				new = NUD_STALE;
1112			} else
1113				goto out;
1114		} else {
1115			if (lladdr == neigh->ha && new == NUD_STALE &&
1116			    ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1117			     (old & NUD_CONNECTED))
1118			    )
1119				new = old;
1120		}
1121	}
1122
1123	if (new != old) {
1124		neigh_del_timer(neigh);
 
 
1125		if (new & NUD_IN_TIMER)
1126			neigh_add_timer(neigh, (jiffies +
1127						((new & NUD_REACHABLE) ?
1128						 neigh->parms->reachable_time :
1129						 0)));
1130		neigh->nud_state = new;
 
1131	}
1132
1133	if (lladdr != neigh->ha) {
1134		write_seqlock(&neigh->ha_lock);
1135		memcpy(&neigh->ha, lladdr, dev->addr_len);
1136		write_sequnlock(&neigh->ha_lock);
1137		neigh_update_hhs(neigh);
1138		if (!(new & NUD_CONNECTED))
1139			neigh->confirmed = jiffies -
1140				      (neigh->parms->base_reachable_time << 1);
1141		notify = 1;
1142	}
1143	if (new == old)
1144		goto out;
1145	if (new & NUD_CONNECTED)
1146		neigh_connect(neigh);
1147	else
1148		neigh_suspect(neigh);
1149	if (!(old & NUD_VALID)) {
1150		struct sk_buff *skb;
1151
1152		/* Again: avoid dead loop if something went wrong */
1153
1154		while (neigh->nud_state & NUD_VALID &&
1155		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1156			struct dst_entry *dst = skb_dst(skb);
1157			struct neighbour *n2, *n1 = neigh;
1158			write_unlock_bh(&neigh->lock);
1159			/* On shaper/eql skb->dst->neighbour != neigh :( */
1160			if (dst && (n2 = dst_get_neighbour(dst)) != NULL)
1161				n1 = n2;
 
 
 
 
 
 
 
 
 
 
 
 
 
1162			n1->output(n1, skb);
 
 
 
 
1163			write_lock_bh(&neigh->lock);
1164		}
1165		skb_queue_purge(&neigh->arp_queue);
 
1166	}
1167out:
1168	if (update_isrouter) {
1169		neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1170			(neigh->flags | NTF_ROUTER) :
1171			(neigh->flags & ~NTF_ROUTER);
1172	}
1173	write_unlock_bh(&neigh->lock);
1174
1175	if (notify)
1176		neigh_update_notify(neigh);
1177
1178	return err;
1179}
1180EXPORT_SYMBOL(neigh_update);
1181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1183				 u8 *lladdr, void *saddr,
1184				 struct net_device *dev)
1185{
1186	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1187						 lladdr || !dev->addr_len);
1188	if (neigh)
1189		neigh_update(neigh, lladdr, NUD_STALE,
1190			     NEIGH_UPDATE_F_OVERRIDE);
1191	return neigh;
1192}
1193EXPORT_SYMBOL(neigh_event_ns);
1194
1195/* called with read_lock_bh(&n->lock); */
1196static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1197{
1198	struct net_device *dev = dst->dev;
1199	__be16 prot = dst->ops->protocol;
1200	struct hh_cache	*hh = &n->hh;
1201
1202	write_lock_bh(&n->lock);
1203
1204	/* Only one thread can come in here and initialize the
1205	 * hh_cache entry.
1206	 */
1207	if (!hh->hh_len)
1208		dev->header_ops->cache(n, hh, prot);
1209
1210	write_unlock_bh(&n->lock);
1211}
1212
1213/* This function can be used in contexts, where only old dev_queue_xmit
1214 * worked, f.e. if you want to override normal output path (eql, shaper),
1215 * but resolution is not made yet.
1216 */
1217
1218int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1219{
1220	struct net_device *dev = skb->dev;
1221
1222	__skb_pull(skb, skb_network_offset(skb));
1223
1224	if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1225			    skb->len) < 0 &&
1226	    dev->header_ops->rebuild(skb))
1227		return 0;
1228
1229	return dev_queue_xmit(skb);
1230}
1231EXPORT_SYMBOL(neigh_compat_output);
1232
1233/* Slow and careful. */
1234
1235int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1236{
1237	struct dst_entry *dst = skb_dst(skb);
1238	int rc = 0;
1239
1240	if (!dst)
1241		goto discard;
1242
1243	__skb_pull(skb, skb_network_offset(skb));
1244
1245	if (!neigh_event_send(neigh, skb)) {
1246		int err;
1247		struct net_device *dev = neigh->dev;
1248		unsigned int seq;
1249
1250		if (dev->header_ops->cache && !neigh->hh.hh_len)
1251			neigh_hh_init(neigh, dst);
1252
1253		do {
 
1254			seq = read_seqbegin(&neigh->ha_lock);
1255			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1256					      neigh->ha, NULL, skb->len);
1257		} while (read_seqretry(&neigh->ha_lock, seq));
1258
1259		if (err >= 0)
1260			rc = dev_queue_xmit(skb);
1261		else
1262			goto out_kfree_skb;
1263	}
1264out:
1265	return rc;
1266discard:
1267	NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1268		      dst, neigh);
1269out_kfree_skb:
1270	rc = -EINVAL;
1271	kfree_skb(skb);
1272	goto out;
1273}
1274EXPORT_SYMBOL(neigh_resolve_output);
1275
1276/* As fast as possible without hh cache */
1277
1278int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1279{
1280	struct net_device *dev = neigh->dev;
1281	unsigned int seq;
1282	int err;
1283
1284	__skb_pull(skb, skb_network_offset(skb));
1285
1286	do {
 
1287		seq = read_seqbegin(&neigh->ha_lock);
1288		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1289				      neigh->ha, NULL, skb->len);
1290	} while (read_seqretry(&neigh->ha_lock, seq));
1291
1292	if (err >= 0)
1293		err = dev_queue_xmit(skb);
1294	else {
1295		err = -EINVAL;
1296		kfree_skb(skb);
1297	}
1298	return err;
1299}
1300EXPORT_SYMBOL(neigh_connected_output);
1301
1302int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1303{
1304	return dev_queue_xmit(skb);
1305}
1306EXPORT_SYMBOL(neigh_direct_output);
1307
1308static void neigh_proxy_process(unsigned long arg)
1309{
1310	struct neigh_table *tbl = (struct neigh_table *)arg;
1311	long sched_next = 0;
1312	unsigned long now = jiffies;
1313	struct sk_buff *skb, *n;
1314
1315	spin_lock(&tbl->proxy_queue.lock);
1316
1317	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1318		long tdif = NEIGH_CB(skb)->sched_next - now;
1319
1320		if (tdif <= 0) {
1321			struct net_device *dev = skb->dev;
1322
1323			__skb_unlink(skb, &tbl->proxy_queue);
1324			if (tbl->proxy_redo && netif_running(dev)) {
1325				rcu_read_lock();
1326				tbl->proxy_redo(skb);
1327				rcu_read_unlock();
1328			} else {
1329				kfree_skb(skb);
1330			}
1331
1332			dev_put(dev);
1333		} else if (!sched_next || tdif < sched_next)
1334			sched_next = tdif;
1335	}
1336	del_timer(&tbl->proxy_timer);
1337	if (sched_next)
1338		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1339	spin_unlock(&tbl->proxy_queue.lock);
1340}
1341
1342void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1343		    struct sk_buff *skb)
1344{
1345	unsigned long now = jiffies;
1346	unsigned long sched_next = now + (net_random() % p->proxy_delay);
1347
1348	if (tbl->proxy_queue.qlen > p->proxy_qlen) {
 
 
 
1349		kfree_skb(skb);
1350		return;
1351	}
1352
1353	NEIGH_CB(skb)->sched_next = sched_next;
1354	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1355
1356	spin_lock(&tbl->proxy_queue.lock);
1357	if (del_timer(&tbl->proxy_timer)) {
1358		if (time_before(tbl->proxy_timer.expires, sched_next))
1359			sched_next = tbl->proxy_timer.expires;
1360	}
1361	skb_dst_drop(skb);
1362	dev_hold(skb->dev);
1363	__skb_queue_tail(&tbl->proxy_queue, skb);
1364	mod_timer(&tbl->proxy_timer, sched_next);
1365	spin_unlock(&tbl->proxy_queue.lock);
1366}
1367EXPORT_SYMBOL(pneigh_enqueue);
1368
1369static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1370						      struct net *net, int ifindex)
1371{
1372	struct neigh_parms *p;
1373
1374	for (p = &tbl->parms; p; p = p->next) {
1375		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1376		    (!p->dev && !ifindex))
1377			return p;
1378	}
1379
1380	return NULL;
1381}
1382
1383struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1384				      struct neigh_table *tbl)
1385{
1386	struct neigh_parms *p, *ref;
1387	struct net *net = dev_net(dev);
1388	const struct net_device_ops *ops = dev->netdev_ops;
1389
1390	ref = lookup_neigh_parms(tbl, net, 0);
1391	if (!ref)
1392		return NULL;
1393
1394	p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1395	if (p) {
1396		p->tbl		  = tbl;
1397		atomic_set(&p->refcnt, 1);
1398		p->reachable_time =
1399				neigh_rand_reach_time(p->base_reachable_time);
 
 
 
 
1400
1401		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
 
1402			kfree(p);
1403			return NULL;
1404		}
1405
1406		dev_hold(dev);
1407		p->dev = dev;
1408		write_pnet(&p->net, hold_net(net));
1409		p->sysctl_table = NULL;
1410		write_lock_bh(&tbl->lock);
1411		p->next		= tbl->parms.next;
1412		tbl->parms.next = p;
1413		write_unlock_bh(&tbl->lock);
 
 
1414	}
1415	return p;
1416}
1417EXPORT_SYMBOL(neigh_parms_alloc);
1418
1419static void neigh_rcu_free_parms(struct rcu_head *head)
1420{
1421	struct neigh_parms *parms =
1422		container_of(head, struct neigh_parms, rcu_head);
1423
1424	neigh_parms_put(parms);
1425}
1426
1427void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1428{
1429	struct neigh_parms **p;
1430
1431	if (!parms || parms == &tbl->parms)
1432		return;
1433	write_lock_bh(&tbl->lock);
1434	for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1435		if (*p == parms) {
1436			*p = parms->next;
1437			parms->dead = 1;
1438			write_unlock_bh(&tbl->lock);
1439			if (parms->dev)
1440				dev_put(parms->dev);
1441			call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1442			return;
1443		}
1444	}
1445	write_unlock_bh(&tbl->lock);
1446	NEIGH_PRINTK1("neigh_parms_release: not found\n");
 
 
1447}
1448EXPORT_SYMBOL(neigh_parms_release);
1449
1450static void neigh_parms_destroy(struct neigh_parms *parms)
1451{
1452	release_net(neigh_parms_net(parms));
1453	kfree(parms);
1454}
1455
1456static struct lock_class_key neigh_table_proxy_queue_class;
1457
1458void neigh_table_init_no_netlink(struct neigh_table *tbl)
 
 
1459{
1460	unsigned long now = jiffies;
1461	unsigned long phsize;
1462
 
 
1463	write_pnet(&tbl->parms.net, &init_net);
1464	atomic_set(&tbl->parms.refcnt, 1);
1465	tbl->parms.reachable_time =
1466			  neigh_rand_reach_time(tbl->parms.base_reachable_time);
1467
1468	if (!tbl->kmem_cachep)
1469		tbl->kmem_cachep =
1470			kmem_cache_create(tbl->id, tbl->entry_size, 0,
1471					  SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1472					  NULL);
1473	tbl->stats = alloc_percpu(struct neigh_statistics);
1474	if (!tbl->stats)
1475		panic("cannot create neighbour cache statistics");
1476
1477#ifdef CONFIG_PROC_FS
1478	if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1479			      &neigh_stat_seq_fops, tbl))
1480		panic("cannot create neighbour proc dir entry");
1481#endif
1482
1483	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1484
1485	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1486	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1487
1488	if (!tbl->nht || !tbl->phash_buckets)
1489		panic("cannot allocate neighbour cache hashes");
1490
 
 
 
 
 
 
1491	rwlock_init(&tbl->lock);
1492	INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1493	schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
 
1494	setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1495	skb_queue_head_init_class(&tbl->proxy_queue,
1496			&neigh_table_proxy_queue_class);
1497
1498	tbl->last_flush = now;
1499	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
1500}
1501EXPORT_SYMBOL(neigh_table_init_no_netlink);
1502
1503void neigh_table_init(struct neigh_table *tbl)
1504{
1505	struct neigh_table *tmp;
1506
1507	neigh_table_init_no_netlink(tbl);
1508	write_lock(&neigh_tbl_lock);
1509	for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1510		if (tmp->family == tbl->family)
1511			break;
1512	}
1513	tbl->next	= neigh_tables;
1514	neigh_tables	= tbl;
1515	write_unlock(&neigh_tbl_lock);
1516
1517	if (unlikely(tmp)) {
1518		printk(KERN_ERR "NEIGH: Registering multiple tables for "
1519		       "family %d\n", tbl->family);
1520		dump_stack();
1521	}
1522}
1523EXPORT_SYMBOL(neigh_table_init);
1524
1525int neigh_table_clear(struct neigh_table *tbl)
1526{
1527	struct neigh_table **tp;
1528
1529	/* It is not clean... Fix it to unload IPv6 module safely */
1530	cancel_delayed_work_sync(&tbl->gc_work);
1531	del_timer_sync(&tbl->proxy_timer);
1532	pneigh_queue_purge(&tbl->proxy_queue);
1533	neigh_ifdown(tbl, NULL);
1534	if (atomic_read(&tbl->entries))
1535		printk(KERN_CRIT "neighbour leakage\n");
1536	write_lock(&neigh_tbl_lock);
1537	for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1538		if (*tp == tbl) {
1539			*tp = tbl->next;
1540			break;
1541		}
1542	}
1543	write_unlock(&neigh_tbl_lock);
1544
1545	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1546		 neigh_hash_free_rcu);
1547	tbl->nht = NULL;
1548
1549	kfree(tbl->phash_buckets);
1550	tbl->phash_buckets = NULL;
1551
1552	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1553
1554	free_percpu(tbl->stats);
1555	tbl->stats = NULL;
1556
1557	kmem_cache_destroy(tbl->kmem_cachep);
1558	tbl->kmem_cachep = NULL;
1559
1560	return 0;
1561}
1562EXPORT_SYMBOL(neigh_table_clear);
1563
1564static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565{
1566	struct net *net = sock_net(skb->sk);
1567	struct ndmsg *ndm;
1568	struct nlattr *dst_attr;
1569	struct neigh_table *tbl;
 
1570	struct net_device *dev = NULL;
1571	int err = -EINVAL;
1572
1573	ASSERT_RTNL();
1574	if (nlmsg_len(nlh) < sizeof(*ndm))
1575		goto out;
1576
1577	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1578	if (dst_attr == NULL)
1579		goto out;
1580
1581	ndm = nlmsg_data(nlh);
1582	if (ndm->ndm_ifindex) {
1583		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1584		if (dev == NULL) {
1585			err = -ENODEV;
1586			goto out;
1587		}
1588	}
1589
1590	read_lock(&neigh_tbl_lock);
1591	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1592		struct neighbour *neigh;
1593
1594		if (tbl->family != ndm->ndm_family)
1595			continue;
1596		read_unlock(&neigh_tbl_lock);
1597
1598		if (nla_len(dst_attr) < tbl->key_len)
1599			goto out;
1600
1601		if (ndm->ndm_flags & NTF_PROXY) {
1602			err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1603			goto out;
1604		}
1605
1606		if (dev == NULL)
1607			goto out;
 
 
1608
1609		neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1610		if (neigh == NULL) {
1611			err = -ENOENT;
1612			goto out;
1613		}
1614
1615		err = neigh_update(neigh, NULL, NUD_FAILED,
1616				   NEIGH_UPDATE_F_OVERRIDE |
1617				   NEIGH_UPDATE_F_ADMIN);
1618		neigh_release(neigh);
1619		goto out;
1620	}
1621	read_unlock(&neigh_tbl_lock);
1622	err = -EAFNOSUPPORT;
 
 
 
1623
1624out:
1625	return err;
1626}
1627
1628static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1629{
 
1630	struct net *net = sock_net(skb->sk);
1631	struct ndmsg *ndm;
1632	struct nlattr *tb[NDA_MAX+1];
1633	struct neigh_table *tbl;
1634	struct net_device *dev = NULL;
 
 
1635	int err;
1636
1637	ASSERT_RTNL();
1638	err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1639	if (err < 0)
1640		goto out;
1641
1642	err = -EINVAL;
1643	if (tb[NDA_DST] == NULL)
1644		goto out;
1645
1646	ndm = nlmsg_data(nlh);
1647	if (ndm->ndm_ifindex) {
1648		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1649		if (dev == NULL) {
1650			err = -ENODEV;
1651			goto out;
1652		}
1653
1654		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1655			goto out;
1656	}
1657
1658	read_lock(&neigh_tbl_lock);
1659	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1660		int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1661		struct neighbour *neigh;
1662		void *dst, *lladdr;
1663
1664		if (tbl->family != ndm->ndm_family)
1665			continue;
1666		read_unlock(&neigh_tbl_lock);
 
1667
1668		if (nla_len(tb[NDA_DST]) < tbl->key_len)
1669			goto out;
1670		dst = nla_data(tb[NDA_DST]);
1671		lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1672
1673		if (ndm->ndm_flags & NTF_PROXY) {
1674			struct pneigh_entry *pn;
 
 
 
 
 
 
1675
1676			err = -ENOBUFS;
1677			pn = pneigh_lookup(tbl, net, dst, dev, 1);
1678			if (pn) {
1679				pn->flags = ndm->ndm_flags;
1680				err = 0;
1681			}
 
1682			goto out;
1683		}
1684
1685		if (dev == NULL)
 
 
 
 
 
 
 
 
1686			goto out;
1687
1688		neigh = neigh_lookup(tbl, dst, dev);
1689		if (neigh == NULL) {
1690			if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1691				err = -ENOENT;
1692				goto out;
1693			}
1694
1695			neigh = __neigh_lookup_errno(tbl, dst, dev);
1696			if (IS_ERR(neigh)) {
1697				err = PTR_ERR(neigh);
1698				goto out;
1699			}
1700		} else {
1701			if (nlh->nlmsg_flags & NLM_F_EXCL) {
1702				err = -EEXIST;
1703				neigh_release(neigh);
1704				goto out;
1705			}
1706
1707			if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1708				flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1709		}
1710
1711		if (ndm->ndm_flags & NTF_USE) {
1712			neigh_event_send(neigh, NULL);
1713			err = 0;
1714		} else
1715			err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1716		neigh_release(neigh);
1717		goto out;
1718	}
1719
1720	read_unlock(&neigh_tbl_lock);
1721	err = -EAFNOSUPPORT;
 
 
 
 
 
