Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/module.h>
  13#include <linux/compiler.h>
 
  14#include <linux/fs.h>
 
  15#include <linux/uaccess.h>
  16#include <linux/aio.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
 
 
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
 
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/syscalls.h>
  33#include <linux/cpuset.h>
  34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
 
 
 
 
 
 
 
 
 
 
 
 
  37#include "internal.h"
  38
 
 
 
  39/*
  40 * FIXME: remove all knowledge of the buffer layer from the core VM
  41 */
  42#include <linux/buffer_head.h> /* for try_to_free_buffers */
  43
  44#include <asm/mman.h>
  45
 
 
  46/*
  47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  48 * though.
  49 *
  50 * Shared mappings now work. 15.8.1995  Bruno.
  51 *
  52 * finished 'unifying' the page and buffer cache and SMP-threaded the
  53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  54 *
  55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  56 */
  57
  58/*
  59 * Lock ordering:
  60 *
  61 *  ->i_mmap_mutex		(truncate_pagecache)
  62 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  63 *      ->swap_lock		(exclusive_swap_page, others)
  64 *        ->mapping->tree_lock
  65 *
  66 *  ->i_mutex
  67 *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
 
  68 *
  69 *  ->mmap_sem
  70 *    ->i_mmap_mutex
  71 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  72 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  73 *
  74 *  ->mmap_sem
  75 *    ->lock_page		(access_process_vm)
 
  76 *
  77 *  ->i_mutex			(generic_file_buffered_write)
  78 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  79 *
  80 *  bdi->wb.list_lock
  81 *    sb_lock			(fs/fs-writeback.c)
  82 *    ->mapping->tree_lock	(__sync_single_inode)
  83 *
  84 *  ->i_mmap_mutex
  85 *    ->anon_vma.lock		(vma_adjust)
  86 *
  87 *  ->anon_vma.lock
  88 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  89 *
  90 *  ->page_table_lock or pte_lock
  91 *    ->swap_lock		(try_to_unmap_one)
  92 *    ->private_lock		(try_to_unmap_one)
  93 *    ->tree_lock		(try_to_unmap_one)
  94 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  95 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
  96 *    ->private_lock		(page_remove_rmap->set_page_dirty)
  97 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
  98 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
  99 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 100 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 101 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 102 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 103 *
 104 *  (code doesn't rely on that order, so you could switch it around)
 105 *  ->tasklist_lock             (memory_failure, collect_procs_ao)
 106 *    ->i_mmap_mutex
 107 */
 108
 109/*
 110 * Delete a page from the page cache and free it. Caller has to make
 111 * sure the page is locked and that nobody else uses it - or that usage
 112 * is safe.  The caller must hold the mapping's tree_lock.
 113 */
 114void __delete_from_page_cache(struct page *page)
 115{
 116	struct address_space *mapping = page->mapping;
 
 117
 118	/*
 119	 * if we're uptodate, flush out into the cleancache, otherwise
 120	 * invalidate any existing cleancache entries.  We can't leave
 121	 * stale data around in the cleancache once our page is gone
 122	 */
 123	if (PageUptodate(page) && PageMappedToDisk(page))
 124		cleancache_put_page(page);
 125	else
 126		cleancache_flush_page(mapping, page);
 127
 128	radix_tree_delete(&mapping->page_tree, page->index);
 129	page->mapping = NULL;
 
 
 130	/* Leave page->index set: truncation lookup relies upon it */
 131	mapping->nrpages--;
 132	__dec_zone_page_state(page, NR_FILE_PAGES);
 133	if (PageSwapBacked(page))
 134		__dec_zone_page_state(page, NR_SHMEM);
 135	BUG_ON(page_mapped(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136
 137	/*
 138	 * Some filesystems seem to re-dirty the page even after
 139	 * the VM has canceled the dirty bit (eg ext3 journaling).
 
 140	 *
 141	 * Fix it up by doing a final dirty accounting check after
 142	 * having removed the page entirely.
 
 
 
 
 
 
 143	 */
 144	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 145		dec_zone_page_state(page, NR_FILE_DIRTY);
 146		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 147	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148}
 149
 150/**
 151 * delete_from_page_cache - delete page from page cache
 152 * @page: the page which the kernel is trying to remove from page cache
 153 *
 154 * This must be called only on pages that have been verified to be in the page
 155 * cache and locked.  It will never put the page into the free list, the caller
 156 * has a reference on the page.
 157 */
 158void delete_from_page_cache(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159{
 160	struct address_space *mapping = page->mapping;
 161	void (*freepage)(struct page *);
 162
 163	BUG_ON(!PageLocked(page));
 
 164
 165	freepage = mapping->a_ops->freepage;
 166	spin_lock_irq(&mapping->tree_lock);
 167	__delete_from_page_cache(page);
 168	spin_unlock_irq(&mapping->tree_lock);
 169	mem_cgroup_uncharge_cache_page(page);
 170
 171	if (freepage)
 172		freepage(page);
 173	page_cache_release(page);
 
 
 
 
 
 
 
 
 174}
 175EXPORT_SYMBOL(delete_from_page_cache);
 176
 177static int sleep_on_page(void *word)
 178{
 179	io_schedule();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180	return 0;
 181}
 182
 183static int sleep_on_page_killable(void *word)
 
 
 
 
 
 
 
 
 
 
 
 184{
 185	sleep_on_page(word);
 186	return fatal_signal_pending(current) ? -EINTR : 0;
 
 
 
 
 
 
 
 
 187}
 
 188
 189/**
 190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 191 * @mapping:	address space structure to write
 192 * @start:	offset in bytes where the range starts
 193 * @end:	offset in bytes where the range ends (inclusive)
 194 * @sync_mode:	enable synchronous operation
 195 *
 196 * Start writeback against all of a mapping's dirty pages that lie
 197 * within the byte offsets <start, end> inclusive.
 198 *
 199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 200 * opposed to a regular memory cleansing writeback.  The difference between
 201 * these two operations is that if a dirty page/buffer is encountered, it must
 202 * be waited upon, and not just skipped over.
 
 
 203 */
 204int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 205				loff_t end, int sync_mode)
 206{
 207	int ret;
 208	struct writeback_control wbc = {
 209		.sync_mode = sync_mode,
 210		.nr_to_write = LONG_MAX,
 211		.range_start = start,
 212		.range_end = end,
 213	};
 214
 215	if (!mapping_cap_writeback_dirty(mapping))
 216		return 0;
 217
 218	ret = do_writepages(mapping, &wbc);
 219	return ret;
 220}
 221
 222static inline int __filemap_fdatawrite(struct address_space *mapping,
 223	int sync_mode)
 224{
 225	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 226}
 227
 228int filemap_fdatawrite(struct address_space *mapping)
 229{
 230	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 231}
 232EXPORT_SYMBOL(filemap_fdatawrite);
 233
 234int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 235				loff_t end)
 236{
 237	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 238}
 239EXPORT_SYMBOL(filemap_fdatawrite_range);
 240
 241/**
 242 * filemap_flush - mostly a non-blocking flush
 243 * @mapping:	target address_space
 244 *
 245 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 246 * purposes - I/O may not be started against all dirty pages.
 
 
 247 */
 248int filemap_flush(struct address_space *mapping)
 249{
 250	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 251}
 252EXPORT_SYMBOL(filemap_flush);
 253
 254/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255 * filemap_fdatawait_range - wait for writeback to complete
 256 * @mapping:		address space structure to wait for
 257 * @start_byte:		offset in bytes where the range starts
 258 * @end_byte:		offset in bytes where the range ends (inclusive)
 259 *
 260 * Walk the list of under-writeback pages of the given address space
 261 * in the given range and wait for all of them.
 
 
 
 
 
 
 
 262 */
 263int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 264			    loff_t end_byte)
 265{
 266	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 267	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 268	struct pagevec pvec;
 269	int nr_pages;
 270	int ret = 0;
 271
 272	if (end_byte < start_byte)
 273		return 0;
 274
 275	pagevec_init(&pvec, 0);
 276	while ((index <= end) &&
 277			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 278			PAGECACHE_TAG_WRITEBACK,
 279			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 280		unsigned i;
 281
 282		for (i = 0; i < nr_pages; i++) {
 283			struct page *page = pvec.pages[i];
 284
 285			/* until radix tree lookup accepts end_index */
 286			if (page->index > end)
 287				continue;
 288
 289			wait_on_page_writeback(page);
 290			if (TestClearPageError(page))
 291				ret = -EIO;
 292		}
 293		pagevec_release(&pvec);
 294		cond_resched();
 295	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296
 297	/* Check for outstanding write errors */
 298	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 299		ret = -ENOSPC;
 300	if (test_and_clear_bit(AS_EIO, &mapping->flags))
 301		ret = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302
 303	return ret;
 
 304}
 305EXPORT_SYMBOL(filemap_fdatawait_range);
 306
 307/**
 308 * filemap_fdatawait - wait for all under-writeback pages to complete
 309 * @mapping: address space structure to wait for
 310 *
 311 * Walk the list of under-writeback pages of the given address space
 312 * and wait for all of them.
 
 
 
 
 
 
 
 313 */
 314int filemap_fdatawait(struct address_space *mapping)
 315{
 316	loff_t i_size = i_size_read(mapping->host);
 317
 318	if (i_size == 0)
 319		return 0;
 320
 321	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 
 
 
 322}
 323EXPORT_SYMBOL(filemap_fdatawait);
 324
 325int filemap_write_and_wait(struct address_space *mapping)
 
 326{
 327	int err = 0;
 
 
 328
 329	if (mapping->nrpages) {
 330		err = filemap_fdatawrite(mapping);
 331		/*
 332		 * Even if the above returned error, the pages may be
 333		 * written partially (e.g. -ENOSPC), so we wait for it.
 334		 * But the -EIO is special case, it may indicate the worst
 335		 * thing (e.g. bug) happened, so we avoid waiting for it.
 336		 */
 337		if (err != -EIO) {
 338			int err2 = filemap_fdatawait(mapping);
 339			if (!err)
 340				err = err2;
 341		}
 342	}
 343	return err;
 
 344}
 345EXPORT_SYMBOL(filemap_write_and_wait);
 346
 347/**
 348 * filemap_write_and_wait_range - write out & wait on a file range
 349 * @mapping:	the address_space for the pages
 350 * @lstart:	offset in bytes where the range starts
 351 * @lend:	offset in bytes where the range ends (inclusive)
 352 *
 353 * Write out and wait upon file offsets lstart->lend, inclusive.
 354 *
 355 * Note that `lend' is inclusive (describes the last byte to be written) so
 356 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 357 */
 358int filemap_write_and_wait_range(struct address_space *mapping,
 359				 loff_t lstart, loff_t lend)
 360{
 361	int err = 0;
 
 
 
 362
 363	if (mapping->nrpages) {
 364		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 365						 WB_SYNC_ALL);
 366		/* See comment of filemap_write_and_wait() */
 367		if (err != -EIO) {
 368			int err2 = filemap_fdatawait_range(mapping,
 369						lstart, lend);
 370			if (!err)
 371				err = err2;
 372		}
 
 373	}
 
 
 
 374	return err;
 375}
 376EXPORT_SYMBOL(filemap_write_and_wait_range);
 377
 
 
 
 
 
 
 
 
 378/**
 379 * replace_page_cache_page - replace a pagecache page with a new one
 380 * @old:	page to be replaced
 381 * @new:	page to replace with
 382 * @gfp_mask:	allocation mode
 383 *
 384 * This function replaces a page in the pagecache with a new one.  On
 385 * success it acquires the pagecache reference for the new page and
 386 * drops it for the old page.  Both the old and new pages must be
 387 * locked.  This function does not add the new page to the LRU, the
 388 * caller must do that.
 
 
 
 
 
 
 
 
 
 
 389 *
 390 * The remove + add is atomic.  The only way this function can fail is
 391 * memory allocation failure.
 392 */
 393int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 394{
 395	int error;
 396	struct mem_cgroup *memcg = NULL;
 
 397
 398	VM_BUG_ON(!PageLocked(old));
 399	VM_BUG_ON(!PageLocked(new));
 400	VM_BUG_ON(new->mapping);
 
 
 
 
 
 
 
 401
 402	/*
 403	 * This is not page migration, but prepare_migration and
 404	 * end_migration does enough work for charge replacement.
 405	 *
 406	 * In the longer term we probably want a specialized function
 407	 * for moving the charge from old to new in a more efficient
 408	 * manner.
 409	 */
 410	error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
 411	if (error)
 412		return error;
 
 
 413
 414	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 415	if (!error) {
 416		struct address_space *mapping = old->mapping;
 417		void (*freepage)(struct page *);
 418
 419		pgoff_t offset = old->index;
 420		freepage = mapping->a_ops->freepage;
 421
 422		page_cache_get(new);
 423		new->mapping = mapping;
 424		new->index = offset;
 425
 426		spin_lock_irq(&mapping->tree_lock);
 427		__delete_from_page_cache(old);
 428		error = radix_tree_insert(&mapping->page_tree, offset, new);
 429		BUG_ON(error);
 430		mapping->nrpages++;
 431		__inc_zone_page_state(new, NR_FILE_PAGES);
 432		if (PageSwapBacked(new))
 433			__inc_zone_page_state(new, NR_SHMEM);
 434		spin_unlock_irq(&mapping->tree_lock);
 435		radix_tree_preload_end();
 436		if (freepage)
 437			freepage(old);
 438		page_cache_release(old);
 439		mem_cgroup_end_migration(memcg, old, new, true);
 440	} else {
 441		mem_cgroup_end_migration(memcg, old, new, false);
 442	}
 443
 444	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 445}
 446EXPORT_SYMBOL_GPL(replace_page_cache_page);
 447
 448/**
 449 * add_to_page_cache_locked - add a locked page to the pagecache
 450 * @page:	page to add
 451 * @mapping:	the page's address_space
 452 * @offset:	page index
 453 * @gfp_mask:	page allocation mode
 
 
 
 
 454 *
 455 * This function is used to add a page to the pagecache. It must be locked.
 456 * This function does not add the page to the LRU.  The caller must do that.
 457 */
 458int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 459		pgoff_t offset, gfp_t gfp_mask)
 460{
 461	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462
 463	VM_BUG_ON(!PageLocked(page));
 464	VM_BUG_ON(PageSwapBacked(page));
 
 465
 466	error = mem_cgroup_cache_charge(page, current->mm,
 467					gfp_mask & GFP_RECLAIM_MASK);
 468	if (error)
 469		goto out;
 
 
 
 
 
 
 
 
 
 
 470
 471	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 472	if (error == 0) {
 473		page_cache_get(page);
 474		page->mapping = mapping;
 475		page->index = offset;
 476
 477		spin_lock_irq(&mapping->tree_lock);
 478		error = radix_tree_insert(&mapping->page_tree, offset, page);
 479		if (likely(!error)) {
 480			mapping->nrpages++;
 481			__inc_zone_page_state(page, NR_FILE_PAGES);
 482			spin_unlock_irq(&mapping->tree_lock);
 483		} else {
 484			page->mapping = NULL;
 485			/* Leave page->index set: truncation relies upon it */
 486			spin_unlock_irq(&mapping->tree_lock);
 487			mem_cgroup_uncharge_cache_page(page);
 488			page_cache_release(page);
 
 489		}
 490		radix_tree_preload_end();
 491	} else
 492		mem_cgroup_uncharge_cache_page(page);
 493out:
 494	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495}
 496EXPORT_SYMBOL(add_to_page_cache_locked);
 497
 498int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 499				pgoff_t offset, gfp_t gfp_mask)
 500{
 
 501	int ret;
 502
 503	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
 504	if (ret == 0)
 505		lru_cache_add_file(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506	return ret;
 507}
 508EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 509
 510#ifdef CONFIG_NUMA
 511struct page *__page_cache_alloc(gfp_t gfp)
 512{
 513	int n;
 514	struct page *page;
 515
 516	if (cpuset_do_page_mem_spread()) {
 517		get_mems_allowed();
 518		n = cpuset_mem_spread_node();
 519		page = alloc_pages_exact_node(n, gfp, 0);
 520		put_mems_allowed();
 521		return page;
 
 
 
 522	}
 523	return alloc_pages(gfp, 0);
 524}
 525EXPORT_SYMBOL(__page_cache_alloc);
 526#endif
 527
 528/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529 * In order to wait for pages to become available there must be
 530 * waitqueues associated with pages. By using a hash table of
 531 * waitqueues where the bucket discipline is to maintain all
 532 * waiters on the same queue and wake all when any of the pages
 533 * become available, and for the woken contexts to check to be
 534 * sure the appropriate page became available, this saves space
 535 * at a cost of "thundering herd" phenomena during rare hash
 536 * collisions.
 537 */
 538static wait_queue_head_t *page_waitqueue(struct page *page)
 
 
 
 
 539{
 540	const struct zone *zone = page_zone(page);
 
 
 
 
 
 541
 542	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 
 
 
 543}
 544
 545static inline void wake_up_page(struct page *page, int bit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546{
 547	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548}
 549
 550void wait_on_page_bit(struct page *page, int bit_nr)
 551{
 552	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 553
 554	if (test_bit(bit_nr, &page->flags))
 555		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
 556							TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557}
 558EXPORT_SYMBOL(wait_on_page_bit);
 559
 560int wait_on_page_bit_killable(struct page *page, int bit_nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 561{
 562	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563
 564	if (!test_bit(bit_nr, &page->flags))
 565		return 0;
 
 
 
 
 
 566
 567	return __wait_on_bit(page_waitqueue(page), &wait,
 568			     sleep_on_page_killable, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569}
 570
 571/**
 572 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 573 * @page: Page defining the wait queue of interest
 574 * @waiter: Waiter to add to the queue
 575 *
 576 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 577 */
 578void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 579{
 580	wait_queue_head_t *q = page_waitqueue(page);
 581	unsigned long flags;
 582
 583	spin_lock_irqsave(&q->lock, flags);
 584	__add_wait_queue(q, waiter);
 
 585	spin_unlock_irqrestore(&q->lock, flags);
 586}
 587EXPORT_SYMBOL_GPL(add_page_wait_queue);
 588
 589/**
 590 * unlock_page - unlock a locked page
 591 * @page: the page
 592 *
 593 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 594 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 595 * mechananism between PageLocked pages and PageWriteback pages is shared.
 596 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 597 *
 598 * The mb is necessary to enforce ordering between the clear_bit and the read
 599 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 600 */
 601void unlock_page(struct page *page)
 602{
 603	VM_BUG_ON(!PageLocked(page));
 604	clear_bit_unlock(PG_locked, &page->flags);
 605	smp_mb__after_clear_bit();
 606	wake_up_page(page, PG_locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607}
 608EXPORT_SYMBOL(unlock_page);
 609
 610/**
 611 * end_page_writeback - end writeback against a page
 612 * @page: the page
 
 
 
 
 613 */
 614void end_page_writeback(struct page *page)
 615{
 616	if (TestClearPageReclaim(page))
 617		rotate_reclaimable_page(page);
 618
 619	if (!test_clear_page_writeback(page))
 620		BUG();
 
 
 
 
 
 
 
 
 
 621
 622	smp_mb__after_clear_bit();
 623	wake_up_page(page, PG_writeback);
 
 
 
 
 
 
 
 
 
 624}
 625EXPORT_SYMBOL(end_page_writeback);
 626
 627/**
 628 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 629 * @page: the page to lock
 630 */
 631void __lock_page(struct page *page)
 632{
 633	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 
 
 
 634
 635	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
 636							TASK_UNINTERRUPTIBLE);
 
 
 637}
 638EXPORT_SYMBOL(__lock_page);
 639
 640int __lock_page_killable(struct page *page)
 641{
 642	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 
 
 
 
 643
 644	return __wait_on_bit_lock(page_waitqueue(page), &wait,
 645					sleep_on_page_killable, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646}
 647EXPORT_SYMBOL_GPL(__lock_page_killable);
 648
 649int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 650			 unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 651{
 652	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 
 
 653		/*
 654		 * CAUTION! In this case, mmap_sem is not released
 655		 * even though return 0.
 656		 */
 657		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 658			return 0;
 659
 660		up_read(&mm->mmap_sem);
 661		if (flags & FAULT_FLAG_KILLABLE)
 662			wait_on_page_locked_killable(page);
 663		else
 664			wait_on_page_locked(page);
 665		return 0;
 
 
 
 
 
 
 
 
 
 666	} else {
 667		if (flags & FAULT_FLAG_KILLABLE) {
 668			int ret;
 669
 670			ret = __lock_page_killable(page);
 671			if (ret) {
 672				up_read(&mm->mmap_sem);
 673				return 0;
 674			}
 675		} else
 676			__lock_page(page);
 677		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678	}
 
 
 679}
 
 680
 681/**
 682 * find_get_page - find and get a page reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683 * @mapping: the address_space to search
 684 * @offset: the page index
 685 *
 686 * Is there a pagecache struct page at the given (mapping, offset) tuple?
 687 * If yes, increment its refcount and return it; if no, return NULL.
 
 
 
 
 688 */
 689struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
 690{
 691	void **pagep;
 692	struct page *page;
 693
 694	rcu_read_lock();
 695repeat:
 696	page = NULL;
 697	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 698	if (pagep) {
 699		page = radix_tree_deref_slot(pagep);
 700		if (unlikely(!page))
 701			goto out;
 702		if (radix_tree_exception(page)) {
 703			if (radix_tree_deref_retry(page))
 704				goto repeat;
 705			/*
 706			 * Otherwise, shmem/tmpfs must be storing a swap entry
 707			 * here as an exceptional entry: so return it without
 708			 * attempting to raise page count.
 709			 */
 710			goto out;
 711		}
 712		if (!page_cache_get_speculative(page))
 713			goto repeat;
 714
 715		/*
 716		 * Has the page moved?
 717		 * This is part of the lockless pagecache protocol. See
 718		 * include/linux/pagemap.h for details.
 719		 */
 720		if (unlikely(page != *pagep)) {
 721			page_cache_release(page);
 722			goto repeat;
 723		}
 724	}
 725out:
 726	rcu_read_unlock();
 727
 728	return page;
 729}
 730EXPORT_SYMBOL(find_get_page);
 731
 732/**
 733 * find_lock_page - locate, pin and lock a pagecache page
 734 * @mapping: the address_space to search
 735 * @offset: the page index
 
 
 
 
 736 *
 737 * Locates the desired pagecache page, locks it, increments its reference
 738 * count and returns its address.
 739 *
 740 * Returns zero if the page was not present. find_lock_page() may sleep.
 
 
 741 */
 742struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
 
 743{
 744	struct page *page;
 745
 746repeat:
 747	page = find_get_page(mapping, offset);
 748	if (page && !radix_tree_exception(page)) {
 749		lock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 750		/* Has the page been truncated? */
 751		if (unlikely(page->mapping != mapping)) {
 752			unlock_page(page);
 753			page_cache_release(page);
 754			goto repeat;
 755		}
 756		VM_BUG_ON(page->index != offset);
 757	}
 758	return page;
 759}
 760EXPORT_SYMBOL(find_lock_page);
 761
 762/**
 763 * find_or_create_page - locate or add a pagecache page
 764 * @mapping: the page's address_space
 765 * @index: the page's index into the mapping
 766 * @gfp_mask: page allocation mode
 767 *
 768 * Locates a page in the pagecache.  If the page is not present, a new page
 769 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 770 * LRU list.  The returned page is locked and has its reference count
 771 * incremented.
 772 *
 773 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 774 * allocation!
 775 *
 776 * find_or_create_page() returns the desired page's address, or zero on
 777 * memory exhaustion.
 778 */
 779struct page *find_or_create_page(struct address_space *mapping,
 780		pgoff_t index, gfp_t gfp_mask)
 781{
 782	struct page *page;
 783	int err;
 784repeat:
 785	page = find_lock_page(mapping, index);
 786	if (!page) {
 787		page = __page_cache_alloc(gfp_mask);
 788		if (!page)
 789			return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790		/*
 791		 * We want a regular kernel memory (not highmem or DMA etc)
 792		 * allocation for the radix tree nodes, but we need to honour
 793		 * the context-specific requirements the caller has asked for.
 794		 * GFP_RECLAIM_MASK collects those requirements.
 795		 */
 796		err = add_to_page_cache_lru(page, mapping, index,
 797			(gfp_mask & GFP_RECLAIM_MASK));
 798		if (unlikely(err)) {
 799			page_cache_release(page);
 800			page = NULL;
 801			if (err == -EEXIST)
 802				goto repeat;
 803		}
 804	}
 805	return page;
 
 
 
 806}
 807EXPORT_SYMBOL(find_or_create_page);
 808
 809/**
 810 * find_get_pages - gang pagecache lookup
 811 * @mapping:	The address_space to search
 812 * @start:	The starting page index
 813 * @nr_pages:	The maximum number of pages
 814 * @pages:	Where the resulting pages are placed
 815 *
 816 * find_get_pages() will search for and return a group of up to
 817 * @nr_pages pages in the mapping.  The pages are placed at @pages.
 818 * find_get_pages() takes a reference against the returned pages.
 819 *
 820 * The search returns a group of mapping-contiguous pages with ascending
 821 * indexes.  There may be holes in the indices due to not-present pages.
 822 *
 823 * find_get_pages() returns the number of pages which were found.
 824 */
 825unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 826			    unsigned int nr_pages, struct page **pages)
 827{
 828	unsigned int i;
 829	unsigned int ret;
 830	unsigned int nr_found, nr_skip;
 831
 832	rcu_read_lock();
 833restart:
 834	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 835				(void ***)pages, NULL, start, nr_pages);
 836	ret = 0;
 837	nr_skip = 0;
 838	for (i = 0; i < nr_found; i++) {
 839		struct page *page;
 840repeat:
 841		page = radix_tree_deref_slot((void **)pages[i]);
 842		if (unlikely(!page))
 843			continue;
 844
 845		if (radix_tree_exception(page)) {
 846			if (radix_tree_deref_retry(page)) {
 847				/*
 848				 * Transient condition which can only trigger
 849				 * when entry at index 0 moves out of or back
 850				 * to root: none yet gotten, safe to restart.
 851				 */
 852				WARN_ON(start | i);
 853				goto restart;
 854			}
 855			/*
 856			 * Otherwise, shmem/tmpfs must be storing a swap entry
 857			 * here as an exceptional entry: so skip over it -
 858			 * we only reach this from invalidate_mapping_pages().
 859			 */
 860			nr_skip++;
 861			continue;
 862		}
 863
 864		if (!page_cache_get_speculative(page))
 865			goto repeat;
 
 
 
 
 
 
 
 866
 867		/* Has the page moved? */
 868		if (unlikely(page != *((void **)pages[i]))) {
 869			page_cache_release(page);
 870			goto repeat;
 871		}
 872
 873		pages[ret] = page;
 874		ret++;
 
 875	}
 876
 877	/*
 878	 * If all entries were removed before we could secure them,
 879	 * try again, because callers stop trying once 0 is returned.
 880	 */
 881	if (unlikely(!ret && nr_found > nr_skip))
 882		goto restart;
 883	rcu_read_unlock();
 884	return ret;
 885}
 886
 887/**
 888 * find_get_pages_contig - gang contiguous pagecache lookup
 889 * @mapping:	The address_space to search
 890 * @index:	The starting page index
 891 * @nr_pages:	The maximum number of pages
 892 * @pages:	Where the resulting pages are placed
 
 893 *
 894 * find_get_pages_contig() works exactly like find_get_pages(), except
 895 * that the returned number of pages are guaranteed to be contiguous.
 
 896 *
 897 * find_get_pages_contig() returns the number of pages which were found.
 