1722out:
1723	return err;
1724}
1725
1726static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1727{
1728	struct nlattr *nest;
1729
1730	nest = nla_nest_start(skb, NDTA_PARMS);
1731	if (nest == NULL)
1732		return -ENOBUFS;
1733
1734	if (parms->dev)
1735		NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1736
1737	NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1738	NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1739	NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1740	NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1741	NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1742	NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1743	NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1744	NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1745		      parms->base_reachable_time);
1746	NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1747	NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1748	NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1749	NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1750	NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1751	NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1752
 
 
 
 
 
 
 
 
 
 
 
 
 
1753	return nla_nest_end(skb, nest);
1754
1755nla_put_failure:
1756	nla_nest_cancel(skb, nest);
1757	return -EMSGSIZE;
1758}
1759
1760static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1761			      u32 pid, u32 seq, int type, int flags)
1762{
1763	struct nlmsghdr *nlh;
1764	struct ndtmsg *ndtmsg;
1765
1766	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1767	if (nlh == NULL)
1768		return -EMSGSIZE;
1769
1770	ndtmsg = nlmsg_data(nlh);
1771
1772	read_lock_bh(&tbl->lock);
1773	ndtmsg->ndtm_family = tbl->family;
1774	ndtmsg->ndtm_pad1   = 0;
1775	ndtmsg->ndtm_pad2   = 0;
1776
1777	NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1778	NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1779	NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1780	NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1781	NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1782
1783	{
1784		unsigned long now = jiffies;
1785		unsigned int flush_delta = now - tbl->last_flush;
1786		unsigned int rand_delta = now - tbl->last_rand;
1787		struct neigh_hash_table *nht;
1788		struct ndt_config ndc = {
1789			.ndtc_key_len		= tbl->key_len,
1790			.ndtc_entry_size	= tbl->entry_size,
1791			.ndtc_entries		= atomic_read(&tbl->entries),
1792			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
1793			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
1794			.ndtc_proxy_qlen	= tbl->proxy_queue.qlen,
1795		};
1796
1797		rcu_read_lock_bh();
1798		nht = rcu_dereference_bh(tbl->nht);
1799		ndc.ndtc_hash_rnd = nht->hash_rnd;
1800		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1801		rcu_read_unlock_bh();
1802
1803		NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
 
1804	}
1805
1806	{
1807		int cpu;
1808		struct ndt_stats ndst;
1809
1810		memset(&ndst, 0, sizeof(ndst));
1811
1812		for_each_possible_cpu(cpu) {
1813			struct neigh_statistics	*st;
1814
1815			st = per_cpu_ptr(tbl->stats, cpu);
1816			ndst.ndts_allocs		+= st->allocs;
1817			ndst.ndts_destroys		+= st->destroys;
1818			ndst.ndts_hash_grows		+= st->hash_grows;
1819			ndst.ndts_res_failed		+= st->res_failed;
1820			ndst.ndts_lookups		+= st->lookups;
1821			ndst.ndts_hits			+= st->hits;
1822			ndst.ndts_rcv_probes_mcast	+= st->rcv_probes_mcast;
1823			ndst.ndts_rcv_probes_ucast	+= st->rcv_probes_ucast;
1824			ndst.ndts_periodic_gc_runs	+= st->periodic_gc_runs;
1825			ndst.ndts_forced_gc_runs	+= st->forced_gc_runs;
 
1826		}
1827
1828		NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
 
1829	}
1830
1831	BUG_ON(tbl->parms.dev);
1832	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1833		goto nla_put_failure;
1834
1835	read_unlock_bh(&tbl->lock);
1836	return nlmsg_end(skb, nlh);
 
1837
1838nla_put_failure:
1839	read_unlock_bh(&tbl->lock);
1840	nlmsg_cancel(skb, nlh);
1841	return -EMSGSIZE;
1842}
1843
1844static int neightbl_fill_param_info(struct sk_buff *skb,
1845				    struct neigh_table *tbl,
1846				    struct neigh_parms *parms,
1847				    u32 pid, u32 seq, int type,
1848				    unsigned int flags)
1849{
1850	struct ndtmsg *ndtmsg;
1851	struct nlmsghdr *nlh;
1852
1853	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1854	if (nlh == NULL)
1855		return -EMSGSIZE;
1856
1857	ndtmsg = nlmsg_data(nlh);
1858
1859	read_lock_bh(&tbl->lock);
1860	ndtmsg->ndtm_family = tbl->family;
1861	ndtmsg->ndtm_pad1   = 0;
1862	ndtmsg->ndtm_pad2   = 0;
1863
1864	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1865	    neightbl_fill_parms(skb, parms) < 0)
1866		goto errout;
1867
1868	read_unlock_bh(&tbl->lock);
1869	return nlmsg_end(skb, nlh);
 
1870errout:
1871	read_unlock_bh(&tbl->lock);
1872	nlmsg_cancel(skb, nlh);
1873	return -EMSGSIZE;
1874}
1875
1876static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1877	[NDTA_NAME]		= { .type = NLA_STRING },
1878	[NDTA_THRESH1]		= { .type = NLA_U32 },
1879	[NDTA_THRESH2]		= { .type = NLA_U32 },
1880	[NDTA_THRESH3]		= { .type = NLA_U32 },
1881	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
1882	[NDTA_PARMS]		= { .type = NLA_NESTED },
1883};
1884
1885static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1886	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
1887	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
1888	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
1889	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
1890	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
1891	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
 
1892	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
1893	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
1894	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
1895	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
1896	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
1897	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
1898	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
1899};
1900
1901static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1902{
1903	struct net *net = sock_net(skb->sk);
1904	struct neigh_table *tbl;
1905	struct ndtmsg *ndtmsg;
1906	struct nlattr *tb[NDTA_MAX+1];
1907	int err;
 
1908
1909	err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1910			  nl_neightbl_policy);
1911	if (err < 0)
1912		goto errout;
1913
1914	if (tb[NDTA_NAME] == NULL) {
1915		err = -EINVAL;
1916		goto errout;
1917	}
1918
1919	ndtmsg = nlmsg_data(nlh);
1920	read_lock(&neigh_tbl_lock);
1921	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
 
 
 
1922		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1923			continue;
1924
1925		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1926			break;
 
1927	}
1928
1929	if (tbl == NULL) {
1930		err = -ENOENT;
1931		goto errout_locked;
1932	}
1933
1934	/*
1935	 * We acquire tbl->lock to be nice to the periodic timers and
1936	 * make sure they always see a consistent set of values.
1937	 */
1938	write_lock_bh(&tbl->lock);
1939
1940	if (tb[NDTA_PARMS]) {
1941		struct nlattr *tbp[NDTPA_MAX+1];
1942		struct neigh_parms *p;
1943		int i, ifindex = 0;
1944
1945		err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1946				       nl_ntbl_parm_policy);
1947		if (err < 0)
1948			goto errout_tbl_lock;
1949
1950		if (tbp[NDTPA_IFINDEX])
1951			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1952
1953		p = lookup_neigh_parms(tbl, net, ifindex);
1954		if (p == NULL) {
1955			err = -ENOENT;
1956			goto errout_tbl_lock;
1957		}
1958
1959		for (i = 1; i <= NDTPA_MAX; i++) {
1960			if (tbp[i] == NULL)
1961				continue;
1962
1963			switch (i) {
1964			case NDTPA_QUEUE_LEN:
1965				p->queue_len = nla_get_u32(tbp[i]);
 
 
 
 
 
 
1966				break;
1967			case NDTPA_PROXY_QLEN:
1968				p->proxy_qlen = nla_get_u32(tbp[i]);
 
1969				break;
1970			case NDTPA_APP_PROBES:
1971				p->app_probes = nla_get_u32(tbp[i]);
 
1972				break;
1973			case NDTPA_UCAST_PROBES:
1974				p->ucast_probes = nla_get_u32(tbp[i]);
 
1975				break;
1976			case NDTPA_MCAST_PROBES:
1977				p->mcast_probes = nla_get_u32(tbp[i]);
 
 
 
 
 
1978				break;
1979			case NDTPA_BASE_REACHABLE_TIME:
1980				p->base_reachable_time = nla_get_msecs(tbp[i]);
 
 
 
 
 
 
 
1981				break;
1982			case NDTPA_GC_STALETIME:
1983				p->gc_staletime = nla_get_msecs(tbp[i]);
 
1984				break;
1985			case NDTPA_DELAY_PROBE_TIME:
1986				p->delay_probe_time = nla_get_msecs(tbp[i]);
 
1987				break;
1988			case NDTPA_RETRANS_TIME:
1989				p->retrans_time = nla_get_msecs(tbp[i]);
 
1990				break;
1991			case NDTPA_ANYCAST_DELAY:
1992				p->anycast_delay = nla_get_msecs(tbp[i]);
 
1993				break;
1994			case NDTPA_PROXY_DELAY:
1995				p->proxy_delay = nla_get_msecs(tbp[i]);
 
1996				break;
1997			case NDTPA_LOCKTIME:
1998				p->locktime = nla_get_msecs(tbp[i]);
 
1999				break;
2000			}
2001		}
2002	}
2003
 
 
 
 
 
 
2004	if (tb[NDTA_THRESH1])
2005		tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2006
2007	if (tb[NDTA_THRESH2])
2008		tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2009
2010	if (tb[NDTA_THRESH3])
2011		tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2012
2013	if (tb[NDTA_GC_INTERVAL])
2014		tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2015
2016	err = 0;
2017
2018errout_tbl_lock:
2019	write_unlock_bh(&tbl->lock);
2020errout_locked:
2021	read_unlock(&neigh_tbl_lock);
2022errout:
2023	return err;
2024}
2025
2026static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2027{
2028	struct net *net = sock_net(skb->sk);
2029	int family, tidx, nidx = 0;
2030	int tbl_skip = cb->args[0];
2031	int neigh_skip = cb->args[1];
2032	struct neigh_table *tbl;
2033
2034	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2035
2036	read_lock(&neigh_tbl_lock);
2037	for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2038		struct neigh_parms *p;
2039
 
 
 
 
2040		if (tidx < tbl_skip || (family && tbl->family != family))
2041			continue;
2042
2043		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2044				       cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2045				       NLM_F_MULTI) <= 0)
2046			break;
2047
2048		for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
 
 
2049			if (!net_eq(neigh_parms_net(p), net))
2050				continue;
2051
2052			if (nidx < neigh_skip)
2053				goto next;
2054
2055			if (neightbl_fill_param_info(skb, tbl, p,
2056						     NETLINK_CB(cb->skb).pid,
2057						     cb->nlh->nlmsg_seq,
2058						     RTM_NEWNEIGHTBL,
2059						     NLM_F_MULTI) <= 0)
2060				goto out;
2061		next:
2062			nidx++;
2063		}
2064
2065		neigh_skip = 0;
2066	}
2067out:
2068	read_unlock(&neigh_tbl_lock);
2069	cb->args[0] = tidx;
2070	cb->args[1] = nidx;
2071
2072	return skb->len;
2073}
2074
2075static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2076			   u32 pid, u32 seq, int type, unsigned int flags)
2077{
2078	unsigned long now = jiffies;
2079	struct nda_cacheinfo ci;
2080	struct nlmsghdr *nlh;
2081	struct ndmsg *ndm;
2082
2083	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2084	if (nlh == NULL)
2085		return -EMSGSIZE;
2086
2087	ndm = nlmsg_data(nlh);
2088	ndm->ndm_family	 = neigh->ops->family;
2089	ndm->ndm_pad1    = 0;
2090	ndm->ndm_pad2    = 0;
2091	ndm->ndm_flags	 = neigh->flags;
2092	ndm->ndm_type	 = neigh->type;
2093	ndm->ndm_ifindex = neigh->dev->ifindex;
2094
2095	NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
 
2096
2097	read_lock_bh(&neigh->lock);
2098	ndm->ndm_state	 = neigh->nud_state;
2099	if (neigh->nud_state & NUD_VALID) {
2100		char haddr[MAX_ADDR_LEN];
2101
2102		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2103		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2104			read_unlock_bh(&neigh->lock);
2105			goto nla_put_failure;
2106		}
2107	}
2108
2109	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2110	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2111	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2112	ci.ndm_refcnt	 = atomic_read(&neigh->refcnt) - 1;
2113	read_unlock_bh(&neigh->lock);
2114
2115	NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2116	NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2117
2118	return nlmsg_end(skb, nlh);
 
2119
2120nla_put_failure:
2121	nlmsg_cancel(skb, nlh);
2122	return -EMSGSIZE;
2123}
2124
2125static void neigh_update_notify(struct neighbour *neigh)
2126{
2127	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2128	__neigh_notify(neigh, RTM_NEWNEIGH, 0);
2129}
2130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2132			    struct netlink_callback *cb)
2133{
2134	struct net *net = sock_net(skb->sk);
 
 
2135	struct neighbour *n;
2136	int rc, h, s_h = cb->args[1];
2137	int idx, s_idx = idx = cb->args[2];
2138	struct neigh_hash_table *nht;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139
2140	rcu_read_lock_bh();
2141	nht = rcu_dereference_bh(tbl->nht);
2142
2143	for (h = 0; h < (1 << nht->hash_shift); h++) {
2144		if (h < s_h)
2145			continue;
2146		if (h > s_h)
2147			s_idx = 0;
2148		for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2149		     n != NULL;
2150		     n = rcu_dereference_bh(n->next)) {
2151			if (!net_eq(dev_net(n->dev), net))
2152				continue;
 
 
 
 
2153			if (idx < s_idx)
2154				goto next;
2155			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2156					    cb->nlh->nlmsg_seq,
2157					    RTM_NEWNEIGH,
2158					    NLM_F_MULTI) <= 0) {
2159				rc = -1;
2160				goto out;
2161			}
2162next:
2163			idx++;
2164		}
2165	}
2166	rc = skb->len;
2167out:
2168	rcu_read_unlock_bh();
2169	cb->args[1] = h;
2170	cb->args[2] = idx;
2171	return rc;
2172}
2173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2175{
2176	struct neigh_table *tbl;
2177	int t, family, s_t;
 
 
2178
2179	read_lock(&neigh_tbl_lock);
2180	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
 
 
 
 
 
 
 
 
2181	s_t = cb->args[0];
2182
2183	for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
 
 
 
 
2184		if (t < s_t || (family && tbl->family != family))
2185			continue;
2186		if (t > s_t)
2187			memset(&cb->args[1], 0, sizeof(cb->args) -
2188						sizeof(cb->args[0]));
2189		if (neigh_dump_table(tbl, skb, cb) < 0)
 
 
 
 
2190			break;
2191	}
2192	read_unlock(&neigh_tbl_lock);
2193
2194	cb->args[0] = t;
2195	return skb->len;
2196}
2197
2198void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2199{
2200	int chain;
2201	struct neigh_hash_table *nht;
2202
2203	rcu_read_lock_bh();
2204	nht = rcu_dereference_bh(tbl->nht);
2205
2206	read_lock(&tbl->lock); /* avoid resizes */
2207	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2208		struct neighbour *n;
2209
2210		for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2211		     n != NULL;
2212		     n = rcu_dereference_bh(n->next))
2213			cb(n, cookie);
2214	}
2215	read_unlock(&tbl->lock);
2216	rcu_read_unlock_bh();
2217}
2218EXPORT_SYMBOL(neigh_for_each);
2219
2220/* The tbl->lock must be held as a writer and BH disabled. */
2221void __neigh_for_each_release(struct neigh_table *tbl,
2222			      int (*cb)(struct neighbour *))
2223{
2224	int chain;
2225	struct neigh_hash_table *nht;
2226
2227	nht = rcu_dereference_protected(tbl->nht,
2228					lockdep_is_held(&tbl->lock));
2229	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2230		struct neighbour *n;
2231		struct neighbour __rcu **np;
2232
2233		np = &nht->hash_buckets[chain];
2234		while ((n = rcu_dereference_protected(*np,
2235					lockdep_is_held(&tbl->lock))) != NULL) {
2236			int release;
2237
2238			write_lock(&n->lock);
2239			release = cb(n);
2240			if (release) {
2241				rcu_assign_pointer(*np,
2242					rcu_dereference_protected(n->next,
2243						lockdep_is_held(&tbl->lock)));
2244				n->dead = 1;
2245			} else
2246				np = &n->next;
2247			write_unlock(&n->lock);
2248			if (release)
2249				neigh_cleanup_and_release(n);
2250		}
2251	}
2252}
2253EXPORT_SYMBOL(__neigh_for_each_release);
2254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255#ifdef CONFIG_PROC_FS
2256
2257static struct neighbour *neigh_get_first(struct seq_file *seq)
2258{
2259	struct neigh_seq_state *state = seq->private;
2260	struct net *net = seq_file_net(seq);
2261	struct neigh_hash_table *nht = state->nht;
2262	struct neighbour *n = NULL;
2263	int bucket = state->bucket;
2264
2265	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2266	for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2267		n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2268
2269		while (n) {
2270			if (!net_eq(dev_net(n->dev), net))
2271				goto next;
2272			if (state->neigh_sub_iter) {
2273				loff_t fakep = 0;
2274				void *v;
2275
2276				v = state->neigh_sub_iter(state, n, &fakep);
2277				if (!v)
2278					goto next;
2279			}
2280			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2281				break;
2282			if (n->nud_state & ~NUD_NOARP)
2283				break;
2284next:
2285			n = rcu_dereference_bh(n->next);
2286		}
2287
2288		if (n)
2289			break;
2290	}
2291	state->bucket = bucket;
2292
2293	return n;
2294}
2295
2296static struct neighbour *neigh_get_next(struct seq_file *seq,
2297					struct neighbour *n,
2298					loff_t *pos)
2299{
2300	struct neigh_seq_state *state = seq->private;
2301	struct net *net = seq_file_net(seq);
2302	struct neigh_hash_table *nht = state->nht;
2303
2304	if (state->neigh_sub_iter) {
2305		void *v = state->neigh_sub_iter(state, n, pos);
2306		if (v)
2307			return n;
2308	}
2309	n = rcu_dereference_bh(n->next);
2310
2311	while (1) {
2312		while (n) {
2313			if (!net_eq(dev_net(n->dev), net))
2314				goto next;
2315			if (state->neigh_sub_iter) {
2316				void *v = state->neigh_sub_iter(state, n, pos);
2317				if (v)
2318					return n;
2319				goto next;
2320			}
2321			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2322				break;
2323
2324			if (n->nud_state & ~NUD_NOARP)
2325				break;
2326next:
2327			n = rcu_dereference_bh(n->next);
2328		}
2329
2330		if (n)
2331			break;
2332
2333		if (++state->bucket >= (1 << nht->hash_shift))
2334			break;
2335
2336		n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2337	}
2338
2339	if (n && pos)
2340		--(*pos);
2341	return n;
2342}
2343
2344static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2345{
2346	struct neighbour *n = neigh_get_first(seq);
2347
2348	if (n) {
2349		--(*pos);
2350		while (*pos) {
2351			n = neigh_get_next(seq, n, pos);
2352			if (!n)
2353				break;
2354		}
2355	}
2356	return *pos ? NULL : n;
2357}
2358
2359static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2360{
2361	struct neigh_seq_state *state = seq->private;
2362	struct net *net = seq_file_net(seq);
2363	struct neigh_table *tbl = state->tbl;
2364	struct pneigh_entry *pn = NULL;
2365	int bucket = state->bucket;
2366
2367	state->flags |= NEIGH_SEQ_IS_PNEIGH;
2368	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2369		pn = tbl->phash_buckets[bucket];
2370		while (pn && !net_eq(pneigh_net(pn), net))
2371			pn = pn->next;
2372		if (pn)
2373			break;
2374	}
2375	state->bucket = bucket;
2376
2377	return pn;
2378}
2379
2380static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2381					    struct pneigh_entry *pn,
2382					    loff_t *pos)
2383{
2384	struct neigh_seq_state *state = seq->private;
2385	struct net *net = seq_file_net(seq);
2386	struct neigh_table *tbl = state->tbl;
2387
2388	pn = pn->next;
 