 
 
 
 
 
 898 */
 899unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 900			       unsigned int nr_pages, struct page **pages)
 901{
 902	unsigned int i;
 903	unsigned int ret;
 904	unsigned int nr_found;
 905
 906	rcu_read_lock();
 907restart:
 908	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 909				(void ***)pages, NULL, index, nr_pages);
 910	ret = 0;
 911	for (i = 0; i < nr_found; i++) {
 912		struct page *page;
 913repeat:
 914		page = radix_tree_deref_slot((void **)pages[i]);
 915		if (unlikely(!page))
 916			continue;
 917
 918		if (radix_tree_exception(page)) {
 919			if (radix_tree_deref_retry(page)) {
 920				/*
 921				 * Transient condition which can only trigger
 922				 * when entry at index 0 moves out of or back
 923				 * to root: none yet gotten, safe to restart.
 924				 */
 925				goto restart;
 926			}
 927			/*
 928			 * Otherwise, shmem/tmpfs must be storing a swap entry
 929			 * here as an exceptional entry: so stop looking for
 930			 * contiguous pages.
 931			 */
 932			break;
 933		}
 934
 935		if (!page_cache_get_speculative(page))
 936			goto repeat;
 
 
 
 
 
 
 
 
 
 
 937
 938		/* Has the page moved? */
 939		if (unlikely(page != *((void **)pages[i]))) {
 940			page_cache_release(page);
 941			goto repeat;
 942		}
 943
 944		/*
 945		 * must check mapping and index after taking the ref.
 946		 * otherwise we can get both false positives and false
 947		 * negatives, which is just confusing to the caller.
 948		 */
 949		if (page->mapping == NULL || page->index != index) {
 950			page_cache_release(page);
 951			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952		}
 953
 954		pages[ret] = page;
 955		ret++;
 956		index++;
 
 
 
 
 
 
 
 957	}
 958	rcu_read_unlock();
 959	return ret;
 
 960}
 961EXPORT_SYMBOL(find_get_pages_contig);
 962
 963/**
 964 * find_get_pages_tag - find and return pages that match @tag
 965 * @mapping:	the address_space to search
 966 * @index:	the starting page index
 967 * @tag:	the tag index
 968 * @nr_pages:	the maximum number of pages
 969 * @pages:	where the resulting pages are placed
 
 
 
 970 *
 971 * Like find_get_pages, except we only return pages which are tagged with
 972 * @tag.   We update @index to index the next page for the traversal.
 973 */
 974unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 975			int tag, unsigned int nr_pages, struct page **pages)
 976{
 977	unsigned int i;
 978	unsigned int ret;
 979	unsigned int nr_found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980
 981	rcu_read_lock();
 982restart:
 983	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
 984				(void ***)pages, *index, nr_pages, tag);
 985	ret = 0;
 986	for (i = 0; i < nr_found; i++) {
 987		struct page *page;
 988repeat:
 989		page = radix_tree_deref_slot((void **)pages[i]);
 990		if (unlikely(!page))
 991			continue;
 
 
 
 
 
 
 992
 993		if (radix_tree_exception(page)) {
 994			if (radix_tree_deref_retry(page)) {
 995				/*
 996				 * Transient condition which can only trigger
 997				 * when entry at index 0 moves out of or back
 998				 * to root: none yet gotten, safe to restart.
 999				 */
1000				goto restart;
1001			}
1002			/*
1003			 * This function is never used on a shmem/tmpfs
1004			 * mapping, so a swap entry won't be found here.
1005			 */
1006			BUG();
1007		}
 
 
 
1008
1009		if (!page_cache_get_speculative(page))
1010			goto repeat;
 
1011
1012		/* Has the page moved? */
1013		if (unlikely(page != *((void **)pages[i]))) {
1014			page_cache_release(page);
1015			goto repeat;
1016		}
1017
1018		pages[ret] = page;
1019		ret++;
 
1020	}
1021
1022	/*
1023	 * If all entries were removed before we could secure them,
1024	 * try again, because callers stop trying once 0 is returned.
1025	 */
1026	if (unlikely(!ret && nr_found))
1027		goto restart;
1028	rcu_read_unlock();
1029
1030	if (ret)
1031		*index = pages[ret - 1]->index + 1;
1032
1033	return ret;
1034}
1035EXPORT_SYMBOL(find_get_pages_tag);
1036
1037/**
1038 * grab_cache_page_nowait - returns locked page at given index in given cache
1039 * @mapping: target address_space
1040 * @index: the page index
1041 *
1042 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1043 * This is intended for speculative data generators, where the data can
1044 * be regenerated if the page couldn't be grabbed.  This routine should
1045 * be safe to call while holding the lock for another page.
 
 
 
 
 
 
1046 *
1047 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1048 * and deadlock against the caller's locked page.
1049 */
1050struct page *
1051grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1052{
1053	struct page *page = find_get_page(mapping, index);
 
1054
1055	if (page) {
1056		if (trylock_page(page))
1057			return page;
1058		page_cache_release(page);
1059		return NULL;
1060	}
1061	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1062	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1063		page_cache_release(page);
1064		page = NULL;
 
 
 
 
1065	}
1066	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
1067}
1068EXPORT_SYMBOL(grab_cache_page_nowait);
1069
1070/*
1071 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1072 * a _large_ part of the i/o request. Imagine the worst scenario:
1073 *
1074 *      ---R__________________________________________B__________
1075 *         ^ reading here                             ^ bad block(assume 4k)
1076 *
1077 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1078 * => failing the whole request => read(R) => read(R+1) =>
1079 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1080 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1081 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1082 *
1083 * It is going insane. Fix it by quickly scaling down the readahead size.
1084 */
1085static void shrink_readahead_size_eio(struct file *filp,
1086					struct file_ra_state *ra)
1087{
1088	ra->ra_pages /= 4;
1089}
1090
1091/**
1092 * do_generic_file_read - generic file read routine
1093 * @filp:	the file to read
1094 * @ppos:	current file position
1095 * @desc:	read_descriptor
1096 * @actor:	read method
1097 *
1098 * This is a generic file read routine, and uses the
1099 * mapping->a_ops->readpage() function for the actual low-level stuff.
1100 *
1101 * This is really ugly. But the goto's actually try to clarify some
1102 * of the logic when it comes to error handling etc.
 
 
 
1103 */
1104static void do_generic_file_read(struct file *filp, loff_t *ppos,
1105		read_descriptor_t *desc, read_actor_t actor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106{
 
1107	struct address_space *mapping = filp->f_mapping;
1108	struct inode *inode = mapping->host;
1109	struct file_ra_state *ra = &filp->f_ra;
1110	pgoff_t index;
1111	pgoff_t last_index;
1112	pgoff_t prev_index;
1113	unsigned long offset;      /* offset into pagecache page */
1114	unsigned int prev_offset;
1115	int error;
1116
1117	index = *ppos >> PAGE_CACHE_SHIFT;
1118	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1119	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1120	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1121	offset = *ppos & ~PAGE_CACHE_MASK;
1122
1123	for (;;) {
1124		struct page *page;
1125		pgoff_t end_index;
1126		loff_t isize;
1127		unsigned long nr, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129		cond_resched();
1130find_page:
1131		page = find_get_page(mapping, index);
1132		if (!page) {
1133			page_cache_sync_readahead(mapping,
1134					ra, filp,
1135					index, last_index - index);
1136			page = find_get_page(mapping, index);
1137			if (unlikely(page == NULL))
1138				goto no_cached_page;
1139		}
1140		if (PageReadahead(page)) {
1141			page_cache_async_readahead(mapping,
1142					ra, filp, page,
1143					index, last_index - index);
1144		}
1145		if (!PageUptodate(page)) {
1146			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1147					!mapping->a_ops->is_partially_uptodate)
1148				goto page_not_up_to_date;
1149			if (!trylock_page(page))
1150				goto page_not_up_to_date;
1151			/* Did it get truncated before we got the lock? */
1152			if (!page->mapping)
1153				goto page_not_up_to_date_locked;
1154			if (!mapping->a_ops->is_partially_uptodate(page,
1155								desc, offset))
1156				goto page_not_up_to_date_locked;
1157			unlock_page(page);
1158		}
1159page_ok:
1160		/*
1161		 * i_size must be checked after we know the page is Uptodate.
1162		 *
1163		 * Checking i_size after the check allows us to calculate
1164		 * the correct value for "nr", which means the zero-filled
1165		 * part of the page is not copied back to userspace (unless
1166		 * another truncate extends the file - this is desired though).
1167		 */
1168
1169		isize = i_size_read(inode);
1170		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1171		if (unlikely(!isize || index > end_index)) {
1172			page_cache_release(page);
1173			goto out;
1174		}
1175
1176		/* nr is the maximum number of bytes to copy from this page */
1177		nr = PAGE_CACHE_SIZE;
1178		if (index == end_index) {
1179			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1180			if (nr <= offset) {
1181				page_cache_release(page);
1182				goto out;
1183			}
1184		}
1185		nr = nr - offset;
1186
1187		/* If users can be writing to this page using arbitrary
1188		 * virtual addresses, take care about potential aliasing
1189		 * before reading the page on the kernel side.
1190		 */
1191		if (mapping_writably_mapped(mapping))
1192			flush_dcache_page(page);
1193
1194		/*
1195		 * When a sequential read accesses a page several times,
1196		 * only mark it as accessed the first time.
1197		 */
1198		if (prev_index != index || offset != prev_offset)
1199			mark_page_accessed(page);
1200		prev_index = index;
1201
1202		/*
1203		 * Ok, we have the page, and it's up-to-date, so
1204		 * now we can copy it to user space...
1205		 *
1206		 * The actor routine returns how many bytes were actually used..
1207		 * NOTE! This may not be the same as how much of a user buffer
1208		 * we filled up (we may be padding etc), so we can only update
1209		 * "pos" here (the actor routine has to update the user buffer
1210		 * pointers and the remaining count).
1211		 */
1212		ret = actor(desc, page, offset, nr);
1213		offset += ret;
1214		index += offset >> PAGE_CACHE_SHIFT;
1215		offset &= ~PAGE_CACHE_MASK;
1216		prev_offset = offset;
1217
1218		page_cache_release(page);
1219		if (ret == nr && desc->count)
1220			continue;
1221		goto out;
 
 
 
 
 
 
 
1222
1223page_not_up_to_date:
1224		/* Get exclusive access to the page ... */
1225		error = lock_page_killable(page);
1226		if (unlikely(error))
1227			goto readpage_error;
1228
1229page_not_up_to_date_locked:
1230		/* Did it get truncated before we got the lock? */
1231		if (!page->mapping) {
1232			unlock_page(page);
1233			page_cache_release(page);
1234			continue;
1235		}
1236
1237		/* Did somebody else fill it already? */
1238		if (PageUptodate(page)) {
1239			unlock_page(page);
1240			goto page_ok;
1241		}
1242
1243readpage:
1244		/*
1245		 * A previous I/O error may have been due to temporary
1246		 * failures, eg. multipath errors.
1247		 * PG_error will be set again if readpage fails.
1248		 */
1249		ClearPageError(page);
1250		/* Start the actual read. The read will unlock the page. */
1251		error = mapping->a_ops->readpage(filp, page);
1252
1253		if (unlikely(error)) {
1254			if (error == AOP_TRUNCATED_PAGE) {
1255				page_cache_release(page);
1256				goto find_page;
1257			}
1258			goto readpage_error;
1259		}
 
 
 
 
 
1260
1261		if (!PageUptodate(page)) {
1262			error = lock_page_killable(page);
1263			if (unlikely(error))
1264				goto readpage_error;
1265			if (!PageUptodate(page)) {
1266				if (page->mapping == NULL) {
1267					/*
1268					 * invalidate_mapping_pages got it
1269					 */
1270					unlock_page(page);
1271					page_cache_release(page);
1272					goto find_page;
1273				}
1274				unlock_page(page);
1275				shrink_readahead_size_eio(filp, ra);
1276				error = -EIO;
1277				goto readpage_error;
1278			}
1279			unlock_page(page);
1280		}
1281
1282		goto page_ok;
1283
1284readpage_error:
1285		/* UHHUH! A synchronous read error occurred. Report it */
1286		desc->error = error;
1287		page_cache_release(page);
1288		goto out;
1289
1290no_cached_page:
1291		/*
1292		 * Ok, it wasn't cached, so we need to create a new
1293		 * page..
1294		 */
1295		page = page_cache_alloc_cold(mapping);
1296		if (!page) {
1297			desc->error = -ENOMEM;
1298			goto out;
1299		}
1300		error = add_to_page_cache_lru(page, mapping,
1301						index, GFP_KERNEL);
1302		if (error) {
1303			page_cache_release(page);
1304			if (error == -EEXIST)
1305				goto find_page;
1306			desc->error = error;
1307			goto out;
1308		}
1309		goto readpage;
1310	}
1311
1312out:
1313	ra->prev_pos = prev_index;
1314	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1315	ra->prev_pos |= prev_offset;
1316
1317	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1318	file_accessed(filp);
1319}
 
1320
1321int file_read_actor(read_descriptor_t *desc, struct page *page,
1322			unsigned long offset, unsigned long size)
1323{
1324	char *kaddr;
1325	unsigned long left, count = desc->count;
1326
1327	if (size > count)
1328		size = count;
 
 
 
 
 
 
 
1329
1330	/*
1331	 * Faults on the destination of a read are common, so do it before
1332	 * taking the kmap.
 
 
1333	 */
1334	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1335		kaddr = kmap_atomic(page, KM_USER0);
1336		left = __copy_to_user_inatomic(desc->arg.buf,
1337						kaddr + offset, size);
1338		kunmap_atomic(kaddr, KM_USER0);
1339		if (left == 0)
1340			goto success;
1341	}
1342
1343	/* Do it the slow way */
1344	kaddr = kmap(page);
1345	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1346	kunmap(page);
1347
1348	if (left) {
1349		size -= left;
1350		desc->error = -EFAULT;
1351	}
1352success:
1353	desc->count = count - size;
1354	desc->written += size;
1355	desc->arg.buf += size;
1356	return size;
1357}
 
1358
1359/*
1360 * Performs necessary checks before doing a write
1361 * @iov:	io vector request
1362 * @nr_segs:	number of segments in the iovec
1363 * @count:	number of bytes to write
1364 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
 
1365 *
1366 * Adjust number of segments and amount of bytes to write (nr_segs should be
1367 * properly initialized first). Returns appropriate error code that caller
1368 * should return or zero in case that write should be allowed.
 
 
 
 
 
 
 
 
 
1369 */
1370int generic_segment_checks(const struct iovec *iov,
1371			unsigned long *nr_segs, size_t *count, int access_flags)
1372{
1373	unsigned long   seg;
1374	size_t cnt = 0;
1375	for (seg = 0; seg < *nr_segs; seg++) {
1376		const struct iovec *iv = &iov[seg];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377
1378		/*
1379		 * If any segment has a negative length, or the cumulative
1380		 * length ever wraps negative then return -EINVAL.
 
 
 
 
 
1381		 */
1382		cnt += iv->iov_len;
1383		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1384			return -EINVAL;
1385		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1386			continue;
1387		if (seg == 0)
1388			return -EFAULT;
1389		*nr_segs = seg;
1390		cnt -= iv->iov_len;	/* This segment is no good */
1391		break;
1392	}
1393	*count = cnt;
1394	return 0;
1395}
1396EXPORT_SYMBOL(generic_segment_checks);
1397
1398/**
1399 * generic_file_aio_read - generic filesystem read routine
1400 * @iocb:	kernel I/O control block
1401 * @iov:	io vector request
1402 * @nr_segs:	number of segments in the iovec
1403 * @pos:	current file position
1404 *
1405 * This is the "read()" routine for all filesystems
1406 * that can use the page cache directly.
1407 */
1408ssize_t
1409generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1410		unsigned long nr_segs, loff_t pos)
1411{
1412	struct file *filp = iocb->ki_filp;
1413	ssize_t retval;
1414	unsigned long seg = 0;
1415	size_t count;
1416	loff_t *ppos = &iocb->ki_pos;
1417	struct blk_plug plug;
1418
1419	count = 0;
1420	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1421	if (retval)
1422		return retval;
1423
1424	blk_start_plug(&plug);
1425
1426	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1427	if (filp->f_flags & O_DIRECT) {
1428		loff_t size;
1429		struct address_space *mapping;
1430		struct inode *inode;
1431
1432		mapping = filp->f_mapping;
1433		inode = mapping->host;
1434		if (!count)
1435			goto out; /* skip atime */
1436		size = i_size_read(inode);
1437		if (pos < size) {
1438			retval = filemap_write_and_wait_range(mapping, pos,
1439					pos + iov_length(iov, nr_segs) - 1);
1440			if (!retval) {
1441				retval = mapping->a_ops->direct_IO(READ, iocb,
1442							iov, pos, nr_segs);
1443			}
1444			if (retval > 0) {
1445				*ppos = pos + retval;
1446				count -= retval;
1447			}
1448
1449			/*
1450			 * Btrfs can have a short DIO read if we encounter
1451			 * compressed extents, so if there was an error, or if
1452			 * we've already read everything we wanted to, or if
1453			 * there was a short read because we hit EOF, go ahead
1454			 * and return.  Otherwise fallthrough to buffered io for
1455			 * the rest of the read.
1456			 */
1457			if (retval < 0 || !count || *ppos >= size) {
1458				file_accessed(filp);
1459				goto out;
1460			}
1461		}
 
 
 
 
 
 
 
1462	}
1463
1464	count = retval;
1465	for (seg = 0; seg < nr_segs; seg++) {
1466		read_descriptor_t desc;
1467		loff_t offset = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1468
1469		/*
1470		 * If we did a short DIO read we need to skip the section of the
1471		 * iov that we've already read data into.
 
 
 
 
1472		 */
1473		if (count) {
1474			if (count > iov[seg].iov_len) {
1475				count -= iov[seg].iov_len;
1476				continue;
1477			}
1478			offset = count;
1479			count = 0;
1480		}
1481
1482		desc.written = 0;
1483		desc.arg.buf = iov[seg].iov_base + offset;
1484		desc.count = iov[seg].iov_len - offset;
1485		if (desc.count == 0)
1486			continue;
1487		desc.error = 0;
1488		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1489		retval += desc.written;
1490		if (desc.error) {
1491			retval = retval ?: desc.error;
1492			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493		}
1494		if (desc.count > 0)
1495			break;
1496	}
 
1497out:
1498	blk_finish_plug(&plug);
1499	return retval;
 
 
1500}
1501EXPORT_SYMBOL(generic_file_aio_read);
1502
1503static ssize_t
1504do_readahead(struct address_space *mapping, struct file *filp,
1505	     pgoff_t index, unsigned long nr)
1506{
1507	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1508		return -EINVAL;
1509
1510	force_page_cache_readahead(mapping, filp, index, nr);
1511	return 0;
1512}
 
1513
1514SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1515{
1516	ssize_t ret;
1517	struct file *file;
 
1518
1519	ret = -EBADF;
1520	file = fget(fd);
1521	if (file) {
1522		if (file->f_mode & FMODE_READ) {
1523			struct address_space *mapping = file->f_mapping;
1524			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1525			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1526			unsigned long len = end - start + 1;
1527			ret = do_readahead(mapping, file, start, len);
1528		}
1529		fput(file);
1530	}
1531	return ret;
1532}
1533#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1534asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1535{
1536	return SYSC_readahead((int) fd, offset, (size_t) count);
 
 
1537}
1538SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1539#endif
1540
1541#ifdef CONFIG_MMU
1542/**
1543 * page_cache_read - adds requested page to the page cache if not already there
1544 * @file:	file to read
1545 * @offset:	page index
1546 *
1547 * This adds the requested page to the page cache if it isn't already there,
1548 * and schedules an I/O to read in its contents from disk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549 */
1550static int page_cache_read(struct file *file, pgoff_t offset)
 
1551{
1552	struct address_space *mapping = file->f_mapping;
1553	struct page *page; 
1554	int ret;
1555
1556	do {
1557		page = page_cache_alloc_cold(mapping);
1558		if (!page)
1559			return -ENOMEM;
1560
1561		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1562		if (ret == 0)
1563			ret = mapping->a_ops->readpage(file, page);
1564		else if (ret == -EEXIST)
1565			ret = 0; /* losing race to add is OK */
1566
1567		page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568
1569	} while (ret == AOP_TRUNCATED_PAGE);
1570		
1571	return ret;
1572}
1573
1574#define MMAP_LOTSAMISS  (100)
1575
1576/*
1577 * Synchronous readahead happens when we don't even find
1578 * a page in the page cache at all.
 
 
 
1579 */
1580static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1581				   struct file_ra_state *ra,
1582				   struct file *file,
1583				   pgoff_t offset)
1584{
1585	unsigned long ra_pages;
 
1586	struct address_space *mapping = file->f_mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1587
1588	/* If we don't want any read-ahead, don't bother */
1589	if (VM_RandomReadHint(vma))
1590		return;
1591	if (!ra->ra_pages)
1592		return;
1593
1594	if (VM_SequentialReadHint(vma)) {
1595		page_cache_sync_readahead(mapping, ra, file, offset,
1596					  ra->ra_pages);
1597		return;
1598	}
1599
1600	/* Avoid banging the cache line if not needed */
1601	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1602		ra->mmap_miss++;
 
1603
1604	/*
1605	 * Do we miss much more than hit in this file? If so,
1606	 * stop bothering with read-ahead. It will only hurt.
1607	 */
1608	if (ra->mmap_miss > MMAP_LOTSAMISS)
1609		return;
1610
1611	/*
1612	 * mmap read-around
1613	 */
1614	ra_pages = max_sane_readahead(ra->ra_pages);
1615	ra->start = max_t(long, 0, offset - ra_pages / 2);
1616	ra->size = ra_pages;
1617	ra->async_size = ra_pages / 4;
1618	ra_submit(ra, mapping, file);
 
 
1619}
1620
1621/*
1622 * Asynchronous readahead happens when we find the page and PG_readahead,
1623 * so we want to possibly extend the readahead further..
 
1624 */
1625static void do_async_mmap_readahead(struct vm_area_struct *vma,
1626				    struct file_ra_state *ra,
1627				    struct file *file,
1628				    struct page *page,
1629				    pgoff_t offset)
1630{
1631	struct address_space *mapping = file->f_mapping;
 
 
 
 
1632
1633	/* If we don't want any read-ahead, don't bother */
1634	if (VM_RandomReadHint(vma))
1635		return;
1636	if (ra->mmap_miss > 0)
1637		ra->mmap_miss--;
1638	if (PageReadahead(page))
1639		page_cache_async_readahead(mapping, ra, file,
1640					   page, offset, ra->ra_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641}
1642
1643/**
1644 * filemap_fault - read in file data for page fault handling
1645 * @vma:	vma in which the fault was taken
1646 * @vmf:	struct vm_fault containing details of the fault
1647 *
1648 * filemap_fault() is invoked via the vma operations vector for a
1649 * mapped memory region to read in file data during a page fault.
1650 *
1651 * The goto's are kind of ugly, but this streamlines the normal case of having
1652 * it in the page cache, and handles the special cases reasonably without
1653 * having a lot of duplicated code.
 
 
 
 
 
 
 
 
 
 
 
 
1654 */
1655int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1656{
1657	int error;
1658	struct file *file = vma->vm_file;
 
1659	struct address_space *mapping = file->f_mapping;
1660	struct file_ra_state *ra = &file->f_ra;
1661	struct inode *inode = mapping->host;
1662	pgoff_t offset = vmf->pgoff;
1663	struct page *page;
1664	pgoff_t size;
1665	int ret = 0;
1666
1667	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1668	if (offset >= size)
1669		return VM_FAULT_SIGBUS;
1670
 
 
1671	/*
1672	 * Do we have something in the page cache already?
1673	 */
1674	page = find_get_page(mapping, offset);
1675	if (likely(page)) {
1676		/*
1677		 * We found the page, so try async readahead before
1678		 * waiting for the lock.
1679		 */
1680		do_async_mmap_readahead(vma, ra, file, page, offset);
 
 
 
 
 
1681	} else {
 
 
 
 
1682		/* No page in the page cache at all */
1683		do_sync_mmap_readahead(vma, ra, file, offset);
1684		count_vm_event(PGMAJFAULT);
1685		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1686		ret = VM_FAULT_MAJOR;
 
1687retry_find:
1688		page = find_get_page(mapping, offset);
1689		if (!page)
1690			goto no_cached_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691	}
1692
1693	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1694		page_cache_release(page);
1695		return ret | VM_FAULT_RETRY;
1696	}
1697
1698	/* Did it get truncated? */
1699	if (unlikely(page->mapping != mapping)) {
1700		unlock_page(page);
1701		put_page(page);
1702		goto retry_find;
1703	}
1704	VM_BUG_ON(page->index != offset);
1705
1706	/*
1707	 * We have a locked page in the page cache, now we need to check
1708	 * that it's up-to-date. If not, it is going to be due to an error.
 
1709	 */
1710	if (unlikely(!PageUptodate(page)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711		goto page_not_uptodate;
 
 
 
 
 
 
 
 
 
 
 
 
 
1712
1713	/*
1714	 * Found the page and have a reference on it.
1715	 * We must recheck i_size under page lock.
1716	 */
1717	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1718	if (unlikely(offset >= size)) {
1719		unlock_page(page);
1720		page_cache_release(page);
1721		return VM_FAULT_SIGBUS;
1722	}
1723
1724	vmf->page = page;
1725	return ret | VM_FAULT_LOCKED;
1726
1727no_cached_page:
1728	/*
1729	 * We're only likely to ever get here if MADV_RANDOM is in
1730	 * effect.
1731	 */
1732	error = page_cache_read(file, offset);
1733
1734	/*
1735	 * The page we want has now been added to the page cache.
1736	 * In the unlikely event that someone removed it in the
1737	 * meantime, we'll just come back here and read it again.
1738	 */
1739	if (error >= 0)
1740		goto retry_find;
1741
1742	/*
1743	 * An error return from page_cache_read can result if the
1744	 * system is low on memory, or a problem occurs while trying
1745	 * to schedule I/O.
1746	 */
1747	if (error == -ENOMEM)
1748		return VM_FAULT_OOM;
1749	return VM_FAULT_SIGBUS;
1750
1751page_not_uptodate:
1752	/*
1753	 * Umm, take care of errors if the page isn't up-to-date.
1754	 * Try to re-read it _once_. We do this synchronously,
1755	 * because there really aren't any performance issues here
1756	 * and we need to check for errors.
1757	 */
1758	ClearPageError(page);
1759	error = mapping->a_ops->readpage(file, page);
1760	if (!error) {
1761		wait_on_page_locked(page);
1762		if (!PageUptodate(page))
1763			error = -EIO;
1764	}
1765	page_cache_release(page);
1766
1767	if (!error || error == AOP_TRUNCATED_PAGE)
1768		goto retry_find;
 
1769
1770	/* Things didn't work out. Return zero to tell the mm layer so. */
1771	shrink_readahead_size_eio(file, ra);
1772	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1773}
1774EXPORT_SYMBOL(filemap_fault);
1775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776const struct vm_operations_struct generic_file_vm_ops = {
1777	.fault		= filemap_fault,
 
 
1778};
1779
1780/* This is used for a general mmap of a disk file */
1781
1782int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1783{
1784	struct address_space *mapping = file->f_mapping;
1785
1786	if (!mapping->a_ops->readpage)
1787		return -ENOEXEC;
1788	file_accessed(file);
1789	vma->vm_ops = &generic_file_vm_ops;
1790	vma->vm_flags |= VM_CAN_NONLINEAR;
1791	return 0;
1792}
1793
1794/*
1795 * This is for filesystems which do not implement ->writepage.
1796 */
1797int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1798{
1799	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1800		return -EINVAL;
1801	return generic_file_mmap(file, vma);
1802}
1803#else
1804int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 
 
 
 
1805{
1806	return -ENOSYS;
1807}
1808int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1809{
1810	return -ENOSYS;
1811}
1812#endif /* CONFIG_MMU */
1813
 
1814EXPORT_SYMBOL(generic_file_mmap);
1815EXPORT_SYMBOL(generic_file_readonly_mmap);
1816
1817static struct page *__read_cache_page(struct address_space *mapping,
1818				pgoff_t index,
1819				int (*filler)(void *, struct page *),
1820				void *data,
1821				gfp_t gfp)
1822{
1823	struct page *page;
1824	int err;
 
 
 
1825repeat:
1826	page = find_get_page(mapping, index);
1827	if (!page) {
1828		page = __page_cache_alloc(gfp | __GFP_COLD);
1829		if (!page)
 
1830			return ERR_PTR(-ENOMEM);
1831		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
 
1832		if (unlikely(err)) {
1833			page_cache_release(page);
1834			if (err == -EEXIST)
1835				goto repeat;
1836			/* Presumably ENOMEM for radix tree node */
1837			return ERR_PTR(err);
1838		}
1839		err = filler(data, page);
1840		if (err < 0) {
1841			page_cache_release(page);
1842			page = ERR_PTR(err);
1843		}
1844	}
1845	return page;
1846}
1847
1848static struct page *do_read_cache_page(struct address_space *mapping,
1849				pgoff_t index,
1850				int (*filler)(void *, struct page *),
1851				void *data,
1852				gfp_t gfp)
1853
1854{
1855	struct page *page;
1856	int err;
1857
1858retry:
1859	page = __read_cache_page(mapping, index, filler, data, gfp);
1860	if (IS_ERR(page))
1861		return page;
1862	if (PageUptodate(page))
1863		goto out;
1864
1865	lock_page(page);
1866	if (!page->mapping) {
1867		unlock_page(page);
1868		page_cache_release(page);
1869		goto retry;
 
 
 
 
 
1870	}
1871	if (PageUptodate(page)) {
1872		unlock_page(page);
 
 
1873		goto out;
1874	}
1875	err = filler(data, page);
1876	if (err < 0) {
1877		page_cache_release(page);
 
 
 
 
1878		return ERR_PTR(err);
1879	}
 
1880out:
1881	mark_page_accessed(page);
1882	return page;
1883}
1884
1885/**
1886 * read_cache_page_async - read into page cache, fill it if needed
1887 * @mapping:	the page's address_space
1888 * @index:	the page index
1889 * @filler:	function to perform the read
1890 * @data:	first arg to filler(data, page) function, often left as NULL
1891 *
1892 * Same as read_cache_page, but don't wait for page to become unlocked
1893 * after submitting it to the filler.
1894 *
1895 * Read into the page cache. If a page already exists, and PageUptodate() is
1896 * not set, try to fill the page but don't wait for it to become unlocked.
1897 *
1898 * If the page does not get brought uptodate, return -EIO.
 
1899 */
1900struct page *read_cache_page_async(struct address_space *mapping,
1901				pgoff_t index,
1902				int (*filler)(void *, struct page *),
1903				void *data)
1904{
1905	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1906}
1907EXPORT_SYMBOL(read_cache_page_async);
1908
1909static struct page *wait_on_page_read(struct page *page)
1910{
1911	if (!IS_ERR(page)) {
1912		wait_on_page_locked(page);
1913		if (!PageUptodate(page)) {
1914			page_cache_release(page);
1915			page = ERR_PTR(-EIO);
1916		}
1917	}
1918	return page;
1919}
 
1920
1921/**
1922 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1923 * @mapping:	the page's address_space
1924 * @index:	the page index
1925 * @gfp:	the page allocator flags to use if allocating
1926 *
1927 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1928 * any new page allocations done using the specified allocation flags. Note
1929 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1930 * expect to do this atomically or anything like that - but you can pass in
1931 * other page requirements.
1932 *
1933 * If the page does not get brought uptodate, return -EIO.
1934 */
1935struct page *read_cache_page_gfp(struct address_space *mapping,
1936				pgoff_t index,
1937				gfp_t gfp)
1938{
1939	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1940
1941	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1942}
1943EXPORT_SYMBOL(read_cache_page_gfp);
1944
1945/**
1946 * read_cache_page - read into page cache, fill it if needed
1947 * @mapping:	the page's address_space
1948 * @index:	the page index
1949 * @filler:	function to perform the read
1950 * @data:	first arg to filler(data, page) function, often left as NULL
1951 *
1952 * Read into the page cache. If a page already exists, and PageUptodate() is
1953 * not set, try to fill the page then wait for it to become unlocked.
1954 *
1955 * If the page does not get brought uptodate, return -EIO.
1956 */
1957struct page *read_cache_page(struct address_space *mapping,
1958				pgoff_t index,
1959				int (*filler)(void *, struct page *),
1960				void *data)
1961{
1962	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1963}
1964EXPORT_SYMBOL(read_cache_page);
1965
1966/*
1967 * The logic we want is
1968 *
1969 *	if suid or (sgid and xgrp)
1970 *		remove privs
1971 */
1972int should_remove_suid(struct dentry *dentry)
1973{
1974	mode_t mode = dentry->d_inode->i_mode;
1975	int kill = 0;
1976
1977	/* suid always must be killed */
1978	if (unlikely(mode & S_ISUID))
1979		kill = ATTR_KILL_SUID;
1980
1981	/*
1982	 * sgid without any exec bits is just a mandatory locking mark; leave
1983	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1984	 */
1985	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1986		kill |= ATTR_KILL_SGID;
1987
1988	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1989		return kill;
1990
1991	return 0;
1992}
1993EXPORT_SYMBOL(should_remove_suid);
1994
1995static int __remove_suid(struct dentry *dentry, int kill)
1996{
1997	struct iattr newattrs;
1998
1999	newattrs.ia_valid = ATTR_FORCE | kill;
2000	return notify_change(dentry, &newattrs);
2001}
 
2002
2003int file_remove_suid(struct file *file)
2004{
2005	struct dentry *dentry = file->f_path.dentry;
2006	struct inode *inode = dentry->d_inode;
2007	int killsuid;
2008	int killpriv;
2009	int error = 0;
2010
2011	/* Fast path for nothing security related */
2012	if (IS_NOSEC(inode))
2013		return 0;
2014
2015	killsuid = should_remove_suid(dentry);
2016	killpriv = security_inode_need_killpriv(dentry);
2017
2018	if (killpriv < 0)
2019		return killpriv;
2020	if (killpriv)
2021		error = security_inode_killpriv(dentry);
2022	if (!error && killsuid)
2023		error = __remove_suid(dentry, killsuid);
2024	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2025		inode->i_flags |= S_NOSEC;
2026
2027	return error;
2028}
2029EXPORT_SYMBOL(file_remove_suid);
2030
2031static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2032			const struct iovec *iov, size_t base, size_t bytes)
2033{
2034	size_t copied = 0, left = 0;
2035
2036	while (bytes) {
2037		char __user *buf = iov->iov_base + base;
2038		int copy = min(bytes, iov->iov_len - base);
2039
2040		base = 0;
2041		left = __copy_from_user_inatomic(vaddr, buf, copy);
2042		copied += copy;
2043		bytes -= copy;
2044		vaddr += copy;
2045		iov++;
2046
2047		if (unlikely(left))
2048			break;
2049	}
2050	return copied - left;
2051}
2052
2053/*
2054 * Copy as much as we can into the page and return the number of bytes which
2055 * were successfully copied.  If a fault is encountered then return the number of
2056 * bytes which were copied.
2057 */
2058size_t iov_iter_copy_from_user_atomic(struct page *page,
2059		struct iov_iter *i, unsigned long offset, size_t bytes)
2060{
2061	char *kaddr;
2062	size_t copied;
2063
2064	BUG_ON(!in_atomic());
2065	kaddr = kmap_atomic(page, KM_USER0);
2066	if (likely(i->nr_segs == 1)) {
2067		int left;
2068		char __user *buf = i->iov->iov_base + i->iov_offset;
2069		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2070		copied = bytes - left;
2071	} else {
2072		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2073						i->iov, i->iov_offset, bytes);
2074	}
2075	kunmap_atomic(kaddr, KM_USER0);
2076
2077	return copied;
2078}
2079EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2080
2081/*
2082 * This has the same sideeffects and return value as
2083 * iov_iter_copy_from_user_atomic().
2084 * The difference is that it attempts to resolve faults.
2085 * Page must not be locked.
2086 */
2087size_t iov_iter_copy_from_user(struct page *page,
2088		struct iov_iter *i, unsigned long offset, size_t bytes)
2089{
2090	char *kaddr;
2091	size_t copied;
2092
2093	kaddr = kmap(page);
2094	if (likely(i->nr_segs == 1)) {
2095		int left;
2096		char __user *buf = i->iov->iov_base + i->iov_offset;
2097		left = __copy_from_user(kaddr + offset, buf, bytes);
2098		copied = bytes - left;
2099	} else {
2100		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2101						i->iov, i->iov_offset, bytes);
2102	}
2103	kunmap(page);
2104	return copied;
2105}
2106EXPORT_SYMBOL(iov_iter_copy_from_user);
2107
2108void iov_iter_advance(struct iov_iter *i, size_t bytes)
 
2109{
2110	BUG_ON(i->count < bytes);
2111
2112	if (likely(i->nr_segs == 1)) {
2113		i->iov_offset += bytes;
2114		i->count -= bytes;
2115	} else {
2116		const struct iovec *iov = i->iov;
2117		size_t base = i->iov_offset;
2118
2119		/*
2120		 * The !iov->iov_len check ensures we skip over unlikely
2121		 * zero-length segments (without overruning the iovec).
2122		 */
2123		while (bytes || unlikely(i->count && !iov->iov_len)) {
2124			int copy;
2125
2126			copy = min(bytes, iov->iov_len - base);
2127			BUG_ON(!i->count || i->count < copy);
2128			i->count -= copy;
2129			bytes -= copy;
2130			base += copy;
2131			if (iov->iov_len == base) {
2132				iov++;
2133				base = 0;
2134			}
2135		}
2136		i->iov = iov;
2137		i->iov_offset = base;
2138	}
2139}
2140EXPORT_SYMBOL(iov_iter_advance);
2141
2142/*
2143 * Fault in the first iovec of the given iov_iter, to a maximum length
2144 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2145 * accessed (ie. because it is an invalid address).
 
2146 *
2147 * writev-intensive code may want this to prefault several iovecs -- that
2148 * would be possible (callers must not rely on the fact that _only_ the
2149 * first iovec will be faulted with the current implementation).
2150 */
2151int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2152{
2153	char __user *buf = i->iov->iov_base + i->iov_offset;
2154	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2155	return fault_in_pages_readable(buf, bytes);
2156}
2157EXPORT_SYMBOL(iov_iter_fault_in_readable);
2158
2159/*
2160 * Return the count of just the current iov_iter segment.
2161 */
2162size_t iov_iter_single_seg_count(struct iov_iter *i)
 
 
2163{
2164	const struct iovec *iov = i->iov;
2165	if (i->nr_segs == 1)
2166		return i->count;
2167	else
2168		return min(i->count, iov->iov_len - i->iov_offset);
2169}
2170EXPORT_SYMBOL(iov_iter_single_seg_count);
2171
2172/*
2173 * Performs necessary checks before doing a write
2174 *
2175 * Can adjust writing position or amount of bytes to write.
2176 * Returns appropriate error code that caller should return or
2177 * zero in case that write should be allowed.
2178 */
2179inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2180{
2181	struct inode *inode = file->f_mapping->host;
2182	unsigned long limit = rlimit(RLIMIT_FSIZE);
2183
2184        if (unlikely(*pos < 0))
2185                return -EINVAL;
2186
2187	if (!isblk) {
2188		/* FIXME: this is for backwards compatibility with 2.4 */
2189		if (file->f_flags & O_APPEND)
2190                        *pos = i_size_read(inode);
2191
2192		if (limit != RLIM_INFINITY) {
2193			if (*pos >= limit) {
2194				send_sig(SIGXFSZ, current, 0);
2195				return -EFBIG;
2196			}
2197			if (*count > limit - (typeof(limit))*pos) {
2198				*count = limit - (typeof(limit))*pos;
2199			}
2200		}
2201	}
2202
2203	/*
2204	 * LFS rule
2205	 */
2206	if (unlikely(*pos + *count > MAX_NON_LFS &&
2207				!(file->f_flags & O_LARGEFILE))) {
2208		if (*pos >= MAX_NON_LFS) {
2209			return -EFBIG;
2210		}
2211		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2212			*count = MAX_NON_LFS - (unsigned long)*pos;
2213		}
2214	}
2215
2216	/*
2217	 * Are we about to exceed the fs block limit ?
2218	 *
2219	 * If we have written data it becomes a short write.  If we have
2220	 * exceeded without writing data we send a signal and return EFBIG.
2221	 * Linus frestrict idea will clean these up nicely..
2222	 */
2223	if (likely(!isblk)) {
2224		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2225			if (*count || *pos > inode->i_sb->s_maxbytes) {
2226				return -EFBIG;
2227			}
2228			/* zero-length writes at ->s_maxbytes are OK */
2229		}
2230
2231		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2232			*count = inode->i_sb->s_maxbytes - *pos;
2233	} else {
2234#ifdef CONFIG_BLOCK
2235		loff_t isize;
2236		if (bdev_read_only(I_BDEV(inode)))
2237			return -EPERM;
2238		isize = i_size_read(inode);
2239		if (*pos >= isize) {
2240			if (*count || *pos > isize)
2241				return -ENOSPC;
2242		}
2243
2244		if (*pos + *count > isize)
2245			*count = isize - *pos;
2246#else
2247		return -EPERM;
2248#endif
 
 
 
2249	}
2250	return 0;
2251}
2252EXPORT_SYMBOL(generic_write_checks);
2253
2254int pagecache_write_begin(struct file *file, struct address_space *mapping,
2255				loff_t pos, unsigned len, unsigned flags,
2256				struct page **pagep, void **fsdata)
2257{
2258	const struct address_space_operations *aops = mapping->a_ops;
2259
2260	return aops->write_begin(file, mapping, pos, len, flags,
2261							pagep, fsdata);
2262}
2263EXPORT_SYMBOL(pagecache_write_begin);
2264
2265int pagecache_write_end(struct file *file, struct address_space *mapping,
2266				loff_t pos, unsigned len, unsigned copied,
2267				struct page *page, void *fsdata)
2268{
2269	const struct address_space_operations *aops = mapping->a_ops;
2270
2271	mark_page_accessed(page);
2272	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
 
 
 
2273}
2274EXPORT_SYMBOL(pagecache_write_end);
2275
2276ssize_t
2277generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2278		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2279		size_t count, size_t ocount)
2280{
2281	struct file	*file = iocb->ki_filp;
2282	struct address_space *mapping = file->f_mapping;
2283	struct inode	*inode = mapping->host;
2284	ssize_t		written;
2285	size_t		write_len;
2286	pgoff_t		end;
2287
2288	if (count != ocount)
2289		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2290
2291	write_len = iov_length(iov, *nr_segs);
2292	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2293
2294	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2295	if (written)
2296		goto out;
2297
2298	/*
2299	 * After a write we want buffered reads to be sure to go to disk to get
2300	 * the new data.  We invalidate clean cached page from the region we're
2301	 * about to write.  We do this *before* the write so that we can return
2302	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2303	 */
2304	if (mapping->nrpages) {
2305		written = invalidate_inode_pages2_range(mapping,
2306					pos >> PAGE_CACHE_SHIFT, end);
2307		/*
2308		 * If a page can not be invalidated, return 0 to fall back
2309		 * to buffered write.
2310		 */
2311		if (written) {
2312			if (written == -EBUSY)
2313				return 0;
2314			goto out;
2315		}
2316	}
2317
2318	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2319
2320	/*
2321	 * Finally, try again to invalidate clean pages which might have been
2322	 * cached by non-direct readahead, or faulted in by get_user_pages()
2323	 * if the source of the write was an mmap'ed region of the file
2324	 * we're writing.  Either one is a pretty crazy thing to do,
2325	 * so we don't support it 100%.  If this invalidation
2326	 * fails, tough, the write still worked...
 
 
 
 
 
 
 
 
 
2327	 */
2328	if (mapping->nrpages) {
2329		invalidate_inode_pages2_range(mapping,
2330					      pos >> PAGE_CACHE_SHIFT, end);
2331	}
2332
2333	if (written > 0) {
 
 
 
 
2334		pos += written;
 
2335		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2336			i_size_write(inode, pos);
2337			mark_inode_dirty(inode);
2338		}
2339		*ppos = pos;
2340	}
2341out:
 
2342	return written;
2343}
2344EXPORT_SYMBOL(generic_file_direct_write);
2345
2346/*
2347 * Find or create a page at the given pagecache position. Return the locked
2348 * page. This function is specifically for buffered writes.
2349 */
2350struct page *grab_cache_page_write_begin(struct address_space *mapping,
2351					pgoff_t index, unsigned flags)
2352{
2353	int status;
2354	struct page *page;
2355	gfp_t gfp_notmask = 0;
2356	if (flags & AOP_FLAG_NOFS)
2357		gfp_notmask = __GFP_FS;
2358repeat:
2359	page = find_lock_page(mapping, index);
2360	if (page)
2361		goto found;
2362
2363	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2364	if (!page)
2365		return NULL;
2366	status = add_to_page_cache_lru(page, mapping, index,
2367						GFP_KERNEL & ~gfp_notmask);
2368	if (unlikely(status)) {
2369		page_cache_release(page);
2370		if (status == -EEXIST)
2371			goto repeat;
2372		return NULL;
2373	}
2374found:
2375	wait_on_page_writeback(page);
2376	return page;
2377}
2378EXPORT_SYMBOL(grab_cache_page_write_begin);
2379
2380static ssize_t generic_perform_write(struct file *file,
2381				struct iov_iter *i, loff_t pos)
2382{
 
 
2383	struct address_space *mapping = file->f_mapping;
2384	const struct address_space_operations *a_ops = mapping->a_ops;
 
2385	long status = 0;
2386	ssize_t written = 0;
2387	unsigned int flags = 0;
2388
2389	/*
2390	 * Copies from kernel address space cannot fail (NFSD is a big user).
2391	 */
2392	if (segment_eq(get_fs(), KERNEL_DS))
2393		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2394
2395	do {
2396		struct page *page;
2397		unsigned long offset;	/* Offset into pagecache page */
2398		unsigned long bytes;	/* Bytes to write to page */
2399		size_t copied;		/* Bytes copied from user */
2400		void *fsdata;
2401
2402		offset = (pos & (PAGE_CACHE_SIZE - 1));
2403		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2404						iov_iter_count(i));
2405
2406again:
2407
2408		/*
2409		 * Bring in the user page that we will copy from _first_.
2410		 * Otherwise there's a nasty deadlock on copying from the
2411		 * same page as we're writing to, without it being marked
2412		 * up-to-date.
2413		 *
2414		 * Not only is this an optimisation, but it is also required
2415		 * to check that the address is actually valid, when atomic
2416		 * usercopies are used, below.
2417		 */
2418		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2419			status = -EFAULT;
2420			break;
2421		}
2422
2423		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2424						&page, &fsdata);
2425		if (unlikely(status))
2426			break;
 
 
 
 
 
 
 
 
 
 
2427
2428		if (mapping_writably_mapped(mapping))
2429			flush_dcache_page(page);
2430
2431		pagefault_disable();
2432		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2433		pagefault_enable();
2434		flush_dcache_page(page);
2435
2436		mark_page_accessed(page);
2437		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2438						page, fsdata);
2439		if (unlikely(status < 0))
2440			break;
2441		copied = status;
2442
 
2443		cond_resched();
2444
2445		iov_iter_advance(i, copied);
2446		if (unlikely(copied == 0)) {
2447			/*
2448			 * If we were unable to copy any data at all, we must
2449			 * fall back to a single segment length write.
2450			 *
2451			 * If we didn't fallback here, we could livelock
2452			 * because not all segments in the iov can be copied at
2453			 * once without a pagefault.
2454			 */
2455			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2456						iov_iter_single_seg_count(i));
2457			goto again;
 
 
 
 
 
 
2458		}
2459		pos += copied;
2460		written += copied;
2461
2462		balance_dirty_pages_ratelimited(mapping);
2463
2464	} while (iov_iter_count(i));
2465
2466	return written ? written : status;
2467}
2468
2469ssize_t
2470generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2471		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2472		size_t count, ssize_t written)
2473{
2474	struct file *file = iocb->ki_filp;
2475	ssize_t status;
2476	struct iov_iter i;
2477
2478	iov_iter_init(&i, iov, nr_segs, count, written);
2479	status = generic_perform_write(file, &i, pos);
2480
2481	if (likely(status >= 0)) {
2482		written += status;
2483		*ppos = pos + status;
2484  	}
2485	
2486	return written ? written : status;
2487}
2488EXPORT_SYMBOL(generic_file_buffered_write);
2489
2490/**
2491 * __generic_file_aio_write - write data to a file
2492 * @iocb:	IO state structure (file, offset, etc.)
2493 * @iov:	vector with data to write
2494 * @nr_segs:	number of segments in the vector
2495 * @ppos:	position where to write
2496 *
2497 * This function does all the work needed for actually writing data to a
2498 * file. It does all basic checks, removes SUID from the file, updates
2499 * modification times and calls proper subroutines depending on whether we
2500 * do direct IO or a standard buffered write.
2501 *
2502 * It expects i_mutex to be grabbed unless we work on a block device or similar
2503 * object which does not need locking at all.
2504 *
2505 * This function does *not* take care of syncing data in case of O_SYNC write.
2506 * A caller has to handle it. This is mainly due to the fact that we want to
2507 * avoid syncing under i_mutex.
 
 
 
 
2508 */
2509ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2510				 unsigned long nr_segs, loff_t *ppos)
2511{
2512	struct file *file = iocb->ki_filp;
2513	struct address_space * mapping = file->f_mapping;
2514	size_t ocount;		/* original count */
2515	size_t count;		/* after file limit checks */
2516	struct inode 	*inode = mapping->host;
2517	loff_t		pos;
2518	ssize_t		written;
2519	ssize_t		err;
2520
2521	ocount = 0;
2522	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2523	if (err)
2524		return err;
2525
2526	count = ocount;
2527	pos = *ppos;
2528
2529	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2530
2531	/* We can write back this queue in page reclaim */
2532	current->backing_dev_info = mapping->backing_dev_info;
2533	written = 0;
2534
2535	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2536	if (err)
2537		goto out;
2538
2539	if (count == 0)
2540		goto out;
2541
2542	err = file_remove_suid(file);
2543	if (err)
2544		goto out;
2545
2546	file_update_time(file);
 
 
2547
2548	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2549	if (unlikely(file->f_flags & O_DIRECT)) {
2550		loff_t endbyte;
2551		ssize_t written_buffered;
2552
2553		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2554							ppos, count, ocount);
2555		if (written < 0 || written == count)
2556			goto out;
2557		/*
2558		 * direct-io write to a hole: fall through to buffered I/O
2559		 * for completing the rest of the request.
2560		 */
2561		pos += written;
2562		count -= written;
2563		written_buffered = generic_file_buffered_write(iocb, iov,
2564						nr_segs, pos, ppos, count,
2565						written);
2566		/*
2567		 * If generic_file_buffered_write() retuned a synchronous error
2568		 * then we want to return the number of bytes which were
2569		 * direct-written, or the error code if that was zero.  Note
2570		 * that this differs from normal direct-io semantics, which
2571		 * will return -EFOO even if some bytes were written.
2572		 */
2573		if (written_buffered < 0) {
2574			err = written_buffered;
2575			goto out;
2576		}
2577
2578		/*
2579		 * We need to ensure that the page cache pages are written to
2580		 * disk and invalidated to preserve the expected O_DIRECT
2581		 * semantics.
2582		 */
2583		endbyte = pos + written_buffered - written - 1;
2584		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2585		if (err == 0) {
2586			written = written_buffered;
2587			invalidate_mapping_pages(mapping,
2588						 pos >> PAGE_CACHE_SHIFT,
2589						 endbyte >> PAGE_CACHE_SHIFT);
2590		} else {
2591			/*
2592			 * We don't know how much we wrote, so just return
2593			 * the number of bytes which were direct-written
2594			 */
2595		}
2596	} else {
2597		written = generic_file_buffered_write(iocb, iov, nr_segs,
2598				pos, ppos, count, written);
2599	}
2600out:
2601	current->backing_dev_info = NULL;
2602	return written ? written : err;
2603}
2604EXPORT_SYMBOL(__generic_file_aio_write);
2605
2606/**
2607 * generic_file_aio_write - write data to a file
2608 * @iocb:	IO state structure
2609 * @iov:	vector with data to write
2610 * @nr_segs:	number of segments in the vector
2611 * @pos:	position in file where to write
2612 *
2613 * This is a wrapper around __generic_file_aio_write() to be used by most
2614 * filesystems. It takes care of syncing the file in case of O_SYNC file
2615 * and acquires i_mutex as needed.
 