 
 
2389	while (!pn) {
2390		if (++state->bucket > PNEIGH_HASHMASK)
2391			break;
2392		pn = tbl->phash_buckets[state->bucket];
2393		while (pn && !net_eq(pneigh_net(pn), net))
2394			pn = pn->next;
2395		if (pn)
2396			break;
2397	}
2398
2399	if (pn && pos)
2400		--(*pos);
2401
2402	return pn;
2403}
2404
2405static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2406{
2407	struct pneigh_entry *pn = pneigh_get_first(seq);
2408
2409	if (pn) {
2410		--(*pos);
2411		while (*pos) {
2412			pn = pneigh_get_next(seq, pn, pos);
2413			if (!pn)
2414				break;
2415		}
2416	}
2417	return *pos ? NULL : pn;
2418}
2419
2420static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2421{
2422	struct neigh_seq_state *state = seq->private;
2423	void *rc;
2424	loff_t idxpos = *pos;
2425
2426	rc = neigh_get_idx(seq, &idxpos);
2427	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2428		rc = pneigh_get_idx(seq, &idxpos);
2429
2430	return rc;
2431}
2432
2433void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2434	__acquires(rcu_bh)
2435{
2436	struct neigh_seq_state *state = seq->private;
2437
2438	state->tbl = tbl;
2439	state->bucket = 0;
2440	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2441
2442	rcu_read_lock_bh();
2443	state->nht = rcu_dereference_bh(tbl->nht);
2444
2445	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2446}
2447EXPORT_SYMBOL(neigh_seq_start);
2448
2449void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450{
2451	struct neigh_seq_state *state;
2452	void *rc;
2453
2454	if (v == SEQ_START_TOKEN) {
2455		rc = neigh_get_first(seq);
2456		goto out;
2457	}
2458
2459	state = seq->private;
2460	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2461		rc = neigh_get_next(seq, v, NULL);
2462		if (rc)
2463			goto out;
2464		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2465			rc = pneigh_get_first(seq);
2466	} else {
2467		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2468		rc = pneigh_get_next(seq, v, NULL);
2469	}
2470out:
2471	++(*pos);
2472	return rc;
2473}
2474EXPORT_SYMBOL(neigh_seq_next);
2475
2476void neigh_seq_stop(struct seq_file *seq, void *v)
2477	__releases(rcu_bh)
2478{
2479	rcu_read_unlock_bh();
2480}
2481EXPORT_SYMBOL(neigh_seq_stop);
2482
2483/* statistics via seq_file */
2484
2485static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2486{
2487	struct neigh_table *tbl = seq->private;
2488	int cpu;
2489
2490	if (*pos == 0)
2491		return SEQ_START_TOKEN;
2492
2493	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2494		if (!cpu_possible(cpu))
2495			continue;
2496		*pos = cpu+1;
2497		return per_cpu_ptr(tbl->stats, cpu);
2498	}
2499	return NULL;
2500}
2501
2502static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2503{
2504	struct neigh_table *tbl = seq->private;
2505	int cpu;
2506
2507	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2508		if (!cpu_possible(cpu))
2509			continue;
2510		*pos = cpu+1;
2511		return per_cpu_ptr(tbl->stats, cpu);
2512	}
2513	return NULL;
2514}
2515
2516static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2517{
2518
2519}
2520
2521static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2522{
2523	struct neigh_table *tbl = seq->private;
2524	struct neigh_statistics *st = v;
2525
2526	if (v == SEQ_START_TOKEN) {
2527		seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs unresolved_discards\n");
2528		return 0;
2529	}
2530
2531	seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
2532			"%08lx %08lx  %08lx %08lx %08lx\n",
2533		   atomic_read(&tbl->entries),
2534
2535		   st->allocs,
2536		   st->destroys,
2537		   st->hash_grows,
2538
2539		   st->lookups,
2540		   st->hits,
2541
2542		   st->res_failed,
2543
2544		   st->rcv_probes_mcast,
2545		   st->rcv_probes_ucast,
2546
2547		   st->periodic_gc_runs,
2548		   st->forced_gc_runs,
2549		   st->unres_discards
 
2550		   );
2551
2552	return 0;
2553}
2554
2555static const struct seq_operations neigh_stat_seq_ops = {
2556	.start	= neigh_stat_seq_start,
2557	.next	= neigh_stat_seq_next,
2558	.stop	= neigh_stat_seq_stop,
2559	.show	= neigh_stat_seq_show,
2560};
2561
2562static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2563{
2564	int ret = seq_open(file, &neigh_stat_seq_ops);
2565
2566	if (!ret) {
2567		struct seq_file *sf = file->private_data;
2568		sf->private = PDE(inode)->data;
2569	}
2570	return ret;
2571};
2572
2573static const struct file_operations neigh_stat_seq_fops = {
2574	.owner	 = THIS_MODULE,
2575	.open 	 = neigh_stat_seq_open,
2576	.read	 = seq_read,
2577	.llseek	 = seq_lseek,
2578	.release = seq_release,
2579};
2580
2581#endif /* CONFIG_PROC_FS */
2582
2583static inline size_t neigh_nlmsg_size(void)
2584{
2585	return NLMSG_ALIGN(sizeof(struct ndmsg))
2586	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2587	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2588	       + nla_total_size(sizeof(struct nda_cacheinfo))
2589	       + nla_total_size(4); /* NDA_PROBES */
2590}
2591
2592static void __neigh_notify(struct neighbour *n, int type, int flags)
2593{
2594	struct net *net = dev_net(n->dev);
2595	struct sk_buff *skb;
2596	int err = -ENOBUFS;
2597
2598	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2599	if (skb == NULL)
2600		goto errout;
2601
2602	err = neigh_fill_info(skb, n, 0, 0, type, flags);
2603	if (err < 0) {
2604		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2605		WARN_ON(err == -EMSGSIZE);
2606		kfree_skb(skb);
2607		goto errout;
2608	}
2609	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2610	return;
2611errout:
2612	if (err < 0)
2613		rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2614}
2615
2616#ifdef CONFIG_ARPD
2617void neigh_app_ns(struct neighbour *n)
2618{
2619	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2620}
2621EXPORT_SYMBOL(neigh_app_ns);
2622#endif /* CONFIG_ARPD */
2623
2624#ifdef CONFIG_SYSCTL
 
 
 
 
 
 
 
 
 
2625
2626#define NEIGH_VARS_MAX 19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2627
2628static struct neigh_sysctl_table {
2629	struct ctl_table_header *sysctl_header;
2630	struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2631	char *dev_name;
2632} neigh_sysctl_template __read_mostly = {
2633	.neigh_vars = {
2634		{
2635			.procname	= "mcast_solicit",
2636			.maxlen		= sizeof(int),
2637			.mode		= 0644,
2638			.proc_handler	= proc_dointvec,
2639		},
2640		{
2641			.procname	= "ucast_solicit",
2642			.maxlen		= sizeof(int),
2643			.mode		= 0644,
2644			.proc_handler	= proc_dointvec,
2645		},
2646		{
2647			.procname	= "app_solicit",
2648			.maxlen		= sizeof(int),
2649			.mode		= 0644,
2650			.proc_handler	= proc_dointvec,
2651		},
2652		{
2653			.procname	= "retrans_time",
2654			.maxlen		= sizeof(int),
2655			.mode		= 0644,
2656			.proc_handler	= proc_dointvec_userhz_jiffies,
2657		},
2658		{
2659			.procname	= "base_reachable_time",
2660			.maxlen		= sizeof(int),
2661			.mode		= 0644,
2662			.proc_handler	= proc_dointvec_jiffies,
2663		},
2664		{
2665			.procname	= "delay_first_probe_time",
2666			.maxlen		= sizeof(int),
2667			.mode		= 0644,
2668			.proc_handler	= proc_dointvec_jiffies,
2669		},
2670		{
2671			.procname	= "gc_stale_time",
2672			.maxlen		= sizeof(int),
2673			.mode		= 0644,
2674			.proc_handler	= proc_dointvec_jiffies,
2675		},
2676		{
2677			.procname	= "unres_qlen",
2678			.maxlen		= sizeof(int),
2679			.mode		= 0644,
2680			.proc_handler	= proc_dointvec,
2681		},
2682		{
2683			.procname	= "proxy_qlen",
2684			.maxlen		= sizeof(int),
2685			.mode		= 0644,
2686			.proc_handler	= proc_dointvec,
2687		},
2688		{
2689			.procname	= "anycast_delay",
2690			.maxlen		= sizeof(int),
2691			.mode		= 0644,
2692			.proc_handler	= proc_dointvec_userhz_jiffies,
2693		},
2694		{
2695			.procname	= "proxy_delay",
2696			.maxlen		= sizeof(int),
2697			.mode		= 0644,
2698			.proc_handler	= proc_dointvec_userhz_jiffies,
2699		},
2700		{
2701			.procname	= "locktime",
2702			.maxlen		= sizeof(int),
2703			.mode		= 0644,
2704			.proc_handler	= proc_dointvec_userhz_jiffies,
2705		},
2706		{
2707			.procname	= "retrans_time_ms",
2708			.maxlen		= sizeof(int),
2709			.mode		= 0644,
2710			.proc_handler	= proc_dointvec_ms_jiffies,
2711		},
2712		{
2713			.procname	= "base_reachable_time_ms",
2714			.maxlen		= sizeof(int),
2715			.mode		= 0644,
2716			.proc_handler	= proc_dointvec_ms_jiffies,
2717		},
2718		{
2719			.procname	= "gc_interval",
2720			.maxlen		= sizeof(int),
2721			.mode		= 0644,
2722			.proc_handler	= proc_dointvec_jiffies,
2723		},
2724		{
2725			.procname	= "gc_thresh1",
2726			.maxlen		= sizeof(int),
2727			.mode		= 0644,
2728			.proc_handler	= proc_dointvec,
 
 
2729		},
2730		{
2731			.procname	= "gc_thresh2",
2732			.maxlen		= sizeof(int),
2733			.mode		= 0644,
2734			.proc_handler	= proc_dointvec,
 
 
2735		},
2736		{
2737			.procname	= "gc_thresh3",
2738			.maxlen		= sizeof(int),
2739			.mode		= 0644,
2740			.proc_handler	= proc_dointvec,
 
 
2741		},
2742		{},
2743	},
2744};
2745
2746int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2747			  char *p_name, proc_handler *handler)
2748{
 
2749	struct neigh_sysctl_table *t;
2750	const char *dev_name_source = NULL;
2751
2752#define NEIGH_CTL_PATH_ROOT	0
2753#define NEIGH_CTL_PATH_PROTO	1
2754#define NEIGH_CTL_PATH_NEIGH	2
2755#define NEIGH_CTL_PATH_DEV	3
2756
2757	struct ctl_path neigh_path[] = {
2758		{ .procname = "net",	 },
2759		{ .procname = "proto",	 },
2760		{ .procname = "neigh",	 },
2761		{ .procname = "default", },
2762		{ },
2763	};
2764
2765	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2766	if (!t)
2767		goto err;
2768
2769	t->neigh_vars[0].data  = &p->mcast_probes;
2770	t->neigh_vars[1].data  = &p->ucast_probes;
2771	t->neigh_vars[2].data  = &p->app_probes;
2772	t->neigh_vars[3].data  = &p->retrans_time;
2773	t->neigh_vars[4].data  = &p->base_reachable_time;
2774	t->neigh_vars[5].data  = &p->delay_probe_time;
2775	t->neigh_vars[6].data  = &p->gc_staletime;
2776	t->neigh_vars[7].data  = &p->queue_len;
2777	t->neigh_vars[8].data  = &p->proxy_qlen;
2778	t->neigh_vars[9].data  = &p->anycast_delay;
2779	t->neigh_vars[10].data = &p->proxy_delay;
2780	t->neigh_vars[11].data = &p->locktime;
2781	t->neigh_vars[12].data  = &p->retrans_time;
2782	t->neigh_vars[13].data  = &p->base_reachable_time;
2783
2784	if (dev) {
2785		dev_name_source = dev->name;
2786		/* Terminate the table early */
2787		memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
 
2788	} else {
2789		dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2790		t->neigh_vars[14].data = (int *)(p + 1);
2791		t->neigh_vars[15].data = (int *)(p + 1) + 1;
2792		t->neigh_vars[16].data = (int *)(p + 1) + 2;
2793		t->neigh_vars[17].data = (int *)(p + 1) + 3;
 
2794	}
2795
2796
2797	if (handler) {
2798		/* RetransTime */
2799		t->neigh_vars[3].proc_handler = handler;
2800		t->neigh_vars[3].extra1 = dev;
2801		/* ReachableTime */
2802		t->neigh_vars[4].proc_handler = handler;
2803		t->neigh_vars[4].extra1 = dev;
2804		/* RetransTime (in milliseconds)*/
2805		t->neigh_vars[12].proc_handler = handler;
2806		t->neigh_vars[12].extra1 = dev;
2807		/* ReachableTime (in milliseconds) */
2808		t->neigh_vars[13].proc_handler = handler;
2809		t->neigh_vars[13].extra1 = dev;
 
 
 
 
 
 
 
 
 
 
 
 
2810	}
2811
2812	t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2813	if (!t->dev_name)
2814		goto free;
2815
2816	neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2817	neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
 
 
 
 
 
 
 
 
2818
 
 
2819	t->sysctl_header =
2820		register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2821	if (!t->sysctl_header)
2822		goto free_procname;
2823
2824	p->sysctl_table = t;
2825	return 0;
2826
2827free_procname:
2828	kfree(t->dev_name);
2829free:
2830	kfree(t);
2831err:
2832	return -ENOBUFS;
2833}
2834EXPORT_SYMBOL(neigh_sysctl_register);
2835
2836void neigh_sysctl_unregister(struct neigh_parms *p)
2837{
2838	if (p->sysctl_table) {
2839		struct neigh_sysctl_table *t = p->sysctl_table;
2840		p->sysctl_table = NULL;
2841		unregister_sysctl_table(t->sysctl_header);
2842		kfree(t->dev_name);
2843		kfree(t);
2844	}
2845}
2846EXPORT_SYMBOL(neigh_sysctl_unregister);
2847
2848#endif	/* CONFIG_SYSCTL */
2849
2850static int __init neigh_init(void)
2851{
2852	rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
2853	rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
2854	rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
2855
2856	rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
2857		      NULL);
2858	rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
2859
2860	return 0;
2861}
2862
2863subsys_initcall(neigh_init);
2864
v4.6
   1/*
   2 *	Generic address resolution entity
   3 *
   4 *	Authors:
   5 *	Pedro Roque		<roque@di.fc.ul.pt>
   6 *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
   7 *
   8 *	This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 *
  13 *	Fixes:
  14 *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
  15 *	Harald Welte		Add neighbour cache statistics like rtstat
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/slab.h>
  21#include <linux/types.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/socket.h>
  25#include <linux/netdevice.h>
  26#include <linux/proc_fs.h>
  27#ifdef CONFIG_SYSCTL
  28#include <linux/sysctl.h>
  29#endif
  30#include <linux/times.h>
  31#include <net/net_namespace.h>
  32#include <net/neighbour.h>
  33#include <net/dst.h>
  34#include <net/sock.h>
  35#include <net/netevent.h>
  36#include <net/netlink.h>
  37#include <linux/rtnetlink.h>
  38#include <linux/random.h>
  39#include <linux/string.h>
  40#include <linux/log2.h>
  41#include <linux/inetdevice.h>
  42#include <net/addrconf.h>
  43
  44#define DEBUG
  45#define NEIGH_DEBUG 1
  46#define neigh_dbg(level, fmt, ...)		\
  47do {						\
  48	if (level <= NEIGH_DEBUG)		\
  49		pr_debug(fmt, ##__VA_ARGS__);	\
  50} while (0)
 
 
 
 
 
 
 
 
 
  51
  52#define PNEIGH_HASHMASK		0xF
  53
  54static void neigh_timer_handler(unsigned long arg);
  55static void __neigh_notify(struct neighbour *n, int type, int flags);
  56static void neigh_update_notify(struct neighbour *neigh);
  57static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
  58
 
  59#ifdef CONFIG_PROC_FS
  60static const struct file_operations neigh_stat_seq_fops;
  61#endif
  62
  63/*
  64   Neighbour hash table buckets are protected with rwlock tbl->lock.
  65
  66   - All the scans/updates to hash buckets MUST be made under this lock.
  67   - NOTHING clever should be made under this lock: no callbacks
  68     to protocol backends, no attempts to send something to network.
  69     It will result in deadlocks, if backend/driver wants to use neighbour
  70     cache.
  71   - If the entry requires some non-trivial actions, increase
  72     its reference count and release table lock.
  73
  74   Neighbour entries are protected:
  75   - with reference count.
  76   - with rwlock neigh->lock
  77
  78   Reference count prevents destruction.
  79
  80   neigh->lock mainly serializes ll address data and its validity state.
  81   However, the same lock is used to protect another entry fields:
  82    - timer
  83    - resolution queue
  84
  85   Again, nothing clever shall be made under neigh->lock,
  86   the most complicated procedure, which we allow is dev->hard_header.
  87   It is supposed, that dev->hard_header is simplistic and does
  88   not make callbacks to neighbour tables.
 