 
 
 
2616 */
2617ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2618		unsigned long nr_segs, loff_t pos)
2619{
2620	struct file *file = iocb->ki_filp;
2621	struct inode *inode = file->f_mapping->host;
2622	struct blk_plug plug;
2623	ssize_t ret;
2624
2625	BUG_ON(iocb->ki_pos != pos);
2626
2627	mutex_lock(&inode->i_mutex);
2628	blk_start_plug(&plug);
2629	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2630	mutex_unlock(&inode->i_mutex);
2631
2632	if (ret > 0 || ret == -EIOCBQUEUED) {
2633		ssize_t err;
2634
2635		err = generic_write_sync(file, pos, ret);
2636		if (err < 0 && ret > 0)
2637			ret = err;
2638	}
2639	blk_finish_plug(&plug);
2640	return ret;
2641}
2642EXPORT_SYMBOL(generic_file_aio_write);
2643
2644/**
2645 * try_to_release_page() - release old fs-specific metadata on a page
2646 *
2647 * @page: the page which the kernel is trying to free
2648 * @gfp_mask: memory allocation flags (and I/O mode)
2649 *
2650 * The address_space is to try to release any data against the page
2651 * (presumably at page->private).  If the release was successful, return `1'.
2652 * Otherwise return zero.
2653 *
2654 * This may also be called if PG_fscache is set on a page, indicating that the
2655 * page is known to the local caching routines.
2656 *
2657 * The @gfp_mask argument specifies whether I/O may be performed to release
2658 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
 
2659 *
 
2660 */
2661int try_to_release_page(struct page *page, gfp_t gfp_mask)
2662{
2663	struct address_space * const mapping = page->mapping;
2664
2665	BUG_ON(!PageLocked(page));
2666	if (PageWriteback(page))
2667		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2668
2669	if (mapping && mapping->a_ops->releasepage)
2670		return mapping->a_ops->releasepage(page, gfp_mask);
2671	return try_to_free_buffers(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2672}
2673
2674EXPORT_SYMBOL(try_to_release_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
 
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/syscalls.h>
  26#include <linux/mman.h>
  27#include <linux/pagemap.h>
  28#include <linux/file.h>
  29#include <linux/uio.h>
  30#include <linux/error-injection.h>
  31#include <linux/hash.h>
  32#include <linux/writeback.h>
  33#include <linux/backing-dev.h>
  34#include <linux/pagevec.h>
 
  35#include <linux/security.h>
 
  36#include <linux/cpuset.h>
  37#include <linux/hugetlb.h>
  38#include <linux/memcontrol.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include <linux/migrate.h>
  46#include <linux/pipe_fs_i.h>
  47#include <linux/splice.h>
  48#include <linux/rcupdate_wait.h>
  49#include <linux/sched/mm.h>
  50#include <asm/pgalloc.h>
  51#include <asm/tlbflush.h>
  52#include "internal.h"
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/filemap.h>
  56
  57/*
  58 * FIXME: remove all knowledge of the buffer layer from the core VM
  59 */
  60#include <linux/buffer_head.h> /* for try_to_free_buffers */
  61
  62#include <asm/mman.h>
  63
  64#include "swap.h"
  65
  66/*
  67 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  68 * though.
  69 *
  70 * Shared mappings now work. 15.8.1995  Bruno.
  71 *
  72 * finished 'unifying' the page and buffer cache and SMP-threaded the
  73 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  74 *
  75 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  76 */
  77
  78/*
  79 * Lock ordering:
  80 *
  81 *  ->i_mmap_rwsem		(truncate_pagecache)
  82 *    ->private_lock		(__free_pte->block_dirty_folio)
  83 *      ->swap_lock		(exclusive_swap_page, others)
  84 *        ->i_pages lock
  85 *
  86 *  ->i_rwsem
  87 *    ->invalidate_lock		(acquired by fs in truncate path)
  88 *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  89 *
  90 *  ->mmap_lock
  91 *    ->i_mmap_rwsem
  92 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  93 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  94 *
  95 *  ->mmap_lock
  96 *    ->invalidate_lock		(filemap_fault)
  97 *      ->lock_page		(filemap_fault, access_process_vm)
  98 *
  99 *  ->i_rwsem			(generic_perform_write)
 100 *    ->mmap_lock		(fault_in_readable->do_page_fault)
 101 *
 102 *  bdi->wb.list_lock
 103 *    sb_lock			(fs/fs-writeback.c)
 104 *    ->i_pages lock		(__sync_single_inode)
 105 *
 106 *  ->i_mmap_rwsem
 107 *    ->anon_vma.lock		(vma_merge)
 108 *
 109 *  ->anon_vma.lock
 110 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 111 *
 112 *  ->page_table_lock or pte_lock
 113 *    ->swap_lock		(try_to_unmap_one)
 114 *    ->private_lock		(try_to_unmap_one)
 115 *    ->i_pages lock		(try_to_unmap_one)
 116 *    ->lruvec->lru_lock	(follow_page_mask->mark_page_accessed)
 117 *    ->lruvec->lru_lock	(check_pte_range->folio_isolate_lru)
 118 *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
 119 *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
 120 *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
 121 *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
 122 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 123 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 124 *    ->private_lock		(zap_pte_range->block_dirty_folio)
 
 
 
 
 125 */
 126
 127static void page_cache_delete(struct address_space *mapping,
 128				   struct folio *folio, void *shadow)
 
 
 
 
 129{
 130	XA_STATE(xas, &mapping->i_pages, folio->index);
 131	long nr = 1;
 132
 133	mapping_set_update(&xas, mapping);
 134
 135	xas_set_order(&xas, folio->index, folio_order(folio));
 136	nr = folio_nr_pages(folio);
 137
 138	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 
 
 
 139
 140	xas_store(&xas, shadow);
 141	xas_init_marks(&xas);
 142
 143	folio->mapping = NULL;
 144	/* Leave page->index set: truncation lookup relies upon it */
 145	mapping->nrpages -= nr;
 146}
 147
 148static void filemap_unaccount_folio(struct address_space *mapping,
 149		struct folio *folio)
 150{
 151	long nr;
 152
 153	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
 154	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
 155		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 156			 current->comm, folio_pfn(folio));
 157		dump_page(&folio->page, "still mapped when deleted");
 158		dump_stack();
 159		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 160
 161		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
 162			int mapcount = folio_mapcount(folio);
 163
 164			if (folio_ref_count(folio) >= mapcount + 2) {
 165				/*
 166				 * All vmas have already been torn down, so it's
 167				 * a good bet that actually the page is unmapped
 168				 * and we'd rather not leak it: if we're wrong,
 169				 * another bad page check should catch it later.
 170				 */
 171				atomic_set(&folio->_mapcount, -1);
 172				folio_ref_sub(folio, mapcount);
 173			}
 174		}
 175	}
 176
 177	/* hugetlb folios do not participate in page cache accounting. */
 178	if (folio_test_hugetlb(folio))
 179		return;
 180
 181	nr = folio_nr_pages(folio);
 182
 183	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 184	if (folio_test_swapbacked(folio)) {
 185		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 186		if (folio_test_pmd_mappable(folio))
 187			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
 188	} else if (folio_test_pmd_mappable(folio)) {
 189		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
 190		filemap_nr_thps_dec(mapping);
 191	}
 192
 193	/*
 194	 * At this point folio must be either written or cleaned by
 195	 * truncate.  Dirty folio here signals a bug and loss of
 196	 * unwritten data - on ordinary filesystems.
 197	 *
 198	 * But it's harmless on in-memory filesystems like tmpfs; and can
 199	 * occur when a driver which did get_user_pages() sets page dirty
 200	 * before putting it, while the inode is being finally evicted.
 201	 *
 202	 * Below fixes dirty accounting after removing the folio entirely
 203	 * but leaves the dirty flag set: it has no effect for truncated
 204	 * folio and anyway will be cleared before returning folio to
 205	 * buddy allocator.
 206	 */
 207	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
 208			 mapping_can_writeback(mapping)))
 209		folio_account_cleaned(folio, inode_to_wb(mapping->host));
 210}
 211
 212/*
 213 * Delete a page from the page cache and free it. Caller has to make
 214 * sure the page is locked and that nobody else uses it - or that usage
 215 * is safe.  The caller must hold the i_pages lock.
 216 */
 217void __filemap_remove_folio(struct folio *folio, void *shadow)
 218{
 219	struct address_space *mapping = folio->mapping;
 220
 221	trace_mm_filemap_delete_from_page_cache(folio);
 222	filemap_unaccount_folio(mapping, folio);
 223	page_cache_delete(mapping, folio, shadow);
 224}
 225
 226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
 227{
 228	void (*free_folio)(struct folio *);
 229	int refs = 1;
 230
 231	free_folio = mapping->a_ops->free_folio;
 232	if (free_folio)
 233		free_folio(folio);
 234
 235	if (folio_test_large(folio))
 236		refs = folio_nr_pages(folio);
 237	folio_put_refs(folio, refs);
 238}
 239
 240/**
 241 * filemap_remove_folio - Remove folio from page cache.
 242 * @folio: The folio.
 243 *
 244 * This must be called only on folios that are locked and have been
 245 * verified to be in the page cache.  It will never put the folio into
 246 * the free list because the caller has a reference on the page.
 247 */
 248void filemap_remove_folio(struct folio *folio)
 249{
 250	struct address_space *mapping = folio->mapping;
 251
 252	BUG_ON(!folio_test_locked(folio));
 253	spin_lock(&mapping->host->i_lock);
 254	xa_lock_irq(&mapping->i_pages);
 255	__filemap_remove_folio(folio, NULL);
 256	xa_unlock_irq(&mapping->i_pages);
 257	if (mapping_shrinkable(mapping))
 258		inode_add_lru(mapping->host);
 259	spin_unlock(&mapping->host->i_lock);
 260
 261	filemap_free_folio(mapping, folio);
 262}
 263
 264/*
 265 * page_cache_delete_batch - delete several folios from page cache
 266 * @mapping: the mapping to which folios belong
 267 * @fbatch: batch of folios to delete
 268 *
 269 * The function walks over mapping->i_pages and removes folios passed in
 270 * @fbatch from the mapping. The function expects @fbatch to be sorted
 271 * by page index and is optimised for it to be dense.
 272 * It tolerates holes in @fbatch (mapping entries at those indices are not
 273 * modified).
 274 *
 275 * The function expects the i_pages lock to be held.
 276 */
 277static void page_cache_delete_batch(struct address_space *mapping,
 278			     struct folio_batch *fbatch)
 279{
 280	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
 281	long total_pages = 0;
 282	int i = 0;
 283	struct folio *folio;
 284
 285	mapping_set_update(&xas, mapping);
 286	xas_for_each(&xas, folio, ULONG_MAX) {
 287		if (i >= folio_batch_count(fbatch))
 288			break;
 289
 290		/* A swap/dax/shadow entry got inserted? Skip it. */
 291		if (xa_is_value(folio))
 292			continue;
 293		/*
 294		 * A page got inserted in our range? Skip it. We have our
 295		 * pages locked so they are protected from being removed.
 296		 * If we see a page whose index is higher than ours, it
 297		 * means our page has been removed, which shouldn't be
 298		 * possible because we're holding the PageLock.
 299		 */
 300		if (folio != fbatch->folios[i]) {
 301			VM_BUG_ON_FOLIO(folio->index >
 302					fbatch->folios[i]->index, folio);
 303			continue;
 304		}
 305
 306		WARN_ON_ONCE(!folio_test_locked(folio));
 307
 308		folio->mapping = NULL;
 309		/* Leave folio->index set: truncation lookup relies on it */
 310
 311		i++;
 312		xas_store(&xas, NULL);
 313		total_pages += folio_nr_pages(folio);
 314	}
 315	mapping->nrpages -= total_pages;
 316}
 317
 318void delete_from_page_cache_batch(struct address_space *mapping,
 319				  struct folio_batch *fbatch)
 320{
 321	int i;
 
 322
 323	if (!folio_batch_count(fbatch))
 324		return;
 325
 326	spin_lock(&mapping->host->i_lock);
 327	xa_lock_irq(&mapping->i_pages);
 328	for (i = 0; i < folio_batch_count(fbatch); i++) {
 329		struct folio *folio = fbatch->folios[i];
 
 330
 331		trace_mm_filemap_delete_from_page_cache(folio);
 332		filemap_unaccount_folio(mapping, folio);
 333	}
 334	page_cache_delete_batch(mapping, fbatch);
 335	xa_unlock_irq(&mapping->i_pages);
 336	if (mapping_shrinkable(mapping))
 337		inode_add_lru(mapping->host);
 338	spin_unlock(&mapping->host->i_lock);
 339
 340	for (i = 0; i < folio_batch_count(fbatch); i++)
 341		filemap_free_folio(mapping, fbatch->folios[i]);
 342}
 
 343
 344int filemap_check_errors(struct address_space *mapping)
 345{
 346	int ret = 0;
 347	/* Check for outstanding write errors */
 348	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 349	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 350		ret = -ENOSPC;
 351	if (test_bit(AS_EIO, &mapping->flags) &&
 352	    test_and_clear_bit(AS_EIO, &mapping->flags))
 353		ret = -EIO;
 354	return ret;
 355}
 356EXPORT_SYMBOL(filemap_check_errors);
 357
 358static int filemap_check_and_keep_errors(struct address_space *mapping)
 359{
 360	/* Check for outstanding write errors */
 361	if (test_bit(AS_EIO, &mapping->flags))
 362		return -EIO;
 363	if (test_bit(AS_ENOSPC, &mapping->flags))
 364		return -ENOSPC;
 365	return 0;
 366}
 367
 368/**
 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
 370 * @mapping:	address space structure to write
 371 * @wbc:	the writeback_control controlling the writeout
 372 *
 373 * Call writepages on the mapping using the provided wbc to control the
 374 * writeout.
 375 *
 376 * Return: %0 on success, negative error code otherwise.
 377 */
 378int filemap_fdatawrite_wbc(struct address_space *mapping,
 379			   struct writeback_control *wbc)
 380{
 381	int ret;
 382
 383	if (!mapping_can_writeback(mapping) ||
 384	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 385		return 0;
 386
 387	wbc_attach_fdatawrite_inode(wbc, mapping->host);
 388	ret = do_writepages(mapping, wbc);
 389	wbc_detach_inode(wbc);
 390	return ret;
 391}
 392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
 393
 394/**
 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 396 * @mapping:	address space structure to write
 397 * @start:	offset in bytes where the range starts
 398 * @end:	offset in bytes where the range ends (inclusive)
 399 * @sync_mode:	enable synchronous operation
 400 *
 401 * Start writeback against all of a mapping's dirty pages that lie
 402 * within the byte offsets <start, end> inclusive.
 403 *
 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 405 * opposed to a regular memory cleansing writeback.  The difference between
 406 * these two operations is that if a dirty page/buffer is encountered, it must
 407 * be waited upon, and not just skipped over.
 408 *
 409 * Return: %0 on success, negative error code otherwise.
 410 */
 411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 412				loff_t end, int sync_mode)
 413{
 
 414	struct writeback_control wbc = {
 415		.sync_mode = sync_mode,
 416		.nr_to_write = LONG_MAX,
 417		.range_start = start,
 418		.range_end = end,
 419	};
 420
 421	return filemap_fdatawrite_wbc(mapping, &wbc);
 
 
 
 
 422}
 423
 424static inline int __filemap_fdatawrite(struct address_space *mapping,
 425	int sync_mode)
 426{
 427	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 428}
 429
 430int filemap_fdatawrite(struct address_space *mapping)
 431{
 432	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 433}
 434EXPORT_SYMBOL(filemap_fdatawrite);
 435
 436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 437				loff_t end)
 438{
 439	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 440}
 441EXPORT_SYMBOL(filemap_fdatawrite_range);
 442
 443/**
 444 * filemap_flush - mostly a non-blocking flush
 445 * @mapping:	target address_space
 446 *
 447 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 448 * purposes - I/O may not be started against all dirty pages.
 449 *
 450 * Return: %0 on success, negative error code otherwise.
 451 */
 452int filemap_flush(struct address_space *mapping)
 453{
 454	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 455}
 456EXPORT_SYMBOL(filemap_flush);
 457
 458/**
 459 * filemap_range_has_page - check if a page exists in range.
 460 * @mapping:           address space within which to check
 461 * @start_byte:        offset in bytes where the range starts
 462 * @end_byte:          offset in bytes where the range ends (inclusive)
 463 *
 464 * Find at least one page in the range supplied, usually used to check if
 465 * direct writing in this range will trigger a writeback.
 466 *
 467 * Return: %true if at least one page exists in the specified range,
 468 * %false otherwise.
 469 */
 470bool filemap_range_has_page(struct address_space *mapping,
 471			   loff_t start_byte, loff_t end_byte)
 472{
 473	struct folio *folio;
 474	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 475	pgoff_t max = end_byte >> PAGE_SHIFT;
 476
 477	if (end_byte < start_byte)
 478		return false;
 479
 480	rcu_read_lock();
 481	for (;;) {
 482		folio = xas_find(&xas, max);
 483		if (xas_retry(&xas, folio))
 484			continue;
 485		/* Shadow entries don't count */
 486		if (xa_is_value(folio))
 487			continue;
 488		/*
 489		 * We don't need to try to pin this page; we're about to
 490		 * release the RCU lock anyway.  It is enough to know that
 491		 * there was a page here recently.
 492		 */
 493		break;
 494	}
 495	rcu_read_unlock();
 496
 497	return folio != NULL;
 498}
 499EXPORT_SYMBOL(filemap_range_has_page);
 500
 501static void __filemap_fdatawait_range(struct address_space *mapping,
 502				     loff_t start_byte, loff_t end_byte)
 503{
 504	pgoff_t index = start_byte >> PAGE_SHIFT;
 505	pgoff_t end = end_byte >> PAGE_SHIFT;
 506	struct folio_batch fbatch;
 507	unsigned nr_folios;
 508
 509	folio_batch_init(&fbatch);
 510
 511	while (index <= end) {
 512		unsigned i;
 513
 514		nr_folios = filemap_get_folios_tag(mapping, &index, end,
 515				PAGECACHE_TAG_WRITEBACK, &fbatch);
 516
 517		if (!nr_folios)
 518			break;
 519
 520		for (i = 0; i < nr_folios; i++) {
 521			struct folio *folio = fbatch.folios[i];
 522
 523			folio_wait_writeback(folio);
 524		}
 525		folio_batch_release(&fbatch);
 526		cond_resched();
 527	}
 528}
 529
 530/**
 531 * filemap_fdatawait_range - wait for writeback to complete
 532 * @mapping:		address space structure to wait for
 533 * @start_byte:		offset in bytes where the range starts
 534 * @end_byte:		offset in bytes where the range ends (inclusive)
 535 *
 536 * Walk the list of under-writeback pages of the given address space
 537 * in the given range and wait for all of them.  Check error status of
 538 * the address space and return it.
 539 *
 540 * Since the error status of the address space is cleared by this function,
 541 * callers are responsible for checking the return value and handling and/or
 542 * reporting the error.
 543 *
 544 * Return: error status of the address space.
 545 */
 546int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 547			    loff_t end_byte)
 548{
 549	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 550	return filemap_check_errors(mapping);
 551}
 552EXPORT_SYMBOL(filemap_fdatawait_range);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 553
 554/**
 555 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 556 * @mapping:		address space structure to wait for
 557 * @start_byte:		offset in bytes where the range starts
 558 * @end_byte:		offset in bytes where the range ends (inclusive)
 559 *
 560 * Walk the list of under-writeback pages of the given address space in the
 561 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 562 * this function does not clear error status of the address space.
 563 *
 564 * Use this function if callers don't handle errors themselves.  Expected
 565 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 566 * fsfreeze(8)
 567 */
 568int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 569		loff_t start_byte, loff_t end_byte)
 570{
 571	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 572	return filemap_check_and_keep_errors(mapping);
 573}
 574EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 575
 576/**
 577 * file_fdatawait_range - wait for writeback to complete
 578 * @file:		file pointing to address space structure to wait for
 579 * @start_byte:		offset in bytes where the range starts
 580 * @end_byte:		offset in bytes where the range ends (inclusive)
 581 *
 582 * Walk the list of under-writeback pages of the address space that file
 583 * refers to, in the given range and wait for all of them.  Check error
 584 * status of the address space vs. the file->f_wb_err cursor and return it.
 585 *
 586 * Since the error status of the file is advanced by this function,
 587 * callers are responsible for checking the return value and handling and/or
 588 * reporting the error.
 589 *
 590 * Return: error status of the address space vs. the file->f_wb_err cursor.
 591 */
 592int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 593{
 594	struct address_space *mapping = file->f_mapping;
 595
 596	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 597	return file_check_and_advance_wb_err(file);
 598}
 599EXPORT_SYMBOL(file_fdatawait_range);
 600
 601/**
 602 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 603 * @mapping: address space structure to wait for
 604 *
 605 * Walk the list of under-writeback pages of the given address space
 606 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 607 * does not clear error status of the address space.
 608 *
 609 * Use this function if callers don't handle errors themselves.  Expected
 610 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 611 * fsfreeze(8)
 612 *
 613 * Return: error status of the address space.
 614 */
 615int filemap_fdatawait_keep_errors(struct address_space *mapping)
 616{
 617	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 618	return filemap_check_and_keep_errors(mapping);
 619}
 620EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 621
 622/* Returns true if writeback might be needed or already in progress. */
 623static bool mapping_needs_writeback(struct address_space *mapping)
 624{
 625	return mapping->nrpages;
 626}
 
 627
 628bool filemap_range_has_writeback(struct address_space *mapping,
 629				 loff_t start_byte, loff_t end_byte)
 630{
 631	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 632	pgoff_t max = end_byte >> PAGE_SHIFT;
 633	struct folio *folio;
 634
 635	if (end_byte < start_byte)
 636		return false;
 637
 638	rcu_read_lock();
 639	xas_for_each(&xas, folio, max) {
 640		if (xas_retry(&xas, folio))
 641			continue;
 642		if (xa_is_value(folio))
 643			continue;
 644		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
 645				folio_test_writeback(folio))
 646			break;
 
 647	}
 648	rcu_read_unlock();
 649	return folio != NULL;
 650}
 651EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
 652
 653/**
 654 * filemap_write_and_wait_range - write out & wait on a file range
 655 * @mapping:	the address_space for the pages
 656 * @lstart:	offset in bytes where the range starts
 657 * @lend:	offset in bytes where the range ends (inclusive)
 658 *
 659 * Write out and wait upon file offsets lstart->lend, inclusive.
 660 *
 661 * Note that @lend is inclusive (describes the last byte to be written) so
 662 * that this function can be used to write to the very end-of-file (end = -1).
 663 *
 664 * Return: error status of the address space.
 665 */
 666int filemap_write_and_wait_range(struct address_space *mapping,
 667				 loff_t lstart, loff_t lend)
 668{
 669	int err = 0, err2;
 670
 671	if (lend < lstart)
 672		return 0;
 673
 674	if (mapping_needs_writeback(mapping)) {
 675		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 676						 WB_SYNC_ALL);
 677		/*
 678		 * Even if the above returned error, the pages may be
 679		 * written partially (e.g. -ENOSPC), so we wait for it.
 680		 * But the -EIO is special case, it may indicate the worst
 681		 * thing (e.g. bug) happened, so we avoid waiting for it.
 682		 */
 683		if (err != -EIO)
 684			__filemap_fdatawait_range(mapping, lstart, lend);
 685	}
 686	err2 = filemap_check_errors(mapping);
 687	if (!err)
 688		err = err2;
 689	return err;
 690}
 691EXPORT_SYMBOL(filemap_write_and_wait_range);
 692
 693void __filemap_set_wb_err(struct address_space *mapping, int err)
 694{
 695	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 696
 697	trace_filemap_set_wb_err(mapping, eseq);
 698}
 699EXPORT_SYMBOL(__filemap_set_wb_err);
 700
 701/**
 702 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 703 * 				   and advance wb_err to current one
 704 * @file: struct file on which the error is being reported
 705 *
 706 * When userland calls fsync (or something like nfsd does the equivalent), we
 707 * want to report any writeback errors that occurred since the last fsync (or
 708 * since the file was opened if there haven't been any).
 709 *
 710 * Grab the wb_err from the mapping. If it matches what we have in the file,
 711 * then just quickly return 0. The file is all caught up.
 712 *
 713 * If it doesn't match, then take the mapping value, set the "seen" flag in
 714 * it and try to swap it into place. If it works, or another task beat us
 715 * to it with the new value, then update the f_wb_err and return the error
 716 * portion. The error at this point must be reported via proper channels
 717 * (a'la fsync, or NFS COMMIT operation, etc.).
 718 *
 719 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 720 * value is protected by the f_lock since we must ensure that it reflects
 721 * the latest value swapped in for this file descriptor.
 722 *
 723 * Return: %0 on success, negative error code otherwise.
 
 724 */
 725int file_check_and_advance_wb_err(struct file *file)
 726{
 727	int err = 0;
 728	errseq_t old = READ_ONCE(file->f_wb_err);
 729	struct address_space *mapping = file->f_mapping;
 730
 731	/* Locklessly handle the common case where nothing has changed */
 732	if (errseq_check(&mapping->wb_err, old)) {
 733		/* Something changed, must use slow path */
 734		spin_lock(&file->f_lock);
 735		old = file->f_wb_err;
 736		err = errseq_check_and_advance(&mapping->wb_err,
 737						&file->f_wb_err);
 738		trace_file_check_and_advance_wb_err(file, old);
 739		spin_unlock(&file->f_lock);
 740	}
 741
 742	/*
 743	 * We're mostly using this function as a drop in replacement for
 744	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 745	 * that the legacy code would have had on these flags.
 
 
 
 746	 */
 747	clear_bit(AS_EIO, &mapping->flags);
 748	clear_bit(AS_ENOSPC, &mapping->flags);
 749	return err;
 750}
 751EXPORT_SYMBOL(file_check_and_advance_wb_err);
 752
 753/**
 754 * file_write_and_wait_range - write out & wait on a file range
 755 * @file:	file pointing to address_space with pages
 756 * @lstart:	offset in bytes where the range starts
 757 * @lend:	offset in bytes where the range ends (inclusive)
 758 *
 759 * Write out and wait upon file offsets lstart->lend, inclusive.
 760 *
 761 * Note that @lend is inclusive (describes the last byte to be written) so
 762 * that this function can be used to write to the very end-of-file (end = -1).
 763 *
 764 * After writing out and waiting on the data, we check and advance the
 765 * f_wb_err cursor to the latest value, and return any errors detected there.
 766 *
 767 * Return: %0 on success, negative error code otherwise.
 768 */
 769int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 770{
 771	int err = 0, err2;
 772	struct address_space *mapping = file->f_mapping;
 
 
 
 
 
 
 
 
 
 773
 774	if (lend < lstart)
 775		return 0;
 776
 777	if (mapping_needs_writeback(mapping)) {
 778		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 779						 WB_SYNC_ALL);
 780		/* See comment of filemap_write_and_wait() */
 781		if (err != -EIO)
 782			__filemap_fdatawait_range(mapping, lstart, lend);
 783	}
 784	err2 = file_check_and_advance_wb_err(file);
 785	if (!err)
 786		err = err2;
 787	return err;
 788}
 789EXPORT_SYMBOL(file_write_and_wait_range);
 790
 791/**
 792 * replace_page_cache_folio - replace a pagecache folio with a new one
 793 * @old:	folio to be replaced
 794 * @new:	folio to replace with
 795 *
 796 * This function replaces a folio in the pagecache with a new one.  On
 797 * success it acquires the pagecache reference for the new folio and
 798 * drops it for the old folio.  Both the old and new folios must be
 799 * locked.  This function does not add the new folio to the LRU, the
 800 * caller must do that.
 801 *
 802 * The remove + add is atomic.  This function cannot fail.
 
 803 */
 804void replace_page_cache_folio(struct folio *old, struct folio *new)
 
 805{
 806	struct address_space *mapping = old->mapping;
 807	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
 808	pgoff_t offset = old->index;
 809	XA_STATE(xas, &mapping->i_pages, offset);
 810
 811	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
 812	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
 813	VM_BUG_ON_FOLIO(new->mapping, new);
 814
 815	folio_get(new);
 816	new->mapping = mapping;
 817	new->index = offset;
 818
 819	mem_cgroup_replace_folio(old, new);
 820
 821	xas_lock_irq(&xas);
 822	xas_store(&xas, new);
 823
 824	old->mapping = NULL;
 825	/* hugetlb pages do not participate in page cache accounting. */
 826	if (!folio_test_hugetlb(old))
 827		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
 828	if (!folio_test_hugetlb(new))
 829		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
 830	if (folio_test_swapbacked(old))
 831		__lruvec_stat_sub_folio(old, NR_SHMEM);
 832	if (folio_test_swapbacked(new))
 833		__lruvec_stat_add_folio(new, NR_SHMEM);
 834	xas_unlock_irq(&xas);
 835	if (free_folio)
 836		free_folio(old);
 837	folio_put(old);
 838}
 839EXPORT_SYMBOL_GPL(replace_page_cache_folio);
 840
 841noinline int __filemap_add_folio(struct address_space *mapping,
 842		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
 843{
 844	XA_STATE(xas, &mapping->i_pages, index);
 845	void *alloced_shadow = NULL;
 846	int alloced_order = 0;
 847	bool huge;
 848	long nr;
 849
 850	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 851	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
 852	VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
 853			folio);
 854	mapping_set_update(&xas, mapping);
 855
 856	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
 857	xas_set_order(&xas, index, folio_order(folio));
 858	huge = folio_test_hugetlb(folio);
 859	nr = folio_nr_pages(folio);
 860
 861	gfp &= GFP_RECLAIM_MASK;
 862	folio_ref_add(folio, nr);
 863	folio->mapping = mapping;
 864	folio->index = xas.xa_index;
 865
 866	for (;;) {
 867		int order = -1, split_order = 0;
 868		void *entry, *old = NULL;
 869
 870		xas_lock_irq(&xas);
 871		xas_for_each_conflict(&xas, entry) {
 872			old = entry;
 873			if (!xa_is_value(entry)) {
 874				xas_set_err(&xas, -EEXIST);
 875				goto unlock;
 876			}
 877			/*
 878			 * If a larger entry exists,
 879			 * it will be the first and only entry iterated.
 880			 */
 881			if (order == -1)
 882				order = xas_get_order(&xas);
 883		}
 884
 885		/* entry may have changed before we re-acquire the lock */
 886		if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
 887			xas_destroy(&xas);
 888			alloced_order = 0;
 889		}
 890
 891		if (old) {
 892			if (order > 0 && order > folio_order(folio)) {
 893				/* How to handle large swap entries? */
 894				BUG_ON(shmem_mapping(mapping));
 895				if (!alloced_order) {
 896					split_order = order;
 897					goto unlock;
 898				}
 899				xas_split(&xas, old, order);
 900				xas_reset(&xas);
 901			}
 902			if (shadowp)
 903				*shadowp = old;
 904		}
 905
 906		xas_store(&xas, folio);
 907		if (xas_error(&xas))
 908			goto unlock;
 909
 910		mapping->nrpages += nr;
 911
 912		/* hugetlb pages do not participate in page cache accounting */
 913		if (!huge) {
 914			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 915			if (folio_test_pmd_mappable(folio))
 916				__lruvec_stat_mod_folio(folio,
 917						NR_FILE_THPS, nr);
 918		}
 919
 920unlock:
 921		xas_unlock_irq(&xas);
 922
 923		/* split needed, alloc here and retry. */
 924		if (split_order) {
 925			xas_split_alloc(&xas, old, split_order, gfp);
 926			if (xas_error(&xas))
 927				goto error;
 928			alloced_shadow = old;
 929			alloced_order = split_order;
 930			xas_reset(&xas);
 931			continue;
 932		}
 933
 934		if (!xas_nomem(&xas, gfp))
 935			break;
 936	}
 937
 938	if (xas_error(&xas))
 939		goto error;
 940
 941	trace_mm_filemap_add_to_page_cache(folio);
 942	return 0;
 943error:
 944	folio->mapping = NULL;
 945	/* Leave page->index set: truncation relies upon it */
 946	folio_put_refs(folio, nr);
 947	return xas_error(&xas);
 948}
 949ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
 950
 951int filemap_add_folio(struct address_space *mapping, struct folio *folio,
 952				pgoff_t index, gfp_t gfp)
 953{
 954	void *shadow = NULL;
 955	int ret;
 956
 957	ret = mem_cgroup_charge(folio, NULL, gfp);
 958	if (ret)
 959		return ret;
 960
 961	__folio_set_locked(folio);
 962	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
 963	if (unlikely(ret)) {
 964		mem_cgroup_uncharge(folio);
 965		__folio_clear_locked(folio);
 966	} else {
 967		/*
 968		 * The folio might have been evicted from cache only
 969		 * recently, in which case it should be activated like
 970		 * any other repeatedly accessed folio.
 971		 * The exception is folios getting rewritten; evicting other
 972		 * data from the working set, only to cache data that will
 973		 * get overwritten with something else, is a waste of memory.
 974		 */
 975		WARN_ON_ONCE(folio_test_active(folio));
 976		if (!(gfp & __GFP_WRITE) && shadow)
 977			workingset_refault(folio, shadow);
 978		folio_add_lru(folio);
 979	}
 980	return ret;
 981}
 982EXPORT_SYMBOL_GPL(filemap_add_folio);
 983
 984#ifdef CONFIG_NUMA
 985struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
 986{
 987	int n;
 988	struct folio *folio;
 989
 990	if (cpuset_do_page_mem_spread()) {
 991		unsigned int cpuset_mems_cookie;
 992		do {
 993			cpuset_mems_cookie = read_mems_allowed_begin();
 994			n = cpuset_mem_spread_node();
 995			folio = __folio_alloc_node_noprof(gfp, order, n);
 996		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
 997
 998		return folio;
 999	}
1000	return folio_alloc_noprof(gfp, order);
1001}
1002EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1003#endif
1004
1005/*
1006 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1007 *
1008 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1009 *
1010 * @mapping1: the first mapping to lock
1011 * @mapping2: the second mapping to lock
1012 */
1013void filemap_invalidate_lock_two(struct address_space *mapping1,
1014				 struct address_space *mapping2)
1015{
1016	if (mapping1 > mapping2)
1017		swap(mapping1, mapping2);
1018	if (mapping1)
1019		down_write(&mapping1->invalidate_lock);
1020	if (mapping2 && mapping1 != mapping2)
1021		down_write_nested(&mapping2->invalidate_lock, 1);
1022}
1023EXPORT_SYMBOL(filemap_invalidate_lock_two);
1024
1025/*
1026 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1027 *
1028 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1029 *
1030 * @mapping1: the first mapping to unlock
1031 * @mapping2: the second mapping to unlock
1032 */
1033void filemap_invalidate_unlock_two(struct address_space *mapping1,
1034				   struct address_space *mapping2)
1035{
1036	if (mapping1)
1037		up_write(&mapping1->invalidate_lock);
1038	if (mapping2 && mapping1 != mapping2)
1039		up_write(&mapping2->invalidate_lock);
1040}
1041EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1042
1043/*
1044 * In order to wait for pages to become available there must be
1045 * waitqueues associated with pages. By using a hash table of
1046 * waitqueues where the bucket discipline is to maintain all
1047 * waiters on the same queue and wake all when any of the pages
1048 * become available, and for the woken contexts to check to be
1049 * sure the appropriate page became available, this saves space
1050 * at a cost of "thundering herd" phenomena during rare hash
1051 * collisions.
1052 */
1053#define PAGE_WAIT_TABLE_BITS 8
1054#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1055static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1056
1057static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1058{
1059	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1060}
1061
1062void __init pagecache_init(void)
1063{
1064	int i;
1065
1066	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1067		init_waitqueue_head(&folio_wait_table[i]);
1068
1069	page_writeback_init();
1070}
1071
1072/*
1073 * The page wait code treats the "wait->flags" somewhat unusually, because
1074 * we have multiple different kinds of waits, not just the usual "exclusive"
1075 * one.
1076 *
1077 * We have:
1078 *
1079 *  (a) no special bits set:
1080 *
1081 *	We're just waiting for the bit to be released, and when a waker
1082 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1083 *	and remove it from the wait queue.
1084 *
1085 *	Simple and straightforward.
1086 *
1087 *  (b) WQ_FLAG_EXCLUSIVE:
1088 *
1089 *	The waiter is waiting to get the lock, and only one waiter should
1090 *	be woken up to avoid any thundering herd behavior. We'll set the
1091 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1092 *
1093 *	This is the traditional exclusive wait.
1094 *
1095 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1096 *
1097 *	The waiter is waiting to get the bit, and additionally wants the
1098 *	lock to be transferred to it for fair lock behavior. If the lock
1099 *	cannot be taken, we stop walking the wait queue without waking
1100 *	the waiter.
1101 *
1102 *	This is the "fair lock handoff" case, and in addition to setting
1103 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1104 *	that it now has the lock.
1105 */
1106static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1107{
1108	unsigned int flags;
1109	struct wait_page_key *key = arg;
1110	struct wait_page_queue *wait_page
1111		= container_of(wait, struct wait_page_queue, wait);
1112
1113	if (!wake_page_match(wait_page, key))
1114		return 0;
1115
1116	/*
1117	 * If it's a lock handoff wait, we get the bit for it, and
1118	 * stop walking (and do not wake it up) if we can't.
1119	 */
1120	flags = wait->flags;
1121	if (flags & WQ_FLAG_EXCLUSIVE) {
1122		if (test_bit(key->bit_nr, &key->folio->flags))
1123			return -1;
1124		if (flags & WQ_FLAG_CUSTOM) {
1125			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1126				return -1;
1127			flags |= WQ_FLAG_DONE;
1128		}
1129	}
1130
1131	/*
1132	 * We are holding the wait-queue lock, but the waiter that
1133	 * is waiting for this will be checking the flags without
1134	 * any locking.
1135	 *
1136	 * So update the flags atomically, and wake up the waiter
1137	 * afterwards to avoid any races. This store-release pairs
1138	 * with the load-acquire in folio_wait_bit_common().
1139	 */
1140	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1141	wake_up_state(wait->private, mode);
1142
1143	/*
1144	 * Ok, we have successfully done what we're waiting for,
1145	 * and we can unconditionally remove the wait entry.
1146	 *
1147	 * Note that this pairs with the "finish_wait()" in the
1148	 * waiter, and has to be the absolute last thing we do.
1149	 * After this list_del_init(&wait->entry) the wait entry
1150	 * might be de-allocated and the process might even have
1151	 * exited.
1152	 */
1153	list_del_init_careful(&wait->entry);
1154	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1155}
1156
1157static void folio_wake_bit(struct folio *folio, int bit_nr)
1158{
1159	wait_queue_head_t *q = folio_waitqueue(folio);
1160	struct wait_page_key key;
1161	unsigned long flags;
1162
1163	key.folio = folio;
1164	key.bit_nr = bit_nr;
1165	key.page_match = 0;
1166
1167	spin_lock_irqsave(&q->lock, flags);
1168	__wake_up_locked_key(q, TASK_NORMAL, &key);
1169
1170	/*
1171	 * It's possible to miss clearing waiters here, when we woke our page
1172	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1173	 * That's okay, it's a rare case. The next waker will clear it.
1174	 *
1175	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1176	 * other), the flag may be cleared in the course of freeing the page;
1177	 * but that is not required for correctness.
1178	 */
1179	if (!waitqueue_active(q) || !key.page_match)
1180		folio_clear_waiters(folio);
1181
1182	spin_unlock_irqrestore(&q->lock, flags);
1183}
 
1184
1185/*
1186 * A choice of three behaviors for folio_wait_bit_common():
1187 */
1188enum behavior {
1189	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1190			 * __folio_lock() waiting on then setting PG_locked.
1191			 */
1192	SHARED,		/* Hold ref to page and check the bit when woken, like
1193			 * folio_wait_writeback() waiting on PG_writeback.
1194			 */
1195	DROP,		/* Drop ref to page before wait, no check when woken,
1196			 * like folio_put_wait_locked() on PG_locked.
1197			 */
1198};
1199
1200/*
1201 * Attempt to check (or get) the folio flag, and mark us done
1202 * if successful.
1203 */
1204static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1205					struct wait_queue_entry *wait)
1206{
1207	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1208		if (test_and_set_bit(bit_nr, &folio->flags))
1209			return false;
1210	} else if (test_bit(bit_nr, &folio->flags))
1211		return false;
1212
1213	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1214	return true;
1215}
1216
1217/* How many times do we accept lock stealing from under a waiter? */
1218int sysctl_page_lock_unfairness = 5;
1219
1220static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1221		int state, enum behavior behavior)
1222{
1223	wait_queue_head_t *q = folio_waitqueue(folio);
1224	int unfairness = sysctl_page_lock_unfairness;
1225	struct wait_page_queue wait_page;
1226	wait_queue_entry_t *wait = &wait_page.wait;
1227	bool thrashing = false;
1228	unsigned long pflags;
1229	bool in_thrashing;
1230
1231	if (bit_nr == PG_locked &&
1232	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1233		delayacct_thrashing_start(&in_thrashing);
1234		psi_memstall_enter(&pflags);
1235		thrashing = true;
1236	}
1237
1238	init_wait(wait);
1239	wait->func = wake_page_function;
1240	wait_page.folio = folio;
1241	wait_page.bit_nr = bit_nr;
1242
1243repeat:
1244	wait->flags = 0;
1245	if (behavior == EXCLUSIVE) {
1246		wait->flags = WQ_FLAG_EXCLUSIVE;
1247		if (--unfairness < 0)
1248			wait->flags |= WQ_FLAG_CUSTOM;
1249	}
1250
1251	/*
1252	 * Do one last check whether we can get the
1253	 * page bit synchronously.
1254	 *
1255	 * Do the folio_set_waiters() marking before that
1256	 * to let any waker we _just_ missed know they
1257	 * need to wake us up (otherwise they'll never
1258	 * even go to the slow case that looks at the
1259	 * page queue), and add ourselves to the wait
1260	 * queue if we need to sleep.
1261	 *
1262	 * This part needs to be done under the queue
1263	 * lock to avoid races.
1264	 */
1265	spin_lock_irq(&q->lock);
1266	folio_set_waiters(folio);
1267	if (!folio_trylock_flag(folio, bit_nr, wait))
1268		__add_wait_queue_entry_tail(q, wait);
1269	spin_unlock_irq(&q->lock);
1270
1271	/*
1272	 * From now on, all the logic will be based on
1273	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1274	 * see whether the page bit testing has already
1275	 * been done by the wake function.
1276	 *
1277	 * We can drop our reference to the folio.
1278	 */
1279	if (behavior == DROP)
1280		folio_put(folio);
1281
1282	/*
1283	 * Note that until the "finish_wait()", or until
1284	 * we see the WQ_FLAG_WOKEN flag, we need to
1285	 * be very careful with the 'wait->flags', because
1286	 * we may race with a waker that sets them.
1287	 */
1288	for (;;) {
1289		unsigned int flags;
1290
1291		set_current_state(state);
1292
1293		/* Loop until we've been woken or interrupted */
1294		flags = smp_load_acquire(&wait->flags);
1295		if (!(flags & WQ_FLAG_WOKEN)) {
1296			if (signal_pending_state(state, current))
1297				break;
1298
1299			io_schedule();
1300			continue;
1301		}
1302
1303		/* If we were non-exclusive, we're done */
1304		if (behavior != EXCLUSIVE)
1305			break;
1306
1307		/* If the waker got the lock for us, we're done */
1308		if (flags & WQ_FLAG_DONE)
1309			break;
1310
1311		/*
1312		 * Otherwise, if we're getting the lock, we need to
1313		 * try to get it ourselves.
1314		 *
1315		 * And if that fails, we'll have to retry this all.
1316		 */
1317		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1318			goto repeat;
1319
1320		wait->flags |= WQ_FLAG_DONE;
1321		break;
1322	}
1323
1324	/*
1325	 * If a signal happened, this 'finish_wait()' may remove the last
1326	 * waiter from the wait-queues, but the folio waiters bit will remain
1327	 * set. That's ok. The next wakeup will take care of it, and trying
1328	 * to do it here would be difficult and prone to races.
1329	 */
1330	finish_wait(q, wait);
1331
1332	if (thrashing) {
1333		delayacct_thrashing_end(&in_thrashing);
1334		psi_memstall_leave(&pflags);
1335	}
1336
1337	/*
1338	 * NOTE! The wait->flags weren't stable until we've done the
1339	 * 'finish_wait()', and we could have exited the loop above due
1340	 * to a signal, and had a wakeup event happen after the signal
1341	 * test but before the 'finish_wait()'.
1342	 *
1343	 * So only after the finish_wait() can we reliably determine
1344	 * if we got woken up or not, so we can now figure out the final
1345	 * return value based on that state without races.
1346	 *
1347	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1348	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1349	 */
1350	if (behavior == EXCLUSIVE)
1351		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1352
1353	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1354}
1355
1356#ifdef CONFIG_MIGRATION
1357/**
1358 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1359 * @entry: migration swap entry.
1360 * @ptl: already locked ptl. This function will drop the lock.
1361 *
1362 * Wait for a migration entry referencing the given page to be removed. This is
1363 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1364 * this can be called without taking a reference on the page. Instead this
1365 * should be called while holding the ptl for the migration entry referencing
1366 * the page.
1367 *
1368 * Returns after unlocking the ptl.
1369 *
1370 * This follows the same logic as folio_wait_bit_common() so see the comments
1371 * there.
1372 */
1373void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1374	__releases(ptl)
1375{
1376	struct wait_page_queue wait_page;
1377	wait_queue_entry_t *wait = &wait_page.wait;
1378	bool thrashing = false;
1379	unsigned long pflags;
1380	bool in_thrashing;
1381	wait_queue_head_t *q;
1382	struct folio *folio = pfn_swap_entry_folio(entry);
1383
1384	q = folio_waitqueue(folio);
1385	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1386		delayacct_thrashing_start(&in_thrashing);
1387		psi_memstall_enter(&pflags);
1388		thrashing = true;
1389	}
1390
1391	init_wait(wait);
1392	wait->func = wake_page_function;
1393	wait_page.folio = folio;
1394	wait_page.bit_nr = PG_locked;
1395	wait->flags = 0;
1396
1397	spin_lock_irq(&q->lock);
1398	folio_set_waiters(folio);
1399	if (!folio_trylock_flag(folio, PG_locked, wait))
1400		__add_wait_queue_entry_tail(q, wait);
1401	spin_unlock_irq(&q->lock);
1402
1403	/*
1404	 * If a migration entry exists for the page the migration path must hold
1405	 * a valid reference to the page, and it must take the ptl to remove the
1406	 * migration entry. So the page is valid until the ptl is dropped.
1407	 */
1408	spin_unlock(ptl);
1409
1410	for (;;) {
1411		unsigned int flags;
1412
1413		set_current_state(TASK_UNINTERRUPTIBLE);
1414
1415		/* Loop until we've been woken or interrupted */
1416		flags = smp_load_acquire(&wait->flags);
1417		if (!(flags & WQ_FLAG_WOKEN)) {
1418			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1419				break;
1420
1421			io_schedule();
1422			continue;
1423		}
1424		break;
1425	}
1426
1427	finish_wait(q, wait);
1428
1429	if (thrashing) {
1430		delayacct_thrashing_end(&in_thrashing);
1431		psi_memstall_leave(&pflags);
1432	}
1433}
1434#endif
1435
1436void folio_wait_bit(struct folio *folio, int bit_nr)
1437{
1438	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1439}
1440EXPORT_SYMBOL(folio_wait_bit);
1441
1442int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1443{
1444	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1445}
1446EXPORT_SYMBOL(folio_wait_bit_killable);
1447
1448/**
1449 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1450 * @folio: The folio to wait for.
1451 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1452 *
1453 * The caller should hold a reference on @folio.  They expect the page to
1454 * become unlocked relatively soon, but do not wish to hold up migration
1455 * (for example) by holding the reference while waiting for the folio to
1456 * come unlocked.  After this function returns, the caller should not
1457 * dereference @folio.
1458 *
1459 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1460 */
1461static int folio_put_wait_locked(struct folio *folio, int state)
1462{
1463	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1464}
1465
1466/**
1467 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1468 * @folio: Folio defining the wait queue of interest
1469 * @waiter: Waiter to add to the queue
1470 *
1471 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1472 */
1473void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1474{
1475	wait_queue_head_t *q = folio_waitqueue(folio);
1476	unsigned long flags;
1477
1478	spin_lock_irqsave(&q->lock, flags);
1479	__add_wait_queue_entry_tail(q, waiter);
1480	folio_set_waiters(folio);
1481	spin_unlock_irqrestore(&q->lock, flags);
1482}
1483EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1484
1485/**
1486 * folio_unlock - Unlock a locked folio.
1487 * @folio: The folio.
1488 *
1489 * Unlocks the folio and wakes up any thread sleeping on the page lock.
 
 
 
1490 *
1491 * Context: May be called from interrupt or process context.  May not be
1492 * called from NMI context.
1493 */
1494void folio_unlock(struct folio *folio)
1495{
1496	/* Bit 7 allows x86 to check the byte's sign bit */
1497	BUILD_BUG_ON(PG_waiters != 7);
1498	BUILD_BUG_ON(PG_locked > 7);
1499	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1500	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1501		folio_wake_bit(folio, PG_locked);
1502}
1503EXPORT_SYMBOL(folio_unlock);
1504
1505/**
1506 * folio_end_read - End read on a folio.
1507 * @folio: The folio.
1508 * @success: True if all reads completed successfully.
1509 *
1510 * When all reads against a folio have completed, filesystems should
1511 * call this function to let the pagecache know that no more reads
1512 * are outstanding.  This will unlock the folio and wake up any thread
1513 * sleeping on the lock.  The folio will also be marked uptodate if all
1514 * reads succeeded.
1515 *
1516 * Context: May be called from interrupt or process context.  May not be
1517 * called from NMI context.
1518 */
1519void folio_end_read(struct folio *folio, bool success)
1520{
1521	unsigned long mask = 1 << PG_locked;
1522
1523	/* Must be in bottom byte for x86 to work */
1524	BUILD_BUG_ON(PG_uptodate > 7);
1525	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1526	VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1527
1528	if (likely(success))
1529		mask |= 1 << PG_uptodate;
1530	if (folio_xor_flags_has_waiters(folio, mask))
1531		folio_wake_bit(folio, PG_locked);
1532}
1533EXPORT_SYMBOL(folio_end_read);
1534
1535/**
1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1537 * @folio: The folio.
1538 *
1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1540 * it.  The folio reference held for PG_private_2 being set is released.
1541 *
1542 * This is, for example, used when a netfs folio is being written to a local
1543 * disk cache, thereby allowing writes to the cache for the same folio to be
1544 * serialised.
1545 */
1546void folio_end_private_2(struct folio *folio)
1547{
1548	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1549	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1550	folio_wake_bit(folio, PG_private_2);
1551	folio_put(folio);
1552}
1553EXPORT_SYMBOL(folio_end_private_2);
1554
1555/**
1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1557 * @folio: The folio to wait on.
1558 *
1559 * Wait for PG_private_2 to be cleared on a folio.
1560 */
1561void folio_wait_private_2(struct folio *folio)
1562{
1563	while (folio_test_private_2(folio))
1564		folio_wait_bit(folio, PG_private_2);
1565}
1566EXPORT_SYMBOL(folio_wait_private_2);
1567
1568/**
1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1570 * @folio: The folio to wait on.
1571 *
1572 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1573 * received by the calling task.
1574 *
1575 * Return:
1576 * - 0 if successful.
1577 * - -EINTR if a fatal signal was encountered.
1578 */
1579int folio_wait_private_2_killable(struct folio *folio)
1580{
1581	int ret = 0;
1582
1583	while (folio_test_private_2(folio)) {
1584		ret = folio_wait_bit_killable(folio, PG_private_2);
1585		if (ret < 0)
1586			break;
1587	}
1588
1589	return ret;
1590}
1591EXPORT_SYMBOL(folio_wait_private_2_killable);
1592
1593/**
1594 * folio_end_writeback - End writeback against a folio.
1595 * @folio: The folio.
1596 *
1597 * The folio must actually be under writeback.
1598 *
1599 * Context: May be called from process or interrupt context.
1600 */
1601void folio_end_writeback(struct folio *folio)
1602{
1603	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
 
1604
1605	/*
1606	 * folio_test_clear_reclaim() could be used here but it is an
1607	 * atomic operation and overkill in this particular case. Failing
1608	 * to shuffle a folio marked for immediate reclaim is too mild
1609	 * a gain to justify taking an atomic operation penalty at the
1610	 * end of every folio writeback.
1611	 */
1612	if (folio_test_reclaim(folio)) {
1613		folio_clear_reclaim(folio);
1614		folio_rotate_reclaimable(folio);
1615	}
1616
1617	/*
1618	 * Writeback does not hold a folio reference of its own, relying
1619	 * on truncation to wait for the clearing of PG_writeback.
1620	 * But here we must make sure that the folio is not freed and
1621	 * reused before the folio_wake_bit().
1622	 */
1623	folio_get(folio);
1624	if (__folio_end_writeback(folio))
1625		folio_wake_bit(folio, PG_writeback);
1626	acct_reclaim_writeback(folio);
1627	folio_put(folio);
1628}
1629EXPORT_SYMBOL(folio_end_writeback);
1630
1631/**
1632 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1633 * @folio: The folio to lock
1634 */
1635void __folio_lock(struct folio *folio)
1636{
1637	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1638				EXCLUSIVE);
1639}
1640EXPORT_SYMBOL(__folio_lock);
1641
1642int __folio_lock_killable(struct folio *folio)
1643{
1644	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1645					EXCLUSIVE);
1646}
1647EXPORT_SYMBOL_GPL(__folio_lock_killable);
1648
1649static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1650{
1651	struct wait_queue_head *q = folio_waitqueue(folio);
1652	int ret;
1653
1654	wait->folio = folio;
1655	wait->bit_nr = PG_locked;
1656
1657	spin_lock_irq(&q->lock);
1658	__add_wait_queue_entry_tail(q, &wait->wait);
1659	folio_set_waiters(folio);
1660	ret = !folio_trylock(folio);
1661	/*
1662	 * If we were successful now, we know we're still on the
1663	 * waitqueue as we're still under the lock. This means it's
1664	 * safe to remove and return success, we know the callback
1665	 * isn't going to trigger.
1666	 */
1667	if (!ret)
1668		__remove_wait_queue(q, &wait->wait);
1669	else
1670		ret = -EIOCBQUEUED;
1671	spin_unlock_irq(&q->lock);
1672	return ret;
1673}
 
1674
1675/*
1676 * Return values:
1677 * 0 - folio is locked.
1678 * non-zero - folio is not locked.
1679 *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1680 *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1681 *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1682 *
1683 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1684 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1685 */
1686vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1687{
1688	unsigned int flags = vmf->flags;
1689
1690	if (fault_flag_allow_retry_first(flags)) {
1691		/*
1692		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1693		 * released even though returning VM_FAULT_RETRY.
1694		 */
1695		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1696			return VM_FAULT_RETRY;
1697
1698		release_fault_lock(vmf);
1699		if (flags & FAULT_FLAG_KILLABLE)
1700			folio_wait_locked_killable(folio);
1701		else
1702			folio_wait_locked(folio);
1703		return VM_FAULT_RETRY;
1704	}
1705	if (flags & FAULT_FLAG_KILLABLE) {
1706		bool ret;
1707
1708		ret = __folio_lock_killable(folio);
1709		if (ret) {
1710			release_fault_lock(vmf);
1711			return VM_FAULT_RETRY;
1712		}
1713	} else {
1714		__folio_lock(folio);
1715	}
1716
1717	return 0;
1718}
1719
1720/**
1721 * page_cache_next_miss() - Find the next gap in the page cache.
1722 * @mapping: Mapping.
1723 * @index: Index.
1724 * @max_scan: Maximum range to search.
1725 *
1726 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1727 * gap with the lowest index.
1728 *
1729 * This function may be called under the rcu_read_lock.  However, this will
1730 * not atomically search a snapshot of the cache at a single point in time.
1731 * For example, if a gap is created at index 5, then subsequently a gap is
1732 * created at index 10, page_cache_next_miss covering both indices may
1733 * return 10 if called under the rcu_read_lock.
1734 *
1735 * Return: The index of the gap if found, otherwise an index outside the
1736 * range specified (in which case 'return - index >= max_scan' will be true).
1737 * In the rare case of index wrap-around, 0 will be returned.
1738 */
1739pgoff_t page_cache_next_miss(struct address_space *mapping,
1740			     pgoff_t index, unsigned long max_scan)
1741{
1742	XA_STATE(xas, &mapping->i_pages, index);
1743
1744	while (max_scan--) {
1745		void *entry = xas_next(&xas);
1746		if (!entry || xa_is_value(entry))
1747			return xas.xa_index;
1748		if (xas.xa_index == 0)
1749			return 0;
1750	}
1751
1752	return index + max_scan;
1753}
1754EXPORT_SYMBOL(page_cache_next_miss);
1755
1756/**
1757 * page_cache_prev_miss() - Find the previous gap in the page cache.
1758 * @mapping: Mapping.
1759 * @index: Index.
1760 * @max_scan: Maximum range to search.
1761 *
1762 * Search the range [max(index - max_scan + 1, 0), index] for the
1763 * gap with the highest index.
1764 *
1765 * This function may be called under the rcu_read_lock.  However, this will
1766 * not atomically search a snapshot of the cache at a single point in time.
1767 * For example, if a gap is created at index 10, then subsequently a gap is
1768 * created at index 5, page_cache_prev_miss() covering both indices may
1769 * return 5 if called under the rcu_read_lock.
1770 *
1771 * Return: The index of the gap if found, otherwise an index outside the
1772 * range specified (in which case 'index - return >= max_scan' will be true).
1773 * In the rare case of wrap-around, ULONG_MAX will be returned.
1774 */
1775pgoff_t page_cache_prev_miss(struct address_space *mapping,
1776			     pgoff_t index, unsigned long max_scan)
1777{
1778	XA_STATE(xas, &mapping->i_pages, index);
1779
1780	while (max_scan--) {
1781		void *entry = xas_prev(&xas);
1782		if (!entry || xa_is_value(entry))
1783			break;
1784		if (xas.xa_index == ULONG_MAX)
1785			break;
1786	}
1787
1788	return xas.xa_index;
1789}
1790EXPORT_SYMBOL(page_cache_prev_miss);
1791
1792/*
1793 * Lockless page cache protocol:
1794 * On the lookup side:
1795 * 1. Load the folio from i_pages
1796 * 2. Increment the refcount if it's not zero
1797 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1798 *
1799 * On the removal side:
1800 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1801 * B. Remove the page from i_pages
1802 * C. Return the page to the page allocator
1803 *
1804 * This means that any page may have its reference count temporarily
1805 * increased by a speculative page cache (or GUP-fast) lookup as it can
1806 * be allocated by another user before the RCU grace period expires.
1807 * Because the refcount temporarily acquired here may end up being the
1808 * last refcount on the page, any page allocation must be freeable by
1809 * folio_put().
1810 */
1811
1812/*
1813 * filemap_get_entry - Get a page cache entry.
1814 * @mapping: the address_space to search
1815 * @index: The page cache index.
1816 *
1817 * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1818 * it is returned with an increased refcount.  If it is a shadow entry
1819 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1820 * it is returned without further action.
1821 *
1822 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1823 */
1824void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1825{
1826	XA_STATE(xas, &mapping->i_pages, index);
1827	struct folio *folio;
1828
1829	rcu_read_lock();
1830repeat:
1831	xas_reset(&xas);
1832	folio = xas_load(&xas);
1833	if (xas_retry(&xas, folio))
1834		goto repeat;
1835	/*
1836	 * A shadow entry of a recently evicted page, or a swap entry from
1837	 * shmem/tmpfs.  Return it without attempting to raise page count.
1838	 */
1839	if (!folio || xa_is_value(folio))
1840		goto out;
 