 
 
  89 */
  90
 
 
  91static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
  92{
  93	kfree_skb(skb);
  94	return -ENETDOWN;
  95}
  96
  97static void neigh_cleanup_and_release(struct neighbour *neigh)
  98{
  99	if (neigh->parms->neigh_cleanup)
 100		neigh->parms->neigh_cleanup(neigh);
 101
 102	__neigh_notify(neigh, RTM_DELNEIGH, 0);
 103	neigh_release(neigh);
 104}
 105
 106/*
 107 * It is random distribution in the interval (1/2)*base...(3/2)*base.
 108 * It corresponds to default IPv6 settings and is not overridable,
 109 * because it is really reasonable choice.
 110 */
 111
 112unsigned long neigh_rand_reach_time(unsigned long base)
 113{
 114	return base ? (prandom_u32() % base) + (base >> 1) : 0;
 115}
 116EXPORT_SYMBOL(neigh_rand_reach_time);
 117
 118
 119static int neigh_forced_gc(struct neigh_table *tbl)
 120{
 121	int shrunk = 0;
 122	int i;
 123	struct neigh_hash_table *nht;
 124
 125	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
 126
 127	write_lock_bh(&tbl->lock);
 128	nht = rcu_dereference_protected(tbl->nht,
 129					lockdep_is_held(&tbl->lock));
 130	for (i = 0; i < (1 << nht->hash_shift); i++) {
 131		struct neighbour *n;
 132		struct neighbour __rcu **np;
 133
 134		np = &nht->hash_buckets[i];
 135		while ((n = rcu_dereference_protected(*np,
 136					lockdep_is_held(&tbl->lock))) != NULL) {
 137			/* Neighbour record may be discarded if:
 138			 * - nobody refers to it.
 139			 * - it is not permanent
 140			 */
 141			write_lock(&n->lock);
 142			if (atomic_read(&n->refcnt) == 1 &&
 143			    !(n->nud_state & NUD_PERMANENT)) {
 144				rcu_assign_pointer(*np,
 145					rcu_dereference_protected(n->next,
 146						  lockdep_is_held(&tbl->lock)));
 147				n->dead = 1;
 148				shrunk	= 1;
 149				write_unlock(&n->lock);
 150				neigh_cleanup_and_release(n);
 151				continue;
 152			}
 153			write_unlock(&n->lock);
 154			np = &n->next;
 155		}
 156	}
 157
 158	tbl->last_flush = jiffies;
 159
 160	write_unlock_bh(&tbl->lock);
 161
 162	return shrunk;
 163}
 164
 165static void neigh_add_timer(struct neighbour *n, unsigned long when)
 166{
 167	neigh_hold(n);
 168	if (unlikely(mod_timer(&n->timer, when))) {
 169		printk("NEIGH: BUG, double timer add, state is %x\n",
 170		       n->nud_state);
 171		dump_stack();
 172	}
 173}
 174
 175static int neigh_del_timer(struct neighbour *n)
 176{
 177	if ((n->nud_state & NUD_IN_TIMER) &&
 178	    del_timer(&n->timer)) {
 179		neigh_release(n);
 180		return 1;
 181	}
 182	return 0;
 183}
 184
 185static void pneigh_queue_purge(struct sk_buff_head *list)
 186{
 187	struct sk_buff *skb;
 188
 189	while ((skb = skb_dequeue(list)) != NULL) {
 190		dev_put(skb->dev);
 191		kfree_skb(skb);
 192	}
 193}
 194
 195static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
 196{
 197	int i;
 198	struct neigh_hash_table *nht;
 199
 200	nht = rcu_dereference_protected(tbl->nht,
 201					lockdep_is_held(&tbl->lock));
 202
 203	for (i = 0; i < (1 << nht->hash_shift); i++) {
 204		struct neighbour *n;
 205		struct neighbour __rcu **np = &nht->hash_buckets[i];
 206
 207		while ((n = rcu_dereference_protected(*np,
 208					lockdep_is_held(&tbl->lock))) != NULL) {
 209			if (dev && n->dev != dev) {
 210				np = &n->next;
 211				continue;
 212			}
 213			rcu_assign_pointer(*np,
 214				   rcu_dereference_protected(n->next,
 215						lockdep_is_held(&tbl->lock)));
 216			write_lock(&n->lock);
 217			neigh_del_timer(n);
 218			n->dead = 1;
 219
 220			if (atomic_read(&n->refcnt) != 1) {
 221				/* The most unpleasant situation.
 222				   We must destroy neighbour entry,
 223				   but someone still uses it.
 224
 225				   The destroy will be delayed until
 226				   the last user releases us, but
 227				   we must kill timers etc. and move
 228				   it to safe state.
 229				 */
 230				__skb_queue_purge(&n->arp_queue);
 231				n->arp_queue_len_bytes = 0;
 232				n->output = neigh_blackhole;
 233				if (n->nud_state & NUD_VALID)
 234					n->nud_state = NUD_NOARP;
 235				else
 236					n->nud_state = NUD_NONE;
 237				neigh_dbg(2, "neigh %p is stray\n", n);
 238			}
 239			write_unlock(&n->lock);
 240			neigh_cleanup_and_release(n);
 241		}
 242	}
 243}
 244
 245void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
 246{
 247	write_lock_bh(&tbl->lock);
 248	neigh_flush_dev(tbl, dev);
 249	write_unlock_bh(&tbl->lock);
 250}
 251EXPORT_SYMBOL(neigh_changeaddr);
 252
 253int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
 254{
 255	write_lock_bh(&tbl->lock);
 256	neigh_flush_dev(tbl, dev);
 257	pneigh_ifdown(tbl, dev);
 258	write_unlock_bh(&tbl->lock);
 259
 260	del_timer_sync(&tbl->proxy_timer);
 261	pneigh_queue_purge(&tbl->proxy_queue);
 262	return 0;
 263}
 264EXPORT_SYMBOL(neigh_ifdown);
 265
 266static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
 267{
 268	struct neighbour *n = NULL;
 269	unsigned long now = jiffies;
 270	int entries;
 271
 272	entries = atomic_inc_return(&tbl->entries) - 1;
 273	if (entries >= tbl->gc_thresh3 ||
 274	    (entries >= tbl->gc_thresh2 &&
 275	     time_after(now, tbl->last_flush + 5 * HZ))) {
 276		if (!neigh_forced_gc(tbl) &&
 277		    entries >= tbl->gc_thresh3) {
 278			net_info_ratelimited("%s: neighbor table overflow!\n",
 279					     tbl->id);
 280			NEIGH_CACHE_STAT_INC(tbl, table_fulls);
 281			goto out_entries;
 282		}
 283	}
 284
 285	n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
 286	if (!n)
 287		goto out_entries;
 288
 289	__skb_queue_head_init(&n->arp_queue);
 290	rwlock_init(&n->lock);
 291	seqlock_init(&n->ha_lock);
 292	n->updated	  = n->used = now;
 293	n->nud_state	  = NUD_NONE;
 294	n->output	  = neigh_blackhole;
 295	seqlock_init(&n->hh.hh_lock);
 296	n->parms	  = neigh_parms_clone(&tbl->parms);
 297	setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
 298
 299	NEIGH_CACHE_STAT_INC(tbl, allocs);
 300	n->tbl		  = tbl;
 301	atomic_set(&n->refcnt, 1);
 302	n->dead		  = 1;
 303out:
 304	return n;
 305
 306out_entries:
 307	atomic_dec(&tbl->entries);
 308	goto out;
 309}
 310
 311static void neigh_get_hash_rnd(u32 *x)
 312{
 313	get_random_bytes(x, sizeof(*x));
 314	*x |= 1;
 315}
 316
 317static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
 318{
 319	size_t size = (1 << shift) * sizeof(struct neighbour *);
 320	struct neigh_hash_table *ret;
 321	struct neighbour __rcu **buckets;
 322	int i;
 323
 324	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
 325	if (!ret)
 326		return NULL;
 327	if (size <= PAGE_SIZE)
 328		buckets = kzalloc(size, GFP_ATOMIC);
 329	else
 330		buckets = (struct neighbour __rcu **)
 331			  __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
 332					   get_order(size));
 333	if (!buckets) {
 334		kfree(ret);
 335		return NULL;
 336	}
 337	ret->hash_buckets = buckets;
 338	ret->hash_shift = shift;
 339	for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
 340		neigh_get_hash_rnd(&ret->hash_rnd[i]);
 341	return ret;
 342}
 343
 344static void neigh_hash_free_rcu(struct rcu_head *head)
 345{
 346	struct neigh_hash_table *nht = container_of(head,
 347						    struct neigh_hash_table,
 348						    rcu);
 349	size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
 350	struct neighbour __rcu **buckets = nht->hash_buckets;
 351
 352	if (size <= PAGE_SIZE)
 353		kfree(buckets);
 354	else
 355		free_pages((unsigned long)buckets, get_order(size));
 356	kfree(nht);
 357}
 358
 359static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
 360						unsigned long new_shift)
 361{
 362	unsigned int i, hash;
 363	struct neigh_hash_table *new_nht, *old_nht;
 364
 365	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
 366
 367	old_nht = rcu_dereference_protected(tbl->nht,
 368					    lockdep_is_held(&tbl->lock));
 369	new_nht = neigh_hash_alloc(new_shift);
 370	if (!new_nht)
 371		return old_nht;
 372
 373	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
 374		struct neighbour *n, *next;
 375
 376		for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
 377						   lockdep_is_held(&tbl->lock));
 378		     n != NULL;
 379		     n = next) {
 380			hash = tbl->hash(n->primary_key, n->dev,
 381					 new_nht->hash_rnd);
 382
 383			hash >>= (32 - new_nht->hash_shift);
 384			next = rcu_dereference_protected(n->next,
 385						lockdep_is_held(&tbl->lock));
 386
 387			rcu_assign_pointer(n->next,
 388					   rcu_dereference_protected(
 389						new_nht->hash_buckets[hash],
 390						lockdep_is_held(&tbl->lock)));
 391			rcu_assign_pointer(new_nht->hash_buckets[hash], n);
 392		}
 393	}
 394
 395	rcu_assign_pointer(tbl->nht, new_nht);
 396	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
 397	return new_nht;
 398}
 399
 400struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
 401			       struct net_device *dev)
 402{
 403	struct neighbour *n;
 
 
 
 404
 405	NEIGH_CACHE_STAT_INC(tbl, lookups);
 406
 407	rcu_read_lock_bh();
 408	n = __neigh_lookup_noref(tbl, pkey, dev);
 409	if (n) {
 410		if (!atomic_inc_not_zero(&n->refcnt))
 411			n = NULL;
 412		NEIGH_CACHE_STAT_INC(tbl, hits);
 
 
 
 
 
 
 
 413	}
 414
 415	rcu_read_unlock_bh();
 416	return n;
 417}
 418EXPORT_SYMBOL(neigh_lookup);
 419
 420struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
 421				     const void *pkey)
 422{
 423	struct neighbour *n;
 424	int key_len = tbl->key_len;
 425	u32 hash_val;
 426	struct neigh_hash_table *nht;
 427
 428	NEIGH_CACHE_STAT_INC(tbl, lookups);
 429
 430	rcu_read_lock_bh();
 431	nht = rcu_dereference_bh(tbl->nht);
 432	hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
 433
 434	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
 435	     n != NULL;
 436	     n = rcu_dereference_bh(n->next)) {
 437		if (!memcmp(n->primary_key, pkey, key_len) &&
 438		    net_eq(dev_net(n->dev), net)) {
 439			if (!atomic_inc_not_zero(&n->refcnt))
 440				n = NULL;
 441			NEIGH_CACHE_STAT_INC(tbl, hits);
 442			break;
 443		}
 444	}
 445
 446	rcu_read_unlock_bh();
 447	return n;
 448}
 449EXPORT_SYMBOL(neigh_lookup_nodev);
 450
 451struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
 452				 struct net_device *dev, bool want_ref)
 453{
 454	u32 hash_val;
 455	int key_len = tbl->key_len;
 456	int error;
 457	struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
 458	struct neigh_hash_table *nht;
 459
 460	if (!n) {
 461		rc = ERR_PTR(-ENOBUFS);
 462		goto out;
 463	}
 464
 465	memcpy(n->primary_key, pkey, key_len);
 466	n->dev = dev;
 467	dev_hold(dev);
 468
 469	/* Protocol specific setup. */
 470	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
 471		rc = ERR_PTR(error);
 472		goto out_neigh_release;
 473	}
 474
 475	if (dev->netdev_ops->ndo_neigh_construct) {
 476		error = dev->netdev_ops->ndo_neigh_construct(n);
 477		if (error < 0) {
 478			rc = ERR_PTR(error);
 479			goto out_neigh_release;
 480		}
 481	}
 482
 483	/* Device specific setup. */
 484	if (n->parms->neigh_setup &&
 485	    (error = n->parms->neigh_setup(n)) < 0) {
 486		rc = ERR_PTR(error);
 487		goto out_neigh_release;
 488	}
 489
 490	n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
 491
 492	write_lock_bh(&tbl->lock);
 493	nht = rcu_dereference_protected(tbl->nht,
 494					lockdep_is_held(&tbl->lock));
 495
 496	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
 497		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
 498
 499	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
 500
 501	if (n->parms->dead) {
 502		rc = ERR_PTR(-EINVAL);
 503		goto out_tbl_unlock;
 504	}
 505
 506	for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
 507					    lockdep_is_held(&tbl->lock));
 508	     n1 != NULL;
 509	     n1 = rcu_dereference_protected(n1->next,
 510			lockdep_is_held(&tbl->lock))) {
 511		if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
 512			if (want_ref)
 513				neigh_hold(n1);
 514			rc = n1;
 515			goto out_tbl_unlock;
 516		}
 517	}
 518
 519	n->dead = 0;
 520	if (want_ref)
 521		neigh_hold(n);
 522	rcu_assign_pointer(n->next,
 523			   rcu_dereference_protected(nht->hash_buckets[hash_val],
 524						     lockdep_is_held(&tbl->lock)));
 525	rcu_assign_pointer(nht->hash_buckets[hash_val], n);
 526	write_unlock_bh(&tbl->lock);
 527	neigh_dbg(2, "neigh %p is created\n", n);
 528	rc = n;
 529out:
 530	return rc;
 531out_tbl_unlock:
 532	write_unlock_bh(&tbl->lock);
 533out_neigh_release:
 534	neigh_release(n);
 535	goto out;
 536}
 537EXPORT_SYMBOL(__neigh_create);
 538
 539static u32 pneigh_hash(const void *pkey, int key_len)
 540{
 541	u32 hash_val = *(u32 *)(pkey + key_len - 4);
 542	hash_val ^= (hash_val >> 16);
 543	hash_val ^= hash_val >> 8;
 544	hash_val ^= hash_val >> 4;
 545	hash_val &= PNEIGH_HASHMASK;
 546	return hash_val;
 547}
 548
 549static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
 550					      struct net *net,
 551					      const void *pkey,
 552					      int key_len,
 553					      struct net_device *dev)
 554{
 555	while (n) {
 556		if (!memcmp(n->key, pkey, key_len) &&
 557		    net_eq(pneigh_net(n), net) &&
 558		    (n->dev == dev || !n->dev))
 559			return n;
 560		n = n->next;
 561	}
 562	return NULL;
 563}
 564
 565struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
 566		struct net *net, const void *pkey, struct net_device *dev)
 567{
 568	int key_len = tbl->key_len;
 569	u32 hash_val = pneigh_hash(pkey, key_len);
 570
 571	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 572				 net, pkey, key_len, dev);
 573}
 574EXPORT_SYMBOL_GPL(__pneigh_lookup);
 575
 576struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
 577				    struct net *net, const void *pkey,
 578				    struct net_device *dev, int creat)
 579{
 580	struct pneigh_entry *n;
 581	int key_len = tbl->key_len;
 582	u32 hash_val = pneigh_hash(pkey, key_len);
 583
 584	read_lock_bh(&tbl->lock);
 585	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
 586			      net, pkey, key_len, dev);
 587	read_unlock_bh(&tbl->lock);
 588
 589	if (n || !creat)
 590		goto out;
 591
 592	ASSERT_RTNL();
 593
 594	n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
 595	if (!n)
 596		goto out;
 597
 598	write_pnet(&n->net, net);
 599	memcpy(n->key, pkey, key_len);
 600	n->dev = dev;
 601	if (dev)
 602		dev_hold(dev);
 603
 604	if (tbl->pconstructor && tbl->pconstructor(n)) {
 605		if (dev)
 606			dev_put(dev);
 
 607		kfree(n);
 608		n = NULL;
 609		goto out;
 610	}
 611
 612	write_lock_bh(&tbl->lock);
 613	n->next = tbl->phash_buckets[hash_val];
 614	tbl->phash_buckets[hash_val] = n;
 615	write_unlock_bh(&tbl->lock);
 616out:
 617	return n;
 618}
 619EXPORT_SYMBOL(pneigh_lookup);
 620
 621
 622int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
 623		  struct net_device *dev)
 624{
 625	struct pneigh_entry *n, **np;
 626	int key_len = tbl->key_len;
 627	u32 hash_val = pneigh_hash(pkey, key_len);
 628
 629	write_lock_bh(&tbl->lock);
 630	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
 631	     np = &n->next) {
 632		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
 633		    net_eq(pneigh_net(n), net)) {
 634			*np = n->next;
 635			write_unlock_bh(&tbl->lock);
 636			if (tbl->pdestructor)
 637				tbl->pdestructor(n);
 638			if (n->dev)
 639				dev_put(n->dev);
 
 640			kfree(n);
 641			return 0;
 642		}
 643	}
 644	write_unlock_bh(&tbl->lock);
 645	return -ENOENT;
 646}
 647
 648static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
 649{
 650	struct pneigh_entry *n, **np;
 651	u32 h;
 652
 653	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
 654		np = &tbl->phash_buckets[h];
 655		while ((n = *np) != NULL) {
 656			if (!dev || n->dev == dev) {
 657				*np = n->next;
 658				if (tbl->pdestructor)
 659					tbl->pdestructor(n);
 660				if (n->dev)
 661					dev_put(n->dev);
 
 662				kfree(n);
 663				continue;
 664			}
 665			np = &n->next;
 666		}
 667	}
 668	return -ENOENT;
 669}
 670
 671static void neigh_parms_destroy(struct neigh_parms *parms);
 672
 673static inline void neigh_parms_put(struct neigh_parms *parms)
 674{
 675	if (atomic_dec_and_test(&parms->refcnt))
 676		neigh_parms_destroy(parms);
 677}
 678
 
 
 
 
 
 
 679/*
 680 *	neighbour must already be out of the table;
 681 *
 682 */
 683void neigh_destroy(struct neighbour *neigh)
 684{
 685	struct net_device *dev = neigh->dev;
 686
 687	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
 688
 689	if (!neigh->dead) {
 690		pr_warn("Destroying alive neighbour %p\n", neigh);
 