 
 
 
 
 
 
 
1841
1842	if (!folio_try_get(folio))
1843		goto repeat;
1844
1845	if (unlikely(folio != xas_reload(&xas))) {
1846		folio_put(folio);
1847		goto repeat;
 
 
 
1848	}
1849out:
1850	rcu_read_unlock();
1851
1852	return folio;
1853}
 
1854
1855/**
1856 * __filemap_get_folio - Find and get a reference to a folio.
1857 * @mapping: The address_space to search.
1858 * @index: The page index.
1859 * @fgp_flags: %FGP flags modify how the folio is returned.
1860 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1861 *
1862 * Looks up the page cache entry at @mapping & @index.
1863 *
1864 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1865 * if the %GFP flags specified for %FGP_CREAT are atomic.
1866 *
1867 * If this function returns a folio, it is returned with an increased refcount.
1868 *
1869 * Return: The found folio or an ERR_PTR() otherwise.
1870 */
1871struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1872		fgf_t fgp_flags, gfp_t gfp)
1873{
1874	struct folio *folio;
1875
1876repeat:
1877	folio = filemap_get_entry(mapping, index);
1878	if (xa_is_value(folio))
1879		folio = NULL;
1880	if (!folio)
1881		goto no_page;
1882
1883	if (fgp_flags & FGP_LOCK) {
1884		if (fgp_flags & FGP_NOWAIT) {
1885			if (!folio_trylock(folio)) {
1886				folio_put(folio);
1887				return ERR_PTR(-EAGAIN);
1888			}
1889		} else {
1890			folio_lock(folio);
1891		}
1892
1893		/* Has the page been truncated? */
1894		if (unlikely(folio->mapping != mapping)) {
1895			folio_unlock(folio);
1896			folio_put(folio);
1897			goto repeat;
1898		}
1899		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1900	}
 
 
 
1901
1902	if (fgp_flags & FGP_ACCESSED)
1903		folio_mark_accessed(folio);
1904	else if (fgp_flags & FGP_WRITE) {
1905		/* Clear idle flag for buffer write */
1906		if (folio_test_idle(folio))
1907			folio_clear_idle(folio);
1908	}
1909
1910	if (fgp_flags & FGP_STABLE)
1911		folio_wait_stable(folio);
1912no_page:
1913	if (!folio && (fgp_flags & FGP_CREAT)) {
1914		unsigned int min_order = mapping_min_folio_order(mapping);
1915		unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1916		int err;
1917		index = mapping_align_index(mapping, index);
1918
1919		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1920			gfp |= __GFP_WRITE;
1921		if (fgp_flags & FGP_NOFS)
1922			gfp &= ~__GFP_FS;
1923		if (fgp_flags & FGP_NOWAIT) {
1924			gfp &= ~GFP_KERNEL;
1925			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1926		}
1927		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1928			fgp_flags |= FGP_LOCK;
1929
1930		if (order > mapping_max_folio_order(mapping))
1931			order = mapping_max_folio_order(mapping);
1932		/* If we're not aligned, allocate a smaller folio */
1933		if (index & ((1UL << order) - 1))
1934			order = __ffs(index);
1935
1936		do {
1937			gfp_t alloc_gfp = gfp;
1938
1939			err = -ENOMEM;
1940			if (order > min_order)
1941				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1942			folio = filemap_alloc_folio(alloc_gfp, order);
1943			if (!folio)
1944				continue;
1945
1946			/* Init accessed so avoid atomic mark_page_accessed later */
1947			if (fgp_flags & FGP_ACCESSED)
1948				__folio_set_referenced(folio);
1949
1950			err = filemap_add_folio(mapping, folio, index, gfp);
1951			if (!err)
1952				break;
1953			folio_put(folio);
1954			folio = NULL;
1955		} while (order-- > min_order);
1956
1957		if (err == -EEXIST)
1958			goto repeat;
1959		if (err)
1960			return ERR_PTR(err);
1961		/*
1962		 * filemap_add_folio locks the page, and for mmap
1963		 * we expect an unlocked page.
 
 
1964		 */
1965		if (folio && (fgp_flags & FGP_FOR_MMAP))
1966			folio_unlock(folio);
 
 
 
 
 
 
1967	}
1968
1969	if (!folio)
1970		return ERR_PTR(-ENOENT);
1971	return folio;
1972}
1973EXPORT_SYMBOL(__filemap_get_folio);
1974
1975static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1976		xa_mark_t mark)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977{
1978	struct folio *folio;
 
 
1979
1980retry:
1981	if (mark == XA_PRESENT)
1982		folio = xas_find(xas, max);
1983	else
1984		folio = xas_find_marked(xas, max, mark);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985
1986	if (xas_retry(xas, folio))
1987		goto retry;
1988	/*
1989	 * A shadow entry of a recently evicted page, a swap
1990	 * entry from shmem/tmpfs or a DAX entry.  Return it
1991	 * without attempting to raise page count.
1992	 */
1993	if (!folio || xa_is_value(folio))
1994		return folio;
1995
1996	if (!folio_try_get(folio))
1997		goto reset;
 
 
 
1998
1999	if (unlikely(folio != xas_reload(xas))) {
2000		folio_put(folio);
2001		goto reset;
2002	}
2003
2004	return folio;
2005reset:
2006	xas_reset(xas);
2007	goto retry;
 
 
 
 
2008}
2009
2010/**
2011 * find_get_entries - gang pagecache lookup
2012 * @mapping:	The address_space to search
2013 * @start:	The starting page cache index
2014 * @end:	The final page index (inclusive).
2015 * @fbatch:	Where the resulting entries are placed.
2016 * @indices:	The cache indices corresponding to the entries in @entries
2017 *
2018 * find_get_entries() will search for and return a batch of entries in
2019 * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2020 * takes a reference on any actual folios it returns.
2021 *
2022 * The entries have ascending indexes.  The indices may not be consecutive
2023 * due to not-present entries or large folios.
2024 *
2025 * Any shadow entries of evicted folios, or swap entries from
2026 * shmem/tmpfs, are included in the returned array.
2027 *
2028 * Return: The number of entries which were found.
2029 */
2030unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2031		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2032{
2033	XA_STATE(xas, &mapping->i_pages, *start);
2034	struct folio *folio;
 
2035
2036	rcu_read_lock();
2037	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2038		indices[fbatch->nr] = xas.xa_index;
2039		if (!folio_batch_add(fbatch, folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040			break;
2041	}
2042
2043	if (folio_batch_count(fbatch)) {
2044		unsigned long nr;
2045		int idx = folio_batch_count(fbatch) - 1;
2046
2047		folio = fbatch->folios[idx];
2048		if (!xa_is_value(folio))
2049			nr = folio_nr_pages(folio);
2050		else
2051			nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2052		*start = round_down(indices[idx] + nr, nr);
2053	}
2054	rcu_read_unlock();
2055
2056	return folio_batch_count(fbatch);
2057}
 
 
 
2058
2059/**
2060 * find_lock_entries - Find a batch of pagecache entries.
2061 * @mapping:	The address_space to search.
2062 * @start:	The starting page cache index.
2063 * @end:	The final page index (inclusive).
2064 * @fbatch:	Where the resulting entries are placed.
2065 * @indices:	The cache indices of the entries in @fbatch.
2066 *
2067 * find_lock_entries() will return a batch of entries from @mapping.
2068 * Swap, shadow and DAX entries are included.  Folios are returned
2069 * locked and with an incremented refcount.  Folios which are locked
2070 * by somebody else or under writeback are skipped.  Folios which are
2071 * partially outside the range are not returned.
2072 *
2073 * The entries have ascending indexes.  The indices may not be consecutive
2074 * due to not-present entries, large folios, folios which could not be
2075 * locked or folios under writeback.
2076 *
2077 * Return: The number of entries which were found.
2078 */
2079unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2080		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2081{
2082	XA_STATE(xas, &mapping->i_pages, *start);
2083	struct folio *folio;
2084
2085	rcu_read_lock();
2086	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2087		unsigned long base;
2088		unsigned long nr;
2089
2090		if (!xa_is_value(folio)) {
2091			nr = folio_nr_pages(folio);
2092			base = folio->index;
2093			/* Omit large folio which begins before the start */
2094			if (base < *start)
2095				goto put;
2096			/* Omit large folio which extends beyond the end */
2097			if (base + nr - 1 > end)
2098				goto put;
2099			if (!folio_trylock(folio))
2100				goto put;
2101			if (folio->mapping != mapping ||
2102			    folio_test_writeback(folio))
2103				goto unlock;
2104			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2105					folio);
2106		} else {
2107			nr = 1 << xas_get_order(&xas);
2108			base = xas.xa_index & ~(nr - 1);
2109			/* Omit order>0 value which begins before the start */
2110			if (base < *start)
2111				continue;
2112			/* Omit order>0 value which extends beyond the end */
2113			if (base + nr - 1 > end)
2114				break;
2115		}
2116
2117		/* Update start now so that last update is correct on return */
2118		*start = base + nr;
2119		indices[fbatch->nr] = xas.xa_index;
2120		if (!folio_batch_add(fbatch, folio))
2121			break;
2122		continue;
2123unlock:
2124		folio_unlock(folio);
2125put:
2126		folio_put(folio);
2127	}
2128	rcu_read_unlock();
2129
2130	return folio_batch_count(fbatch);
2131}
 
2132
2133/**
2134 * filemap_get_folios - Get a batch of folios
2135 * @mapping:	The address_space to search
2136 * @start:	The starting page index
2137 * @end:	The final page index (inclusive)
2138 * @fbatch:	The batch to fill.
2139 *
2140 * Search for and return a batch of folios in the mapping starting at
2141 * index @start and up to index @end (inclusive).  The folios are returned
2142 * in @fbatch with an elevated reference count.
2143 *
2144 * Return: The number of folios which were found.
2145 * We also update @start to index the next folio for the traversal.
2146 */
2147unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2148		pgoff_t end, struct folio_batch *fbatch)
2149{
2150	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2151}
2152EXPORT_SYMBOL(filemap_get_folios);
2153
2154/**
2155 * filemap_get_folios_contig - Get a batch of contiguous folios
2156 * @mapping:	The address_space to search
2157 * @start:	The starting page index
2158 * @end:	The final page index (inclusive)
2159 * @fbatch:	The batch to fill
2160 *
2161 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2162 * except the returned folios are guaranteed to be contiguous. This may
2163 * not return all contiguous folios if the batch gets filled up.
2164 *
2165 * Return: The number of folios found.
2166 * Also update @start to be positioned for traversal of the next folio.
2167 */
2168
2169unsigned filemap_get_folios_contig(struct address_space *mapping,
2170		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2171{
2172	XA_STATE(xas, &mapping->i_pages, *start);
2173	unsigned long nr;
2174	struct folio *folio;
2175
2176	rcu_read_lock();
2177
2178	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2179			folio = xas_next(&xas)) {
2180		if (xas_retry(&xas, folio))
 
 
 
 
 
2181			continue;
2182		/*
2183		 * If the entry has been swapped out, we can stop looking.
2184		 * No current caller is looking for DAX entries.
2185		 */
2186		if (xa_is_value(folio))
2187			goto update_start;
2188
2189		/* If we landed in the middle of a THP, continue at its end. */
2190		if (xa_is_sibling(folio))
2191			goto update_start;
2192
2193		if (!folio_try_get(folio))
2194			goto retry;
2195
2196		if (unlikely(folio != xas_reload(&xas)))
2197			goto put_folio;
2198
2199		if (!folio_batch_add(fbatch, folio)) {
2200			nr = folio_nr_pages(folio);
2201			*start = folio->index + nr;
2202			goto out;
2203		}
2204		continue;
2205put_folio:
2206		folio_put(folio);
2207
2208retry:
2209		xas_reset(&xas);
2210	}
2211
2212update_start:
2213	nr = folio_batch_count(fbatch);
 
 
 
2214
2215	if (nr) {
2216		folio = fbatch->folios[nr - 1];
2217		*start = folio_next_index(folio);
2218	}
2219out:
 
 
 
 
 
 
2220	rcu_read_unlock();
2221	return folio_batch_count(fbatch);
 
 
 
 
2222}
2223EXPORT_SYMBOL(filemap_get_folios_contig);
2224
2225/**
2226 * filemap_get_folios_tag - Get a batch of folios matching @tag
2227 * @mapping:    The address_space to search
2228 * @start:      The starting page index
2229 * @end:        The final page index (inclusive)
2230 * @tag:        The tag index
2231 * @fbatch:     The batch to fill
2232 *
2233 * The first folio may start before @start; if it does, it will contain
2234 * @start.  The final folio may extend beyond @end; if it does, it will
2235 * contain @end.  The folios have ascending indices.  There may be gaps
2236 * between the folios if there are indices which have no folio in the
2237 * page cache.  If folios are added to or removed from the page cache
2238 * while this is running, they may or may not be found by this call.
2239 * Only returns folios that are tagged with @tag.
2240 *
2241 * Return: The number of folios found.
2242 * Also update @start to index the next folio for traversal.
2243 */
2244unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2245			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2246{
2247	XA_STATE(xas, &mapping->i_pages, *start);
2248	struct folio *folio;
2249
2250	rcu_read_lock();
2251	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2252		/*
2253		 * Shadow entries should never be tagged, but this iteration
2254		 * is lockless so there is a window for page reclaim to evict
2255		 * a page we saw tagged. Skip over it.
2256		 */
2257		if (xa_is_value(folio))
2258			continue;
2259		if (!folio_batch_add(fbatch, folio)) {
2260			unsigned long nr = folio_nr_pages(folio);
2261			*start = folio->index + nr;
2262			goto out;
2263		}
2264	}
2265	/*
2266	 * We come here when there is no page beyond @end. We take care to not
2267	 * overflow the index @start as it confuses some of the callers. This
2268	 * breaks the iteration when there is a page at index -1 but that is
2269	 * already broke anyway.
2270	 */
2271	if (end == (pgoff_t)-1)
2272		*start = (pgoff_t)-1;
2273	else
2274		*start = end + 1;
2275out:
2276	rcu_read_unlock();
2277
2278	return folio_batch_count(fbatch);
2279}
2280EXPORT_SYMBOL(filemap_get_folios_tag);
2281
2282/*
2283 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2284 * a _large_ part of the i/o request. Imagine the worst scenario:
2285 *
2286 *      ---R__________________________________________B__________
2287 *         ^ reading here                             ^ bad block(assume 4k)
2288 *
2289 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2290 * => failing the whole request => read(R) => read(R+1) =>
2291 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2292 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2293 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2294 *
2295 * It is going insane. Fix it by quickly scaling down the readahead size.
2296 */
2297static void shrink_readahead_size_eio(struct file_ra_state *ra)
 
2298{
2299	ra->ra_pages /= 4;
2300}
2301
2302/*
2303 * filemap_get_read_batch - Get a batch of folios for read
 
 
 
 
 
 
 
2304 *
2305 * Get a batch of folios which represent a contiguous range of bytes in
2306 * the file.  No exceptional entries will be returned.  If @index is in
2307 * the middle of a folio, the entire folio will be returned.  The last
2308 * folio in the batch may have the readahead flag set or the uptodate flag
2309 * clear so that the caller can take the appropriate action.
2310 */
2311static void filemap_get_read_batch(struct address_space *mapping,
2312		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2313{
2314	XA_STATE(xas, &mapping->i_pages, index);
2315	struct folio *folio;
2316
2317	rcu_read_lock();
2318	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2319		if (xas_retry(&xas, folio))
2320			continue;
2321		if (xas.xa_index > max || xa_is_value(folio))
2322			break;
2323		if (xa_is_sibling(folio))
2324			break;
2325		if (!folio_try_get(folio))
2326			goto retry;
2327
2328		if (unlikely(folio != xas_reload(&xas)))
2329			goto put_folio;
2330
2331		if (!folio_batch_add(fbatch, folio))
2332			break;
2333		if (!folio_test_uptodate(folio))
2334			break;
2335		if (folio_test_readahead(folio))
2336			break;
2337		xas_advance(&xas, folio_next_index(folio) - 1);
2338		continue;
2339put_folio:
2340		folio_put(folio);
2341retry:
2342		xas_reset(&xas);
2343	}
2344	rcu_read_unlock();
2345}
2346
2347static int filemap_read_folio(struct file *file, filler_t filler,
2348		struct folio *folio)
2349{
2350	bool workingset = folio_test_workingset(folio);
2351	unsigned long pflags;
2352	int error;
2353
2354	/* Start the actual read. The read will unlock the page. */
2355	if (unlikely(workingset))
2356		psi_memstall_enter(&pflags);
2357	error = filler(file, folio);
2358	if (unlikely(workingset))
2359		psi_memstall_leave(&pflags);
2360	if (error)
2361		return error;
2362
2363	error = folio_wait_locked_killable(folio);
2364	if (error)
2365		return error;
2366	if (folio_test_uptodate(folio))
2367		return 0;
2368	if (file)
2369		shrink_readahead_size_eio(&file->f_ra);
2370	return -EIO;
2371}
2372
2373static bool filemap_range_uptodate(struct address_space *mapping,
2374		loff_t pos, size_t count, struct folio *folio,
2375		bool need_uptodate)
2376{
2377	if (folio_test_uptodate(folio))
2378		return true;
2379	/* pipes can't handle partially uptodate pages */
2380	if (need_uptodate)
2381		return false;
2382	if (!mapping->a_ops->is_partially_uptodate)
2383		return false;
2384	if (mapping->host->i_blkbits >= folio_shift(folio))
2385		return false;
2386
2387	if (folio_pos(folio) > pos) {
2388		count -= folio_pos(folio) - pos;
2389		pos = 0;
2390	} else {
2391		pos -= folio_pos(folio);
2392	}
2393
2394	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2395}
2396
2397static int filemap_update_page(struct kiocb *iocb,
2398		struct address_space *mapping, size_t count,
2399		struct folio *folio, bool need_uptodate)
2400{
2401	int error;
2402
2403	if (iocb->ki_flags & IOCB_NOWAIT) {
2404		if (!filemap_invalidate_trylock_shared(mapping))
2405			return -EAGAIN;
2406	} else {
2407		filemap_invalidate_lock_shared(mapping);
2408	}
2409
2410	if (!folio_trylock(folio)) {
2411		error = -EAGAIN;
2412		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2413			goto unlock_mapping;
2414		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2415			filemap_invalidate_unlock_shared(mapping);
2416			/*
2417			 * This is where we usually end up waiting for a
2418			 * previously submitted readahead to finish.
2419			 */
2420			folio_put_wait_locked(folio, TASK_KILLABLE);
2421			return AOP_TRUNCATED_PAGE;
2422		}
2423		error = __folio_lock_async(folio, iocb->ki_waitq);
2424		if (error)
2425			goto unlock_mapping;
2426	}
2427
2428	error = AOP_TRUNCATED_PAGE;
2429	if (!folio->mapping)
2430		goto unlock;
2431
2432	error = 0;
2433	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2434				   need_uptodate))
2435		goto unlock;
2436
2437	error = -EAGAIN;
2438	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2439		goto unlock;
2440
2441	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2442			folio);
2443	goto unlock_mapping;
2444unlock:
2445	folio_unlock(folio);
2446unlock_mapping:
2447	filemap_invalidate_unlock_shared(mapping);
2448	if (error == AOP_TRUNCATED_PAGE)
2449		folio_put(folio);
2450	return error;
2451}
2452
2453static int filemap_create_folio(struct file *file,
2454		struct address_space *mapping, loff_t pos,
2455		struct folio_batch *fbatch)
2456{
2457	struct folio *folio;
2458	int error;
2459	unsigned int min_order = mapping_min_folio_order(mapping);
2460	pgoff_t index;
2461
2462	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2463	if (!folio)
2464		return -ENOMEM;
2465
2466	/*
2467	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2468	 * here assures we cannot instantiate and bring uptodate new
2469	 * pagecache folios after evicting page cache during truncate
2470	 * and before actually freeing blocks.	Note that we could
2471	 * release invalidate_lock after inserting the folio into
2472	 * the page cache as the locked folio would then be enough to
2473	 * synchronize with hole punching. But there are code paths
2474	 * such as filemap_update_page() filling in partially uptodate
2475	 * pages or ->readahead() that need to hold invalidate_lock
2476	 * while mapping blocks for IO so let's hold the lock here as
2477	 * well to keep locking rules simple.
2478	 */
2479	filemap_invalidate_lock_shared(mapping);
2480	index = (pos >> (PAGE_SHIFT + min_order)) << min_order;
2481	error = filemap_add_folio(mapping, folio, index,
2482			mapping_gfp_constraint(mapping, GFP_KERNEL));
2483	if (error == -EEXIST)
2484		error = AOP_TRUNCATED_PAGE;
2485	if (error)
2486		goto error;
2487
2488	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2489	if (error)
2490		goto error;
2491
2492	filemap_invalidate_unlock_shared(mapping);
2493	folio_batch_add(fbatch, folio);
2494	return 0;
2495error:
2496	filemap_invalidate_unlock_shared(mapping);
2497	folio_put(folio);
2498	return error;
2499}
2500
2501static int filemap_readahead(struct kiocb *iocb, struct file *file,
2502		struct address_space *mapping, struct folio *folio,
2503		pgoff_t last_index)
2504{
2505	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2506
2507	if (iocb->ki_flags & IOCB_NOIO)
2508		return -EAGAIN;
2509	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2510	return 0;
2511}
2512
2513static int filemap_get_pages(struct kiocb *iocb, size_t count,
2514		struct folio_batch *fbatch, bool need_uptodate)
2515{
2516	struct file *filp = iocb->ki_filp;
2517	struct address_space *mapping = filp->f_mapping;
 
2518	struct file_ra_state *ra = &filp->f_ra;
2519	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2520	pgoff_t last_index;
2521	struct folio *folio;
2522	unsigned int flags;
2523	int err = 0;
 
2524
2525	/* "last_index" is the index of the page beyond the end of the read */
2526	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2527retry:
2528	if (fatal_signal_pending(current))
2529		return -EINTR;
2530
2531	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2532	if (!folio_batch_count(fbatch)) {
2533		if (iocb->ki_flags & IOCB_NOIO)
2534			return -EAGAIN;
2535		if (iocb->ki_flags & IOCB_NOWAIT)
2536			flags = memalloc_noio_save();
2537		page_cache_sync_readahead(mapping, ra, filp, index,
2538				last_index - index);
2539		if (iocb->ki_flags & IOCB_NOWAIT)
2540			memalloc_noio_restore(flags);
2541		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2542	}
2543	if (!folio_batch_count(fbatch)) {
2544		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2545			return -EAGAIN;
2546		err = filemap_create_folio(filp, mapping, iocb->ki_pos, fbatch);
2547		if (err == AOP_TRUNCATED_PAGE)
2548			goto retry;
2549		return err;
2550	}
2551
2552	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2553	if (folio_test_readahead(folio)) {
2554		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2555		if (err)
2556			goto err;
2557	}
2558	if (!folio_test_uptodate(folio)) {
2559		if ((iocb->ki_flags & IOCB_WAITQ) &&
2560		    folio_batch_count(fbatch) > 1)
2561			iocb->ki_flags |= IOCB_NOWAIT;
2562		err = filemap_update_page(iocb, mapping, count, folio,
2563					  need_uptodate);
2564		if (err)
2565			goto err;
2566	}
2567
2568	trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2569	return 0;
2570err:
2571	if (err < 0)
2572		folio_put(folio);
2573	if (likely(--fbatch->nr))
2574		return 0;
2575	if (err == AOP_TRUNCATED_PAGE)
2576		goto retry;
2577	return err;
2578}
2579
2580static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2581{
2582	unsigned int shift = folio_shift(folio);
2583
2584	return (pos1 >> shift == pos2 >> shift);
2585}
2586
2587/**
2588 * filemap_read - Read data from the page cache.
2589 * @iocb: The iocb to read.
2590 * @iter: Destination for the data.
2591 * @already_read: Number of bytes already read by the caller.
2592 *
2593 * Copies data from the page cache.  If the data is not currently present,
2594 * uses the readahead and read_folio address_space operations to fetch it.
2595 *
2596 * Return: Total number of bytes copied, including those already read by
2597 * the caller.  If an error happens before any bytes are copied, returns
2598 * a negative error number.
2599 */
2600ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2601		ssize_t already_read)
2602{
2603	struct file *filp = iocb->ki_filp;
2604	struct file_ra_state *ra = &filp->f_ra;
2605	struct address_space *mapping = filp->f_mapping;
2606	struct inode *inode = mapping->host;
2607	struct folio_batch fbatch;
2608	int i, error = 0;
2609	bool writably_mapped;
2610	loff_t isize, end_offset;
2611	loff_t last_pos = ra->prev_pos;
2612
2613	if (unlikely(iocb->ki_pos < 0))
2614		return -EINVAL;
2615	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2616		return 0;
2617	if (unlikely(!iov_iter_count(iter)))
2618		return 0;
2619
2620	iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2621	folio_batch_init(&fbatch);
2622
2623	do {
2624		cond_resched();
2625
2626		/*
2627		 * If we've already successfully copied some data, then we
2628		 * can no longer safely return -EIOCBQUEUED. Hence mark
2629		 * an async read NOWAIT at that point.
2630		 */
2631		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2632			iocb->ki_flags |= IOCB_NOWAIT;
2633
2634		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2635			break;
2636
2637		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2638		if (error < 0)
2639			break;
2640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2641		/*
2642		 * i_size must be checked after we know the pages are Uptodate.
2643		 *
2644		 * Checking i_size after the check allows us to calculate
2645		 * the correct value for "nr", which means the zero-filled
2646		 * part of the page is not copied back to userspace (unless
2647		 * another truncate extends the file - this is desired though).
2648		 */
 
2649		isize = i_size_read(inode);
2650		if (unlikely(iocb->ki_pos >= isize))
2651			goto put_folios;
2652		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2653
2654		/*
2655		 * Once we start copying data, we don't want to be touching any
2656		 * cachelines that might be contended:
2657		 */
2658		writably_mapped = mapping_writably_mapped(mapping);
 
 
2659
2660		/*
2661		 * When a read accesses the same folio several times, only
2662		 * mark it as accessed the first time.
2663		 */
2664		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2665				    fbatch.folios[0]))
2666			folio_mark_accessed(fbatch.folios[0]);
2667
2668		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2669			struct folio *folio = fbatch.folios[i];
2670			size_t fsize = folio_size(folio);
2671			size_t offset = iocb->ki_pos & (fsize - 1);
2672			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2673					     fsize - offset);
2674			size_t copied;
2675
2676			if (end_offset < folio_pos(folio))
2677				break;
2678			if (i > 0)
2679				folio_mark_accessed(folio);
2680			/*
2681			 * If users can be writing to this folio using arbitrary
2682			 * virtual addresses, take care of potential aliasing
2683			 * before reading the folio on the kernel side.
2684			 */
2685			if (writably_mapped)
2686				flush_dcache_folio(folio);
2687
2688			copied = copy_folio_to_iter(folio, offset, bytes, iter);
 
 
 
 
 
 
 
 
 
 
 
 
2689
2690			already_read += copied;
2691			iocb->ki_pos += copied;
2692			last_pos = iocb->ki_pos;
2693
2694			if (copied < bytes) {
2695				error = -EFAULT;
2696				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
2697			}
 
2698		}
2699put_folios:
2700		for (i = 0; i < folio_batch_count(&fbatch); i++)
2701			folio_put(fbatch.folios[i]);
2702		folio_batch_init(&fbatch);
2703	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2704
2705	file_accessed(filp);
2706	ra->prev_pos = last_pos;
2707	return already_read ? already_read : error;
2708}
2709EXPORT_SYMBOL_GPL(filemap_read);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710
2711int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2712{
2713	struct address_space *mapping = iocb->ki_filp->f_mapping;
2714	loff_t pos = iocb->ki_pos;
2715	loff_t end = pos + count - 1;
2716
2717	if (iocb->ki_flags & IOCB_NOWAIT) {
2718		if (filemap_range_needs_writeback(mapping, pos, end))
2719			return -EAGAIN;
2720		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2721	}
2722
2723	return filemap_write_and_wait_range(mapping, pos, end);
 
 
 
 
 
 
2724}
2725EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2726
2727int filemap_invalidate_pages(struct address_space *mapping,
2728			     loff_t pos, loff_t end, bool nowait)
2729{
2730	int ret;
 
2731
2732	if (nowait) {
2733		/* we could block if there are any pages in the range */
2734		if (filemap_range_has_page(mapping, pos, end))
2735			return -EAGAIN;
2736	} else {
2737		ret = filemap_write_and_wait_range(mapping, pos, end);
2738		if (ret)
2739			return ret;
2740	}
2741
2742	/*
2743	 * After a write we want buffered reads to be sure to go to disk to get
2744	 * the new data.  We invalidate clean cached page from the region we're
2745	 * about to write.  We do this *before* the write so that we can return
2746	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2747	 */
2748	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2749					     end >> PAGE_SHIFT);
2750}
 
 
 
 
 
2751
2752int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2753{
2754	struct address_space *mapping = iocb->ki_filp->f_mapping;
 
2755
2756	return filemap_invalidate_pages(mapping, iocb->ki_pos,
2757					iocb->ki_pos + count - 1,
2758					iocb->ki_flags & IOCB_NOWAIT);
 
 
 
 
 
 
2759}
2760EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2761
2762/**
2763 * generic_file_read_iter - generic filesystem read routine
2764 * @iocb:	kernel I/O control block
2765 * @iter:	destination for the data read
2766 *
2767 * This is the "read_iter()" routine for all filesystems
2768 * that can use the page cache directly.
2769 *
2770 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2771 * be returned when no data can be read without waiting for I/O requests
2772 * to complete; it doesn't prevent readahead.
2773 *
2774 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2775 * requests shall be made for the read or for readahead.  When no data
2776 * can be read, -EAGAIN shall be returned.  When readahead would be
2777 * triggered, a partial, possibly empty read shall be returned.
2778 *
2779 * Return:
2780 * * number of bytes copied, even for partial reads
2781 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2782 */
2783ssize_t
2784generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2785{
2786	size_t count = iov_iter_count(iter);
2787	ssize_t retval = 0;
2788
2789	if (!count)
2790		return 0; /* skip atime */
2791
2792	if (iocb->ki_flags & IOCB_DIRECT) {
2793		struct file *file = iocb->ki_filp;
2794		struct address_space *mapping = file->f_mapping;
2795		struct inode *inode = mapping->host;
2796
2797		retval = kiocb_write_and_wait(iocb, count);
2798		if (retval < 0)
2799			return retval;
2800		file_accessed(file);
2801
2802		retval = mapping->a_ops->direct_IO(iocb, iter);
2803		if (retval >= 0) {
2804			iocb->ki_pos += retval;
2805			count -= retval;
2806		}
2807		if (retval != -EIOCBQUEUED)
2808			iov_iter_revert(iter, count - iov_iter_count(iter));
2809
2810		/*
2811		 * Btrfs can have a short DIO read if we encounter
2812		 * compressed extents, so if there was an error, or if
2813		 * we've already read everything we wanted to, or if
2814		 * there was a short read because we hit EOF, go ahead
2815		 * and return.  Otherwise fallthrough to buffered io for
2816		 * the rest of the read.  Buffered reads will not work for
2817		 * DAX files, so don't bother trying.
2818		 */
2819		if (retval < 0 || !count || IS_DAX(inode))
2820			return retval;
2821		if (iocb->ki_pos >= i_size_read(inode))
2822			return retval;
 
 
 
 
 
 
2823	}
2824
2825	return filemap_read(iocb, iter, retval);
2826}
2827EXPORT_SYMBOL(generic_file_read_iter);
2828
2829/*
2830 * Splice subpages from a folio into a pipe.
 