 691		dump_stack();
 692		return;
 693	}
 694
 695	if (neigh_del_timer(neigh))
 696		pr_warn("Impossible event\n");
 697
 698	write_lock_bh(&neigh->lock);
 699	__skb_queue_purge(&neigh->arp_queue);
 700	write_unlock_bh(&neigh->lock);
 701	neigh->arp_queue_len_bytes = 0;
 702
 703	if (dev->netdev_ops->ndo_neigh_destroy)
 704		dev->netdev_ops->ndo_neigh_destroy(neigh);
 705
 706	dev_put(dev);
 707	neigh_parms_put(neigh->parms);
 708
 709	neigh_dbg(2, "neigh %p is destroyed\n", neigh);
 710
 711	atomic_dec(&neigh->tbl->entries);
 712	kfree_rcu(neigh, rcu);
 713}
 714EXPORT_SYMBOL(neigh_destroy);
 715
 716/* Neighbour state is suspicious;
 717   disable fast path.
 718
 719   Called with write_locked neigh.
 720 */
 721static void neigh_suspect(struct neighbour *neigh)
 722{
 723	neigh_dbg(2, "neigh %p is suspected\n", neigh);
 724
 725	neigh->output = neigh->ops->output;
 726}
 727
 728/* Neighbour state is OK;
 729   enable fast path.
 730
 731   Called with write_locked neigh.
 732 */
 733static void neigh_connect(struct neighbour *neigh)
 734{
 735	neigh_dbg(2, "neigh %p is connected\n", neigh);
 736
 737	neigh->output = neigh->ops->connected_output;
 738}
 739
 740static void neigh_periodic_work(struct work_struct *work)
 741{
 742	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
 743	struct neighbour *n;
 744	struct neighbour __rcu **np;
 745	unsigned int i;
 746	struct neigh_hash_table *nht;
 747
 748	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
 749
 750	write_lock_bh(&tbl->lock);
 751	nht = rcu_dereference_protected(tbl->nht,
 752					lockdep_is_held(&tbl->lock));
 753
 754	/*
 755	 *	periodically recompute ReachableTime from random function
 756	 */
 757
 758	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
 759		struct neigh_parms *p;
 760		tbl->last_rand = jiffies;
 761		list_for_each_entry(p, &tbl->parms_list, list)
 762			p->reachable_time =
 763				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
 764	}
 765
 766	if (atomic_read(&tbl->entries) < tbl->gc_thresh1)
 767		goto out;
 768
 769	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
 770		np = &nht->hash_buckets[i];
 771
 772		while ((n = rcu_dereference_protected(*np,
 773				lockdep_is_held(&tbl->lock))) != NULL) {
 774			unsigned int state;
 775
 776			write_lock(&n->lock);
 777
 778			state = n->nud_state;
 779			if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
 780				write_unlock(&n->lock);
 781				goto next_elt;
 782			}
 783
 784			if (time_before(n->used, n->confirmed))
 785				n->used = n->confirmed;
 786
 787			if (atomic_read(&n->refcnt) == 1 &&
 788			    (state == NUD_FAILED ||
 789			     time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
 790				*np = n->next;
 791				n->dead = 1;
 792				write_unlock(&n->lock);
 793				neigh_cleanup_and_release(n);
 794				continue;
 795			}
 796			write_unlock(&n->lock);
 797
 798next_elt:
 799			np = &n->next;
 800		}
 801		/*
 802		 * It's fine to release lock here, even if hash table
 803		 * grows while we are preempted.
 804		 */
 805		write_unlock_bh(&tbl->lock);
 806		cond_resched();
 807		write_lock_bh(&tbl->lock);
 808		nht = rcu_dereference_protected(tbl->nht,
 809						lockdep_is_held(&tbl->lock));
 810	}
 811out:
 812	/* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
 813	 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
 814	 * BASE_REACHABLE_TIME.
 815	 */
 816	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
 817			      NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
 818	write_unlock_bh(&tbl->lock);
 819}
 820
 821static __inline__ int neigh_max_probes(struct neighbour *n)
 822{
 823	struct neigh_parms *p = n->parms;
 824	return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
 825	       (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
 826	        NEIGH_VAR(p, MCAST_PROBES));
 827}
 828
 829static void neigh_invalidate(struct neighbour *neigh)
 830	__releases(neigh->lock)
 831	__acquires(neigh->lock)
 832{
 833	struct sk_buff *skb;
 834
 835	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
 836	neigh_dbg(2, "neigh %p is failed\n", neigh);
 837	neigh->updated = jiffies;
 838
 839	/* It is very thin place. report_unreachable is very complicated
 840	   routine. Particularly, it can hit the same neighbour entry!
 841
 842	   So that, we try to be accurate and avoid dead loop. --ANK
 843	 */
 844	while (neigh->nud_state == NUD_FAILED &&
 845	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
 846		write_unlock(&neigh->lock);
 847		neigh->ops->error_report(neigh, skb);
 848		write_lock(&neigh->lock);
 849	}
 850	__skb_queue_purge(&neigh->arp_queue);
 851	neigh->arp_queue_len_bytes = 0;
 852}
 853
 854static void neigh_probe(struct neighbour *neigh)
 855	__releases(neigh->lock)
 856{
 857	struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
 858	/* keep skb alive even if arp_queue overflows */
 859	if (skb)
 860		skb = skb_clone(skb, GFP_ATOMIC);
 861	write_unlock(&neigh->lock);
 862	neigh->ops->solicit(neigh, skb);
 863	atomic_inc(&neigh->probes);
 864	kfree_skb(skb);
 865}
 866
 867/* Called when a timer expires for a neighbour entry. */
 868
 869static void neigh_timer_handler(unsigned long arg)
 870{
 871	unsigned long now, next;
 872	struct neighbour *neigh = (struct neighbour *)arg;
 873	unsigned int state;
 874	int notify = 0;
 875
 876	write_lock(&neigh->lock);
 877
 878	state = neigh->nud_state;
 879	now = jiffies;
 880	next = now + HZ;
 881
 882	if (!(state & NUD_IN_TIMER))
 
 
 
 883		goto out;
 
 884
 885	if (state & NUD_REACHABLE) {
 886		if (time_before_eq(now,
 887				   neigh->confirmed + neigh->parms->reachable_time)) {
 888			neigh_dbg(2, "neigh %p is still alive\n", neigh);
 889			next = neigh->confirmed + neigh->parms->reachable_time;
 890		} else if (time_before_eq(now,
 891					  neigh->used +
 892					  NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
 893			neigh_dbg(2, "neigh %p is delayed\n", neigh);
 894			neigh->nud_state = NUD_DELAY;
 895			neigh->updated = jiffies;
 896			neigh_suspect(neigh);
 897			next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
 898		} else {
 899			neigh_dbg(2, "neigh %p is suspected\n", neigh);
 900			neigh->nud_state = NUD_STALE;
 901			neigh->updated = jiffies;
 902			neigh_suspect(neigh);
 903			notify = 1;
 904		}
 905	} else if (state & NUD_DELAY) {
 906		if (time_before_eq(now,
 907				   neigh->confirmed +
 908				   NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
 909			neigh_dbg(2, "neigh %p is now reachable\n", neigh);
 910			neigh->nud_state = NUD_REACHABLE;
 911			neigh->updated = jiffies;
 912			neigh_connect(neigh);
 913			notify = 1;
 914			next = neigh->confirmed + neigh->parms->reachable_time;
 915		} else {
 916			neigh_dbg(2, "neigh %p is probed\n", neigh);
 917			neigh->nud_state = NUD_PROBE;
 918			neigh->updated = jiffies;
 919			atomic_set(&neigh->probes, 0);
 920			notify = 1;
 921			next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
 922		}
 923	} else {
 924		/* NUD_PROBE|NUD_INCOMPLETE */
 925		next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
 926	}
 927
 928	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
 929	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
 930		neigh->nud_state = NUD_FAILED;
 931		notify = 1;
 932		neigh_invalidate(neigh);
 933		goto out;
 934	}
 935
 936	if (neigh->nud_state & NUD_IN_TIMER) {
 937		if (time_before(next, jiffies + HZ/2))
 938			next = jiffies + HZ/2;
 939		if (!mod_timer(&neigh->timer, next))
 940			neigh_hold(neigh);
 941	}
 942	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
 943		neigh_probe(neigh);
 
 
 
 
 
 
 
 944	} else {
 945out:
 946		write_unlock(&neigh->lock);
 947	}
 948
 949	if (notify)
 950		neigh_update_notify(neigh);
 951
 952	neigh_release(neigh);
 953}
 954
 955int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
 956{
 957	int rc;
 958	bool immediate_probe = false;
 959
 960	write_lock_bh(&neigh->lock);
 961
 962	rc = 0;
 963	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
 964		goto out_unlock_bh;
 965	if (neigh->dead)
 966		goto out_dead;
 967
 968	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
 969		if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
 970		    NEIGH_VAR(neigh->parms, APP_PROBES)) {
 971			unsigned long next, now = jiffies;
 972
 973			atomic_set(&neigh->probes,
 974				   NEIGH_VAR(neigh->parms, UCAST_PROBES));
 975			neigh->nud_state     = NUD_INCOMPLETE;
 976			neigh->updated = now;
 977			next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
 978					 HZ/2);
 979			neigh_add_timer(neigh, next);
 980			immediate_probe = true;
 981		} else {
 982			neigh->nud_state = NUD_FAILED;
 983			neigh->updated = jiffies;
 984			write_unlock_bh(&neigh->lock);
 985
 986			kfree_skb(skb);
 987			return 1;
 988		}
 989	} else if (neigh->nud_state & NUD_STALE) {
 990		neigh_dbg(2, "neigh %p is delayed\n", neigh);
 991		neigh->nud_state = NUD_DELAY;
 992		neigh->updated = jiffies;
 993		neigh_add_timer(neigh, jiffies +
 994				NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
 995	}
 996
 997	if (neigh->nud_state == NUD_INCOMPLETE) {
 998		if (skb) {
 999			while (neigh->arp_queue_len_bytes + skb->truesize >
1000			       NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1001				struct sk_buff *buff;
1002
1003				buff = __skb_dequeue(&neigh->arp_queue);
1004				if (!buff)
1005					break;
1006				neigh->arp_queue_len_bytes -= buff->truesize;
1007				kfree_skb(buff);
1008				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1009			}
1010			skb_dst_force(skb);
1011			__skb_queue_tail(&neigh->arp_queue, skb);
1012			neigh->arp_queue_len_bytes += skb->truesize;
1013		}
1014		rc = 1;
1015	}
1016out_unlock_bh:
1017	if (immediate_probe)
1018		neigh_probe(neigh);
1019	else
1020		write_unlock(&neigh->lock);
1021	local_bh_enable();
1022	return rc;
1023
1024out_dead:
1025	if (neigh->nud_state & NUD_STALE)
1026		goto out_unlock_bh;
1027	write_unlock_bh(&neigh->lock);
1028	kfree_skb(skb);
1029	return 1;
1030}
1031EXPORT_SYMBOL(__neigh_event_send);
1032
1033static void neigh_update_hhs(struct neighbour *neigh)
1034{
1035	struct hh_cache *hh;
1036	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1037		= NULL;
1038
1039	if (neigh->dev->header_ops)
1040		update = neigh->dev->header_ops->cache_update;
1041
1042	if (update) {
1043		hh = &neigh->hh;
1044		if (hh->hh_len) {
1045			write_seqlock_bh(&hh->hh_lock);
1046			update(hh, neigh->dev, neigh->ha);
1047			write_sequnlock_bh(&hh->hh_lock);
1048		}
1049	}
1050}
1051
1052
1053
1054/* Generic update routine.
1055   -- lladdr is new lladdr or NULL, if it is not supplied.
1056   -- new    is new state.
1057   -- flags
1058	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1059				if it is different.
1060	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1061				lladdr instead of overriding it
1062				if it is different.
1063				It also allows to retain current state
1064				if lladdr is unchanged.
1065	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1066
1067	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1068				NTF_ROUTER flag.
1069	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1070				a router.
1071
1072   Caller MUST hold reference count on the entry.
1073 */
1074
1075int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1076		 u32 flags)
1077{
1078	u8 old;
1079	int err;
1080	int notify = 0;
1081	struct net_device *dev;
1082	int update_isrouter = 0;
1083
1084	write_lock_bh(&neigh->lock);
1085
1086	dev    = neigh->dev;
1087	old    = neigh->nud_state;
1088	err    = -EPERM;
1089
1090	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1091	    (old & (NUD_NOARP | NUD_PERMANENT)))
1092		goto out;
1093	if (neigh->dead)
1094		goto out;
1095
1096	if (!(new & NUD_VALID)) {
1097		neigh_del_timer(neigh);
1098		if (old & NUD_CONNECTED)
1099			neigh_suspect(neigh);
1100		neigh->nud_state = new;
1101		err = 0;
1102		notify = old & NUD_VALID;
1103		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1104		    (new & NUD_FAILED)) {
1105			neigh_invalidate(neigh);
1106			notify = 1;
1107		}
1108		goto out;
1109	}
1110
1111	/* Compare new lladdr with cached one */
1112	if (!dev->addr_len) {
1113		/* First case: device needs no address. */
1114		lladdr = neigh->ha;
1115	} else if (lladdr) {
1116		/* The second case: if something is already cached
1117		   and a new address is proposed:
1118		   - compare new & old
1119		   - if they are different, check override flag
1120		 */
1121		if ((old & NUD_VALID) &&
1122		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1123			lladdr = neigh->ha;
1124	} else {
1125		/* No address is supplied; if we know something,
1126		   use it, otherwise discard the request.
1127		 */
1128		err = -EINVAL;
1129		if (!(old & NUD_VALID))
1130			goto out;
1131		lladdr = neigh->ha;
1132	}
1133
1134	if (new & NUD_CONNECTED)
1135		neigh->confirmed = jiffies;
1136	neigh->updated = jiffies;
1137
1138	/* If entry was valid and address is not changed,
1139	   do not change entry state, if new one is STALE.
1140	 */
1141	err = 0;
1142	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1143	if (old & NUD_VALID) {
1144		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1145			update_isrouter = 0;
1146			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1147			    (old & NUD_CONNECTED)) {
1148				lladdr = neigh->ha;
1149				new = NUD_STALE;
1150			} else
1151				goto out;
1152		} else {
1153			if (lladdr == neigh->ha && new == NUD_STALE &&
1154			    ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1155			     (old & NUD_CONNECTED))
1156			    )
1157				new = old;
1158		}
1159	}
1160
1161	if (new != old) {
1162		neigh_del_timer(neigh);
1163		if (new & NUD_PROBE)
1164			atomic_set(&neigh->probes, 0);
1165		if (new & NUD_IN_TIMER)
1166			neigh_add_timer(neigh, (jiffies +
1167						((new & NUD_REACHABLE) ?
1168						 neigh->parms->reachable_time :
1169						 0)));
1170		neigh->nud_state = new;
1171		notify = 1;
1172	}
1173
1174	if (lladdr != neigh->ha) {
1175		write_seqlock(&neigh->ha_lock);
1176		memcpy(&neigh->ha, lladdr, dev->addr_len);
1177		write_sequnlock(&neigh->ha_lock);
1178		neigh_update_hhs(neigh);
1179		if (!(new & NUD_CONNECTED))
1180			neigh->confirmed = jiffies -
1181				      (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1182		notify = 1;
1183	}
1184	if (new == old)
1185		goto out;
1186	if (new & NUD_CONNECTED)
1187		neigh_connect(neigh);
1188	else
1189		neigh_suspect(neigh);
1190	if (!(old & NUD_VALID)) {
1191		struct sk_buff *skb;
1192
1193		/* Again: avoid dead loop if something went wrong */
1194
1195		while (neigh->nud_state & NUD_VALID &&
1196		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1197			struct dst_entry *dst = skb_dst(skb);
1198			struct neighbour *n2, *n1 = neigh;
1199			write_unlock_bh(&neigh->lock);
1200
1201			rcu_read_lock();
1202
1203			/* Why not just use 'neigh' as-is?  The problem is that
1204			 * things such as shaper, eql, and sch_teql can end up
1205			 * using alternative, different, neigh objects to output
1206			 * the packet in the output path.  So what we need to do
1207			 * here is re-lookup the top-level neigh in the path so
1208			 * we can reinject the packet there.
1209			 */
1210			n2 = NULL;
1211			if (dst) {
1212				n2 = dst_neigh_lookup_skb(dst, skb);
1213				if (n2)
1214					n1 = n2;
1215			}
1216			n1->output(n1, skb);
1217			if (n2)
1218				neigh_release(n2);
1219			rcu_read_unlock();
1220
1221			write_lock_bh(&neigh->lock);
1222		}
1223		__skb_queue_purge(&neigh->arp_queue);
1224		neigh->arp_queue_len_bytes = 0;
1225	}
1226out:
1227	if (update_isrouter) {
1228		neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1229			(neigh->flags | NTF_ROUTER) :
1230			(neigh->flags & ~NTF_ROUTER);
1231	}
1232	write_unlock_bh(&neigh->lock);
1233
1234	if (notify)
1235		neigh_update_notify(neigh);
1236
1237	return err;
1238}
1239EXPORT_SYMBOL(neigh_update);
1240
1241/* Update the neigh to listen temporarily for probe responses, even if it is
1242 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1243 */
1244void __neigh_set_probe_once(struct neighbour *neigh)
1245{
1246	if (neigh->dead)
1247		return;
1248	neigh->updated = jiffies;
1249	if (!(neigh->nud_state & NUD_FAILED))
1250		return;
1251	neigh->nud_state = NUD_INCOMPLETE;
1252	atomic_set(&neigh->probes, neigh_max_probes(neigh));
1253	neigh_add_timer(neigh,
1254			jiffies + NEIGH_VAR(neigh->parms, RETRANS_TIME));
1255}
1256EXPORT_SYMBOL(__neigh_set_probe_once);
1257
1258struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1259				 u8 *lladdr, void *saddr,
1260				 struct net_device *dev)
1261{
1262	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1263						 lladdr || !dev->addr_len);
1264	if (neigh)
1265		neigh_update(neigh, lladdr, NUD_STALE,
1266			     NEIGH_UPDATE_F_OVERRIDE);
1267	return neigh;
1268}
1269EXPORT_SYMBOL(neigh_event_ns);
1270
1271/* called with read_lock_bh(&n->lock); */
1272static void neigh_hh_init(struct neighbour *n)
1273{
1274	struct net_device *dev = n->dev;
1275	__be16 prot = n->tbl->protocol;
1276	struct hh_cache	*hh = &n->hh;
1277
1278	write_lock_bh(&n->lock);
1279
1280	/* Only one thread can come in here and initialize the
1281	 * hh_cache entry.
1282	 */
1283	if (!hh->hh_len)
1284		dev->header_ops->cache(n, hh, prot);
1285
1286	write_unlock_bh(&n->lock);
1287}
1288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289/* Slow and careful. */
1290
1291int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1292{
 
1293	int rc = 0;
1294
 
 
 
 
 
1295	if (!neigh_event_send(neigh, skb)) {
1296		int err;
1297		struct net_device *dev = neigh->dev;
1298		unsigned int seq;
1299
1300		if (dev->header_ops->cache && !neigh->hh.hh_len)
1301			neigh_hh_init(neigh);
1302
1303		do {
1304			__skb_pull(skb, skb_network_offset(skb));
1305			seq = read_seqbegin(&neigh->ha_lock);
1306			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1307					      neigh->ha, NULL, skb->len);
1308		} while (read_seqretry(&neigh->ha_lock, seq));
1309
1310		if (err >= 0)
1311			rc = dev_queue_xmit(skb);
1312		else
1313			goto out_kfree_skb;
1314	}
1315out:
1316	return rc;
 
 
 
1317out_kfree_skb:
1318	rc = -EINVAL;
1319	kfree_skb(skb);
1320	goto out;
1321}
1322EXPORT_SYMBOL(neigh_resolve_output);
1323
1324/* As fast as possible without hh cache */
1325
1326int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1327{
1328	struct net_device *dev = neigh->dev;
1329	unsigned int seq;
1330	int err;
1331
 
 
1332	do {
1333		__skb_pull(skb, skb_network_offset(skb));
1334		seq = read_seqbegin(&neigh->ha_lock);
1335		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1336				      neigh->ha, NULL, skb->len);
1337	} while (read_seqretry(&neigh->ha_lock, seq));
1338
1339	if (err >= 0)
1340		err = dev_queue_xmit(skb);
1341	else {
1342		err = -EINVAL;
1343		kfree_skb(skb);
1344	}
1345	return err;
1346}
1347EXPORT_SYMBOL(neigh_connected_output);
1348
1349int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1350{
1351	return dev_queue_xmit(skb);
1352}
1353EXPORT_SYMBOL(neigh_direct_output);
1354
1355static void neigh_proxy_process(unsigned long arg)
1356{
1357	struct neigh_table *tbl = (struct neigh_table *)arg;
1358	long sched_next = 0;
1359	unsigned long now = jiffies;
1360	struct sk_buff *skb, *n;
1361
1362	spin_lock(&tbl->proxy_queue.lock);
1363
1364	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1365		long tdif = NEIGH_CB(skb)->sched_next - now;
1366
1367		if (tdif <= 0) {
1368			struct net_device *dev = skb->dev;
1369
1370			__skb_unlink(skb, &tbl->proxy_queue);
1371			if (tbl->proxy_redo && netif_running(dev)) {
1372				rcu_read_lock();
1373				tbl->proxy_redo(skb);
1374				rcu_read_unlock();
1375			} else {
1376				kfree_skb(skb);
1377			}
1378
1379			dev_put(dev);
1380		} else if (!sched_next || tdif < sched_next)
1381			sched_next = tdif;
1382	}
1383	del_timer(&tbl->proxy_timer);
1384	if (sched_next)
1385		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1386	spin_unlock(&tbl->proxy_queue.lock);
1387}
1388
1389void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1390		    struct sk_buff *skb)
1391{
1392	unsigned long now = jiffies;
 
1393
1394	unsigned long sched_next = now + (prandom_u32() %
1395					  NEIGH_VAR(p, PROXY_DELAY));
1396
1397	if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1398		kfree_skb(skb);
1399		return;
1400	}
1401
1402	NEIGH_CB(skb)->sched_next = sched_next;
1403	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1404
1405	spin_lock(&tbl->proxy_queue.lock);
1406	if (del_timer(&tbl->proxy_timer)) {
1407		if (time_before(tbl->proxy_timer.expires, sched_next))
1408			sched_next = tbl->proxy_timer.expires;
1409	}
1410	skb_dst_drop(skb);
1411	dev_hold(skb->dev);
1412	__skb_queue_tail(&tbl->proxy_queue, skb);
1413	mod_timer(&tbl->proxy_timer, sched_next);
1414	spin_unlock(&tbl->proxy_queue.lock);
1415}
1416EXPORT_SYMBOL(pneigh_enqueue);
1417
1418static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1419						      struct net *net, int ifindex)
1420{
1421	struct neigh_parms *p;
1422
1423	list_for_each_entry(p, &tbl->parms_list, list) {
1424		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1425		    (!p->dev && !ifindex && net_eq(net, &init_net)))
1426			return p;
1427	}
1428
1429	return NULL;
1430}
1431
1432struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1433				      struct neigh_table *tbl)
1434{
1435	struct neigh_parms *p;
1436	struct net *net = dev_net(dev);
1437	const struct net_device_ops *ops = dev->netdev_ops;
1438
1439	p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
 
 
 
 
1440	if (p) {
1441		p->tbl		  = tbl;
1442		atomic_set(&p->refcnt, 1);
1443		p->reachable_time =
1444				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1445		dev_hold(dev);
1446		p->dev = dev;
1447		write_pnet(&p->net, net);
1448		p->sysctl_table = NULL;
1449
1450		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1451			dev_put(dev);
1452			kfree(p);
1453			return NULL;
1454		}
1455
 
 
 
 
1456		write_lock_bh(&tbl->lock);
1457		list_add(&p->list, &tbl->parms.list);
 
1458		write_unlock_bh(&tbl->lock);
1459
1460		neigh_parms_data_state_cleanall(p);
1461	}
1462	return p;
1463}
1464EXPORT_SYMBOL(neigh_parms_alloc);
1465
1466static void neigh_rcu_free_parms(struct rcu_head *head)
1467{
1468	struct neigh_parms *parms =
1469		container_of(head, struct neigh_parms, rcu_head);
1470
1471	neigh_parms_put(parms);
1472}
1473
1474void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1475{
 
 
1476	if (!parms || parms == &tbl->parms)
1477		return;
1478	write_lock_bh(&tbl->lock);
1479	list_del(&parms->list);
1480	parms->dead = 1;
 
 
 
 
 
 
 
 
 
1481	write_unlock_bh(&tbl->lock);
1482	if (parms->dev)
1483		dev_put(parms->dev);
1484	call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1485}
1486EXPORT_SYMBOL(neigh_parms_release);
1487
1488static void neigh_parms_destroy(struct neigh_parms *parms)
1489{
 
1490	kfree(parms);
1491}
1492
1493static struct lock_class_key neigh_table_proxy_queue_class;
1494
1495static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1496
1497void neigh_table_init(int index, struct neigh_table *tbl)
1498{
1499	unsigned long now = jiffies;
1500	unsigned long phsize;
1501
1502	INIT_LIST_HEAD(&tbl->parms_list);
1503	list_add(&tbl->parms.list, &tbl->parms_list);
1504	write_pnet(&tbl->parms.net, &init_net);
1505	atomic_set(&tbl->parms.refcnt, 1);
1506	tbl->parms.reachable_time =
1507			  neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1508
 
 
 
 
 
1509	tbl->stats = alloc_percpu(struct neigh_statistics);
1510	if (!tbl->stats)
1511		panic("cannot create neighbour cache statistics");
1512
1513#ifdef CONFIG_PROC_FS
1514	if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1515			      &neigh_stat_seq_fops, tbl))
1516		panic("cannot create neighbour proc dir entry");
1517#endif
1518
1519	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1520
1521	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1522	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1523
1524	if (!tbl->nht || !tbl->phash_buckets)
1525		panic("cannot allocate neighbour cache hashes");
1526
1527	if (!tbl->entry_size)
1528		tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1529					tbl->key_len, NEIGH_PRIV_ALIGN);
1530	else
1531		WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1532
1533	rwlock_init(&tbl->lock);
1534	INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1535	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1536			tbl->parms.reachable_time);
1537	setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1538	skb_queue_head_init_class(&tbl->proxy_queue,
1539			&neigh_table_proxy_queue_class);
1540
1541	tbl->last_flush = now;
1542	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
 
 
1543
1544	neigh_tables[index] = tbl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545}
1546EXPORT_SYMBOL(neigh_table_init);
1547
1548int neigh_table_clear(int index, struct neigh_table *tbl)
1549{
1550	neigh_tables[index] = NULL;
 
1551	/* It is not clean... Fix it to unload IPv6 module safely */
1552	cancel_delayed_work_sync(&tbl->gc_work);
1553	del_timer_sync(&tbl->proxy_timer);
1554	pneigh_queue_purge(&tbl->proxy_queue);
1555	neigh_ifdown(tbl, NULL);
1556	if (atomic_read(&tbl->entries))
1557		pr_crit("neighbour leakage\n");
 
 
 
 
 
 
 
 
1558
1559	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1560		 neigh_hash_free_rcu);
1561	tbl->nht = NULL;
1562
1563	kfree(tbl->phash_buckets);
1564	tbl->phash_buckets = NULL;
1565
1566	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1567
1568	free_percpu(tbl->stats);
1569	tbl->stats = NULL;
1570
 
 
 
1571	return 0;
1572}
1573EXPORT_SYMBOL(neigh_table_clear);
1574
1575static struct neigh_table *neigh_find_table(int family)
1576{
1577	struct neigh_table *tbl = NULL;
1578
1579	switch (family) {
1580	case AF_INET:
1581		tbl = neigh_tables[NEIGH_ARP_TABLE];
1582		break;
1583	case AF_INET6:
1584		tbl = neigh_tables[NEIGH_ND_TABLE];
1585		break;
1586	case AF_DECnet:
1587		tbl = neigh_tables[NEIGH_DN_TABLE];
1588		break;
1589	}
1590
1591	return tbl;
1592}
1593
1594static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh)
1595{
1596	struct net *net = sock_net(skb->sk);
1597	struct ndmsg *ndm;
1598	struct nlattr *dst_attr;
1599	struct neigh_table *tbl;
1600	struct neighbour *neigh;
1601	struct net_device *dev = NULL;
1602	int err = -EINVAL;
1603
1604	ASSERT_RTNL();
1605	if (nlmsg_len(nlh) < sizeof(*ndm))
1606		goto out;
1607
1608	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1609	if (dst_attr == NULL)
1610		goto out;
1611
1612	ndm = nlmsg_data(nlh);
1613	if (ndm->ndm_ifindex) {
1614		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1615		if (dev == NULL) {
1616			err = -ENODEV;
1617			goto out;
1618		}
1619	}
1620
1621	tbl = neigh_find_table(ndm->ndm_family);
1622	if (tbl == NULL)
1623		return -EAFNOSUPPORT;
 
 
 
 
 
 
 
1624
1625	if (nla_len(dst_attr) < tbl->key_len)
1626		goto out;
 
 
1627
1628	if (ndm->ndm_flags & NTF_PROXY) {
1629		err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1630		goto out;
1631	}
1632
1633	if (dev == NULL)
1634		goto out;
 
 
 
1635
1636	neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1637	if (neigh == NULL) {
1638		err = -ENOENT;
 
1639		goto out;
1640	}
1641
1642	err = neigh_update(neigh, NULL, NUD_FAILED,
1643			   NEIGH_UPDATE_F_OVERRIDE |
1644			   NEIGH_UPDATE_F_ADMIN);
1645	neigh_release(neigh);
1646
1647out:
1648	return err;
1649}
1650
1651static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh)
1652{
1653	int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1654	struct net *net = sock_net(skb->sk);
1655	struct ndmsg *ndm;
1656	struct nlattr *tb[NDA_MAX+1];
1657	struct neigh_table *tbl;
1658	struct net_device *dev = NULL;
1659	struct neighbour *neigh;
1660	void *dst, *lladdr;
1661	int err;
1662
1663	ASSERT_RTNL();
1664	err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1665	if (err < 0)
1666		goto out;
1667
1668	err = -EINVAL;
1669	if (tb[NDA_DST] == NULL)
1670		goto out;
1671
1672	ndm = nlmsg_data(nlh);
1673	if (ndm->ndm_ifindex) {
1674		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1675		if (dev == NULL) {
1676			err = -ENODEV;
1677			goto out;
1678		}
1679
1680		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1681			goto out;
1682	}
1683
1684	tbl = neigh_find_table(ndm->ndm_family);
1685	if (tbl == NULL)
1686		return -EAFNOSUPPORT;
 
 
1687
1688	if (nla_len(tb[NDA_DST]) < tbl->key_len)
1689		goto out;
1690	dst = nla_data(tb[NDA_DST]);
1691	lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1692
1693	if (ndm->ndm_flags & NTF_PROXY) {
1694		struct pneigh_entry *pn;
 
 
1695
1696		err = -ENOBUFS;
1697		pn = pneigh_lookup(tbl, net, dst, dev, 1);
1698		if (pn) {
1699			pn->flags = ndm->ndm_flags;
1700			err = 0;
1701		}
1702		goto out;
1703	}
1704
1705	if (dev == NULL)
1706		goto out;
1707
1708	neigh = neigh_lookup(tbl, dst, dev);
1709	if (neigh == NULL) {
1710		if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1711			err = -ENOENT;
1712			goto out;
1713		}
1714
1715		neigh = __neigh_lookup_errno(tbl, dst, dev);
1716		if (IS_ERR(neigh)) {
1717			err = PTR_ERR(neigh);
1718			goto out;
1719		}
1720	} else {
1721		if (nlh->nlmsg_flags & NLM_F_EXCL) {
1722			err = -EEXIST;
1723			neigh_release(neigh);
1724			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725		}
1726
1727		if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1728			flags &= ~NEIGH_UPDATE_F_OVERRIDE;
 
 
 
 
 
1729	}
1730
1731	if (ndm->ndm_flags & NTF_USE) {
1732		neigh_event_send(neigh, NULL);
1733		err = 0;
1734	} else
1735		err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1736	neigh_release(neigh);
1737
1738out:
1739	return err;
1740}
1741
1742static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1743{
1744	struct nlattr *nest;
1745
1746	nest = nla_nest_start(skb, NDTA_PARMS);
1747	if (nest == NULL)
1748		return -ENOBUFS;
1749
1750	if ((parms->dev &&
1751	     nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1752	    nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1753	    nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
1754			NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
1755	    /* approximative value for deprecated QUEUE_LEN (in packets) */
1756	    nla_put_u32(skb, NDTPA_QUEUE_LEN,
1757			NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
1758	    nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
1759	    nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
1760	    nla_put_u32(skb, NDTPA_UCAST_PROBES,
1761			NEIGH_VAR(parms, UCAST_PROBES)) ||
1762	    nla_put_u32(skb, NDTPA_MCAST_PROBES,
1763			NEIGH_VAR(parms, MCAST_PROBES)) ||
1764	    nla_put_u32(skb, NDTPA_MCAST_REPROBES,
1765			NEIGH_VAR(parms, MCAST_REPROBES)) ||
1766	    nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) ||
1767	    nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1768			  NEIGH_VAR(parms, BASE_REACHABLE_TIME)) ||
1769	    nla_put_msecs(skb, NDTPA_GC_STALETIME,
1770			  NEIGH_VAR(parms, GC_STALETIME)) ||
1771	    nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1772			  NEIGH_VAR(parms, DELAY_PROBE_TIME)) ||
1773	    nla_put_msecs(skb, NDTPA_RETRANS_TIME,
1774			  NEIGH_VAR(parms, RETRANS_TIME)) ||
1775	    nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
1776			  NEIGH_VAR(parms, ANYCAST_DELAY)) ||
1777	    nla_put_msecs(skb, NDTPA_PROXY_DELAY,
1778			  NEIGH_VAR(parms, PROXY_DELAY)) ||
1779	    nla_put_msecs(skb, NDTPA_LOCKTIME,
1780			  NEIGH_VAR(parms, LOCKTIME)))
1781		goto nla_put_failure;
1782	return nla_nest_end(skb, nest);
1783
1784nla_put_failure:
1785	nla_nest_cancel(skb, nest);
1786	return -EMSGSIZE;
1787}
1788
1789static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1790			      u32 pid, u32 seq, int type, int flags)
1791{
1792	struct nlmsghdr *nlh;
1793	struct ndtmsg *ndtmsg;
1794
1795	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1796	if (nlh == NULL)
1797		return -EMSGSIZE;
1798
1799	ndtmsg = nlmsg_data(nlh);
1800
1801	read_lock_bh(&tbl->lock);
1802	ndtmsg->ndtm_family = tbl->family;
1803	ndtmsg->ndtm_pad1   = 0;
1804	ndtmsg->ndtm_pad2   = 0;
1805
1806	if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1807	    nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) ||
1808	    nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1809	    nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1810	    nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1811		goto nla_put_failure;
1812	{
1813		unsigned long now = jiffies;
1814		unsigned int flush_delta = now - tbl->last_flush;
1815		unsigned int rand_delta = now - tbl->last_rand;
1816		struct neigh_hash_table *nht;
1817		struct ndt_config ndc = {
1818			.ndtc_key_len		= tbl->key_len,
1819			.ndtc_entry_size	= tbl->entry_size,
1820			.ndtc_entries		= atomic_read(&tbl->entries),
1821			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
1822			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
1823			.ndtc_proxy_qlen	= tbl->proxy_queue.qlen,
1824		};
1825
1826		rcu_read_lock_bh();
1827		nht = rcu_dereference_bh(tbl->nht);
1828		ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1829		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1830		rcu_read_unlock_bh();
1831
1832		if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1833			goto nla_put_failure;
1834	}
1835
1836	{
1837		int cpu;
1838		struct ndt_stats ndst;
1839
1840		memset(&ndst, 0, sizeof(ndst));
1841
1842		for_each_possible_cpu(cpu) {
1843			struct neigh_statistics	*st;
1844
1845			st = per_cpu_ptr(tbl->stats, cpu);
1846			ndst.ndts_allocs		+= st->allocs;
1847			ndst.ndts_destroys		+= st->destroys;
1848			ndst.ndts_hash_grows		+= st->hash_grows;
1849			ndst.ndts_res_failed		+= st->res_failed;
1850			ndst.ndts_lookups		+= st->lookups;
1851			ndst.ndts_hits			+= st->hits;
1852			ndst.ndts_rcv_probes_mcast	+= st->rcv_probes_mcast;
1853			ndst.ndts_rcv_probes_ucast	+= st->rcv_probes_ucast;
1854			ndst.ndts_periodic_gc_runs	+= st->periodic_gc_runs;
1855			ndst.ndts_forced_gc_runs	+= st->forced_gc_runs;
1856			ndst.ndts_table_fulls		+= st->table_fulls;
1857		}
1858
1859		if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1860			goto nla_put_failure;
1861	}
1862
1863	BUG_ON(tbl->parms.dev);
1864	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1865		goto nla_put_failure;
1866
1867	read_unlock_bh(&tbl->lock);
1868	nlmsg_end(skb, nlh);
1869	return 0;
1870
1871nla_put_failure:
1872	read_unlock_bh(&tbl->lock);
1873	nlmsg_cancel(skb, nlh);
1874	return -EMSGSIZE;
1875}
1876
1877static int neightbl_fill_param_info(struct sk_buff *skb,
1878				    struct neigh_table *tbl,
1879				    struct neigh_parms *parms,
1880				    u32 pid, u32 seq, int type,
1881				    unsigned int flags)
1882{
1883	struct ndtmsg *ndtmsg;
1884	struct nlmsghdr *nlh;
1885
1886	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1887	if (nlh == NULL)
1888		return -EMSGSIZE;
1889
1890	ndtmsg = nlmsg_data(nlh);
1891
1892	read_lock_bh(&tbl->lock);
1893	ndtmsg->ndtm_family = tbl->family;
1894	ndtmsg->ndtm_pad1   = 0;
1895	ndtmsg->ndtm_pad2   = 0;
1896
1897	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1898	    neightbl_fill_parms(skb, parms) < 0)
1899		goto errout;
1900
1901	read_unlock_bh(&tbl->lock);
1902	nlmsg_end(skb, nlh);
1903	return 0;
1904errout:
1905	read_unlock_bh(&tbl->lock);
1906	nlmsg_cancel(skb, nlh);
1907	return -EMSGSIZE;
1908}
1909
1910static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1911	[NDTA_NAME]		= { .type = NLA_STRING },
1912	[NDTA_THRESH1]		= { .type = NLA_U32 },
1913	[NDTA_THRESH2]		= { .type = NLA_U32 },
1914	[NDTA_THRESH3]		= { .type = NLA_U32 },
1915	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
1916	[NDTA_PARMS]		= { .type = NLA_NESTED },
1917};
1918
1919static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1920	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
1921	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
1922	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
1923	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
1924	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
1925	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
1926	[NDTPA_MCAST_REPROBES]		= { .type = NLA_U32 },
1927	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
1928	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
1929	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
1930	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
1931	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
1932	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
1933	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
1934};
1935
1936static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh)
1937{
1938	struct net *net = sock_net(skb->sk);
1939	struct neigh_table *tbl;
1940	struct ndtmsg *ndtmsg;
1941	struct nlattr *tb[NDTA_MAX+1];
1942	bool found = false;
1943	int err, tidx;
1944
1945	err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1946			  nl_neightbl_policy);
1947	if (err < 0)
1948		goto errout;
1949
1950	if (tb[NDTA_NAME] == NULL) {
1951		err = -EINVAL;
1952		goto errout;
1953	}
1954
1955	ndtmsg = nlmsg_data(nlh);
1956
1957	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
1958		tbl = neigh_tables[tidx];
1959		if (!tbl)
1960			continue;
1961		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1962			continue;
1963		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
1964			found = true;
1965			break;
1966		}
1967	}
1968
1969	if (!found)
1970		return -ENOENT;
 