 
 
 
 
 
 
2831 */
2832size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2833			      struct folio *folio, loff_t fpos, size_t size)
 
2834{
2835	struct page *page;
2836	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2837
2838	page = folio_page(folio, offset / PAGE_SIZE);
2839	size = min(size, folio_size(folio) - offset);
2840	offset %= PAGE_SIZE;
2841
2842	while (spliced < size &&
2843	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2844		struct pipe_buffer *buf = pipe_head_buf(pipe);
2845		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2846
2847		*buf = (struct pipe_buffer) {
2848			.ops	= &page_cache_pipe_buf_ops,
2849			.page	= page,
2850			.offset	= offset,
2851			.len	= part,
2852		};
2853		folio_get(folio);
2854		pipe->head++;
2855		page++;
2856		spliced += part;
2857		offset = 0;
2858	}
2859
2860	return spliced;
2861}
2862
2863/**
2864 * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2865 * @in: The file to read from
2866 * @ppos: Pointer to the file position to read from
2867 * @pipe: The pipe to splice into
2868 * @len: The amount to splice
2869 * @flags: The SPLICE_F_* flags
2870 *
2871 * This function gets folios from a file's pagecache and splices them into the
2872 * pipe.  Readahead will be called as necessary to fill more folios.  This may
2873 * be used for blockdevs also.
2874 *
2875 * Return: On success, the number of bytes read will be returned and *@ppos
2876 * will be updated if appropriate; 0 will be returned if there is no more data
2877 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2878 * other negative error code will be returned on error.  A short read may occur
2879 * if the pipe has insufficient space, we reach the end of the data or we hit a
2880 * hole.
2881 */
2882ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2883			    struct pipe_inode_info *pipe,
2884			    size_t len, unsigned int flags)
2885{
2886	struct folio_batch fbatch;
2887	struct kiocb iocb;
2888	size_t total_spliced = 0, used, npages;
2889	loff_t isize, end_offset;
2890	bool writably_mapped;
2891	int i, error = 0;
2892
2893	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2894		return 0;
2895
2896	init_sync_kiocb(&iocb, in);
2897	iocb.ki_pos = *ppos;
2898
2899	/* Work out how much data we can actually add into the pipe */
2900	used = pipe_occupancy(pipe->head, pipe->tail);
2901	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2902	len = min_t(size_t, len, npages * PAGE_SIZE);
2903
2904	folio_batch_init(&fbatch);
2905
2906	do {
2907		cond_resched();
2908
2909		if (*ppos >= i_size_read(in->f_mapping->host))
2910			break;
2911
2912		iocb.ki_pos = *ppos;
2913		error = filemap_get_pages(&iocb, len, &fbatch, true);
2914		if (error < 0)
2915			break;
2916
2917		/*
2918		 * i_size must be checked after we know the pages are Uptodate.
2919		 *
2920		 * Checking i_size after the check allows us to calculate
2921		 * the correct value for "nr", which means the zero-filled
2922		 * part of the page is not copied back to userspace (unless
2923		 * another truncate extends the file - this is desired though).
2924		 */
2925		isize = i_size_read(in->f_mapping->host);
2926		if (unlikely(*ppos >= isize))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2927			break;
2928		end_offset = min_t(loff_t, isize, *ppos + len);
2929
2930		/*
2931		 * Once we start copying data, we don't want to be touching any
2932		 * cachelines that might be contended:
2933		 */
2934		writably_mapped = mapping_writably_mapped(in->f_mapping);
2935
2936		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2937			struct folio *folio = fbatch.folios[i];
2938			size_t n;
2939
2940			if (folio_pos(folio) >= end_offset)
2941				goto out;
2942			folio_mark_accessed(folio);
2943
2944			/*
2945			 * If users can be writing to this folio using arbitrary
2946			 * virtual addresses, take care of potential aliasing
2947			 * before reading the folio on the kernel side.
2948			 */
2949			if (writably_mapped)
2950				flush_dcache_folio(folio);
2951
2952			n = min_t(loff_t, len, isize - *ppos);
2953			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2954			if (!n)
2955				goto out;
2956			len -= n;
2957			total_spliced += n;
2958			*ppos += n;
2959			in->f_ra.prev_pos = *ppos;
2960			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2961				goto out;
2962		}
2963
2964		folio_batch_release(&fbatch);
2965	} while (len);
2966
2967out:
2968	folio_batch_release(&fbatch);
2969	file_accessed(in);
2970
2971	return total_spliced ? total_spliced : error;
2972}
2973EXPORT_SYMBOL(filemap_splice_read);
2974
2975static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2976		struct address_space *mapping, struct folio *folio,
2977		loff_t start, loff_t end, bool seek_data)
2978{
2979	const struct address_space_operations *ops = mapping->a_ops;
2980	size_t offset, bsz = i_blocksize(mapping->host);
2981
2982	if (xa_is_value(folio) || folio_test_uptodate(folio))
2983		return seek_data ? start : end;
2984	if (!ops->is_partially_uptodate)
2985		return seek_data ? end : start;
2986
2987	xas_pause(xas);
2988	rcu_read_unlock();
2989	folio_lock(folio);
2990	if (unlikely(folio->mapping != mapping))
2991		goto unlock;
2992
2993	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2994
2995	do {
2996		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2997							seek_data)
2998			break;
2999		start = (start + bsz) & ~((u64)bsz - 1);
3000		offset += bsz;
3001	} while (offset < folio_size(folio));
3002unlock:
3003	folio_unlock(folio);
3004	rcu_read_lock();
3005	return start;
3006}
3007
3008static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3009{
3010	if (xa_is_value(folio))
3011		return PAGE_SIZE << xas_get_order(xas);
3012	return folio_size(folio);
3013}
 
 
3014
 
3015/**
3016 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3017 * @mapping: Address space to search.
3018 * @start: First byte to consider.
3019 * @end: Limit of search (exclusive).
3020 * @whence: Either SEEK_HOLE or SEEK_DATA.
3021 *
3022 * If the page cache knows which blocks contain holes and which blocks
3023 * contain data, your filesystem can use this function to implement
3024 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3025 * entirely memory-based such as tmpfs, and filesystems which support
3026 * unwritten extents.
3027 *
3028 * Return: The requested offset on success, or -ENXIO if @whence specifies
3029 * SEEK_DATA and there is no data after @start.  There is an implicit hole
3030 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3031 * and @end contain data.
3032 */
3033loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3034		loff_t end, int whence)
3035{
3036	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3037	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3038	bool seek_data = (whence == SEEK_DATA);
3039	struct folio *folio;
3040
3041	if (end <= start)
3042		return -ENXIO;
3043
3044	rcu_read_lock();
3045	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3046		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3047		size_t seek_size;
3048
3049		if (start < pos) {
3050			if (!seek_data)
3051				goto unlock;
3052			start = pos;
3053		}
3054
3055		seek_size = seek_folio_size(&xas, folio);
3056		pos = round_up((u64)pos + 1, seek_size);
3057		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3058				seek_data);
3059		if (start < pos)
3060			goto unlock;
3061		if (start >= end)
3062			break;
3063		if (seek_size > PAGE_SIZE)
3064			xas_set(&xas, pos >> PAGE_SHIFT);
3065		if (!xa_is_value(folio))
3066			folio_put(folio);
3067	}
3068	if (seek_data)
3069		start = -ENXIO;
3070unlock:
3071	rcu_read_unlock();
3072	if (folio && !xa_is_value(folio))
3073		folio_put(folio);
3074	if (start > end)
3075		return end;
3076	return start;
3077}
3078
3079#ifdef CONFIG_MMU
3080#define MMAP_LOTSAMISS  (100)
3081/*
3082 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3083 * @vmf - the vm_fault for this fault.
3084 * @folio - the folio to lock.
3085 * @fpin - the pointer to the file we may pin (or is already pinned).
3086 *
3087 * This works similar to lock_folio_or_retry in that it can drop the
3088 * mmap_lock.  It differs in that it actually returns the folio locked
3089 * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3090 * to drop the mmap_lock then fpin will point to the pinned file and
3091 * needs to be fput()'ed at a later point.
3092 */
3093static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3094				     struct file **fpin)
3095{
3096	if (folio_trylock(folio))
3097		return 1;
 
3098
3099	/*
3100	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3101	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3102	 * is supposed to work. We have way too many special cases..
3103	 */
3104	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3105		return 0;
 
 
 
3106
3107	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3108	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3109		if (__folio_lock_killable(folio)) {
3110			/*
3111			 * We didn't have the right flags to drop the
3112			 * fault lock, but all fault_handlers only check
3113			 * for fatal signals if we return VM_FAULT_RETRY,
3114			 * so we need to drop the fault lock here and
3115			 * return 0 if we don't have a fpin.
3116			 */
3117			if (*fpin == NULL)
3118				release_fault_lock(vmf);
3119			return 0;
3120		}
3121	} else
3122		__folio_lock(folio);
3123
3124	return 1;
 
 
3125}
3126
 
 
3127/*
3128 * Synchronous readahead happens when we don't even find a page in the page
3129 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3130 * to drop the mmap sem we return the file that was pinned in order for us to do
3131 * that.  If we didn't pin a file then we return NULL.  The file that is
3132 * returned needs to be fput()'ed when we're done with it.
3133 */
3134static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
3135{
3136	struct file *file = vmf->vma->vm_file;
3137	struct file_ra_state *ra = &file->f_ra;
3138	struct address_space *mapping = file->f_mapping;
3139	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3140	struct file *fpin = NULL;
3141	unsigned long vm_flags = vmf->vma->vm_flags;
3142	unsigned int mmap_miss;
3143
3144#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3145	/* Use the readahead code, even if readahead is disabled */
3146	if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3147		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3148		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3149		ra->size = HPAGE_PMD_NR;
3150		/*
3151		 * Fetch two PMD folios, so we get the chance to actually
3152		 * readahead, unless we've been told not to.
3153		 */
3154		if (!(vm_flags & VM_RAND_READ))
3155			ra->size *= 2;
3156		ra->async_size = HPAGE_PMD_NR;
3157		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3158		return fpin;
3159	}
3160#endif
3161
3162	/* If we don't want any read-ahead, don't bother */
3163	if (vm_flags & VM_RAND_READ)
3164		return fpin;
3165	if (!ra->ra_pages)
3166		return fpin;
3167
3168	if (vm_flags & VM_SEQ_READ) {
3169		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3170		page_cache_sync_ra(&ractl, ra->ra_pages);
3171		return fpin;
3172	}
3173
3174	/* Avoid banging the cache line if not needed */
3175	mmap_miss = READ_ONCE(ra->mmap_miss);
3176	if (mmap_miss < MMAP_LOTSAMISS * 10)
3177		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3178
3179	/*
3180	 * Do we miss much more than hit in this file? If so,
3181	 * stop bothering with read-ahead. It will only hurt.
3182	 */
3183	if (mmap_miss > MMAP_LOTSAMISS)
3184		return fpin;
3185
3186	/*
3187	 * mmap read-around
3188	 */
3189	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3190	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3191	ra->size = ra->ra_pages;
3192	ra->async_size = ra->ra_pages / 4;
3193	ractl._index = ra->start;
3194	page_cache_ra_order(&ractl, ra, 0);
3195	return fpin;
3196}
3197
3198/*
3199 * Asynchronous readahead happens when we find the page and PG_readahead,
3200 * so we want to possibly extend the readahead further.  We return the file that
3201 * was pinned if we have to drop the mmap_lock in order to do IO.
3202 */
3203static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3204					    struct folio *folio)
 
 
 
3205{
3206	struct file *file = vmf->vma->vm_file;
3207	struct file_ra_state *ra = &file->f_ra;
3208	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3209	struct file *fpin = NULL;
3210	unsigned int mmap_miss;
3211
3212	/* If we don't want any read-ahead, don't bother */
3213	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3214		return fpin;
3215
3216	mmap_miss = READ_ONCE(ra->mmap_miss);
3217	if (mmap_miss)
3218		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3219
3220	if (folio_test_readahead(folio)) {
3221		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3222		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3223	}
3224	return fpin;
3225}
3226
3227static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3228{
3229	struct vm_area_struct *vma = vmf->vma;
3230	vm_fault_t ret = 0;
3231	pte_t *ptep;
3232
3233	/*
3234	 * We might have COW'ed a pagecache folio and might now have an mlocked
3235	 * anon folio mapped. The original pagecache folio is not mlocked and
3236	 * might have been evicted. During a read+clear/modify/write update of
3237	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3238	 * temporarily clear the PTE under PT lock and might detect it here as
3239	 * "none" when not holding the PT lock.
3240	 *
3241	 * Not rechecking the PTE under PT lock could result in an unexpected
3242	 * major fault in an mlock'ed region. Recheck only for this special
3243	 * scenario while holding the PT lock, to not degrade non-mlocked
3244	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3245	 * the number of times we hold PT lock.
3246	 */
3247	if (!(vma->vm_flags & VM_LOCKED))
3248		return 0;
3249
3250	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3251		return 0;
3252
3253	ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3254					&vmf->ptl);
3255	if (unlikely(!ptep))
3256		return VM_FAULT_NOPAGE;
3257
3258	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3259		ret = VM_FAULT_NOPAGE;
3260	} else {
3261		spin_lock(vmf->ptl);
3262		if (unlikely(!pte_none(ptep_get(ptep))))
3263			ret = VM_FAULT_NOPAGE;
3264		spin_unlock(vmf->ptl);
3265	}
3266	pte_unmap(ptep);
3267	return ret;
3268}
3269
3270/**
3271 * filemap_fault - read in file data for page fault handling
 
3272 * @vmf:	struct vm_fault containing details of the fault
3273 *
3274 * filemap_fault() is invoked via the vma operations vector for a
3275 * mapped memory region to read in file data during a page fault.
3276 *
3277 * The goto's are kind of ugly, but this streamlines the normal case of having
3278 * it in the page cache, and handles the special cases reasonably without
3279 * having a lot of duplicated code.
3280 *
3281 * vma->vm_mm->mmap_lock must be held on entry.
3282 *
3283 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3284 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3285 *
3286 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3287 * has not been released.
3288 *
3289 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3290 *
3291 * Return: bitwise-OR of %VM_FAULT_ codes.
3292 */
3293vm_fault_t filemap_fault(struct vm_fault *vmf)
3294{
3295	int error;
3296	struct file *file = vmf->vma->vm_file;
3297	struct file *fpin = NULL;
3298	struct address_space *mapping = file->f_mapping;
 
3299	struct inode *inode = mapping->host;
3300	pgoff_t max_idx, index = vmf->pgoff;
3301	struct folio *folio;
3302	vm_fault_t ret = 0;
3303	bool mapping_locked = false;
3304
3305	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3306	if (unlikely(index >= max_idx))
3307		return VM_FAULT_SIGBUS;
3308
3309	trace_mm_filemap_fault(mapping, index);
3310
3311	/*
3312	 * Do we have something in the page cache already?
3313	 */
3314	folio = filemap_get_folio(mapping, index);
3315	if (likely(!IS_ERR(folio))) {
3316		/*
3317		 * We found the page, so try async readahead before waiting for
3318		 * the lock.
3319		 */
3320		if (!(vmf->flags & FAULT_FLAG_TRIED))
3321			fpin = do_async_mmap_readahead(vmf, folio);
3322		if (unlikely(!folio_test_uptodate(folio))) {
3323			filemap_invalidate_lock_shared(mapping);
3324			mapping_locked = true;
3325		}
3326	} else {
3327		ret = filemap_fault_recheck_pte_none(vmf);
3328		if (unlikely(ret))
3329			return ret;
3330
3331		/* No page in the page cache at all */
 
3332		count_vm_event(PGMAJFAULT);
3333		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3334		ret = VM_FAULT_MAJOR;
3335		fpin = do_sync_mmap_readahead(vmf);
3336retry_find:
3337		/*
3338		 * See comment in filemap_create_folio() why we need
3339		 * invalidate_lock
3340		 */
3341		if (!mapping_locked) {
3342			filemap_invalidate_lock_shared(mapping);
3343			mapping_locked = true;
3344		}
3345		folio = __filemap_get_folio(mapping, index,
3346					  FGP_CREAT|FGP_FOR_MMAP,
3347					  vmf->gfp_mask);
3348		if (IS_ERR(folio)) {
3349			if (fpin)
3350				goto out_retry;
3351			filemap_invalidate_unlock_shared(mapping);
3352			return VM_FAULT_OOM;
3353		}
3354	}
3355
3356	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3357		goto out_retry;
 
 
3358
3359	/* Did it get truncated? */
3360	if (unlikely(folio->mapping != mapping)) {
3361		folio_unlock(folio);
3362		folio_put(folio);
3363		goto retry_find;
3364	}
3365	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3366
3367	/*
3368	 * We have a locked folio in the page cache, now we need to check
3369	 * that it's up-to-date. If not, it is going to be due to an error,
3370	 * or because readahead was otherwise unable to retrieve it.
3371	 */
3372	if (unlikely(!folio_test_uptodate(folio))) {
3373		/*
3374		 * If the invalidate lock is not held, the folio was in cache
3375		 * and uptodate and now it is not. Strange but possible since we
3376		 * didn't hold the page lock all the time. Let's drop
3377		 * everything, get the invalidate lock and try again.
3378		 */
3379		if (!mapping_locked) {
3380			folio_unlock(folio);
3381			folio_put(folio);
3382			goto retry_find;
3383		}
3384
3385		/*
3386		 * OK, the folio is really not uptodate. This can be because the
3387		 * VMA has the VM_RAND_READ flag set, or because an error
3388		 * arose. Let's read it in directly.
3389		 */
3390		goto page_not_uptodate;
3391	}
3392
3393	/*
3394	 * We've made it this far and we had to drop our mmap_lock, now is the
3395	 * time to return to the upper layer and have it re-find the vma and
3396	 * redo the fault.
3397	 */
3398	if (fpin) {
3399		folio_unlock(folio);
3400		goto out_retry;
3401	}
3402	if (mapping_locked)
3403		filemap_invalidate_unlock_shared(mapping);
3404
3405	/*
3406	 * Found the page and have a reference on it.
3407	 * We must recheck i_size under page lock.
3408	 */
3409	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3410	if (unlikely(index >= max_idx)) {
3411		folio_unlock(folio);
3412		folio_put(folio);
3413		return VM_FAULT_SIGBUS;
3414	}
3415
3416	vmf->page = folio_file_page(folio, index);
3417	return ret | VM_FAULT_LOCKED;
3418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3419page_not_uptodate:
3420	/*
3421	 * Umm, take care of errors if the page isn't up-to-date.
3422	 * Try to re-read it _once_. We do this synchronously,
3423	 * because there really aren't any performance issues here
3424	 * and we need to check for errors.
3425	 */
3426	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3427	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3428	if (fpin)
3429		goto out_retry;
3430	folio_put(folio);
 
 
 
3431
3432	if (!error || error == AOP_TRUNCATED_PAGE)
3433		goto retry_find;
3434	filemap_invalidate_unlock_shared(mapping);
3435
 
 
3436	return VM_FAULT_SIGBUS;
3437
3438out_retry:
3439	/*
3440	 * We dropped the mmap_lock, we need to return to the fault handler to
3441	 * re-find the vma and come back and find our hopefully still populated
3442	 * page.
3443	 */
3444	if (!IS_ERR(folio))
3445		folio_put(folio);
3446	if (mapping_locked)
3447		filemap_invalidate_unlock_shared(mapping);
3448	if (fpin)
3449		fput(fpin);
3450	return ret | VM_FAULT_RETRY;
3451}
3452EXPORT_SYMBOL(filemap_fault);
3453
3454static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3455		pgoff_t start)
3456{
3457	struct mm_struct *mm = vmf->vma->vm_mm;
3458
3459	/* Huge page is mapped? No need to proceed. */
3460	if (pmd_trans_huge(*vmf->pmd)) {
3461		folio_unlock(folio);
3462		folio_put(folio);
3463		return true;
3464	}
3465
3466	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3467		struct page *page = folio_file_page(folio, start);
3468		vm_fault_t ret = do_set_pmd(vmf, page);
3469		if (!ret) {
3470			/* The page is mapped successfully, reference consumed. */
3471			folio_unlock(folio);
3472			return true;
3473		}
3474	}
3475
3476	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3477		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3478
3479	return false;
3480}
3481
3482static struct folio *next_uptodate_folio(struct xa_state *xas,
3483		struct address_space *mapping, pgoff_t end_pgoff)
3484{
3485	struct folio *folio = xas_next_entry(xas, end_pgoff);
3486	unsigned long max_idx;
3487
3488	do {
3489		if (!folio)
3490			return NULL;
3491		if (xas_retry(xas, folio))
3492			continue;
3493		if (xa_is_value(folio))
3494			continue;
3495		if (!folio_try_get(folio))
3496			continue;
3497		if (folio_test_locked(folio))
3498			goto skip;
3499		/* Has the page moved or been split? */
3500		if (unlikely(folio != xas_reload(xas)))
3501			goto skip;
3502		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3503			goto skip;
3504		if (!folio_trylock(folio))
3505			goto skip;
3506		if (folio->mapping != mapping)
3507			goto unlock;
3508		if (!folio_test_uptodate(folio))
3509			goto unlock;
3510		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3511		if (xas->xa_index >= max_idx)
3512			goto unlock;
3513		return folio;
3514unlock:
3515		folio_unlock(folio);
3516skip:
3517		folio_put(folio);
3518	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3519
3520	return NULL;
3521}
3522
3523/*
3524 * Map page range [start_page, start_page + nr_pages) of folio.
3525 * start_page is gotten from start by folio_page(folio, start)
3526 */
3527static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3528			struct folio *folio, unsigned long start,
3529			unsigned long addr, unsigned int nr_pages,
3530			unsigned long *rss, unsigned int *mmap_miss)
3531{
3532	vm_fault_t ret = 0;
3533	struct page *page = folio_page(folio, start);
3534	unsigned int count = 0;
3535	pte_t *old_ptep = vmf->pte;
3536
3537	do {
3538		if (PageHWPoison(page + count))
3539			goto skip;
3540
3541		/*
3542		 * If there are too many folios that are recently evicted
3543		 * in a file, they will probably continue to be evicted.
3544		 * In such situation, read-ahead is only a waste of IO.
3545		 * Don't decrease mmap_miss in this scenario to make sure
3546		 * we can stop read-ahead.
3547		 */
3548		if (!folio_test_workingset(folio))
3549			(*mmap_miss)++;
3550
3551		/*
3552		 * NOTE: If there're PTE markers, we'll leave them to be
3553		 * handled in the specific fault path, and it'll prohibit the
3554		 * fault-around logic.
3555		 */
3556		if (!pte_none(ptep_get(&vmf->pte[count])))
3557			goto skip;
3558
3559		count++;
3560		continue;
3561skip:
3562		if (count) {
3563			set_pte_range(vmf, folio, page, count, addr);
3564			*rss += count;
3565			folio_ref_add(folio, count);
3566			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3567				ret = VM_FAULT_NOPAGE;
3568		}
3569
3570		count++;
3571		page += count;
3572		vmf->pte += count;
3573		addr += count * PAGE_SIZE;
3574		count = 0;
3575	} while (--nr_pages > 0);
3576
3577	if (count) {
3578		set_pte_range(vmf, folio, page, count, addr);
3579		*rss += count;
3580		folio_ref_add(folio, count);
3581		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3582			ret = VM_FAULT_NOPAGE;
3583	}
3584
3585	vmf->pte = old_ptep;
3586
3587	return ret;
3588}
3589
3590static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3591		struct folio *folio, unsigned long addr,
3592		unsigned long *rss, unsigned int *mmap_miss)
3593{
3594	vm_fault_t ret = 0;
3595	struct page *page = &folio->page;
3596
3597	if (PageHWPoison(page))
3598		return ret;
3599
3600	/* See comment of filemap_map_folio_range() */
3601	if (!folio_test_workingset(folio))
3602		(*mmap_miss)++;
3603
3604	/*
3605	 * NOTE: If there're PTE markers, we'll leave them to be
3606	 * handled in the specific fault path, and it'll prohibit
3607	 * the fault-around logic.
3608	 */
3609	if (!pte_none(ptep_get(vmf->pte)))
3610		return ret;
3611
3612	if (vmf->address == addr)
3613		ret = VM_FAULT_NOPAGE;
3614
3615	set_pte_range(vmf, folio, page, 1, addr);
3616	(*rss)++;
3617	folio_ref_inc(folio);
3618
3619	return ret;
3620}
3621
3622vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3623			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3624{
3625	struct vm_area_struct *vma = vmf->vma;
3626	struct file *file = vma->vm_file;
3627	struct address_space *mapping = file->f_mapping;
3628	pgoff_t file_end, last_pgoff = start_pgoff;
3629	unsigned long addr;
3630	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3631	struct folio *folio;
3632	vm_fault_t ret = 0;
3633	unsigned long rss = 0;
3634	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3635
3636	rcu_read_lock();
3637	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3638	if (!folio)
3639		goto out;
3640
3641	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3642		ret = VM_FAULT_NOPAGE;
3643		goto out;
3644	}
3645
3646	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3647	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3648	if (!vmf->pte) {
3649		folio_unlock(folio);
3650		folio_put(folio);
3651		goto out;
3652	}
3653
3654	file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3655	if (end_pgoff > file_end)
3656		end_pgoff = file_end;
3657
3658	folio_type = mm_counter_file(folio);
3659	do {
3660		unsigned long end;
3661
3662		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3663		vmf->pte += xas.xa_index - last_pgoff;
3664		last_pgoff = xas.xa_index;
3665		end = folio_next_index(folio) - 1;
3666		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3667
3668		if (!folio_test_large(folio))
3669			ret |= filemap_map_order0_folio(vmf,
3670					folio, addr, &rss, &mmap_miss);
3671		else
3672			ret |= filemap_map_folio_range(vmf, folio,
3673					xas.xa_index - folio->index, addr,
3674					nr_pages, &rss, &mmap_miss);
3675
3676		folio_unlock(folio);
3677		folio_put(folio);
3678	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3679	add_mm_counter(vma->vm_mm, folio_type, rss);
3680	pte_unmap_unlock(vmf->pte, vmf->ptl);
3681	trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3682out:
3683	rcu_read_unlock();
3684
3685	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3686	if (mmap_miss >= mmap_miss_saved)
3687		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3688	else
3689		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3690
3691	return ret;
3692}
3693EXPORT_SYMBOL(filemap_map_pages);
3694
3695vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3696{
3697	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3698	struct folio *folio = page_folio(vmf->page);
3699	vm_fault_t ret = VM_FAULT_LOCKED;
3700
3701	sb_start_pagefault(mapping->host->i_sb);
3702	file_update_time(vmf->vma->vm_file);
3703	folio_lock(folio);
3704	if (folio->mapping != mapping) {
3705		folio_unlock(folio);
3706		ret = VM_FAULT_NOPAGE;
3707		goto out;
3708	}
3709	/*
3710	 * We mark the folio dirty already here so that when freeze is in
3711	 * progress, we are guaranteed that writeback during freezing will
3712	 * see the dirty folio and writeprotect it again.
3713	 */
3714	folio_mark_dirty(folio);
3715	folio_wait_stable(folio);
3716out:
3717	sb_end_pagefault(mapping->host->i_sb);
3718	return ret;
3719}
3720
3721const struct vm_operations_struct generic_file_vm_ops = {
3722	.fault		= filemap_fault,
3723	.map_pages	= filemap_map_pages,
3724	.page_mkwrite	= filemap_page_mkwrite,
3725};
3726
3727/* This is used for a general mmap of a disk file */
3728
3729int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3730{
3731	struct address_space *mapping = file->f_mapping;
3732
3733	if (!mapping->a_ops->read_folio)
3734		return -ENOEXEC;
3735	file_accessed(file);
3736	vma->vm_ops = &generic_file_vm_ops;
 