 
1971
1972	/*
1973	 * We acquire tbl->lock to be nice to the periodic timers and
1974	 * make sure they always see a consistent set of values.
1975	 */
1976	write_lock_bh(&tbl->lock);
1977
1978	if (tb[NDTA_PARMS]) {
1979		struct nlattr *tbp[NDTPA_MAX+1];
1980		struct neigh_parms *p;
1981		int i, ifindex = 0;
1982
1983		err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1984				       nl_ntbl_parm_policy);
1985		if (err < 0)
1986			goto errout_tbl_lock;
1987
1988		if (tbp[NDTPA_IFINDEX])
1989			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1990
1991		p = lookup_neigh_parms(tbl, net, ifindex);
1992		if (p == NULL) {
1993			err = -ENOENT;
1994			goto errout_tbl_lock;
1995		}
1996
1997		for (i = 1; i <= NDTPA_MAX; i++) {
1998			if (tbp[i] == NULL)
1999				continue;
2000
2001			switch (i) {
2002			case NDTPA_QUEUE_LEN:
2003				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2004					      nla_get_u32(tbp[i]) *
2005					      SKB_TRUESIZE(ETH_FRAME_LEN));
2006				break;
2007			case NDTPA_QUEUE_LENBYTES:
2008				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2009					      nla_get_u32(tbp[i]));
2010				break;
2011			case NDTPA_PROXY_QLEN:
2012				NEIGH_VAR_SET(p, PROXY_QLEN,
2013					      nla_get_u32(tbp[i]));
2014				break;
2015			case NDTPA_APP_PROBES:
2016				NEIGH_VAR_SET(p, APP_PROBES,
2017					      nla_get_u32(tbp[i]));
2018				break;
2019			case NDTPA_UCAST_PROBES:
2020				NEIGH_VAR_SET(p, UCAST_PROBES,
2021					      nla_get_u32(tbp[i]));
2022				break;
2023			case NDTPA_MCAST_PROBES:
2024				NEIGH_VAR_SET(p, MCAST_PROBES,
2025					      nla_get_u32(tbp[i]));
2026				break;
2027			case NDTPA_MCAST_REPROBES:
2028				NEIGH_VAR_SET(p, MCAST_REPROBES,
2029					      nla_get_u32(tbp[i]));
2030				break;
2031			case NDTPA_BASE_REACHABLE_TIME:
2032				NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2033					      nla_get_msecs(tbp[i]));
2034				/* update reachable_time as well, otherwise, the change will
2035				 * only be effective after the next time neigh_periodic_work
2036				 * decides to recompute it (can be multiple minutes)
2037				 */
2038				p->reachable_time =
2039					neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2040				break;
2041			case NDTPA_GC_STALETIME:
2042				NEIGH_VAR_SET(p, GC_STALETIME,
2043					      nla_get_msecs(tbp[i]));
2044				break;
2045			case NDTPA_DELAY_PROBE_TIME:
2046				NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2047					      nla_get_msecs(tbp[i]));
2048				break;
2049			case NDTPA_RETRANS_TIME:
2050				NEIGH_VAR_SET(p, RETRANS_TIME,
2051					      nla_get_msecs(tbp[i]));
2052				break;
2053			case NDTPA_ANYCAST_DELAY:
2054				NEIGH_VAR_SET(p, ANYCAST_DELAY,
2055					      nla_get_msecs(tbp[i]));
2056				break;
2057			case NDTPA_PROXY_DELAY:
2058				NEIGH_VAR_SET(p, PROXY_DELAY,
2059					      nla_get_msecs(tbp[i]));
2060				break;
2061			case NDTPA_LOCKTIME:
2062				NEIGH_VAR_SET(p, LOCKTIME,
2063					      nla_get_msecs(tbp[i]));
2064				break;
2065			}
2066		}
2067	}
2068
2069	err = -ENOENT;
2070	if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2071	     tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2072	    !net_eq(net, &init_net))
2073		goto errout_tbl_lock;
2074
2075	if (tb[NDTA_THRESH1])
2076		tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2077
2078	if (tb[NDTA_THRESH2])
2079		tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2080
2081	if (tb[NDTA_THRESH3])
2082		tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2083
2084	if (tb[NDTA_GC_INTERVAL])
2085		tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2086
2087	err = 0;
2088
2089errout_tbl_lock:
2090	write_unlock_bh(&tbl->lock);
 
 
2091errout:
2092	return err;
2093}
2094
2095static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2096{
2097	struct net *net = sock_net(skb->sk);
2098	int family, tidx, nidx = 0;
2099	int tbl_skip = cb->args[0];
2100	int neigh_skip = cb->args[1];
2101	struct neigh_table *tbl;
2102
2103	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2104
2105	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
 
2106		struct neigh_parms *p;
2107
2108		tbl = neigh_tables[tidx];
2109		if (!tbl)
2110			continue;
2111
2112		if (tidx < tbl_skip || (family && tbl->family != family))
2113			continue;
2114
2115		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2116				       cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2117				       NLM_F_MULTI) < 0)
2118			break;
2119
2120		nidx = 0;
2121		p = list_next_entry(&tbl->parms, list);
2122		list_for_each_entry_from(p, &tbl->parms_list, list) {
2123			if (!net_eq(neigh_parms_net(p), net))
2124				continue;
2125
2126			if (nidx < neigh_skip)
2127				goto next;
2128
2129			if (neightbl_fill_param_info(skb, tbl, p,
2130						     NETLINK_CB(cb->skb).portid,
2131						     cb->nlh->nlmsg_seq,
2132						     RTM_NEWNEIGHTBL,
2133						     NLM_F_MULTI) < 0)
2134				goto out;
2135		next:
2136			nidx++;
2137		}
2138
2139		neigh_skip = 0;
2140	}
2141out:
 
2142	cb->args[0] = tidx;
2143	cb->args[1] = nidx;
2144
2145	return skb->len;
2146}
2147
2148static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2149			   u32 pid, u32 seq, int type, unsigned int flags)
2150{
2151	unsigned long now = jiffies;
2152	struct nda_cacheinfo ci;
2153	struct nlmsghdr *nlh;
2154	struct ndmsg *ndm;
2155
2156	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2157	if (nlh == NULL)
2158		return -EMSGSIZE;
2159
2160	ndm = nlmsg_data(nlh);
2161	ndm->ndm_family	 = neigh->ops->family;
2162	ndm->ndm_pad1    = 0;
2163	ndm->ndm_pad2    = 0;
2164	ndm->ndm_flags	 = neigh->flags;
2165	ndm->ndm_type	 = neigh->type;
2166	ndm->ndm_ifindex = neigh->dev->ifindex;
2167
2168	if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2169		goto nla_put_failure;
2170
2171	read_lock_bh(&neigh->lock);
2172	ndm->ndm_state	 = neigh->nud_state;
2173	if (neigh->nud_state & NUD_VALID) {
2174		char haddr[MAX_ADDR_LEN];
2175
2176		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2177		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2178			read_unlock_bh(&neigh->lock);
2179			goto nla_put_failure;
2180		}
2181	}
2182
2183	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2184	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2185	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2186	ci.ndm_refcnt	 = atomic_read(&neigh->refcnt) - 1;
2187	read_unlock_bh(&neigh->lock);
2188
2189	if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2190	    nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2191		goto nla_put_failure;
2192
2193	nlmsg_end(skb, nlh);
2194	return 0;
2195
2196nla_put_failure:
2197	nlmsg_cancel(skb, nlh);
2198	return -EMSGSIZE;
2199}
2200
2201static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2202			    u32 pid, u32 seq, int type, unsigned int flags,
2203			    struct neigh_table *tbl)
2204{
2205	struct nlmsghdr *nlh;
2206	struct ndmsg *ndm;
2207
2208	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2209	if (nlh == NULL)
2210		return -EMSGSIZE;
2211
2212	ndm = nlmsg_data(nlh);
2213	ndm->ndm_family	 = tbl->family;
2214	ndm->ndm_pad1    = 0;
2215	ndm->ndm_pad2    = 0;
2216	ndm->ndm_flags	 = pn->flags | NTF_PROXY;
2217	ndm->ndm_type	 = RTN_UNICAST;
2218	ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
2219	ndm->ndm_state	 = NUD_NONE;
2220
2221	if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2222		goto nla_put_failure;
2223
2224	nlmsg_end(skb, nlh);
2225	return 0;
2226
2227nla_put_failure:
2228	nlmsg_cancel(skb, nlh);
2229	return -EMSGSIZE;
2230}
2231
2232static void neigh_update_notify(struct neighbour *neigh)
2233{
2234	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2235	__neigh_notify(neigh, RTM_NEWNEIGH, 0);
2236}
2237
2238static bool neigh_master_filtered(struct net_device *dev, int master_idx)
2239{
2240	struct net_device *master;
2241
2242	if (!master_idx)
2243		return false;
2244
2245	master = netdev_master_upper_dev_get(dev);
2246	if (!master || master->ifindex != master_idx)
2247		return true;
2248
2249	return false;
2250}
2251
2252static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
2253{
2254	if (filter_idx && dev->ifindex != filter_idx)
2255		return true;
2256
2257	return false;
2258}
2259
2260static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2261			    struct netlink_callback *cb)
2262{
2263	struct net *net = sock_net(skb->sk);
2264	const struct nlmsghdr *nlh = cb->nlh;
2265	struct nlattr *tb[NDA_MAX + 1];
2266	struct neighbour *n;
2267	int rc, h, s_h = cb->args[1];
2268	int idx, s_idx = idx = cb->args[2];
2269	struct neigh_hash_table *nht;
2270	int filter_master_idx = 0, filter_idx = 0;
2271	unsigned int flags = NLM_F_MULTI;
2272	int err;
2273
2274	err = nlmsg_parse(nlh, sizeof(struct ndmsg), tb, NDA_MAX, NULL);
2275	if (!err) {
2276		if (tb[NDA_IFINDEX])
2277			filter_idx = nla_get_u32(tb[NDA_IFINDEX]);
2278
2279		if (tb[NDA_MASTER])
2280			filter_master_idx = nla_get_u32(tb[NDA_MASTER]);
2281
2282		if (filter_idx || filter_master_idx)
2283			flags |= NLM_F_DUMP_FILTERED;
2284	}
2285
2286	rcu_read_lock_bh();
2287	nht = rcu_dereference_bh(tbl->nht);
2288
2289	for (h = s_h; h < (1 << nht->hash_shift); h++) {
 
 
2290		if (h > s_h)
2291			s_idx = 0;
2292		for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2293		     n != NULL;
2294		     n = rcu_dereference_bh(n->next)) {
2295			if (!net_eq(dev_net(n->dev), net))
2296				continue;
2297			if (neigh_ifindex_filtered(n->dev, filter_idx))
2298				continue;
2299			if (neigh_master_filtered(n->dev, filter_master_idx))
2300				continue;
2301			if (idx < s_idx)
2302				goto next;
2303			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2304					    cb->nlh->nlmsg_seq,
2305					    RTM_NEWNEIGH,
2306					    flags) < 0) {
2307				rc = -1;
2308				goto out;
2309			}
2310next:
2311			idx++;
2312		}
2313	}
2314	rc = skb->len;
2315out:
2316	rcu_read_unlock_bh();
2317	cb->args[1] = h;
2318	cb->args[2] = idx;
2319	return rc;
2320}
2321
2322static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2323			     struct netlink_callback *cb)
2324{
2325	struct pneigh_entry *n;
2326	struct net *net = sock_net(skb->sk);
2327	int rc, h, s_h = cb->args[3];
2328	int idx, s_idx = idx = cb->args[4];
2329
2330	read_lock_bh(&tbl->lock);
2331
2332	for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2333		if (h > s_h)
2334			s_idx = 0;
2335		for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2336			if (pneigh_net(n) != net)
2337				continue;
2338			if (idx < s_idx)
2339				goto next;
2340			if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2341					    cb->nlh->nlmsg_seq,
2342					    RTM_NEWNEIGH,
2343					    NLM_F_MULTI, tbl) < 0) {
2344				read_unlock_bh(&tbl->lock);
2345				rc = -1;
2346				goto out;
2347			}
2348		next:
2349			idx++;
2350		}
2351	}
2352
2353	read_unlock_bh(&tbl->lock);
2354	rc = skb->len;
2355out:
2356	cb->args[3] = h;
2357	cb->args[4] = idx;
2358	return rc;
2359
2360}
2361
2362static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2363{
2364	struct neigh_table *tbl;
2365	int t, family, s_t;
2366	int proxy = 0;
2367	int err;
2368
 
2369	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2370
2371	/* check for full ndmsg structure presence, family member is
2372	 * the same for both structures
2373	 */
2374	if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2375	    ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2376		proxy = 1;
2377
2378	s_t = cb->args[0];
2379
2380	for (t = 0; t < NEIGH_NR_TABLES; t++) {
2381		tbl = neigh_tables[t];
2382
2383		if (!tbl)
2384			continue;
2385		if (t < s_t || (family && tbl->family != family))
2386			continue;
2387		if (t > s_t)
2388			memset(&cb->args[1], 0, sizeof(cb->args) -
2389						sizeof(cb->args[0]));
2390		if (proxy)
2391			err = pneigh_dump_table(tbl, skb, cb);
2392		else
2393			err = neigh_dump_table(tbl, skb, cb);
2394		if (err < 0)
2395			break;
2396	}
 