3737	return 0;
3738}
3739
3740/*
3741 * This is for filesystems which do not implement ->writepage.
3742 */
3743int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3744{
3745	if (vma_is_shared_maywrite(vma))
3746		return -EINVAL;
3747	return generic_file_mmap(file, vma);
3748}
3749#else
3750vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3751{
3752	return VM_FAULT_SIGBUS;
3753}
3754int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3755{
3756	return -ENOSYS;
3757}
3758int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3759{
3760	return -ENOSYS;
3761}
3762#endif /* CONFIG_MMU */
3763
3764EXPORT_SYMBOL(filemap_page_mkwrite);
3765EXPORT_SYMBOL(generic_file_mmap);
3766EXPORT_SYMBOL(generic_file_readonly_mmap);
3767
3768static struct folio *do_read_cache_folio(struct address_space *mapping,
3769		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
 
 
 
3770{
3771	struct folio *folio;
3772	int err;
3773
3774	if (!filler)
3775		filler = mapping->a_ops->read_folio;
3776repeat:
3777	folio = filemap_get_folio(mapping, index);
3778	if (IS_ERR(folio)) {
3779		folio = filemap_alloc_folio(gfp,
3780					    mapping_min_folio_order(mapping));
3781		if (!folio)
3782			return ERR_PTR(-ENOMEM);
3783		index = mapping_align_index(mapping, index);
3784		err = filemap_add_folio(mapping, folio, index, gfp);
3785		if (unlikely(err)) {
3786			folio_put(folio);
3787			if (err == -EEXIST)
3788				goto repeat;
3789			/* Presumably ENOMEM for xarray node */
3790			return ERR_PTR(err);
3791		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3792
3793		goto filler;
3794	}
3795	if (folio_test_uptodate(folio))
 
 
3796		goto out;
3797
3798	if (!folio_trylock(folio)) {
3799		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3800		goto repeat;
3801	}
3802
3803	/* Folio was truncated from mapping */
3804	if (!folio->mapping) {
3805		folio_unlock(folio);
3806		folio_put(folio);
3807		goto repeat;
3808	}
3809
3810	/* Someone else locked and filled the page in a very small window */
3811	if (folio_test_uptodate(folio)) {
3812		folio_unlock(folio);
3813		goto out;
3814	}
3815
3816filler:
3817	err = filemap_read_folio(file, filler, folio);
3818	if (err) {
3819		folio_put(folio);
3820		if (err == AOP_TRUNCATED_PAGE)
3821			goto repeat;
3822		return ERR_PTR(err);
3823	}
3824
3825out:
3826	folio_mark_accessed(folio);
3827	return folio;
3828}
3829
3830/**
3831 * read_cache_folio - Read into page cache, fill it if needed.
3832 * @mapping: The address_space to read from.
3833 * @index: The index to read.
3834 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3835 * @file: Passed to filler function, may be NULL if not required.
3836 *
3837 * Read one page into the page cache.  If it succeeds, the folio returned
3838 * will contain @index, but it may not be the first page of the folio.
3839 *
3840 * If the filler function returns an error, it will be returned to the
3841 * caller.
3842 *
3843 * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3844 * Return: An uptodate folio on success, ERR_PTR() on failure.
3845 */
3846struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3847		filler_t filler, struct file *file)
 
 
3848{
3849	return do_read_cache_folio(mapping, index, filler, file,
3850			mapping_gfp_mask(mapping));
 
 
 
 
 
 
 
 
 
 
 
 
3851}
3852EXPORT_SYMBOL(read_cache_folio);
3853
3854/**
3855 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3856 * @mapping:	The address_space for the folio.
3857 * @index:	The index that the allocated folio will contain.
3858 * @gfp:	The page allocator flags to use if allocating.
3859 *
3860 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3861 * any new memory allocations done using the specified allocation flags.
 
 
 
3862 *
3863 * The most likely error from this function is EIO, but ENOMEM is
3864 * possible and so is EINTR.  If ->read_folio returns another error,
3865 * that will be returned to the caller.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3866 *
3867 * The function expects mapping->invalidate_lock to be already held.
 
 
 
 
 
 
 
 
 
 
 
 
3868 *
3869 * Return: Uptodate folio on success, ERR_PTR() on failure.
 
3870 */
3871struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3872		pgoff_t index, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3873{
3874	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
 
 
 
3875}
3876EXPORT_SYMBOL(mapping_read_folio_gfp);
3877
3878static struct page *do_read_cache_page(struct address_space *mapping,
3879		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3880{
3881	struct folio *folio;
 
3882
3883	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3884	if (IS_ERR(folio))
3885		return &folio->page;
3886	return folio_file_page(folio, index);
 
 
 
 
 
 
 
 
3887}
 
3888
3889struct page *read_cache_page(struct address_space *mapping,
3890			pgoff_t index, filler_t *filler, struct file *file)
3891{
3892	return do_read_cache_page(mapping, index, filler, file,
3893			mapping_gfp_mask(mapping));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3894}
3895EXPORT_SYMBOL(read_cache_page);
3896
3897/**
3898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3899 * @mapping:	the page's address_space
3900 * @index:	the page index
3901 * @gfp:	the page allocator flags to use if allocating
3902 *
3903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3904 * any new page allocations done using the specified allocation flags.
3905 *
3906 * If the page does not get brought uptodate, return -EIO.
3907 *
3908 * The function expects mapping->invalidate_lock to be already held.
3909 *
3910 * Return: up to date page on success, ERR_PTR() on failure.
 
 
 
 
 
 
3911 */
3912struct page *read_cache_page_gfp(struct address_space *mapping,
3913				pgoff_t index,
3914				gfp_t gfp)
3915{
3916	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 
 
 
 
3917}
3918EXPORT_SYMBOL(read_cache_page_gfp);
3919
3920/*
3921 * Warn about a page cache invalidation failure during a direct I/O write.
 
 
 
 
3922 */
3923static void dio_warn_stale_pagecache(struct file *filp)
3924{
3925	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3926	char pathname[128];
3927	char *path;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3928
3929	errseq_set(&filp->f_mapping->wb_err, -EIO);
3930	if (__ratelimit(&_rs)) {
3931		path = file_path(filp, pathname, sizeof(pathname));
3932		if (IS_ERR(path))
3933			path = "(unknown)";
3934		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3935		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3936			current->comm);
3937	}
 
 
 
 
 
 
 
 
 
 
 
 
3938}
 
3939
3940void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
 
 
3941{
3942	struct address_space *mapping = iocb->ki_filp->f_mapping;
3943
3944	if (mapping->nrpages &&
3945	    invalidate_inode_pages2_range(mapping,
3946			iocb->ki_pos >> PAGE_SHIFT,
3947			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3948		dio_warn_stale_pagecache(iocb->ki_filp);
3949}
 
3950
3951ssize_t
3952generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
 
 
3953{
3954	struct address_space *mapping = iocb->ki_filp->f_mapping;
3955	size_t write_len = iov_iter_count(from);
3956	ssize_t written;
 
 
 
 
 
 
 
 
 
 
 
 
 
3957
3958	/*
3959	 * If a page can not be invalidated, return 0 to fall back
3960	 * to buffered write.
 
 
3961	 */
3962	written = kiocb_invalidate_pages(iocb, write_len);
3963	if (written) {
3964		if (written == -EBUSY)
3965			return 0;
3966		return written;
 
 
 
 
 
 
 
3967	}
3968
3969	written = mapping->a_ops->direct_IO(iocb, from);
3970
3971	/*
3972	 * Finally, try again to invalidate clean pages which might have been
3973	 * cached by non-direct readahead, or faulted in by get_user_pages()
3974	 * if the source of the write was an mmap'ed region of the file
3975	 * we're writing.  Either one is a pretty crazy thing to do,
3976	 * so we don't support it 100%.  If this invalidation
3977	 * fails, tough, the write still worked...
3978	 *
3979	 * Most of the time we do not need this since dio_complete() will do
3980	 * the invalidation for us. However there are some file systems that
3981	 * do not end up with dio_complete() being called, so let's not break
3982	 * them by removing it completely.
3983	 *
3984	 * Noticeable example is a blkdev_direct_IO().
3985	 *
3986	 * Skip invalidation for async writes or if mapping has no pages.
3987	 */
 
 
 
 
 
3988	if (written > 0) {
3989		struct inode *inode = mapping->host;
3990		loff_t pos = iocb->ki_pos;
3991
3992		kiocb_invalidate_post_direct_write(iocb, written);
3993		pos += written;
3994		write_len -= written;
3995		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3996			i_size_write(inode, pos);
3997			mark_inode_dirty(inode);
3998		}
3999		iocb->ki_pos = pos;
4000	}
4001	if (written != -EIOCBQUEUED)
4002		iov_iter_revert(from, write_len - iov_iter_count(from));
4003	return written;
4004}
4005EXPORT_SYMBOL(generic_file_direct_write);
4006
4007ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4008{
4009	struct file *file = iocb->ki_filp;
4010	loff_t pos = iocb->ki_pos;
4011	struct address_space *mapping = file->f_mapping;
4012	const struct address_space_operations *a_ops = mapping->a_ops;
4013	size_t chunk = mapping_max_folio_size(mapping);
4014	long status = 0;
4015	ssize_t written = 0;
 
 
 
 
 
 
 
4016
4017	do {
4018		struct folio *folio;
4019		size_t offset;		/* Offset into folio */
4020		size_t bytes;		/* Bytes to write to folio */
4021		size_t copied;		/* Bytes copied from user */
4022		void *fsdata = NULL;
4023
4024		bytes = iov_iter_count(i);
4025retry:
4026		offset = pos & (chunk - 1);
4027		bytes = min(chunk - offset, bytes);
4028		balance_dirty_pages_ratelimited(mapping);
4029
4030		/*
4031		 * Bring in the user page that we will copy from _first_.
4032		 * Otherwise there's a nasty deadlock on copying from the
4033		 * same page as we're writing to, without it being marked
4034		 * up-to-date.
 
 
 
 
4035		 */
4036		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4037			status = -EFAULT;
4038			break;
4039		}
4040
4041		if (fatal_signal_pending(current)) {
4042			status = -EINTR;
 
4043			break;
4044		}
4045
4046		status = a_ops->write_begin(file, mapping, pos, bytes,
4047						&folio, &fsdata);
4048		if (unlikely(status < 0))
4049			break;
4050
4051		offset = offset_in_folio(folio, pos);
4052		if (bytes > folio_size(folio) - offset)
4053			bytes = folio_size(folio) - offset;
4054
4055		if (mapping_writably_mapped(mapping))
4056			flush_dcache_folio(folio);
4057
4058		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4059		flush_dcache_folio(folio);
 
 
4060
 
4061		status = a_ops->write_end(file, mapping, pos, bytes, copied,
4062						folio, fsdata);
4063		if (unlikely(status != copied)) {
4064			iov_iter_revert(i, copied - max(status, 0L));
4065			if (unlikely(status < 0))
4066				break;
4067		}
4068		cond_resched();
4069
4070		if (unlikely(status == 0)) {
 
4071			/*
4072			 * A short copy made ->write_end() reject the
4073			 * thing entirely.  Might be memory poisoning
4074			 * halfway through, might be a race with munmap,
4075			 * might be severe memory pressure.
 
 
4076			 */
4077			if (chunk > PAGE_SIZE)
4078				chunk /= 2;
4079			if (copied) {
4080				bytes = copied;
4081				goto retry;
4082			}
4083		} else {
4084			pos += status;
4085			written += status;
4086		}
 
 
 
 
 
4087	} while (iov_iter_count(i));
4088
4089	if (!written)
4090		return status;
4091	iocb->ki_pos += written;
4092	return written;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4093}
4094EXPORT_SYMBOL(generic_perform_write);
4095
4096/**
4097 * __generic_file_write_iter - write data to a file
4098 * @iocb:	IO state structure (file, offset, etc.)
4099 * @from:	iov_iter with data to write
 
 
4100 *
4101 * This function does all the work needed for actually writing data to a
4102 * file. It does all basic checks, removes SUID from the file, updates
4103 * modification times and calls proper subroutines depending on whether we
4104 * do direct IO or a standard buffered write.
4105 *
4106 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4107 * object which does not need locking at all.
4108 *
4109 * This function does *not* take care of syncing data in case of O_SYNC write.
4110 * A caller has to handle it. This is mainly due to the fact that we want to
4111 * avoid syncing under i_rwsem.
4112 *
4113 * Return:
4114 * * number of bytes written, even for truncated writes
4115 * * negative error code if no data has been written at all
4116 */
4117ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
4118{
4119	struct file *file = iocb->ki_filp;
4120	struct address_space *mapping = file->f_mapping;
4121	struct inode *inode = mapping->host;
4122	ssize_t ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4123
4124	ret = file_remove_privs(file);
4125	if (ret)
4126		return ret;
4127
4128	ret = file_update_time(file);
4129	if (ret)
4130		return ret;
4131
4132	if (iocb->ki_flags & IOCB_DIRECT) {
4133		ret = generic_file_direct_write(iocb, from);
 
 
 
 
 
 
 
4134		/*
4135		 * If the write stopped short of completing, fall back to
4136		 * buffered writes.  Some filesystems do this for writes to
4137		 * holes, for example.  For DAX files, a buffered write will
4138		 * not succeed (even if it did, DAX does not handle dirty
4139		 * page-cache pages correctly).
 
 
 
 
 
 
 
 
 
4140		 */
4141		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4142			return ret;
4143		return direct_write_fallback(iocb, from, ret,
4144				generic_perform_write(iocb, from));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4145	}
4146
4147	return generic_perform_write(iocb, from);
 
4148}
4149EXPORT_SYMBOL(__generic_file_write_iter);
4150
4151/**
4152 * generic_file_write_iter - write data to a file
4153 * @iocb:	IO state structure
4154 * @from:	iov_iter with data to write
 
 
4155 *
4156 * This is a wrapper around __generic_file_write_iter() to be used by most
4157 * filesystems. It takes care of syncing the file in case of O_SYNC file
4158 * and acquires i_rwsem as needed.
4159 * Return:
4160 * * negative error code if no data has been written at all of
4161 *   vfs_fsync_range() failed for a synchronous write
4162 * * number of bytes written, even for truncated writes
4163 */
4164ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
4165{
4166	struct file *file = iocb->ki_filp;
4167	struct inode *inode = file->f_mapping->host;
 
4168	ssize_t ret;
4169
4170	inode_lock(inode);
4171	ret = generic_write_checks(iocb, from);
4172	if (ret > 0)
4173		ret = __generic_file_write_iter(iocb, from);
4174	inode_unlock(inode);
 
 
 
 
4175
4176	if (ret > 0)
4177		ret = generic_write_sync(iocb, ret);
 
 
 
4178	return ret;
4179}
4180EXPORT_SYMBOL(generic_file_write_iter);
4181
4182/**
4183 * filemap_release_folio() - Release fs-specific metadata on a folio.
4184 * @folio: The folio which the kernel is trying to free.
4185 * @gfp: Memory allocation flags (and I/O mode).
 
4186 *
4187 * The address_space is trying to release any data attached to a folio
4188 * (presumably at folio->private).
 
4189 *
4190 * This will also be called if the private_2 flag is set on a page,
4191 * indicating that the folio has other metadata associated with it.
4192 *
4193 * The @gfp argument specifies whether I/O may be performed to release
4194 * this page (__GFP_IO), and whether the call may block
4195 * (__GFP_RECLAIM & __GFP_FS).
4196 *
4197 * Return: %true if the release was successful, otherwise %false.
4198 */
4199bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4200{
4201	struct address_space * const mapping = folio->mapping;
4202
4203	BUG_ON(!folio_test_locked(folio));
4204	if (!folio_needs_release(folio))
4205		return true;
4206	if (folio_test_writeback(folio))
4207		return false;
4208
4209	if (mapping && mapping->a_ops->release_folio)
4210		return mapping->a_ops->release_folio(folio, gfp);
4211	return try_to_free_buffers(folio);
4212}
4213EXPORT_SYMBOL(filemap_release_folio);
4214
4215/**
4216 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4217 * @inode: The inode to flush
4218 * @flush: Set to write back rather than simply invalidate.
4219 * @start: First byte to in range.
4220 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4221 *       onwards.
4222 *
4223 * Invalidate all the folios on an inode that contribute to the specified
4224 * range, possibly writing them back first.  Whilst the operation is
4225 * undertaken, the invalidate lock is held to prevent new folios from being
4226 * installed.
4227 */
4228int filemap_invalidate_inode(struct inode *inode, bool flush,
4229			     loff_t start, loff_t end)
4230{
4231	struct address_space *mapping = inode->i_mapping;
4232	pgoff_t first = start >> PAGE_SHIFT;
4233	pgoff_t last = end >> PAGE_SHIFT;
4234	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4235
4236	if (!mapping || !mapping->nrpages || end < start)
4237		goto out;
4238
4239	/* Prevent new folios from being added to the inode. */
4240	filemap_invalidate_lock(mapping);
4241
4242	if (!mapping->nrpages)
4243		goto unlock;
4244
4245	unmap_mapping_pages(mapping, first, nr, false);
4246
4247	/* Write back the data if we're asked to. */
4248	if (flush) {
4249		struct writeback_control wbc = {
4250			.sync_mode	= WB_SYNC_ALL,
4251			.nr_to_write	= LONG_MAX,
4252			.range_start	= start,
4253			.range_end	= end,
4254		};
4255
4256		filemap_fdatawrite_wbc(mapping, &wbc);
4257	}
4258
4259	/* Wait for writeback to complete on all folios and discard. */
4260	invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4261
4262unlock:
4263	filemap_invalidate_unlock(mapping);
4264out:
4265	return filemap_check_errors(mapping);
4266}
4267EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4268
4269#ifdef CONFIG_CACHESTAT_SYSCALL
4270/**
4271 * filemap_cachestat() - compute the page cache statistics of a mapping
4272 * @mapping:	The mapping to compute the statistics for.
4273 * @first_index:	The starting page cache index.
4274 * @last_index:	The final page index (inclusive).
4275 * @cs:	the cachestat struct to write the result to.
4276 *
4277 * This will query the page cache statistics of a mapping in the
4278 * page range of [first_index, last_index] (inclusive). The statistics
4279 * queried include: number of dirty pages, number of pages marked for
4280 * writeback, and the number of (recently) evicted pages.
4281 */
4282static void filemap_cachestat(struct address_space *mapping,
4283		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4284{
4285	XA_STATE(xas, &mapping->i_pages, first_index);
4286	struct folio *folio;
4287
4288	/* Flush stats (and potentially sleep) outside the RCU read section. */
4289	mem_cgroup_flush_stats_ratelimited(NULL);
4290
4291	rcu_read_lock();
4292	xas_for_each(&xas, folio, last_index) {
4293		int order;
4294		unsigned long nr_pages;
4295		pgoff_t folio_first_index, folio_last_index;
4296
4297		/*
4298		 * Don't deref the folio. It is not pinned, and might
4299		 * get freed (and reused) underneath us.
4300		 *
4301		 * We *could* pin it, but that would be expensive for
4302		 * what should be a fast and lightweight syscall.
4303		 *
4304		 * Instead, derive all information of interest from
4305		 * the rcu-protected xarray.
4306		 */
4307
4308		if (xas_retry(&xas, folio))
4309			continue;
4310
4311		order = xas_get_order(&xas);
4312		nr_pages = 1 << order;
4313		folio_first_index = round_down(xas.xa_index, 1 << order);
4314		folio_last_index = folio_first_index + nr_pages - 1;
4315
4316		/* Folios might straddle the range boundaries, only count covered pages */
4317		if (folio_first_index < first_index)
4318			nr_pages -= first_index - folio_first_index;
4319
4320		if (folio_last_index > last_index)
4321			nr_pages -= folio_last_index - last_index;
4322
4323		if (xa_is_value(folio)) {
4324			/* page is evicted */
4325			void *shadow = (void *)folio;
4326			bool workingset; /* not used */
4327
4328			cs->nr_evicted += nr_pages;
4329
4330#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4331			if (shmem_mapping(mapping)) {
4332				/* shmem file - in swap cache */
4333				swp_entry_t swp = radix_to_swp_entry(folio);
4334
4335				/* swapin error results in poisoned entry */
4336				if (non_swap_entry(swp))
4337					goto resched;
4338
4339				/*
4340				 * Getting a swap entry from the shmem
4341				 * inode means we beat
4342				 * shmem_unuse(). rcu_read_lock()
4343				 * ensures swapoff waits for us before
4344				 * freeing the swapper space. However,
4345				 * we can race with swapping and
4346				 * invalidation, so there might not be
4347				 * a shadow in the swapcache (yet).
4348				 */
4349				shadow = get_shadow_from_swap_cache(swp);
4350				if (!shadow)
4351					goto resched;
4352			}
4353#endif
4354			if (workingset_test_recent(shadow, true, &workingset, false))
4355				cs->nr_recently_evicted += nr_pages;
4356
4357			goto resched;
4358		}
4359
4360		/* page is in cache */
4361		cs->nr_cache += nr_pages;
4362
4363		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4364			cs->nr_dirty += nr_pages;
4365
4366		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4367			cs->nr_writeback += nr_pages;
4368
4369resched:
4370		if (need_resched()) {
4371			xas_pause(&xas);
4372			cond_resched_rcu();
4373		}
4374	}
4375	rcu_read_unlock();
4376}
4377
4378/*
4379 * See mincore: reveal pagecache information only for files
4380 * that the calling process has write access to, or could (if
4381 * tried) open for writing.
4382 */
4383static inline bool can_do_cachestat(struct file *f)
4384{
4385	if (f->f_mode & FMODE_WRITE)
4386		return true;
4387	if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4388		return true;
4389	return file_permission(f, MAY_WRITE) == 0;
4390}
4391
4392/*
4393 * The cachestat(2) system call.
4394 *
4395 * cachestat() returns the page cache statistics of a file in the
4396 * bytes range specified by `off` and `len`: number of cached pages,
4397 * number of dirty pages, number of pages marked for writeback,
4398 * number of evicted pages, and number of recently evicted pages.
4399 *
4400 * An evicted page is a page that is previously in the page cache
4401 * but has been evicted since. A page is recently evicted if its last
4402 * eviction was recent enough that its reentry to the cache would
4403 * indicate that it is actively being used by the system, and that
4404 * there is memory pressure on the system.
4405 *
4406 * `off` and `len` must be non-negative integers. If `len` > 0,
4407 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4408 * we will query in the range from `off` to the end of the file.
4409 *
4410 * The `flags` argument is unused for now, but is included for future
4411 * extensibility. User should pass 0 (i.e no flag specified).
4412 *
4413 * Currently, hugetlbfs is not supported.
4414 *
4415 * Because the status of a page can change after cachestat() checks it
4416 * but before it returns to the application, the returned values may
4417 * contain stale information.
4418 *
4419 * return values:
4420 *  zero        - success
4421 *  -EFAULT     - cstat or cstat_range points to an illegal address
4422 *  -EINVAL     - invalid flags
4423 *  -EBADF      - invalid file descriptor
4424 *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4425 */
4426SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4427		struct cachestat_range __user *, cstat_range,
4428		struct cachestat __user *, cstat, unsigned int, flags)
4429{
4430	CLASS(fd, f)(fd);
4431	struct address_space *mapping;
4432	struct cachestat_range csr;
4433	struct cachestat cs;
4434	pgoff_t first_index, last_index;
4435
4436	if (fd_empty(f))
4437		return -EBADF;
4438
4439	if (copy_from_user(&csr, cstat_range,
4440			sizeof(struct cachestat_range)))
4441		return -EFAULT;
4442
4443	/* hugetlbfs is not supported */
4444	if (is_file_hugepages(fd_file(f)))
4445		return -EOPNOTSUPP;
4446
4447	if (!can_do_cachestat(fd_file(f)))
4448		return -EPERM;
4449
4450	if (flags != 0)
4451		return -EINVAL;
4452
4453	first_index = csr.off >> PAGE_SHIFT;
4454	last_index =
4455		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4456	memset(&cs, 0, sizeof(struct cachestat));
4457	mapping = fd_file(f)->f_mapping;
4458	filemap_cachestat(mapping, first_index, last_index, &cs);
4459
4460	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4461		return -EFAULT;
4462
4463	return 0;
4464}
4465#endif /* CONFIG_CACHESTAT_SYSCALL */