2397
2398	cb->args[0] = t;
2399	return skb->len;
2400}
2401
2402void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2403{
2404	int chain;
2405	struct neigh_hash_table *nht;
2406
2407	rcu_read_lock_bh();
2408	nht = rcu_dereference_bh(tbl->nht);
2409
2410	read_lock(&tbl->lock); /* avoid resizes */
2411	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2412		struct neighbour *n;
2413
2414		for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2415		     n != NULL;
2416		     n = rcu_dereference_bh(n->next))
2417			cb(n, cookie);
2418	}
2419	read_unlock(&tbl->lock);
2420	rcu_read_unlock_bh();
2421}
2422EXPORT_SYMBOL(neigh_for_each);
2423
2424/* The tbl->lock must be held as a writer and BH disabled. */
2425void __neigh_for_each_release(struct neigh_table *tbl,
2426			      int (*cb)(struct neighbour *))
2427{
2428	int chain;
2429	struct neigh_hash_table *nht;
2430
2431	nht = rcu_dereference_protected(tbl->nht,
2432					lockdep_is_held(&tbl->lock));
2433	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2434		struct neighbour *n;
2435		struct neighbour __rcu **np;
2436
2437		np = &nht->hash_buckets[chain];
2438		while ((n = rcu_dereference_protected(*np,
2439					lockdep_is_held(&tbl->lock))) != NULL) {
2440			int release;
2441
2442			write_lock(&n->lock);
2443			release = cb(n);
2444			if (release) {
2445				rcu_assign_pointer(*np,
2446					rcu_dereference_protected(n->next,
2447						lockdep_is_held(&tbl->lock)));
2448				n->dead = 1;
2449			} else
2450				np = &n->next;
2451			write_unlock(&n->lock);
2452			if (release)
2453				neigh_cleanup_and_release(n);
2454		}
2455	}
2456}
2457EXPORT_SYMBOL(__neigh_for_each_release);
2458
2459int neigh_xmit(int index, struct net_device *dev,
2460	       const void *addr, struct sk_buff *skb)
2461{
2462	int err = -EAFNOSUPPORT;
2463	if (likely(index < NEIGH_NR_TABLES)) {
2464		struct neigh_table *tbl;
2465		struct neighbour *neigh;
2466
2467		tbl = neigh_tables[index];
2468		if (!tbl)
2469			goto out;
2470		neigh = __neigh_lookup_noref(tbl, addr, dev);
2471		if (!neigh)
2472			neigh = __neigh_create(tbl, addr, dev, false);
2473		err = PTR_ERR(neigh);
2474		if (IS_ERR(neigh))
2475			goto out_kfree_skb;
2476		err = neigh->output(neigh, skb);
2477	}
2478	else if (index == NEIGH_LINK_TABLE) {
2479		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
2480				      addr, NULL, skb->len);
2481		if (err < 0)
2482			goto out_kfree_skb;
2483		err = dev_queue_xmit(skb);
2484	}
2485out:
2486	return err;
2487out_kfree_skb:
2488	kfree_skb(skb);
2489	goto out;
2490}
2491EXPORT_SYMBOL(neigh_xmit);
2492
2493#ifdef CONFIG_PROC_FS
2494
2495static struct neighbour *neigh_get_first(struct seq_file *seq)
2496{
2497	struct neigh_seq_state *state = seq->private;
2498	struct net *net = seq_file_net(seq);
2499	struct neigh_hash_table *nht = state->nht;
2500	struct neighbour *n = NULL;
2501	int bucket = state->bucket;
2502
2503	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2504	for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2505		n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2506
2507		while (n) {
2508			if (!net_eq(dev_net(n->dev), net))
2509				goto next;
2510			if (state->neigh_sub_iter) {
2511				loff_t fakep = 0;
2512				void *v;
2513
2514				v = state->neigh_sub_iter(state, n, &fakep);
2515				if (!v)
2516					goto next;
2517			}
2518			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2519				break;
2520			if (n->nud_state & ~NUD_NOARP)
2521				break;
2522next:
2523			n = rcu_dereference_bh(n->next);
2524		}
2525
2526		if (n)
2527			break;
2528	}
2529	state->bucket = bucket;
2530
2531	return n;
2532}
2533
2534static struct neighbour *neigh_get_next(struct seq_file *seq,
2535					struct neighbour *n,
2536					loff_t *pos)
2537{
2538	struct neigh_seq_state *state = seq->private;
2539	struct net *net = seq_file_net(seq);
2540	struct neigh_hash_table *nht = state->nht;
2541
2542	if (state->neigh_sub_iter) {
2543		void *v = state->neigh_sub_iter(state, n, pos);
2544		if (v)
2545			return n;
2546	}
2547	n = rcu_dereference_bh(n->next);
2548
2549	while (1) {
2550		while (n) {
2551			if (!net_eq(dev_net(n->dev), net))
2552				goto next;
2553			if (state->neigh_sub_iter) {
2554				void *v = state->neigh_sub_iter(state, n, pos);
2555				if (v)
2556					return n;
2557				goto next;
2558			}
2559			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2560				break;
2561
2562			if (n->nud_state & ~NUD_NOARP)
2563				break;
2564next:
2565			n = rcu_dereference_bh(n->next);
2566		}
2567
2568		if (n)
2569			break;
2570
2571		if (++state->bucket >= (1 << nht->hash_shift))
2572			break;
2573
2574		n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2575	}
2576
2577	if (n && pos)
2578		--(*pos);
2579	return n;
2580}
2581
2582static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2583{
2584	struct neighbour *n = neigh_get_first(seq);
2585
2586	if (n) {
2587		--(*pos);
2588		while (*pos) {
2589			n = neigh_get_next(seq, n, pos);
2590			if (!n)
2591				break;
2592		}
2593	}
2594	return *pos ? NULL : n;
2595}
2596
2597static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2598{
2599	struct neigh_seq_state *state = seq->private;
2600	struct net *net = seq_file_net(seq);
2601	struct neigh_table *tbl = state->tbl;
2602	struct pneigh_entry *pn = NULL;
2603	int bucket = state->bucket;
2604
2605	state->flags |= NEIGH_SEQ_IS_PNEIGH;
2606	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2607		pn = tbl->phash_buckets[bucket];
2608		while (pn && !net_eq(pneigh_net(pn), net))
2609			pn = pn->next;
2610		if (pn)
2611			break;
2612	}
2613	state->bucket = bucket;
2614
2615	return pn;
2616}
2617
2618static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2619					    struct pneigh_entry *pn,
2620					    loff_t *pos)
2621{
2622	struct neigh_seq_state *state = seq->private;
2623	struct net *net = seq_file_net(seq);
2624	struct neigh_table *tbl = state->tbl;
2625
2626	do {
2627		pn = pn->next;
2628	} while (pn && !net_eq(pneigh_net(pn), net));
2629
2630	while (!pn) {
2631		if (++state->bucket > PNEIGH_HASHMASK)
2632			break;
2633		pn = tbl->phash_buckets[state->bucket];
2634		while (pn && !net_eq(pneigh_net(pn), net))
2635			pn = pn->next;
2636		if (pn)
2637			break;
2638	}
2639
2640	if (pn && pos)
2641		--(*pos);
2642
2643	return pn;
2644}
2645
2646static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2647{
2648	struct pneigh_entry *pn = pneigh_get_first(seq);
2649
2650	if (pn) {
2651		--(*pos);
2652		while (*pos) {
2653			pn = pneigh_get_next(seq, pn, pos);
2654			if (!pn)
2655				break;
2656		}
2657	}
2658	return *pos ? NULL : pn;
2659}
2660
2661static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2662{
2663	struct neigh_seq_state *state = seq->private;
2664	void *rc;
2665	loff_t idxpos = *pos;
2666
2667	rc = neigh_get_idx(seq, &idxpos);
2668	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2669		rc = pneigh_get_idx(seq, &idxpos);
2670
2671	return rc;
2672}
2673
2674void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2675	__acquires(rcu_bh)
2676{
2677	struct neigh_seq_state *state = seq->private;
2678
2679	state->tbl = tbl;
2680	state->bucket = 0;
2681	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2682
2683	rcu_read_lock_bh();
2684	state->nht = rcu_dereference_bh(tbl->nht);
2685
2686	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2687}
2688EXPORT_SYMBOL(neigh_seq_start);
2689
2690void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2691{
2692	struct neigh_seq_state *state;
2693	void *rc;
2694
2695	if (v == SEQ_START_TOKEN) {
2696		rc = neigh_get_first(seq);
2697		goto out;
2698	}
2699
2700	state = seq->private;
2701	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2702		rc = neigh_get_next(seq, v, NULL);
2703		if (rc)
2704			goto out;
2705		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2706			rc = pneigh_get_first(seq);
2707	} else {
2708		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2709		rc = pneigh_get_next(seq, v, NULL);
2710	}
2711out:
2712	++(*pos);
2713	return rc;
2714}
2715EXPORT_SYMBOL(neigh_seq_next);
2716
2717void neigh_seq_stop(struct seq_file *seq, void *v)
2718	__releases(rcu_bh)
2719{
2720	rcu_read_unlock_bh();
2721}
2722EXPORT_SYMBOL(neigh_seq_stop);
2723
2724/* statistics via seq_file */
2725
2726static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2727{
2728	struct neigh_table *tbl = seq->private;
2729	int cpu;
2730
2731	if (*pos == 0)
2732		return SEQ_START_TOKEN;
2733
2734	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2735		if (!cpu_possible(cpu))
2736			continue;
2737		*pos = cpu+1;
2738		return per_cpu_ptr(tbl->stats, cpu);
2739	}
2740	return NULL;
2741}
2742
2743static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2744{
2745	struct neigh_table *tbl = seq->private;
2746	int cpu;
2747
2748	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2749		if (!cpu_possible(cpu))
2750			continue;
2751		*pos = cpu+1;
2752		return per_cpu_ptr(tbl->stats, cpu);
2753	}
2754	return NULL;
2755}
2756
2757static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2758{
2759
2760}
2761
2762static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2763{
2764	struct neigh_table *tbl = seq->private;
2765	struct neigh_statistics *st = v;
2766
2767	if (v == SEQ_START_TOKEN) {
2768		seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
2769		return 0;
2770	}
2771
2772	seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
2773			"%08lx %08lx  %08lx %08lx %08lx %08lx\n",
2774		   atomic_read(&tbl->entries),
2775
2776		   st->allocs,
2777		   st->destroys,
2778		   st->hash_grows,
2779
2780		   st->lookups,
2781		   st->hits,
2782
2783		   st->res_failed,
2784
2785		   st->rcv_probes_mcast,
2786		   st->rcv_probes_ucast,
2787
2788		   st->periodic_gc_runs,
2789		   st->forced_gc_runs,
2790		   st->unres_discards,
2791		   st->table_fulls
2792		   );
2793
2794	return 0;
2795}
2796
2797static const struct seq_operations neigh_stat_seq_ops = {
2798	.start	= neigh_stat_seq_start,
2799	.next	= neigh_stat_seq_next,
2800	.stop	= neigh_stat_seq_stop,
2801	.show	= neigh_stat_seq_show,
2802};
2803
2804static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2805{
2806	int ret = seq_open(file, &neigh_stat_seq_ops);
2807
2808	if (!ret) {
2809		struct seq_file *sf = file->private_data;
2810		sf->private = PDE_DATA(inode);
2811	}
2812	return ret;
2813};
2814
2815static const struct file_operations neigh_stat_seq_fops = {
2816	.owner	 = THIS_MODULE,
2817	.open 	 = neigh_stat_seq_open,
2818	.read	 = seq_read,
2819	.llseek	 = seq_lseek,
2820	.release = seq_release,
2821};
2822
2823#endif /* CONFIG_PROC_FS */
2824
2825static inline size_t neigh_nlmsg_size(void)
2826{
2827	return NLMSG_ALIGN(sizeof(struct ndmsg))
2828	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2829	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2830	       + nla_total_size(sizeof(struct nda_cacheinfo))
2831	       + nla_total_size(4); /* NDA_PROBES */
2832}
2833
2834static void __neigh_notify(struct neighbour *n, int type, int flags)
2835{
2836	struct net *net = dev_net(n->dev);
2837	struct sk_buff *skb;
2838	int err = -ENOBUFS;
2839
2840	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2841	if (skb == NULL)
2842		goto errout;
2843
2844	err = neigh_fill_info(skb, n, 0, 0, type, flags);
2845	if (err < 0) {
2846		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2847		WARN_ON(err == -EMSGSIZE);
2848		kfree_skb(skb);
2849		goto errout;
2850	}
2851	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2852	return;
2853errout:
2854	if (err < 0)
2855		rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2856}
2857
 
2858void neigh_app_ns(struct neighbour *n)
2859{
2860	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2861}
2862EXPORT_SYMBOL(neigh_app_ns);
 
2863
2864#ifdef CONFIG_SYSCTL
2865static int zero;
2866static int int_max = INT_MAX;
2867static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
2868
2869static int proc_unres_qlen(struct ctl_table *ctl, int write,
2870			   void __user *buffer, size_t *lenp, loff_t *ppos)
2871{
2872	int size, ret;
2873	struct ctl_table tmp = *ctl;
2874
2875	tmp.extra1 = &zero;
2876	tmp.extra2 = &unres_qlen_max;
2877	tmp.data = &size;
2878
2879	size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
2880	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2881
2882	if (write && !ret)
2883		*(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2884	return ret;
2885}
2886
2887static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
2888						   int family)
2889{
2890	switch (family) {
2891	case AF_INET:
2892		return __in_dev_arp_parms_get_rcu(dev);
2893	case AF_INET6:
2894		return __in6_dev_nd_parms_get_rcu(dev);
2895	}
2896	return NULL;
2897}
2898
2899static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
2900				  int index)
2901{
2902	struct net_device *dev;
2903	int family = neigh_parms_family(p);
2904
2905	rcu_read_lock();
2906	for_each_netdev_rcu(net, dev) {
2907		struct neigh_parms *dst_p =
2908				neigh_get_dev_parms_rcu(dev, family);
2909
2910		if (dst_p && !test_bit(index, dst_p->data_state))
2911			dst_p->data[index] = p->data[index];
2912	}
2913	rcu_read_unlock();
2914}
2915
2916static void neigh_proc_update(struct ctl_table *ctl, int write)
2917{
2918	struct net_device *dev = ctl->extra1;
2919	struct neigh_parms *p = ctl->extra2;
2920	struct net *net = neigh_parms_net(p);
2921	int index = (int *) ctl->data - p->data;
2922
2923	if (!write)
2924		return;
2925
2926	set_bit(index, p->data_state);
2927	if (!dev) /* NULL dev means this is default value */
2928		neigh_copy_dflt_parms(net, p, index);
2929}
2930
2931static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
2932					   void __user *buffer,
2933					   size_t *lenp, loff_t *ppos)
2934{
2935	struct ctl_table tmp = *ctl;
2936	int ret;
2937
2938	tmp.extra1 = &zero;
2939	tmp.extra2 = &int_max;
2940
2941	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2942	neigh_proc_update(ctl, write);
2943	return ret;
2944}
2945
2946int neigh_proc_dointvec(struct ctl_table *ctl, int write,
2947			void __user *buffer, size_t *lenp, loff_t *ppos)
2948{
2949	int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
2950
2951	neigh_proc_update(ctl, write);
2952	return ret;
2953}
2954EXPORT_SYMBOL(neigh_proc_dointvec);
2955
2956int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write,
2957				void __user *buffer,
2958				size_t *lenp, loff_t *ppos)
2959{
2960	int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
2961
2962	neigh_proc_update(ctl, write);
2963	return ret;
2964}
2965EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
2966
2967static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
2968					      void __user *buffer,
2969					      size_t *lenp, loff_t *ppos)
2970{
2971	int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
2972
2973	neigh_proc_update(ctl, write);
2974	return ret;
2975}
2976
2977int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
2978				   void __user *buffer,
2979				   size_t *lenp, loff_t *ppos)
2980{
2981	int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
2982
2983	neigh_proc_update(ctl, write);
2984	return ret;
2985}
2986EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
2987
2988static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
2989					  void __user *buffer,
2990					  size_t *lenp, loff_t *ppos)
2991{
2992	int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
2993
2994	neigh_proc_update(ctl, write);
2995	return ret;
2996}
2997
2998static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write,
2999					  void __user *buffer,
3000					  size_t *lenp, loff_t *ppos)
3001{
3002	struct neigh_parms *p = ctl->extra2;
3003	int ret;
3004
3005	if (strcmp(ctl->procname, "base_reachable_time") == 0)
3006		ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3007	else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
3008		ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3009	else
3010		ret = -1;
3011
3012	if (write && ret == 0) {
3013		/* update reachable_time as well, otherwise, the change will
3014		 * only be effective after the next time neigh_periodic_work
3015		 * decides to recompute it
3016		 */
3017		p->reachable_time =
3018			neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
3019	}
3020	return ret;
3021}
3022
3023#define NEIGH_PARMS_DATA_OFFSET(index)	\
3024	(&((struct neigh_parms *) 0)->data[index])
3025
3026#define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
3027	[NEIGH_VAR_ ## attr] = { \
3028		.procname	= name, \
3029		.data		= NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
3030		.maxlen		= sizeof(int), \
3031		.mode		= mval, \
3032		.proc_handler	= proc, \
3033	}
3034
3035#define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
3036	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
3037
3038#define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
3039	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
3040
3041#define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
3042	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
3043
3044#define NEIGH_SYSCTL_MS_JIFFIES_ENTRY(attr, name) \
3045	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3046
3047#define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
3048	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3049
3050#define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
3051	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
3052
3053static struct neigh_sysctl_table {
3054	struct ctl_table_header *sysctl_header;
3055	struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
 
3056} neigh_sysctl_template __read_mostly = {
3057	.neigh_vars = {
3058		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
3059		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
3060		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
3061		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3062		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3063		NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3064		NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3065		NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3066		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3067		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3068		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3069		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3070		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3071		NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3072		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3073		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3074		[NEIGH_VAR_GC_INTERVAL] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3075			.procname	= "gc_interval",
3076			.maxlen		= sizeof(int),
3077			.mode		= 0644,
3078			.proc_handler	= proc_dointvec_jiffies,
3079		},
3080		[NEIGH_VAR_GC_THRESH1] = {
3081			.procname	= "gc_thresh1",
3082			.maxlen		= sizeof(int),
3083			.mode		= 0644,
3084			.extra1 	= &zero,
3085			.extra2		= &int_max,
3086			.proc_handler	= proc_dointvec_minmax,
3087		},
3088		[NEIGH_VAR_GC_THRESH2] = {
3089			.procname	= "gc_thresh2",
3090			.maxlen		= sizeof(int),
3091			.mode		= 0644,
3092			.extra1 	= &zero,
3093			.extra2		= &int_max,
3094			.proc_handler	= proc_dointvec_minmax,
3095		},
3096		[NEIGH_VAR_GC_THRESH3] = {
3097			.procname	= "gc_thresh3",
3098			.maxlen		= sizeof(int),
3099			.mode		= 0644,
3100			.extra1 	= &zero,
3101			.extra2		= &int_max,
3102			.proc_handler	= proc_dointvec_minmax,
3103		},
3104		{},
3105	},
3106};
3107
3108int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3109			  proc_handler *handler)
3110{
3111	int i;
3112	struct neigh_sysctl_table *t;
3113	const char *dev_name_source;
3114	char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3115	char *p_name;
 
 
 
 
 
 
 
 
 
 
 
3116
3117	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
3118	if (!t)
3119		goto err;
3120
3121	for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3122		t->neigh_vars[i].data += (long) p;
3123		t->neigh_vars[i].extra1 = dev;
3124		t->neigh_vars[i].extra2 = p;
3125	}
 
 
 
 
 
 
 
 
 
3126
3127	if (dev) {
3128		dev_name_source = dev->name;
3129		/* Terminate the table early */
3130		memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3131		       sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3132	} else {
3133		struct neigh_table *tbl = p->tbl;
3134		dev_name_source = "default";
3135		t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3136		t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3137		t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3138		t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3139	}
3140
 
3141	if (handler) {
3142		/* RetransTime */
3143		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
 
3144		/* ReachableTime */
3145		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
 
3146		/* RetransTime (in milliseconds)*/
3147		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
 
3148		/* ReachableTime (in milliseconds) */
3149		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3150	} else {
3151		/* Those handlers will update p->reachable_time after
3152		 * base_reachable_time(_ms) is set to ensure the new timer starts being
3153		 * applied after the next neighbour update instead of waiting for
3154		 * neigh_periodic_work to update its value (can be multiple minutes)
3155		 * So any handler that replaces them should do this as well
3156		 */
3157		/* ReachableTime */
3158		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3159			neigh_proc_base_reachable_time;
3160		/* ReachableTime (in milliseconds) */
3161		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3162			neigh_proc_base_reachable_time;
3163	}
3164
3165	/* Don't export sysctls to unprivileged users */
3166	if (neigh_parms_net(p)->user_ns != &init_user_ns)
3167		t->neigh_vars[0].procname = NULL;
3168
3169	switch (neigh_parms_family(p)) {
3170	case AF_INET:
3171	      p_name = "ipv4";
3172	      break;
3173	case AF_INET6:
3174	      p_name = "ipv6";
3175	      break;
3176	default:
3177	      BUG();
3178	}
3179
3180	snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3181		p_name, dev_name_source);
3182	t->sysctl_header =
3183		register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
3184	if (!t->sysctl_header)
3185		goto free;
3186
3187	p->sysctl_table = t;
3188	return 0;
3189
 
 
3190free:
3191	kfree(t);
3192err:
3193	return -ENOBUFS;
3194}
3195EXPORT_SYMBOL(neigh_sysctl_register);
3196
3197void neigh_sysctl_unregister(struct neigh_parms *p)
3198{
3199	if (p->sysctl_table) {
3200		struct neigh_sysctl_table *t = p->sysctl_table;
3201		p->sysctl_table = NULL;
3202		unregister_net_sysctl_table(t->sysctl_header);
 
3203		kfree(t);
3204	}
3205}
3206EXPORT_SYMBOL(neigh_sysctl_unregister);
3207
3208#endif	/* CONFIG_SYSCTL */
3209
3210static int __init neigh_init(void)
3211{
3212	rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3213	rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3214	rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3215
3216	rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3217		      NULL);
3218	rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3219
3220	return 0;
3221}
3222
3223subsys_initcall(neigh_init);
3224